<table>
<thead>
<tr>
<th>Title</th>
<th>High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>McNulty, David; Geaney, Hugh; Armstrong, Eileen; O'Dwyer, Colm</td>
</tr>
<tr>
<td>Publication date</td>
<td>2016-02-12</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://pubs.rsc.org/en/content/articlelanding/2016/TA/C6TA00338A#?!dAbstract](http://dx.doi.org/10.1039/C6TA00338A)</td>
</tr>
<tr>
<td>Rights</td>
<td>© The Royal Society of Chemistry 2016</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/6050</td>
</tr>
</tbody>
</table>

Downloaded on 2018-12-27T06:00:14Z
High Performance Inverse Opal Li-ion Battery with Paired Intercalation and Conversion Mode Electrodes

David McNulty, a Hugh Geaney, a Eileen Armstrong, a and Colm O’Dwyer a,b*

Structured porous materials have provided several breakthroughs that have facilitated high rate capability, better capacity retention and material stability in Li-ion batteries. However, most advances have been limited to half cells or lithium batteries, and with a single mode of charge storage (intercalation, conversion, or alloying etc.). The use of dual-mode charge storage with non-traditional material pairings, while maintaining the numerous benefits of nanoscale materials, could significantly improve the capacity, energy density, stability and overall battery safety considerably. Here, we demonstrate an efficient, high capacity full inverse opal Li-ion battery with excellent cycle life, where both the cathode and anode binder-free electrodes are composed of 3D nanocrystal assemblies as inverse opal (IO) structures of intercalation-mode V_2O_5 IO cathodes and conversion-mode Co_3O_4 IO anodes. Electrochemically charged Co_3O_4 IOs function as Li-ion anodes and the full V_2O_5/Co_3O_4 IO cell exhibits superior performance compared to lithium batteries or half cells of either IO material, with voltage window compatibility for high capacity and energy density. Through asymmetric charge-discharge tests, the V_2O_5 IO/Co_3O_4 IO full Li-ion cell can be quickly charged, and discharged both quickly and slowly without any capacity decay. We demonstrate that issues due to the decomposition of the electrolyte with increased cycling can be overcome by complete electrolyte infiltration to remove capacity fading from long term cycling at high capacity and rate. Lastly, we show that the V_2O_5 IO/Co_3O_4 IO full Li-ion cells cycled in 2 and 3-electrode flooded cells maintain 150 mAh g\(^{-1}\) and remarkably, show no capacity fade at any stage during cycling for at least 175 cycles. The realization of an all-3D structured anode and cathode geometry with new mutually co-operative dual-mode charge storage mechanisms and efficient electrolyte penetration to the nanocrystalline network of material provides a testbed for advancing high rate, high capacity, stable Li-ion batteries using a wide range of materials pairings.

A Introduction

Li-ion batteries have become ubiquitous in everyday applications from cell phones to portable electronics. With increasingly challenging energy demands for these devices, the development of Li-ion batteries with increased specific energies and better cycle life is highly sought after. 1-3 Furthermore, the development of batteries that would allow the electrification of vehicular fleets is important and timely, with advanced Li-ion battery chemistries and ‘beyond Li-ion’ (e.g. Li-S, Li-O_2) as possible candidates. 4-7 With the practical energy densities achievable using beyond Li-ion systems still far from established (owing to demanding battery chemistries and increased instabilities compared to Li-ion systems), the development of advanced Li-ion batteries remain a topic of utmost importance.

A wide range of materials have been investigated for advanced Li-ion applications in terms of both the cathode and anode. The development of cathode materials with high specific capacities is a challenging task but significant progress has been made in the synthesis of different Li containing transition metal oxide compounds (containing some or all of Ni, Mn and Co) 8-12 and other compounds such as LiFePO_4 13, 14 and V_2O_5 15-17. Similarly, a plethora of different anode materials have been investigated from classic intercalation materials (graphite and other forms of carbon) 18-21 to alloying materials (particularly Si, Sn and Ge) 22-25 and conversion materials such as NiO and Fe_2O_3. 26-28 Alloying and conversion materials offer potential for higher gravimetric capacities compared to conventional graphitic anodes due to differences in the lithium storage mechanisms beyond simple intercalation. 1, 29

In addition to the identification of suitable electrode materials, a dedicated research effort has been made into the development of 3D or networked material architectures to optimize cycling performance. 30-33 In recent years, three-dimensional ordered macroporous (3DOM) materials such as inverse opals (IO) 34 have proven very useful for increase cycling stability. 35-37 The physical properties of IO structured materials have many potential benefits for use in Li-ion batteries. 38 The surface area for IO structures comparison 3D assemblies of nanocrystalline material is relatively large and...
the macro pores allow a high surface area of the active material to be in direct contact with the electrolyte. The thin walls surrounding the pores offer reduced Li⁺ diffusion path lengths compared to larger scale materials and also the 3D networked nature of an IO structure can provide continuous transport paths and ensure good electronic and also ionic conductivity. The bicontinuous IO electrode materials reported by Braun and Stein have demonstrated impressive capacity retention when tested as lithium batteries, or half-cell Li-ion anodes, and interdigitated forms of IO-type cathodes and Co₃O₄ conversion-mode anodes. We detail the development of novel anode and cathode systems for Li-ion batteries conduct electrochemical characterization of the materials vs a Li counter electrode. While this is a useful means of determining performance in lab scale tests (and allows fundamental characterization of phase changes associated with operation and capacity retention with cycling etc.), the commercial use of Li in full cells has been largely avoided due to well established issues related to safety. As a result of the unsuitability of bulk Li as an electrode material for practical systems; it is more useful to consider anode and cathode material pairings that possess compatible operating voltage windows. Reports on promising cathode and anode materials typically only focus on half-cell performance and surprisingly, reports on successful full Li-ion cells remain quite uncommon, yet improvement in stability, power and energy densities could be achieved when 3D structure materials are brought into close contact and utilize pairs of materials that offer mutually beneficial charge storage modes, high cycle life, capacities and useful voltages.

When full Li-ion cells are reported either the cathode or anode material being investigated is typically cycled against the corresponding, most commonly used cathode or anode materials (often olivines, spinels or variants of LiMₓOₙ, LiMₓPOₙ (M = metal)) or graphite, respectively. We report the first all materials that offer mutually beneficial charge storage modes, operating voltage windows. Reports on promising cathode and anode material pairings that possess compatible electrochemically pre-charged by a single charge against a Li metal counter electrode. The separator used in all split cell tests was a glass fiber separator (EI-Cell ECC1-01-0012-A/L, 18 mm diameter, 0.65 mm thickness). Cyclic voltammetry for the V₂O₅/Co₃O₄ IO full Li-ion cells was performed using a scan rate of 0.1 mV s⁻¹ in a potential window of 3.0 – 0.2 V. Galvanostatic testing, rate capability and asymmetric testing were performed in 2 electrode split cells and also in 3-electrode flooded cells in a potential window of 3.0 – 0.2 V.

C Results and discussion

An SEM image of a typical V₂O₅ IO electrode prepared from vanadyl sulfate electrodeposition into artificial opal templates, shown in Figure 1a, the thickness of the IO material on the stainless steel substrate was ~27.08 µm, as shown in Figure 5a. The walls of the IO structure are comprised of an agglomeration of nanoscale crystallites of vanadium oxide as can be seen in Figure S2. V₂O₅ IO electrodes were tested as a cathode material in a half cell configuration against a pure Li metal counter electrode. The discharge and charge voltage profiles for the second cycle are shown in Figure 1b. The specific capacity values obtained over 50 cycles are shown in Figure 1c. Initial capacities were ~ 150 mAh g⁻¹, which is...
comparable to specific capacities reported for various cathode materials, including LiCoO$_2$ 51, LiFePO$_4$ 52, LiMn$_2$O$_4$ 53 and Li(Ni$_{0.5}$Mn$_{0.5}$Co$_{0.5}$)O$_2$. The specific capacity after 50 cycles was ~89.35 mAh g$^{-1}$. Similar capacity values have been reported for other V$_2$O$_5$ nanostructured cathode materials. 54-58 Co$_3$O$_4$ IO were prepared by infilling of a polystyrene sphere template with a 0.1 M CoCl$_2$ solution on a stainless steel substrate and then annealing the samples to 450 °C for 12 h. Co$_3$O$_4$ “macrobowls” have previously been reported 59, however to our knowledge the synthesis procedure contained herein represents the first report of a phase pure, nanocrystalline Co$_3$O$_4$ inverse opal structure, with a periodicity close to 500 nm of the parent opal template. Calcination of the infilled sphere template samples, resulted in an IO network with pore sizes < 500 nm, as shown in Figure 1d, and walls comprising assemblies of networked nanocrystals. The thickness of a typical Co$_3$O$_4$ IO material was determined to be ~29.70 µm as shown in Figure S2b. The XRD pattern for a Co$_3$O$_4$ IO, shown in Figure S3, was successfully indexed to pure fcc Co$_3$O$_4$ (JCPDS No. 42-1467).

The voltage profiles for a Co$_3$O$_4$ IO anode half-cell are shown in Figure 1f and the specific capacity values obtained over 50 cycles are shown in Figure S5a. A comparison of the specific capacity values obtained from the Co$_3$O$_4$ nanoparticles and from an IO coating on the stainless steel substrate, as shown in the SEM image in Figure S5a. A comparison of the specific capacity values obtained from the Co$_3$O$_4$ nanoparticles and from an IO sample in Figure S5b indicates the benefit of an IO structure, as higher specific capacity values and increased capacity retention were observed for the IO sample compared to the Co$_3$O$_4$ nanoparticles.

From the electrochemical characterization presented in Figure 1, we have demonstrated that the Co$_3$O$_4$ IO structure is a promising anode material. If there are to be significant advancements in obtainable specific capacities and cycle life stability then promising non-traditionally used cathode/anode pairings must be investigated. To transition from the conventional electrode pairings, we developed a full lithium-ion cell consisting of a V$_2$O$_5$ IO cathode and a pre-charged Co$_3$O$_4$ IO anode. The anode was electrochemically pre-charged (see Experimental, Supporting Information), ensuring that the conversion reactions at Co$_3$O$_4$ provided sufficient Li as the source for highly efficient reversibility, as will be shown. A schematic representation of our full inverted opal Li-ion cell is shown in Figure 1d. To our knowledge, this is the first report of this pairing of electrode materials as well as the first full all-oxide and inverse opal Li-ion battery.

The electrochemical characterization of our full inverse opal Li-ion battery is presented in Figure 2. The OCV for the V$_2$O$_5$ IO lithium battery was ~3.6 V (vs Li/Li$^+$), whereas for the full V$_2$O$_5$ IO/Co$_3$O$_4$ IO cell the OCV was ~2.6 V, approximately 1 V lower. As discussed, the Co$_3$O$_4$ IO is initially electrochemically lithiated. As can be seen in the charge curve in Figure 1f, there is a significant plateau at ~1 V. We propose that when the pre-lithiated Co$_3$O$_4$ IO anode is put into a clean split cell against the V$_2$O$_5$ IO cathode, the OCV of the anode relaxes back to the plateau voltage of ~1 V (vs Li/Li$^+$).

The V$_2$O$_5$ IO structure in a half cell arrangement was cycled in a potential window ranging from 4.0 – 1.2 V (vs Li/Li$^+$). Due to the OCV decreasing by ~1 V in the full IO cell, the effective potential window was 3.0 – 0.2 V. Commercial Li-ion batteries are typically 2-electrode cells containing a LiCoO$_2$ cathode and a graphite anode. They are typically cycled in a potential window from 4.2 – 3.0 V and have a nominal voltage of 3.7 V.

As the reference and counter electrodes are coupled together in a 2-electrode arrangement, the reference electrode is the pre-charged Co$_3$O$_4$ IO. There is no Li metal reference electrode, so the potentials described for a 2-electrode arrangement are not vs Li/Li$^+$, they are instead the potential difference between a V$_2$O$_5$ IO cathode and a pre-charged Co$_3$O$_4$ IO anode. It is worth noting here that if a full IO cell is prepared in a 3 electrode cell with a dedicated Li metal
Cyclic voltammetry was used initially to characterize the V$_2$O$_5$ IO/Co$_3$O$_4$ IO full cell. The cells were cycled 10 times at a scan rate of 0.1 mV s$^{-1}$ in a potential window of 3.0 – 0.2 V. In terms of our V$_2$O$_5$ IO/Co$_3$O$_4$ IO full cell, both insertion and removal processes occur simultaneously; during discharge, the V$_2$O$_5$ IO is lithiated and the Co$_3$O$_4$ IO is recharged via more complex conversion-mode processes (see Supporting Information for details), and vice versa during charging. The resulting CV curves are a convolution of both electrode processes that occur simultaneously and consequently it is difficult to assign the resulting peaks observed in the voltammograms to a specific process involving the insertion/removal of Li$^+$ for either one of the electrode materials. The peak observed in the negative scan of the first cycle at ~ 1.77 V, shifts to ~ 1.58 V in the 2nd cycle and by the 10th cycle, the peak has decreased further in potential to ~ 0.87 V. In contrast to this the potentials of the two main peaks observed in the positive scan (between 2.0 and 3.0 V) show little variation with increased cycling.

The specific capacity and cycle life stability of the V$_2$O$_5$ IO/Co$_3$O$_4$ IO full cell was investigated through galvanostatic testing at C-rate of 2.5 C, where 1C = 147 mAh g$^{-1}$ (Li$_x$V$_2$O$_5$, χ = 1). The resulting discharge/charge profiles, as presented in Figure 2b, show smooth curves without any obvious plateaus. Similar smooth curves have been observed for other nanostructured V$_2$O$_5$ electrodes. The initial discharge response in Figure 2b confirms ~ 2 mol of Li per V$_2$O$_5$ unit in the IO cathode, in good agreement with Eqn. S2. compared to the V$_2$O$_5$ half-cell, the slightly reduced intercalated mole fraction to Li$_x$V$_2$O$_5$, χ = 2 is due to the lower voltage limits (3.0 – 0.2 V). After the initial charging of the Co$_3$O$_4$ anode and prior to full cell assembly, Co and Li$_2$O are formed. Upon discharge, these products are oxidized by the removal of an equivalent of ~2 mol of Li, which confirms an efficient reversible (de)lithiation-reversible conversion processes in the all-oxide IO cell.

The specific capacity values over 100 cycles are shown in Figure 2c. The initial discharge capacity was ~ 290 mAh g$^{-1}$, which is close to the theoretical specific capacity of V$_2$O$_5$ of 294 mAh g$^{-1}$ (for Li$_x$V$_2$O$_5$, χ = 2). After 50 cycles the specific capacity values were ~ 190 mAh g$^{-1}$ and after 100 cycles the capacity values maintain ~150 mAh g$^{-1}$. These specific capacity values would be significant for a V$_2$O$_5$ electrode cycled in a half cell versus a pure Li counter electrode. Here, they are efficiently achieved with a full Li-ion battery using pre-charged Co$_3$O$_4$ IO paired with a V$_2$O$_5$ IO cathode.

Rate capability is one of the key issues with the current generation of lithium ion batteries. In order to investigate the rate capability of the V$_2$O$_5$ IO/Co$_3$O$_4$ IO full cells, they were cycled at various C-rates ranging from 1C – 4C, where 1C = 147 mAh g$^{-1}$ (Li$_x$V$_2$O$_5$, χ = 1), as shown in Figure 2d. The capacities over the first 10 cycles were ~300 mAh g$^{-1}$. At the highest C-rate used (4C) the specific capacity value of ~150 mAh g$^{-1}$ was maintained. However, after 40 cycles, at the initial C-rate of 1C, the specific capacity recovered to ~230 mAh g$^{-1}$. Hence the full V$_2$O$_5$ IO/Co$_3$O$_4$ IO cell demonstrates significant reversible capacity, considerable capacity retention and outstanding rate performance.

The full V$_2$O$_5$ IO/Co$_3$O$_4$ IO cell is cycles from 3.0 – 0.2 V, a lower potential window than the most commonly used Li-ion cell electrode pairing. For practical use, several V$_2$O$_5$ IO/Co$_3$O$_4$ IO cells could be connected in series to raise the nominal voltage, depending on the power requirement. The nominal voltage for both NiCd and NiMH batteries is 1.2 V. In both cases three cells are usually connected in series to boost the nominal voltage to 3.6 V, which is comparable to the 3.7 V nominal voltage of standard Li-ion batteries. We propose that for practical use in consumer electronics, three V$_2$O$_5$ IO/Co$_3$O$_4$ IO cells could be connected in series to power devices which require a nominal operating voltage of ~ 3.7 V, while maintaining high capacity and rate-stable cycle life.

Asymmetric discharging and charging is one practical battery testing technique that is often overlooked. This technique enables slow discharging and fast charging of cells. This ultimately represents what consumers demand from their electronic devices that are powered by Li-ion batteries, i.e. to charge the device quickly and discharge the device slowly with full power. To investigate the practical application of our V$_2$O$_5$ IO/Co$_3$O$_4$ IO full cell, asymmetric cycling was performed using a constant current of 25 µA during discharging and 100 µA during charging, these current values corresponded to C-rates of 2 C and 8 C, respectively, where 1C = 147 mAh g$^{-1}$ (Li$_x$V$_2$O$_5$, χ = 1). The discharge time for current generation smartphones is on average four to five times the charge time, hence we desired to test the full V$_2$O$_5$ IO/Co$_3$O$_4$ IO cell with a similar...
asymmetry. The results of the asymmetric testing of the full inverse opal cells are presented in Figure 3.

The first 5 cycles in Figure 3a, demonstrate the time difference in discharge and charge segments due to the asymmetric C-rates which were used for each process. The discharge and charge voltage profiles shown in Figure 3b are quite similar to the voltage profiles shown in Figure 2b but the initial discharge capacity for the asymmetric testing of the all-Io cell was higher. After 60 cycles the discharge capacity for both cells was approximately the same at ~190 mAh g\(^{-1}\). The increased capacity is also reflected in the intercalated Li mole fraction of the Li\(_2\)V\(_2\)O\(_5\) IO cathode. Initially ~2.7 mol of Li were inserted into the V\(_2\)O\(_5\) IO for the asymmetric test compared to the ~2.0 mol initially inserted during the galvanostatic test presented in Figure 2. The increased first cycle capacity is obtained at a slightly lower discharge current, and reflected in a slightly higher Li mole fraction for the cathode. Any capacity from irreversible decomposition of the electrolyte is discussed further in a later section.

The specific capacity values over 100 cycles and the corresponding coulombic efficiencies are shown in Figure 3c. The initial capacities of ~400 mAh g\(^{-1}\) decreased quickly over the first 20 cycles, after which the discharge capacity had decreased to ~295 mAh g\(^{-1}\). However from the 20th to the 100th there is a more gradual fading of capacity values. After 100 cycles the specific capacity remained stable at ~145 mAh g\(^{-1}\), which is a significant capacity to achieve from a full Li-ion battery after 100 cycles. By cycling the full IO cell asymmetrically it may be expected that the charge capacities would be significantly lower than the discharge capacities due to the difference in the C-rates used for discharging and charging. Interestingly however, this is not the case for the V\(_2\)O\(_5\) IO/Co\(_3\)O\(_4\) IO full cell, as can be seen in Figure 3c. We note excellent correlation between the discharge and charge capacities over 100 cycles, and maintained in consistent Coulombic efficiencies >98%. During asymmetric testing the full V\(_2\)O\(_5\) IO/Co\(_3\)O\(_4\) IO cell consistently delivered specific capacity values >150 mAh g\(^{-1}\) for 100 cycles. This is a significant finding and demonstrates that the full V\(_2\)O\(_5\) IO/Co\(_3\)O\(_4\) IO cell can be charged quickly and discharged slowly without rapid capacity decay. The V\(_2\)O\(_5\) IO/Co\(_3\)O\(_4\) IO full cell is a promising full Li-ion cell architecture for use in consumer electronics typically powered by Li-ion batteries, providing good, stable capacities at different rates of charge and discharge.

As mentioned earlier, all of the electrochemical tests presented above were performed in 2-electrode split cells using a glass fibre separator soaked in electrolyte. In order to determine if there is a contribution to the initial specific capacity values due to the decomposition of the electrolyte, V\(_2\)O\(_5\) IO/Co\(_3\)O\(_4\) IO full cells were cycled galvanostatically in a flooded cell arrangement, whereby the electrolyte was in excess and the impact of any such breakdown of the electrolyte would be negligible compared to the electrolyte volume. Many complex 3D material architectures, whether ordered or randomly networked, can cause variations in local electric field and ionic concentration gradients towards and within the materials, in spite of their nominal benefits of interconnectedness and reduced ionic diffusion distances. Non-uniform ionic gradients and diffusion lengths are exacerbated by limited electrolyte and non-uniform soaking of all the porous architecture. Locally high current densities in certain regions can promote different rates of lithiation, and perhaps irreversible phases for some materials, and thus we adopted a flooded electrode arrangement to unequivocally address this issue, with and without a fresh Li reference. Additionally, the standard forms of electrolyte soaked separator, whether porous polypropylene or glass fiber, cannot formally ensure electrolyte wetting of 3D structured nanocrystalline materials even under compression. Electrochemical tests in flooded cells were performed in a 2-electrode arrangement to allow direct comparison with results obtained in 2-electrode split cells, and also in a 3-electrode arrangement with a Li reference electrode. The Li mole fraction for the discharged V\(_2\)O\(_5\) IO is ~1.0 mol (Figure 4a) in the electrolyte flooded 2-electrode cell, which is approximately half that observed in a split cell (Figure 2b). This variation in calculated Li mole fraction may be due to decomposition of the electrolyte in the split cell configuration.

It has previously been reported that decomposition of the electrolyte may result in a higher initial capacity and consequently a higher calculated Li mole fraction. The initial value after the first discharge of ~0.90 mol increased slightly to ~1.03 mol after 100 cycles in the flooded cell, a significant improvement over the cells cycled in split cells, which decreased from ~2 to ~1 mol of Li inserted over 100 cycles, in line with capacity. The consistent reversibility and intercalated asymmetry
The specific capacity values for a full IO cell cycled in a 2-electrode flooded cell over 100 cycles are shown in Figure 4b. The capacity values increased over the first 15 cycles from ~130 to ~160 mAh g⁻¹, and notably, is as high as the half-cell but never degrades with cycling. This observation is unique in this case, to the full IO cell, where the Li source is from the pre-charged Li₂O phase at the Co₃O₄ IO anode. From the 15th to the 100th cycle the full IO cell displays excellent stability in terms of capacity retention, with an average discharge capacity of ~156 mAh g⁻¹. Stable capacity retention for a large number of cycles is crucial for commercial Li-ion batteries; here we demonstrate significant stable capacity values over the first 100 cycles for a full inverse opal structured Li-ion cell containing a non-traditional cathode/anode electrode pairing.

When full Li-ion cells are cycled in a 2-electrode configuration, the reference electrode is typically connected to the counter electrode (anode). As explained by Eqn. S1-S3, the Co₃O₄ IO anode used in these full IO cells is a conversion material, which cycles by the reversible formation and decomposition of Li₂O and Co₃O₄ reduction and oxidation. The Li metal reference electrode allows unambiguous assessment of voltage profiles for all IO cell types, and remains unaltered during cycling. Hence, we also cycled the V₂O₅ IO/Co₃O₄ IO full cells in a 3-electrode flooded cell with Li metal reference electrode and the data is shown in Figure 4c and d. The cell’s initial OCV was ~3.6 V (vs Li/Li⁺), which is ~1 V higher than the full IO cell in a 2-electrode arrangement, but similar to the OCV of the V₂O₅ IO lithium battery. Consequently, the 3-electrode cell full V₂O₅ IO/Co₃O₄ IO cell was cycled from 4.0 – 1.2 V (vs Li/Li⁺).

The discharge and charge profiles for the 1st, 2nd, 50th and 100th cycles are shown in Figure 4c. The Li mole fractions in the discharged V₂O₅ IO structure in a 3-electrode flooded cell after the 1st and 100th discharged were ~0.94 and ~0.99 mol, respectively. These values are almost identical to the 2-electrode flooded cell (Figure 4a). However, there are differences in shape of the voltage profiles for 2 and 3-electrode flooded cell discharging-charging. In the 2-electrode flooded cell the discharge and charge curves are smooth and without any obvious stable voltage plateau. In the 3-electrode flooded cell with a Li reference electrode, voltage variations in IO cathodes were observed in the discharge curves at ~1.56 and ~2.08 V, which correspond to ε-Li₂V₂O₅ and δ-Li₂V₂O₅ phase transitions. In both 2-electrode and Li-referenced 3-electrode flooded cells, we find that capacity retention is excellent and is found to increase over 100 cycles, without any adverse changes to the electrochemical response or voltage profiles.

The specific capacity values for the full IO cell tested in a 3 electrode flooded cell are shown in Figure 4d. The initial capacities (~138 mAh g⁻¹) were quite similar to the values obtained in a 2-electrode flooded cell, and excellent specific capacity stability over 100 cycles is possible, with an average discharge capacity of ~144 mAh g⁻¹, demonstrating that the V₂O₅ IO/Co₃O₄ IO full cell can deliver stable capacity retention over a large number of cycles. There is a clear correlation between the performance of cells cycled in 2 and 3 electrode flooded cells in terms of the number of moles of lithium inserted and the specific capacity values. The fine detail, such as observable features in V₂O₅ discharge voltage profiles, is convoluted with the corresponding Co₃O₄ charge voltage profiles for the 2-electrode flooded cell measurements, in the absence of a Li reference electrode. The Li reference electrode in full Li-ion cells provides insight into processes that are obscured by using the anode as both the counter and reference electrodes. This could lead to a greater understanding of capacity fading issues in full cells that use non-traditional or new pairings of the many high performance materials reported as lithium batteries (cathodes) or half-cells (anodes).

Finally, a comparison of the discharge capacities obtained for our V₂O₅ IO/Co₃O₄ IO full cells cycled in a 2-electrode split cell, a 2 electrode flooded cell and also a 3 electrode flooded cell with a Li reference electrode, is presented in Figure 5a. The initial capacities in the 2-electrode split cell were significantly higher than the initial capacities obtained in both 2 and 3-electrode flooded cells. The higher capacity observed during the initial cycles is not observed when the porous material is efficiently wetted with electrolyte. Most importantly, in flooded IO batteries, a stable capacity is maintained with no initial capacity loss nor any fading during cycling in both symmetric and asymmetric charge-discharge conditions. The similarity of the 2- and 3-electrode flooded cells confirms that lithium reactivity changes do not adversely affect capacity or cycle life provided the cell maintains electrolyte supply to all

Fig. 4. Enhancing cycle life in full IO batteries using efficient electrolyte wetting. (a) Discharge and charge voltage profiles and (b) specific capacity values over the first 100 cycles for a V₂O₅ IO/Co₃O₄ IO full cell cycled in a 2-electrode flooded cell. (c) Discharge and charge voltage profiles and (d) specific capacity values over the first 100 cycles for a V₂O₅ IO/Co₃O₄ IO full cell cycled in a 3-electrode flooded cell with a Li reference electrode.
active material. Decomposition of the electrolyte results in higher initial capacities however it also results in significant capacity fading after a large number of cycles. After the 175th discharge the specific capacity for the full IO cell tested in a split cell was ~63 mAh g⁻¹, corresponding to a ~78 % loss in the initial capacity.

V₂O₅ IO/Co₃O₄ IO full cells, cycled in flooded cells, demonstrated outstanding capacity stability over 175 cycles. The average specific capacity values for the 2 and 3-electrode flooded cells over 175 cycles were ~150 and ~144 mAh g⁻¹ respectively. While the average specific capacity was slightly higher in the 2-electrode flooded cell, the standard deviation was lower in the 3-electrode flooded cell. The standard deviation in the capacity values for the 2 and 3-electrode flooded cells were ~7.8 and ~4.8 mAh g⁻¹ respectively, and are postulated to benefit from better electrolyte wetting of all the IO active nanocrystalline material in both electrodes. The stable specific capacity values of ~150 mAh g⁻¹ obtained for the V₂O₅ IO/Co₃O₄ IO full cell is significantly improved from having V₂O₅ IO/Co₃O₄ IO full cells, cycled in a 2-electrode split cell and 2 and 3-electrode flooded cells. The discharge capacities obtained for V₂O₅ IO/Co₃O₄ IO full cells cycled in a 2-electrode split cell and 2 and 3-electrode flooded cells. D2, D50 and D175 refer to the 2nd, 50th and 175th discharge. Legend: En. Den. = energy density, C. E. = coulometric efficiency, Spec. Cap. = specific capacity.

Conclusions

The development of an all oxide, all inverse opal Li-ion battery that demonstrates excellent capacity, cycle life, and performance is possible using 3D structured materials. While V₂O₅ and Co₃O₄ IO structures are promising cathode and anode materials in their own right, the first successful pairing of intercalation mode cathode and conversion-mode anode demonstrates that overall cell performance is enhanced in a voltage range where the electrochemical response of both electrodes contributes to stable capacity retention. By effective pre-charging of the Co₃O₄ IO anode via conversion mode formation of Li₂O and Co, the efficiency of reversible lithium intercalation is improved by limiting it to the cathode potential window. The anode also avoids the need for a stable SEI formation. The novel V₂O₅/Co₃O₄ pairing reported here is a paradigm shift towards embracing non-traditionally used electrode materials in electrode pairings, while benefiting from different charge storage mechanisms that together show superior response compared to their respective half-cells and lithium batteries.

In 2-electrode V₂O₅ IO/Co₃O₄ IO Li-ion cells, capacities > 150 mAh g⁻¹ were retained after 100 cycles, which is higher than the capacities reported for many full Li-ion cells. Rate capability tests of the full IO cell demonstrated significant reversible capacity of ~ 200 mAh g⁻¹, considerable capacity retention after 50 cycles and outstanding rate performance. Through asymmetric testing, we have shown that the V₂O₅ IO/Co₃O₄ IO full Li-ion cell can be charged quickly (8C) and discharged relatively slowly (2C – which is still quite fast for some applications) without rapid capacity fade. The reversible formation and decomposition of Li₂O during charging and discharging of the Co₃O₄ IO electrode that contributes to charge in the initial cycles from electrolyte decomposition is a function of the available electrolyte volume. With the benefits of nanoscale materials and 3D structure demonstrated in both the anode and cathode, the need for effective infiltration of electrolyte in nanoscale and porous materials was shown to be critical in maintaining high capacity and its retention over many cycles. For conversion mode anodes and effective intercalation in 3D structured or porous cathodes, electrolyte soaking ensures constant Li-ion concentration and solubilisation (without build up) of Li₂O. Full IO cells using dual-mode oxide pairs showed no initial capacity loss or any capacity fade over 175 cycles, while maintaining a high capacity, a stable overall cell voltage and energy density. The successful pairing of two electrode materials in inverse opal structure, without binders or conductive additives, operating under distinctly different charge storage modes, augers well
for development of non-traditional material pairs for Li-ion and emerging alternative batteries and for fast charge/discharge rate stable operation with high, stable capacity and energy densities.

Acknowledgements

This work was supported by an Science Foundation Ireland Technology Innovation and Development Award under contract no. 13/TIDA/E2761. This research has received funding from the Seventh Framework Programme FP7/2007-2013 (Project STABLE) under grant agreement no. 314508. We also acknowledge the support of the Irish Research Council under award RS/2010/2920 and a New Foundations Award. This publication has also emanated from research supported in part by a research grant from SFI under Grant Number 14/IA/2581.

Notes and references

