<table>
<thead>
<tr>
<th>Title</th>
<th>Solvent-less method for efficient photocatalytic [small alpha]-Fe2O3 nanoparticles using macromolecular polymeric precursors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Díaz, Carlos; Barrientos, Lorena; Carrillo, Daniel; Valdebenito, Javier; Valenzuela, María Luisa; Allende, Patricio; Geaney, Hugh; O'Dwyer, Colm</td>
</tr>
<tr>
<td>Publication date</td>
<td>2016-06-06</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://pubs.rsc.org/en/content/articlelanding/2016/nj/c6nj00561f#!divAbstract http://dx.doi.org/10.1039/C6NJ00561F</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/6049</td>
</tr>
</tbody>
</table>

Downloaded on 2018-12-29T08:49:03Z
Solvent-less method for efficient photocatalytic α-Fe$_2$O$_3$ nanoparticles using macromolecular polymeric precursors

Carlos Diaz*, Lorena Barrientos b,c, Daniel Carrillo4, Javier Valdebenito5, Maria L. Valenzuela6, Patricio Allende b,c, Hugh Geaney5, and Colm O’Dwyer5,*

We report a method for solvent-less growth of single crystalline hematite Fe$_2$O$_3$ nanoparticles from metal-containing polymeric macromolecular complexes, and demonstrate their efficient photocatalytic degradation of persistent cationic dye pollutants under visible light. Macromolecular complexes such as Chitosan•(FeCl$_3$)$_3$, Chitosan•(FeCl$_3$)$_2$, PS-co-4-PVP•(FeCl$_3$)$_3$ and PS-co-4-PVP•(FeCl$_3$)$_2$, with controlled polymer:metal molar ratios of 1:1 and 5:1 were prepared by single reaction of the respective polymers and iron chloride salts in CH$_2$Cl$_2$. The stable insoluble compounds were characterized by elemental analysis, infra-red spectroscopy, EPR and diffuse reflectance spectroscopy, and confirm Fe salts with d$_{xy}$ configuration.

Pyrolysis of these macromolecular precursors under air and at 800 °C forms networked Fe$_2$O$_3$ nanoparticles, whose volumetric density, size and shape is controlled by the metal content and the nature of the macromolecular complex (Chitosan or PS-co-4-PVP). For both polymers, the 1:1 molar ratio precursor produces nanoparticles ranging from 10 – 200 nm with a moderate superparamagnetic behavior and optical bandgap marginally larger than bulk Fe$_2$O$_3$. A matrix-incubated formation mechanism involving the carbonization of the organic matter, forming voids within the macromolecular complex wherein the Fe centres coalesce, oxidize and crystallize into nanoparticles is also proposed. The hematite Fe$_2$O$_3$ nanoparticle materials demonstrate very efficient photocatalytic degradation of persistent water pollutants such as the cationic dye Methylene Blue. The nanoparticulate material obtained from Chitosan•(FeCl$_3$)$_3$, 1:1 under the simulated sunlight (full visible spectrum) irradiation provides high rate degradation of MB by 73% in 60 min and >94% after 150 min, measured at 655 nm.

Introduction

In recent years, metal oxide nanoparticles have been the subject of intense scientific research owing to their unique physical and chemical characteristics.1-5 The shape, size, and size distribution of these nanoparticles are the controlling factors that dictate their physical and chemical properties, and the adoption of metallic and oxide nanoparticles has facilitated significant improvement in rates and sensitivity for several forms of (photo)catalytic systems. Among the oxides, the magnetic metal oxides are very useful for particular applications and iron oxides are one of the most important magnetic nanoparticles. Iron oxide nanoparticles are typically prepared by decomposition of iron-containing precursors in the presence of an appropriate stabilizer in solution phase. However, laser-assisted decomposition, electrochemical deposition, sonochemical, and thermal processes are often required.6 Thus the practical application in solid-state devices as sensors, supported catalysts and others requires the incorporation of the as-prepared iron nanoparticles into adequate solid matrices in a single step with uniform dispersion, without requiring subsequent infiltration methods, many of which require supercritical fluids and other ultra-low dielectric constant environments or negligible surface tension for nanoparticle uptake.

Solid-state methods to synthesize Fe$_2$O$_3$ nanoparticles directly within a host material are scarcely reported, and precursor (re)design is necessary to effectively control size and shape in solid-state syntheses. Bhattacharjee7 prepared hematite Fe$_2$O$_3$ nanoparticles by thermal decomposition of ferrocene in the presence of oxalic acid at 453 K. Adhikary et al. prepared maghemite Fe$_3$O$_4$ nanoparticles by thermolysis of the precursor [Fe$_3$O$(C_5H_{12}COO)_6(H_2O)_3]NO_3$ at 670 °C.8

One approach is to reconsider the nature of the inorganic precursor itself. Chitosan12-14 is a polysaccharide obtained by deacetylation of natural chitin, which is one of the important natural polymers constituting the shells of crustaceans and the fungal cell walls. Due to NH$_2$ and OH groups present in the polysaccharide chains, chitosan can bind metal ions in solution forming macromolecular metal complexes.15-17 While the ability to retain metal ions in solutions of Chitosan has been widely...
studied, previously reported solid-state-macromolecular complexes have been not well characterized. Some Cu/Chitosan complexes have been characterized by X-ray diffraction and electron spin resonance (ESR)18,19. Chitosan can also be adapted to become a solution template/stabilizer in the formation of nanoparticles20-28 and initial developments have shown promise for some biological applications29,30 including biosensors for glucose detection31 and Chitosan-based nanoparticle systems have been adopted as supports for catalysts32. Comparatively, poly(styrene-co-4-vinylpyridine) is also a useful functional copolymer due to the vinylpyridine block that binds metal ions and the styrene groups that facilitate stable macromolecular complexes33-36. It has also been used as a ligand to aid in selective facet growth in noble metal nanoparticles.37,38 PS-co-4-PVP has also been used in solution as a template/stabilizer of metals and other nanoparticles.39-41 α-Fe\textsubscript{2}O\textsubscript{3} has a band gap of 2.1 eV and while retaining its magnetic character, it is also a promising photo-induced water-splitting candidate42,43 and amenable for other catalytic applications.7

To date, organic pollutants in wastewater remain one of the biggest environmental problems, because they are highly toxic and difficult to degrade44. A common organic contaminant is methylene blue (MB), which can be mineralized in aqueous media using Fe\textsubscript{2}O\textsubscript{3} nanostructures, because they are stable and magnetically recoverable45. Therefore, α-Fe\textsubscript{2}O\textsubscript{3} nanostructures with shape dependent catalytic properties are becoming important as recoverable additives for persistent pollutant remediation46. In this regard, Hou and co-workers47 have obtained oblique and truncated nanocubes to improve visible-light photocatalytic activity; they found that the distinct photocatalytic behavior can be attributed to the diverse morphologies that are caused by different exposed crystal facets. The shape of α-Fe\textsubscript{2}O\textsubscript{3} nanostructures and thus the surface free energy of the exposed crystalline facets, plays a significant role in influencing their photocatalytic properties. In this respect, Kim et al. have recently reported 48 a new green chemical approach to synthesize different shapes of hematite nanocrystals with exposed single crystal facets. They found a correlation between the shape, morphology and crystal facets showing a better photocatalytic performance (~90%) at 180 min of irradiation time by (104), (100) and (001) facets of bitruncated-dodecahedron nanocrystals.

The application of nanostructured materials to electronic solid-state devices or in high temperature technologies requires adequate solid-state methods for obtaining nanostructured materials directly in the material of interest, especially where device-sensitivity to solutions or liquids is important. Most recently, α and β phases of nanostructured Fe\textsubscript{2}O\textsubscript{3} have been found as adequate host for Na and Li-ion batteries49-51 and thus their preparation in the solid state directly on substrates52 is an important scalable approach to phase and structure-tunable iron oxide and morphologies for Na-ion battery cathode development.

Here, we present a solid-state method to prepare Fe\textsubscript{2}O\textsubscript{3} hematite phases by the pyrolysis of the macromolecular precursors PS-co-4-PVP•(FeCl\textsubscript{3})\textsubscript{y} (I), PS-co-4-PVP•(FeCl\textsubscript{3})\textsubscript{y} (II), Chitosan•(FeCl\textsubscript{3})\textsubscript{y} (III) and Chitosan•(FeCl\textsubscript{3})\textsubscript{y} (IV) (see scheme 1) in molar ratios 1:1 and 5:1, under air and at 800°C. Through detailed electron microscopy and diffraction measurements, in conjunction with optical reflectance spectroscopies, we detail the nature of hematite nanostructure formation in the solid state, directly on surfaces. Additionally, we present an evaluation of the photocatalytic behavior of these hematite nanostructures in the degradation of methylene blue organic pollutant in aqueous solution.

Results and discussion

Fe co-ordinated macromolecular precursors

The precursors PS-co-4-PVP•(FeCl\textsubscript{3})\textsubscript{y} (I), PS-co-4-PVP•(FeCl\textsubscript{3})\textsubscript{y} (II), Chitosan•(FeCl\textsubscript{3})\textsubscript{y} (III) and Chitosan•(FeCl\textsubscript{3})\textsubscript{y} (IV) in different molar ratios of 1:1 and 5:1 were prepared by direct reaction of the corresponding FeCl\textsubscript{3} and FeCl\textsubscript{3} salts and the Chitosan and PS-co-4-PVP polymers in CH\textsubscript{3}Cl\textsubscript{3} (see Methods). The contrast in molar ratio was chosen to ensure significantly different nanoparticle mass loading of the final composite. Owing to the insolubility of the metallic salt and the partially soluble polymer, the reaction occurs as a two-phase system. The as-obtained products are stable solids with specific color arising from the presence of the FeCl\textsubscript{3} and FeCl\textsubscript{3} salts, see Fig. S1(a,b) of the Supporting Information. The binding of the Fe salts in the polymeric chain was evidenced by UV-vis diffuse reflectance measurement of the substrate-immobilized solids, shown in Fig. 1. The broad absorption maxima were found between 450-500 nm, typical of the absorption associated with the FeCl\textsubscript{3} and FeCl\textsubscript{3} chromophore11,53 in pre-pyrolyzed co-ordinated macromolecular complexes (see Figs 1(a,c)). After pyrolytic conversion to Fe\textsubscript{2}O\textsubscript{3} nanoparticles within carbonaceous matrices, Figs 1(b,d) confirm predominantly Fe\textsubscript{2}O\textsubscript{3} evidenced by the defined absorption edges at ~600 nm (2.0 ~ 2.1 eV) for all precursors prepared.

The paramagnetic nature of the insoluble solids PS-co-4-PVP•(FeCl\textsubscript{3})\textsubscript{y} (II) and Chitosan•(FeCl\textsubscript{3})\textsubscript{y} (IV) was corroborated by their EPR spectra54, shown in Fig. 1(e). The diamagnetic nature of the PS-co-4-PVP•(FeCl\textsubscript{3})\textsubscript{y} and Chitosan•(FeCl\textsubscript{3})\textsubscript{y} (III) precursors was evidenced by a predominantly EPR silent response. This suggests an O\textsubscript{6} octahedral coordination of the Fe2+ centers to the polymeric chain55. The presence of chitosan in Chitosan•(FeCl\textsubscript{3})\textsubscript{y} precursors was corroborated by 13C MAS NMR spectroscopy. As shown in Fig. 1(f), the typical bands of

![diagram](image-url)

Scheme 1. Schematic representation of Chitosan and PS-co-4-PVP and their possible coordination with metallic ions.
chitosan55,56 were observed. The C\textsubscript{1} signal at 105 ppm is assigned to the C\textsubscript{1} carbon of the O-C\textsubscript{2}(OH)-C moiety. Numeration of the carbon in the cycle followed that of ref. 55. Similarly, the other signals were assigned to C\textsubscript{2} at 56.91 ppm from the C-C\textsubscript{2}H(NH\textsubscript{2})C moiety, C\textsubscript{3}-C\textsubscript{3} at 74.75 ppm from (C\textsubscript{3}) C\textsubscript{1}C\textsubscript{3}H\textsubscript{2}(OH)-C\textsubscript{3} (C\textsubscript{3}) C-C\textsubscript{3}H(OH)-C at 82.43 ppm, and (C\textsubscript{4}) C\textsubscript{4}-C\textsubscript{4}O\textsubscript{4}C and (C\textsubscript{5}) C-C\textsubscript{5}H\textsubscript{2}(OH) at 61.23 ppm. Additionally, as is commonly observed in Chitosan, signals in NMR spectra characteristic of a degree of acetylation are observed at 174.13 ppm (C=O) and at 23.52 ppm (CH\textsubscript{3}). As observed for other metal-polymer complexes56, the chitosan was not adversely modified after coordination according to the 13C MAS NMR spectra and remained an effective co-ordination host to metal centers.

The degree of coordination of the Fe centers into the polymeric chain was estimated from elemental analysis and by TG/DSC analysis. Coordination values between 60-70 % were found. Additionally, the coordination was confirmed by the IR spectral bands for the Chitosan as well as the Poly(styrene-co-4-vinylpyridine) polymers. The broad v(OH) + v(NH) observed at 3448 cm-1 of free Chitosan becomes unfolded upon coordination, shifting to the range 3345-3398 cm-1 for the macromolecular complexes (III) and (IV)57,60. For the PS-co-4-PVP polymer-based complexes (I) and (II), the pyridine coordination is shown via the emergence of a new band centered at 1600 cm-1 61 (See Supporting Information).

Pyrolytic production of hematite Fe\textsubscript{2}O\textsubscript{3} nanoparticles

The X-ray diffraction (XRD) pattern (see Supporting Information Figure S\textsubscript{1}) confirms that the as-prepared powders are hematite (α-Fe\textsubscript{2}O\textsubscript{3}) structures with a high degree of crystallinity in multigram scale quantity from the solid-state synthetic route62,63. SEM analysis in Fig. 2a from the pyrolyzed Chitosan•(FeCl\textsubscript{3})\textsubscript{y} (in ratio 1:1) precursor shows a morphology or irregular fused grains with varied size typical of nanostructured oxides obtained from a solid-state method6. EDS analysis in Fig. 2c confirms the presence of iron and oxygen atoms in a stoichiometric ratio for this phase.

![Fig. 2.](image)

Figure 2b shows a typical SEM image of the as-prepared product from pyrolysis of the Chitosan•(FeCl\textsubscript{3})\textsubscript{y} precursor in a 1:1 ratio. Morphological examination by SEM evidenced irregularly shaped particles comprising the powder with some compacted zones and other 3-D mesh-like porous regions also typical of nanostructured oxides obtained from a pyrolytic solid-state methods. Importantly, the morphology is independent of the stoichiometrically consistent phase for this product, which remains consistent throughout the powder.

![Fig. 3.](image)
The low-magnification TEM images for pyrolytic product from the 1:1 Chitosan•(FeCl₃)₃ precursor (Fig. 3(a)) show agglomerates composed of fused assemblies of individual nanoparticles. In Fig. 3, HRTEM analysis in Fig. 3(c) and associated electron diffraction pattern (Fig. 3(d)), exhibit characteristic atomic lattice spacings in the nanoparticle structure corresponding to the (110) planes of hematite α-Fe₂O₃ consistent with space group R-3c with a = 5.0356 Å, c = 13.7489 Å. In all precursors, complete pyrolysis consistently results in α-Fe₂O₃ and no intermediate akaganeite (β-FeOOH) phases are observed.

A specifically different morphology to that obtained for pyrolytic precursors from precursor PS-co-4-PVP•(FeCl₃)₃ 1:1 was obtained from PS-co-4-PVP•(FeCl₃)₃ 5:1 where formless structures typical of powdered products were observed, see Supporting Information S5. TEM analysis in Fig. 5 demonstrates that the microstructure of the powder particles comprised networks of fused nanoparticles with single crystal hematite crystal structure. This form of structure is typical of the pyrolyzed structures that are formed (vide infra) when a limited and sparse density of nanoparticles from low Fe content in the precursor (compared to the polymer volume fraction) are rapidly formed in the earlier stages (lower temperatures) of pyrolysis. In such cases, the higher pyrolysis steps decompose the surrounding matrix materials that incubate the already formed nanoparticle in the voids created by outgassing. Subsequent full pyrolytic decomposition of the carbonaceous matrix allows non-oriented attachment and nanoparticle fusing (but not Ostwald or similar ripening) to occur to form a high surface area random network of quasi-linear nanoparticulate chains that are folded into larger porous powder particles. A similar situation is found for the Chitosan•(FeCl₃)₃ precursor with a similar 5:1 ratio (see supporting information S6).

Optical properties of substrate-immobilized solid state Fe₂O₃ nanopowders

Hematite is an n-type semiconductor (E₇ = 2.1 eV at RT assuming bulk electron and hole effective masses). For the nanostructured α-Fe₂O₃ this band-gap value can be increased by quantum confinement, extending the absorption edge from 2.1 to >4.0 eV⁴³,⁶⁵. However, for micrometric structures comprising larger nanocrystals in the form of agglomerates, the absorption edge is located close to 2.1 eV (products from precursors (1) and (4)), as demonstrated from optical absorbance data of large deposits of the product in Fig. 6. The product from these precursors typically have a higher metal content and thus a higher density of larger oxide particles. For the as-prepared powders with lower metal:polymer ratios, the effective optical transitions determined from visible absorbance measurements in the framework of the Tauc model for direct allowed optical transitions consistent with quantum confinement.

As shown in Fig. 6, and the absorption edge extrapolation confirms band gap energies higher than bulk values⁴³,⁶⁵ and the fitting to an infinite square potential well contribution with 1/R² dependence shows that the optical band gap from these powdered materials arises from sub-10 nm nanoparticles contained within voids of pyrolyzed carbonaceous products with lower metal content, and thus spatially distributed, smaller Fe₂O₃. We believe that the fused agglomerates must also contain smaller nanoparticulate oxide that contributes to confined emission energies since the diffuse scattering by the carbon matrix does not contribute to increase effective absorption edges. The coulombic interaction of excitons and spatial correlation corrections (Pr(r)) were included but negligibly affected the band gap energy values due to the high dielectric constant (>81) of Fe₂O₃.

Fig. 4. (a, b) TEM images of the pyrolytic fused nanocrystal product from the PS-co-4-PVP•(FeCl₃)₃ precursor (c) HRTEM image of the single crystalline structure of Fe₂O₃ nanoparticles.

Fig. 5. (a) SEM, (b) EDS, (c) TEM, and (d) HRTEM analysis of the pyrolytic crystalline materials from 1:1 Chitosan•(FeCl₃)₃ precursors. Contrast in (d) arises from thickness variations.
Iron oxides are very important technologically because of their magnetic properties. The magnetic characterization measurements of Fe2O3 obtained from the pyrolytic products from the precursors Chitosan•(FeCl3) and PS-co-4-PVP•(FeCl3) shown in supporting information, Fig. S2, suggest that the α-Fe2O3 nanoparticles exhibit superparamagnetic behavior. This has been observed for nanoparticles <10 nm in size, and the measurements further confirm a smaller length scale Fe2O3 nanoparticle contribution in addition to the primary 100-200 nm nanoparticle agglomerates formed in the solid state. However, some reports have claimed similar behavior for iron oxide/silica nanocomposites. Agglomerates of hematite particle have also been reported to exhibit coercivity two times greater than that of commercial hematite. From Fig. S2, we determined that the saturated magnetization is enhanced for the pyrolytic products from the Chitosan•(FeCl3) than the PS-co-4-PVP•(FeCl3) macromolecular precursors. The magnetic behavior from preliminary magnetization measurements is similar to those observed for hematite nanoparticles obtained by aqueous precipitation methods, consistent with nanoparticles <20 nm, features sizes smaller than the fused crystallites.

Formation Mechanism of Matrix-loaded Fe2O3 Nanoparticles

Although the formation of single phase crystalline nanoparticles in solution is well-known under a variety of conditions, the formation mechanism in solid-state is lacking and its development is important for materials that are sensitive to liquid/solvent environments, or that require a demixing-mediated crystallization process that infers thorough porosity throughout the powder.

The formation mechanism of the solid-state Fe2O3 nanostructures in this work can be compared to comparative investigations. The first step on heating involves the formation of a 3D network to produce a thermally stable matrix or host, shown in Fig. 7A. This shows details of the first heating step, a process whereby crosslinking of the polymer by Fe3+ ions causing a chain scission process.

This first step is crucial to offset sublimation. For instance, ferrocene undergoes sublimation on heating at 483 K (the melting point), but in presence of oxalic acid, nanoparticles of Fe2O3 nanoparticles are formed. In our system, which does not use ferrocene, the first heating step likely involves a crosslinking of the Chitosan (5-8) and PS-co-4-PVP (1-4) polymer precursors to create a 3D matrix containing O-Fe-O and H2N-Fe-NH2 linkages (for the Chitosan polymer) and (pyridine)N-Fe-N(pyridine) bonds for the PS-co-4-PVP polymer (see Fig. 7A). A schematic representation of this Step 1 process is shown in Figure 7B. The successive steps involve the initiation of the organic carbonization, with holes or voids produced where the nanoparticles are able to nucleate. According to TG/DSC analysis, this occurs at ~400 °C for the Chitosan and 360 °C for PS-co-4-PVP polymer matrices. Simultaneously, the oxygen of the air oxidizes the Fe(II) from the FeCl3 salt to Fe(III) with the formation of Fe2O3, which nucleates in nanoparticulate form inside the holes formed by the combustion of the organic matter. In the intermediate stage a layered graphitic carbon host was detected that acts as template were the nanoparticles can coalesce and crystallize into their respective

Fig. 6. Tauc plots derived from UV-vis transmission spectra for the Fe2O3 prepared from macromolecular precursors. The extrapolated band gap energies are also plotted against the theoretical prediction for direct allowed optical transitions of the band gap with quantum confinement effects as a function of nanoparticle radius. Here, \(\Delta E(r) \) is the band-gap of the nanoparticles, \(E_{gap} \) is the band-gap of bulk Fe2O3, \(m^* \) and \(m_e \) are the effective masses of electrons and holes in Fe2O3, \(\Delta E_{gap}(r) = \frac{\hbar^2}{8\pi^2 m_e} \left(\frac{1}{r} \right)^2 + \frac{1}{r} + \frac{1}{m_e r} + \frac{4\pi \hbar^2 \Delta E}{m_e r^2} \) is the band gap of the nanoparticles, \(m^* = m_e = 0.27m_0 \) were used, where \(m_0 = 9.11 \times 10^{-31} \text{ kg} \) is the free-electron mass.

Fig. 7. Schematic representation of the possible mechanism in the formation of Fe2O3 nanoparticles from the decomposition of the various precursors. (A) Coordination model of FeCl3 to Chitosan. (B) Representation of pyrolytic decomposition including chain scission, oxidation and crystallization of Fe2O3 from the macromolecular complexes.
morphologies. After complete combustion, this template is fully decomposed, forming a residual carbon that houses the smallest <20 nm nanoparticles. Materials that comprise larger powder particles that are themselves arrangements of nanoparticles with fused morphologies, are typical products formed from precursors with higher metal content. Higher polymer fraction precursors provide more carbon to create the host, and a lower metal content to nucleate and grow nanoparticles <20 nm.

Photocatalytic Behavior of Fe₂O₃ Nanoparticles

The photocatalytic behavior of α-Fe₂O₃ nanostructure-containing powders were investigated by quantifying the degradation of MB under UV (330-400 nm) and also by visible light (400-670 nm), and the absorbance spectra over the entire MB degradation are shown in Figure 8(a,b). The typical degradation curves of MB with α-Fe₂O₃ from Chitosan•(FeCl₃) 1:1 and α-Fe₂O₃ from PS-co-4-PVP•(FeCl₃) 1:1 are shown in Figure 8c. The photocatalytic reaction of semiconductor materials follows $\ln(C/C_0) = kt$, where the k is the apparent pseudo-first-order rate constant for this degradation process, for a constant α-Fe₂O₃ concentration (determined as shown in Fig. S8, Supporting Information). In Figure 8c, the k value and thus degradation rate are determined with the photocatalytic performance at 60 min and 150 min of irradiation time summarized in Table 1. In absence of the photocatalyst, we observed slight degradation of MB (~6.6%), indicating a limited self-photodegradation of MB molecules under UV-Vis irradiation (see Figure 8c). A highest extent of MB degradation (98.6%) at 150 min of irradiation time was achieved for α-Fe₂O₃ from PS-co-4-PVP•(FeCl₃), product formed from the precursor with a 1:1 ratio.

Table 1. Kinetic data for the degradation of MB with α-Fe₂O₃ obtained from PS-co-4-PVP and Chitosan macromolecular precursor.

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>Apparent photodegradation rate constant k (10⁻² min⁻¹)</th>
<th>Decoloration rate η (%) at 60 min</th>
<th>Decoloration rate η (%) at 150 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Fe₂O₃ from PS-co-4-PVP•(FeCl₃), 1:1</td>
<td>1.2 ±0.04</td>
<td>62.6</td>
<td>86.9</td>
</tr>
<tr>
<td>α-Fe₂O₃ from Chitosan•(FeCl₃), 1:1</td>
<td>2.1 ±0.1</td>
<td>73.4</td>
<td>94.6</td>
</tr>
</tbody>
</table>

Optical absorption and magnetic susceptibility measurements indicate smaller nanoparticles that also contribute to efficient photocatalysis by increasing the chemical reactivity of these nanostructures of a pure hematite phase. To our knowledge, this approach provides the first evidence of all solid state production of nanoparticle of single crystalline, pure Fe₂O₃ with highly efficient photocatalytic behavior of pristine nanostructures for degradation of organic pollutants, such as MB.73-78 Ayachi and co-workers79 have reported hematite Fe₂O₃ nanoplatelets with a MB photocatalytic degradation of 47% after 4.5 h of irradiation time. To compare the efficiency of our system, we note that many literature reports with better photocatalytic performance using Fe₂O₃ often use host materials or hetero-nanostructures using oxide with significant UV absorption and electronic conductivities such as Fe₂O₃@TiO₂, systems with ~98-100% reported efficiency, or Fe₂O₃@TiO₂ using Al, Zn, Cu or α-Fe₂O₃/Bi₂MoO₉ (23-70%) to degrade MB, Rhodamine B, 2,4-dichlorophenoxyacetic acid, Malachite Green and Acid Orange 7 at 90-150 min.46, 80-82

Conclusions

A facile macromolecular metal complex synthetic route has been developed for preparing hematite Fe₂O₃ nanostructured materials in the absence of solvents. The Chitosan•(FeCl₃) precursor facilitates the formation of single crystalline nanoparticles within the host matrix during pyrolysis, while coordination of Fe centres from an Fe(III) salt to PS-co-4-PVP also induces the formation hematite nanoparticles within a decomposable host matrix. All are formed in the absence of solvent or liquids at all stages. The metal:polymer molar ratio was found to influence the particle size, with the 1:1 ratio facilitating fused networks of spheroidal nanoparticles as a porous material. Magnetic susceptibility and optical absorption measurements indicated sub 20 nm nanoparticles are formed within the matrix in addition to the fused network of crystalline nanoparticle materials. The work demonstrates the possibility to control the particle size and morphology through the nature of the Fe salt, the polymer macromolecule, and the molar ratio which together influence the volumetric density and size of the nanoparticles in the carbonaceous matrix formed by
decomposition of the polymer. This method may also provide porous iron oxide electrode materials for Na-ion and Li-ion batteries that can be grown directly onto the current collector or other substrates, and for sensors, catalysts and other applications requiring nanoparticles of Fe₂O₃ but whose preparation protocols are sensitive to liquids, solvents or solution-based synthetic conditions. Depending on the macromolecular-polymer ratio and the nature of the decomposition, this synthetic approach provides a range of porous iron oxide material structures that are accessible to electrolyte or for site selective placement and conversion via coating methods and thermal, ozone or other polymeric decomposition methods. The Fe₂O₃ nanoparticle materials have a high porosity and surface area and were demonstrated to be very efficient photocatalysts capable of degrading and removing recalcitrant water pollutants such as cationic dyes under full visible light irradiation. Specifically, degradation (decolouration rates) from photocatalysis achieve >94% after 150 min in the visible range (at 655 nm).

Methods

Chitosan, poly(styrene-co-4-vinilpyridine) and FeCl₃·6H₂O were purchased from Aldrich, FeCl₃·H₂O was purchased from Merck. Chitosan of low molecular weight was used as received. An estimation of the molecular weight was performed by viscosimetry. The average molecular weight was determined from the Mark-Houwink-Sakurada relation and the values of [η] were obtained using parameters previously reported by Rinaudo et al. The determination was performed in aqueous solution in presence of NaCl, acetic acid and urea. The obtained value was Mₙ = 61 000 g/mol. Poly(styrene-co-4-vinilpyridine) with 90% of pyridine groups was used as received.

Preparation of the macromolecular precursors

In a typical preparation the FeCl₃ or the FeCl₄ salt was added in a Schlenk tube over a CH₂Cl₂ solvent (50 mL) under magnetic stirring and then each one of the respective polymers, PS-co-4-PVP or chitosan were added amounts according to a 1:1 or 1:5 molar ratios metal/polymer for between 7 to 10 days. Other details for each metallic salts reaction are provided in Table S1, in the Supporting Information. Subsequently, the supernatant solution (if the solid decanted) was extracted with a syringe and the solid was dried under vacuum. Where required, the solution was dried under vacuum and the resulting solid was further dried.

Characterization

Solid pyrolytic samples were characterized by X-Ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and Fourier transform infra-red (FT-IR) spectroscopy. SEM was acquired using a JEOL JSM-6380LV. Energy dispersive X-ray analysis (EDX) was performed on a NORAN Instrument micro-probe. transmission electron microscopy (TEM) data were acquired using a JEOL JEM-1200 EX II operating at 120 kV with images taken with a ESS00W Erlangshen CCD Camera, and HR-TEM with a JEOL 2100 TEM operating at 200 kV. The TEM samples were prepared by dispersing pyrolyzed material onto copper grids and dried at room temperature. XRD was conducted at room temperature on a Siemens D-5000 diffractometer with θ-2θ geometry. The XRD data was collected using a Cu-Kα radiation (40 kV, 30 mA). FT-IR measurements were performed on a Perkin Elmer FT-IR spectrophotometer model Spectrum BX-II. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements were performed on a Mettler TA 4000 instrument and Mettler DSC 300 differential scanning calorimeter, respectively. The polymer samples were heated at a rate of 10 °C/min from ambient temperature to 1000°C under a constant flow of oxygen.

Photocatalytic organic pollutant degradation

Methylene Blue (MB) was used as a model dye compound to test the photocatalytic degradation behavior of the hematite nanostructures. The photocatalytic activity was evaluated by measuring the bleaching rate of MB under UV-Vis illumination in the range 330-700 nm at room temperature using a CuSO₄ filter (0.1mol/L), to avoid the self-degradation and thermal catalytic effects of this organic pollutant. A quartz tube of 20 mL was used as a photoreactor vessel. The optical system used was a xenon lamp (150 W) positioned 15 cm from the photoreactor. 15 mg of the photocatalyst and 15 mL of MB aqueous solution (1 × 10⁻³ mol/L) underwent continuous magnetic stirring. Prior to irradiation, the suspension was stirred in the darkness for 30 min to establish an adsorption/desorption equilibrium, after which the photocatalytic degradation of MB was initiated. Samples were withdrawn from the reactor at certain time intervals (10 min), and centrifuged to remove the particles. Photodegradation was monitored by measuring the absorbance of the solution at 655 nm.

Acknowledgements

The authors acknowledge Fondecyt Projects 1120179, 1160241 and 1131112 for financial support. L.B acknowledges the Basal Financing Program CONICYT FBO807 (CEDENNA). The authors would like to acknowledge to Dr Juliano Denardin from the Departamento de Física, Universidad de Santiago for magnetic measurements. This research has received funding from the European Commission Seventh Framework Programme FP7/2007-2013 (Project STABLE) under grant agreement no. 314508.