<table>
<thead>
<tr>
<th>Title</th>
<th>Pluggable single-mode fiber-array-to-pic coupling using micro-lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Scarcella, Carmelo; Gradkowski, Kamil; Carroll, Lee; Lee, Jun Su; Duperron, Matthieu; Fowler, Daivid; O'Brien, Peter A.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2017</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
</tbody>
</table>
| Link to publisher's version | https://ieeexplore.ieee.org/document/8054676/
http://dx.doi.org/10.1109/LPT.2017.2757082 |
| Rights | © 2017, IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
| Item downloaded from | http://hdl.handle.net/10468/6337 |

Downloaded on 2018-12-18T05:40:34Z

Carmelo Scarcella, Kamil Gradkowski, Lee Carroll, Jun-Su Lee, Matthieu Duperron, Daвид Fowler, and Peter O’Brien

Abstract—Single-mode optical coupling between fiber and photonic integrated circuit (PIC) requires precision alignment and bonding, and significantly adds to the cost of photonic packaging. This article describes how a pair of micro-lens arrays—one on the Si-PIC and the other on the fiber-array—can be used to achieve fiber-to-PIC grating-coupling with an insertion-loss of 1.7 dB (i.e., a coupling efficiency of 68%) at 1300 nm, and a 1 dB alignment tolerance of ± 30 μm. Such relaxed tolerances allow for a “pluggable” connector to have a make-break insertion-loss reproducibility of 0.2 dB (one standard deviation).

Index Terms—Gratings, integrated optics devices, micro-photonic devices, photonic integrated circuits.

I. INTRODUCTION

THE last decade has seen silicon photonics emerge as a potential platform for low-cost sensing and point-of-care medical applications, through a re-deployment of established complementary metal oxide semiconductor (CMOS) technologies for photonic applications [1], [2]. The low optical absorption and high index-contrast for O-band and C-band light offered by the silicon-on-insulator (SOI) architecture allows for highly compact and low-loss photonic integrated circuits (PICs) that can be fabricated in reasonable volumes (i.e., 10^3 - 10^4 PICs per 200 mm wafer) at a number of international silicon photonics foundries [3]–[5]. Although Si-PICs can be fabricated in volume, the “packaging” of these PICs into photonic devices and modules is still technologically challenging. Not only do highly functional Si-PICs require the same electronic packaging processes as EICs (electronic integrated circuits), they require unique photonic packaging processes, such as hybrid-laser integration and Fiber-to-PIC assembly. These typically involve an active alignment and bonding process, because of their micron-level alignment tolerances, making them slow and costly. The lack of scalability of active-alignment processes is an obstacle for photonic devices trying to reach mass markets, and needs to be replaced by developing photonic-packaging solutions that can be implemented at the wafer-level.

For telecom and datacom applications, the transfer of optical signals to/from the PIC requires some type of Fiber-to-PIC coupling. The large difference between the mode field diameters (MFDs) in the single-mode fiber (SMF) and PIC waveguides means that a coupling element is needed to mediate the Fiber-to-PIC connection. One option is an edge-coupler, which can offer low insertion-loss (IL), large spectral bandwidth (BW), and low-sensitivity to polarization [6]. However, edge-couplers require very tight alignment tolerances, often on the sub-micron level, and the growth/deposition of SiON or polymer mode-converters on the Si-PIC, which can be difficult to implement at scale [7]. The alternative option is a grating-coupler, which offers more relaxed tolerances, but at the cost of stronger polarization sensitivity, and narrower spectral BW [8]. Even with the relatively relaxed alignment tolerance of a grating-coupler, a placement error of just ±2.5 μm will introduce an additional 1 dB penalty on the nominal IL [9], and so active alignment through an “optical shunt” is still needed, in order to achieve acceptable Fiber-to-PIC coupling [10]. Relaxing the coupling tolerance by a factor of 5–10× would not only eliminate the need for slow and costly active alignment, it would bring the Fiber-to-PIC connection within the range of what is possible with injection-molded plastics – this allows for extremely fast fixed Fiber-to-PIC packaging, and also for “pluggable” connections for the bio-sensor market that needs to interface with single-use disposable PICs.

As shown in Fig. 1, simulations in Zemax (Gaussian beam propagation mode) indicate that a pair of micro-lens (μLens) arrays can be used to relax the 1dB Fiber-to-PIC alignment tolerance through a grating-coupler to ±25 μm. In these simulations, one fused-silica μLens, with a numerical aperture (NA) of 0.16 [11], is centered on the facet of a SMF, and another is placed on the surface of the PIC, with a suitable offset to allow for the non-zero angle of incidence (AOI) needed for good optical insertion into the grating-coupler – see Fig. 1(b). The NA of the μLenses matches those of the SMF and grating-coupler, and so the μLenses act to collimate and beam-expand the divergent single-mode emission from both sources. This allows for one order-of-magnitude relaxation of in-plane alignment tolerances (i.e., displacement of the μLens + Fiber assembly with respect to the μLens + PIC assembly) along and across the symmetry axis of the grating-coupler. The collimation of light allows the components to
be positioned several millimeters away from another without a loss in coupling. Clearly, if a Fiber-to-PIC connection following this scheme can be realized experimentally, then it will offer the above mentioned improvements and open the door for pluggable multi-channel single-mode connectors in the photonics market.

II. FABRICATION AND TESTING

To benchmark the Fiber-to-PIC connection based on \(\mu \)Lens arrays, we first measured the Fiber-to-PIC insertion-loss and spectra using a “plain” FA (fiber-array). This plain-FA had 8x SMF channels, separated by a 250 \(\mu \)m pitch, and was facet-polished to match the 10\(^\circ\) acceptance angle of the grating-couplers on the Si-PIC from an MPW run at the CEA-Leti photonic foundry. The apodized 1310nm grating-couplers on the Si-PIC are provided as standard building-blocks by the photonic foundry. The apodized 1310nm grating-couplers on the Si-PIC from an MPW run at the CEA-Leti photonic foundry - details can be found here [3], [4]. As shown in Fig. 2(a), after active alignment through an optical-shunt on the Si-PIC, the peak Fiber-to-Fiber TE-polarized shunt transmission of the plain-FA is \(-3.4\) dB, which corresponds to IL = 1.7 dB (i.e., a coupling efficiency of 68\%).

The \(\mu \)Lens based Fiber-to-PIC connection was realized by first aligning a commercially available \(\mu \)Lens array from Axetrims (Part No.: FCA250FS, Fused Silica glass, 1 x 8 Array, 250 \(\mu \)m Array Pitch, Radius of Curvature = 0.315 mm, conic k = \(-0.7\)) to a matching FA [11]. The \(\mu \)Lens array and FA were actively aligned (and then bonded) using a simple retro-reflection jig and fiber-circulator. The 1dB alignment tolerance of this \(\mu \)Lens-to-FA assembly is \(\pm 2.5\mu m \), i.e., comparable to that of standard Fiber-to-PIC grating-coupling. Note that \(\mu \)Lens-FA assemblies are also available “off-the-shelf” [12]. The assembled \(\mu \)Lens-FA was orientated to provide an AOI = 10\(^\circ\), and passively placed in approximate alignment above the Si-PIC. A second matching \(\mu \)Lens array was then approximately placed above the Si-PIC’s grating-couplers, and then rastered until an initial transmission signal was detected through the optical-shunt. Iterative refinements to the alignment of both assemblies finally gave a Fiber-to-Fiber shunt transmission of \(-3.4\) dB (IL = 1.7 dB) – see Fig. 2(a).

Simulations in Zemax indicate that the alignment tolerance of the \(\mu \)Lens array over the grating-couplers is \(\pm 2.5\mu m \), and the above active alignment procedures confirmed this. These tolerance measurements are important as they show compatibility with more scalable assembly approaches, like wafer-bonding of \(\mu \)Lens wafers to Si-PIC wafers, or direct writing of \(\mu \)Lenses structures [13]. The ripple in the \(\mu \)Lens-FA transmission spectra is a thin-film interference artefact that originates from the epoxy-gap between the FA and \(\mu \)Lens array in the \(\mu \)Lens-FA assembly, and is exacerbated by the high-index broadband anti-reflection coatings of the lens.

Performing the same experiment, but displacing the \(\mu \)Lens-FA along the symmetry axis of the grating-couplers on the Si-PIC, gives a similar 1 dB alignment tolerance around 1300nm of \(\pm 22\mu m \) – see Fig. 4. Notice that in both cases the experimental tolerances are congruent with the Zemax simulations. However the displacement along the symmetry axis of the grating-couplers does introduce a significant shift in the central wavelength of the coupling spectra. For a given grating-coupler design, a shift in the central wavelength (\(\lambda C \)) can only be caused by a change in the AOI (\(\theta \)), following \(\lambda C = P \times (n_{\text{eff}} - n_{\text{in}} \sin \theta) \), where \(P \) is the period (or pitch) of the etched region in the grating-coupler, \(n_{\text{eff}} \) is the
Fig. 3. (a) The peak Fiber-to-Fiber transmission through the optical-shunt (and the corresponding insertion-loss) as a function of the μLens-FA displacement. The peak transmission is determined by a parabolic fit to the shunt transmission spectra shown in (b). Note that the central wavelength of these spectra does not shift significantly as the μLens-FA is displaced.

Effective refractive index of the grating-couple r region, and \(n_{\text{in}} \) is the refractive index of any cladding material around the grating-coupler [14]. An offline set of measurements with the plain-FA and Si-PIC showed that a change in AOI of 1° gave a shift of 7.5 nm in \(\lambda_C \), so the 50 nm shift (i.e., from 1275 nm – 1325 nm) observed from the +60 μm to –60 μm displacement in Fig. 4(c) implies a change in the effective AOI on the grating-coupler of approximately 7°, despite there being no change in the “external” AOI from the μLens-FA orientation.

The origin of this change in “internal” AOI is schematically illustrated in Fig. 5(a). As the collimated beam from the μLens-FA is displaced along the surface of the μLens array on the PIC, not only is the image spot displaced along the focal-plane of the μLens, but the effective AOI at which it is imaged changes. Using simple geometric optics, and the assumption of a spherical-lens, the expected shift in AOI (\(\Delta \)) between the +60 μm to –60 μm spectra can be estimated as \(\Delta = \arctan \left(\frac{2 \times 120 \mu m}{1.5 \text{ mm}} \right) = 9° \), in reasonable agreement with the value (7°) extracted from the shift in central wavelength.

A similar effect occurs when the external AOI (\(\theta \)) is intentionally varied see Fig. 5(b). Here, increasing the AOI from the initial value (\(\theta_1 \)) to a new value (\(\theta_2 \)) requires a compensating displacement of the μLens-FA along the symmetry axis of the grating-coupler, to re-align the focused spot on the grating-coupler. However, this displacement of the beam across the surface of the μLens array on the PIC causes the effective AOI (\(\Theta \)) at the focal-plane to change very significantly. This effect can be observed experimentally – see Fig. 5(c) – where even very small changes in the external AOI result in very large variations in the central wavelength. These measured changes are approximately 7× greater than that observed in Fiber-to-PIC measurements with a plain-FA, which illustrates that, while the μLens Fiber-to-PIC connection allows for a factor of 10× relaxation of translational alignment tolerances, it comes at the price of tightening the angular tolerances. However, established manufacturing processes (e.g., precision machining and plastic injection molding) can offer fabrication tolerances and planarity better than 0.1°, so the increased angular tolerance of the μLens Fiber-to-PIC connection is still accessible with mass production techniques.

III. PLUGGABLE FIBER-TO-PIC CONNECTOR

The 1 dB alignment tolerance of the μLens Fiber-to-PIC connection should be well within the capabilities of precision injection molded plastics [15]. To test this theory, a μLens Fiber-to-PIC connection was mounted in an armature made of Lego™ bricks — see Fig. 6. This simple armature allowed the μLens-FA to be removed and replaced (by hand), to simulate the make/break action of a “pluggable” connector. The μLens Fiber-to-PIC connection in this demonstrator was aligned using the same iterative procedure described above, with two additional epoxy steps — (i) bonding the μLens-FA to a Lego™ brick, and (ii) bonding the Si-PIC (with μLens array) to a tilted Al base-plate, which provides the correct AOI for the grating-couplers. As shown in Fig. 6(a), a trial of 30 make/break connections on this simple μLens
Fiber-to-PIC pluggable connection gives a mean insertion-loss of 2.1 dB (i.e., a coupling efficiency of 62%), and a high reproducibility of 0.2 dB in standard deviation. This pluggable connection adds just 0.4 dB insertion-loss to the “ideal” Fiber-to-PIC connection that can be achieved on the alignment bench a difference that can likely be reduced by developing a more customized plastic fixture, and optimizing the grating-couplers to better match the mode-profile incident from μLenses.

IV. CONCLUSIONS

We have shown that μLens Fiber-to-PIC grating-coupler connections, offering 1 dB alignment tolerances on the order of ±30 μm, are possible to fabricate and can offer insertion-losses of 1.7 dB. Despite an increased sensitivity to the angle-of-incidence between the μLens-FA and PIC, the relaxed alignment tolerances of the paired μLens system are such that a highly efficient (IL = 2.1 dB) and highly reproducible (0.2 dB standard deviation) “pluggable” multi-channel Fiber-to-PIC connection can be made using Lego™ bricks. In this initial work, active alignment was used to optimize the placement of the μLenses on the Si-PIC and SMF, but future scalable approaches, such as direct writing of μLenses structures, or wafer-bonding of μ-Lens wafers to Si-PIC wafers, could allow for truly “passive alignment only” Fiber-to-PIC connections, that will significantly reduce photonic packaging costs to address the needs of the emergent, e.g., bio-photonic, markets.

ACKNOWLEDGEMENTS

The authors would like to thank Sean Collins at Tyndall National Institute for providing SolidWorks images to help illustrate the μLens Fiber-to-PIC connection.

REFERENCES