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Negative-bias-temperature-instability (NBTI) and hot-carrier induced device degradation have

been experimentally compared between accumulation mode (AM) p-channel multigate transistors

(pMuGFETs) and junctionless (JL) pMuGFET. NBTI degradation is less significant in junctionless

pMuGFETs than AM pMuGFETs. The threshold voltage shift is less significant in junctionless

transistors than AM transistors. The device simulation shows that the peak of lateral electric field

and the impact ionization rate of AM device are larger than those of junctionless devices. VC 2012
American Institute of Physics. [doi:10.1063/1.3688245]

Although the multigate transistor (MuGFET) is consid-

ered as the most promising candidate for future nanometer

electronic devices due to the excellent control of short chan-

nel effects, an ultra-shallow and perfectly abrupt junction

with infinite concentration gradient in source and drain junc-

tion is required to minimize impurity diffusion and to reduce

short channel effects in MuGFETs.1 Therefore, the diffusion

of source and drain impurities is a bottleneck to the fabrica-

tion of nanometer scale MuGFETs. As a volume of MuG-

FET approaches to around 10�17 cm�3, the number of

impurity atoms in the devices is less than about 103. Due to

the random nature of ion implantation, doping diffusion, and

other process involved in the doping of silicon film, the num-

ber and position of impurity atoms are subject to stochastic

variation. This leads to the unavoidable variation of various

device parameters.2

Recently, a junctionless transistor and nanowire pinch-

off FET, for which the channel doping concentration and

type are the same as in the source and drain region, have

been proposed.3,4 The device characteristics are the same as

inversion mode or accumulation mode devices. The device

characterization of junctionless (JL) transistors including the

improvement of subthreshold slope, the reduced short

channel effects, zero-ram characteristics, low temperature

conductance oscillation, and noise properties has been

reported.5–9

At present levels of gate oxide thickness and electric

fields, negative-bias-temperature-instability (NBTI) and hot

carrier effects are reported to be a serious reliability problem

in nanometer scale p-channel multigate transistor (pMuG-

FET). Especially, hot carrier induced device degradation is

increased at high temperature due to the combined NBTI and

hot carrier effects.10 As far as we know, there is no study of

NBTI and hot-carrier effects on JL pMuGFETs.

In this work, NBTI and hot-carrier induced device

degradation has been experimentally compared between

accumulation mode (AM) and JL pMuGFET. A possible

mechanism for less NBTI and hot carrier effects in JL tran-

sistors is proposed.

JL transistors were fabricated on SOI wafer with a

340 nm top silicon layer and a 400 nm buried oxide. The re-

sistivity of the p-type is 10–20 X cm. The silicon film was

thinned down to 10 nm and patterned to form silicon nano-

wires using electron beam lithography and reactive ion etch-

ing. A 10 nm gate oxide was then grown by dry oxidation.

The ion implantation was performed to dope the devices uni-

formly Pþ with a concentration of 1� 1019 cm�3for JL

pMuGFETs. AM tri-gate nanowire pMuGFETs were fabri-

cated as well with undoped channels (NA¼ 2� 1015 cm�3).

A 50 nm polysilicon layer was deposited by LPCVD on the

gate oxide and doped Nþþ for both devices. The source and

drain regions were formed using BF2 ion implantation, but

no source or drain implant was performed on the JL pMuG-

FETs. The fabricated AM and JL devices have a pi-gate

structure. The final thickness of the silicon film is 10 nm.

The gate length studied here is 1 lm, and the extension depth

of the pi-gate in the buried oxide is approximately 10 nm.

This device has a 40 nm drawn width which is reduced to

30 nm by processing. NBTI stress was applied with gate

electrode held at a constant negative bias of VGS¼�7.0 V

under a temperature 120 �C while the source and drain elec-

trode were grounded. In order to characterize the hot-carrier

effects, devices were stressed for 3600 s with the drain volt-

age held at �8.0 V and for different gate bias values.

Fig. 1 shows the comparison of NBTI-induced threshold

voltage shifts (DVTH) between AM and JL devices. Gener-

ally, the NBTI process is a field dependent and not a voltage

dependent process. Due to the channel potential grounded to

zero during NBTI stress as mentioned in Ref. 11, the gate

bias of VGS¼�7 V was applied for the same oxide field in

both devices. We confirmed from the device simulation that

the oxide field was the same for both devices when the same

gate bias voltage was applied. It is worth noting that the

NBTI degradation in JL devices is a little bit less than the

one in AM devices. Generally, the rate for the Si-H bond

dissociation in the reaction–diffusion model for NBTI is pro-

portional to the injected hole concentration; we reckon as

shown in Fig. 2 that the less NBTI degradation in JL devices
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is due to the less hole concentration at the surface of silicon

film than AM devices. The time dependence of the threshold

voltage shift, DVTH, varies as the stress time to the power n,

where n is equal to 0.2 for both devices. This result indicates

that device degradation is predominantly determined by the

generation of interface states for both devices.

Generally, the hot carrier induced degradation depends

on the gate voltage in p-channel MOSFETs. At low gate

bias, hot electrons generated by impact ionization are

injected into the gate oxide, which leads to a reduction of the

absolute value of the threshold voltage and increases satura-

tion current.

Fig. 3 shows the comparison of hot-carrier induced

threshold voltage shifts DVTH between AM and JL pMuG-

FETs. We observed that the threshold voltage shifts to a pos-

itive direction and the drain saturation current increases after

stress for both devices. This increase in drain saturation cur-

rent is associated with trapping the injected electrons in the

gate oxide. From Fig. 3, it can be clearly observed that DVTH

is less significant in JL transistors than AM transistors. To

explain the less significant hot carrier effects in JL devices,

the comparison of the measured gate current between AM

and JL devices is depicted in Fig. 4. It is clear that the gate

current in AM devices is larger than JL devices, and the

maximum gate current appears at VGS¼VTH for both devi-

ces. The larger gate current in AM devices indicates that the

more hot electrons inject into the gate oxide layer.12 The

maximum gate current at VGS¼VTH corresponds to the max-

imum device degradation in both devices.

In order to explain the less hot carrier degradation in JL

transistor, the devices were simulated using the three-

dimensional ATLAS simulation software.13 A plot of the com-

parison of lateral electric field and the impact ionization rate

between AM and JL devices is depicted in Fig. 5. It is clearly

seen that the peaks of lateral electric field and impact ioniza-

tion rate in JL device are lower than AM devices. And also

the peaks of lateral electric field and impact ionization rate

in JL devices are located inside the drain region, as previ-

ously shown in Ref. 5.

FIG. 1. (Color online) Comparison of NBTI-induced DVTH between AM

and JL pMuGFETS.

FIG. 2. (Color online) Comparison of hole concentration at the surface

between AM and JL pMuGFETs.

FIG. 3. (Color online) Comparison of DVTH between AM and JL

pMuGFETs.

FIG. 4. (Color online) Comparison of a gate current between AM and JL

pMuGFETs.

FIG. 5. (Color online) Comparison of lateral field and impact ionization

between AM and JL pMuGFETs.
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Fig. 6 shows a plot of drain current shifts (DIDS/IDS) as a

function of stress VGS�VTH. The hot carrier degradation of

JL pMuGFET is less significant than that of AM pMuGFET

for all gate bias voltages. The device degradation is the larg-

est at VGS¼VTH. This result agrees well with the measured

gate current.

In conclusion, NBTI degradation is a little bit less in

junctionless pMuGFETs than AM pMuGFETs. The hot car-

rier degradation is also less significant in junctionless transis-

tors than AM transistors. The lesser degradation is due to the

smaller gate current in junctionless transistor. The device

simulation shows that the peaks of lateral electric field and

the impact ionization rate of junctionless transistor are lower

than those of AM transistors, and they are located within the

drain region.
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