
Title OSCAR: an optimized stall-cautious adaptive bitrate streaming
algorithm for mobile networks

Authors Zahran, Ahmed H.;Quinlan, Jason J.;Raca, Darijo;Sreenan,
Cormac J.;Halepovic, Emir;Sinha, Rakesh K.;Jana,
Rittwik;Gopalakrishnan, Vijay

Publication date 2016-05-13

Original Citation Zahran, A. H., Quinlan, J., Raca, D., Sreenan, C. J., Halepovic,
E., Sinha, R. K., Jana, R. and Gopalakrishnan, V. 'OSCAR: an
optimized stall-cautious adaptive bitrate streaming algorithm
for mobile networks', Proceedings of the 8th International
Workshop on Mobile Video, Klagenfurt, Austria. 2910655: ACM,
1-6. doi:10.1145/2910018.2910655

Type of publication Article (peer-reviewed);Conference item

Link to publisher's
version

10.1145/2910018.2910655

Rights © Authors | ACM 2016. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in MoVid '16
Proceedings of the 8th International Workshop on Mobile Video,
http://dx.doi.org/10.1145/2910018.2910655

Download date 2025-02-07 17:39:38

Item downloaded
from

https://hdl.handle.net/10468/4930

https://hdl.handle.net/10468/4930

OSCAR: An Optimized Stall-Cautious Adaptive Bitrate
Streaming Algorithm For Mobile Networks

Ahmed H. Zahran, Jason Quinlan,
Darijo Raca, Cormac J. Sreenan

Mobile and Internet System Lab.
Dept. Computer Science

University College Cork, Ireland

[a.zahran,j.quinlan,d.raca,cjs]@cs.ucc.ie

Emir Halepovic, Rakesh K Sinha,
Rittwik Jana, Vijay Gopalakrishnan

AT&T Labs – Research
1 AT&T Way,

Bedminster, NJ 08721, USA
[emir,sinha,rjana,gvijay]@research.att.com

ABSTRACT

The design of an adaptive video client for mobile users is
challenged by the frequent changes in operating conditions.
Such conditions present a seemingly insurmountable chal-
lenge to adaptation algorithms, which may fail to find a
balance between video rate, stalls, and rate-switching. In
an effort to achieve the ideal balance, we design OSCAR,
a novel adaptive streaming algorithm whose adaptation de-
cisions are optimized to avoid stalls while maintaining high
video quality. Our performance evaluation, using real video
and channel traces from both 3G and 4G networks, shows
that OSCAR achieves the highest percentage of stall-free
sessions while maintaining a high quality video in compari-
son to the state-of-the-art algorithms.

CCS Concepts

•Information systems → Multimedia streaming;

Keywords

HTTP adaptive video streaming, DASH, Optimization, mo-
bile networks.

1. INTRODUCTION
Mobile data traffic has been growing at an exponential

rate with the traffic volume doubling every year. Video has
been a big contributor to this growth; it accounted for 55% of
mobile traffic volume in 2015 and is projected to grow to 75%
by 2020 [2]. Despite the increasing popularity, studies [1]
in multiple countries have shown that video stalls occur in
about 40-70% of all sessions. Such stalls exacerbate user
frustration and ultimately lead to users abandoning their
session.

It is well-known that variability in network bandwidth af-
fects video streaming. Different techniques of Adaptive Bi-
trate Streaming (ABR) are used by content providers (Net-
flix, Hulu, YouTube). Recently, an effort to standardize

MOVID’16, May 13 2016, Klagenfurt, Austria

ACM. ISBN 978-1-4503-0000-0

DOI: 10.1145/0000

ABR streaming over HTTP resulted in adoption of ISO/IEC
23009-1 standard - Dynamic Adaptive Streaming over HTTP
(DASH). At a high-level, with DASH, the video is split into
segments of fixed duration and encoded at multiple qual-
ity levels. Then, the appropriate quality is selected by the
DASH client based on the adopted adaptation policy.

There are primarily two types of approaches for selecting
video quality: rate-based [9, 6, 12] and buffer-based [8]. In
rate-based, the quality of the next requested video segment
depends on the client’s estimate of the network through-
put, whereas buffer-based algorithms make decisions solely
based on their current buffer occupancy level. These heuris-
tics, however, do not fully account for the variability of both
the video content and wireless channel dynamics and can
adversely impact the users’ QoE. For example, many of the
existing heuristics abstract the network throughput using its
mean value independent of the nature of throughput fluctu-
ations. This results in either maintaining low video quality
by selecting lower rates to avoid stalls, or switching rates
too rapidly, or in stalls while trying to maintain high video
rate. After years of adaptive streaming deployment in real
world, a good balance between video rate, stalls, and rate
switching appears elusive.

In this paper, we present an Optimized Stall-Cautious
Adaptive bitRate (OSCAR) algorithm that accommodates
both video and throughput variations in a probabilistic frame-
work. OSCAR models the throughput as a random variable
and uses it to estimate a segment stall probability. Hence,
OSCAR decisions are aware of variations in the underlying
throughput. On selecting the next segment quality, OSCAR
solves the optimization problem over a look-ahead window of
several future video segments to proactively adapt to vari-
ations in video bitrate. We evaluate OSCAR through ex-
tensive ns-3 simulations that are driven by real 3G [15] and
4G traces [18] and real video content. Our results show
that OSCAR achieves the highest percentage of stall-free
sessions. Additionally, it attains the same quality level as
the state-of-the-art buffer-based strategies [8] while reduc-
ing the number of stalls by 40%. Finally, OSCAR strikes
a difficult to attain balance between high video quality and
low stall performance while switching rates very smoothly.

The rest of this paper is organized as follows. Section 2
presents the background and related work. OSCAR’s design
is described in Section 3, followed by our performance eval-
uation setup and results in Section 4. Finally, we conclude
and identify possible future work opportunities in Section 5.

2. BACKGROUND AND RELATED WORK

Dynamic adaptive streaming over HTTP (DASH) repre-
sents a standardized client-server framework for media stream-
ing [16]. DASH splits a long video into a set of smaller videos
segments. These segments are encoded into different qual-
ities and stored in HTTP servers. A media presentation
description (MPD) file is usually obtained from the content
provider and includes information about encoded represen-
tation rates and video resolution and the location of the seg-
ment files. There exist two types of MPD files, byte-range
and segment-based [11]. In the former, each video represen-
tation is stored in a single file and segments are specified
as ranges of bytes within the file. In the latter, each video
segment representation is stored as an individual file with
a unique URL. Once the client receives the MPD from the
content provider, it usually requests the video segments in a
sequential manner to fill the application buffer from which
the media is then decoded and displayed. The video stalls
when this buffer is empty and the application goes into a re-
buffering mode to partially fill up the buffer before resuming
the playout.

Different adaptation approaches are proposed for DASH.
Buffer-based strategies, e.g., [8], use the buffer level as an
indication for network conditions and accordingly select the
next segment quality. Other algorithms estimate the net-
work throughput by averaging the observed download rate
of previous segments. Many recent algorithms [9, 6, 12, 17]
employ a harmonic mean rate estimator to avoid outliers.
This estimate is integrated in the adaptation logic in differ-
ent ways. ELASTIC [6] employs a proportional integral con-
troller in establishing its decision. FESTIVE [9] employs a
randomized request scheduling and stateful rate-dependent
switching policy in its adaptation algorithm. PANDA tries
to persistently probe the link to improve its throughput es-
timate. MPC [17] solves an optimization problem that max-
imizes a user quality-of-experience metric. Harmonic mean
usually provides a conservative estimate and could lead to
underestimating the available bandwidth due to high vari-
ability experienced in wireless channels.

In [13], Miller et al. present an optimization framework to
identify an optimal segment request strategy assuming the
knowledge of long-term available bandwidth. In [4], Bokani
et al. present an adaptation engine using a Markov De-
cision Process (MDP) based framework. The authors also
propose three heuristics that use online or offline estimates
for bandwidth statistics to accommodate MDP complexity.
In [5], Bokani et al. integrate Q-learning to estimate the
parameters of the normal distribution used to model the
bandwidth. OSCAR models the throughput as a random
variable and mandates a constraint on the probability on
stall occurrence yielding a significant improvement in the
overall performance.

3. OSCAR
OSCAR optimizes the streaming experience while accom-

modating variations in both video and link dynamics. To
capture link dynamics, OSCARmodels the network through-
put as a random variable that is employed to estimate the
stall probability. Additionally, OSCAR maintains a slid-
ing look-ahead window for future video segments to cap-
ture the variations in their rates. OSCAR integrates the
throughput model and actual segment information to opti-

Media

Buffer

Throughput

Modeller

Segment

Cache

>

<

Y

Y
N

N

Find Optimal Solution

Solved

N

Y

Packets

Decodable
Media

Decoder

Look-ahead
Window

Size of
Future

Segments

vk+1,...k+W

OSCAR

Adaptation

Logic

Figure 1: OSCAR Client

mize the streaming performance while maintaining a prob-
abilistic constraint on the stall probability. In the following
subsections, we first introduce our system model followed
by a description of the throughput modeling and OSCAR
adaptation framework.

3.1 System Model
We consider a client streaming a video split into N seg-

ments each spanning T seconds. The streaming is assumed
to be performed on a persistent HTTP connection over which
segments are sequentially requested using HTTP GET re-
quests. Each segment is encoded into Q quality representa-
tions with each representation having an average encoding
rate Rq, where q ∈ {1, ..., Q}. Typically, higher rates imply
better qualities due to a higher resolution and/or a better
quantization parameter. For every segment n, the stream-
ing client chooses the streaming rate rn ∈ {R1, ..., RQ} and
the corresponding segment size of this segment is denoted
as Srn . Generally, these segment sizes can be identified di-
rectly from a byte-range MPD file or using HTTP HEAD
messages for URL-based MPD file.

3.2 Throughput Modeling
The network throughput is modeled as a random vari-

able (RV), denoted as ̺. The parameters of the distribu-
tion are estimated over a window of WE throughput sam-
ples from previously received segments. Note that at the
beginning of video streaming, WE is capped to the number
of received segments, denoted as k. We model ̺ using Ku-
maraswamy distribution [10], a sister RV to Beta distribu-
tion. Kumaraswamy enjoys the same characteristics of Beta
distribution including being a double bounded distribution
and ability to fit different sample distributions by tuning its
two shape parameters. However, Kumaraswamy RV has the
added advantage that its cumulative distribution function
(CDF) can be inverted easily. The CDF of Kumaraswamy
RV is expressed as

F̺(ρ) = 1− (1− ρκ1)κ2 , (1)

where κ1 and κ2 represent the two shape parameters of Ku-
maraswamy distribution.

The parameters of Kumaraswamy distribution are esti-
mated using the maximum likelihood method as described
in [10]. Note that the shape parameters are estimated for
normalized samples as Kumaraswamy distribution is defined
over [0, 1]. The normalization is based on a simple linear
transform of the real samples. The normalized throughput
sample of segment n, denoted as ρ̂n, is estimated from its
corresponding throughput sample, denoted as ρn. Note that

ρn is estimated as Srn/ςn, where ςn represents the segment
fetch time for segment n and is measured starting from the
time at which the segment is requested until the last byte
of the segment is received. The normalized throughput is
estimated using the following linear transform

ρ̂n = ρn/ρmax, (2)

where ρmax represents the largest throughput sample in the
considered estimation window. In order to signify the most
recent samples, we employ exponentially decaying weights
for the throughput samples with the most recent sample, the
observed throughput for the last received segment, assigned
the largest weight, denoted as φ1.

3.3 OSCAR Adaptation Logic
OSCAR represents a stall-cautious hybrid client that com-

bines both buffer-based and rate-based strategies. Similar
to buffer-based clients, the buffer is divided into three re-
gions including low, transient, and high. Let tk+1 represent
the request time of next segment, the first segment in the
look-ahead window, and L(tk+1) represent the buffer level in
seconds at tk+1. At low buffer levels, identified by L(tk+1)
below τl seconds of video, the client requests the video at
the lowest quality to ramp up the buffer level before it starts
optimizing the video quality. At the high buffer level, iden-
tified by L(tk+1) higher than τh, the client targets streaming
high quality video while avoiding OFF periods to maintain
an accurate estimate of the available throughput. To achieve
these goals, the client requests the next segment at the qual-
ity rate corresponding to the maximum of the rate of the
representation that is just higher than the last requested
rate, denoted as r+k , and the representation whose rate is
just below the average throughput, denoted as rav. Note
that going to OFF state is unavoidable if the link is good,
as the buffer will quickly fill up. Typically, streaming clients
remain OFF until the buffer can accommodate at least one
more segment, i.e., the client starts downloading the new
segment once it completes the playout of the current head
of line video segment.

In the transient region, the client optimizes the stream-
ing decision using the optimization model described in the
following subsection. The solution of the optimization prob-
lem provides the optimal rate for the look ahead window
consisting of few future segments. The client then requests
the next segment at its estimated optimal rate, denoted as
r̂k+1. However, if the problem is infeasible, the next segment
is requested at a fallback rate, denoted as r̃k+1, that is deter-
mined according to the following policy. A rate bound, de-
noted as rb, is identified as the minimum rate in the through-
put estimation window. The client requests the highest qual-
ity whose rate is below rb and is at most nb switching levels
away from the last received segment rate, i.e., rk. This level
switching bound is designed to avoid abrupt quality changes
when an optimal rate cannot be determined. Figure 1 high-
light OSCAR client operation.

3.4 OSCAR Optimization Model
We define our objective as a weighted sum of the selected

video utility and switching penalty over a look-ahead win-
dow including the next WV segments. Concave video utility
functions, such as exponential and log, are commonly used
in the literature. In this work, we consider an exponential
video utility, denoted as U(rn), that is expressed as

U(rn) = 1− exp(−rn/(RQr)), (3)

where r is a parameter that represents the device capability
and RQ is the highest encoding rate.

We also consider a quality switching penalty that favors
incremental quality switches to large quality switches. Our
quality switching penalty for segment n, denoted as P (rn),
is expressed as

P (rn) =

(

rn − rn−1

RQ

)2

. (4)

This function would favor performing two small quality changes
instead of one large quality change to smooth out quality
transitions. Hence, it will lead to more smooth switches.
Additionally, we take advantage of the proposed look-ahead
window to improve switching dynamics by introducing two
constraints: an oscillation avoidance constraint and a stall
avoidance constraint. The former constraint targets smooth-
ing out possible temporary changes in the selected quality
due to video bit rate variations across segments. To illus-
trate, small segments may trigger unnecessary quality up
switches that are followed by down switches leading to a
noticeable quality variation. Hence, oscillation avoidance is
attained by enforcing that the selected quality rates in the
look-ahead window should be monotonic and is expressed as

k+WV
∑

n=k+1

|rn − rn−1| = |rk+WV
− rk|. (5)

At any decision instant, the size of the different segment
representations for the next WV segments is considered in
the decision. Note that WV is capped to the number of the
remaining segments towards the end of the video.

Stall avoidance constraint is another core constraint in
OSCAR that mandates a probabilistic guarantee on stall
avoidance in the look-ahead window. In order to avoid stalls,
the arrival time of a segment n, denoted as an, should be
before its playout time, denoted as Dn. Hence, the stall
avoidance constraint is defined as imposing a threshold, de-
noted as γ, on the probability of the segment arrival before
its deadline; i.e. P (an < Dn) > γ. The arrival time for
any segment n in the look-ahead window is estimated as the
time required to transmit all segments up to and including
segment n and is expressed as

an =

n
∑

i=k+1

Sri/̺ ∀n = k + 1, ..., k +WV . (6)

In OSCAR, the deadline of the first segment (Dk+1) in the
look-ahead is conservatively determined as the buffer level
less the duration of two segments; i.e. Dk+1 = L(tk+1)−2T .
The deadline of subsequent segments is incremented by one
segment duration T for each subsequent segment in the look-
ahead window; i.e., Dn = Dk+1 + T ∗ (n − k − 1). Hence,
the stall avoidance constraint for any segment n within the
look-ahead window can be expressed as

P (

n
∑

i=k+1

Sri/̺ < Dn) > γ ∀n = k + 1, ..., k +WV , (7)

which can also be rewritten as
n
∑

i=k+1

Sri/Dn < F−1
̺ (1− γ) ∀n = k + 1, ..., k +WV . (8)

where F̺(·) is the CDF of the throughput.

Hence, we formally define the OSCAR optimization prob-
lem as

max
rn

k+WV
∑

n=k+1

U(rn)− αP (rn) (9)

s.t.
n
∑

i=k+1

Srn/Dn<F−1
̺ (1-γ) ∀n=k+1,...,k+WV (10)

k+WV
∑

n=k+1

| rn − rn−1 |= |rk+N − rk| (11)

rn ∈ {R1,, RQ} ∀n ∈ {k + 1, .., k +WV }

where α represents a weighting factor that can be tuned to
adjust the relative weight of the switching penalty to the
video utility. Constraint (11) can linearized using absolute
value linearization techniques. The details of this lineariza-
tion is removed due to space limitation.

The resultant problem represents a mixed nonlinear in-
teger program that can be solved to identify the optimal
streaming rates for the following look ahead window. How-
ever, a solution is quickly obtained as the maximized objec-
tive function is concave and the constraints are all linear in
the program variables. The program is implemented as a
multiple choice knapsack problem and can be solved using
any suitable solver. In this work, we used LINDO solver1.

To this end, one can tune the algorithm performance by
changing the stall probability threshold γ (in Eqn 10) to
match different user profiles. A larger value of γ implies a
more stall conservative user, which is usually attained by
reducing the received video quality. Additionally, α (in Eqn
9) can be tuned to adjust switching relative weight to per-
ceived quality. It is possible that a content provider would
set these parameters by monitoring individual user reaction
to the delivered content [3].

4. PERFORMANCE EVALUATION
In this section, we first present our evaluation setup fol-

lowed by our performance metrics and results.

4.1 Evaluation Setup
The performance of OSCAR is evaluated using ns-3 sim-

ulator. Our evaluation setup is shown in Figure 2. We
implemented two modules for the DASH client and server
that communicate over a single TCP connection. The com-
munication link bandwidth is shaped according to through-
put traces for both 3G (54 traces) [15] and 4G/LTE (23
traces) [18]2. These traces are collected while riding differ-
ent modes of transportation [15, 18]. Each trace reports
the measured network throughput over subsequent observa-
tion periods with each period spanning approximately one
second.

In our simulations, we used six five-minute H.264 clips in-
cluding Big Buck Bunny (Animation), Sita Sings the Blues
(Animation), and Elephant Dreams (Animation), Clip 4 (An-
imation), Clip 12 (Documentary), Clip 16 (Action) from the
Dash dataset [14]3, where videos are encoded with 4-second
1http://www.lindo.com/
2We modified the implementation of ns-3’s point-to-point
link to disable transmissions when the traces have zero
throughput.
3www.cs.ucc.ie/misl/research/current/ivid dataset

DASH Client

Module

DASH Server

Module

3G/4G BW Traces

Video traces

GET Request

GET Response(c) copyright 2008, Blender Foundation

www.bigbuckbunny.org

Figure 2: Evaluation Setup

Table 1: The parameters of streaming algorithms

BBA [8]∗
r = 2T r̄ = 0.6B ∆B = 0.875T

τh = 0.9B
ELASTIC [6]∗ WE = 5 kp = 0.01 ki = 0.001

MPC [17]∗
λ = 1 µ = 8600 µs = 8600

WE = 5 h = 5

OSCAR
WE = 10 WV = 4 τl = 12s
nb = 3 φ = 0.4 τh = 54s
α = 1 γ = 0.999

∗ Default parameter values are used from the cited papers

segment at {(235, 320x240), (375, 384x288), (560, 512x384),
(750, 512x384), (1050, 640x480), (1750, 720x480), (2350,
1280x720), (3000, 1280x720), (3850, 1920x1080), (4300, 1920x
1080)}.

The DASH client requests video segments using HTTP
GET request and the DASH server replies back with a file
whose size equals that identified by the output of the afore-
mentioned encoding stage. The requests are instantaneously
sent in a sequential manner upon receiving the previous
video segment unless the buffer is full. If the buffer is full, an
algorithm dependent request delay is introduced. If the al-
gorithm does not have a request scheduling policy, the next
segment is requested once the buffer can accommodate a new
segment. In our implementation, we consider a fixed HTTP
header size of 100 bytes for both requests and responses.
The default values of the DASH client include a 60s buffer,
8s of initial buffering, and 4s of rebuffering before resuming
playout.

We compare the performance of OSCAR to the following
streaming algorithms; ELASTIC [6] represents the class of
rate-based algorithms. WB is the sample size for rate esti-
mation, while kp and ki are the proportional and integral
coefficients of the controller. BBA [8] represents the class of
buffer-based algorithms. In our evaluation, we implemented
BBA-2 variant with linear mapping between the reservoir
and the upper buffer threshold. r and r represent the upper
and lower bounds of the reservoir, τh is the upper reservoir
threshold, and ∆B is the the quality improvement metric
defined in [8]. MPC [17] represents the class of optimized
streaming algorithms. MPC program is implemented using
the Lindo Solver4. W and N are the throughput averaging
and look-ahead window, respectively, while λ, µ, and µs rep-
resent the weights of the objective function. As suggested
in [17], we set µ = µs to double the maximum encoding rate
to signify the stall component for a fair comparison. Table
1 shows the values of the parameters of different algorithms.

Our performance metrics include the average received qual-

4We implemented Robust MPC that considers a conserva-
tive estimate of the mean estimated network available band-
width

Table 2: Average Performance Metrics

Algorithm nst tst rav nsw lsw ζ
BBA 0.95 5.59 1467 24.74 1.71 0.64
ELASTIC 0.47 2.25 935 13.21 1.24 0.44
MPC 2.30 14.16 1699 22.93 2.07 0.68
OSCAR 0.56 4.33 1461 27.7 1.67 0.65

ity rate (rav), the average number of stalls (nst), the average
stall duration (tst), the average number of switches (nsw),
the average switching level (lsw), and the average network
bandwidth utilization (ζ). These metrics are averaged per
session. In this context, the average bandwidth utilization
represents the percentage of bandwidth used over the ses-
sion lifetime and is estimated as the ratio of the transmitted
data to the maximum amount of data that could have been
transmitted for a given trace during the session activity.

4.2 Simulation Results
Table 2 shows the averaged performance metrics over 522

(87 traces x 6 videos) trace-video pairs. The table shows
that ELASTIC achieves the lowest average number of stalls
per session, nst, and average total stall duration per ses-
sion, tst. This comes at a very high cost of reduced average
video rate by 1.6x compared to OSCAR and BBA. ELAS-
TIC performance is attributed to its conservative bandwidth
estimate, leading to rapid filling of the video buffer. Hence,
ELASTIC stalls for a shorter duration when the link goes
down for a longer period and can avoid medium-term link
degradation. BBA incurs approximately twice the number
of stalls as ELASTIC with more than 2.5x stall duration.

OSCAR strikes a good balance between achieving high
video quality with a significant reduction in the number of
stalls encountered by BBA using agile rate switching, nsw

and lsw. This leads to significantly better stall results (about
40% fewer stalls than BBA), while maintaining the same av-
erage quality as BBA. OSCAR’s stall results are not quite
as good as those of ELASTIC, but close analysis reveals
that these additional stalls are limited to only 3% of the
traces where conditions are extremely challenging, i.e. the
bandwidth sharply drops for extended durations for which
stalls can be only avoided by relying on buffered media. It is
worth noting that OSCAR attains an average streaming rate
that is 1.6x that attained by ELASTIC. The table also shows
that OSCAR performs more switches than others. However,
these switches are smooth and stay near the average level of
switching of other algorithms. In [7], Egger et. al. show that
frequent switching did not degrade the user QoE for segment
sizes 4-10 seconds, which are typically used in mobile net-
works. OSCAR also attains the second highest bandwidth
utilization, ζ, after MPC while ELASTIC shows very low
bandwidth utilization due to its conservative strategies.

Figure 3 plots the cumulative distribution function (CDF)
of different metrics for the simulated algorithms. Figure 3a
shows that OSCAR and BBA choose very similar rates while
MPC tends to choose higher rates and ELASTIC tends to
choose lower rates. OSCAR and BBA are more efficient than
ELASTIC in using the available bandwidth (Figure 3b).
Figure 3e shows a noticeable variation in the distribution
of number of rate switches for different algorithms. Inter-
estingly, MPC and ELASTIC did not change their rate in 5%
of the simulated sessions. The figure shows that ELASTIC
performs the least number of switches as its CDF ramps up

Table 3: Performance for high variability traces.

Algorithm nst tst rav nsw lsw ζ
BBA 1.07 7.136 1419 24.89 1.73 0.69
ELASTIC 0.47 2.62 851 13.84 1.24 0.46
MPC 2.74 18.20 1656 23.81 1.83 0.73
OSCAR 0.61 5.54 1398 29.36 1.66 0.69

Table 4: Performance for low variability traces.

Algorithm nst tst rav nsw lsw ζ
BBA 0.63 1.77 1588 24.37 1.66 0.55
ELASTIC 0.46 1.35 1145 11.65 1.23 0.42
MPC 1.34 4.46 1814 20.00 2.67 0.59
OSCAR 0.44 1.35 1620 23.7 1.71 0.58

earlier. OSCAR performs a higher number of rate switches
as it adapts to link and video variations. Figure 3f illustrates
that the switches for OSCAR are smooth, with the average
number of levels switches remaining well below 2. Figure 3c
shows that OSCAR attains the highest percentage of stall
free sessions at 85.4% followed by ELASTIC at 83.33% and
then BBA at 66.3%. Figure 3d shows that ELASTIC enjoys
the shorter stall duration followed by OSCAR then BBA
and finally MPC.

4.3 Impact of bandwidth variability
We next consider the impact of bandwidth variability on

the performance of adaptation strategies. To this end, we
divide all traces into two profiles according to the Coeffi-
cient of Variation (CoV) of observed bandwidth: (i) low
variability profile, where CoV < 0.5 and (ii) high variabil-
ity, where CoV ≥ 0.5. We end up with 150 traces with
low and 372 traces with high variability. Table 3 shows the
results for high throughput variability traces. ELASTIC re-
sults in 23% reduction in stalls in comparison to OSCAR
but this reduction is accompanied by 40% reduction in the
achievable average rate. Compared to BBA, OSCAR has a
similar average rate with only 56% of BBA stalls and 78%
of its average stall duration. Table 4 shows the detailed re-
sults for low variability traces. For these traces, OSCAR
produces the least number of stalls and average stall dura-
tion. MPC attained the best average quality rate that is
approximately 11% higher than OSCAR’s average rate but
with 3x the number of OSCAR’s stalls. Both BBA and OS-
CAR attain the same average quality rate that is 1.4x that
of ELASTIC.

5. CONCLUSION
In cellular networks, video clients are required to accom-

modate the variability in both link and video dynamics that
significantly affects the streaming performance. We pre-
sented OSCAR, a novel streaming algorithm that optimizes
adaptation decisions to improve video quality while reducing
stall probability and providing smooth quality switches. Our
performance evaluation, using real video files and channel
traces from operational cellular networks, shows that OS-
CAR achieves the largest percentage of stall-free sessions in
comparison to state-of-the-art algorithms. Additionally, we
show that OSCAR strikes a balance between streamed video
quality and stall performance in comparison to state-of-the-
art algorithms. For future work, we are developing adap-
tation heuristics based on the OSCAR optimization frame-

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
D

F
 (

%
)

Average Representation Rates (kbit/s)

BBA

ELASTIC

MPC

OSCAR

(a) Average received data rate

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
)

Bandwidth Utilisation

BBA

ELASTIC

MPC

OSCAR

(b) Link bandwidth utilization

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

C
D

F
 (

%
)

Number of Stalls

BBA

ELASTIC

MPC

OSCAR

(c) Number of stalls per session

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

C
D

F
 (

%
)

Stall Duration (Sec)

BBA

ELASTIC

MPC

OSCAR

(d) Total stall duration per session

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

C
D

F
 (

%
)

Number of Switches

BBA

ELASTIC

MPC

OSCAR

(e) Number of quality switches per session

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8

C
D

F
 (

%
)

Average Number of Switch Jumps

BBA

ELASTIC

MPC

OSCAR

(f) Average switching level per session

Figure 3: CDF of performance metrics

work to enable a lightweight implementation for streaming
clients.

6. ACKNOWLEDGMENT
This publication has emanated from research conducted

with the financial support of Science Foundation Ireland
(SFI) under Grant Number 13/IA/1892.

7. REFERENCES
[1] “Mobile operators and their customers still struggling with

video stalling, new Opera study finds. Available at:
http://goo.gl/exXrO1.”

[2] “Cisco Visual Networking Index Global Mobile Data Traffic
Forecast Update 2015-2020. Available at:
http://goo.gl/jFB2L7,” 2015.

[3] A. Balachandran et al., “Developing a Predictive Model of
Quality of Experience for Internet Video,” in Proc. of the
ACM SIGCOMM, August 2013, pp. 339–350.

[4] A. Bokani et al., “HTTP-Based Adaptive Streaming for
Mobile Clients using Markov Decision Process,” in Proc.
IEEE PV, Dec 2013.

[5] ——, “Optimizing HTTP-Based Adaptive Streaming in
Vehicular Environment Using Markov Decision Process,”
IEEE Trans. on Multimedia, vol. 17, no. 12, pp. 2297–2309,
Dec 2015.

[6] L. De Cicco et al., “ELASTIC: A Client-Side Controller for
Dynamic Adaptive Streaming over HTTP (DASH),” in
Proc. of IEEE PV, Dec 2013.

[7] S. Egger et al., “The Impact of Adaptation Strategies on
Perceived Quality of HTTP Adaptive Streaming,” in Proc.
of VideoNext, Dec. 2014, pp. 31–36.

[8] T.-Y. Huang et al., “A Buffer-based Approach to Rate
Adaptation: Evidence from a Large Video Streaming
Service,” in Proc. of ACM SIGCOMM, Aug. 2014, pp.
187–198.

[9] J. Jiang et al., “Improving Fairness, Efficiency, and
Stability in HTTP-based Adaptive Video Streaming with
FESTIVE,” in Proc. of CoNEXT, Dec. 2012, pp. 97–108.

[10] M. Jones, “Kumaraswamyś distribution A beta-type
distribution with some tractability advantages,” Statistical
Methodology, vol. 6, no. 1, pp. 70 – 81, 2009.

[11] V. Krishnamoorthi et al., “Helping Hand or Hidden Hurdle:
Proxy-Assisted HTTP-Based Adaptive Streaming
Performance,” in Proc. IEEE MASCOTS, Aug 2013, pp.
182–191.

[12] Z. Li et al., “Probe and Adapt: Rate Adaptation for HTTP
Video Streaming At Scale,” IEEE J. Sel. Areas in
Commun., vol. 32, no. 4, pp. 719–733, 2014.

[13] K. Miller et al., “Optimal Adaptation Trajectories for
Block-Request Adaptive Video Streaming,” in Proc. of
IEEE PV, Dec 2013, pp. 1–8.

[14] J. J. Quinlan et al, “Datasets for AVC (H.264) and HEVC
(H.265) for Evaluating Dynamic Adaptive Streaming over
HTTP (DASH),” in Proc. of ACM MMsys 2016 (dataset
track) (to appear), May 2016.

[15] H. Riiser et al., “Commute Path Bandwidth Traces from
3G Networks: Analysis and Applications,” in Proc. of ACM
MMSys, Feb 2013, pp. 114–118.

[16] T. Stockhammer, “Dynamic Adaptive Streaming over
HTTP –: Standards and Design Principles,” in Proc. of
ACM MMSys, 2011, pp. 133–144.

[17] X. Yin et al., “A Control-Theoretic Approach for Dynamic
Adaptive Video Streaming over HTTP,” in Proc. of
SIGCOMM, Aug 2015, pp. 325–338.

[18] X. K. Zou et al., “Can Accurate Predictions Improve Video
Streaming in Cellular Networks?” in Proc. of HotMobile,
Feb 2015, pp. 57–62.

