<table>
<thead>
<tr>
<th>Title</th>
<th>Metal-organic frameworks invert molecular reactivity: Lewis acidic phosphonium zwitterions catalyze the Aldol-Tishchenko reaction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bauer, Gerald; Ongari, Daniele; Xu, Xiaoying; Tiana, Davide; Smit, Berend; Ranocchiari, Marco</td>
</tr>
<tr>
<td>Publication date</td>
<td>2017-12-03</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.1021/jacs.7b10928</td>
</tr>
<tr>
<td></td>
<td>Access to the full text of the published version may require a subscription.</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2017 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. http://pubs.acs.org/page/authorchoice_termsofuse.html</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/5235</td>
</tr>
</tbody>
</table>

Downloaded on 2018-12-14T21:50:36Z
Metal–Organic Frameworks Invert Molecular Reactivity: Lewis Acidic Phosphonium Zwitterions Catalyze the Aldol-Tishchenko Reaction

Gerald Bauer,‡ Daniele Ongari,§ Xiaoying Xu,‡ Davide Tiana,‡§ Berend Smit,‡ and Marco Ranocchiari*‡§†

‡Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
§Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l’Industrie 17, CH-1951 Sion, Switzerland
†School of Chemistry, University College Cork, College Road, Cork, Ireland

S Supporting Information

ABSTRACT: The influence of metal–organic frameworks (MOFs) as additives is herein described for the reaction of n-alkyl aldehydes in the presence of methylvinylketone and triphenylphosphine. In the absence of a MOF, the expected Morita–Baylis–Hillman product, a β-hydroxy enone, is observed. In the presence of MOFs with UMCM-1 and MOF-5 topologies, the reaction is selective to Aldol-Tishchenko products, the 1 and 3 n-alkylesters of 2-alkyl-1,3-diols, which is unprecedented in organocatalysis. The (3-oxo-2-butenyl)-triphenylphosphonium zwitterion, a commonly known nucelophile, is identified as the catalytic active species. This zwitterion favors nucleophilic character in solution, whereas once confined within the framework, it becomes an electrophile yielding Aldol-Tishchenko selectivity. Computational investigations reveal a structural change in the phosphonium moiety induced by the steric confinement of the framework that makes it accessible and an electrophile.

Metal–organic frameworks (MOFs) are becoming increasingly relevant for catalytic applications.¹ Their structural versatility, tunable pore size and modularity give a nearly infinite number of structures.² MOFs feature active sites as intrinsic parts of the inorganic nodes or organic linkers. Reactive intermediates may also be trapped inside the pores.³ These features can be thought of providing host–guest properties similar to enzymes giving them potential beyond simple heterogenisation of homogeneous catalysts. Reactivity and selectivity of reactions can be tuned by exploiting the environment around the active site.³ For instance, a chiral binaphthyl copper MOF with phosphoric acid functionality can reverse the stereoselectivity in the Friedel–Crafts reaction between indoles and imines.⁴ The cobalt salen-catalyzed intramolecular epoxide ring opening in the presence of a MOF results in the formation of the 6-membered ring, whereas the homogenous analogue yielded the 5-membered ring product.⁵ Molecular confinement within a phosphine MOF with IRMOF-9 topology has also proven to sterically induce intermediate selectivity to determine which reactions occur.⁶ One can also tune the environment around active sites to affect regioisomer reactivity as demonstrated by amino MixMOFs with IRMOF-9 topology that catalyze the Knøvenagel condensation of nitrobenzaldehydes.⁷ The common underlying feature is the anchoring of reaction intermediates to the framework which consequently alters the reaction pathway. We show that we can use the MOF’s porous environment to completely alter the reactivity of a catalytic intermediate from nucleophile to electrophile, yielding an as yet unprecedented catalytic pathway.

Hereby, phosphines play a central role in catalytic processes to achieve high reactivity and selectivity. Although their main application lies in the field of transition metal catalyzed reactions,⁸ e.g., the hydroformylation of olefins and the asymmetric synthesis of fine chemicals and bioactive compounds,⁹ phosphorus compounds gain increasing interest in organocatalytic reactions.¹⁰ Phosphines as organocatalysts facilitate the reaction with unsaturated carbon atoms to form phosphonium zwitterions.¹¹ Such species are reactive toward nucleophilic attack and catalyze a variety of C–C bond forming reactions like the Michael addition and the Morita–Baylis–Hillman (MBH) reaction.¹¹a,b The phosphonium ion activates the adjacent carbon atoms. Free phosphonium cations are also active Lewis acid catalysts.¹² The low lying σ* orbitals of the P–C bonds make the phosphorus electrophilic.¹³ Even though phosphonium cations have shown to catalyze different coupling reactions,¹⁴ they are rarely, if ever, the reactive moiety when placed in a zwitterion. Hence, electrophilic reactions, like the Aldol-Tishchenko (AT) reaction,¹⁵ are usually not accessible via phosphonium zwitterions.

In this contribution, we describe a triphenylphosphonium zwitterionic species that features electrophilicity only when MOFs are present. These findings show that MOFs can completely alter the reactivity of an organocatalyst from a nucleophile in solution to an electrophile in the framework, enabling the AT reaction: an as yet unprecedented reaction in organocatalysis. The role of the framework was subsequently studied by experimental and computational methods. This work shows the capability of MOFs to completely switch the reactivity of the phosphonium zwitterions, thus enabling otherwise inaccessible reaction pathways.

Received: October 13, 2017
Published: December 2, 2017

DOI: 10.1021/jacs.7b10928
Phosphines are commonly used as organocatalysts in the MBH reaction: electron deficient olefins, such as methyl vinyl ketone (MVK), react in the presence of the nucleophilic PPh₃ and aldehydes to form β-hydroxy enones.¹⁶ The influence of amino containing MixMOF systems with MOF-5 topology as cocatalysts¹⁷ in the PPh₃-catalyzed MBH reaction was investigated at first. Experiments in solution of n-pentanal and MVK with catalytic amounts of PPh₃ showed 15% conversion of the starting aldehyde with a selectivity of >99% toward the corresponding MBH product, the 4-hydroxy-3-methylene-2-hexanediol (1-C₆) (Table 1, Entry 1). When the same reaction was performed with n-butanal as substrate in the presence of MixMOF-5-NH₂ (13 mol % NH₂; Figure 1a) three products corresponding MBH product, the 4-hydroxy-3-methylene-2-hexanediol (1-C₆) were observed.¹⁸ In addition to the expected MBH product, the formation of an imine between the dimethyl aminoterephthalate and the aldehyde was not observed. In this work, the amino containing MOF – and Zn²⁺ precursors were also performed (Table S8).¹⁹ All reactions yielded only the MBH product underlying the pivotal role of the MOF in forming the AT product. The formation of an imine between the dimethyl aminoterephthalate and the aldehyde was not observed. In addition, the amino-free UMCM-1 (Table 1, Entry 6) also showed to induce the selectivity change toward AT reaction, which excludes the formation and the involvement of imines as catalytically relevant entities (Table S8). When MVK and/or PPh₃ were omitted from the reaction, neither reaction occurred.¹⁹ Previous studies showed that PPh₃ reacts with MVK to form the zwiterionic species 4 (Figure 2).¹⁶¹⁹²³ The presence of 4 was independently detected by UPLC/MS in the presence of d₄-THF (0.5 mL); (B) formation and interaction 4 with MixUMCM-1-NH₂ (28 mol % NH₂).

Table 1. Reactivity and Selectivity of Various n-Aliphatic Aldehydes in the Presence of PPh₃ and MVK Using Different MixMOF-NH₂ Systems as Cocatalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>MOF</th>
<th>Aldehyde</th>
<th>Conv. [%]</th>
<th>Selectivity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-C₆</td>
<td>2-C₆</td>
</tr>
<tr>
<td>1</td>
<td>−</td>
<td>n-pentanal</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>MixMOF-5-NH₂ (13 mol % NH₂)</td>
<td>n-butanal</td>
<td>47</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>MixUMCM-1-NH₂ (28 mol % NH₂)</td>
<td>n-butanal</td>
<td>70</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>MixUMCM-1-NH₂ (52 mol % NH₂)</td>
<td>n-butanal</td>
<td>87</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>UMCM-1-NH₂ (100 mol % NH₂)</td>
<td>n-butanal</td>
<td>14</td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td>UMC-1</td>
<td>n-butanal</td>
<td>84</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>MixUMCM-1-NH₂ (28 mol % NH₂)</td>
<td>n-pentanal</td>
<td>58</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>MixUMCM-1-NH₂ (28 mol % NH₂)</td>
<td>n-hexanal</td>
<td>56</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>MixUMCM-1-NH₂ (28 mol % NH₂)</td>
<td>n-heptanal</td>
<td>34</td>
<td>62</td>
</tr>
</tbody>
</table>

“Conversions were determined via GC or UPLC: the starting material was calibrated prior to the analyses. The amount of product were determined via GC: the values are based on the C-ratios of the respective products. Additional unidentified products were observed.”¹⁹

Figure 1. Structures and molecular formulas of the MOFs used in this work: (a) MixMOF-5-NH₂ and (b) MixUMCM-1-NH₂. bdc = 1,4-benzenedicarboxylate; abdc = 2-amino-1,4-benzenedicarboxylate; btb = 4,4′,4″-benzene-1,3,5-triyl-trisbenzoic acid (hydrogen and nitrogen atoms were omitted for clarity).

Figure 2. Formation of (3-oxo-2-butyl) triphenylphosphonium (4) as catalytic active species: (A) MVK (0.25 mmol) + PPh₃ (0.16 mmol) in d₄-THF (0.5 mL); (B) formation and interaction 4 with MixUMCM-1-NH₂ (28 mol % NH₂).
crude reaction mixture.19 Molecule 4 is an active intermediate in the MBH reaction and normally acts as a nucleophile. However, in the presence of amino MOFs with MOF-5 and UMCM-1 topologies, this zwitterion becomes an electrophile as required in the AT reaction.15

To further prove that (a) the catalytic intermediate is trapped within the MOF and that (b) leads to AT reactivity, MixUMCM-1-NH\textsubscript{2} (28 mol % NH\textsubscript{2}) was pretreated with PPh\textsubscript{3} and MVK in tetrahydrofuran (THF) overnight. It was then intensively washed to remove the excess MVK and PPh\textsubscript{3}. A solution with n-butanal in THF was introduced thereto. Under these conditions exclusively, the AT product was formed (Table S8).19 The absence of the MBH product excludes the leaching of the catalytic intermediate from the framework. Furthermore, it shows the central role of the MOF in the selectivity change. The interaction between active species and the MOF was then investigated. A stoichiometric mixture of PPh\textsubscript{3} and MVK in d\textsubscript{4}-THF was measured by 31P NMR spectroscopy showing the formation of a new species at 23.7 ppm, which corresponds to the zwitterionic phosphonium species, (3-oxo-2-butenyl)-triphenylphosphonium (Figure 2, spectrum A).19,23b When dimethyl aminoterephthalate was added to the solution, the signal shifted downfield to 24.2 ppm.19 This is indicative of an interaction between the zwitterion 4 and the amino moiety. Subsequently, the presence of 4 in the MOF structure was confirmed by pretreating MixUMCM-1-NH\textsubscript{2} (28 mol % NH\textsubscript{2}) with PPh\textsubscript{3} and MVK in THF after removal of the excess PPh\textsubscript{3} and MVK. Solid state 31P NMR spectroscopy (Figure 2, Spectrum B)19 shows the formation of three species at 21.9, 22.9, and 23.7 ppm with chemical shifts comparable to solution spectra of the zwitterion 4 demonstrating that the zwitterion is trapped relatively strong within the MOF pores. 1H NMR spectroscopy after digestion of 4 within MixUMCM-1-NH\textsubscript{2} (42 mol % NH\textsubscript{2}) revealed a formula [Zn\textsubscript{4}O-\(\text{btb})_{4/3}(\text{bdc})_{0.58}(\text{abdc})_{0.42}(\text{4}_{0.27})]_{n}$ with 0.64 ratio between 4 and amino groups (Figures S9–S11).19 The structure of the MOF is maintained upon reaction with intermediate 4, and a surface area decrease of 50\% is observed (Figures S3 and S4).19

To understand the role of the framework in the activation of the AT reaction pathway, we compared the catalytically active phosphonium zwitterion 4 in solution as well as in the UMCM-1 environment using a mix of density functional theory (DFT) and force field calculations. Intermediate 4 can either bind to defect sites in the crystal lattice, enabling a direct coordination to Zn2+ ions, or via hydrogen bonding to the amine group dispersed within the framework. The coordination of the Zn-sites cannot be excluded a priori but it was shown experimentally that the amine group plays a central role in the anchoring of 4. Further evidence of the stabilizing role of hydrogen bonds in phosphonium zwitterions is also evidenced in the enantioselective phosphate organocatalysis literature.16 Hence, we focused on H-bond stabilization and studied stability of 4 in the presence of MixUMCM-1-NH\textsubscript{2} (50 mol % NH\textsubscript{2} system A) and in solution with dimethyl aminoterephthalate (system B; Figure 3). The optimized geometry of systems A and B was computed using DFT. Inside the MOF, the zwitterion can adopt two different configurations: (A1) pointing toward the pore or (A2) pointing toward the channel (Figure 3). Starting from these configurations, classical molecular dynamics (MD) was used to verify the strength of the H-bond and the possibility of a transition between the states A1 and A2. All the simulations consider liquid n-butanal as explicit solvent. In both MixUMCM-1-NH\textsubscript{2} systems (A1, A2) and the unhindered system (B) the H bond was found to be stable, i.e., the zwitterion stayed bound to the amine group for the entire simulation (50 ns). A transition between the pore and the channel conformation was not observed, suggesting that a possible transformation from A1 to A2 only goes via the cleavage of the hydrogen bond.

To derive different reaction pathways, the C−C and the O−P (Figure S12)19 distances were investigated in systems A1, A2 and B. These distances represent the first step of MBH and AT reaction pathway, respectively.24 In this analysis, we consider that the transition state of the reactions is reached when the $d_{\text{O−P}}$ and $d_{\text{O−P}}$ distances are smaller than the respective C−C and O−P van der Waals distances, i.e., 3.47 and 3.36 Å. The probability of the transition state can therefore be compared between the different systems. The probability of the C−C distance between the zwitterion and the carbonyl to be shorter than the respective van der Waals distance is in a similar range for the system A2 and B (Table S9). Hence, the steric confinement of the MOF does not play a major role in the suppression of the MBH pathway. On the other hand, the $d_{\text{O−P}}$ distance shows a remarkable enhancement inside the MOF: in system A2, the probability related to the formation of the AT precursor is 26 times higher than in system B. This difference in the binding of the O−P arises from the interaction between the phenyl groups of the phosphonium and the steric confinement of the MOF. The three phenyl groups cause a significant steric hindrance, which results in the shifting the phosphorus from the n-butanol. However, the MOF limits the freedom of movement of 4, distorting the tetrahedral configuration of the phosphonium moiety. This distortion (Figure 3). The optimized geometry of systems A and B was computed using DFT. Inside the MOF, the zwitterion can adopt two different configurations: (A1) pointing toward the pore or (A2) pointing toward the channel (Figure 3). Starting from these configurations, classical molecular dynamics (MD) was used to verify the strength of the H-bond and the possibility of a transition between the states A1 and A2. All the simulations consider liquid n-butanal as explicit solvent. In both MixUMCM-1-NH\textsubscript{2} systems (A1, A2) and the unhindered

Figure 3. Two different configurations in which the zwitterion (4) can be found inside MixUMCM-NH\textsubscript{2}, anchored by an H bond to the amino group: 4 is trapped inside the pore (A1); 4 points toward the channel (A2). The dimethyl aminoterephthalate system (B, “solution”). H atoms were omitted for clarity reasons.

Figure 3. Two different configurations in which the zwitterion (4) can be found inside MixUMCM-NH\textsubscript{2}, anchored by an H bond to the amino group: 4 is trapped inside the pore (A1); 4 points toward the channel (A2). The dimethyl aminoterephthalate system (B, “solution”). H atoms were omitted for clarity reasons.
Communication

This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under Project no. s611. The research of D.O. was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 666983, MaGic). D.T. and G.B. acknowledge the National Centre of Competence in Research (NCCR) “Materials’ Revolution: Computational Design and Discovery of Novel Materials (MARVEL)” of the Swiss National Science Foundation (SNSF) which funded their work at EPFL and PSI. We thank Prof. van Bokhoven and Dr. Thomas Wiegand for multiple discussions.

REFERENCES

(19) Mol% NH2 refers to % aminoterephthalate to total terephthalate content.