<table>
<thead>
<tr>
<th>Title</th>
<th>The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Schiavi, Elisa; Gleinser, Marita; Molloy, Evelyn; Groeger, David; Frei, Remo; Ferstl, Ruth; Rodriguez-Perez, Noelia; Ziegler, Mario; Grant, Ray; Moriarty, Thomas Fintan; Plattner, Stephan; Healy, Selena; O'Connell Motherway, Mary; Akdis, Cezmi A.; Roper, Jennifer; Altmann, Friedrich; van Sinderen, Douwe; O'Mahony, Liam</td>
</tr>
<tr>
<td>Publication date</td>
<td>2016-12</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
</tbody>
</table>
| Link to publisher's version | http://aem.asm.org/content/82/24/7185.abstract
http://dx.doi.org/10.1128/aem.02238-16
Access to the full text of the published version may require a subscription. |
| Rights | © 2016, American Society for Microbiology. All Rights Reserved. |
| Item downloaded from | http://hdl.handle.net/10468/5413 |

Downloaded on 2018-12-26T20:47:46Z
The surface associated exopolysaccharide of *Bifidobacterium longum* 35624 plays an essential role in dampening host pro-inflammatory responses and in repressing local TH17 responses.

Running title: *B. longum* exopolysaccharide modulates TH17 responses

Abstract word count: 200

Manuscript word count: 5,926

#Address correspondence to Liam O’Mahony, liam.omahony@siaf.uzh.ch.
The immune modulating properties of certain bifidobacterial strains, such as *Bifidobacterium longum* subsp. *longum* 35624™ (*B. longum* 35624), have been well described, although the strain-specific molecular characteristics associated with such immune regulatory activity are not well defined. It has previously been demonstrated that *B. longum* 35624 produces a cell surface exopolysaccharide and in this study we investigated the role played by this exopolysaccharide in influencing the host immune response. *B. longum* 35624 induced relatively low levels of cytokine secretion from human dendritic cells, whereas an isogenic exopolysaccharide-negative mutant derivative (termed sEPS^{-neg}) induced vastly more cytokines, including IL-17, which was reversed when exopolysaccharide production was restored in sEPS^{-neg} by genetic complementation. Administration of *B. longum* 35624 to the T cell transfer colitis model prevented disease symptoms, whereas sEPS^{-neg} did not protect against the development of colitis, with associated enhanced recruitment of IL-17+ lymphocytes to the gut. Moreover, intra-nasal administration of sEPS^{-neg} also resulted in enhanced recruitment of IL-17+ lymphocytes to the murine lung. These data demonstrate that the particular exopolysaccharide produced by *B. longum* 35624 plays an essential role in dampening pro-inflammatory host responses to the strain and that loss of exopolysaccharide production results in the induction of local T_H17 responses.

IMPORTANCE

Particular gut commensals, such as *B. longum* 35624, are known to contribute positively to the development of mucosal immune cells, resulting in protection from inflammatory diseases. However, the molecular basis and mechanisms for these commensal-host interactions are poorly described. In this report, an exopolysaccharide was shown to be...
decisive in influencing the immune response to the bacterium. We generated an isogenic mutant unable to produce exopolysaccharide, and observed that this mutation caused a dramatic change in the response of human immune cells \textit{in vitro}. In addition, mouse models confirmed that lack of exopolysaccharide production induces inflammatory responses to the bacterium. These results implicate the surface-associated exopolysaccharide of the \textit{B. longum} 35624 cell envelope in the prevention of aberrant inflammatory responses.
The gut microbiota contributes significantly to host health via multiple mechanisms, including the digestion of foods, competitive exclusion of pathogens, enhancement of epithelial cell differentiation and promotion of mucosa-associated lymphoid tissue proliferation (1, 2). Furthermore, accumulating evidence suggests that the composition and metabolic activity of the gut microbiota has profound effects on proinflammatory activity and the induction of immune tolerance within mucosal tissue (3-5). Certain microbes induce regulatory responses, while others induce effector responses, resulting in the case of healthy individuals in a balanced homeostatic immunological state, which protects against infection and controls aberrant, tissue-damaging inflammatory responses (6).

One bacterial strain, which is known to induce tolerogenic responses within the gut, is *Bifidobacterium longum* subsp. *longum* 35624™ (7). Induction of T regulatory (Treg) cells by the *B. longum* 35624 strain in mice is associated with protection against colitis, arthritis, allergic responses and pathogen-associated inflammation (8-12). Administration of this bacterium to humans increases Foxp3+ lymphocytes in peripheral blood, enhances IL-10 secretion *ex vivo*, and reduces the level of circulating proinflammatory biomarkers in a wide range of patient groups (13, 14). A number of host mechanisms have been described, which contribute to the anti-inflammatory activity of this microbe, including Toll-like receptor 2 (TLR-2) and Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) recognition, and retinoic acid release by dendritic cells (13, 15-17).

However, the bacterial strain-specific structural and/or metabolic factors that contribute to these protective immune responses have as yet remained elusive.
A number of different exopolysaccharides from gut microbes have been shown to induce immune-modulatory effects. Polysaccharide A (PSA) from *Bacteroides fragilis* mediates the conversion of naïve CD4$^+$ T cells into Foxp3$^+$ Treg cells that produce IL-10 during commensal colonization. Functional Treg cells are also induced by PSA during intestinal inflammation, which requires TLR-2 signaling (18). Further studies have reported that PSA interacts directly with mouse plasmacytoid dendritic cells via TLR-2 and that PSA-exposed plasmacytoid dendritic cells express molecules involved in protection against colitis and stimulate CD4$^+$ T cells to secrete IL-10 (19). An exopolysaccharide from *Bacillus subtilis* prevents gut inflammation stimulated by *Citrobacter rodentium*, which is dependent on TLR-4 and MyD88 signaling (20). Similarly, protection against *C. rodentium* infection by *Bifidobacterium breve* UCC2003 was dependent on the presence of its exopolysaccharide (21). Furthermore, it was described that an extracellular polymeric matrix, isolated from *Faecalibacterium prausnitzii*, displayed anti-inflammatory activity in the mouse dextran sodium sulphate colitis model (22).

We recently described that the *B. longum* 35624 strain-specific EPS gene cluster, designated as *eps624*, is responsible for the production of a cell surface-associated exopolysaccharide, composed of a branched hexasaccharide repeating unit with two galactoses, two glucose, galacturonic acid and the unusual sugar 6-deoxytalose (23). The overall aim of the current study was to determine if the exopolysaccharide produced by *B. longum* 35624 is related with the immunoregulatory effects of this microorganism. To address this aim, we investigated if an isogenic derivative of *B. longum* 35624, which does not produce exopolysaccharide, is able to exert similar immunological effects to its parent strain in *vitro* and in colitis and asthma mouse models.
MATERIALS AND METHODS

Bacterial strains, plasmids and culture conditions. Bacterial strains and plasmids used in this study are detailed in Table 1. Bifidobacteria were routinely cultured in either de Man Rogosa and Sharpe medium (MRS; Oxoid Ltd., Basingstoke, Hampshire, United Kingdom) supplemented with 0.05 % cysteine-HCl or reinforced clostridial medium (RCM; Oxoid Ltd.). Bifidobacterial cultures were incubated at 37 °C under anaerobic conditions in a Don Whitley anaerobic Chamber. *Escherichia coli* strains were cultured in Lysogeny broth (LB; Oxoid Ltd) at 37 °C with agitation. Where appropriate, growth media contained chloramphenicol (Cm; 10 μg ml⁻¹ for *E. coli* and 5 μg ml⁻¹ for *B. longum 35624*), erythromycin (Em; 100 μg ml⁻¹ for *E. coli*), tetracycline (Tet; 10 μg ml⁻¹ for *E. coli* and 10 μg ml⁻¹ for *B. longum 35624*), ampicillin (Amp; 100 μg ml⁻¹ for *E. coli*) or kanamycin (Km; 50 μg ml⁻¹ for *E. coli*). All antibiotics were obtained from Sigma Aldrich, Dorset, England. The commercially available *B. longum 35624™* culture was provided by Alimentary Health limited (Cork, Ireland).

DNA manipulations. Chromosomal DNA was isolated from bifidobacteria as previously described (24). Minipreparation of plasmid DNA from *E. coli* or *B. longum 35624* was achieved using the Qiaprep spin plasmid miniprep kit (Qiagen GmbH, Hilden, Germany). For *B. longum 35624* an initial lysis step was incorporated into the plasmid isolation procedure, cells were resuspended in lysis buffer supplemented with lysozyme (30 mg ml⁻¹) and incubated at 37 °C for 30 min. Restriction enzymes and T4 DNA ligase were used according to the supplier’s instructions (Roche Diagnostics, Bell Lane, East Sussex, UK). Synthetic single stranded oligonucleotide primers used in this study were obtained from Eurofins (Ebersberg, Germany) and are detailed in Table 2. Standard PCRs were performed.
using TaqPCR mastermix (Qiagen), while high fidelity PCR was achieved using PfuII polymerase (Agilent, Santa Clara, California). B. longum 35624 colony PCRs were performed according to standard procedures with the addition of an initial incubation step of 95 °C for 5 minutes to perform cell lysis. PCR fragments were purified using the Qiagen PCR purification kit. Following electroporation of plasmid DNA into E.coli strain EC101, electrotransformation of B. longum 35624 or sEPS^{neg} was performed essentially as described by Maze et al. (25) with the following modifications. An overnight culture of B. longum 35624 was sub-cultured twice (first using a 2 % inoculum and then a 1 % inoculum) in MRS supplemented with 0.05 % cysteine-HCl and 0.2 M sucrose prior to inoculating (4%) modified Rogosa medium supplemented with 0.05 % cysteine-HCl, 1% (w/v) glucose and 0.2 M sucrose. Bacteria were grown until the OD₆₀₀ had reached 0.3-0.4, after which cells were harvested by centrifugation (6,500 rpm, 10 min, and 4 °C) and washed twice using 1 mM ammonium citrate buffer (pH 6.0) supplemented with 0.5 M sucrose. An additional centrifugation step (9,800 *g, 10 min, and 4 °C) was included to concentrate the competent cells. For electroporation 5 µl of plasmid DNA was mixed with 50 µl of competent cells, transferred into an electroporation cuvette with 0.2 cm inter-electrode distance and pulsed at 2.5 kV, 25 µF and 200 Ω using a Gene Pulser II Electroporation System (Biorad, Hercules, California USA). For recovery, 800 µl of RCM supplemented with 0.05 % L-cysteine hydrochloride were added to bacteria and incubated anaerobically for 2.5 h at 37 °C. Transformations were plated on reinforced clostridial agar (RCA) plates supplemented with appropriate concentrations of relevant antibiotics and incubated 2-3 days anaerobically at 37 °C. The correct orientation and integrity of all constructs was verified by PCR and subsequent DNA sequencing, which was performed at Eurofins (Ebersberg, Germany).
Construction of sEPSneg. An internal 583 bp fragments of the \textit{pgt624} gene was amplified by PCR using \textit{B. longum} \textit{35624} chromosomal DNA as a template and the oligonucleotide primers \textit{BI0342F_HindIII} and \textit{BI0342R_XbaI}. The PCR product generated was ligated to pORI19, an Ori+ RepA\textendash integration plasmid (26), using the unique \textit{HindIII} and \textit{XbaI} restriction sites that were incorporated into the primers for the \textit{pgt} fragment-encompassing amplicon, and introduced into \textit{E. coli} EC101 by electroporation. Recombinant \textit{E. coli} EC101 derivatives containing pORI19 constructs were selected on LB agar containing Em, and supplemented with X-gal (5-bromo-4-chloro-3-indolyl-\textbeta-D-galactopyranoside) (40 \(\mu\text{g ml}^{-1}\)) and IPTG (isopropyl-\textbeta-D galactopyranoside) (1 mM). The expected genetic structure of the recombinant plasmid, designated pORI19-\textit{pgt}, was confirmed by restriction mapping prior to subcloning of the Tet resistance antibiotic cassette, \textit{tet(W)}, from pAM5 (27) as a \textit{SacI} fragment into the unique \textit{SacI} site on pORI19-\textit{pgt}. The expected structure of a single representative of the resulting plasmid, designated pORI19\textit{tet(W)}_\textit{pgt}, was confirmed by restriction analysis. The plasmid was introduced into \textit{E. coli} EC101 harbouring pNZ-M.1185 (this is a plasmid expressing a \textit{B. longum} \textit{35624}-encoded methylase) by electroporation, and transformants were selected based on Em and Tet resistance. Methylation of the resulting plasmid complement of such transformants by the \textit{M.1185} (isoschizomer of \textit{M.EcoRII}) was confirmed by their observed resistance to \textit{EcoRII} restriction. Plasmid preparations of methylated pORI19\textit{tet(W)}_\textit{pgt} were introduced by electroporation into \textit{B. longum} \textit{35624} with subsequent selection on RCA plates supplemented with Tet.

Construction of sEPScomp. For the construction of plasmid pBC1.2_\textit{pgt624} +\textit{BI0343}, a DNA fragment encompassing \textit{pgt624} plus the downstream located gene with locus tag \textit{BI0343} and the presumed promoter region was generated by PCR amplification from chromosomal...
DNA of *B. longum* 35624 using *Pfu*II polymerase and primer combinations BI0342FSalI and BI0343EcoRI, where *SalI* or *EcoRI* restriction sites were incorporated at the 5’ ends of the forward primer, and reverse primer, respectively. Amplicons were digested with *SalI*, and *EcoRI*, and ligated into similarly digested pBC1.2 prior to introduction into *E. coli* XL1blue by electroporation and subsequent selection of transformants on LB agar supplemented with Tet and Amp. The integrity of positive clones was confirmed by sequencing and one selected clone designated pBC1.2 *pgt*+BI0343 was introduced into sEPS^{neg} by electroporation with subsequent selection of transformants on RCA supplemented with Tet and Cm. The resultant sEPS^{neg} strain harboring pBC1.2 *pgt*+BI0343 was designated sEPS^{comp}.

Electron Microscopy. After culture in MRS medium, bacteria were gently rinsed in Piperazine-N,N-bis-2-ethane sulphonic acid (PIPES) buffer (0.1 M, pH 7.4) before being fixed in 2.5 % glutaraldehyde in PIPES buffer for 5 min. The samples were rinsed twice (2 min each time) in PIPES buffer and post-fixed with 1 % osmium tetroxide in 0.1 M PIPES buffer (pH 6.8), for 60 min in the dark. The samples were rinsed three times in double distilled water (2 min each wash) before dehydration through an ethanol series (50, 70, 96, and 100 %) for 5 min each. All fixation and washing steps were carried out at room temperature. Following dehydration, the samples were critically point dried in a POLARON E3100 critical point drier (Agar Scientific, Stansted, UK), and coated with 10 nm of gold/palladium (80/20) using a Baltec MED 020 unit (Baltec, Buchs, Liechtenstein). Bacterial preparations were examined using a Hitachi S-4700 scanning electron microscope (SEM), operated in secondary electron detection mode (3 kV, 40 μA) and images captured with Quartz PCI (Quartz Imaging Corporation, Vancouver, Canada).
Exopolysaccharide isolation. The exopolysaccharide was isolated as previously described (23). Briefly, following harvesting of *B. longum* 35624 cells, which were grown on agar plates to minimize carryover of media components, an exopolysaccharide solution was generated by agitating the cells in PBS. The harvested exopolysaccharide solution was mixed with ethanol and the exopolysaccharide aggregated at the center of the surface of the ethanol solution, which facilitated harvesting of the exopolysaccharide without the need for centrifugation. The exopolysaccharide aggregations were taken with a spatula, resuspended in water and dialysed against water to remove contaminants and residual ethanol. The exopolysaccharide was applied 2 times on Bakerbond SPE C18 columns (Avantor, Deventer, The Netherlands) as indicated by the manufacturer using a HyperSep-96™ vacuum manifold (Thermo Scientific, Waltham, USA). The flow-through fraction was collected and filtered through 0.45 µm syringe filters. Quantification of total carbohydrate levels was performed as previously described (28) using a phenol-sulphuric acid method in microplate format. The absence of contaminating proteins was confirmed by measuring the total soluble protein content of the exopolysaccharide preparation using the BCA protein quantification kit (Thermo Scientific) according to manufacturer’s instructions. Bovine serum albumin was used for generation of standards. Lipopolysaccharide contamination was monitored using the pyrogen recombinant factor C assay (Lonza, Bettlach, Switzerland).

In vitro immune assays. Human blood was purchased from the Swiss blood bank (Blutspendezentrum, Basel, Switzerland), which obtains the blood following appropriate screening and consenting of volunteers. Blood samples were anonymized and coded prior to leaving the blood bank. Research procedures on human blood were performed in accordance with Swiss law (ethical approval number KEK Nr. 19/08). All experiments with human blood-derived cells were conducted under biosafety level 2 conditions. Peripheral blood
mononuclear cells (PBMCs) were isolated from healthy donors using density gradient centrifugation. Human monocyte-derived dendritic cells (MDDCs) were differentiated with 1000 IU ml\(^{-1}\) GM-CSF (Peprotech, London, UK) and 1000 IU ml\(^{-1}\) IL-4 (Novartis, Basel, Switzerland) from purified CD14\(^+\) cells using MACS separation (Miltenyi Biotec, Bergisch Gladbach, Germany). Bacterial strains for \textit{in vitro} assays were cultured in MRS medium supplemented with 0.05 \% L-cysteine for 48 hours under anaerobic conditions at 37\(^\circ\)C. Cells were harvested and washed once with sterile PBS by centrifugation at 6,500 rpm for 10 minutes. Bacterial cell number was determined by microscopy using a Petroff-Hausser chamber and bacteria were diluted as appropriate in PBS for incubation with human cells. PBMCs and MDDCs were stimulated for 24 h at 37\(^\circ\)C, 5 \% CO\(_2\) with bacterial strains at a concentration of 50 bacterial cells to 1 PBMC or MDDC. Human and bacterial cell co-cultures were performed in complete RPMI-1640 (cRPMI) medium (Sigma, Buchs, Switzerland) supplemented with 10\% fetal bovine serum (Sigma), penicillin (100 Units ml\(^{-1}\)) and streptomycin (0.1 mg ml\(^{-1}\)) (Sigma). Purified exopolysaccharide from \textit{B. longum} 35624 was also added (final concentration 100 \(\mu\)g/ml) to PBMC cultures (in duplicate) stimulated with sEPSneg. Cytokine concentrations were measured using the Bio-Plex Multiplex System (Biorad). For human dendritic cells staining, the following antibodies were used: PE-Cy7 anti-human CD274 (PD-L1), APC anti-human CD273 (PD-L2) and Pacific Blue anti-human CD11c (eBioscience, Vienna, Austria). THP-1-BlueTM NF-\(\kappa\)B monocyte cell line (Invivogen, San Diego, USA) was maintained and sub-cultured in cRPMI medium (Sigma) in presence of 200\(\mu\)g/ml Zeocin (Invivogen). For the co-culture experiment with bacteria, 10\(^5\) cells/well were seeded in a 96 well-plate in a total volume of 200 \(\mu\)l/well of cRPMI medium. The cells were stimulated over a range of different bacterial concentrations for 24 h and activation of NF-\(\kappa\)B/AP-1 pathway was evaluated by Quanti-BlueTM assay according to the manufacturer’s instructions.
instructions. In addition, MDDCs were stimulated with different bacterial strains and NF-κB phosphorylation measured over a time course. MDDCs were lysed using Bio-Plex Pro cell signaling reagent kit (Biorad) and cell lysates were stored at -80°C until analysis. Protein concentration was determined using Bio-Rad’s DC™ protein assay and equal amounts of protein were used to measure NF-κB p65 (Ser536) in the Bio-Plex Pro™ Magnetic Cell Signaling Assay (Biorad). Results are expressed as MFI (mean fluorescence intensity).

T cell transfer colitis model. C.B-17 severe combined immunodeficient (SCID and BALB/c female mice (8-12 weeks of age) were obtained from Charles River (Sulzfeld, Germany) and maintained under specific pathogen free conditions. The animals were housed at the AO Research Institute, Davos, Switzerland, in individually ventilated cages for the duration of the study, and all experimental procedures were carried out in accordance with Swiss law (Permit number: 2013_32). Colitogenic CD4⁺CD25⁻CD45RB hi cells were isolated from BALB/c donor mouse spleens using the MACS Miltenyi system (depletion of CD4⁺CD25+ cells followed by positive selection of CD45RB FITC-labeled cells). At day 0, colitis was induced by intraperitoneal transfer of 4 x 10⁵ cells per C.B-17 SCID mouse (8 mice per group). Bacterial cells were prepared as described above and counted using microscopy (Petroff-Hausser chamber) prior to dilution in sterile PBS. 1 x 10⁸ B. longum 35624 cells, or its isogenic derivatives, were administered to each mouse by intragastric gavage (total volume of 200 µl). Bacteria were gavaged from the beginning of the study (day 0) and continued to be gavaged every second day until animals were euthanized at the end of the study. Sixteen days after study initiation, disease severity scores were recorded, while animal weights were monitored every day. Disease severity scores included feces condition (1 - wet; 2 - diarrhea; 3 - bloody diarrhea or rectal prolapse), activity (1 - isolated, abnormal
position; 2 - huddled, hypoactive or hyperactive; 3 – unconscious), coordination of movement (1 - slightly uncoordinated; 2 – very uncoordinated; 3 – paralysis) and fur quality (1 – reduced grooming; 2 – disheveled; 3 - hair loss). Gut transit was determined by quantifying fecal *B. longum* 35624 levels by PCR. *B. longum* 35624 specific primers were designed using Primer3 software (http://simgene.com/Primer3). The primers, designated 2420t (Forward: CAG TGG GGT GCG ACT ACA; Reverse: GCG CGA ACC AGA AGA TGT) generated a 494 bp amplicon. Bacterial DNA from fecal samples was extracted using QIAamp DNA Stool Mini Kit (Qiagen). DNA was quantified using Nanodrop (Thermo Scientific) and 100 ng of total DNA was assayed using SYBR Green PCR Master Mix (Biorad). The thermal cycling conditions consisted of an initial denaturation step of 15 min at 95˚C, followed by 30 cycles of denaturation at 94˚C for 45 sec, annealing for 45 sec at 56˚C, and extension at 72˚C for 45 sec. *B. longum* 35624 DNA concentrations were quantified using the absolute quantitation protocol of the ABI 7900 Fast real-Time PCR system (Applied Biosystem, CA, USA). In a parallel experiment, BALB/c healthy mice (6 mice per group) were gavaged with *B. longum* 35624 or its isogenic derivative for 3 weeks, as described above for the colitis study. Following euthanasia on day 26, mesenteric lymph nodes were isolated in order to obtain single cell suspensions. Lymph nodes were mechanically disrupted using a syringe plunger to grind the nodes on a nylon cell strainer (70 µm). The strainer was washed with PBS and the single cell suspensions were centrifuged at 300 g for 10 minutes. Cell pellets were resuspended in 1 ml of cRPMI medium (Sigma) and cells were counted using a Scepter Cell Counter (Millipore, Billerica, MA, USA). Cells were diluted to a final density of 1x10⁶ cells ml⁻¹ in cRPMI and cells were dispensed in propylene tubes to perform FACS staining. Lamina propria mononuclear cells were isolated as described previously (29) following removal of epithelial cells and collagenase VIII/DNaseI (Roche) digestion of the
tissue. At the end of the process, cells were counted using the Scepter Cell Counter (Millipore) and diluted to a final concentration of 1×10^6 cells ml$^{-1}$ in cRPMI in propylene FACS staining tubes.

OVA respiratory allergy model. Female BALB/c mice (8-12 weeks of age) were obtained from Charles River and were maintained under specific pathogen free conditions at the AO Research Institute, Davos, Switzerland, in individually ventilated cages for the duration of the study. All experimental procedures were carried out in accordance with Swiss law (Permit number: 2013_20). 8 mice per group were used in this model. Three intraperitoneal immunizations with 50 µg of ovalbumin (OVA, Grade V>98%, Sigma) emulsified in Imject™ Alum Adjuvant (Life Technologies, Carlsbad, California, USA) were performed on days 0, 14 and 21, followed by OVA aerosol challenges on days 26, 27 and 28. On days 19, 25 and 27, mice received *B. longum* 35624 or sEPSneg intra-nasally ($\sim 1 \times 10^9$ bacteria per dose in a total volume of 50 µl of PBS). Bacterial cells were prepared as described above. Control animals received three intraperitoneal injections with Alum adjuvant (without OVA) on days 0, 14 and 21, followed by OVA aerosol challenges on days 26, 27 and 28. Control animals also received 50 µl of PBS intra-nasally on days 19, 25 and 27. All mice were sacrificed at day 29 for isolation of lung tissue and flow cytometric staining. Lung-derived single cell suspensions were obtained using a combination of enzymatic digestion (lung dissociation kit, Miltenyi) and mechanical dissociation with a gentleMACS Dissociator (Miltenyi), according to the manufacturer’s protocol. Lung cells were plated at 1×10^6 cells/ml in complete RPMI (Sigma) and stimulated *ex vivo* with 50 µg/ml OVA grade VI (Sigma) or with 500 ng/ml LPS (Sigma) for 48 hours and cytokine secretion quantified by the Bio-Plex Multiplex System (Biorad).
Flow cytometry. All flow cytometry analyses were performed on the Gallios Flow Cytometer (Beckman Coulter, Brea, USA). Mesenteric lymph node or lung single cell suspensions were stimulated with PMA and ionomycin at 50 ng ml⁻¹ and 500 ng ml⁻¹, respectively, for 4 hours in presence of Brefeldin A (eBioscience). Viability dye eFluor780 (eBioscience) and the following surface staining antibodies were used: PE-Cy7 anti-mouse CD3 and Pacific Blue anti-mouse CD4 (Biolegend, San Diego, California USA). Cells were stained for intracellular cytokines using PE anti-mouse IL-10, Alexa Fluor488 anti-mouse/rat IL-17A and PerCP-Cy5.5 anti-mouse IFN-γ after fixation and permeabilization (IntracellularFixation & Permeabilization Buffer Set, eBioscience). Lamina propria cells were in addition stained for the gut homing molecule CCR9 using Alexa Fluor647 anti-mouse CD199 (CCR9) from Biolegend.

Statistical analysis. Unless otherwise indicated, data are presented as box-and-whisker plots with the median value and max/min values illustrated. In experiments with technical replicates, the mean was calculated from the technical replicates for each donor and only the mean value was used for the statistical analysis. The Mann–Whitney U test was used for the nonparametric statistical analysis of differences between two groups. For analysis of more than two groups, statistical significance was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test. A two-way ANOVA was used to compare groups over time. A p-value less than 0.05 was considered statistically significant.

RESULTS

Generation of an isogenic exopolysaccharide-negative derivative of B. longum 35624, designated sEPS⁻, by insertion mutagenesis. In order to determine the role, if any, of the
exopolysaccharide in the reported immunomodulatory activities of the *B. longum* 35624 strain, we set out to generate an isogenic derivative of this strain that was unable to produce this cell surface-associated glycan exopolymer. For this purpose, we employed a mutagenesis strategy that was based on previously described methods (30). The particular mutagenesis strategy employed for *B. longum* 35624 involved the heterologous expression of a *B. longum* 35624-encoded DNA methylase in *E. coli* strain EC101 so as to methylate any plasmid DNA in this latter cloning host. When such methylated plasmid DNA is subsequently introduced into *B. longum* 35624, it will be protected from digestion by the native restriction-modification systems encoded by the latter strain and will therefore allow homology-guided, site-directed mutagenesis as has been described previously (30). Employing this strategy, we created an insertion mutation in the first gene of the eps624 cluster, i.e. *pgt624*, encoding the predicted priming glycosyl transferase (pGT), resulting in an isogenic derivative of *B. longum* 35624, which was designated sEPSneg.

In order to assess if the sEPSneg mutant had, as would be expected, lost its ability to produce exopolysaccharide we performed electron microscopy analysis, which indeed revealed that the ‘stringy’ sEPS layer present on the parent strain *B. longum* 35624 is absent on EPSneg, thus confirming its exopolysaccharide-deficient phenotype (Fig. 1). Furthermore, and in contrast to the parent strain *B. longum* 35624, the EPSneg strain exhibits a so-called dropping phenotype when grown in liquid medium (i.e. the EPSneg strain was found to sediment during growth in liquid medium, but the *B. longum* 35624 strain remained in suspension). A similar phenotype was observed for exopolysaccharide-negative variants of *B. breve* UCC2003 and *Bifidobacterium animalis* subs. *lactis* (21, 31), thereby substantiating the loss of exopolysaccharide production. To ensure that the observed phenotype is directly linked to the inactivation of *pgt624*, the adjacent and co-transcribed genes *pgt624* and BI0343.
were cloned together with the presumed promoter sequence in plasmid pBC1.2, after which the resultant construct was introduced in the sEPSneg strain. The resulting strain, designated sEPScomp, was shown to produce exopolysaccharide (Fig. 1). A similar complementation approach was previously described (32, 33). The sEPSneg and sEPScomp mutants grew more slowly compared to the parent strain \textit{B. longum 35624}, likely due to the presence of antibiotics in their culture media, but by 38 hours of culture all bacteria were at similar numbers and had reached stationary phase (Supplementary Fig. S1).

\textbf{In vitro responses to \textit{B. longum 35624}, sEPSneg and sEPScomp.} The wild-type strain \textit{B. longum 35624} and its derivatives sEPSneg or sEPScomp were co-incubated with human PBMCs for 24 hours, followed by analysis of cytokine secretion in cell-free supernatants. As compared with \textit{B. longum 35624}, the sEPSneg strain was shown to induce higher levels of IL-12p70, IFN-\gamma and IL-17 secretion, with comparable induction of IL-10 (Fig. 2A). The sEPScomp strain induced similar levels of cytokine secretion as \textit{B. longum 35624}, confirming that enhanced pro-inflammatory cytokine secretion is specifically associated with the lack of exopolysaccharide production. The addition of isolated exopolysaccharide to the co-cultures significantly reduced IL-12p70 and IFN-\gamma secretion in response to the sEPSneg strain, but did not alter IL-17 or IL-10 responses to the sEPSneg strain (Fig. 2B).

Similarly to PBMCs, human MDDCs were co-incubated with \textit{B. longum 35624} or sEPSneg strains, and cytokine secretion was measured after a 24 hour exposure. Secreted IL-17, IL-6 and TNF-\alpha levels, but not IL-10, were all shown to be significantly higher for the sEPSneg-stimulated MDDCs, compared to \textit{B. longum 35624} -stimulated MDDCs (Fig. 3A). In contrast, no differences were found in the \textit{B. longum 35624} or sEPSneg –induced expression of the MDDC inhibitory molecules programmed death-ligand 1 (PD-L1) and PD-L2, which bind...
to PD-1 on activated lymphocytes and play an important role in down-regulating the immune system (Fig. 3B).

Activation of the transcription factor NF-κB is critical for the induction of inflammatory genes, including cytokines. Thus, we measured NF-κB activation in the monocyte cell line THP-1, containing a SEAP reporter for NF-κB and AP-1 activation. The sEPSneg strain was shown to induce higher levels of NF-κB/AP-1 activation, compared to B. longum 35624-stimulated THP-1 cells (Fig. 3C). To confirm this result, NF-κB phosphorylation was measured in MDDCs over time, following exposure to bacteria. Both B. longum 35624 and sEPSneg strains induced similar levels of NF-κB phosphorylation at early time points (Fig. 3D). However, sustained high levels of phosphorylated NF-κB were observed at later time points for the sEPSneg-stimulated MDDCs, which were not observed for B. longum 35624-stimulated cells.

Taken together, these results suggest a role for this exopolysacharide in preventing in vitro inflammatory responses to B. longum 35624.

The sEPSneg strain does not protect against colitis development. Colitis was induced in SCID mice by adoptively transferring CD4+CD25-CD45RBhi lymphocytes. Mice were administered B. longum 35624, sEPSneg or sEPScomp daily by oral gavage. As previously described, B. longum 35624 treatment prevented weight loss and disease symptoms in this model (34). However, mice treated with the sEPSneg strain exhibited significant weight loss and severe disease symptoms, while restoration of EPS production in the sEPScomp strain promoted a similar response as to B. longum 35624 (Fig. 4A). Following euthanasia, the colon:body weight ratio was significantly higher in animals administered the sEPSneg strain,
while macroscopically the colons of these mice appeared severely inflamed with visible necrotic regions, which was not observed when animals had been administered *B. longum* 35624 (Fig. 4B). Within the mesenteric lymph nodes, there were significantly more IL-17+ lymphocytes in animals administered the sEPS^{neg}, with a trend towards increased numbers of IFN-γ+ lymphocytes, which was not statistically significant (Fig. 4C). No significant difference in IL-10+ lymphocytes was observed. No differences in the gastrointestinal transit of *B. longum* 35624 or the sEPS^{neg} derivative was observed (Supplementary Fig. S2).

The administration of the sEPS^{neg} strain to healthy immunocompetent animals did not result in gastrointestinal inflammation, indicating that the sEPS^{neg} mutant did not induce colitis in healthy animals. However, administration of sEPS^{neg} did provoke a trend in an increased percentage of IL-17+ and IFN-γ+ lymphocytes, associated with an increase in CCR9+ T cells, within the lamina propria of healthy animals, although these differences did not reach statistical significance (Supplementary Fig. S3). These data suggest that an inflamed micro-environment, such as that present in the SCID model, is required for sEPS^{neg} to exert its Th17-enhancing effects.

sEPS^{neg} exacerbates IL-17 responses within the lung. In order to further assess the ability of sEPS^{neg} to promote IL-17 responses in vivo, we utilized the ovalbumin (OVA) sensitization and respiratory challenge model, as we and others previously evidenced potent Th17 responses within the lungs of challenged animals (35). Either the *B. longum* 35624 or its isogenic derivative sEPS^{neg} were administered intra-nasally to examine the influence of these strains on IL-17 responses within the lung. OVA sensitization and challenge resulted in an increased percentage of IL-17+ lymphocytes within lung tissue, compared to control animals (Fig. 5A). Exposure to the *B. longum* 35624 strain did not influence the percentage of IL-17+ lymphocytes.
lymphocytes within the lung, however, exposure to sEPS^{neg} significantly increased the percentage of IL-17⁺ lymphocytes (Fig. 5A). Single cell suspensions were generated from the lungs of all animals challenged as indicated above, and these lung cells were re-stimulated <i>ex vivo</i> with OVA or LPS to assess IL-17 secretion. OVA sensitized and challenged animals displayed increased <i>ex vivo</i> secretion of IL-17 to both OVA and LPS stimulation, compared to non-sensitized animals, suggesting that innate TLR-4 responses to LPS and allergen-specific lymphocyte responses to OVA are increased in the inflamed lungs of allergic animals (Fig. 5A). The <i>in vivo</i> exposure to <i>B. longum</i> 35624 did not alter the <i>ex vivo</i> secretion of IL-17 by lung cells stimulated with either LPS or OVA. However, if animals had been exposed to sEPS^{neg} <i>in vivo</i> previously, the isolated lung cells secreted significantly more IL-17 <i>ex vivo</i> in response to both TLR-4 stimulation with LPS and allergen restimulation with OVA (Fig. 5A). Thus, <i>ex vivo</i> secretion of IL-17 and the percentage of IL-17⁺ cells within lung tissue correlate with the highest levels for both assay systems being observed for sEPS^{neg}-treated animals.

OVA sensitization and challenge resulted in an increased percentage of IFN-γ⁺ lymphocytes within lung tissue, compared to control animals (Fig. 5A). Exposure to the <i>B. longum</i> 35624 strain prevented the increase in the percentage of IFN-γ⁺ lymphocytes within the lung, which was not observed following exposure to the sEPS^{neg} strain (Fig. 5B). Re-stimulation of lung single cell suspensions <i>ex vivo</i> with OVA or LPS did not result in significant levels of IFN-γ being secreted and no statistically significant differences were observed between the groups (Fig. 5B).

OVA sensitization and challenge resulted in an increased percentage of IL-10⁺ lymphocytes within lung tissue and exposure to <i>B. longum</i> 35624 or the sEPS^{neg} strains further increased the percentage of IL-10⁺ lymphocytes within the lung (Fig. 5C). Re-
stimulation *ex vivo* was also associated with increased secretion of IL-10 following *in vivo* exposure to *B. longum 35624* or the sEPS^{neg} strains (Fig. 5C).

These findings suggest that the absence of the exopolysaccharide on *B. longum 35624* promotes Th17 responses in the inflamed lung, similar to the effects described above for the inflamed gut.

DISCUSSION

In order to avoid immune-mediated destruction of mucosal tissues, the host can activate regulatory mechanisms that can block proinflammatory responses to commensal microbes present on mucosal surfaces. Bifidobacteria comprise a significant proportion of the gut microbiota and many strains are currently used as probiotics. However, the precise mechanisms by which such bifidobacteria interact with host immune cells are not fully understood. In this report we describe that the presence of a cell surface-associated exopolysaccharide produced by *B. longum 35624* modulates cytokine secretion and NF-κB activation *in vitro*, while in murine models exposure to a *B. longum 35624* derivative unable to synthesize exopolysaccharide promotes Th17 responses both within the gut and the lung.

Bifidobacterial cell surface-associated exopolysaccharides have previously been proposed to (i) mediate some of their health-promoting benefits, (ii) contribute to their tolerance of the harsh conditions within the gut, and (iii) to influence composition of the gut microbiome through their use as a fermentable substrate by other microbes (36-39). In general, bacterial exopolysaccharide consists of repeating mono- or oligosaccharide subunits connected by varying glycosidic linkages, which are structurally very diverse, and which may...
contribute to strain-specific traits due to the expected structural and therefore functional diversity of such molecules. Of note, pathogen-associated exopolysaccharides have long been known to be critical in host–microbe interactions, where they facilitate adherence and colonization within the human host, with additional immunomodulatory effects (40, 41). Exopolysaccharides can also mediate the beneficial immune effects associated with certain commensal microbes. As already mentioned, a strong modulator of intestinal immune responses is PSA from *B. fragilis*, which is well described to influence lymphocyte polarization and PSA suppresses IL-17 production by intestinal immune cells (42-44). In line with data presented in this manuscript, exopolysaccharide gene knockout mutants of *Lactobacillus casei* Shirota induced significantly more pro-inflammatory cytokine secretion from a mouse macrophage cell line, compared to wild-type cells (45). In addition, the cytokine response of PBMCs to two isogenic strains of *B. animalis* subsp. *lactis* that differ only in their exopolysaccharide-producing phenotype suggest that the mucoid strain could have higher anti-inflammatory activity (31). The data presented in this manuscript are in agreement with these previous reports and further supports the concept that exopolysaccharides from bifidobacteria may elicit immune-modulatory activities.

Interestingly, the induction of PD-L1 and PD-L2 on dendritic cells was similar for the wild type *B. longum* 35624 strain and its isogenic derivative sEPSneg. Similarly, the induction of IL-10 was not negatively impacted by the loss of exopolysaccharide from the bacterium. This suggests that not all immune-regulatory effects induced by *B. longum* 35624 are mediated solely by exopolysaccharide. The bifidobacterial cell wall is a complex arrangement of macromolecules, consisting of a thick peptidoglycan layer that surrounds the cytoplasmic membrane, which is decorated with other glycopolymers, such as (lipo)teichoic acids, polysaccharides and proteins, all of which may influence the immune response (46, 47) A few
Examples include the cell wall-associated proteins p40 and p75 from *L. casei* ssp. *rhamnosus* GG, the S-layer protein from *L. acidophilus*, or the STp peptide from *L. plantarum* (48-50).

TH17 cells are a subset of CD4+ T helper cells that mediate protective immunity to extracellular bacterial and fungal pathogens, predominantly at epithelial surfaces (51). Polarization of naïve T cells into T_H17 cells occurs following T-cell antigen receptor recognition of an MHC class II-bound peptide in the presence of cytokines including TGF-β1, IL-6 or IL-1β (52, 53). While T_H17 cells are required for protective immunity, these cells massively infiltrate the inflamed intestine of inflammatory bowel disease patients, where they produce IL-17 and other cytokines, triggering and amplifying the inflammatory process (54). Our data suggests that the *B. longum* 35624 strain-associated exopolysaccharide prevents the induction of a T_H17 response to this bacterium. Multiple mechanisms may be involved in this process. For example the exaggerated induction of cytokines, including IL-6, from dendritic cells may support T_H17 lymphocyte polarization and development. Support for this hypothesis can be seen when we restimulate OVA-specific T cells with OVA and we observe increased secretion of IL-17 when the lungs were previously exposed to sEPSneg. These OVA-specific T cells are not reacting to bifidobacteria-associated antigens, but more IL-17 is secreted upon OVA challenge suggesting that it is the cytokine microenvironment, provided by innate cells such as dendritic cells, that is supporting excessive T_H17 development. The observation that addition of purified exopolysaccharide to sEPSneg-stimulated PBMCs suppresses the exaggerated IL-12p70 and IFN-γ secretion, but not IL-17 secretion, also suggests that multiple mechanisms may be involved. Future studies will determine if it is the exopolysaccharide itself that can directly inhibit T_H17 responses by binding to host receptors.
or if the exopolysaccharide is simply masking TH17-promoting molecules on the surface of this bacterium.

In conclusion, we have identified a novel immunoregulatory activity associated with the presence of an exopolysaccharide in the human commensal *B. longum* 35624 strain. Our findings suggest that this exopolysaccharide is required to prevent a potent tissue-damaging TH17 response to a commensal bacterium. Accordingly, our data on the *B. longum* 35624-associated exopolysaccharide corroborates, and expands, the published concept that exopolysaccharides produced by certain lactic acid bacteria and bifidobacteria may elicit immune-modulatory activities (55), which are important for appropriate host-microbe communication.

Funding information. These studies were directly supported by a European Union Marie Curie training network, entitled “TEAM-EPIC”. In addition, the authors are supported by Swiss National Foundation grants (project numbers CRSII3_154488 and 310030_144219), Christine Kühne Center for Allergy Research and Education, and by Science Foundation Ireland (SFI) (Grant No. SFI/12/RC/2273). Mary O’Connell Motherway is a recipient of a HRB postdoctoral fellowship (Grant No. PDTM/20011/9). Elisa Schiavi was supported by an EAACI Research Fellowship Award 2012.

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Acknowledgments. 35624 is a trademark of Alimentary Health Ltd, Cork, Ireland. We thank Patrycja Konieczna for her technical assistance.

REFERENCES

FIGURE LEGENDS

Figure 1. *B. longum* 35624 electron microscopy

Representative scanning electron microscopy (SEM) images for the *B. longum* 35624 parent strain (A, upper panel) and its isogenic derivatives, sEPS^{neg} mutant (B, middle panel) and sEPS^{comp} mutant (C, bottom panel) are illustrated. Arrows indicate the ‘stringy’ layer of extracellular polysaccharide visible on the *B. longum* 35624 parent strain and sEPS^{comp} strain. Scale bars are indicated at the bottom right of each panel.

Figure 2. PBMC cytokine response to bacterial strains

(A) PBMCs from 6 healthy donors were stimulated with *B. longum* 35624 or its isogenic derivatives sEPS^{neg} or sEPS^{comp} (50 bacteria:1 PBMC) for 24 hours and cytokine secretion into the culture supernatant was quantified. Data are presented as box-and-whisker plots with the median value and max/min values illustrated. Statistical significance was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p<0.05). (B) Effect of adding isolated exopolysaccharide on sEPS^{neg} strain-induced PBMC secretion of IL-12p70, IFN-gamma, IL-17 and IL-10. Each line connects the data from the same donor. The Mann–Whitney U test was used for the statistical analysis (*p<0.05 versus the sEPS^{neg} strain alone).

Figure 3. MDDC response to bacterial strains

MDDCs were generated from 4 healthy donors and were stimulated with *B. longum* 35624 or its isogenic derivative sEPS^{neg} (50 bacteria:1 MDDC) for 24 hours. Cytokine secretion into...
the culture supernatant (A) and cell surface expression of the inhibitory molecules PD-L1 or PD-L2 (B) were quantified. Data are presented as box-and-whisker plots with the median value and max/min values illustrated. The Mann–Whitney U test was used for the statistical analysis (*p<0.05 B. longum 35624 versus the sEPSneg strain). (C) THP-1 NF-κB activation following exposure to increasing concentrations of B. longum 35624 or its isogenic derivative sEPSneg (n=4 experimental replicates). (D) Activation of NF-κB in MDDCs exposed to B. longum 35624 or its isogenic derivative sEPSneg (n=3, 50 bacteria:1 MDDC). Statistical significance was determined using two-way ANOVA (*p<0.05 B. longum 35624 versus the sEPSneg strain).

Figure 4. sEPSneg is not protective in a T cell transfer colitis model

Following receipt of CD4+CD25-CD45RBhi T cells, C.B-17 SCID mice were orally administered B. longum 35624 (n=8), sEPScomp (n=8) or sEPSneg (n=8) strains. (A) Weight loss and disease activity were monitored over time. Statistical significance was determined using two-way ANOVA (*p<0.05). (B) Following euthanasia, the colon:body weight ratio was determined. A representative picture of colons from B. longum 35624 or sEPSneg–treated animals is provided. (C) The percentage of IL-17+, IFN-γ+ and IL-10+ lymphocytes from mesenteric lymph nodes are illustrated (n=8 per group). Data are presented as box-and-whisker plots with the median value and max/min values illustrated. Statistical significance was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p<0.05 sEPSneg strain versus the other strains).
Figure 5. sEPSneg promotes Th17 responses in the lung.

Non-sensitized animals received an OVA aerosol challenge and were intranasally administered PBS (Control, n=8). Sensitized animals received an OVA aerosol challenge and were intranasally administered PBS (OVA, n=8), or intranasally administered *B. longum* 35624 (OVA & 35624, n=8), or intranasally administered sEPSneg (OVA & sEPSneg, n=8).

(A) The percentage of IL-17$^+$ CD3$^+$CD4$^+$ T lymphocytes, isolated from lung tissue, and secretion of IL-17 from isolated lung cells re-stimulated *ex vivo* with OVA or LPS. Similarly, IFN-γ$^+$ and IL-10$^+$ CD3$^+$CD4$^+$ T lymphocytes and *ex vivo* IFN-γ and IL-10 secretion were quantified using identical methods, (B) and (C) respectively. Data are presented as box-and-whisker plots with the median value and max/min values illustrated. Statistical significance was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p<0.05 compared to the OVA group).
Table 1. Bacterial strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant characteristics</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli EC101</td>
<td>Cloning host, repA-, Km'</td>
<td>Law et al., 1995 (26)</td>
</tr>
<tr>
<td>E. coli XL1blue</td>
<td>Cloning host, , Tet'</td>
<td>Stratagene</td>
</tr>
<tr>
<td>E. coli EC101 pNZ-M.1185</td>
<td>E. coli EC101 harbouring pNZ-M.1185</td>
<td>This study</td>
</tr>
<tr>
<td>B. longum 35624</td>
<td>Parent strain</td>
<td>Alimentary Health</td>
</tr>
<tr>
<td>sEPSs</td>
<td>B. longum 35624 harbouring insertion mutation in priming glycosyl transferase encoding gene, pgt624</td>
<td>This study</td>
</tr>
<tr>
<td>sEPScomp</td>
<td>sEPSs harbouring pBC1.2_.pgt624+BI0343</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pNZEm</td>
<td>Gene expression vector, Em'</td>
<td>Margolles et al., 2006 (56)</td>
</tr>
<tr>
<td>pORI19tet(w)_pgt</td>
<td>pORI19 harbouring internal fragment of BI0342 (pgt) and tetW gene</td>
<td>This study</td>
</tr>
<tr>
<td>pBC1.2</td>
<td>E. coli–Bifidobacterial shuttle vector</td>
<td>Álvarez-Martin et al., 2007 (27)</td>
</tr>
<tr>
<td>pBC1.2_.pgt624+BI0343</td>
<td>pBC1.2 harbouring the cotranscribed genes pgt624+BI0343 under the control of their native promoter</td>
<td>This study</td>
</tr>
<tr>
<td>pNZ-M.1185</td>
<td>BI1185 (M.1185, isoschizomer of M.EcoRII) cloned with its own promoter in pNZEM</td>
<td>This study</td>
</tr>
</tbody>
</table>
Table 2. Oligonucleotide primers used in this study are described.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloning of M.1185 in pNZEm</td>
<td>BI1185F_PstI</td>
<td>GACTGCAGGCCCACCTAGGTAACAAACG</td>
</tr>
<tr>
<td></td>
<td>BI1185R_SpeI</td>
<td>GCGCCTAGTCTAGAGCAAGGCGATAG</td>
</tr>
<tr>
<td>Cloning of internal 583 bp fragment of pgt in pORI19</td>
<td>BI0342F_HindIII</td>
<td>GATAAGCTTGCCTGGCAACTCAACTACC</td>
</tr>
<tr>
<td></td>
<td>BI0342R_XbaI</td>
<td>GATTCCTAGCGTCGGCGTTCACTACCATC</td>
</tr>
<tr>
<td>Cloning of pgt624+BI0343 in pBC1.2</td>
<td>BI0342F_SalI</td>
<td>GACGTCGACACTCCACTTCGCTGATCG</td>
</tr>
<tr>
<td></td>
<td>BI0343EcoRI</td>
<td>GGCCTATTCTAAATCAACCAAGGGGTCTG</td>
</tr>
</tbody>
</table>

* Restriction sites incorporated into oligonucleotide primer sequences are indicated in bold
Figure 1. *B. longum 35624* electron microscopy

Representative scanning electron microscopy (SEM) images for the *B. longum 35624* parent strain (A, upper panel) and its isogenic derivatives, sEPSneg mutant (B, middle panel) and sEPScomp mutant (C, bottom panel) are illustrated. Arrows indicate the 'stringy' layer of extracellular polysaccharide visible on the *B. longum 35624* parent strain and sEPScomp strain. Scale bars are indicated at the bottom right of each panel.
Figure 2. PBMC cytokine response to bacterial strains

(A) PBMCs from 6 healthy donors were stimulated with *B. longum* 35624 or its isogenic derivatives sEPSneg or sEPScomp (50 bacteria/1 PBMC) for 24 hours and cytokine secretion into the culture supernatant was quantified. Data are presented as box-and-whisker plots with the median value and max/min values illustrated. Statistical significance was determined using the Kruskal–Wallis test and Dunn's multiple comparison test (*p<0.05*). (B) Effect of adding isolated exopolysaccharide on sEPSneg strain-induced PBMC secretion of IL-12p70, IFN-gamma, IL-17 and IL-10. Each line connects the data from the same donor. The Mann–Whitney U test was used for the statistical analysis (*p<0.05 versus the sEPSneg strain alone*).
Figure 3. MDDC response to bacterial strains

MDDCs were generated from 4 healthy donors and were stimulated with *B. longum 35624* or its isogenic derivative sEPS^{neg} (50 bacteria/1 MDDC) for 24 hours. Cytokine secretion into the culture supernatant (A) and cell surface expression of the inhibitory molecules PD-L1 or PD-L2 (B) were quantified. Data are presented as box-and-whisker plots with the median value and max/min values illustrated. The Mann–Whitney U test was used for the statistical analysis (*p<0.05 *B. longum 35624* versus the sEPS^{neg} strain).

(C) THP-1 NF-κB activation following exposure to increasing concentrations of *B. longum 35624* or its isogenic derivative sEPS^{neg} (n=4 experimental replicates). (D) Activation of NF-κB in MDDCs exposed to *B. longum 35624* or its isogenic derivative sEPS^{neg} (n=3, 50 bacteria/1 MDDC). Statistical significance was determined using two-way ANOVA (*p<0.05 *B. longum 35624* versus the sEPS^{neg} strain).
Figure 4. sEPS^{neg} is not protective in a T cell transfer colitis model. Following receipt of CD4⁺CD25⁻CD45RB^{hi}T cells, C.B-17 SCID mice were orally administered *B. longum* 35624 (n=8), sEPS^{comp} (n=8) or sEPS^{neg} (n=8) strains. (A) Weight loss and disease activity were monitored over time. Statistical significance was determined using two-way ANOVA (*p*<0.05). (B) Following euthanasia, the colon body weight ratio was determined. A representative picture of colons from *B. longum* 35624 or sEPS^{neg}-treated animals is provided. (C) The percentage of IL-17⁺, IFN-γ⁺ and IL-10⁺ lymphocytes from mesenteric lymph nodes are illustrated (n=8 per group). Data are presented as box-and-whisker plots with the median value and max/min values illustrated. Statistical significance was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p*<0.05 sEPS^{neg} strain versus the other strains).
Figure 5. sEP3 promoter T+ responses in the lung.
Non-sensitized animals received an OVA aerosol challenge and were intranasally administered PBS (Control, n=8). Sensitized animals received an OVA aerosol challenge and were intranasally administered PBS (OVA, n=8), or intranasally administered *B. longum* 35624 (OVA & 35624, n=8), or intranasally administered sEP3 promoter (OVA & sEP3 promoter, n=8). (A) The percentage of IL-17+ CD3+CD4+ T lymphocytes, isolated from lung tissue, and secretion of IL-17 from isolated lung cells re-stimulated ex vivo with OVA or LPS. Similarly, IFN-γ+ and IL-10+ CD3+CD4+ T lymphocytes and ex vivo IFN-γ and IL-10 secretion were quantified using identical methods, (B) and (C) respectively. Data are presented as box-and-whisker plots with the median value and minimum values illustrated. Statistical significance was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p<0.05 compared to the OVA group).