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General Abstract 
 

The past three decades, from 1990 to the present, have seen a considerable increase in 

the number of studies investigating the ecology of gelatinous zooplankton, driven in 

no small part by the negative socio-economic impacts of gelatinous zooplankton. 

Despites some exciting progress, some important gaps remain, particularly with regard 

to how physical and oceanographic processes influence the distribution and abundance 

of gelatinous zooplankton. It is well established that these are central processes in the 

formation of the patchy distribution of phytoplankton and large vertebrate pelagic 

predators, however, few studies have elucidated the role of such processes on 

gelatinous zooplankton. Therefore, the central theme of this thesis was to investigate 

the influence of mesoscale processes (fronts and eddies) on gelatinous zooplankton 

ecology. In addition, two strategies with the potential to reduce the impact of harmful 

jellyfish species at finfish farms were investigated: 1) the use of an artificial front as a 

barrier and; 2) the efficacy of a non-toxic antifouling coating to reduce hydroid 

biofouling.   

 Temporal sampling in southwest Ireland and a compilation of historic 

observations revealed a low siphonophore diversity in Irish waters, with Muggiaea 

atlantica being the most abundant species by an order of magnitude. The occurrence 

of siphonophores in the southwest of Ireland indicated the influence of physical drivers 

and shared trends with the Western English Channel suggested a physical link between 

both regions. The Celtic Sea Front was the most likely physical link between both 

regions and its annual formation had a profound impact on gelatinous zooplankton 

distribution in the region for a period each year.  

 Sampling carried out during July 2015 revealed two distinct gelatinous 

communities separated by the Celtic Sea Front; a cold mixed water community in the 
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Irish Sea and a warm water stratified community in the Celtic Sea. The gelatinous 

abundance (656 indiv. m-3) and biomass (2085 mg C 1000 m-3) was higher in the Celtic 

Sea. The mean gelatinous contribution to the total zooplankton biomass was 4 - 6%, 

reaching a maximum of 16% in the Celtic Sea. There was no evidence that the front 

enhanced the abundance of biomass of gelatinous taxa, however, it is likely that the 

front influenced the community and biomass through broader scale advective 

processes. A survey in the northwest Atlantic also showed that a mesoscale warm core 

eddy had a profound influence on the gelatinous zooplankton, with a 12-fold decline 

in gelatinous zooplankton inside the eddy. Some larger calycophoran genera were 

present in the eddy, along with several large crustacean genera, nonetheless, most 

zooplankton taxa were poorly represented, suggesting an oligotrophic eddy core. 

An investigation of mitigation strategies for finfish aquaculture demonstrated 

that a bubble curtain may be of limited use due to the ability of small objects to pass 

through the bubble plume. Tests also showed, the potential rate of ‘jellyfish’ 

transmission through the bubble curtain is affected by wave height and frequency, 

meaning sites which experience high wave energy would negatively impact the bubble 

curtain. Experimental trials of a novel non-toxic coating applied to nylon netting 

typical to salmon farm cages showed no effect on the ubiquitous fouling hydroid 

Ectopleura larynx. Although the coating was effective at reducing microscopic fouling 

and enhanced clean-ability of nets, the stolon system of the macrofouling hydroids 

was extremely adaptable and the complex surface topography of the multi-stranded 

nylon provides a surface which is physically easy for the hydroids to anchor to.
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General Introduction 
 

Gelatinous zooplankton  
 

Gelatinous zooplankton is a broad term that refers to organisms with a body mass that 

is composed mostly of water, usually above 95% water (Larson, 1986; Arai, 1997; 

Anderson, 1998). This definition encompasses organisms from a range of taxonomic 

groups including Cnidaria, Ctenophora, pelagic Tunicata, Chaetognatha, Polychaetae, 

Mollusca and the larval stages of many non-crustacean zooplankton (Haddock, 2004). 

Terms like gelatinous zooplankton, gelata (Haddock, 2004) and jellyfish, while in 

some sense intuitive, do little to convey the diversity of form, function and life history 

traits they describe, and it is increasingly apparent that gelatinous zooplankton form 

an important component of pelagic ecosystems (Robison, 2004; Doyle et al., 2014; 

Lucas et al., 2014; Hamilton, 2016). In this study, the term gelatinous zooplankton is 

used in reference to Cnidaria, Ctenophora and pelagic tunicates only, and where other 

gelatinous or semi-gelatinous zooplankton are discussed the distinction is made clear 

in each instance.  

 The phylum Cnidaria is the most diverse group containing two monophyletic 

clades, the class Anthozoa (7500 spp.) and the Medusozoa (3786 spp.) (Daly et al., 

2007; Mapstone, 2015). The medusozoa contains four Classes, the Hydrozoa (3500 

spp.), Scyphozoa (200 spp.), Cubozoa (36 spp.) and Staurozoa (50 spp.) (Daly et al., 

2007; Mapstone, 2015). Cnidarians derive their name from the possession of a 

specialised type of cell, called a cnidocyte, which is capable of producing organelles 

called cnidae. A type of cnidae called nematocysts are capable of piercing the skin of 

prey and injecting venom. Cnidarian tentacles are loaded with cnidocytes and are used 

to capture a wide variety of zooplankton prey including other cnidarians (Purcell, 
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1981; Purcell, 1991; Purcell, 1997; Sabatés et al., 2010). The phylum Ctenophora is 

less diverse, containing 150 - 250 described species, although more are known to exist 

(Dunn et al., 2015; Giribet, 2016; Jager and Manuel, 2016). Some ctenophores possess 

adhesive tentacles and use them for prey capture, however, other genera engulf or use 

lobed arms to manipulate prey (Harbison et al., 1978; Jager and Manuel, 2016). The 

majority swim via ciliary action, with some species able to use their body to ‘paddle’ 

through the water, and therefore they lack the agility of many cnidarians. The tunicates 

are a diverse group containing over 2000 species, with two relatively species poor 

pelagic groups, the class Thaliacea (72 spp.) and class Appendicularia (20 spp.) 

(Holland, 2016).  

Both groups move by jet propulsion and unlike the cnidarians and ctenophores, 

they are omnivorous filter feeders that consume small particles (Holland, 2016). 

Although characterised by a similar gelatinous form, these groups contain animals that 

are vastly different from each other, however, a unifying characteristic is the ability to 

exploit often transient and patchy resources to reproduce rapidly (Graham et al., 2001; 

Dawson and Hamner, 2009; Holland, 2016). In the first instance, being composed 

largely of water allows these animals to grow faster than non-gelatinous species, 

giving them a competitive advantage (Pitt et al., 2013). The thaliaceans alternate 

between sexual and asexual generations, allowing them to respond rapidly when 

primary productivity increases (Holland, 2016). The appendicularians have a simpler 

life cycle, reproducing sexually, but can develop to adult size in 24 hours and have 

short life spans, e.g. 10 days for Oikopleura diocia, which means they are equally 

adept at utilising primary productivity (Holland, 2016). The Ctenophora are largely 

hermaphroditic and are capable of reproducing at an early developmental stage 

(paedogenesis) (Ruppert and Barnes, 1994). Furthermore, as adults, gametes are 
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released continuously while food is available, and these traits allow populations to 

develop rapidly (Ruppert and Barnes, 1994).  

Medusozoa reproductive strategies are diverse and include broadcast 

spawning, direct development and an alteration between sexual and asexual 

reproduction and multiple generations per season (Russell, 1953; Russell, 1970; Lucas 

et al., 1995; Bouillon et al., 2006; Arai, 1997; Blackett et al., 2015). Coastal 

aggregations are predominately meroplanktonic species that utilise an asexual polyp 

stage, while the oceanic species are predominantly holoplanktonic species with direct 

development, although there are exceptions in both cases (Bouillon et al., 2006). 

Medusozoa are voracious insatiate predators and this combined with reproductive 

flexibility allows populations to increase rapidly when prey are available (Purcell, 

1997; Graham et al., 2001; Dawson and Hamner, 2009; Lucas et al., 2014; Blackett et 

al., 2015). The availability of prey is a key concept in population dynamics and 

dependent on a range of factors, the swimming ability, physiology and behaviour of 

both predator and prey determine successful foraging (Folt and Burns, 1999; Arai, 

1997; Benoit‐Bird et al., 2013). Just as important is the physiological and behavioural 

responses of predator and prey to the physical environment, and processes that create 

intense physical gradients, discontinuities, horizontal or vertical flows, and zones of 

divergence or convergence can influence gelatinous zooplankton populations (Owen, 

1981; Arai, 1992; Graham et al., 2001; Deibel and Paffenhofer, 2009). 

Eddies & Fronts 

 Fronts and eddies are ubiquitous pelagic features that arise from several 

different physical processes and create zones of coherent horizontal and/or vertical 

flow which often separate different water masses (Owen, 1981; Belkin et al., 2009; 

Chelton et al., 2011). Frontal systems are generally linear and interact with 
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topography, tides and weather to produce upwelling and downwelling zones (Owen, 

1981; Le Fèvre, 1987; Raine, 2014). An eddy can be thought of as a special type of 

front where the linear flow encloses a circular bowl shaped parcel of water, and can 

also induce vertical flows (Stommel, 1958; Owen, 1981; Dufois et al., 2016). Both 

features can result from interactions between topography and hydrography in shallow 

coastal waters, but can also be found in deep pelagic regions independent of 

topography (Stommel, 1958; Owen, 1981; Rossby, 1996; Shoosmith et al., 2005). The 

geographic range of both features is variable; the major ocean gyres form large scale 

(>250 km) quasi stationary eddies and contribute to the major oceanic frontal systems, 

whereas the meso-scale (100 – 250 km) features are generally transient, seasonal, or 

both (Graham et al., 2001; Kaiser, 2011). Both features have a profound influence on 

primary productivity, vertical mixing of nutrients and energy and lateral oceanic 

circulation (Tranter et al., 1980; Benitez-Nelson et al., 2007; McGillicuddy et al., 

2007; Belkin et al., 2009; Chelton et al., 2011; Zhang et al., 2014; Faghmous et al., 

2015; Dufois et al., 2016; McGillicuddy, 2016). A substantial body of literature shows 

spatial coherence between fronts and eddies and higher trophic levels such as birds, 

sharks, marine mammals, mesopelagic fish, and sea turtles (Brandt, 1981; Owen, 

1981; Olson and Backus, 1985; Olson et al., 1994; Schick et al., 2004; Worm et al., 

2005; Bakun, 2006; Doyle et al., 2008b; Belkin et al., 2009; Scales et al., 2014a). 

Likewise, the distribution of mesozooplankton (0.2–20 mm), macrozooplankton (2-20 

cm) and nekton are influenced by fronts/eddies (Brandt, 1981; Davis and Wiebe, 1985; 

Olson and Backus, 1985; Wiebe et al., 1985; Boyd et al., 1986; Bakun, 2006; Lara-

Lopez et al., 2012; Schultes et al., 2013; McGinty et al., 2014).  

The available literature on gelatinous zooplankton with respect to frontal/eddy 

systems is relatively sparse, and biased towards scyphomedusae, nonetheless, it 
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indicates that frontal systems and eddies often partition distinct gelatinous 

communities (Davis and Wiebe, 1985; Wiebe et al., 1985; Pagès and Gili, 1992; Pages 

and Schnack-Schiel, 1996; Graham et al., 2001; Guerrero et al., 2016). Graham et al. 

(2001) summarised that small and mesoscale fronts are more likely to promote 

aggregation, whereas, the large-scale oceanic fronts serve to separate distinct water 

masses and their respective communities. The reasons for this appear two-fold: small 

and meso-scale features exhibit stronger flows, leading to the passive aggregations of 

weakly swimming gelatinous taxa via convergent currents. Secondly, many of the 

studies have focused on small and meso-scale features, mainly in the neritic domain, 

where higher productivity and thus prey availability potentially lead to active 

aggregations (Arai, 1992; Folt and Burns, 1999; Graham et al., 2001).   

Much of the research which has focused on gelatinous zooplankton in the 

oceanic domain, was concerned with geographic and vertical distribution (Alvariño, 

1971; Pugh, 1977; Pugh, 1984; Roe et al., 1984; Mackie et al., 1987; Angel and Pugh, 

2000). Siphonophores have often been the dominant group (Pugh, 1977; Williams and 

Conway, 1981; Mackie et al., 1987) and their distribution is influenced by the major 

hydrographic currents (Pugh, 1977; Pugh, 1984; Mackie et al., 1987; Larson et al., 

1991). Vertically, siphonophores are most abundant and diverse in the epipelagic zone 

(0 – 200 m depth) (Mackie et al., 1987; Mapstone, 2009) and therefore oceanic eddies 

are likely to play an important role in their ecology/distribution. The distribution of 

hydromedusae and scyphomedusae in the oceanic domain are poorly understood and 

while some studies suggest they are predominantly in the meso-pelagic zone (200 – 

1000 m depth) (Larson et al., 1991), other studies combining methods indicate a wider 

vertical distribution (Hosia et al., 2008; Stemmann et al., 2008; Hosia et al., 2017). A 

broader vertical distribution would mean meso-scale eddies are potentially an 
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important influence over oceanic medusozoa. The Warm Core Rings project in the 

1980s, showed that warm eddies contained distinct zooplankton communities, 

including gelatinous taxa, that could develop substantially in 2-3 months, shifting to a 

larger predatory community (Davis and Wiebe, 1985; Wiebe et al., 1985). Species 

level detail was lacking in the study, however, a shift to larger zooplankton would 

favour certain gelatinous taxa, most likely large siphonophores (Purcell, 1981; Mackie 

et al., 1987).   

Frontal systems in the neritic domain are often characterised by very different 

gelatinous communities on either side, with coastal neritic species on the inshore side 

and oceanic species on the offshore side (Graham et al., 2001; Guerrero et al., 2016). 

However, this is not always the case and some studies reveal little influence of frontal 

systems on the gelatinous community (Schultes et al., 2013; Luo et al., 2014). Few 

studies support the idea that fronts directly support bottom up increases in the majority 

of gelatinous taxa, except perhaps for the pelagic thaliaceans - doliolids (Deibel, 1985; 

Luo et al., 2014). Nonetheless, observations of increases in small hydromedusae 

associated with upwelling suggest, that on occasion, aggregations are the result of both 

passive and behavioural factors (Arai, 1992). The peak abundance of hydromedusae 

has been recorded on the offshore side of frontal systems in several regions (Pagès and 

Gili, 1992; Mianzan and Guerrero, 2000; Schultes et al., 2013), however, no causal 

relationship between the front and the gelatinous predators was suggested.   

The Celtic Sea Front and the  Ushant Front in the Celtic Sea, in the north east 

Atlantic, are two relatively well studies features (Cooper, 1952; Cooper, 1960; 

Cooper, 1967; Pingree and Griffiths, 1978; Le Fèvre et al., 1983; Le Fèvre, 1987; 

Pingree and Le Cann, 1989; Horsburgh et al., 1998; Pingree et al., 1999; Beaugrand 
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et al., 2000; Brown et al., 2003; Fernand et al., 2006; O'Boyle and Raine, 2007; Hill 

et al., 2008; Raine et al., 2010; McGinty et al., 2014; Raine, 2014), and have a 

profound impact on primary productivity, and form part of a circulation that conveys 

plankton around the Celtic Sea (Hill et al., 2008). Interactions between weather and 

the frontal system is known to advect Harmful Algal Blooms (HABs) into sensitive 

habitats with intensive aquaculture operations (Raine et al., 2010). These interactions 

are effectively intrusions of oceanic shelf water into inshore areas and similar events 

are thought to have, on occasion, brought high densities of hydromedusae into inshore 

regions in Ireland, Norway, Scotland and Germany (Greve, 1994; Båmstedt et al., 

1998; Cronin et al., 2004). The neritic siphonophore Muggiaea atlantica has become 

a serious problem species in Ireland for the salmon farming industry (Baxter et al., 

2011a), and there is considerable circumstantial evidence that the Celtic Sea frontal 

systems may advect the now resident English Channel M. atlantica population 

(Blackett et al., 2015) into Irish coastal waters during the summer/autumn.   

Interactions between jellyfish and finfish aquaculture 
 

The presence of gelatinous zooplankton and particularly ‘jellyfish’ blooms in coastal 

regions has led to a range of negative interactions with human activities including 

tourism, fishing, power plants intakes, catastrophic trophic cascades, and finfish 

aquaculture (Purcell et al., 2007). In the case of finfish aquaculture, the problem 

species have predominantly been cnidarians, although occasionally ctenophores have 

also caused problems (Båmstedt et al., 1998), and documented events began in the 

1950s (Purcell et al., 2013). Thus far the salmon aquaculture industry has suffered 

most, and the industry in northern Europe, e.g. Scotland, Norway, and Ireland, has 

been hardest hit (Doyle et al., 2008a; Baxter et al., 2011a; Rodger et al., 2011a). To a 

lesser extent, salmon operations in Chile, Australia, Asia, and North America have 
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also been affected (Adams et al., 2004; Palma et al., 2007; Rodger et al., 2011a). The 

issue can be divided into two categories; 1) high mortality events caused by extreme 

densities of usually, but not exclusively, scyphomedusae, i.e. Pelagia noctiluca, and 

2) a chronic elevated background mortality caused by small inconspicuous 

hydromedusae, i.e. Muggiaea atlantica or Phialella quadrata. High mortality events 

can result in 100% mortalities, such as has occurred in Glenarm Bay, Northern Ireland, 

during 2007 (Doyle et al., 2008a) and estimates of background mortalities range from 

12 – 80% over several years (Rodger, 2007). The second category of chronic impact 

also contains the hydroids, which while not strictly planktonic, does include the 

shedding of polyps and this process has injured caged fish in the Mediterranean 

(Bosch-Belmar et al., 2017). Baxter et al. (2012a) has also demonstrated that both 

attached colonies and colonies shed into the water cause gill damage (sloughing, 

necrosis & haemorrhage) and clouding of the cornea in young salmon during 

controlled tests.  

It is increasingly difficult to assess the cause of gill damage and fish moralities 

at fish farms as other biological agents and pathogens often co-occur with jellyfish and 

disentangling the exact contribution of each agent is difficult (Rodger et al., 2011b). 

In addition, some jellyfish species may carry the bacteria, Tenacibaculum maritimum, 

thereby injuring and infecting fish at the same time (Ferguson et al., 2010; Delannoy 

et al., 2011), which further complicates post mortem analysis. Aquaculture food 

production is the fastest growing food production system globally, and currently 

finfish aquaculture output is estimated at over US $99 billion (FAO, 2016). The Food 

and Agricultural Organisation of the United Nations has projected substantial 

increases in finfish aquaculture output of over 40% in the coming years, which is likely 

to lead to an increase in interactions between fish farms and harmful jellyfish in some 
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regions (Boero et al., 2016). In Ireland, the salmon industry produces approximately 

€50 million worth of fish annually, with losses of approximately 50% during some 

recent years (Marine Harvest Ireland Ltd., pers. comm.). Furthermore, climatic 

changes and increasing sea temperatures are likely to have unpredictable effects, as 

gelatinous taxa may potentially increase or decrease in abundance, and other taxa may 

shift in latitude bringing ‘new’ harmful species into a region (Boero et al., 2016). A 

good example of this, is the now resident population of the siphonophore Muggiaea 

atlantica in the English Channel, where it was previously considered seasonal and 

transient (Blackett et al., 2014; Blackett et al., 2015). Despite this recent work, 

knowledge of these species remains poor and knowledge of other potentially harmful 

species is non-existent.    

Mitigation against harmful jellyfish  

 Currently farmers have no early warning system and even if they did, the 

strategies for dealing with high densities of harmful jellyfish are limited. The least 

stressful strategy for the fish is to control their shoaling depth, to avoid the highest 

densities of jellyfish; this involves cessation of feeding which makes fish circulate 

deeper in the cage (Marine Harvest Ireland Ltd., pers. comm.). Newer cage designs 

also have moveable lids which can corral the fish at variable depths to achieve the 

same end. On occasion, fish will be harvested early to remove them from harm’s way, 

however, this is not simple and specialised vessels take time to arrive on location, 

meaning fish may well be unmarketable by that time (Marine Harvest Ireland Ltd., 

pers. comm.). Where fish are known to be injured, antibiotics can be added to feed to 

offset secondary infections. All of these strategies add substantial economic cost to 

the industry and impact the welfare of the fish, and therefore other strategies are sought 

which might offer protection to farms.  
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A bubble curtain, or pneumatic barrier is one proposed method for protecting 

finfish aquaculture cages, and although the system is apparently in use at some power 

stations, as protection against jellies and at salmon farms as protection against harmful 

phytoplankton (Canadian Pond Ltd., pers. comm.), there are no published data on the 

efficacy of the system. In principle the system is simple; compressed air is delivered 

to a perforated hose lying across the seabed and the escaping air bubbles create a 

vertical current as they expand and rise to the surface (Lo, 1996). The vertical current 

in theory should entrain the harmful zooplankton and lift them to the surface to be 

removed or flow around the ‘protected’ area. The majority of research on this system 

has been carried out in the engineering field, as an oil spill retention strategy, and while 

effective for surface oil, the system was not 100% effective for sub-surface oil. Wind 

and current were evidently influential on the efficacy of the system as an oil barrier 

(Lo, 1996), however, whether these results are applicable to gelatinous animals which 

do not rest on the surface like oil is unknown. Many farms are off grid and rely on 

diesel power generation and the prospect of running powerful compressors 

continuously is economically unattractive, nonetheless, if such a system was combined 

with a greater understanding of the ecology of harmful species it could well become a 

viable mitigation strategy.    

Biofouling is ubiquitous in marine ecosystems and the fouling of a surface 

begins immediately upon immersion in seawater (Whelan and Regan, 2006; Callow 

and Callow, 2011; Mieszkin et al., 2013). The process is initially a physical interaction 

between a surface and the ambient water, whereby organic molecules such as proteins, 

carbohydrates and polysaccharides settle on a surface, creating a ‘slime’ layer 

(Mieszkin et al., 2013). This stage is followed by the settling and binding of bacteria 

and other microbes to the surface, which is subsequently followed by larger macro-
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fouling organisms such as mussels, barnacles and hydroids (Guenther et al., 2010; 

Callow and Callow, 2011; Fitridge et al., 2012). The macrofouling community that 

ultimately develops on a surface is influenced by species availability, geography, 

hydrography, season, temperature and the physical and chemical properties of a 

surface (Yebra et al., 2004; Chambers et al., 2006; Dobretsov et al., 2006; Scardino et 

al., 2009; Banerjee et al., 2011; Callow and Callow, 2011; Baxter et al., 2012a; Fitridge 

et al., 2012; Blöcher et al., 2013a; Buskens et al., 2013; Mieszkin et al., 2013).    

Biofouling in the finfish aquaculture industry is deleterious for the structural 

integrity of cage arrays and fish health (Guenther et al., 2011; Baxter et al., 2012a; 

Fitridge et al., 2012; Floerl et al., 2016; Bosch-Belmar et al., 2017). Heavily fouled 

cages can increase the stress on anchoring systems, reduce the flow through of fresh 

oxygenated water, reduce the dispersal of fish excrement, increase pathogen presence 

and directly injure fish through hydroid stings (Braithwaite and McEvoy, 2004; De 

Nys and Guenther, 2009; Baxter et al., 2012a; Fitridge et al., 2012; Floerl et al., 2016). 

One hydroid species, Ectopleura larynx, is a dominant fouling organism on salmon 

cages (Braithwaite and McEvoy, 2004; Greene and Grizzle, 2007; Baxter et al., 2012a; 

Kassah, 2012; Blöcher et al., 2013a). Its presence on nets and in the water has been 

shown to injure fish (Baxter et al., 2012a), and the shedding of mature polyps has been 

correlated with increased injuries (Bosch-Belmar et al., 2017). The current mitigation 

strategy against biofouling includes the application of copper based biocidal coatings 

and subsequent in situ high pressure cleaning of cages. Neither method has proved to 

be effective against E. larynx in the long term; the biocidal coating loses effectiveness 

after ca. six months (Braithwaite et al., 2007), and the cleaning creates a plume of 

stinging debris that can spread active propagules to adjacent structures and cause gill 

damage (Floerl et al., 2016).       
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Scope of the thesis 
 

The current research was carried as part of a collaboration between University 

College Cork, including the Marine and Renewable Energy Centre (MaREI), the 

School of Biological, Earth and Environmental Sciences (BEES), and Marine Harvest 

Ireland Ltd., and referred to as Aqua-MaREI. Part of the research was also carried out 

in collaboration with Galway and Mayo Institute of Technology and the 

Environmental Protection Agency (EPA) funded ‘Ecosystem Tipping Points Project’. 

The Aqua-MaREI project was set up to investigate the ecology of harmful gelatinous 

zooplankton and the key processes driving abundance and distribution. In addition, 

the project addressed potential mitigation strategies that might reduce the impact of 

harmful species on caged fish.   

 This thesis sought to enhance our understanding of gelatinous zooplankton by 

addressing key gaps in our understanding; including the relationship between spatial 

and temporal heterogeneity and physical processes, and the application of that 

knowledge to mitigation strategies. The mitigation strategies investigated included the 

use of a ‘bubble curtain’ or a pneumatic barrier as a protective screen against harmful 

species, and the application of a novel non-toxic antifouling coating as a deterrent to 

fouling hydroids.     

 Through the Aqua-MaREI project and in collaboration with Plymouth Marine 

Laboratories, the occurrence and distribution of siphonophores in the southwest of 

Ireland and the Western English Channel were investigated (Chapter 2). This research 

sought to examine current data with respect to historic observation, and with respect 

to data from the adjacent, potentially related, pelagic ecosystems. The Celtic Sea Front 

is a seasonal oceanographic feature between the Celtic Sea and the Irish Sea, and is 

also part of a larger circulation that physically connects otherwise disparate regions of 
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the Celtic Sea (Hill et al., 2008). A plankton survey during July 2015 sought to 

investigate the influence of the front over the Celtic Sea gelatinous zooplankton 

assemblage (Chapter 3). The contribution of gelatinous zooplankton to the total 

zooplankton assemblage was investigated, which has not been done before in Irish 

waters. Another survey in April 2015 crossed the north Atlantic form Ireland to 

Newfoundland, and offered a unique opportunity to investigate a meso-scale warm 

core eddy situated within the North Atlantic Current (Chapter 4). This oceanic feature 

is analogous to the Celtic Sea front and presented an opportunity to compare meso-

scale processes in the oceanic and neritic domains and their respective influence over 

gelatinous zooplankton. To date, this is the first study, to the best of our knowledge, 

to describe the gelatinous taxonomic variation across a warm core eddy.  

 In collaboration with Marine Harvest Ireland Ltd., the Aqua-MaREI project 

carried out two specific projects on potential mitigation measures to protect finfish 

farms from harmful gelatinous species. The first experiment involved testing the 

efficacy of a bubble curtain system as a barrier to jellyfish; both field and laboratory 

experiments were carried out using real and model jellyfish (Chapter 5). The results 

are described within the context of substantial biological and physical data from two 

aquaculture sites in Ireland (relating to Chapter 2) in an effort to assess the practicality 

of the system. The second experiment was the investigation of a novel anti-fouling 

coating as a deterrent to the fouling hydroid Ectopleura larynx. The efficacy of the 

coating as a fouling-release agent was also examined in cleaning tests (Chapter 6).   
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Diversity and occurrence of siphonophores in 

Irish coastal waters 

 

This chapter has been published in a similar format as a peer-reviewed publication: 

Haberlin, D., Mapstone, G., McAllen, R., McEvoy, A.J. and Doyle, T.K., 2016, 

January. Diversity and occurrence of siphonophores in Irish coastal waters. In Biology 

and Environment: Proceedings of the Royal Irish Academy (Vol. 116, No. 2, pp. 119-

129). Royal Irish Academy. 

Abstract 

Siphonophores are at times amongst the most abundant invertebrate zooplankton 

predators in the oceans. Historically, siphonophores have been under-sampled and of 

the studies conducted there has been a bias towards oceanic oligotrophic waters where 

they are considered to be more abundant and diverse. In temperate coastal regions, 

comparatively less is known about the diversity and abundance of siphonophores, 

where periodic blooms can restructure the plankton communities and have been 

correlated with high mortalities in the salmon aquaculture industry. To address this 

lack of knowledge, plankton samples were collected during two periods (March 2009-

March 2011 and April 2014- November 2015) from a coastal embayment in the 

southwest of Ireland. In total, three siphonophore species were found, the 

calycophoran Muggiaea atlantica, and the physonects, Nanomia bijuga and Agalma 

elegans. Muggiaea atlantica was the most abundant species (250 colonies m-3), with 

densities an order of magnitude higher than either physonect. Muggiaea atlantica 

displayed a distinct seasonality, whereas the physonect species were sporadic in 

occurrence. Comparing siphonophores in Bantry Bay, Ireland, and the Western 

English Channel (Plymouth Marine Laboratory’s L4 station) indicates both regions 

share a similar pattern of inter-annual occurrence and provides novel information on 

the seasonality and occurrence of siphonophores in Irish coastal waters.



Chapter 2 – Siphonophores in Irish waters 

 

17 

 

Introduction 

Siphonophores are at times amongst the most abundant non-crustacean invertebrate 

predators in the oceans (Purcell, 1981; Williams and Conway, 1981; Pugh, 1984; Pugh 

et al., 1997). With 177 species (Mapstone, 2015), the majority are described as 

holoplanktonic, cosmopolitan in distribution and more frequently encountered in deep 

oceanic waters (Totton and Bargmann, 1965; Mackie et al., 1987; Mapstone, 2014). 

Historically, they have largely gone undetected, primarily as a result of the difficulty 

of sampling very delicate animals (Haddock, 2004). As such, compared to crustacean 

zooplankton, quantitative data on siphonophores are relatively scarce. Where good 

quantitative data have been gathered, particularly with the use of in situ techniques, 

there has been a bias towards warm oligotrophic waters where diversity was known to 

be high (Hamner, 1975; Mills, 1995). However, where submersible transects have 

been used in regions of low and high productivity, the same siphonophore diversity 

has been recorded (Mills, 1995) and long term sampling in the upwelling region west 

of Vancouver Island, Canada, (Denman et al., 1981) revealed a relatively high 

diversity (Mapstone 2009). Recently, the occurrence of siphonophores in coastal 

waters has received a lot of attention because of their negative impact on the salmon 

aquaculture industry. Abundance of the small calycophoran siphonophore, Muggiaea 

atlantica Cunningham, 1892, has been correlated with mass mortalities of farmed 

salmon in Ireland (Cronin et al., 2004; Baxter et al., 2011a), Scotland (Nickell et al., 

2010) and Norway (Fosså et al. 2003). The abundance of the physonect Apolemia 

uvaria Lesueur, 1815 has also been correlated with fish mortalities in Norway 

(Båmstedt et al., 1998). Furthermore, there is growing evidence that unidentified small 

jellyfish contribute significantly to annual fish mortality rates in Ireland and Scotland, 

through injury to the fish and as a vector of secondary bacterial infection (Ferguson et 
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al., 2010; Rodger et al., 2011a; Rodger et al., 2011b). M. atlantica can have a dramatic 

impact on the plankton community through top-down predation on copepods, in 

Helgoland during 1989 unusually high M. atlantica densities reduced the copepod 

population to 10% of the long-term mean (Greve, 1994). The decline in copepods 

released phytoplankton from predation and contributed to changes in nutrient 

concentrations in the region, causing a late autumn phytoplankton bloom (Greve, 

1994). While most siphonophores are considered oceanic, there is evidence that some 

species can reside in coastal waters for extended periods, i.e., 1-2 years. In Norway a 

year-long study found the physonect Nanomia cara Agassiz, 1865 to be semi-resident 

in deep Norwegian fjords (Hosia and Båmstedt, 2008). Observations in the Gulf of 

Maine showed a similar occurrence of N. cara, but recorded higher densities and in 

shallow areas above 30m depth (Rogers et al., 1978; Mills, 1995). Studies in Ireland 

(Baxter et al., 2011a), Portugal (Marques et al., 2006) and Chile (Palma et al., 2011), 

showed M. atlantica to be present for much of the year and occasionally a dominant 

member of the macrozooplankton community. By contrast, the current knowledge of 

siphonophores in Irish waters is largely based on qualitative observations from the 

early twentieth century, with only Ballard and Myers (2000) and Baxter et al. (2011a) 

generating quantitative data on small gelatinous zooplankton. Much of the literature 

referencing the impact on salmon aquaculture is based on post-mortality reports, with 

no data recorded prior to the events. Here, an additional two years of zooplankton 

samples from Bantry Bay was used to supplement the previous work carried out by 

Baxter et al. (2011a) and Baxter (2011). Historical occurrences of siphonophores in 

Irish waters were collated, and in combination with the recent quantitative data were 

used to comment on the occurrence and seasonality of siphonophores in temperate 

coastal waters.
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Material and Methods 
 

Seasonal abundance of siphonophores was studied over two periods; from March 2009 

- March 2011 (Baxter, 2011a) and from April 2014 - November 2015. Approximately 

one year of data (April 2009 – March 2010) from the earlier work was published 

previously by Baxter et al. (2011a) and Baxter (2011). All samples were taken at the 

Roancarrig salmon farm (Marine Harvest Ireland Ltd.), situated in Bantry Bay, 

southwest Ireland (51.654° N, -9.774° W) (Fig. 2.1).  

 

Figure 2.1: The southwest coast of Ireland, with the sample site in Bantry Bay and 

(inset) historic observations of siphonophores around the Irish coastline. Symbols on 

the map indicate calycophoran () and physonect (x) sightings. The Roancarrig farm 

site is represented by the open circle. 
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Bantry Bay is a smoothly sloping bay with limited estuarine characteristics and is 

heavily influenced by wind and coastal currents (Raine et al., 2010; Raine, 2014). The 

bay is 35 km long, running in a south-west to north-east direction, experiences weak 

tidal circulation, and becomes thermally stratified in the summer (Raine, 2010). The 

intense stratification leads to a two layer, wind-driven oscillatory flow, exchanging 

water between the bay and adjacent shelf waters (Edwards et al., 1996). During the 

2009-11 study, samples were collected using a 0.4 m ring net with 200 µm mesh 

(Baxter, 2011; Baxter et al., 2011a). Five vertical plankton tows were taken at five 

stations around the Roancarrig farm, fortnightly during April-October and monthly at 

all other times (Baxter, 2011; Baxter et al., 2011a). Assuming 100% filtering 

efficiency over a short vertical distance, volume was calculated from the depth of 

water sampled (Baxter, 2011; Baxter et al., 2011a). During the 2014-15 study, samples 

were collected using a 0.5 m ring net with 200 µm mesh with a high length to mouth 

diameter ratio, designed to minimise damage to gelatinous zooplankton. Triplicate 

samples were taken at a single station (~25m depth) by hauling vertically from ~4m 

above the sea bed to the surface and a non-reverse flowmeter was used to calculate the 

volume of water filtered. The mean volume filtered was 3.5 ± 0.06 m-3 (± SE). All 

samples were fixed immediately in a 4% formalin sea water solution. Although the 

ring nets used in each study differed in mouth diameter and length, both nets would 

be expected to have comparable efficiency (McGowan and Fraundorf, 1966).  

Samples were analysed using a Zeiss dark-field stereomicroscope (Stemi 

2000) and all gelatinous zooplankton were counted and identified to the lowest 

possible taxonomic level. Physonects consist of a single pneumatophore and multiple 

nectophores, the number of which depends on species and maturity (Totton and 

Bargmann, 1965). Pneumatophores and nectophores were counted and the presence of 
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other fragments noted, i.e. bracts, palpons and gastrozooids. Physonect abundance was 

based on pneumatophore counts, and due to their consistent presence there was no 

necessity to estimate abundance using nectophores counts. For Muggiaea atlantica 

abundance, all identifiable nectophores and bracts were counted. The number of 

anterior nectophores can be used to represent the total number of polygastric stages, 

since Muggiaea species do not develop a posterior nectophore (Totton and Bargmann, 

1965). Eudoxid abundance was taken as the number of full intact eudoxids plus the 

number of eudoxid bracts. Polygastric and eudoxid counts were summed to give a 

figure for total abundance. Data were presented as the mean number of colonies ± 1SE 

m-3 for physonects, and mean number of polygastric or eudoxid stages ± 1SE m-3 for 

Muggiaea atlantica. To examine trends on a wider scale, results from this study were 

compared with data from a plankton monitoring station called L4 (50° 15.00’ N, 4° 

13.02’ W) in the western English Channel. Plymouth Marine Laboratory (PML) 

collects and maintains the L4 dataset which is stored at the British Oceanographic Data 

Centre (BODC) (www.BODC.ac.uk). Since 1988 weekly duplicate plankton samples, 

collected with a WP2 200 µm mesh net, have been analysed and enumerated for 

zooplankton species. Siphonophore species have only been identified to species level 

at L4 since 2009. Data were presented as the mean number of colonies ± 1SE m-3 for 

physonects, and mean number of polygastric or eudoxid stages ± 1SE m-3 for 

Muggiaea atlantica. All data points were presented according to the date collected.  

Investigation of physonect growth  

To investigate possible growth in colony size through the summer, preserved 

nectophores collected from June to August 2014 were measured across their width. 

There were insufficient nectophores in other months or in other years to include in the 

analysis. In addition, the nectophores collected during 2009-11 had deteriorated and 
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were not suitable for measurement. Nectophores that were badly damaged or 

misshapen were also not used for measurements. All measurements were taken from 

calibrated images using a Micron Optical 5mp digital camera with the 

stereomicroscope. All analysis was carried out using R  (R Core team, 2016)
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Results 

In total 260 samples were collected on 60 sampling days, from April 2009 to 

November 2014. Three siphonophore species were recorded in the samples: the 

calycophoran Muggiaea atlantica and two Agalmatidae physonects, Nanomia bijuga 

(Fig. 2.2) and Agalma elegans Sars, 1846. Athorybiid larvae of A. elegans (Fig. 2.3) 

were also recorded in several samples. Muggiaea atlantica and N. bijuga were present 

in all four years with M. atlantica the most abundant species, being an order of 

magnitude more abundant than the other species, 234 ± 14 (± SE) indiv. m-3 in 2009 

(Fig. 2.4). M. atlantica was present on 33 days, with polygastric and eudoxid stages 

occurring on 28 days (Fig. 2.4). The mean percentage of eudoxids across those sample 

days was 64 ± 4% (± SE). M. atlantica was notably absent in 2014, except for a small 

number of individuals (< 1 indiv. m-3) in November and December. Nanomia bijuga 

were present on 17 (28%) sampling days and the mean density was less than 1 colony 

m-3 on all sampling days except during June 2014 when the mean density reached 9.8 

± 2.3 (± SE) colonies m-3. Agalma elegans polygastrics and athorybiid larvae were not 

present in all years. Athorybiid larvae were recorded on six days, three of which were 

consecutive monthly samples from October, November and December in 2014. Their 

mean density was less than 1 colony m-3 on all sample days, except in Nov 2014 when 

the mean density reached 11.5 ± 1.7 (± SE) colonies m-3. Agalma elegans was present 

on 4 (7%) sampling days and never exceeded 1 colony m-3. The presence of M. 

atlantica suggested a distinct seasonality, first appearing in June/July and with peak 

density in 2009, 2010 and 2013 occurring in October. The presence of N. bijuga would 

also appear to be seasonal, with fifteen of the seventeen positive sampling days 

between May and August. Agalma elegans colonies and athorybiid larvae appeared to 

be aseasonal. 
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Figure 2.2: Nanomia bijuga colony from Bantry Bay, September 2015; A, 

Pneumatophore, nectosome and siphosome, with no nectophores attached; (B-D), N. 

bijuga nectophores from the same sample as colony in (A); (B) Upper view; (C) 

Lateral view; (D) Lateral view on the left and proximal view on the right.   
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Figure 2.3: Physonect zooids: A, Nanomia bijuga colony, part of the stem bearing 

three young cormidia and their tentacles bearing larval tentilla; (B) small developing 

definitive tricornuate tentilla on an Agalma elegans larva; (C) large definitive tentilla 

of an adult A. elegans; (D) developing definitive tentilla of an adult A. elegans; (E) A. 

elegans larva with both larval tentilla and developing definitive tentilla; ped = pedicel, 

inv = involucrum, cnid = first coil of the cnidoband beginning to show red pigment, 

T.fil = 2 terminal filaments, am = ampulla. 
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The historical literature contained records for ten siphonophore species (Table 

2.1): six physonects, four calycophorans and one cystonect. Many observations were 

recorded under older synonyms, which have been updated to the current accepted 

synonym using the world register of marine species (Schuchert 2016). The literature 

is biased towards south and west coasts, with the majority of observations coming 

from Valentia Island, S.W. Ireland (Fig. 2.1), and is dominated by physonects (Table 

2.1). While all of the historic records of the genus Nanomia are recorded as the species 

Nanomia cara, molecular phylogenetic analysis provides strong evidence that this 

commonly encountered physonect is Nanomia bijuga (Baxter et al., 2012b). 

Comparison with the L4 dataset 

Samples taken on 319 days (2009-15) showed the occurrence of siphonophores at L4 

displays a marked similarity to the data from Bantry Bay. Muggiaea atlantica was the 

most abundant species, two orders of magnitude higher than either physonect and, like 

Bantry, showed a distinct seasonality (Fig. 2.5). Peak abundance was earlier at L4, 

with highest densities recorded during July to September in 2009, 2010 and 2013 (Fig. 

2.5). The peak abundance of M. atlantica at L4 reached more than 2000 indiv. m-3 on 

one occasion in July 2010. M. atlantica was present on 250 days, with polygastric and 

eudoxid stages occurring on 215 (67%) days. The mean percentage of eudoxids across 

those 215 days was 76 ± 2% (± SE). M. atlantica was almost completely absent during 

2014, with densities of less than 1 indiv. m-3 during January, September, October and 

December only. Nanomia bijuga was present on 80 (25%) sample days, showing a 

distinct peak in abundance during June 2014 of 25 nectophores m-3, with 35 of those 

days occurring in May and June. A. elegans at L4 was rare, occurring on 16 (5%) days 

with nectophore counts never exceeding 6 nectophores m-3. 
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Figure 2.4: Mean seasonal abundance of Muggiaea atlantica polygastric and eudoxid 

colonies in Bantry Bay during the years 2009, 2010 and 2015. Muggiaea atlantica was 

almost entirely absent during 2014, therefore the data are not shown.  
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Figure 2.5: Mean monthly abundance of Muggiaea atlantica polygastric and eudoxid 

colonies at L4 station (Western English Channel) during the years 2009 to 2015. 

 

Nanomia nectophore Growth 

11 samples collected during 2014 and 2015 were used to analyse nectophore to 

pneumatophore ratio and nectophore size, with a total of 116 pneumatophores and 741 

nectophores (ratio of 1 to 6.4). The maximum number of nectophores counted with 

one pneumatophore was 22. There was no apparent increase in nectophore numbers 

during the peak abundance in 2014, the ratio of nectophores to pneumatophores in 

June (91 to 550, ratio of 1 to 6) and July (14 to 81, ratio of 1 to 5.8) remained 

consistent. There was no apparent increase in nectophore size during June, July and 

August, 2014. Although a significant difference in width was found across the three 

months (Kruskal-Wallis, df =2, p = < 0.001), post hoc analysis showed no change 

between June (1.42 ± 0.005 mm, N=80) and July (1.38 ± 0.007mm, N=43) (Kruskal-

Nemenyi, p = > 0.05), but a significant decrease between July and August (0.77 ± 

0.009 mm, N=17) (Kruskal-Nemenyi, p = <0.01). Due to the smaller sample size in 
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August (N=17) and the possibility that all of the nectophores originate from a single 

colony, the decline in size may not be representative of the Nanomia bijuga population 

in general. No colonies were found with nectophores still attached, and loose 

gastrozooids and palpons were observed in many samples. All of the pneumatophores 

found were attached to a stem and the nectosome and siphosome were readily 

discernible, although usually tightly contracted (Fig. 2.2). Minute budding zooids were 

visible on many colonies below the pneumatophore, some of which were beginning to 

resemble nectophores. 

 

Discussion  

 

Abundance and seasonality 

In this study, consistent quantitative sampling effort at a single site in Irish coastal 

waters revealed a low diversity of siphonophore species. Muggiaea atlantica was the 

most abundant species, consistently appearing in June/July and increasing in 

abundance before peaking in October/November (Figs. 2.4 & 2.5). The two physonect 

species did not have a readily observable pattern in either occurrence or abundance, 

appearing to be aseasonal, with Nanomia bijuga being more abundant and occurring 

more frequently than Agalma elegans. Despite the largely anecdotal nature of the 

historic literature, the pattern of temporal occurrence is broadly similar with the 

patterns found in this study. Historic observations around Ireland are dominated in 

early years (pre-1960) by physonects, whereas more quantitative methods in later 

years (post-1960), found M. atlantica to be the most abundant species (Table 2.1). The 

older literature is most likely biased towards reports of physonects due to their ability 

to float and their larger size, making them more easily detected by earlier observers. 
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There are few comparable studies of siphonophores in similar coastal 

environments; nonetheless, work in other locations provides interesting comparisons. 

Nanomia cara was the most common species in several Norwegian fjords (Hosia and 

Båmstedt, 2008), with peak abundance in May/June. Hosia and Båmstedt (2008) 

reported a maximum density of less than 1 colony m-3, which is low compared to the 

9.8 colonies m-3 in Bantry Bay. Nanomia cara was recorded throughout the year by 

Hosia and Båmstedt (2008), and the size and ratio of their nectophores to 

pneumatophores increased into the winter, indicating growth. Far higher densities of 

N. cara were documented in the Gulf of Maine, with densities reaching up to 7–8 

colonies m-3 in 1975–6 (Rogers et al., 1978) and possibly 50–100 colonies m-3 in 

1992–3 (Mills, 1995). Likewise, in the Gulf of Maine, N. cara colonies were found 

throughout the winter months, however, no seasonality was apparent (Rogers et al., 

1978). Descriptions by Hosia and Båmstedt (2008) and Rogers et al. (1978) indicated 

that colonies can grow large, with nectophores in Norway reaching up to 8mm in width 

(Hosia and Båmstedt, 2008); compared with a maximum width of 2mm in Bantry. 

Rogers et al. (1978) described colonies of 0.2–3.5 m in length from a submersible, 

with 30–40 nectophores per colony in their larger individuals. In contrast, this study 

generally found smaller colonies, with a ratio of 6.4 nectophores per pneumatophore. 

The diversity, abundance and seasonality of siphonophores appears to vary 

across different geographic regions, although M. atlantica has been consistently 

reported in many temperate coastal regions (Marques et al., 2006; Palma et al., 2007; 

Mapstone, 2009; Blackett et al., 2014).  In Chilean coastal waters siphonophore 

diversity was higher, with 11 species recorded during a series of cruises in 2003 

(Palma et al., 2007) and 2006 (Palma et al., 2011). During winter and spring M. 

atlantica was the dominant siphonophore with a peak abundance in spring (> 255 
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indiv. m-3) and only one physonect species, Pyrostephos vanhoeffeni, (<1 indiv. 100 

m-3) was recorded. Muggiaea atlantica was the only siphonophore recorded in an 

estuarine environment in Portugal, peaking in May/June with densities reaching ~360 

colonies m-3 (Marques et al., 2006). This density is comparable with those recorded in 

Ireland, whereas the peak density in May/June is much earlier and indicative of the 

earlier annual plankton blooms at these lower latitudes (Wroblewski 1989). In the 

main, siphonophore diversity appears to increase in deep water oceanic ecosystems 

(Mackie et al., 1987; Pages and Gili, 1992), although this would appear to not be the 

case in tropical coastal regions, where > 30 species have been recorded in shallow (ca. 

20 m depth) lagoon habitats (Pages et al., 1989). Notably, M. atlantica is not well 

represented in tropical regions, and this well be due to a lack of suitable prey in 

oligotrophic water (Purcell, 1982). Both A. elegans and Nanomia spp. have a wide 

distribution and do not appear restricted to neritic waters like M. atlantica (Mapstone, 

2009). This is possibly due to a preference for larger less common prey (Purcell, 1981) 

which allows them to inhabit oligotrophic waters. However, the identity of Nanomia 

spp. remains ambiguous and there may well be variants or sub-species with varying 

life histories, and varying geographic distributions (Mapstone G. M., pers. comm.).      

Nanomia Identification 

Nanomia bijuga was the most abundant physonect throughout the present study, yet it 

is absent from the historic Irish literature and only first identified from plankton 

samples in 2009 (Baxter et al., 2011a; Baxter et al., 2012b). Baxter et al. (2012b) found 

it to be widespread at numerous sites along the south and southwest coasts of Ireland, 

although the abundance was low by comparison with M. atlantica. Baxter et al. 

(2012b) confirmed the identification of N. bijuga by matching Irish and Pacific 

samples using phylogenetic analysis of the 18S rDNA sequence. The 18S sequence is 
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highly conserved within cnidarians and can be problematic for species level 

differentiation (Berntson et al., 1999; Cartwright et al., 2008). However, N. bijuga is 

the most intensely sequenced siphonophore (Dunn et al., 2005) and this match is the 

best available data to date. 

The taxonomy and nomenclature of the genus Nanomia is confusing and identifying 

colonies unequivocally using existing descriptions (Agassiz, 1865; Bigelow, 1911; 

Totton and Bargmann, 1965; Kirkpatrick and Pugh, 1984; Bouillon and Mar, 2004) is 

difficult. The original descriptions of N. cara (Agassiz, 1865; Fewkes, 1888) show a 

marked similarity to both colonies from Bantry Bay, and the colonies described from 

Valentia Island during the 1880s (Browne et al., 1898). Certain features, including the 

small size of the colonies with generally less than 10 nectophores and the tiny larval 

tentilla (Fewkes, 1888) (Fig. 2.3) have likely led to the continued application of the 

name Nanomia cara when it was not appropriate. Likewise, the suggestion that N. 

bijuga was a warm water congener of N. cara (Bigelow, 1911; Kirkpatrick and Pugh, 

1984; Mackie et al., 1987) and therefore less likely to occur in the north Atlantic may 

have biased identification. Identifying physonect siphonophores from net caught 

preserved samples is often difficult as the morphology of nectophores is altered by 

mechanical disturbance and the preserving agents used. In situ sampling and 

examination of narcotised intact specimens, and further phylogenetic analysis is 

needed to consolidate the Nanomia nomenclature. 
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Table 2.1: Historical observations of siphonophores from around the Irish coastline and adjacent seas.  

Species Year Month Location Max No. Paper 

Agalma elegans 1857 Unknown Dun Laoghaire unknown (Jeal and West, 1970) 
 1894 Unknown Isle of Man ‘several’ (Browne et al., 1898) 

 1905, 1906 June Valentia Isl. 1 (Delap and Delap, 1905; Jeal and West, 1970)  
 1908 June – Sept. Valentia Isl. ‘plentiful’ (Delap, 1924) 

 1909 June – July Valentia Isl. ‘ a number’ (Delap, 1924) 

 1965 June Galway Bay Unknown (Fives, 1971) 

 1986 Nov Killary Harbour 1 (Ryan et al., 1986) 

 2009-2011  Bantry Bay, southwest coast 1 (Baxter et al., 2011a; Baxter et al., 2012b) 

 2015 July-Sept South & southwest coast 6 D. Haberlin Unpublished data 

Nanomia cara 1895-1898 March-Dec Valentia Isl. very abundant (Browne et al., 1898) 

 1905 Unknown Valentia Isl. unknown (Jeal and West, 1970) 

 1906 Oct – Nov Valentia Isl. ‘A few’ (Jeal and West, 1970) 

 1951 May Valentia Isl. ‘A specimen’ (Totton, 1954) 

 1972 Unknown Galway Bay 2 (Boyd et al., 1973) 

 1986 May/June Killary 1 (Ryan et al., 1986) 

      

Nanomia bijuga 2009-2010 July-Sept South & west coasts 3m-3 (Baxter et al., 2011a; Baxter et al., 2012b) 

Forskalia edwardsi† 1856 Unknown Belfast Lough, Dun Laoghaire Unknown (Stephens, 1904; Jeal and West, 1970) 

Physophora hydrostatica 1969 May Blind Harbour, Mayo 1 (Jeal and West, 1970) 

Apolemia uvaria 2011 July Donegal 1 D. Haberlin, Unpublished data 

 2012 Aug Cork 1 D. Haberlin, Unpublished data 

Muggiaea atlantica 1896-1898 July-Nov Valentia Isl. ‘abundant’ (Browne et al., 1898) 

 1904 May-Nov Valentia Isl. Very abundant (Delap and Delap, 1905) 

 1967-1969 Jan-Dec Galway Bay 2140 (Jeal and West, 1970; Boyd et al., 1973) 

 1993-1994 Aug-Dec Lough Hyne 10 m-3 (Ballard and Myers, 2000) 

 2009-2010 June-Feb Bantry Bay 250 m-3 (Baxter et al., 2011a) 

Muggiaea kochii 1971 Sept, Nov Cork Harbour 1 (Boyd et al., 1973) 

Chelophyes appendiculata* 1841,1844 unknown Giants’ Causeway, Bundoran ‘several’ (Hyndman, 1841; Stephens, 1904) 

Sulculeolaria biloba*† 1899-1905 Apr-July Valentia Isl. ‘several’ (Delap and Delap, 1905; Jeal and West, 1970) 

Physalia physalis 1835-1970 All seasons All coasts very abundant (Stephens, 1904; Jeal and West, 1970) 

†Recorded as Forskalia contorta : *Recorded as Diphya elongata (Hyndman 1841) and Diphyes elongata (Stephens 1904) 

*†Recorded as Galeolaria sp. (Delap and Delap 1905), was subsequently identified as S. biloba (Jeal and West 1970). 
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Oceanographic drivers 

The presence of siphonophores in coastal waters has been correlated with intrusions of oceanic 

water in Norway (Båmstedt et al., 1998; Fosså et al., 2003; Hosia and Båmstedt, 2008) and 

Ireland (Cronin et al., 2004). Furthermore, in the southwest of Ireland and particularly in Bantry 

Bay, advective processes have been known to cause intrusion of harmful algae into the bay 

through wind driven exchange with shelf waters (Raine and McMahon, 1998; Raine et al., 

2010). While species may be initially advected into a bay, subsequent stratification and front 

formation can lead to their retention (Graham et al., 2001) and the formation of a seasonally 

resident population. These intrusions may also be transient and brief, for example, in Bantry 

Bay in November 2014, athorybiid larvae of A. elegans appeared suddenly, reaching more than 

ten colonies m-3 but by the following month they had disappeared. The occurrence of A. elegans 

in Bantry Bay and L4 is consistent with previous studies, which consider the species to be 

uncommon, oceanic and epipelagic in distribution (Mapstone, 2009). The abundances at both 

locations are probably indicative of the abundance in oceanic waters lying to the south and 

southwest of Ireland and England. By inhabiting the epipelagic zone, A. elegans would be more 

likely to be advected into the southern coastlines of Ireland and England by the prevailing 

westerly and south-westerly winds. 

In contrast, M. atlantica is a neritic species confined primarily to coastal regions 

(Mapstone, 2009) and displays a distinct seasonality in both Bantry Bay and the western 

English Channel. The presence of eudoxid stages demonstrates that it is reproducing in Bantry 

Bay. However, considering the far higher densities recorded at L4 (Figs. 2.4 & 2.5), this would 

suggest that the conditions in Bantry Bay are less favourable than those at L4. Nonetheless, in 

Bantry Bay in 2009 and 2015, M. atlantica reached densities (> 150 colonies m-3) which are 

known to negatively impact on caged salmon (Cronin et al., 2004). The life cycle of M. 

atlantica including sexual and asexual reproduction, is a trait shared with many bloom-forming 
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scyphozoan jellies (Dawson and Hamner, 2009), and enables M. atlantica to reproduce rapidly, 

particularly when temperature and prey densities are elevated (Carré and Carré, 1991; Blackett 

et al., 2014). The negligible presence of M. atlantica at both Bantry and L4 in 2014 suggests 

that both areas are linked and that the population in Bantry may be seeded from surrounding 

neritic waters. Research into harmful algal blooms (HABs) has demonstrated that the Celtic 

Sea can be a source of HABs along the southwest coast of Ireland (Raine, 2014). A coastal 

current brings Celtic Sea HABs into the southwest region where local wind patterns can cause 

an exchange of bay and shelf water, thereby advecting HABs into the Bay (Raine et al., 2010). 

This would indicate that both the oceanography of the Celtic Sea and the southwest region, 

coupled with distinct changes in the wind patterns, could have a strong influence over the 

presence of M. atlantica in the southwest. 

In summary, plankton samples in Bantry Bay demonstrate low siphonophore diversity, 

with Muggiaea atlantica being the most abundant species. Muggiaea atlantica displayed a 

marked seasonality while the physonect species occurred more sporadically. The occurrence 

of M. atlantica and Nanomia bijuga in the Irish southwest and the western English Channel 

appear broadly similar, and Nanomia bijuga is more common than previously thought in both 

regions. The patterns displayed here are likely driven by the interactions between coastal and 

oceanic waters which are highly variable from year to year. Under the current continuous 

increase in sea temperature, it is plausible that M. atlantica will eventually overwinter in Irish 

coastal waters, establishing a resident population, as has happened in the western English 

Channel (Blackett et al., 2014). 
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The influence of a thermohaline front on the 

gelatinous zooplankton community of a shelf sea 
 

This chapter has been submitted for peer-review publication: Haberlin, D., Raine, R., 

McAllen, R. and Doyle, T.K., 2018, The influence of a thermohaline front on the 

gelatinous zooplankton community of a shelf sea. Submitted to Limnology and 

Oceanography 

 

Abstract 
 

Thermohaline fronts are a ubiquitous phenomenon across continental shelf seas that 

are known to enhance primary productivity and aggregate biomass. The enhanced 

productivity at fronts provides favourable conditions for higher trophic levels, 

however, the influence on gelatinous zooplankton is poorly understood. Sampling 

carried out during July 2015 found two distinct gelatinous communities across the 

Celtic Sea Front; an Irish Sea community in the cooler mixed water which was largely 

composed of neritic taxa, and a Celtic Sea community in the warmer stratified water 

which contained a mixed neritic and oceanic community. The gelatinous abundance 

(656 indiv. m-3) and biomass (2085 mg C 1000 m-3) was higher in the Celtic Sea and 

was dominated by Aglantha digitale, Lizzia blondina and Nanomia bijuga. The mean 

gelatinous contribution to the total zooplankton biomass was 4 - 6%, reaching a 

maximum of 16% in the Celtic Sea. Physonect siphonophores were surprisingly 

widespread, contributing >25% of the gelatinous biomass, suggesting their ecological 

role is underestimated. Multivariate analysis of the zooplankton biomass indicated that 

water column structure, coupled to the underlying topography, was the key driver of 

variation in the zooplankton community. There was no evidence that the Celtic Sea 

front enhanced zooplankton biomass at the front, however, it is likely that the front 

influences the community and biomass through broader scale advective processes. 
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Introduction 
 

A defining characteristic of virtually all planktonic taxa is their patchy temporal and 

spatial distribution in pelagic and neritic ecosystems. Spatial patchiness is influenced 

both by physical oceanographic processes and the inherent biological and behavioural 

adaptations specific to each species (Folt and Burns, 1999). Since the 1970s, frontal 

systems, which encompass a range of oceanographic processes, have been identified 

as regions of enhanced biological activity (Pingree et al., 1979; Owen, 1981; Le Fèvre, 

1987; Olson et al., 1994). The advent of remote satellite sensing has revealed that 

frontal systems are ubiquitous across marine ecosystems, ranging in size from 10s to 

100s of km (Belkin et al., 2009; McGillicuddy, 2016). Ocean colour sensing has 

explicitly linked frontal systems and primary productivity (McGillicuddy, 2016) and 

a growing body of literature records enhanced abundance of marine vertebrates at 

frontal systems (Owen, 1981; Bakun, 2006; Scales et al., 2014b; Sousa et al., 2016). 

However, how frontal systems influence the abundance, diversity and advection of 

zooplankton is less clear and this is particularly the case for gelatinous zooplankton 

(Purcell, 2009).   

Gelatinous zooplankton are an important and at times dominant component of 

neritic ecosystems (Boero et al., 2008). The variability in reproductive strategies, 

including metagenic, hermaphroditic and multiple intra-annual generations allows 

many gelatinous taxa to reproduce rapidly or ‘bloom’ under favourable conditions 

(Purcell et al., 2007; Boero et al., 2008; Hamner and Dawson, 2009). The majority of 

gelatinous zooplankton are predators, consuming a wide variety of meso-zooplankton 

prey (Purcell et al., 2007), and therefore a frontal system which increases meso-

zooplanktonic prey numbers provides a favourable environment for gelatinous 
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predators (Shiganova, 1998; Purcell, 2005; Blackett et al., 2015). The response of 

individual gelatinous species to this environment will be driven by inherent 

reproductive traits; some holoplanktonic species with short generation times and high 

fecundity are particularly pro-adapted to exploit stable frontal systems with sustained 

high prey concentrations, leading to a true bloom (Graham et al., 2001; Hamner and 

Dawson, 2009). Species with longer generation times and a polyp stage, i.e. large 

scyphomedusae, are more likely to be aggregated by advective processes (Graham et 

al., 2001). 

Much of the literature on the distribution and abundance of gelatinous 

zooplankton along fronts pertains to large scyphozoan species (Graham et al., 2001; 

Brodeur et al., 2008; Sabates et al., 2010). In contrast, quantitative data on smaller 

gelatinous zooplankton are sparse. Across all taxa, available evidence indicates that 

along large scale oceanic fronts, the front often acts as a boundary between distinct 

communities (Russell, 1953; Pages and Schnack-Schiel, 1996; Pages et al., 1996; 

Graham et al., 2001; Hosia et al., 2008). Mesoscale seasonal fronts in coastal seas 

coincide with partitioning of large scyphomedusae in NW Europe (Doyle et al., 2007b; 

Bastian et al., 2011) and aggregations of scyphomedusae have been recorded along 

frontal systems associated with islands, river plumes and tidal forces (Graham et al., 

2001; Colombo et al., 2003). Frontal systems in upwelling regions are also associated 

with high abundance of scyphomedusae (Sparks et al., 2001; Suchman and Brodeur, 

2005) and hydromedusae, particularly siphonophores (Pagès and Gili, 1992; Pagès et 

al., 1992; Pages et al., 2001). Yet, other studies on shelf fronts have found no enhanced 

hydromedusae abundance along the frontal system (Guerrero et al., 2016). 

The Celtic Sea, located to the south of Ireland on the broad northwest European 

continental shelf, has a strong oceanic influence and experiences profound seasonal 
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changes.  Most of the Celtic Sea becomes thermally stratified in spring and summer 

(Cooper, 1967). Tidal influences produce a marked tidal front in summer along the 

boundary between stratified Celtic Sea water and the tidally mixed waters of the Irish 

Sea, a front referred to as the Celtic Sea Front (CSF) (Pingree and Griffiths, 1978; Le 

Fèvre, 1987).  The increasing effect of the tide close to the coast around the Celtic Sea 

produces a bottom density front which drives a strong but narrow baroclinic anti-

clockwise flow along the north coast of southwest England, continuing along the 

Celtic Sea Front and then westwards along the south coast of Ireland, where the flow 

continues up the west coast of Ireland (Brown et al., 2003; Fernand et al., 2006).  

Tidal fronts, including the Celtic Sea Front, can be associated with elevated 

levels of phytoplankton (Holligan, 1981).  In summer, this frontal system can promote 

Harmful Algal Blooms (HABs) (Raine, 2014) which are subsequently carried along 

the southern Irish coast towards the bays of southwest Ireland (Farrell et al., 2012) 

where they occasionally have a detrimental impact on the shellfish industry (Raine et 

al., 1990; Raine and McMahon, 1998; Raine, 2014). Bays along this coastline also 

hold important salmon aquaculture farms, which have also been negatively impacted 

by harmful jellyfish species, predominantly the scyphozoan Pelagia noctiluca and the 

siphonophore Muggiaea atlantica (Baxter et al., 2011a). The fact that there is evidence 

of a connection between M. atlantica populations found in the English Channel and 

the west coast of Ireland (Haberlin et al., 2016), it is possible that M. atlantica may be 

driven by the same process which advect HABs into the region. Studies in the region 

indicate the Celtic Sea Front separates distinct crustacean zooplankton communities 

(McGinty et al., 2014), however, no study to date has investigated the role of the Celtic 

Sea Front in relation to gelatinous zooplankton distribution. Therefore, the aim of this 

study was to investigate the distribution, abundance and biomass of gelatinous 
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zooplankton across the seasonal Celtic Sea Front, to determine if the front aggregated 

gelatinous zooplankton and to investigate if Muggiaea atlantica are advected along 

the front.   
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Material and Methods 
 

Study site  

The Celtic Sea Front (CSF) is located across St. George’s Channel between the Welsh 

and Irish coasts (Fig. 3.1A). The front itself forms during April/May when solar 

radiation begins to heat the Celtic Sea and stratification occurs (Simpson, 1981). A 

characteristic of this front is a large meander which extends southward into the Celtic 

Sea and is readily apparent in satellite Sea Surface Temperature (SST) images (Fig. 

3.1B). The bathymetry ranges from ca. 40 m to 110 m, the deepest region being in the 

centre of St. George’s Channel, coincident with and driving the overlying meander 

(Brown et al., 2003). 

 Samples were collected between the 13th and 17th July 2015 from the R.V. 

Prince Madog, at which time the front had become well established (Fig. 3.1B). Five 

transects were carried out in the study area, with Transect 1 (T1) being predominantly 

coastal transect 50 km long, T2 being the longest transect running 150 km south east 

from Ireland. Transect 3 (T3) began at the Welsh coast moving directly east over the 

Celtic Deep stopping on the central axis of St. George’s Channel. From this point, 

Transect 4 (T4) started and proceeded north into the Irish Sea, stopping approximately 

6 km north of the CSF. From this point Transect 5 (T5) started, proceeding southwest 

through the Irish Sea and crossing back into the Celtic Sea. In total, 49 zooplankton 

samples were taken using a 1-metre diameter, 270 µm mesh plankton net with a 

flowmeter attached. The cod end was emptied into a small aquarium in order to count 

ctenophores, particularly Bolinopsis infundibulum O. F. Müller 1776, which does not 

preserve well. Upon completing the ctenophore count, the sample was immediately 

fixed in 4% buffered formalin and filtered (50 µm) sea water solution.    
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Figure 3.1: Study site in the north eastern Celtic Sea with A; major geographic features 

and contours (50 m, 80 m and 110 m) displayed and B; mean sea surface temperature 

for mid July 2015 and the SST front edge (thick grey line) which marks the Celtic Sea 

Front (CSF). 
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Zooplankton analysis  

Samples were analysed under laboratory conditions using a Zeiss dark-field 

stereomicroscope (Stemi 2000), quantifying the dominant taxa and identifying all 

gelatinous zooplankton and fish to the lowest taxonomic level. All copepods were 

grouped as a single taxon, and rarer taxa such as phoronid larvae were noted as present 

or absent. Quantitative data were gathered from subsamples using a Folsom splitter 

and entire samples were analysed for larger taxa, for example the larger hydromedusae 

like Leuckartiara octona Fleming 1823. Biomass data and biometric conversions for 

dry mass (DM) and carbon content (C) were sourced from existing literature 

(Supporting Information Table. S3.2). Where possible biometric equations for the 

specific species were used and applied to the mean sizes found. Where this was not 

possible relationships for closely related or morphologically similar species were used: 

equations for Clytia hemisphaerica, Linnaeus 1767, were used to determine Laodicea 

undulata, Forbes & Goodsir 1853, biomass. For Agalma elegans, Sars 1846, (N = 11) 

and Nanomia bijuga, Delle Chiaje 1844, (N = 1), samples collected, opportunistically, 

by hand (snorkelling) along the southern Irish coastline during July and August 2015, 

were used to get the biovolume per colony and then converted in the same way as the 

above.     

Temperature and salinity analysis 

A conductivity, temperature & depth (CTD) (Seabird, SBE 911) profile was taken at 

each station (N = 98), profiling from the surface to approximately 10 m above the 

seabed. The parameters recorded were, density (kg m-3), salinity (PSU), temperature 

(°C) and chlorophyll-a fluorescence (µgl -1). Each profile was analysed using the 
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‘Oce’ package (Kelley and Richards, 2017) for oceanographic data analysis 

implemented in R (R Core Team, 2017). The surface readings (0-1 m) were removed 

from each profile, to exclude any diurnal heating effect. Each profile was then clipped, 

retaining only the downcast, and interpolated to 1 m intervals. The processed profiles 

were then analysed to extract the depth of maximum cline intensity according to the 

methods used by Reygondeau and Beaugrand (2010). This method defines the depth 

of the cline as the depth of the maximum gradient over 5 m rolling mean values. The 

calculated depths were checked against the raw CTD profiles and there was good 

agreement, with the top of the cline picked from profiles. Data for the top and bottom 

5 m of each CTD cast were averaged and used as the top/bottom parameter for 

subsequent analysis. This had little impact on bottom values, but would smooth out 

any diel variation at the surface. In addition, the maximum fluorescence was extracted, 

as this was not always at the surface. Finally, a measure of water column stability, the 

Brunt–Väisälä frequency or buoyancy frequency was calculated for each cast.  

Statistical analysis 

The zooplankton abundance (individuals m-3) and carbon content (mg C 1000 m-3) 

were compiled into station by species matrix. The matrices were then square root 

transformed twice to down weight the dominant taxa and then transformed again into 

(non-parametric) Bray–Curtiss dissimilarity matrices. From these matrices, non-

metric multidimensional scaled ordination (MDS) and cluster analysis were used to 

identify distinct communities (Clarke and Warwick, 2001). Some species were 

dropped due to rare occurrence, e.g. Euphysa aurata, Forbes 1848 was recorded once 

across the entire survey, however, many which contributed <1% across the dataset 

were retained, as dropping them would discard valuable information about changes in 
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the zooplankton community (Poos and Jackson, 2012). For example, using the 1% 

criteria of Clarke and Warwick (2001) would have excluded Muggiaea atlantica 

Cunnigham 1892, a species of interest in this study. The different MDS ordinations, 

based on abundance, dry mass, and carbon biomass, were compared using Procrustes 

analysis, which rotates one ordination to achieve maximum similarity with a second 

ordination, by minimizing the sum of squared differences. The ENVFIT and BIO-

ENV functions were used to investigate which environmental parameters were most 

influential. ENVFIT fits environmental parameters onto a community ordination, and 

BIO-ENV finds the best subset of environmental parameters, so that the Euclidean 

distances of scaled environmental parameters have the maximum (rank) correlation 

with community dissimilarities. The ANOSIM (Clarke, 1993) test was used to 

determine whether the clusters were significant and ADONIS (Permutational 

Multivariate Analysis of Variance) (Anderson, 2001) was also used to determine 

which environmental variables were most significant in explaining the clusters. All 

community and multivariate analysis was carried out using the ‘Vegan’ package 

(Oksanen et al., 2017) in R. Differences between clusters for individual species were 

tested using single factor ANOVA, or a Kruskal Wallis test where the parametric 

model was a poor fit. Potential relationships between individual environmental 

variables and individual taxa were investigated using Pearson’s correlation. All mean 

values are presented with standard deviation unless stated otherwise.     

Front edge detection  

Analysis was carried out using ArcGIS. The open source package, Marine Geospatial 

Ecology Tools (Roberts et al., 2010) was used to implement a single image edge 

detection algorithm (Cayula and Cornillon, 1992), which can detect the SST fronts in 

raster images. The raster image was created from ODYSSEA North West Shelf Sea 
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Surface Temperature data, downloaded from the Copernicus data portal. This is a 

processed gap free data-set on a 0.02° x 0.02° resolution grid, created by the Group 

for High Resolution Sea Surface Temperature (GHRSST) using combined satellite 

and in situ observations (www.copernicus.eu.org).  
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Results 
 

Oceanographic data 

The CTD profiles clearly indicated the changing vertical structure of the water column, 

particularly along T2, T3, T4 where parts of the Celtic Deep were sampled (Figs. 3.2 

- 3.5). The water column over the Celtic Deep was intensely stratified with the 

strongest physical gradients recorded along T2 and T3. The shallow stations during 

T1 and T3, highlight the relatively narrow corridor (ca. 10 km) of tidally mixed water, 

characteristic of coastal water in the region (Brown et al. 2003). T1 and T2 both started 

within ca. 4 km of the coastline and T1 is mixed within 10-15 km of the coastline and 

weakly stratified thereafter. In contrast, T2 appeared to retain a pycnocline 

approaching the near coast stations. There was also evidence of some mixing between 

90 to 110 km along T2 (at 80 m contour) and thereafter the water column stratified 

again over the Celtic Deep (Figs. 3.2 – 3.5). Plots of temperature, salinity and 

fluorescence conformed to the same general pattern (See supplementary material, 

Figs. S3.1 – S3.3). The highest fluorescence values were recorded along T1 and T2 

(Celtic Sea) at ca. 30 m depth (Fig. 3.5) and the depth of the sub-surface chlorophyll 

maximum was positively correlated with the pycnocline (r = 0.97, p < 0.001). The 

highest surface fluorescence was recorded at stations in T1, T3, T4 and T5 (east of the 

SST front), the lowest values were all recorded during T2 and remained low within 

the mixed water evident between the 90 to 110 km mark (Fig. 3.5). Bottom density 

fronts were evident along transects T2 – T5, indicative of along front flows (Fig. 3.2).    
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Figure 3.2: Density (kg m-3) contours for the 5 transects, T1 – T5. CTD stations (ca. 

every 3 km) are marked along the top x axis. Zooplankton sample stations (ca. every 

6 km) are indicated by vertical dotted lines. The heavy dashed line represents the 

position of the Celtic Sea Front (CSF). Note, plots are scaled differently on the x axis. 

The red shading marks the Celtic Deep boundary. 
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Figure 3.3. Temperature (°C) contours for the 5 transects, T1 – T5. CTD stations (ca. 

every 3 km) are marked along the top x axis. Zooplankton sample stations (ca. every 

6 km) are indicated by vertical dotted lines. The heavy dashed line represents the 

position of the Celtic Sea Front (CSF). Note, plots are scaled differently on the x axis. 

The red shading marks the Celtic Deep boundary. 
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Figure 3.4. Salinity (PSU) contours for the 5 transects, T1 – T5. CTD stations (ca. 

every 3 km) are marked along the top x axis. Zooplankton sample stations (ca. every 

6 km) are indicated by vertical dotted lines. The heavy dashed line represents the 

position of the Celtic Sea Front (CSF). Note, plots are scaled differently on the x axis. 

The red shading marks the Celtic Deep boundary. 
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Figure 3.5. Chlorophyll a fluorescence (µgl -1) contours for the 5 transects, T1 – T5. 

CTD stations (ca. every 3 km) are marked along the top x axis. Zooplankton sample 

stations (ca. every 6 km) are indicated by vertical dotted lines. The heavy dashed line 

represents the position of the Celtic Sea Front (CSF). Note, plots are scaled differently 

on the x axis. The red shading marks the Celtic Deep boundary. 
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Zooplankton data 

In total 74 taxa were identified from the 49 samples collected (Appendix A, Table. 

S3.1). The mean number of taxa across all stations was 24 ± 5.4. Included were, 17 

hydromedusa species, three ctenophore species and a single scyphozoan species. 

Cluster and MDS analysis of zooplankton abundance (indiv.m-3) identified three 

distinct and significantly different communities (ANOSIM, R = 0.88, p < 0.001) (Fig. 

3.6A): 1) a Celtic Sea community in stations to the west of the cooler mixed water that 

intrudes into the Celtic Sea, with one station lying east of the SST front; 2) a Celtic 

Deep community which included only stations beyond the 100 m contour, bar one, 

and 3) an Irish Sea community which included all the stations with intense vertical 

mixing and some stations within the Celtic Deep (Fig. 3.6B).  

Several hydromedusae were widespread across the survey area, with Aglantha 

digitale, Müller 1776, Clytia hemisphaerica, Agalma elegans, Nanomia bijuga, Lizzia 

blondina, Forbes, 1848, and Leuckartiara octona all recorded at >60% of stations. A. 

digitale and L. blondina were by an order of magnitude, the dominant hydromedusae 

throughout the survey area reaching a mean of 200 ± 247 m-3 and 88 ± 159 m-3 

respectively, and present at 80% and 75% of stations respectively. Of the ctenophores, 

Pleurobrachia pileus, Müller 1776, was the most widespread, present at 94% of 

stations, with a mean abundance of 0.25 ± 0.23 m-3. Other gelatinous zooplankton 

common across the survey area were the pelagic polychaete Tomopteris sp. (present 

at 82% of stations), appendicularians (present at 98% of stations), Clione sp. molluscs 

(present at 53% of stations) and Sagitta elegans, Verrill, 1873, (present at 90% of 

stations). Tomopteris sp. was particularly abundant in Celtic Sea water reaching a 

maximum of 26.7 m-3 at station 16 (T2) with a mean abundance of 4.8 ± 6.20 m-3 

across all stations. 
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Figure 3.6: A; Non-metric multidimensional scaled ordination (Stress = 0.13) of 

zooplankton abundance, using Bray-Curtiss dissimilarity matrix (indiv. m-3), with 

stations symbolised according to hierarchical clustering, identifying three 

communities. Influential environmental parameters are indicated by a fitted surface, 

for bathymetry, and vectors for temperature difference, bottom temperature and 

longitude. B; Map of survey stations coded by the hierarchical clustering, i.e. as in the 

NMDS plot.  
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Clione sp. was also abundant throughout Celtic Sea water reaching a maximum of 33.1 

m-3 and a mean of 3.4 ± 7.0 m-3. Non-gelatinous zooplankton were dominated by 

copepods, Limacinidae molluscs, decapod larvae and polychaete larvae from the 

families Poecilochaetidae, Magelonidae, polynoidae and Sabellariidae (Appendix A, 

Table. S3.1). The decapod larvae including both zoea and megalops stages, were most 

abundant in Celtic Deep and Irish Sea stations reaching mean abundances of 0.27 ± 

1.03 and 12.3 ± 19.02 indiv. m-3 respectively. Twenty-five species of fish larvae were 

identified in total. Arnoglossus laterna, Walbaum, 1792, Callionymus spp., Sardina 

pilchardus, Walbaum, 1792, Scomber scombrus Linnaeus, 1758, and Gobidae were 

the most widespread, recorded at ca. 30% of stations. Gobidae larvae were the most 

widespread, recorded at 63% of stations (Table S3.1). The highest abundance of fish 

larvae was found within shallow (< 80 m) Celtic Sea region, and they were largely 

absent from the deeper stations. Phytoplankton from the Ceratium genus was abundant 

at stations near the southern coastline, reaching > 83,000 cells m-3 during T1. Its 

occurrence appeared to be largely restricted to shallower (< 80 m depth) mixed water 

and it was absent from deeper stratified water (> 80 m depth). The presence of 

Ceratium was considered noteworthy because of the high density, however, it was not 

included in any subsequent analysis.   

 Analysis of dissimilarities between the communities (SIMPER) showed that 

the shift in community structure was primarily driven by Limacina sp., A. digitale, P. 

elegans, Appendicularia and copepods (Table 3.1). The dissimilarity between the 

Celtic Sea and Irish Sea community was driven by Limacina sp. species (44%), 

copepods (25.5%) and A. digitale (15%). The dissimilarity between Celtic Sea and 

Celtic Deep was also driven by Limacina sp. species (42%) and copepods (30%) and 
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A. digitale (15%). The dissimilarity between the Celtic Deep and Irish Sea community 

was dominated by copepods (75%), Appendicularia (10%) and L. blondina (8%).  

  

  Table 3.1: Mean abundance ± SD (indiv. m-3) of the zooplankton taxa which drove 

the dissimilarity between the three different communities according to the SIMPER 

analysis, and the results of ANOVA tests for individual taxa showing where between 

group differences in abundance were significant.  

 Abundance (indiv. m-3)  

Taxa Celtic Sea Celtic Deep Irish Sea ANOVA 

Copepoda 839 ± 885 820 ± 950 720 ± 400 F2,46  = 0.106, p = >0.1 

Decapoda 12.5 ± 9.7 0.5 ± 0.8 20.5 ± 33.2 F2,46 = 2.995, p = >0.05 

Limacina sp. 1258 ± 895 9.6 ± 21.7 4.13 ± 4.7 F2,46 = 21.97, p = <0.005 

Clione sp. 6.50 ± 8.59 0 ± 0 
0.180 ± 

0.063 
F2,46 = 6.327, p = <0.001 

Tomopteris sp. 8.0 ± 6.9 1.7 ± 2.4 0.7 ± 1.2 F2,46 = 10.6, p = <0.001 

Polychaete 

larvae 

19.40 ± 

14.03 
1.4 ± 2.2 7.9 ± 9.3 F2,46 = 10, p = <0.001 

Ichthyoplankton 1.3 ± 1.4 0.1 ± 0.2 0.44 ± 0.63 F2,46 = 5.6, p = <0.005 

Echinodermata 26.1 ± 30.7 26.80 ± 17.35 6.92 ± 14.20 F2,46 = 2.94, p = >0.05 

Appendicularia 
104.6 ± 

116.3 
91.1 ± 93.1 24.5 ± 24.2 F2,46 = 3.32, p = <0.05 

Sagitta elegans 16.2 ± 12.6 2.8 ± 4.0 1.2 ± 1.9 F2,46 = 14.02, p = <0.001 

Ctenophora 0.22 ± 0.26 0.32 ± 0.18 0.34 ± 0.19 F2,46 = 1.35, p = >0.1 

Aglantha 

digitale 
375 ± 221 1.95 ± 4.77 0.11 ± 0.22 F2,46 = 32.1, p = <0.001 

Lizzia blondina 155 ± 195 30 ± 37 0.2 ± 0.9 F2,46 = 6.05, p = <0.005 

Clytia 

hemisphaerica 
0.04 ± 0.10 5.53 ± 3.84 7.06 ± 6.96 F2,46 = 15.85, p = <0.001 

Agalma elegans 0.2 ± 0.2 0.18 ± 0.10 0.03 ± 0.04 F2,46 = 5.58, p = <0.01 

Muggiaea 

atlantica 

0.0015 ± 

0.0080 
2.27 ± 2.52 0.23 ± 0.57 F2,46 = 41.95, p = <0.001 

Mitrocomella 

polydiademata 

0.0017 ± 

0.0060 
0.08 ± 0.17 

0.010 ± 

0.025 
F2,46 = 4.87, p = <0.05 

Leuckartiara 

octona 
0.08 ± 0.11 0.050 ± 0.013 

0.008 ± 

0.013 
F2,46 = 4.87, p = <0.05 

     

Total Cnidaria 656 ± 368 134 ± 89 35 ± 25 F2,46 = 27.86, p = <0.001 

Total 

zooplankton 

abundance 

2829 ± 1181 994 ±  1003 802 ±  445 F2,46 = 23.6, p = <0.001 

No. Taxa 27 ± 4 19 ± 3 21 ± 5 F2,46 = 21.75, p < 0.001 

Shannon index 1.30 ± 0.31 0.66 ± 0.40 0.5 ± 0.29 F2,46 = >30, p < 0.001 
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Permutational analysis within the SIMPER routine indicated where a dissimilarity is 

significant and copepods were only significantly different between the Irish Sea and 

Celtic Deep (Table 3.1). Testing individual taxa for differences gave results which in 

the main agreed with the SIMPER analysis, however, some taxa e.g. copepods and 

ctenophores, were shown to not change significantly between the 3 communities 

(Table 3.1). The ENVFIT function indicated that numerous environmental parameters 

had a significant correlation with the zooplankton abundance NMDS ordination (p 

<0.05), except for halocline depth and intensity, surface fluorescence, max 

fluorescence, vertical change in fluorescence and bottom salinity. Many of these 

parameters were collinear and the majority were collinear with bathymetry. The subset 

of environmental parameters with the best correlation, with the zooplankton 

abundance NMDS ordination (using BIOENV), included only the bottom temperature 

and bathymetry (Mantel, R = 0.52, p < 0.001).  

Zooplankton biomass   

NMDS and cluster analysis of the zooplankton biomass (mg C 1000 m-3) (Fig. 3.7) 

produced a slightly different clustering to that produced by the abundance analysis 

(Fig. 3.6A). The Celtic Sea community was retained as previously, six stations over 

the Celtic Deep, previously clustered within the Irish Sea community, shifted into the 

Celtic Deep community. It was evident that the Celtic Deep and Irish Sea stations 

rotated more when comparing both ordinations, however, a procrustes comparison of 

the zooplankton abundance and biomass NMDS ordinations demonstrated a positive 

and significant correlation (r = 0.96, p = 0.001), suggesting that minor rotation was 

enough for some stations to switch between communities. The changes between Celtic 

Sea water, Celtic Deep water and Irish Sea water communities were significant 

(ANOSIM, r = 0.85, p < 0.001) and driven primarily by copepods and A. digitale.  
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Figure 3.7: NMDS ordination (Stress = 0.16) of total zooplankton biomass (mg C 1000 

m-3) with the most significant variables displayed. Depth is displayed as a fitted 

surface and the remaining parameters are displayed as vectors with the direction and 

length indicating the direction and magnitude of influence. The stations are coded by 

symbols according to the cluster analysis, open circles are Celtic Sea community, open 

triangles are Irish Sea community and crosses are Celtic Deep community.   

 

Analysis of dissimilarities between the communities (SIMPER) showed that 

the shift in community structure was driven by copepods, decapod larvae, Clione sp., 

Tomopteris sp. and S. elegans. The dissimilarity between the Celtic Sea and Irish Sea 

community was driven by copepods (68%), Clione sp. (8%), decapod larvae (8%) and 

Tomopteris sp. (5%), however, only decapod larvae, A. digitale (0.02%) and Limacina 

sp. (<0.001%) were indicated as significant (p = <0.001). The dissimilarity between 

Celtic Sea and Celtic Deep was also driven by copepods (72%), Clione sp. (7%), 
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Tomopteris (5%) and decapod larvae (5%). Of those taxa, Clione sp. and Tomopteris 

were significant (p = <0.001), as were S. elegans, B. infundibulum, A. digitale, Beroe 

sp., M. atlantica, C. hemisphaerica, polychaete larvae and Limacina sp. (Figs. 3.8 & 

3.9). The dissimilarity between the Irish Sea and Celtic Deep was driven by copepods 

(82%) and decapod larvae (10%), of which, decapod larvae were significant. In 

addition, M. atlantica, C. hemisphaerica, polychaete larvae, ichthyoplankton, Sagitta 

setosa and Lepeophtheirus sp. were significant. The mean biomass in the Celtic Sea 

(55054 ± 45390 mg C 1000 m-3) was greater than the Celtic Deep (45855 ± 42563 mg 

C 1000 m-3) and the Irish Sea (41428 ± 24885 mg C 1000 m-3), but the differences 

were not significant (ANOVA, F2,46 = 0.97, p > 0.05). Analysis of the community 

biomass with the ENVFIT and BIOENV gave virtually identical results to the previous 

analysis of abundance, achieving the best correlation between the environmental and 

community NMDS ordinations by retaining only bottom temperature (i.e. 50 m depth) 

and bathymetry (Mantel, r = 0.51, p < 0.001).  
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Figure 3.8: Abundance (indiv. m-3) and distribution of the non-gelatinous zooplankton 

that primarily drove the community dissimilarities. The Celtic Sea community was 

characterised by oceanic species, e.g. Tomopteris & Limacina sp., whereas the Irish 

Sea community was characterised by meroplanktonic polychaete and decapod larvae. 

Note, the legend for each species is different.   
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Figure 3.9: Abundance (indiv. m-3) and distribution of the dominant gelatinous 

zooplankton that primarily drove the community dissimilarities. The majority of 

species were far more abundant in the Celtic Sea, with the exception of C. 

hemisphaerica. In addition, the Celtic Sea Front (CSF) appears to partition 

meroplanktonic hydromedusae. Note, the legend for each species is different.    
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Gelatinous zooplankton biomass 

Community analysis of only the gelatinous zooplankton (scyphomedusae, 

hydromedusae, siphonophores and ctenophores) abundance and biomass indicated 

that there were two distinct communities across the survey area (Fig. 3.10). The 

stations defined as the Celtic Sea community (cluster 1 in Fig. 3.7) in the previous 

analysis of abundance remained clustered together, while the remaining stations 

defined as the Irish Sea and Celtic Deep communities clustered together in a single 

community (Fig. 3.10). Analysis of similarity confirmed the changes in community 

were significant (ANOSIM, r = 0.72, p < 0.001). The dissimilarity between the two 

communities was driven by A. digitale (24%), N. bijuga (23%), Bolinopsis 

infundibulum (16%) L. blondina (8%) and C. hemisphaerica (5%) (Fig. 3.9) and all 

were indicated as significant except for B. infundibulum.  

 Further species specific analysis of variance showed that P. pileus biomass 

increased significantly in Irish Sea/Celtic Deep water, whereas the increase in B. 

infundibulum biomass was not significant (Table 3.2).  Total gelatinous biomass was 

significantly higher in the Celtic Sea (2085 ± 1718 mg C 1000 m-3) compared with 

Irish Sea/Celtic Deep (1328 ± 1189 mg C 1000 m-3) (Table 3.2). Of the 14 gelatinous 

zooplankton species analysed, only four (B. infundibulum, P. pileus, C. hemisphaerica 

and M. polydiademata) had a higher biomass in the Irish Sea/Celtic Deep (Table 2.2). 

Gelatinous zooplankton biomass as a percentage of the total zooplankton biomass 

ranged from 0.005 – 16.8%; the mean percentage in the Celtic Sea (6 ± 4%) was 

significantly higher than the mean percentage in the Irish Sea/Celtic Deep (4 ± 4.3%), 

(ANOVA, F1,47 = 4.19, p = 0.046).  
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Figure 3.10: Two dimensional non-metric MDS plot (Stress = 0.15) of gelatinous 

zooplankton biomass (mg C 1000 m-3). The most significant environmental 

parameters are displayed on the plot, with depth as a fitted surface and the remaining 

variables displayed as a vector with direction and length indicating the direction and 

magnitude of influence. The stations are coded by symbols according to the cluster 

analysis, open circles are Celtic Sea community and open triangles are Irish Sea/Celtic 

Deep communities.  

 

The contribution of individual species to the gelatinous biomass at each station varied 

substantially. The mean contribution of A. digitale in the Celtic Sea community was 

33 ± 23% (max 96%) and then declined to 1.1 ± 4.9% (max 24%) in the Irish 

Sea/Celtic Deep. Siphonophores were an important component of the biomass in both 

the Celtic Sea and the Irish Sea/Celtic Deep communities, representing 36.4 ± 20% 

(max 78%) and 26.8 ± 21% (max of 63%) respectively. Nonetheless, some stations in 

both communities had no siphonophore presence. This siphonophore biomass was 
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dominated by N. bijuga with a mean contribution of 30.1 ± 19.7% (max 73%) and 9.5 

± 16.3% (max 58%) in the Celtic Sea and Irish Sea/Celtic Deep respectively. The 

contribution of A. elegans did not change significantly across the survey region (Table 

3.2), reaching a maximum of 42%, however, the mean contribution was generally low 

at 5.9 ± 8.8 % (Fig. 3.8). Muggiaea atlantica was recorded almost exclusively over 

the Celtic Deep, contributing 58.6% of the gelatinous biomass at one station (Fig. 3.9), 

with a mean contribution of 11.6 ± 15.8% across the Irish Sea/Celtic Deep community. 

Muggiaea atlantica was present at one station in the Celtic Sea and its contribution to 

the total biomass was negligible.  

The ENVFIT function indicated that numerous environmental parameters were 

significantly correlated with the gelatinous zooplankton biomass NMDS ordination. 

Thermocline intensity (r2 = 0.35, p=0.001), bathymetry (r2 = 0.33, p=0.001), bottom 

salinity (r2 = 0.18, p=0.013), bottom density (r2 = 0.24, p=0.003), bottom temperature 

(r2 = 0.24, p=0.004) and pycnocline intensity (r2 = 0.24, p=0.002) all had a significant 

and positive correlation with the NMDS ordination, however, the r2 values suggest 

that some of the correlations are weak. Lastly, there was a significant, though weak 

correlation between distance to the front and the NMDS ordination (r2 = 0.14, 

p=0.027), which would suggest that gelatinous zooplankton biomass was not greater 

near the front. 
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Table 3.2: Mean biomass ± SD (mg C 1000 m-3) of the gelatinous species which drove 

the dissimilarity between the two different communities according to the SIMPER 

analysis, and the results of ANOVA or Mann Whitney tests for individual species 

showing where between group differences in biomass were significant. 

    

  Biomass mg C 1000 m-3   

Species  Celtic Sea 
Irish Sea & 

Celtic Deep 
 

ANOVA/Mann 

Whitney 

A. digitale  587 ± 365 12 ± 52  U  = 589, p = < 0.001 

N. bijuga  771 ± 1266 110 ± 231  U  = 516, p = < 0.001 

B. infundibulum  150 ± 560 572 ± 958  U = 241, p = > 0.1 

L. blondina  238 ± 305 21 ± 52  U  = 533, p = < 0.001 

P. pileus  137 ± 167 229 ± 149  U  = 159, p = 0.005 

Beroe sp.  61 ± 142 153 ± 324  U = 241, p = > 0.1 

C. hemisphaerica  1.7 ± 5.5 119 ± 110  U  = 25, p = < 0.001 

A. elegans  117 ± 147 52 ± 68  U = 391, p = > 0.05 

Obelia sp.  4.5 ± 8.3 1.4 ± 3.6  U = 356, p = > 0.2 

M. 

polydiademata 
 0.1 ± 0.36 2.1 ± 6.3  U = 227, p = < 0.05 

L. octona  0.5 ± 0.69 0.50 ± 0.23  U = 398, p = > 0.05 

L. undulata  0.41 ± 0.71 0.15 ± 0.23  U = 304, p = > 0.8 

E. gracilis  0.1 ± 0..3 0..05 ± 0..14  U = 317, p = > 0.58 

M. atlantica  0.2 ± 1.0 104 ± 193  U  = 96, p = < 0.001 

Total biomass  2085 ± 1718 1328 ± 1189  U  = 411, p = <0.05 
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To explore biotic drivers of the gelatinous zooplankton community, the 

biomass of potential prey taxa was included in the ENVFIT analysis. The following 

taxa, Sagitta elegans (r2 = 0.31, p=0.001), Tomopteris sp. (r2 = 0.24, p=0.002), 

polychaete larvae (r2 = 0.19, p=0.01) and ichthyoplankton (r2 = 0.17, p=0.015) were 

revealed to have a significant correlation with the NMDS ordination. However, the 

subset of environmental and biotic parameters with the best correlation, with the 

gelatinous zooplankton biomass NMDS ordination (using BIOENV) excluded all 

potential prey taxa and retained only the bottom temperature and bathymetry (Mantel, 

R = 0.53, p < 0.001). Multivariate analysis with community clustering as a factor found 

additional parameters were significant in shaping the gelatinous community, including 

the distance to the SST front (Table. 3.3). However, once again the bathymetry and 

bottom temperature demonstrated the strongest relationship.   

 

Table 3.3: Results of multivariate permutational analysis (ADONIS) of the gelatinous 

biomass.  

 Df Sums Sqs. Mean Sqs. F r2 Sig. 

Bathymetry 1 1.9887 1.9886 11.005 0.14853 0.001 

Bottom 

temperature 
1 2.1808 2.18078 17.2005 0.16288 0.002 

Thermocline 

gradient 
1 0.5460 0.54599 3.0215 0.04078 0.03 

Distance to front 1 0.473 0.473 2.6176 0.03533 0.016 

Copepod 

biomass 
2 0.4306 0.43065 2.3832 0.03216 0.031 

Residuals 43 7.7701 0.18070  0.58033  

Total 48 13.3891   1.00000  
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Influence of the front on gelatinous biomass  

To investigate the relationship between gelatinous zooplankton and the SST front 

further, the abundance and biomass were modelled against distance to the front while 

excluding T1 stations which were ca. 40 km form the SST front. For all stations, the 

gelatinous carbon biomass increased significantly with distance to the front (r2 = 0.16, 

p = 0.007) (Fig. 3.11A). However, the increase in biomass with distance to the front 

was significant only in the Irish Sea/Celtic Deep stations (r2 = 0.38, p = 0.002), and 

not in the Celtic Sea stations (r2 = 0.02, p = 0.58). Investigation of the raw data 

suggested that the presence of relatively rare large bodied ctenophores in the Irish 

Sea/Celtic Deep stations may have increased the r2 value. Removing the ctenophores 

resulted in similar linear trends across both communities (Fig. 3.11B), and the trend 

in the Irish Sea/Celtic Deep became weak and insignificant (r2 = 0.08, p = 0.18).  

 

Figure 3.11: Relationship between the distance to the Celtic Sea Front (CSF) and A; 

gelatinous zooplankton biomass (log mg C 1000 m-3) and B; gelatinous zooplankton 

biomass excluding ctenophores. The black line is the linear trend for all data points, 
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the red and blue lines are the trends for the two communities identified during MDS 

and cluster analysis. The grey shading are the 95% confidence interval. 

Discussion 

The importance of fronts and other mesoscale oceanic features in physical, 

biological and biogeochemical interactions has been recognised since the 1960s 

(Owen, 1981; McGillicuddy, 2016). The influence of thermohaline fronts on 

phytoplankton (Hill et al., 2008; Belkin et al., 2009; Raine, 2014) and to a lesser extent 

zooplankton (Schultes et al., 2013; McGinty et al., 2014) has advanced substantially 

in recent years. However, knowledge gaps remain with regards to gelatinous 

zooplankton and thermohaline fronts (Graham et al., 2001; Purcell, 2009). The results 

in this study indicated that gelatinous zooplankton are not aggregated by the Celtic 

Sea Front, but the front does partition gelatinous zooplankton into two distinct 

communities. However, there was a slight trend of increasing biomass moving away 

from the front in both communities, but this is more likely a result of an increase in 

gelatinous zooplankton biomass as the sampling moved into warmer and more 

stratified waters. In the Celtic Sea community, there was consistently high biomass of 

A. digitale, N. bijuga and L. blondina along the T2 transect (Fig. 3.10), and within the 

Irish Sea/Celtic Deep community it was clear that M. atlantica and C. hemisphaerica 

were more abundant over the deep stratified regions between segments of the front 

(Fig. 3.10). Previous work in the Celtic Sea has revealed strong associations between 

the frontal dynamics and primary productivity (Pingree and Griffiths, 1978; Le Fèvre, 

1987; Raine, 2014). This pattern was consistent with the significant positive 

correlation between the sub-surface chlorophyll-a maximum and the pycnocline found 

here, however, neither parameter was found to have a significant relationship with the 

gelatinous biomass, suggesting that there is not a strong relationship between the front 
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and gelatinous taxa recorded here. In addition, multivariate analysis of both the 

gelatinous and the total zooplankton community consistently selected bathymetry and 

the bottom temperature as most the influential parameters, suggesting that physical 

rather than biological processes controlled the shifting community.  

A similar disassociation between frontal dynamics and the zooplankton 

biomass was observed in 2009, at the Celtic Sea Front (McGinty et al., 2014) and the 

Ushant Front (Schultes et al., 2013). The spatial variation in the zooplankton 

community across the Celtic Sea Front in 2015 was consistent with the observations 

of McGinty et al. (2014) during 2009. McGinty et al. (2014) also recorded the highest 

zooplankton and hydromedusae abundance in the Celtic Sea and physical parameters 

were to the fore in explaining the community variation. Although those parameters 

differed from this study, SST, dissolved oxygen and water column stability were most 

influential (McGinty et al., 2014), they nonetheless point to water column structure as 

the primary influence. In contrast to the Celtic Sea Front, the Ushant Front had little 

apparent influence over the zooplankton or cnidarian community in 2009, with a 

gradual neritic to oceanic variation moving east to west (Schultes et al., 2013). 

However, like the Celtic Sea Front, the highest zooplankton abundance was recorded 

in the warm stratified oceanic side of the front. In terms of gelatinous zooplankton 

abundance, both studies (Schultes et al., 2013; McGinty et al., 2014) found much 

lower densities that the present study, < 2 indiv. m-2 (McGinty et al., 2014) and < 50 

indiv. m-3 (Schultes et al., 2013) compared with > 1300 indiv. m-3 during this study in 

2015. This similarity would suggest that the numerically dominant medusae here, 

Aglantha digitale, was not abundant in 2009. Furthermore, the high relative abundance 

of oceanic taxa, including the pelagic molluscs Clione sp. and Limacina sp., 

Tomopteris sp., Agalma elegans and Sagitta elegans were also not evident in 2009 
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(Schultes et al., 2013; McGinty et al., 2014). These taxa are indicative of colder 

oceanic water (Russell, 1935; Southward et al., 1995) and long-term fluctuations of 

these species in the Celtic Sea is strongly linked to large scale oceanographic 

processes, rather than localised bottom up processes (Southward, 1980; Southward et 

al., 1995). 

High gelatinous biomass and diversity has been recorded on the warm 

stratified oceanic side of frontal systems off the Benguela coast, South Africa 

(Hutchings et al., 1986; Pagès and Gili, 1992), and off the South American coast 

(Brazil, Uruguay, & Argentina) (Mianzan and Guerrero, 2000). Powerful frontal jets 

(ca. 1 m-s) are present along the Benguela front and form a distinct barrier between the 

offshore region and the upwelling crustacean rich inshore region (Hutchings et al., 

1986). There is some evidence that prolonged upwelling and enhanced primary 

productivity can enhance the copepod abundance along the front edge, however, the 

gelatinous community appear to be driven by longer term seasonal and/or 

oceanographic changes rather than localised trophic changes (Hutchings et al., 1986; 

Pagès and Gili, 1992). A front as a barrier was also evident along the Catalan shelf 

slope front, where the dominant cnidarians species were retained on the inshore side 

of the front (Guerrero et al., 2016). Guerrero et al. (2016) also found that the 

distribution of cnidarians was coupled to physical parameters, i.e. bathymetry and 

salinity, rather than primary productivity. Interestingly, despite a much lower current 

velocity along the Catalan Front (ca. 0.3 m-s) (Font et al., 1995), compared with current 

velocity along the Benguela Front, both were found to be discrete barriers between 

communities (Pagès and Gili, 1992; Guerrero et al., 2016). The Celtic Sea Front by 

comparison has a dual character; while the Celtic Sea community ends abruptly along 

the western edge of the front, the homogenous Irish Sea/Celtic Deep gelatinous 
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community and the broad similarity in the Irish Sea and Celtic Deep zooplankton 

communities indicate mixing between the two. A further indication of mixing in this 

region was that the high fluorescence values in the Irish Sea were also present over 

the Celtic Deep.      

The intense physical gradients around the cold dense water at the Celtic Deep 

create some of the highest current velocities (~1 m-s) measured at the Celtic Sea Front, 

which in turn creates cyclonic instabilities along the boundary of the front (Brown et 

al., 2003). These near surface features are unlikely to extend more than 30 m deep 

(Horsburgh et al., 1998) and are a potential mechanism for transferring nutrients and 

plankton across the front. These types of interactions between a frontal system and the 

benthic topography are not unusual and thought to enhance cross-frontal exchange in 

other systems (Belkin et al., 2009). It is probable that the Benguela and Catalan Fronts, 

which are situated in much deeper water (> 300 m depth), are not as tightly coupled 

to the underlying topography and therefore the front is less likely to form instabilities. 

The Celtic Sea also experiences some of the world’s largest tides (> 5 m amplitude) 

and spring tides in particular can cause cross frontal exchange (Le Fèvre, 1987). It is 

possible the zooplankton biomass recorded in the Celtic Deep here was anomalous 

and due to a periodic and short lived exchange, as sampling in 2009 and evidence from 

the Continuous Plankton Recorder indicate a long term trend of low biomass over the 

Celtic Deep (McGinty et al., 2014).  

The occurrence of Muggiaea atlantica over the Celtic Deep was of particular 

interest and the distribution would indicate a Celtic Sea origin. The abundance was 

very low compared with previous work in the region (Baxter et al., 2012b), and the 

predominance of polygastric nectophores suggests negligible in situ reproduction. The 

distribution here would suggest an association with the frontal jet, however, the 
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absence of M. atlantica across most of the survey area meant that there was little 

explanatory power in the data. Muggiaea atlantica has long been considered an 

indicator species, associated with the presence of warm Atlantic water of southerly 

origin in the Western English Channel (WEC) (Russell, 1935; Southward, 1980; 

Southward et al., 1995). However, more recent analysis shows that M. atlantica is 

resident in the WEC and the cold-water versus warm-water paradigm no longer offers 

a complete explanation of the population dynamics in the WEC (Blackett et al., 2014; 

Blackett et al., 2015). Temperature and the phenology of prey species, predominantly 

but not exclusively copepods, are the primary determinants of M. atlantica population 

dynamics, and the late autumn population is highly dependent on early spring 

population (Blackett et al., 2015). As the WEC population is the most northerly self-

sustaining M. atlantica population (Blackett et al., 2014; Blackett et al., 2015), and 

there is no indication of self-sustaining M. atlantica in Irish waters, it is reasonable to 

suggest that the M. atlantica in Irish coastal water originates in the WEC (Haberlin et 

al., 2016). The thermohaline circulation around the Celtic Sea (Hill et al., 2008; Raine, 

2014) provides a mechanism which can advect M. atlantica into Irish coastal waters. 

Furthermore, the predominantly late seasonal occurrence of M. atlantica in Irish 

waters (Haberlin et al., 2016) would be coincident with the seasonal weakening of the 

fronts as temperature gradients decline (Hill et al., 2008), thereby releasing 

zooplankton from the WEC into the Celtic Sea circulation. Although the data here did 

not reveal any local relationship between the Celtic Sea Front and M. atlantica, there 

is substantial evidence indicating that the front is part of a much larger system that 

does influence the occurrence of M. atlantica in the Celtic Sea and in Irish waters.   

One of the more notable findings of the study was the substantial contribution 

of physonect siphonophores to the gelatinous biomass (Table 3.2), contributing >36% 
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in the Celtic Sea. An inshore survey in 2009, found N. bijuga at ca. 50% of stations 

along the south and southwest coasts, with A. elegans at a single station (Baxter et al., 

2012b), whereas here, both species were found at >60% of stations. Historically, 

surveys that identify and enumerate physonects in shelf regions are sparse and it is 

difficult to determine the importance of these observations against a poor baseline. 

The data here would suggest that these species are ecologically more important in the 

Celtic Sea than previously thought, with a possible predatory impact on the larvae of 

important commercial species (Purcell, 1981; Mills, 1995). Physonect siphonophores 

consume a variety of prey including chaetognaths, decapod larvae, larval fish, 

although copepods tend to be the dominant prey (Purcell, 1981; Purcell, 1997). 

Interestingly, the physonects and the two hydromedusae L. blondina and A. digitale, 

were all spatially coincident with the highest abundance of potential prey taxa, yet 

only copepods were significant in explaining the gelatinous community and this 

correlation was very weak. The substantial changes in gelatinous zooplankton 

community across a largely unchanging copepod abundance/biomass (Table 3.1) 

would suggest weak links between these gelatinous predators and their prey and 

perhaps weak links between the oceanic holoplanktonic taxa and the neritic 

meroplanktionic taxa. The numerically dominant A. digitale was largely composed of 

immature medusae < 2.5 mm in height which are too small to prey on the copepods 

present (Williams and Conway, 1981). Likewise, the L. blondina were minute in size 

(ca. 1 mm diameter) and also possibly unable to consume the copepods present. The 

mollusc Limacina sp., while numerically extremely abundant, is a suspension feeder 

and is the sole prey species of the other abundant mollusc Clione sp., which means 

that neither species would have a direct a trophic impact on other zooplankton (Boer 

et al., 2005).   
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Despite the significant shift in communities across the survey area, the mean 

biomass did not change significantly, and this would suggest that the gelatinous 

community is less important than the copepod community that clearly dominate the 

standing biomass. However, cnidarians turn over large quantities of carbon and 

ammonia which alter trophic structures in less direct ways (Biggs, 1977; Pitt et al., 

2013). Cnidarians acquire excess carbon which is not needed due to an extremely low 

metabolic demand and the excess is shed as dissolved organic matter (DOM) and 

mucus (Pitt et al., 2013). The discarded nutrients become available to microbes and 

phytoplankton therefore a substantial proportion of the nutrients consumed by 

cnidarians are shunted away from higher trophic levels (Biggs, 1977; Condon et al., 

2011). Increased nutrient levels in the presence of cnidarians, allied to predations on 

copepods, has been shown to enhance heterotrophic dinoflagellate abundance in 

mesocosm experiments (Pitt et al., 2007). Therefore, an increase in gelatinous 

zooplankton may favour harmful algal blooms which are known to originate in the 

Celtic Sea (Raine and McMahon, 1998; O'Boyle and Raine, 2007; Raine, 2014).      

It is clear that while local dynamics at the Celtic Sea Front influence the 

distribution of the gelatinous and zooplankton communities, there is little to suggest 

that the front physically aggregates or promotes the biomass of either community 

through bottom up processes. It is known that tidal pulses create heterogeneity along 

Celtic Sea fronts at low trophic levels, however, the same intense dynamics creating 

those pulses are likely to dissipate nutrients and prey before predator species can utilise 

them (Le Fèvre, 1987; Schultes et al., 2013). Although no potential prey taxa were 

correlated with the gelatinous community, it is likely that integrated vertical sampling 

is simply too coarse to reveal trophic relationships (Benoit-Bird et al., 2013). High 

resolution vertical sampling in a front in the Southern California Bight did reveal 
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interesting trophic relationships, and in fact, was also able to detect several 

hydromedusae species aggregated at the front (Luo et al., 2014). The influx of oceanic 

cold-water species into the Celtic Sea is a common phenomenon (Southward, 1980; 

Southward et al., 1995), and almost certainly driven in part by the greater thermohaline 

circulation of which the Celtic Sea Front is a part. The same mechanism is likely to be 

a key driver of M. atlantica in Irish Waters, however, investigating this will require a 

higher frequency of dedicated gelatinous surveys in the Celtic Sea. 
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Warm core eddies create a patchy gelatinous 

landscape 
 

Abstract  
 

Mesoscale eddies are increasingly recognised are important drivers of physical and 

biological heterogeneity across pelagic ecosystems. Gelatinous zooplankton can 

respond rapidly to eddies, increasing or decreasing in abundance, however, detailed 

descriptions of the community composition are rare. To investigate the influence of 

mesoscale eddies on gelatinous zooplankton, a research cruise crossing the north 

Atlantic during April 2015 carried out plankton sampling across a warm core 

(anticyclonic) eddy, which was identified prior to the cruise using satellite data. 

Quantitative estimates of abundance using stratified multinet sampling identified a 12-

fold decrease in the abundance of gelatinous taxa within the eddy core, decreasing 

from 660 ± 349 to 49 ± 54 indiv.1000 m-3. Diphyid siphonophores dominated the 

gelatinous taxa and were virtually absent from the eddy core, which was taken to be 

everything inside the 10°C isotherm. Qualitative observations indicated some larger 

calycophoran genera were present in the eddy core, nonetheless, these were rare by 

comparison with the outside. Most zooplankton taxa had a negligible presence in the 

eddy core, and only large predatory amphipod taxa increased in abundance inside the 

eddy. There was no evidence of exchange across the high velocity (> 1 m-s) boundary 

zone, however, higher resolution sampling is needed to fully describe the community 

across the eddy boundary.    
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Introduction 
 

During the past few decades there has been considerable research effort 

investigating the ecology of gelatinous zooplankton in neritic habitats. Much of this 

effort has been directed towards understanding the population dynamics (Including 

trends in abundance) of jellyfish species that interact negatively with tourism and 

marine industries, e.g. aquaculture, fisheries and power generation (CIESM, 2001; 

Purcell et al., 2007; Doyle et al., 2008a; Canepa et al., 2014; Haberlin et al., 2016). In 

contrast, there has been comparatively less research on the ecology of gelatinous 

zooplankton in oceanic habitats. Some of this disparity is due to the difficulty in 

sampling oceanic environments, which requires larger and more expensive vessels, 

and there are far fewer ‘ships of opportunity’ providing the necessary platform for 

targeted research or bycatch data (Bastian et al., 2010; Bastian et al., 2011; Lynam et 

al., 2011). Furthermore, without the same societal imperatives driving research in the 

oceanic domain, progress has been slower, however, the advent of direct observation 

and capture techniques in the 1970s revealed that diversity and biomass have generally 

been underestimated (Barham, 1963; Hamner, 1975; Haddock, 2004; Vinogradov, 

2004).    

The oceanic gelatinous community is composed of many taxonomic groups 

(Robison, 2004), however, this study is mainly concerned with the scyphomedusae, 

hydromedusae, ctenophores, and pelagic tunicates. Numerically, siphonophores 

(Pugh, 1984; Mackie et al., 1987), and pelagic tunicates (Alldredge and Madin, 1982; 

Anderson, 1998) are often the most abundant taxa, particularly in the epipelagic zone. 

Nonetheless, both groups are found in the mesopelagic zone and there is substantial 

evidence of vertical niche separation (Pugh, 1984; Roe et al., 1984; Mackie et al., 

1987; Hosia et al., 2008). Members of the Trachymedusae and Narcomedusae and the 
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coronate scyphomedusae are also evident across broad oceanic regions (Kramp, 1959; 

Larson et al., 1991; Hosia et al., 2008), however, the vertical distribution of many 

species is not well described. The pelagic tunicates are predominantly found in the 

epipelagic (Ruppert and Barnes, 1994), although some species extend their range well 

into the mesopelagic (Anderson, 1998; Hopcroft and Robison, 1999). A common 

characteristic amongst all the deeper living taxa (in the mesopelagic and bathypelagic) 

is a more cosmopolitan distribution, most likely due to a more homogeneous 

environment below the euphotic zone (Robison, 2004; Doyle et al., 2013). The 

geographic distribution of siphonophores is broadly aligned with hydrographic water 

masses and broad trends in latitude and longitude are evident (Pugh, 1977; Mackie et 

al., 1987; Hosia et al., 2008). Temperature, salinity, light level, oxygen concentration 

and primary productivity are key drivers of these broad scale trends over 1000s km 

(Mackie et al., 1987; Lucas et al., 2014). However, it is increasingly clear that 

mesoscale features such as eddies and frontal systems create an extremely patchy 

oceanic ecosystem (Stommel, 1958; Chelton et al., 2011; McGillicuddy, 2016), and 

the influence of this patchiness on gelatinous zooplankton remains poorly understood 

(Arai, 1992; Graham et al., 2001).  

Mesoscale eddies permeate the entire pelagic ecosystem and influence 

horizontal and vertical mixing of nutrients, energy, plankton and micronekton (Owen, 

1981; Wiebe et al., 1985; Zhang et al., 2014; Dufois et al., 2016; McGillicuddy, 2016). 

They range in size from 25 – 250 km in diameter, can reach depths of up to 2500 m 

(Mittelstaedt, 1987), and their occurrence is predominantly associated with 

instabilities or meanders which break away from oceanic currents to form a rotating 

ring, essentially an enclosed frontal system (Stommel, 1958; Owen, 1981). The Warm 

Core Rings (WCRs) project in the early 1980s established that macrozooplankton 
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biomass can increase inside Gulf Stream eddies, and that eddy structure could change 

rapidly in response to season, weather and interactions with boundary currents (Joyce, 

1984; Davis and Wiebe, 1985; Roman et al., 1985; Wiebe et al., 1985; Hitchcock et 

al., 1987). Crustacean and fish communities within warm core eddies are shown to be 

distinct from the exterior cold water communities, and can be transported substantial 

distances within the eddy (Cox and Wiebe, 1979; Brandt, 1981; Tranter et al., 1983). 

Whether the same patterns hold true for gelatinous zooplankton is unknown, and work 

on non-eddy frontal systems indicates substantial variation in their influence; on 

occasion representing a barrier and on other occasions having no apparent effect 

(Pagès and Gili, 1992; Mianzan and Guerrero, 2000; Luo et al., 2014; Guerrero et al., 

2016). Graham et al. (2001) suggested the influence of fronts is scale dependent, with 

localised systems more likely to aggregate gelatinous zooplankton, while large scale 

features, e.g. the Antarctic Polar Front (Pages et al., 1996), serve as a partition between 

communities.  

How mesoscale eddies influence gelatinous zooplankton has important 

implications for oceanic trophic ecology and biogeochemical cycling. Leatherback 

turtles Dermochelys coriacea and sunfish Mola mola are primary consumers of 

gelatinous taxa (Arai, 2005; Doyle et al., 2013), and recent satellite biotelemetry 

suggests extended foraging of both species along frontal systems (Doyle et al., 2008b; 

Sousa et al., 2016). Furthermore, it is increasingly apparent that a large number of 

oceanic vertebrate predators consume gelatinous taxa, including fish, turtle and bird 

species (Arai, 2005; Doyle et al., 2014), and all of these groups demonstrated spatial 

distributions coherent with frontal systems (Brandt, 1981; McGillicuddy, 2016). 

Cnidarians and ctenophores are voracious predators with the capacity to exert 

considerable top down pressure on the zooplankton community (Greve, 1994; Purcell, 
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1997; Shiganova, 1998), but equally provide prey (including parasitism) for a range 

of invertebrate predators including other hyperiid amphipods (Fleming et al., 2014), 

several genera of pelagic molluscs and other gelatinous taxa, e.g. the siphonophore 

Apolemia uvaria is recorded preying on a variety of other gelatinous taxa (Choy et al., 

2018). Gelatinous zooplankton can influence carbon and nutrient cycling at the base 

of the food web: the excretion of labile carbon and nitrogen (in the form of ammonium) 

can benefit primary producers (Biggs, 1977; Pitt et al., 2013) and members of the 

microbial community (Condon et al., 2011), potentially retaining biomass in the 

euphotic zone. Equally, blooms of pelagic tunicates can divert biomass and nutrient 

from the base of the food web to the sea bed (Anderson, 1998; Robison et al., 2005).  

New advances in oceanographic modelling, bio-acoustics and remote sensing 

have led to a reappraisal of the importance of mesoscale eddies in structuring primary 

productivity, micronekton and oceanic circulation (Chelton et al., 2011; Godø et al., 

2012; Zhang et al., 2014; Fennell and Rose, 2015), however, their influence over mid-

trophic gelatinous zooplankton represents a substantial knowledge gap in the 

literature. With this in mind, the aim of this study was to describe the changes in 

abundance, vertical distribution and community structure of gelatinous zooplankton 

across a warm core eddy boundary in the North Atlantic Current.      
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Material and Methods 
 

Study region 

During a trans-Atlantic crossing between Ireland and Newfoundland 

(April/May 2015), the Irish research vessel R.V. Celtic Explorer collected 

hydrographic data and biological samples in a warm core eddy situated ca. 400 km 

east of the Flemish Cap or ca. 1000 km east of Newfoundland (Fig. 4.1). In the north 

west Atlantic warm core eddies regularly form and spin off the northern boundary of 

the North Atlantic Current (NAC) and move eastward, in the general direction of the 

NAC, carrying parcels of warm water into the cooler surrounding water (Stommel, 

1958; Rossby, 1996). The eddy region is vast, encompassing a band 1500 km wide, 

exchanging water across the subarctic front, mixing subtropical and polar waters 

(Krauss, 1986; Rossby, 1996). 

Hydrographic data collection 

Prior to departure, sea surface height (altimetry) maps, downloaded from the Colorado 

Center for Astrodynamics Research (CCAR), were used to locate a probable warm 

core eddy west of the Mid Atlantic Ridge within the North Atlantic Current eddy field. 

The eddy was chosen before departure from Ireland, and near real time satellite 

updates were used to stay on target. With respect to a mean sea level height, positive 

or negative values are indicative, but not diagnostic of cyclonic and anticyclonic 

rotations or eddies. Therefore, while the satellite data guided the vessel towards the 

suspected eddy location, confirmation of an actual warm core eddy and definition of 

the limits of the eddy required in situ data collection. The aim was to transit through 

the eddy, from east to west. This was provided by Sippican T5 eXpendable Bathy 

Thermograph (XBT) probes which were released at approximately 50 km intervals 
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throughout the cruise to a depth of 1800 m. When the vessel approached the positive 

sea level anomaly, XBT probes were released at 2.5 – 10 km intervals and a 

Conductivity, Temperature and Depth (CTD) sensor (Seabird 911) was deployed to 

ca. 1800 m to properly define the eddy boundary.  

 

Figure 4.1: Map of North Atlantic region with; A) the location of the study area along 

the vessel track and; B) the sea surface height anomaly, red being positive and blue 

being negative. Positive and negative anomalies are indicative of anticyclonic 

(clockwise) and cyclonic (anticlockwise) rotation, respectively. Each black dot is the 

position of an expendable bathythermograph (XBT) release.   
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Back scatter coefficient data were recorded continuously using Simrad EK60 

echo sounder operating at 18, 38, 120 and 200 Hz mounted on a drop down keel which 

extends 8.8 m below sea level. At each sampling station a 75 KHz Ocean Surveyor 

Acoustic Doppler Current Profiler (ADCP) was used to record the current speed 

throughout the top ca. 750 m of the water column and an additional CTD sensor on 

the multinet (described in the following section) recorded data to ca. 600 m. 

Zooplankton sampling 

Three gear types were used to collect zooplankton samples; a Grand Overture Trawl 

with a 20 mm small mesh liner in the cod end (Reid et al., 2012), a 1 m plankton net 

(270 µm mesh) and a five bag multinet (Hydro-Bios) with 180 µm mesh and 0.25 m2 

opening (Table 4.). Trawl nets were deployed at two depths at each station, also 

determined by backscatter coefficient values, primarily to capture mesopelagic fish 

and micronekton, i.e. 2-10 cm. Trawls samples were not replicated due to time 

constraints. The plankton net was hauled vertically from 200 m depth to the surface at 

1 ms-1, with two replicates at each station. The multinet was hauled vertically from 

600 m to the surface and the nets were closed at 120 m intervals, with two replicates 

at each station. The sample depth intervals were based on the distribution of the deep 

scattering layer (DSL) depths, as determined by backscatter coefficient. All large (>1 

cm) gelatinous zooplankton were extracted from plankton and trawl samples with the 

aid of a light box and fixed in a buffered 4% formalin and seawater solution for later 

study. The multinet samples were likewise inspected for large zooplankton, their 

presence noted and the samples were fixed for later study. All gelatinous zooplankton 

and the multinet samples were identified to the lowest taxonomic level (Russell, 1953; 

Totton and Bargmann, 1965; Kirkpatrick and Pugh, 1984; Mapstone, 2009) and 

enumerated using a stereomicroscope in the laboratory, approximately 6-9 months 
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after collection. The large scyphozoan species, Periphylla periphylla and Atolla 

wyvillei were counted and weighed on board the vessel immediately after sampling 

and then discarded.  

 Some of the calycophoran nectophores captured in the multinet were 

crushed, probably by the side of the nets when the bag closed. This made subsequent 

identification impossible although some specimens could be identified as belonging 

to the family Diphyidae. Where the anterior and posterior nectophore were present for 

a species, the greater number was taken as the polygastric count. Eudoxids or eudoxid 

bracts were counted separately to polygastric stages, and the total quantity for a given 

species was a combination of polygastric and eudoxid counts. Surprisingly, some of 

the larger calycophorans in the Hippoppdidae and Prayidae families came up 

reasonably intact in the trawl nets and were identifiable as single colonies. Where 

nectophores from either family were found in the plankton or multinet samples, the 

number was always less than 10, implying one colony, and therefore was recorded as 

one colony (Totton and Bargmann, 1965).   

Table 4.1: Sampling gear used at each station (see fig. 4.2 & fig. 4.3) during the eddy 

survey. The x represents where a gear type was not used.  

 GEAR TYPE 

STATION Trawl Plankton net Multinet 

9    

10 x   

11    

12 x   

13    

14  x x 
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Data analysis 

The community composition and distribution was analysed using non-metric 

multidimensional scaled (nMDS) ordinations and cluster analysis based on Bray-

Curtiss dissimilarity matrices (Clarke and Warwick, 2001). Various multivariate tools 

(Bioenv, Anosim and Adonis) within the ‘Vegan’ package (Oksanen et al., 2017), 

were used to analyse the influence of the eddy structure over the zooplankton 

community. All statistical analysis was conducted using R 3.2.5 (R Core Team, 2017). 

The oceanographic data were analysed using the ‘Oce’ package (Kelley and Richards, 

2017). The XBT and CTD profiles were smoothed using a 10 m rolling mean, and the 

sections are based on 10 m depth intervals. The ADCP data were extracted using 

WinADCP (Ver. 1.14 Teledyne RD Instruments). Data were binned according to 

hourly means, and the most proximate bin by location and depth of samples was used 

during further analysis. In order to analyse the environmental data with the community 

matrix, all of the environmental parameters, (i.e. back scatter coefficient, temperature, 

salinity, density, vertical current and horizontal current), were averaged over every 

120 m vertical layer from 0 – 600 m depth.  

The sea level anomaly data were downloaded from the Copernicus marine 

environment monitoring service (www.marine.copernicus.eu) and is a 0.25-degree 

gridded data set, based on subtracting the 12 week mean sea surface height from the 

sea surface height. This data varied slightly from the sea surface height data used to 

locate the eddy initially, with the processing involved giving greater precision, and 

therefore it was preferred for retrospective viewing and analysis. The sea surface 

anomaly satellite data were analysed in ArcGIS (version 10.2). 
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Results 
 

Sampling the eddy 

Initially the survey was designed to sample outside, on the boundary and inside the 

eddy, using a combination of satellite data, XBT, CTD and EK60 back scatter to 

identify these positions. Finding a distinct ‘outside’ eddy station proved difficult 

because of the deep layer of warm water on the south side of the eddy. Nonetheless, 

where the lowest temperature was found and the satellite data indicated a position well 

outside the eddy, this became Station 9 (26th Apr, 2015) (200 km from St. 13) (Fig. 

4.2). Station 10 was closer to the eddy, but still outside (160 km from St. 13). The 

vessel subsequently steamed towards the eddy centre and when back scatter readings 

indicated that a substantial change had taken place, this location was taken to be the 

eddy boundary and became station 11 (27th Apr, 2015) (84 km from St. 13). Station 

12 was approximately 13 km closer to station 13, but the back scatter still indicated 

the vessel was on the eddy boundary. Station 13 (28th Apr, 2015) was initially located 

at the eddy centre using the best available satellite update at the time, however, 

subsequent analysis of satellite and physical data indicated that station 13 was actually 

nearer the northern boundary of the eddy (Fig. 4.2).  

 The vessel then steamed west and carried out trawl samples at station 

14. Further XBT probes were deployed along the same course to locate the western 

boundary of the eddy, however, during the early hours of April 29th the weather 

deteriorated badly and sampling activities had to cease. Subsequent analysis of the 

station positions with more precise sea surface height anomaly data and a complete 

analysis of the XBT sections (Fig. 4.3) revealed the true position of the station relative 

to the eddy. While station 9 and 10 were outside the central core, stations 11, 12 and 

13 were all situated inside the central core. Station 14 was likewise inside the core, 
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however it appeared to be close to a sharp isotherm (Fig. 4.3A) which suggests that 

the core was elongating and dispersing. It was apparent that the satellite data and the 

actual eddy dimensions were not well aligned and this was possibly due to the 

relatively coarse resolution (0.25 degrees) of the satellite data.   

 

 

Figure 4.2: Change in the sea surface height anomaly at the eddy from April 21st to 

April 29th, 2015. The green markers represent plankton and multinet stations and the 

x markers represent trawl stations.   

 

The combination of XBT and CTD profiles resulted in a high resolution section 

through part of the eddy, revealing a central core of > 14°C from the surface to ca. 300 

m depth, and a 10°C isotherm reaching from ca. 300 m (37.45W) to ca. 800 m depth 

(39.93W) (Fig. 4.3). Below 600 m depth, the temperature continued to decrease from 

10 to < 4°C, although the eddy appeared asymmetric in shape with 8°C penetrating to 

ca. 930 m at 39.56W in the western section. On the south side of the eddy, warm 

surface water penetrated down to more than 300 m (Fig. 4.3B), however, on the north 

side the 10°C isotherm ascended at a sharp angle to the surface, and the surface water 

beyond the isotherm rapidly cooled below 8°C moving west (Fig. 4.3A).  
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Figure 4.3: Temperature profile of the; A) western and; B) eastern sections of the eddy. 

The black vertical lines indicate the stations, which are numbered on the top x axis. 

The tick marks on the top x axis indicate where XBT and CTD sensors were deployed.  

 

 

The movement apparent in the sea surface anomaly data (Fig. 4.2) is indicative 

of the constant movement in the region. A time lapse of the region from January to 

December 2015 reveals constantly shifting positive and negative sea surface 

anomalies, with a slight progression to the northwest. On occasion, there was no 

obvious propagation of the anomalies in a particular direction, but positive and 

negative anomalies appeared to rotate around each other. In addition, features 

appeared and disappeared over relatively short periods, i.e. < 1 month. During our 

survey the mean horizontal current velocities ranged from 0.32 m-s to 0.86 m-s, with 

the highest current velocities measured at station 11 and 13 in the 0 -120 m and 120 – 

240 m depths. The lowest velocities were measured at stations 9 and 10, with little 

variation between the depths. The mean vertical current ranged from -0.08 to 0.02 m-

s, with a mean downward current at all depths at stations 11 and 12, where the highest 

values were measured.    



Chapter 4 – Warm core eddies and gelatinous zooplankton 

 

90 

 

G

 

Figure 4.4: A) horizontal current direction at 5 sample depths from station 9 to station 

13 and; B) the average current velocity in each sample depth, with the vertical 

component of the current displayed by the vertical arrows, with magnitude mapped to 

arrow length.   

 

Community composition, abundance and distribution 

In total, 54 zooplankton taxa were identified from the samples taken across the warm 

core eddy. This included 41 gelatinous species or genera; 25 siphonophores, 6 

hydromedusae, 3 scyphomedusae, 2 ctenophores and 5 tunicates. These total counts 

are likely to be underestimates, as the unidentified hydromedusae and scyphomedusae 

were excluded from total counts, and it is likely that the large number of unidentifiable 

diphyid nectophores would have contained additional species. The remaining taxa 

belonged to Crustacea, Polychaeta, Chaetognatha, Foraminifera and Mollusca (Table 

4.2). Data from the plankton and trawl samples are presented here and discussed later, 

however, only the quantitative data from the multinet sampler were used for 

multivariate analysis. 
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Table 4.2: Presence/absence table of meso-zooplankton across the warm core eddy 

during April 2015. Stations marked with * denote where trawls were also carried out, 

the station marked with ** denotes where only trawl samples were carried out. Taxa 

in bold print were captured by trawl net only. Taxa with † superscript were captured 

by plankton net only.  

 

Station 9* 10 11* 12 13* 14** 

Hydrozoa           

Aequorea sp.           x  

Aglantha digitale†   x      x    

Hydromedusae x  x  x    x    

Leuckartiara species x  x          

Cunissa alderi†   x          

Phialopsis diegensis† x  x  x  x      

Rhopalonema velatum x  x    x  x    

Scyphozoa           

Pelagia noctiluca x        x  x  

Periphylla periphylla x    x    x  x  

Scyphomedusae 

unidentified 
x  x  x  x  x    

Atolla wyvillei     x      x  

Siphonophora           

Abylopsis tetragona†   x  x     

Crystallophyes 

amygdalina 
  x x      

Chuniphyes mulitdentata x x x  x x 

Ampicaryon acaule     x       

Agalma elegans†     x      

Ceratocymba sagittata†     x      

Desmophyes annectens†   x       

Dimophyes arctica x x x x x   

Diphyes dispar          x 

Diphyidae x x x x x x 

Hippopodius hippopus x x x    x 
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Table 4.2 continued 

Station 9* 10 11* 12 13* 14** 

Lensia achillies x x   x   

Lensia conoidea x x       

Lensia fowleri   x       

Lensia hotspur†      x     

Lensia multicristata x    x     

Lensia subtilis x x x x     

Nanomia cara     x      

Praya dubia     x       

Physonectae  x   x x     

Prayidae  x x x x     

Sphaeronectidae†   x  x     

Vogtia glabra x   x   x   

Vogtia serrato     x x     

Vogtia spinosa x   x      

Ctenophora           

Pleurobrachia pileus x          x  

Beroe species x  x  x  x  x    

Mollusca           

Cavoliniidae x x x x     

Cephelapoda x           

Clionidae x x x x     

Pterotracheoidea x x x x x x 

Crustacea           

Hyperiidea x x x x x   

Euphausiacea x x x x x   

Ostracoda x x x x x   

Phronimia spp. x   x x x   

Copepoda  x x x x x   

Tunicata           

Appendicularia x x         

Dolioletta gegenbauri   x         

Doliolidae species x x     x   

Salpa fusiformis x x x   x   

Salpa species x   x x x x 

Thalia democractica† x      

Polychaeta           

Tomopteris species x  x    x  x    

Fish larvae x x x  x   

Chaetognatha x x x x x   

Foraminifera x x x x x   
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 Multinet samples 

Thirty-one zooplankton taxa were recorded in the multinet samples. This 

included 19 gelatinous species or genera; 13 siphonophores, 2 hydromedusae, 3 

tunicates and an unidentified scyphomedusae. The total abundance of the gelatinous 

taxa ranged from 0 – 38310 indiv.1000 m-3, however, the appendicularians accounted 

for the majority of that number and excluding them resulted in an abundance ranging 

from 0 – 1677 indiv.1000 m-3. The mean gelatinous abundance (excluding 

appendicularians) across all depths and stations was 456 ± 410 indiv.1000 m-3. The 

mean gelatinous abundance outside and inside the eddy was 660 ± 349 and 49 ± 54 

indiv.1000 m-3, respectively (Fig. 4.5A). The highest abundance and diversity was 

outside the eddy at stations 9 and 10, in the 300 and 420 m depth layers (Figs. 4.5A & 

4.5B). The dominant species were Salpa fusiformis and Chuniphyes multidentata, 

reaching maximum abundances of 677 and 452 indiv.1000 m-3 respectively, outside 

the eddy at station 9. Collectively, diphyid siphonophores were highly abundant 

reaching a maximum of >900 indiv.1000 m-3, outside the eddy at station 10 (Fig. 

4.5A). A non-metric dimensional scaled (nMDS) ordination of the community 

assemblage indicated 2 clusters of samples (Fig. 4.6), the first containing the samples 

from stations 9-10 and the second containing samples from stations 11-13., ANOSIM 

tests indicated the differences in the community between stations was significant (r = 

0.43, p < 0.001), and the difference between stations grouped as ‘outside’ or ‘inside’ 

were significant (r = 0.64, p < 0.001). Depth was not significant (r = 0.099, p = 0.15). 
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Figure 4.5: The (A) mean gelatinous abundance ± SD (N=2) at each sample depth 

(excluding appendicularians) and (B) the total number of gelatinous taxa at each 

sample depth. The displayed depth is the central depth of the sampled water column. 
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Including all zooplankton (Fig. 4.7), the dominant taxa were copepods (range 

223 – 112200 indiv.1000 m-3), foraminiferans (range 0 – 47170 indiv.1000 m-3) and 

appendicularians (range 0 – 26260 indiv.1000 m-3). Notably, the abundance of 

copepod exuvia (range 2023 – 139400 indiv.1000 m-3) often exceeded the number of 

live copepods. Appendicularians were only recorded in the top 120 m at stations 9 and 

10, being completely absent from all other samples.  

 

 

 
 

Figure 4.6. Non-metric dimensional scaled ordination of the gelatinous community 

from stations 9-13. The contours are the sea surface height anomaly displayed as a 

fitted surface with the dissimilarity matrix, and the arrows indicates environmental 

parameters fitted to the dissimilarity matrix, with the direction and magnitude 

indicating the respective influence of each parameter over the community. Cur_V = 

Vertical current, Cur = Horizontal current.  
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Figure 4.7: The (A) mean zooplankton abundance ± SD (N=2) at each sample depth 

and (B) the total number of zooplankton taxa at each sample depth. The displayed 

depth is the central depth of the sampled water column. 
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In addition, the copepods, foraminifera, chaetognaths, polychaetes and 

molluscs reached their maximum abundance at stations 9 and 10, in the two upper 

most layers, i.e. 60 m and 180 m (Fig. 4.7A). Ostracods were also most abundant at 

stations 9 and 10, but were concentrated at 300 and 420 m. The larger macro-

zooplankton like Phronemia spp., euphausiids and hyperiids were more inclined to be 

found inside the eddy. Phronemia reached their highest abundance at station 13, at 

180 m; both the euphausiids and hyperiids shared a similar distribution, being found 

in all the surface samples, and predominantly inside the eddy in the deeper samples 

(Fig. 4.7). ANOSIM tests indicated the differences in the community between stations 

was significant (r = 0.52, p < 0.001), and the difference between stations grouped as 

‘outside’ or ‘inside’ were significant (r = 0.85, p < 0.001). Differences in community 

composition with respect to depth were not significant (r = 0.048, p = 0.23). 

 

Environmental variables 

The subset of environmental variables with the best correlation, with the 

gelatinous community NMDS ordination (Fig. 4.6) included temperature, current 

velocity and the northern component of the current velocity (Mantel, r = 0.56, p < 

0.001). Further analysis of variance using ADONIS with eddy region as a grouping 

factor, indicated that temperature, current velocity and turbidity were the most 

influential variables (Table 4.3). When the potential prey species were included as 

environmental variables, none were identified as significant. When the total 

zooplankton community NMDS ordination was considered, the subset of 

environmental variables included temperature and current velocity (Mantel, r = 0.54, 

p < 0.001). Further analysis of variance using ADONIS with eddy region as a group 
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factor, indicated that temperature, current velocity, turbidity and backscatter were the 

most influential variables (Table 4.3).  

 

Trawl nets 

The trawl samples captured 21 species in total, 11 of which were exclusive to 

trawl samples.  All of the taxa were jellyfish except for the large crustacean 

Phronemia, which resides in an empty salp body. In some samples the empty 

‘Phronemia houses’ outnumbered the number of actual Phronemia, e.g. at station 9, 

only houses were recorded. 

 

Table 4.3: ADONIS multivariate permutational analysis of the zooplankton 

community and gelatinous community dissimilarity (Bray-Curtis) matrices. The eddy 

region, i.e. ‘outside’ and ‘inside’ was used as a grouping factor in the model. * Cur. 

Vel. is the maximum recorded current velocity.  

 

Gelatinous zooplankton ADONIS output 

 Df Sums Sqs. Mean S

qs. 

F r2 Sig. 

Temperature 1 0.8967 0.89665 6.6144 0.17350 0.001 

Cur. Vel.* 1 1.1321 1.13206 8.3509 0.21905 0.016 

Turbidity 1 0.2925 0.29247 2.1574 0.05659 0.034 

Residuals 21 2.8468 0.13556  0.55085  

Total 24 5.168   1.00  

       

Zooplankton community ADONIS output     

 Df Sums Sqs. Mean S

qs. 

F r2 Sig. 

Temperature 1 0.22564 0.22564 6.8851 0.14954 0.001 

Cur. Vel.* 1 0.43729 0.43729 13.3433 0.28980 0.005 

Turbidity 1 0.10758 0.10758 3.2827 0.07130 0.010 

Back scatter 1 0.08296 0.08296 2.5314 0.05498 0.041 

Residuals 20 0.65544 0.03277  0.43438  

Total 24 1.50891   1.00  
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The large species, Periphylla periphylla, Atolla wyvillei, Pelagia noctiluca and Praya 

dubia were only captured by trawl samples and P. periphylla was substantially more 

abundant than the other species, with the highest numbers, at station 9 and 13. At those 

stations, the 350 m trawls captured greater numbers, 11 and 27 P. periphylla¸ 

respectively, compared with the 500 m trawl, 6 and 13 P. periphylla¸ respectively. The 

size and mean mass of P. periphylla medusae was substantially greater at station 13 

(0.85 kg) compared with mean weight at station 9 (0.33 kg). Atolla was rare, with one 

medusa captured inside the eddy during the deep trawls (500 m) at stations 11 and 14. 

Praya dubia was only recorded at station 11, with nectophore numbers indicating two 

colonies at both depths.   

Plankton nets 

 24 macrozooplankton taxa were recorded from the plankton nets, 10 of which 

were exclusive to plankton net samples. Taxa included 12 siphonophores, five 

hydromedusae, three tunicates and one ctenophore. Non-gelatinous taxa included 

Phronemia species, a large (>10 cm) gastropod mollusc of the pterotracheidae family 

and Tomopteris species. The majority of records were of single individuals in a 

sample, however, relatively high numbers of Salpa fusiformis, Phialopsis diegensis 

and Beroe species were found outside the eddy at stations 9 and 10, with a maximum 

of 38, 9 and 13 individuals, respectively. Inside the eddy, the maximum number 

recorded was 5, 5 and 3 individuals, respectively. Rhopalonema velatum was also 

found in relatively high numbers, however, the maximum was inside the eddy at 

station 11 and 12, where 6 and 12 individuals were recorded respectively. The 

maximum recorded outside the eddy was three individuals at station 9. Diphyid 

nectophores were rare, with a maximum of 1 in any one sample (mean vol. 1335 ± 471 
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sd m-3), however, this is almost certainly an underestimate as plankton net samples 

were not enumerated using a microscope.  

 

Discussion 

 

Gelatinous zooplankton are ubiquitous throughout pelagic ecosystems and are 

considered important predators with the capacity to dominate ecosystems (Graham et 

al., 2001; Robison, 2004), and alter nutrient and biogeochemical cycling (Pitt et al., 

2009; Pitt et al., 2013). While broad patterns in distribution and abundance are evident 

across ocean basins (Mackie et al., 1987; Gibbons and Richardson, 2008; Hosia et al., 

2008; Arai, 1997), the mesoscale heterogeneity, which is widely reported for 

phytoplankton, micronekton and higher predators (Owen, 1981; Wiebe et al., 1985; 

McGillicuddy, 2016), has received little attention for gelatinous zooplankton. 

Considering that gelatinous zooplankton have the potential to transfer biomass upward 

or to divert it from higher tropic levels (Robison, 2004; Condon et al., 2011), it is 

important to understand how they associate with possibly the most widespread 

physical features in the pelagic environment (Chelton et al., 2011).  

This study revealed a 12-fold decrease in the abundance of gelatinous 

zooplankton within a warm core eddy compared with the adjacent cold water, with the 

greatest abundance and diversity in the middle sample depths, outside the eddy (Fig. 

4.5). This decline in abundance was evident for gelatinous taxa at all trophic levels, 

from the appendicularians to the larger calycophoran siphonophores (Fig. 4.8). The 

only group to show in increase inside the eddy were the Physonectae and due to the 

difficultly in interpreting the abundance of colonies from separate pieces (Totton and 

Bargmann, 1965) the apparent increase must be viewed with caution. The diphyid 
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siphonophores were, by some considerable margin, the most abundant group and their 

abundance across the eddy was broadly coherent with the 10°C isotherm, decreasing 

by an order of magnitude above the thermocline and within the eddy core (Fig. 4.8).   

The significant change in community composition is driven by decreases in all the 

zooplankton taxa, except for the large crustaceans, the euphausiids, hyperiids 

amphipods (Fig. 4.9) and suggests that the eddy core is a highly unfavourable habitat 

for most of the mesozooplankton and macrozooplankton recorded here. Pelagic 

tunicates, and especially appendicularians, can respond rapidly (in less than 24 hrs) to 

primary productivity (Anderson, 1998; Holland, 2016), and their virtual absence from 

the eddy core indicates an oligotrophic ecosystem. It follows then, that their greater 

abundance outside the eddy (Fig. 4.8) is a strong indication of higher primary 

production and microscopic particulate matter outside the eddy (Alldredge and Madin, 

1982; Holland, 2016). Further evidence of the paucity of the eddy core was the almost 

complete absence of copepods, in point of fact, only four multinet samples inside the 

eddy found an abundance greater than 1 copepod m-3. Consequently, it is highly 

unlikely that the diphyid siphonophores, which predominantly prey on copepods 

(Mackie et al., 1987; Purcell, 1997), could survive in the eddy core.  

Interpreting distribution and abundance of the larger calycophoran 

siphonophores, like the physonects, must be carried out with a little more caution. 

Although the multinet samples indicated a negligible presence in the eddy core (Fig. 

4.8), several genera were captured in the plankton and trawl samples (Praya, 

Hippopodius and Vogtia spp.), indicating the inaccuracy of the multinet estimates in 

assessing these rare taxa (Mackie et al., 1987). The increased abundance of the large 

amphipods in the eddy core (Fig. 4.9), which are known to feed upon and parasitize 

gelatinous taxa (Arai, 2005; Burridge et al., 2017) is possibly indirect evidence that  
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Figure 4.8. Abundance (individuals 1000 m-3) of the major gelatinous taxa across the 

warm core eddy. Note the different scales on the y axis.    
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these larger genera are present in the core as well. This highlights the diverse 

ecological traits across the gelatinous taxa recorded here, and the inadequacy of 

relying on a single sampling method for quantitative estimates, nonetheless, it does 

not detract from the profound community differences already described.   

These significant changes in the gelatinous community have important 

implications for biogeochemical cycling across mesoscales, as gelatinous taxa can 

divert biomass and nutrients away from the ‘traditional’ bottom to top trophic 

pathways (Condon et al., 2011; Pitt et al., 2013). The excess mucus excreted by 

gelatinous taxa contains carbon and nitrogen, which can be utilised by microbes and 

phytoplankton, thereby increasing biomass in the microbial foodweb (Biggs, 1977; 

Condon et al., 2011; Pitt et al., 2013). In addition, gelatinous predators can release the 

phytoplankton from copepod grazing, further enhancing primary productivity (Pitt et 

al., 2007), and potentially increasing biomass at the base of the food web. Conversely, 

where tunicate abundance increases they can increase the downward flow of carbon 

through the continuous shedding of their feeding apparatus which can sink rapidly 

(Robison et al., 2005). Therefore, depending on which gelatinous taxa are abundant at 

any one time, biomass might be concentrated or diverted from the base of the food 

web. Inside the eddy, the prevalence of higher level taxa, many of which are mutual 

predators, with longer generations times can retain biomass and nutrients in the mid-

trophic levels, thereby reducing the turnover of biogenic carbon characteristic at lower 

trophic levels (Robison, 2004). However, when these longer lived taxa die, the 

resultant ‘jelly-falls’ can remove substantial biomass from the mid-trophic levels and 

deliver it to to the sea bed in short periodic pulses (Lebrato et al., 2012).  
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Figure 4.9. Abundance (individuals 1000 m-3) of large macro-zooplankton across the 

warm core eddy. Note the different scales on the y axis.   



Chapter 4 – Warm core eddies and gelatinous zooplankton 

 

105 

 

A heterogeneous gelatinous distribution also has implications for a range of 

oceanic vertebrate predators including marine turtles (Hays et al., 2008; Hays et al., 

2016), over 120 fish species (Purcell and Arai, 2001; Arai, 2005) and sea birds (Arai, 

2005; Scales et al., 2014a). Indeed, there is good evidence that many of these 

gelatinous predators’ forage along frontal zones (Scales et al., 2014a; Sousa et al., 

2016), with satellite biotelemetry demonstrating substantial leatherback turtle foraging 

at an eddy in the north east Atlantic (Doyle et al., 2008b). While a single eddy is 

obviously transient, the most intense eddy regions such as the NAC eddy field are 

permanent (Stommel, 1958; Rossby, 1996) and potentially offers a reliable foraging 

zone to important migrating oceanic predators. Whether anticyclonic eddies physically 

aggregate gelatinous zooplankton remains an open question, one which the wide 

resolution of sampling here cannot address, however, there is little evidence of 

aggregation of zooplankton at other oceanic mesoscale features (Graham et al., 2001). 

Where gelatinous taxa have responded to dynamic boundary systems, it appears to be 

restricted to shallow shelf regions where upwelling and the resultant high primary 

productivity has enhanced local populations of pelagic tunicates (Deibel, 1985; Luo et 

al., 2014). Substantial changes in primary productivity are entirely possible in warm 

core eddies (McGillicuddy, 2016), and evident in previous research during the Warm 

Core Rings Project (Hitchcock et al., 1987), however, whether similar processes in the 

oceanic ecosystem provoke the same response from gelatinous taxa is unknown.  

The higher abundance of pelagic tunicates found outside the eddy here, were 

ca. 75 km from the high velocity eddy boundary where the measured (ADCP) current 

velocities were low. This would suggest that the eddy had minimal effect at these 

stations and vertical mixing in the epipelagic zone was the likely driver of tunicate 

abundance (Deibel, 1985; Holland, 2016). Interestingly, within the boundary zone 
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where the horizontal currents were greatest, there were also substantial downward 

vertical currents (Figure 4.4B). Downwelling is a characteristic of warm core 

anticyclonic eddies (Gaube and McGillicuddy, 2017), removing organic matter and 

nutrients from the surface water and exacerbating the oligotrophic nature of the core 

water mass. This would suggest that the oligotrophic core water is maintained in an 

oligotrophic state by inherent eddy mechanisms, however, Ekman transport and eddy 

stirring can also enhance upward nutrient flux in eddies, having the opposite effect 

(Gaube and McGillicuddy, 2017). In this instance, the history of the eddy is unknown, 

thus it become difficult to speculate on which mechanism is in effect. The broad 

outcome of the Warm Core Rings project demonstrated that warm core eddies can be 

very isolated bodies of water (Wiebe et al., 1985), and more recent research modelling 

anticyclonic eddy dynamics has also demonstrated the propensity for eddies to retain 

particles (Samuelsen et al., 2012). While the sampling here cannot define the 

community transition outside the boundary with high resolution, the consistency of 

the community in the eddy core stations would suggest minimal exchange into the 

eddy.  

Considering the changing zooplankton community composition, there appears 

to be three distinct groups: 1) a warm surface water group composed of copepods, 

ostracods, foraminiferans and appendicularians; 2) an eddy core group overlapping 

with group 1 but with vastly reduced numbers of most taxa, except the large predatory 

crustaceans; 3) a cold water group dominated by the siphonophores, but also including 

tunicates and rare hydromedusae (See figures S4.2 & S4.3 in supporting material). 

These groupings are not meant to imply a strict spatial separation of taxa, for example, 

Salpa species and R. velatum were recorded in plankton net samples, in the top 200 m, 

and clearly are present in the group 1. Nonetheless, the best quantitative estimates 
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from the multinet place these taxa in group 3. This community structure is not 

dissimilar to the mytophid fish community structure found across a warm core eddy 

off eastern Australia (Brandt, 1981). Brandt (1981) recorded five distinct groups; 

‘outside eddy cold water species’, ‘eddy species’, ‘warm water species’, ‘widespread 

species’ and ‘cold water species’. The increased number of communities identified by 

Brandt (1981) is possibly due to niche differentiation of the more diverse myctophid 

fish community, i.e. 250 species (Catul et al., 2011) compared with the predominantly 

siphonophore community here, i.e. 175 species, (Mapstone, 2015). However, one 

group was comprised of only a single species and this suggests that both myctophids 

and siphonophores potentially share traits in response to a warm core eddy.  

Given the location of the eddy within the NAC, it is not surprising that the 

gelatinous community, in the main, reflected the southerly origin of the NAC water. 

The numerical dominance of calycophoran siphonophores, and the species present was 

consistent with previous surveys in the North Atlantic, with species typical of Sub-

Arctic Intermediate Water (SAIW) and North Atlantic Central Water (NACW) (Pugh, 

1977; Pugh, 1984; Hosia et al., 2008). The most abundant species, Chuniphyes 

multidentata and Dimophyes arctica have been found from 41°N - 60°N along the 

North Atlantic Ridge (Hosia et al., 2008), and D. arctica has been categorised as 

eurybiotic, i.e. living in all biogeographical regions (Mackie et al., 1987). Their 

distribution below the epipelagic here is typical for both species (Hosia et al., 2008; 

Mapstone, 2009) and neither are indicative of a particular hydrographic origin. The 

Vogtia species and small Diphyinea like Lensia fowleri, Lensia subtilis have been 

identified as having a predominantly southerly distribution, below 43°N in the north 

Atlantic (Hosia et al., 2008). The hydromedusae Rhopalonema velatum and Phialopsis 

diegensis are both widespread oceanic species, however R. velatum is considered a 
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distinctly warm water species generally found in tropical or subtropical regions, while 

P. diegensis is considered a cold northern species (Russell, 1953; Kramp, 1961). 

Lensia conoidea was present at station 9 and although in low numbers, it is considered 

typical only in surface waters north of the Sub-Polar Front (Mackie et al., 1987; Hosia 

et al., 2008), and in more southerly latitudes is generally found below 1000 m depth 

(Pugh, 1977).  

The low abundance or absence of many of these southerly gelatinous taxa from 

the eddy core serves to illustrate the different origins of the eddy and the surrounding 

water. The differences in abundance between the eddy and the surrounding water are 

profound and highlight a heterogeneous gelatinous zooplankton distribution that is 

likely replicated across vast regions of the pelagic ecosystem (Chelton et al., 2011). 

The impact of this heterogeneity on important ecosystem functions, i.e. 

biogeochemical cycling, is probably underestimated at this point in time, and further 

studies at a much finer scale are needed. Also, because gelatinous zooplankton 

occupies a range of trophic levels, future studies must attempt to solidify the 

relationships between gelatinous prey/predator interactions and accurately assess the 

contribution of gelatinous taxa to oceanic ecosystems.  
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Investigating the efficacy of bubble curtains as a 

barrier against jellyfish 
 

 

Abstract 
 

In recent years, salmon aquaculture has struggled to mitigate the impact of harmful 

jellyfish species in Northern Europe and beyond. Typically, large aggregations of 

jellyfish are carried by currents through salmon cages, leading to unsustainable 

mortality levels in some years. One potential solution is to create a bubble curtain 

barrier to exclude jellyfish from cages. This study investigated the efficacy of a bubble 

curtain as a jellyfish barrier in the context of key aquaculture locations in Ireland. Field 

tests on bubble curtains provided mixed results: a high air flow bubble curtain set at 5 

m depth in S.W. Ireland effectively deflected large compass jellyfish, however, a low 

air flow bubble curtain set at 5 m depth in N.W. Ireland did not significantly impact 

the abundance of small hydromedusae on either side of the bubble curtain. Flume tank 

experiments demonstrated that increased wave height, and increased air flow, 

increased jellyfish transport through the curtain and the lateral movement was 

consistent with Stokes Drift, i.e. an elliptical motion that includes forward movement 

with each wave. These results suggest that sites with relatively high wave energy may 

be unsuitable for bubble curtain use, and that the variable size and shape of jellyfish 

may be an important factor in jellyfish – bubble curtain interactions.  
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Introduction 
 

It is widely accepted that jellyfish blooms have become an important issue for the 

marine finfish aquaculture industry globally (Purcell et al., 2013; Bosch Belmar et al., 

2014). However, the available literature is biased towards interactions between 

jellyfish and farmed Atlantic Salmon, Salmo salar Linnaeus 1758, in north west 

Europe (Doyle et al., 2008a; Ferguson et al., 2010; Hamish et al., 2010; Nickell et al., 

2010; Baxter et al., 2011a; Baxter et al., 2011b; Rodger et al., 2011b), however, the 

problem is becoming increasingly apparent in other areas where jellyfish biomass and 

the incidence of blooms appear to be increasing (Brotz et al., 2012; Condon et al., 

2013). The geographic bias in research and reporting is most likely a reflection of the 

long tradition and economic importance of salmon aquaculture in north western 

European countries with well-developed research structures, rather than a reflection 

of jellyfish ecology. Recent research in the Mediterranean has revealed the deleterious 

impact of jellyfish on farmed sea bass Dicentrarchus labrax and gilthead sea bream 

Sparus aurata (Bosch-Belmar et al., 2016a; Bosch-Belmar et al., 2016b), and 

demonstrates a much wider impact on marine finfish aquaculture.  

Jellyfish can injure fish directly through contact with jellyfish stinging 

capsules called nematocysts, or indirectly by clogging cages and increasing the risk of 

hypoxia (Doyle et al., 2008; Bosch Belmar et al., 2014). Gill damage in several fish 

species has been demonstrated by laboratory experiments (Baxter et al., 2011b; Bosch-

Belmar et al., 2016b) and in field studies (Baxter et al., 2011a; Bosch-Belmar et al., 

2016a). The size of the jellyfish in relation to the cage mesh is largely irrelevant as the 

medusae are easily fragmented against cages and loose jellyfish pieces, loaded with 

nematocysts can easily enter cages. The accumulation of large jellies against the 

exterior wall of fish cages can reduce the flow of fresh oxygenated water through 
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cages, leading to stagnation and asphyxiation of the fish (Klebert et al., 2013). In fact, 

gill damage and decreased oxygen concentration can act synergistically, increasing the 

deleterious impact on the fish (Bosch-Belmar et al., 2016a). At lower jellyfish 

densities rapid mortality is unusual, however, the initial injury can lead to secondary 

bacterial infections and ‘gill disease’ (Rodger et al., 2011a). Furthermore, the presence 

of the bacteria Tenacibaculum maritimum on infected fish and on some jellyfish 

species, suggests that jellyfish may also be a source of secondary infection (Ferguson 

et al., 2010; Delannoy et al., 2011).  

 The economic cost of harmful jellyfish is highly variably from year to year, 

however, some figures from northern Europe indicate how serious this issue has 

become. Over a six-year period in Scotland (1999 - 2005), 60% of mortalities were 

attributed to harmful zooplankton (Rodger et al., 2011a). In Ireland, from 2003 – 2005, 

the majority of mortalities at farms were attributed to gill disease, averaging 12%, but 

reaching ca. 80% (Rodger, 2007). In some instances, catastrophic fish kills can happen 

when large smacks (aggregations) of the scyphomedusae Pelagia noctiluca are carried 

into shallow coastal waters (Fig. 5.1). Pelagia noctiluca has become a primary agent 

of gill disease in European countries, however, several other species are implicated, 

see Rodger et al. (2011a) for list of documented incidents. Elsewhere, gill damage has 

tentatively been assigned to Aurelia aurita in Tasmania (Adams et al., 2004), 

scyphomedusae and hydromedusae in Chile (Palma et al., 2007). Finfish aquaculture 

has become increasingly important, accounting for 49.8 million tonnes of annual 

aquaculture production globally, with an estimated US$99.2 billion (FAO, 2016). 

Considering projected increases of ca. 40% in finfish aquaculture globally (FAO, 

2016), and changing pelagic ecosystems which may favour jellyfish species (Boero et 
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al., 2016), interactions between fish farms and jellyfish are likely to increase, with 

commensurate increases in economic cost.  

 

Figure 5.1: Photographs taken during aerial surveys (flying at 200m altitude) off Loop 

Head, Co Clare, west coast of Ireland, showing large smacks of Pelagia noctiluca near 

the surface. These smacks were distributed over an area of 10s km2 and individual 

aggregations were estimated to reach over 100 m in length.  
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At the present time, mitigating against the impact of harmful jellyfish is 

extremely difficult and managers rarely have advanced warning. Mitigation measures 

to date include cessation of feeding, oxygenation of cages and making fish shoal 

deeper in order to avoid surface concentrations of jellyfish (Ruane et al., 2013). A 

more drastic measure is to harvest fish early to avoid damage, meaning that they have 

not achieved market size or value and is therefore economically expensive. In addition, 

evacuation of a large number of cages containing fish at different stages of maturity is 

simply not feasible.  

 The concept of a bubble curtain as a barrier to prevent jellyfish entering fish 

cages has been suggested as a potential mitigation measure (Rodger et al., 2011a; 

Ruane et al., 2013). In concept, a bubble curtain is simple; compressed air is pumped 

through a porous tube and the escaping air rises to the surface in a plume of expanding 

bubbles. The plume entrains water creating an upward current which is deflected 

horizontally at the surface. Objects which are carried into the bubble curtain are 

pushed to the surface, where they may be collected or flow around the ‘protected’ 

body of water. Bubble curtains are currently used in oil spill mitigation, effectively 

retaining surface oil, however, the current, wave energy, and wind speed can affect 

the efficacy of the barrier (Lo, 1996). Bubble curtains have been installed at power 

station coolant water intakes in several countries (e.g. Japan), to prevent jellyfish 

clogging intake pipes (Masilamoni et al., 2000). Unfortunately, details concerning the 

setup and efficacy of these systems have not been published and an objective 

assessment of their performance is lacking. A brief experiment, carried out in Mulroy 

Bay, Donegal, Ireland, during 2004, was hampered by the low abundance of jellyfish 

and produced equivocal results (Ratcliff, 2004). It did, however, highlight some of the 

logistical difficulties such as biofouling and power consumption which would need to 
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be addressed. Therefore, the aim of this study was to assess the efficacy of a bubble 

curtain as a barrier system to prevent jellyfish incursions into finfish aquaculture 

cages. 
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Material and Methods 
 

Bubble curtain tests in Bantry Bay 

In cooperation with Marine Harvest Ireland Ltd., a series of small scale experiments 

were undertaken in Bantry Bay, southwest Ireland (Fig. 5.2), during September 2014 

and during June to September 2015 to test a small scale bubble curtain.  

 

Figure 5.2: Location of bubble curtain field experiments, at Marine Harvest Ireland 

Ltd. farms in the southwest and Ocean Farm farms in the northwest of Ireland. Square 

symbols are salmon farms and the circles are the DVM sampling stations in the 

southwest.  

 

Test 1; A bubble tube was made using 105 mm PVC tubing, with 1 mm holes drilled 

every 50 cm. The total tube was 8 m long, and compressed air was provided by an 

Atlas Copco XAS47 mobile compressor, capable of delivering 2.5 m3 per minute at 7 

bar. The tube was suspended at 5 m depth from a barge and two divers recorded any 
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interactions between jellyfish and the bubble curtain. Specifically; did jellyfish get 

entrained in the bubble curtain, at what distance from the curtain was an effect evident, 

how did the surface current effect the jellyfish, and what was their subsequent 

behaviour?  

Test 2; A bubble tube was made using 25 mm HDPE tubing, with 1 mm holes drilled 

every 50 cm. This tube was 25 m long and supplied with air using the same compressor 

as test 1 above. During tests the tube was suspended at 5 m depth between the barge 

and a moored RIB and two snorkelers recorded the interaction between any jellyfish 

present and the bubble curtain.  

Bubble curtain tests in Donegal Bay 

During June – September, 2016, at the Ocean Farms farm in Inver Bay, a six cage 

array was encircled with perforated bubble tubing from Canadian Pond Ltd. The 2 cm 

diameter, ca. 800 m long tubing was supplied with air from a Compair C200TS 

compressor, capable of delivering 20 m-3 per minute of air at 14 bar (Fig. 5.3A). The 

tube was installed 5 m below the surface using the anchoring network around the cages 

as attachment points. This depth was chosen because plankton sampling indicated that 

hydromedusae were consistently aggregated in the top 5 m at the farm location 

(Haberlin. D., unpublished data). The main feedline from the compressor was split 

into eight feedlines (Fig. 5.3B) for the bubble tube in order to equalise the pressure 

throughout the tube as much as possible. This also allowed certain sections of the tube 

to receive greater airflow for experimentation. In order to test the effectiveness of the 

bubble curtain, during the period when it was in operation the daily plankton tows 

which were inside the bubble curtain were supplemented with another series of 

samples taken outside the bubble curtain perimeter. Sample analysis was as described, 

for Bantry samples.   
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Figure 5.3: Bubble curtain set up at Inver Bay during 2016; (A) a portable turbo screw 

compressor; (B) manifold splitting the air delivery into 8 hoses; (C & D) fully 

established bubble curtain along the lesser fouled portions of the tubing.   

 

Flume testing in LIR 

During October 2017, experiments to test the efficacy of a bubble curtain as a barrier 

were carried out in the flume tank at LIR, the national ocean testing facility in County 

Cork, Ireland (Figs. 5.4A & 5.4B). The original schedule contained a combination of 

current and wave conditions, however, a malfunction in the tank meant that current 

was no longer available and the experiment was rewritten to investigate wave 

conditions only. In total, 140 tests were performed in the flume, using a 3-5 mm thick, 

50 mm diameter silicone ‘jellyfish’. Each set of wave conditions, i.e. simulation, was 

replicated six times, except for some simulations which were used to video what 

happened in the flume.  
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Figure 5.4: (A) 50 m flume tank (1 m deep) at the LIR facilities in MaREI; (B) the 

bubble tube was placed across the full width of the flume tank, cable tied to an 

aluminium bar to maintain a straight barrier; (C) a piston compressor supplied the air; 

(D) bubble curtain on at high air flow; (E) mixing the EcoFlex compound before 

casting the ‘jellyfish’; (F) the final model jellyfish, 50 mm in diameter and ca. 5 mm 

in thickness.  

 

Test were carried out using wave periods from 1 – 1.8 seconds, wave heights 

from 0.1 – 0.2 m and low and high air flow settings on the compressor. The bubble 

tubing was supplied by Canadian Pond Ltd. (Quebec, Canada) and the ballasted tubing 

was connected to a Stanley 3 hp piston compressor with 200 L reservoir, capable of 

delivering air at 330 L per minute, at up to 10 bar (Figs. 5.4C & 5.4D).  During each 

test, the appropriate wave conditions were set in motion and once a regular wave 

pattern was established, 50 of the 50 mm ‘jellies’ were thrown into the water, 0.5 – 
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0.6 m in front of the bubble curtain. The test was timed from the moment the ‘jellies’ 

were introduced and wave and air were shut down after 30 or 120 seconds. The ‘jellies’ 

were then recovered using landing nets, recording the numbers recovered from either 

side of the bubble curtain. Finally, Go-Pro cameras were set up in the flume to record 

several tests and the video was reviewed to analyse the movement of the ‘jellyfish’ 

due to wave action and the bubble curtain.           

Making silicone jellyfish 

The model jellyfish used in the experiments was moulded using EcoFlex 00-20 which 

is a platinum cured silicone compound. It is extremely stretchy, soft and pliable, has a 

specific gravity close to water (1.07 g cc-1) and is resistant to tearing. These properties 

made it ideal for repeated handling required for tank simulations. Moulding the 

jellyfish required mixing two viscous compound in a 1:1 ratio and casting in the 

required shape (Figs. 5.4E & 5.4F). In order to get the large number of jellyfish used 

here, a long cylindrical mould (50 mm PVC pipe) was used and the subsequent cast 

was cut into 5 mm disks (Fig. 5.4F) to create a ‘jellyfish’. 
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Results 
 

Bantry Bay pilot tests 

These trials, although effective for ironing out the mechanical problems with running 

a bubble curtain continuously, were unable to generate quantitative data. The tidal 

currents in the vicinity of the farms are generally less than 0.2 m-s, which made it 

difficult to design a small scale test with a discrete upstream and downstream side. In 

addition, for the test to be statistically testable, it would have had to run for an extended 

duration which was logistically not possible at the site, at that time. However, during 

test 2 with the longer tube, there were substantial numbers of compass jellyfish 

Chrysaora hysoscella, Linnaeus 1767, in the area and when they came into contact 

with the bubble curtain they were transported to the surface. At the surface, the 

jellyfish were driven horizontally away from the bubble curtain. In fact, the surface 

current generated by the curtain was sufficiently strong to push a diver up from a 5 m 

depth to the surface and then >10 m away from the curtain. It was concluded that the 

bubble curtain was acting as a barrier for the large medusae present at the time, 

however, the system was over powered and could not be realistically or economically 

scaled up to protect a full farm site.   

Donegal Bay pilot tests, Inver Bay 2016 

Because the weather at this time was poor with high wind and seas, the tests had to be 

postponed on several occasions, allowing the bubble tubing to develop substantial 

biofouling, dominated by mussels. As a result, once the tests were started, large gaps 

in the bubble curtain were apparent and it did not constitute a coherent and continuous 

barrier. Even when the maximum pressure was directed to a certain section of the tube, 

it was not sufficient to blow through the biofouling mussels. Where the tubing was 

less fouled, a consistent bubble curtain was established (Figs. 5.3C & 5.3D). In 
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addition, the constant weather fronts moving through the region resulted in breakages 

in the bubble tubing. In some ways, the setup of the system exacerbated these 

breakages. The bubble tubing was attached to the cage anchoring system and the 

constant abrasion against the heavily fouled (predominantly mussels) anchor lines and 

chains lead to failures. While some sampling was carried out with the bubble curtain 

running, the data are not presented here as there were too many flaws present to claim 

that this was a valid test of the system as a barrier. Logistical issues were not confined 

to the bubble tubing, the compressor (Fig. 5.3A) suffered overheating problems and 

would automatically shut down. This was possibly due to fouling creating excessive 

back-pressure which would increase the load on the compressor, however, adjusting 

the manifold (Fig. 5.3B) to divert airflow to the relatively un-fouled sections of the 

tubing did not prevent further shut-downs. Although the compressor and fuel supply 

were situated on an old barge which provided a substantial platform, the original deck 

mounted fuel tank was badly damaged during heavy weather and fuel was 

subsequently supplied from the vessel’s internal fuel tanks. This has no bearing on the 

test per se, but does further demonstrate the challenge involved in operating in exposed 

Atlantic sites.   

Donegal Bay full scale test, McSwyne’s Bay 2017 

To avoid the fouling issues of 2016, the tubing was installed rapidly over several days 

during 2017 and began operating on the 21st September. Because the 2016 sampling 

indicated that all jellyfish were aggregated in the top 5 m, the bubble curtain was 

installed at a depth of 6 m. Muggiaea atlantica and Clytia hemisphaerica accounted 

for the majority of the hydromedusae present during the test, contributing a mean of 

48 ± 29 % and 31 ± 25 % respectively (Fig. 5.5A). The remaining percentage was 

contributed by Obelia spp. and the other gelatinous zooplankton present included 
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Sagitta spp., Doliolum spp., and Pleurobrachia pileus. A t-test was carried out to 

compare the total hydromedusae abundance inside and outside the bubble curtain 

during the experiment. There was no significant difference between the mean 

abundance inside (18 ± 12 indiv. m-3) and outside (22 ± 11 indiv. m-3) (t40 = -1.136, p 

= 0.26) (Fig. 5.5B). Similarly, a t-test revealed no significant difference between the 

mean total gelatinous zooplankton abundance inside (36 ± 19 indiv. m-3) and outside 

(42 ± 18 indiv. m-3) the bubble curtain (t40 = -1.047, p = 0.3).  

 

 

 

Figure 5.5: (A) Abundance of hydromedusae in the top 5 m throughout the sampled 

period in 2017 at McSwyne’s Bay, with the duration of the bubble curtain test marked 

in red and a period of no sampling in green; (B) Abundance of hydromedusae (indiv. 

m-3) inside and outside the bubble curtain, while the system was continually running. 

All the trend lines are polynomial regression lines fitted to the respective data. Note 

the different scales on the y axis.  
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These results suggest that the presence of the bubble curtain was not decreasing the 

abundance of gelatinous zooplankton. On the assumption that the two most abundant 

hydromedusae, having very different morphology, might respond differently to the 

bubble curtain, the mean abundance of M. atlantica and C. hemisphaerica inside and 

outside the bubble curtain were also compared. Mann-Whitney tests were carried out 

for both species, and there was no significant difference between M. atlantica or C. 

hemisphaerica abundance inside (9 ± 8 indiv. m-3 and 6 ± 7 indiv. m-3, respectively) 

and outside (12 ± 8 indiv. m-3 and 7 ± 9 indiv. m-3, respectively) the bubble curtain (U 

= 169, p = 0.23 and U = -221, p = 0.89, respectively). 

Flume tank testing 

The first series of tests were carried out to test the effect of wave period on the passage 

of ‘jellyfish’ through the curtain. When air flow (low) and wave height (0.1 m) were 

held constant, the greatest number of ‘jellyfish’ passed through with 1.4 and 1.6 

second waves, 15 ± 7 and 14 ± 6.5 ‘jellyfish’, respectively. The lowest number passed 

through with 1.2 second waves, 8.5 ± 7.2 (Fig. 5.6A), however there was no significant 

difference between wave periods. Turning off the waves reduced the number that 

passed through to 3.6 ± 3 ‘jellyfish’, which was significantly lower than the number 

passing through at all other wave periods, except at 1.2 seconds (ANOVA, F5,37 = 3.8, 

p = 0.007). Similarly, turning off the bubble curtain significantly lowered the number 

of jellyfish passing through the curtain (ANOVA, F1,10 = 15.08, p = 0.003) (Fig. 5.6B). 

The second series of tests were carried out to test a reduction in wave height and an 

increase in air flow. As wave period was not influential, only 1 and 1.8 second periods 

were used in combination with the other factors. 
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Figure 5.6: Number of ‘jellyfish’ passing through the bubble curtain; (A) with 

different wave periods set at 0.1 m wave height and low airflow; (B) with low airflow 

on/off, set at 1.4 m wave period and 0.1 m wave height.   

 

These were retained so that any potential interaction between wave period and another 

factor would be captured in the data. Both wave height and air flow were significant 

factors in the second series of tests, but the model indicated the interaction between 

them was not significant (ANOVA, F3,68 = 19.9, p = <0.001). Reducing the wave 

height from 0.1 m to 0.05 m significantly reduced the number of ‘jellyfish’ passing 

through the bubble curtain, while increasing the air flow significantly increased the 

number passing through the bubble curtain (Fig. 5.7A). A final series of tests were 

carried out for an extended duration at high air flow, and this clearly demonstrates that 

a longer test leads to a significantly higher number of ‘jellyfish’ passing the curtain 

(ANOVA, F3,44 = 31.68, p = <0.001) (Fig. 5.7B). This test also indicated that during 

the longer test runs, wave height became less significant.     
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Figure 5.7: Number of ‘jellyfish’ which pass through the bubble curtain; (A) with 

different wave height and airflow; (B) with high airflow and changing duration.  

 

Observations from the flume tank experiment 

The different conditions had a marked effect on the extent to which the surface current 

pushed ‘jellyfish’ away from the bubble curtain. During longer wave periods, the 

surface current was observed to carry jellyfish 3 - 4 m horizontally away from the 

bubble curtain, however, when the wave period was shortened to 1 or 1.2 seconds the 

waves began to break against the surface current and ‘jellyfish’ were carried less than 

1 m horizontally away from the bubble curtain. Once the ‘jellyfish’ sank below the 

surface current they started to move back towards the bubble curtain with the wave 

motion. Review of the Go-Pro video revealed that wave motion caused the ‘jellyfish’ 

to move in a circular pattern, moving incrementally forward with each passing wave 

(Fig. 5.8). This movement is known as Stokes drift, and describes the circular motion 

of a parcel of water with each passing wave, whereby the parcel of water ends the 

movement slightly forward from where it started, in the direction of the wave 

propagation (Tucker and Pitt, 2001) (Fig. 5.9). Further observations suggested that 

‘jellyfish’ entering the bubble plume closer to the bottom were more likely to pass 
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through the plume, while ‘jellyfish’ entering the plume nearer the surface were more 

likely to be entrained in the vertical current and ejected horizontally at the surface (Fig. 

5.9).  

 There were, nonetheless, ‘jellyfish’ which behaved in unpredictable ways and 

did not follow this simple dichotomy. What was certain however, was that inevitably 

the majority of ‘jellyfish’ would pass through the curtain, as can be seen in the video 

stills taken from a long 120 second test (Fig. 5.8). A final observation which was not 

documented quantitatively was the time elapsed before the first ‘jellyfish’ passed 

through the bubble curtain. At the higher wave height and shorter wave period, this 

time was much shorter, in the order of < 10 seconds. In contrast, at lower wave heights 

and longer wave periods the first ‘jellyfish’ did not pass through until after the 20 

seconds or so.   
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Figure 5.8: Snapshots of simulation with 0.1 cm wave height and 1 second wave 

period, demonstrating the progression of ‘jellyfish’ towards the bubble curtain. The 

red arrow tracks the movement of one selected ‘jellyfish’ through a 45 second 

simulation in a flume tank.  
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Discussion 
 

Mitigation against jellyfish species that can harm finfish aquaculture is hampered by 

a lack of applied research. A bubble curtain as a barrier system typifies this, in that the 

concept is reported in the literature as a potential solution (Ruane et al., 2013), yet 

only a single experiment, with equivocal results, has been conducted to date (Ratcliff, 

2004). Results in this study, from both the in situ experiments in Donegal Bay (NW 

Ireland) and the wave flume experiments suggest that a bubble curtain may not 

constitute an effective barrier to jellyfish. The flume experiments provided clear 

evidence that a model silicone ‘jellyfish’ can pass through the curtain in the presence 

of wave motion. In addition, changes in the wave characteristics have a significant 

effect on the rate at which jellies pass through the bubble curtain. Somewhat 

counterintuitively, at the higher air flow the rate of ‘jellyfish’ transport through the 

curtain increased (Figs. 5.7B & 5.6A), which suggested an interaction between the 

bubble curtain induced current and the wave motion.  

Observations from the video confirmed that with each passing wave, the 

jellyfish moved incrementally towards the bubble curtain in accordance with ‘Stokes 

Drift’. In shallow environments, where the wave interacts with the sea bed, the motion 

becomes elliptical and the forward drift with each wave is thus increased (Tucker and 

Pitt, 2001). Therefore, as wave height was increased in the flume, it is possible that 

the forward movement was increased with each wave, and secondly, as wave period 

decreased, the rate of forward movement is increased. This mechanism offers an 

explanation for the increase in ‘jellyfish’ passing through the barrier with increased 

wave height. However, the additional increase caused by the airflow needs further 

explanation. Previous studies have demonstrated that oil particles can pass through a 

bubble curtain below the surface current (Delvigne, 1987; Lo, 1996). Oil droplets 
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became entrained into the bubble plume and passed through the curtain in a process 

called ‘droplet shedding’, which increased with increased airflow through the bubble 

curtain (Delvigne, 1987). This observation would seem to be similar to the results here, 

and in fact, the numbers passing through the bubble curtain were lowest when the air 

was off (Fig. 5.6B). As a horizontal current will deflect a bubble curtain and the 

airflow must be increased to compensate (Lo, 1996), it is likely that were a current 

available during this study, then transport of ‘jellyfish’ through the curtain would have 

increased during simulations.  

 

 

Figure 5.9: Schematic of ‘jellyfish’ movement at two different entry points into the 

bubble curtain during wave flume tests. The red movement experiences less vertical 

current and a narrower plume, whereas the green movement experiences increased 

vertical current and a wider plume and a horizontal current near the surface. The black 

arrows indicate vertical current velocity.       
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Qualitative observations from the Go-Pro video in conjunction with the 

quantitative ‘jellyfish’ counts revealed some important insights about the dynamics of 

the bubble curtain. The surface current generated by the bubble curtain was dissipated 

by higher and more frequent waves, meaning ‘jellyfish’ were circulated back into the 

bubble curtain faster. As with the droplet shedding, it seems logical that adding a 

current flow to the experiment would have increased this circulation further and lead 

to faster ‘jellyfish’ transmission through the curtain. Despite the droplet shedding in 

oil spill experiments, bubble curtains are still able to divert the majority of oil around 

a ‘protected’ area making them useful in oil spill mitigation (Lo, 1996). This partial 

success is predicated on the positive buoyancy of oil which is not the case with 

jellyfish. Observations from scyphomedusae tagging studies indicate that larger 

jellyfish species, when disturbed, often descend in the water column (Hays et al., 

2008), which would take them out of the surface current and possibly back into the 

bubble curtain again.  

 The field tests here suggested that the bubble curtain had no effect on 

hydromedusae abundance, however, considering the technical problems with 

installing and maintaining the bubble curtain and the rough weather, the tests 

conditions were far from ideal and the results could not be considered unequivocal. 

Conditions during the tests in September were rough, with moderate to strong winds 

(12 – 20 Km h-1), and therefore the top few metres of the water column would have 

experienced substantial wave movement which might explain the lack of effect. It is 

also possible that a build-up of jellyfish on one side of the bubble curtain, would 

eventually lead to jellies under-flowing the barrier, as happens when oil booms are too 

shallow (Lo, 1996). The model ‘jellyfish’ used in this study were based on the average 

bell diameter of Pelagia noctiluca (5 cm) measured on previous occasions, and 
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whether the observations from the flume tests can be extrapolated to the small 

hydromedusae present in Donegal during 2017 is unknown. The body form of M. 

atlantica, the dominant species here, has a different profile and drag characteristics 

compared with oblate forms (Costello et al., 2008), and it is possible they might 

interact with the vertical current in a different way. Furthermore, it has been show that 

Stokes Drift for oil particles diverges with variation in size and buoyancy (Golshan et 

al., 2018), and therefore the buoyancy of each species is also a factor in jellyfish 

bubble curtain interactions. Direct observations of compass jellyfish, Chrysaora 

hysoscella, in Bantry Bay (SW Ireland) suggested that large scyphomedusae would be 

consistently entrained into the bubble curtain, as no compass jellyfish were observed 

to pass through the curtain (Haberlin D., pers. comm.). In this instance it may well be 

that the bubbles were changing the buoyancy of these large medusae, by providing 

extra lift as they flowed over and around the animal. In the flume tests, small bubbles 

were observed to occasionally ‘adhere’ to a ‘jellyfish’ making them more buoyant. It 

is reasonable to suggest that a large compass jellyfish, with a concave umbrella and 

multiple irregularities in shape, and possessing tentacles would provide a substrate 

where bubbles can become trapped and provide a ‘lift’ force in addition to the vertical 

current. Observations at the Hunterston Nuclear power plant, in the Firth of Clyde 

Scotland, where coolant intakes are surrounded by a bubble curtain, would also 

support that the idea that larger scyphomedusae are lifted to the surface upon 

encountering the bubble curtain. While no quantitative data have been collected at 

Hunterston to date, the facility has employed the bubble curtain seasonally over the 

last 13 years and it is considered effective by management (Young B., Coastworks 

Ltd., pers. comm.). Notably, the Hunterston bubble curtain is set up in a diamond 

shape with the long axis perpendicular to the current which may well enhance its 
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efficacy as a jellyfish barrier. The barrier is relatively short (10s m), and jellyfish 

pushed to the surface are pushed along by the current and unlikely to come back into 

contact with the bubble curtain. Given the area covered by many fish farms, this type 

of set up is likely not possible, and the greater circumference of a fish farm bubble 

curtain means that jellyfish pushed to the surface are likely to be circulated back into 

the bubble curtain again, as in the flume tests.  

  In addition to considering the physical dimensions of any proposed bubble 

curtain, the ecology, particularly the vertical distribution, of target species must be 

considered. Diel variation has been recorded in the vertical distribution of M. atlantica 

in the Western English Channel (Southward and Barret, 1983), and substantial 

variation in the vertical distribution of hydromedusae between different locations has 

been observed in Ireland (Haberlin D., unpublished data). Moreover, the vertical 

distribution in SW Ireland appears to be highly variable, with a diel component 

(Haberlin D., unpublished data) and substantial oceanographic changes which may 

well alter the gelatinous zooplankton community (Raine et al., 2014; Haberlin et al., 

2016). These changes in vertical distribution are likely to be important, as 

hydromedusae in the surface waters will experience greater Strokes Drift and might 

be more likely to pass through a bubble curtain. Equally, current strength and direction 

can change with depth, with wind driven surface currents and sub-surface flows in 

some locations (Raine et al., 2010). As air flow needs to be increased to counteract an 

increasing current (Lo, 1996), variable current conditions may well increase jellyfish 

transport through the curtain. In addition to the the physical factors that drive jellyfish 

distribution, behaviour is also a ley driver of distribution (Arai, 1992; Graham, 2001). 

Small hydromedusae, in particular, are osmoconformers and can aggregate along 

haloclines (Arai, 1992), and this combined with behavioural responses to prey 
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distribution (Folt and Burns, 1999) can influence distribution. Understanding both the 

physical and biological drivers of jellyfish blooms and incursions will undoubtedly 

lead to better mitigation measures.   

Unfortunately, much of the evidence here indicates that a bubble curtain is a 

porous barrier for small jellyfish, nonetheless, it may prevent larger jellyfish from 

entering cages. Future field experiments should be reduced in scale, perhaps a bubble 

curtain around a single cage, allowing greater control of airflow and a simpler 

logistical challenge. Furthermore, the experiment needs to be moved to a sheltered 

location where wave energy is minimal. In addition, the ecology of problem species 

like Muggiaea atlantica and Pelagia noctiluca must be studied in greater detail, with 

the farms themselves involved in on-going temporal sampling. In particular, stratified 

vertical sampling is required to better understand hydromedusae ecology and refine 

any potential mitigation measures.
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Reducing Ectopleura larynx growth on salmon 

cages: efficacy of a novel non-toxic coating 
 

Abstract 
 

Biofouling on finfish cages presents a range of physical and biological challenges for 

the aquaculture industry. The hydroid Ectopleura larynx is often dominant on salmon 

cages and poses a direct risk to fish health via stinging tentacles. Traditional 

antifouling is reliant on toxic or biocidal coatings which carry an unacceptable 

environmental hazard and new non-toxic alternatives are needed. Here, the efficacy of 

a non-toxic aryldiazonium carbohydrate coatings to reduce biofouling on nylon 

salmon cage nets was examined at a salmon farm in southwest Ireland. The mean 

biomass reached 393 gm-2 after 31 days’ immersion, and main macrofoulers were 

Ectopleura larynx, Mytilus sp. and Jassa sp., reaching mean densities of 58779, 

601511 and 106399 indiv. m-2, respectively. The coating did not reduce the density of 

E. larynx or the total fouling biomass, nor did it increase the clean-ability of the nets. 

However, adenosine-triphosphate (ATP) quantity retained on rinsed nets was lower, 

after 20 and 31 days’ immersion, indicating a reduced density of microscopic fouling. 

Proximity to the farm enhanced the recruitment of Mytilus sp. and Jassa sp., but did 

not appear to affect the development E. larynx. It is likely that the complex surface 

structure of the nylon netting reduces the effectiveness of the coating here, and it may 

be more effective when bonded to a simpler single stranded netting.        
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Introduction 
 

Biofouling on physical structures is ubiquitous in the marine environment where a 

great diversity of marine organisms attach to, and grow on a wide variety of natural 

and artificial surfaces. The rate of settlement and growth varies with species, location, 

hydrography, season, temperature and salinity (Braithwaite and McEvoy, 2004; 

Chambers et al., 2006; Blöcher et al., 2013a). For the majority of marine activities and 

industries biofouling is a major challenge and can weaken structures (Maréchal and 

Hellio, 2009) and impair vessel efficiency (Callow and Callow, 2011) and sensor 

functioning (Whelan and Regan, 2006). Biofouling is also a major issue for the marine 

finfish aquaculture that uses sea cages that accumulate very substantial biofouling 

communities (Hodson et al., 1997; Braithwaite and McEvoy, 2004; Greene and 

Grizzle, 2007; Fitridge et al., 2012; Kassah, 2012). Aquaculture farms are usually 

situated in areas with relatively low tidal currents, and sheltered from the high wave 

action, which further promotes biofouling, particularly of filter and suspension 

feeders, e.g., hydroids, mussels and ascidians which tend to dominate the cage fouling 

community in the northeast Atlantic (Boero, 1984; Gili and Hughes, 1995; Braithwaite 

et al., 2007; Carl et al., 2011; Fitridge et al., 2012). Heavy biofouling on these farm 

cages (sea pens) restricts water flow through the cages, thus creating hypoxic 

conditions inside the cage. Biofouling is also linked to the presence of fish pathogens 

(De Nys and Guenther, 2009; Floerl et al., 2016) and fouling hydroids can sting and 

injure fish directly (Baxter et al., 2012a). The costs associated with biofouling are 

substantial, with copper based antifouling coatings and high pressure washing being 

the two most common mitigation strategies (Floerl et al., 2016). It is conservatively 

estimated that 5-10% of production costs are spent on biofouling mitigation (Fitridge 

et al., 2012).  
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The hydroid Ectopleura larynx Ellis and Solander 1786, is a dominant fouling 

organism on salmon cages throughout the North Atlantic (Braithwaite and McEvoy, 

2004; Greene and Grizzle, 2007; Baxter et al., 2012a; Kassah, 2012; Blöcher et al., 

2013a), and its presence has been shown to inflict gill injury via nematocyst stinging 

capsules (Baxter et al., 2012a; Bosch-Belmar et al., 2017). Other hydroid species (E. 

exxonia, Plumerlaria spp., Obelia spp. and Sarsia spp.) are amongst the dominant 

fouling organisms in New Zealand, Tasmania and North America (Floerl et al., 2016). 

Furthermore, hypoxia and jellyfish stings can act synergistically and have an enhanced 

negative impact on fish health (Bosch-Belmar et al., 2016a). Ectopleura larynx is an 

early settler on new substrates and it is able to reproduce within 2-3 weeks (Pyefinch 

and Downing, 1949). Released actinula (larvae) settle on and fuse with existing 

hydroids producing tangled colonies (Nawrocki and Cartwright, 2012). Ectopleura 

larynx has, like Mytilus sp. and ascidian species, demonstrated resistant to copper 

coatings (Pyefinch and Downing, 1949; Greene and Grizzle, 2007). In addition, 

copper based coatings have a limited effective duration as pressure cleaning damages 

the coating (Braithwaite et al., 2007). Ectopleura larynx responds to high pressure 

cleaning by growing back faster and increasing the number of polyps (Guenther et al., 

2010). High pressure cleaning also creates a plume of organic debris containing 

pathogens and fragments of E. larynx, potentially causing harm to fish through the 

initial injury and subsequent secondary infection (Floerl et al., 2016). The debris can 

contain viable gametes and larvae which can promote self-seeding, causing increased 

biofouling downstream of the cleaning site (Floerl et al., 2016). Hydroids in particular 

are adept at settling on new surfaces quickly (Pyefinch and Downing, 1949), and 

severing E. larynx polyps from the hydrocaulus promotes larval release (Carl et al., 
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2011) and fouling rates within a farm site can be up to 49 fold greater than at a control 

site (Blöcher et al., 2015).  

Given the banned use of tributyltin (TBT) since 2008 and evidence of the 

negative impact of many metal based biocidal compounds (Burridge et al., 2010), there 

is a strong incentive to create new non-toxic antifouling compounds. The cost of 

testing new biocidal compounds could potentially run into the €millions under the 

Biocidal Products Directive 98/8/EC (Maréchal and Hellio, 2009), and is an additional 

incentive to create non-biocidal compounds which do not leach into the environment. 

To this end, research has focused on creating antifouling (AF) surfaces which inhibit 

fouling organisms, or foul release (FR) surfaces which allow organisms to bind, but 

with reduced adhesion strength (Callow and Callow, 2011). The successful settling, 

adhesion and metamorphosis of organisms is dependent on a number of cues including 

surface chemistry, microtopography, the presence of con-specifics or competitors and 

prior microbial fouling, i.e. bacteria (Maréchal and Hellio, 2009; Callow and Callow, 

2011). Zwitterionic coatings are effective at deterring barnacle cypris larvae from 

settling (Aldred et al., 2010) and also reduce settlement of Ulva algal spores and 

diatoms (Callow and Callow, 2011). Superhydrophobic nano rough surfaces also show 

some promise at deterring cyprid and bryozoan larval settlement (Scardino et al., 

2009), although their hydrophobicity and thus their AF effect declines with immersion 

time, and manufacturing these surfaces at scale is expensive (Scardino et al., 2009; 

Callow and Callow, 2011). The low wettability of silicone has been utilised by mixing 

it with polymers to make effective FR coatings (Callow and Callow, 2011). Much of 

the above work is based on bioassays using flat surfaces which may be of limited use 

in the context of finfish aquaculture, however, a silicone based coating used on cage 

netting in Tasmania has demonstrated effective FR properties (Hodson et al., 2000).  
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Hydroids have received little attention in fouling studies and are rarely used in 

bioassays using novel surfaces or coatings. Where work has been carried out, E. larynx 

actinula showed no clear preference for hydrophobic or hydrophilic surfaces (Blöcher 

et al., 2013a), and bioassays using varied microtopography reveal contradictory results 

(Nellis and Bourget, 1996; Blöcher et al., 2013a). The presence of a biofilm seems to 

be both conducive (Huang and Hadfield, 2003; Huggett et al., 2006) and inhibitory to 

settling invertebrate larvae and algal spores (Dobretsov et al., 2006). Pyefinch and 

Downing (1949) showed enhanced E. larynx settlement on glass surfaces pre-

conditioned with a biofilm, although the constituents of the biofilm were not 

elucidated. Bacteria, diatom and protozoa are amongst the first micro-foulers on 

netting (Hodson and Burke, 1994; Corner et al., 2007), and some hydroids appear to 

rely on bacterial films in order to settle (Müller et al., 1976). The extent to which 

microfouling can influence macrofouling on finfish cage netting is completely 

unknown.   

The aim of this study was to investigate the effect of a novel non-toxic 

antifouling coating applied to nylon salmon cage netting and deployed on a salmon 

farm in the southwest of Ireland. The coating consists of a hydrophilic aryldiazonium 

saccharide molecule that bonds to a surface forming a thin conformal film, and can be 

applied via dip coating or spraying and is therefore easily scalable (Myles et al., 2017). 

This coating has proven to be effective at reducing protein adsorption at various 

surfaces (Angione et al., 2015; Esteban-Tejeda et al., 2016; Zen et al., 2016) and at 

reducing adhesion of marine foulants on topographically smooth coupons of nylon-6 

(Myles et al., 2017) 
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Materials and Methods 
 

During a 31-day period from August 8th to September 7th, 2015, a total of 30 (30 x 

30cm) 15mm aperture nylon net panels were deployed at Roancarrig in Bantry Bay 

(51.657°N, 9.765°W), southwest Ireland (Fig. 6.1).  

 

Figure 6.1: Location of study sites at Roancarrig situated in Bantry Bay, County Cork 

(bottom) and Lehanagh Pool (top right) situated within Kilkieran Bay, County 

Galway.  
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To investigate the effect of the antifouling coating, 24 panels were deployed at the 

Roancarrig salmon farm in two 12 panel arrays, with six treated and six untreated 

panels in each array (Fig. 6.2A). The two arrays were placed at the western and eastern 

extremity of the farm and were suspended from the collar of a cage (Fig. 6.1). A treated 

and untreated panel was removed from each array after 2, 4, 6, 11, 20 and 31 days of 

immersion. 

To investigate the effect of the farm infrastructure on biofouling development, 

three untreated panels were placed at two control sites approximately 1000m east and 

west of the farm, with one net being removed from each array after 11, 20 and 31 days. 

The western control panels were suspended from a temporary mooring; the eastern 

control panels were suspended from a fallow floatation collar with no netting attached. 

 To investigate low and high pressure rinsing, a further 12 net panels were 

deployed at the Lehanaghpool aquaculture site in Bertraghboy Bay, Co. Galway 

(53.402°N, 9.830°W) on 24/08/2016. Two frames containing six randomly distributed 

net panels were suspended from a fallow salmon cage. There were three panels for 

each treatment: treated plus high pressure rinse, treated plus low pressure rinse, 

untreated plus high pressure rinse and untreated plus low pressure rinse. The low 

pressure rinse was considered the control as light rinsing was necessary for the ATP 

analysis (see below).   

Preparation of treated panels 

The nylon panels were immersed in deionised water and rinsed under agitation 

approximately 10 times to remove dust and debris prior to coating. The coating process 

was carried out as previously described Myles et al. (2017); briefly, netting panels 

were incubated in a formaldehyde solution, containing catalytic amounts of 
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hypophosphorous acid, at 30 °C overnight. Panels were rinsed thoroughly with 

deionised water and functionalised via immersion in freshly prepared 1.0 mM 

solutions of lactoside-bearing aryldiazonium cations generated in situ from the 

corresponding amine, 4-aminophenol-β-D-lactopyranose. Samples were incubated in 

the dark for 1 h in the diazonium salt solution, rinsed in deionised water and then 

stored wet in sealed Ziploc® bags until deployment at the salmon farm, which took 

place within 24 h of functionalisation. Coating on nylon-6 with lactoside-bearing 

aryldiazonium cations had previously been demonstrated to result in an increase in 

hydrophilicity, as confirmed by a reduction in the water contact angle of nylon 

surfaces from 80.6 ± 2.8° to 68.1 ± 2.3° (Myles et al., 2017).   

 

Figure 6.2: (A) PVC frames with untreated clean netting before immersion. (B) 

Sample net from cage 7 after 30 days’ immersion before rinsing, and (C) sample net 

from cage 7 after 30 days’ immersion after rinsing.  
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Sample analysis 

Each panel was removed from the array and placed directly into a Ziploc® bag filled 

with ambient sea water and sealed. The panels were transported back to the lab (2-

hour journey) in a cool box. To test whether the treatment made the nets easier to 

clean, each panel was rinsed using filtered (10 µm and UV filter) sea water. Each panel 

was rinsed under a pump feed hose, held 25 cm above the sample for 20 seconds, at a 

constant flowrate of 0.25 l-s. The fouling material and organisms rinsed from the net 

panel was caught in a 180 µm sieve. A small subsample of each net panel was 

removed, placed in a sterile vial and sent for ATP analysis. The panels and rinsate 

were then stored in 4% formalin for later analysis. Two subsamples were taken from 

each panel, the first to analyse the macro fouling community and the second to 

calculate biomass. The macro fouling community was identified and enumerated using 

a Zeiss stereomicroscope (Stemi 2000). To calculate wet mass, each subsample was 

blotted dry on paper towels and then weighted to the nearest 0.01 g. The dry mass was 

taken after oven drying at 60°C for 48 hours. The mean wet and dry mass of 10 net 

pieces was subtracted from the subsample wet and dry mass to obtain actual biomass. 

The rinsate was treated in a similar manner to the net pieces. The macrofouling 

community was identified and enumerated and a subsample of the rinsate was used to 

calculate wet and dry biomass. Each subsample was filtered through 90 mm Whatman 

filter paper using a vacuum pump and the wet and dry mass was recorded.  

 For the Galway Bay rinsing experiment, the net panels were rinsed under low 

and high pressure using the same procedure as above. As this approach was used to 
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assess the clean-ability of the nets, only the biomass removed was recorded and no 

enumeration of the macrofouling community was carried out. 

Bantry Bay Microfouling 

The level of microfouling on samples was measured using the amount of adenosine 

triphosphate (ATP) as an indicator of the amount of microbes on the surface 

(Muthukumar et al., 2011). A commercial luciferase assay and luminometer were used 

(Aquasnap Total Water, Hygiena); the assay was first calibrated using standard 

solutions to obtain a conversion from relative luminescence units (RLU) to ATP 

concentrations. Approximately 1 cm long sections of netting were cut from three 

different locations in each netting panel; the cutting was suspended in 30 mL of 

deionised water in sterile centrifuge tubes and then sonicated for 10 min. The value of 

RLU was determined for each water sample and converted to ATP concentrations; 

water samples were diluted if needed to bring the ATP concentration within the linear 

range of the assay. Post sonication, the cuttings were dried under argon and their mass 

determined to normalise ATP determinations on individual cutting which is reported 

as nmol of ATP released per gram of dry netting (nmol/gnet). 

Data Analysis 

All of the data were standardised to give biomass in gm-2 and density in individuals 

m-2. Biomass and abundances were investigated using t-tests, ANOVA, ANCOVA or 

linear regression. Due to the small sample size, tests for normality may be misleading 

(Quinn and Keough, 2002), however ANOVA is robust to a minor lack of normality 

(Underwood, 1981). In addition, residuals, QQ-norm plots, Cook’s distance and scale-

location plots were used to check model results. All analysis was carried out using R 
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3.2.3 (R Core Team, 2017). The majority of values are reported as means ± 1 standard 

error, unless specified otherwise.  

 

 

 

Results 
 

 

Biofouling on net panels 

In total 10 taxa were identified on the panels and in the rinsate. The most abundant 

taxa on the net panels were Mytilus edulis, the amphipods Jassa sp. and caprellids, the 

hydroid Ectopleura larynx and the red algae Polysiphonia species (Fig. 6.3A – 6.3G). 

Green filamentous algae and Obelia hydroids were identified on some net panels, but 

because their presence was relatively rare they were noted but not quantified. 

Polychaetes, brachyurans and echinoderm species were present after longer immersion 

times, but were found only in the rinsate with none remaining on the nets after rinsing. 

The wet biomass on the nets increased from day 2 to day 31, however, between days 

6 and 11 the biomass declined (Fig. 6.4A). A multiple linear regression was calculated 

to model the fouling biomass with respect to immersion time, cage number and 

treatment. A significant regression equation was found (F3,20 = 23.96, p = <0.001), 

with an r2 of 0.63. The increase in biomass was significant with respect to time and 

cage number, however, the treatment was not a significant factor in the model (Table 

6.1).  
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Figure 6.3: The dominant macrofouling invertebrates recorded on sample net panels; 

(A) large adult caprellid amphipod, (B) adult Jassa sp. amphipod, (C) Ectopleura 

larynx polyp after 4 days’ immersion, (D) Mytilus sp. clustered around net junction, 

(E) loose E. larynx hydranths or polyp heads at an advanced stage of maturity, (F) 

section of net panel from cage 7 with heavy fouling after 31 days’ immersion, (G) 

section of net panel from control site 1 after 21 days’ immersion.  
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Table 6.1: Tabulated linear model output exploring changes in wet biomass against 

several variables, log10(biomass)~Cage + log10(Time) + treatment  

 Estimate Std. Error t value p 

Intercept 1.52803 0.12565 12.161 1.07 x 10-7 

Cage 0.24586 0.0882 2.787 0.0114 

Log10 Time 0.5554 0.10853 5.117 5.25 x 10-5 

Treatment -0.04061 0.0882 -0.46 0.65 

 

 

Pooling the treated and untreated net panels, the mean biomass increased from 

84 ± 28 to 393 ± 68 gm-2. The abundance of Jassa sp. (Fig. 6.3B) on the farm panels 

was notable, with a mean density of 12863 ± 2700 indiv. m-2 after two days, and 

reaching a mean density of 106399 ± 10767 indiv. m-2 after 31 days. The density had 

declined substantially by day 11, 5426 ± 2995 indiv. m-2, before increasing again 

thereafter and most likely explains the decline in wet biomass at the same time. A 

multiple linear regression was calculated to model Jassa sp. density with respect to 

immersion time and cage number. A significant regression equation was found (F2,21 

= 7.44, p = <0.005), with an r2 of 0.41. The increase in Jassa sp. density was significant 

with respect to immersion time, but insignificant with respect to cage number (F2,21 = 

7.44, p = <0.005). The density of Mytilus sp. (Fig. 6.3D) increased from 24241 ± 2504 

indiv. m-2 after 2 days to 601511 ± 52134 indiv. m-2 after 31 days. 
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Figure 6.4: Mean wet biomass ± SE on net panels (A) and mean Ectopleura larynx 

polyp abundance ± SE on net panels. Figures include data from farm deployed net 

panels only. Black and grey bars represent treated (N=2) and untreated (N=2) net 

panels. Note the different scales on the y axis.  

 

The decrease in total biomass and Jassa sp. between day 6 and 11 was not 

reflected in changes in Mytilus sp. density on the nets, although from day 4 to day 6 

and from day 20 to day 31, there were substantial change in density. A multiple linear 

regression was calculated to model Mytilus sp. density with respect to immersion time 

and cage number. A significant regression equation was found (F2,21 = 100.1, p = 

<0.001), with an r2 of 0.9. The increase in Mytilus sp. density was significant with 

respect to immersion time, but not with respect to cage number or treatment.  

Comparison between farm and control sites 

The following comparison was carried out using only the data after 11, 20 and 31 days’ 

immersion. Furthermore, as there was no difference between the treated and untreated 

panels at the farm, these data were pooled. The fouling biomass increased substantially 
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during the 20-day period and was greater at the farm compared with the control sites.  

There was a significant effect of site on fouling biomass after controlling for 

immersion time (F2,15=31.33, P =< 0.001) (Fig. 6.5A). The same broad pattern of 

development was evident for Mytilus sp. and Jassa sp. (Figs. 6.5B & 6.5C), with 

models of log10 indiv. m-2 showing a significant effect of site after controlling for 

immersion time (F2,15=37.29, P =< 0.001 & F2,15=109.5, P =< 0.001, respectively). 

The maximum Mytilus abundance at the farm was 601511 ± 52134 m-2 compared with 

133571 ± 77476 m-2 at the control sites. Likewise, the maximum mean abundance of 

Jassa sp. at the farm was 106399±10767 m-2 compared with 29468 ± 9504 m-2 at the 

control sites. 

  

Ectopleura larynx fouling on net panels 

Ectopleura polyps (Fig. 6.3C & 6.3G) were found on net panels after four 

days’ immersion. The maximum of over 70000 polyps m-2 was found on net panels at 

one of the control sites. Polyp abundance increased dramatically between day 11 and 

day 20, and continued to increase up to day 31, at the farm and control sites (Fig. 6.4B 

& 6.4D). The number of polyps was greater at the farm during the initial 20 days’ 

immersion, however, the mean number of polyps at the control site was greater after 

31 days (Fig. 6.5D). The effect of the treatment was minimal; the mean number of 

polyps on treated and untreated nets after 4 days was 1139 ± 352 m-2 and 992 ± 294 

m-2, respectively. The mean number of polyps on treated and untreated nets after 31 

days was 43705 ± 1960 m-2 and 46532 ± 17754 m-2, respectively. A multiple linear 

regression was calculated to model E. larynx density with respect to immersion time, 

treatment and cage number. A significant regression equation was found (F3,20 = 
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33.34, p = <0.001), with an r2 of 0.83. The increase in E. larynx density was significant 

with respect to immersion time, but not with respect to cage number or treatment. 

Pooling the treated and untreated panels at the farm and comparing with the control 

sites, indicated there was little difference in rate of E. larynx development, or in the 

final density of polyps at either location (Fig. 6.5C). A significant regression equation 

was found (F2,15 = 20.17, p = <0.001), with an r2 of 0.73, indicating that the increase 

in E. larynx polyp density was significant with respect to immersion time, but not with 

respect to site. 

Effect of the coating on net cleaning 

The vast majority of Jassa sp., caprellids and Mytilus sp. were removed from 

panels during the rinsing, although some did remain on the panels and occasionally 

Jassa were found still inside their tube houses. The E. larynx colonies remained intact, 

although some some polyp heads were removed during rinsing. The wet biomass (gm-

2) that was removed by rinsing was consistent with the pattern of biomass accumulated 

on the nets, initially increasing up to day 6, was substantially reduced at day 11, and 

then increasing again at days 20 and 31 (Fig. 6.6A). A multiple linear regression was 

calculated to model wet biomass removed with respect to immersion time, cage 

number and treatment. A significant regression equation was found (F3,20 = 4.992, P = 

< 0.001) with an r2 of 0.43 (Table 6.2), indicating that biomass removed was 

significant with respect to immersion time, but not cage number or treatment.  

Substituting the proportion of wet biomass removed from nets during rinsing, for the 

actual wet biomass removed, resulted in an insignificant regression equation (F3,20 = 

0.944, P = ns) with an r2 of 0.12. This suggested that the cleanability of the net panels 

was not improved by the treatment. Pooling the treated and untreated net panels, the 

proportion of biomass removed ranged from 19 – 93%, with the highest values 
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occurring at cage 7 after 2 – 6 days’ immersion. It was clear during the rinsing 

experiments that Jassa sp. were the dominant component of the rinsed material.  

  

 

 

Figure 6.5: (A) Wet biomass on net panels, (B) Mytilus sp. density on net panels, (C) 

Jassa sp. density on net panels and (D) Ectopleura larynx polyp density on net panels. 

Black bars represent all net panels deployed at the farm (N=4) and and grey bars 

represent net panels at control sites (N=2). Note the different y axis.  
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Table 6.2: Tabulated linear model output exploring changes in wet weight biomass 

against several variables, Biomass removed ~ treatment + Time + Cage  

 Estimate Std. Error t value p 

(Intercept) 25.635 21.214 1.208 0.24099 

Treatment -10.225 20.091 -0.509 0.61638 

Time 3.234 0.984 3.287 0.00369 

Cage no. 39.761 20.091 1.979 0.06175 

 

 

The mean biomass removed from treated and untreated nets by low pressure rinsing 

was 7.8±1.1 gm-2 and 8.54±0.5 gm-2 respectively. The mean biomass removed from 

treated and untreated nets by high pressure rinsing was 12.24±0.9 gm-2 and 12.72±0.9 

gm-2 respectively. A two-way analysis of variance was conducted on the influence of 

treatment and rinsing pressure on the biomass removed. The main effect for treatment 

was not significant (F1,21 = 0.72, p = 0.4), while the main effect for rinsing pressure 

was significant (F1,21 = 36.24, p = < 0.001), increasing the mean biomass removed 

from 8.2±0.3 gm-2 to 12.5±0.6 gm-2. 
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Figure 6.6: (A) Biomass (mean ± SE) removed from net panels (N=2) during the 

rinsing procedure. (B) Quantity of ATP released (mean ± SE) from 1 gram of netting 

(N=6) after rinsing procedure. Figure includes data from farm deployed net panels 

only. Black and grey bars represent treated and untreated net panels. Note the different 

y axis.  

ATP released after cleaning 

The quantity of ATP released per gram of netting (nmol ATP/gnet) increased with 

immersion time, and was positively correlated with total biomass (r =0.63, p = <0.001) 

(Fig. 6.6B). The treatment did not appear to influence the quantity of ATP released 

after 2, 4 or 6 days’ immersion, however, after 11, 20 and 31 days’ immersion the 

treated panels released lower quantities of ATP than untreated panels (Fig. 6.6B). 

After two days’ immersion, treated and untreated panels released 0.0029 ± 0.001 and 

0.0027 ± 0.0066 nmol ATP/gnet; in contrast after 31 days’ immersion, treated and 

untreated panels released 0.03 ± 0.0084 and 0.064 ± 0.0065 nmol ATP/gnet. There was 

a significant effect of treatment on ATP released after controlling for time immersed 

(F =2,21 49.99, P=<0.001), which indicated that the treated panels had significantly less 

bound organic material after the longer immersion time.
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Discussion 

 

Biofouling in finfish aquaculture is difficult to manage, posing complex 

biological and physical challenges for the industry (Blöcher et al., 2013a; Klebert et 

al., 2013). A non-toxic coating or treatment is a primary goal of contemporary 

antifouling research which can be broadly separated into antifouling (AF) and fouling 

release (FR) coatings. Both strategies involve altering the physico-chemical or 

material properties of a surface (Maréchal and Hellio, 2009; Callow and Callow, 

2011). The current study showed that a novel hydrophilic coating significantly 

lowered the quantity of ATP released after 20 and 31 days’ immersion. There are 

several possible explanations for this observed difference in ATP released with respect 

to immersion time. The coating, by changing the surface chemistry, might have caused 

the microbial community to diverge after the initial stages of fouling, by impairing 

metabolism and growth or favouring particular species over others (Mieszkin et al., 

2013). Depending on the point of divergence, this might explain the initial similarity 

in ATP released. Furthermore, microbial adhesion is a two-part process, beginning 

with weak reversible adhesion to a substrate and then transitioning to irreversible 

adhesion (Kumar and Anand, 1998). Irreversible adhesion involves the direct contact 

between microbe and substrate via surface appendages and crucially makes microbes 

much harder to remove (Kumar and Anand, 1998). Therefore, the coating may have 

had a negligible effect on the initial reversible attachment, while having a weakening 

effect on subsequent irreversible attachment. Different microbial communities can 

change surface chemistry and the palatability of a surface to subsequent foulers 

(Müller et al., 1976; Maréchal and Hellio, 2009; Callow and Callow, 2011), and 

therefore might explain the delayed effect on ATP released seen here. The delay in 
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effect is unlikely to be due to bacterial colonies with short generation times, however, 

diatom communities take 2-3 weeks to develop (Hodson and Burke, 1994; Corner et 

al., 2007) and an interaction between bacteria and diatoms has been shown (Grossart 

et al., 2005). Investigations of flat rectangular sheets (nylon and stainless steel) treated 

with the same coating used here, suggested a qualitative decrease in diatom attachment 

(Myles et al., 2017). Unfortunately, a characterisation of the microbial fauna on the 

panels was beyond the scope of this investigation.  

Unlike, the microfouling community, there was no significant effect of the 

treatment on total fouling biomass, nor did it increase the biomass removed by rinsing. 

The biomass was dominated by Jassa sp., Mytilus sp. and Ectopleura larynx, which 

was broadly consistent with similar studies in Norway and north eastern U.S. coast 

(Greene and Grizzle, 2007; Guenther et al., 2010; Blöcher et al., 2015), but contrasts 

with studies in Scotland and Tasmania where initial fouling can be dominated by algae 

(Hodson et al., 2000; Braithwaite and McEvoy, 2004). The differences in Jassa sp, 

Mytilus sp. and E. larynx density between treated and untreated net panels was 

minimal and variable, indicating that the treatment did not affect the relative 

composition of the macrofouling community. It is possible that for these genera the 

complex topography of the multi-stranded nylon provides a surface that is easy to 

anchor to and settle on (Carl et al., 2011), and therefore if the thin conformal 

carbohydrate coating has no appreciable effect on that topography, it may not affect 

these foulers. There is some evidence that thick wax and silicone based coatings, 

which can fill in and smooth the topographic structure of netting, can affect the macro-

fouling community (Hodson et al., 2000).   

A silicone based coating tested on nets in Tasmania altered the composition of 

the fouling community, and proved to be an effective foul release coating (Hodson et 
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al., 2000). The reasons for the changes were most likely due to altered surface 

chemistry, altered topography and reduced surface free energy, however, the fouling 

community in Tasmania was dominated by algae which do not share the same 

mechanisms of attachment as many invertebrates (Hodson et al., 2000; Callow and 

Callow, 2011). Many algal spores attach to a surface by secretion of a basal disc and 

are able to attach to the low energy silicone surface, albeit with reduced adhesive 

strength (Hodson et al., 2000). Both E. larynx and Mytilus spp. larval stages have the 

ability to adhere to surfaces immediately, and are not dependent on the secretion of an 

adhesive disc or pad (Pyefinch and Downing, 1949; Silverman and Roberto, 2007). 

Ectopleura larynx actinulae can adhere to a surface using their nematocyst tipped 

tentacles when surface properties are not ideal or even toxic (Pyefinch and Downing, 

1949). This mechanism may allow actinulae to break the surface tension at a 

hydrophilic surface by contracting of the tentacles and pushing the aboral end onto a 

surface, thereby allowing adhesion between the aboral end and the surface. Mytilus 

spp. also adhere immediately to surfaces via secretion of glue from a gland in the foot, 

which form the byssus threads (Silverman and Roberto, 2007). Hydrophilic surfaces 

such as the one being tested here have been shown to benefit Mytilus spp. adhesion 

(Silverman and Roberto, 2007; Carl et al., 2012), although no difference was evident 

here. It was notable that the Mytilus sp. and larger clumps of organic debris were 

clustered at net junction (Fig. 6.3D), rather than along the net bars, and this is perhaps 

a further indication that the corners, and depressions of the net enhance fouling (Carl 

et al., 2012). There are varying results of the effect of microtopography on E. larynx 

attachment; Blöcher et al. (2013a) found a lack of effect across varying 

microtopography and varying wettability, finding both hydrophilic and hydrophobic 

materials were amongst the materials with the lowest settlement of E. larynx. In 
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contrast, Nellis and Bourget (1996) found that E. larynx settled preferentially on 

1000um granules compared with smaller sizes.  

The ability of E. larynx to settle on a range of surfaces is matched by its ability 

remain attached to the nets. Very few polyps or pieces of colony were removed during 

rinsing and this is due to the ability of the colonies to grow a system of stolons that 

wrap around the net and attach to the net substrate at several point (Fig. 6.3F & 6.3G) 

(Carl et al., 2011). Although it was not obvious in this study, Carl et al. (2011) also 

showed that E. larynx could incorporate strands of netting into the perisarc, and is 

superbly adapted to benefit from this type of substrate.    

A surprising result of this study was the lack of a difference between E. larynx 

development on farm deployed panels and control panels situated ca. 1 km from the 

farm. This is in contrast to previous work in Norway showing that recruitment on 

farms far exceeds recruitment at control sites 1.5 km from the farm (Blöcher et al., 

2015). The limited mobility and rapid settling of actinulae (Pyefinch and Downing, 

1949) and the reduced water movement within the cage array of a farm (Blöcher et al., 

2015) would promote recruitment within the confines of a farm. Nonetheless, the farm 

deployed panels here were only ca. 1 metre from heavily fouled cages and there was 

no apparent difference. It is possible that ambient tidal movement and the continuous 

release of actinulae at this time of year created a region of dispersion that went beyond 

the 1 km radius. This finding has important implications for the placement of farms or 

indeed other structures in close proximity; multi-use platforms, e.g. combining 

aquaculture and renewable energy, and multi-trophic aquaculture would seek to place 

structures close to each other by design and potentially increase the density and risk 

from planktonic E. larynx actinulae (Bosch-Belmar et al., 2017). Recruitment of 

Mytilus sp. and Jassa sp. were clearly enhanced on the farm deployed panels compared 
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to the control sites (Fig. 6.4B & 6.4C). Why this is the case for those two species and 

not for E. larynx is difficult to understand at present, particularly in the case of Mytilus 

sp. which has non-motile spat similar to actinula.  

The presence and abundance of Jassa sp. was remarkable, being found on 

100% of the panels at both farm and control sites, reaching over 100,000 m-2 after 31 

days. In contrast, Blöcher et al. (2015) only found Jassa spp. on ca. 50% of farm 

deployed experimental panels and ca. 5% on control panels. While mobile amphipods 

like Jassa sp. are not considered true foulers in the sense that they do not adhere to a 

substrate, they do construct tube houses from organic matter including diatoms (Nair 

and Anger, 1979). By doing so, they are creating an increasingly complex substrate 

for other fouling organisms and adding substantially to the biomass on nets. The 

bimodal increase in Jassa sp. density may indicate an interaction with other fouling 

organisms and possibly E. larynx. Caprellid amphipods have been positively 

correlated with hydroid presence on macro algae (Cunha et al., 2018), although here 

it is not clear that E. larynx would provide a surface that is easier to cling to compared 

with the nylon netting. Although Jassa spp. are recognised as an important fouling 

genus on salmon cages (Braithwaite and McEvoy, 2004; Greene and Grizzle, 2007; 

Blöcher et al., 2013b), and they appear to be unselective consumers with complex life 

cycles (Nair and Anger, 1979), the potential interactions with other fouling organisms 

is unknown.    

Conclusions 

Measurement of released ATP indicated that treated net panels immersed for 

20 or more days were ‘cleaner’ than untreated panels after a light rinse. The taxa and 

mechanism behind this difference is not clear, and therefore it may be a foul deterrent 
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or foul release mechanism. Ectopleura larynx development and density was 

unaffected on treated nets, nor was it effected by being placed 1 km from the farm. 

Relatively few studies have focused on the development of fouling communities on 

aquaculture cage nets, and lab based assays on flat surfaces may be of limited 

relevance. Results here suggest that the micro and macro-topographic structure of the 

nylon netting might reduce the effectiveness of extremely thin antifouling coatings. 

New single stranded nets are being manufactured and these may work more effectively 

with the aryldiazonium saccharide coating. Future studies should include efforts to 

characterise the microbial fouling community and the interactions with subsequent 

macrofoulers; encouraging a particular fouling community, via manipulation of 

surface properties, that deters a specific pest species like E. larynx would be a cost 

effective and sustainable solution.  
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General discussion 
 

Gelatinous zooplankton are often identified as a nuisance in many regions, and by 

many sections of society, with the possible exception of regions where some species 

(mainly cnidarians) are valued as food. Although understandable, this characterisation 

is misleading and ignores the vital ecosystem functions that gelatinous zooplankton 

carries out in pelagic ecosystems (Boero et al., 2016; Graham et al., 2016). These 

functions include carbon sequestration (Madin et al., 2006; Lebrato et al., 2012), a 

source of shelter, refuge and food for multiple taxa (Graham et al., 2016), and potential 

prey for a large range of taxa (Arai, 2005). Nonetheless, the deleterious impact of some 

species on certain industries including fisheries, power generation, tourism and 

aquaculture has risen well beyond a ‘nuisance’ level and it is reasonable to suggest 

that the sustainability of some of these industries is threatened by blooms and 

aggregations of gelatinous zooplankton in certain regions (Purcell et al., 2007; Rodger 

et al., 2011a; Purcell, 2012). Our understanding of, and thus our ability to respond to, 

these impacts is hampered by a lack of knowledge at present, and to a large extent the 

field of gelatinous zooplankton ecology is playing catch up with other fields of 

plankton research (Haddock, 2004).  

Gelatinous zooplankton are now recognised as a serious cause of injury and 

mortalities to farmed fish in a number of regions and on a number of species (Doyle 

et al., 2008a; Baxter et al., 2011a; Baxter et al., 2011b; Bosch-Belmar et al., 2014), 

and further studies are required to develop a greater understanding of the physical 

drivers that influence the ecology of gelatinous zooplankton. Chapters 2, 3 & 4 build 

on recent research in Ireland, developing a greater understanding of the physical 

drivers that influence the abundance and distribution of gelatinous zooplankton 
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(Chapters 2, 3 & 4). Mesoscale features are particularly influential over planktonic 

heterogeneity and understanding how they passively advect and aggregate gelatinous 

zooplankton (Chapter 3 & 4), and create sharp environmental boundaries which 

potentially enhance the populations of harmful gelatinous species (Chapter 2, 3 & 4), 

will provide a knowledge base with which to manage deleterious impacts. Finally, 

chapters 5 & 6 document the first attempt to quantify the efficacy of a bubble curtain 

as a barrier to jellyfish (Chapter 5) and the effect of a novel non-toxic antifouling 

coating on biofouling hydroids (Chapter 6).    

 Monthly sampling in collaboration with the salmon farming industry was 

continued during 2014 – 2016 in Bantry Bay, southwest Ireland, in order to build upon 

previous work carried out in the region (Baxter et al., 2011a; Baxter et al., 2012b). 

During 2014, the absence of Muggiaea atlantica and elevated presence of Nanomia 

bijuga was unusual in the context of recent and historic work in the region (Table 2.1) 

and suggested a physical mechanism was driving the changes. Periodic observations 

of oceanic gelatinous taxa, like Agalma elegans and Liriope tetraphylla for short 

periods, also suggested a physical mechanism. Such a mechanism exists in the form 

of a wind driven shelf/bay exchange that takes place periodically, and these exchanges 

are known to advect Harmful Algal Blooms (HABs) into southwest and west facing 

bays (Raine et al., 2010). Furthermore, this exchange mechanism interacts with a 

coastal jet (a narrow high velocity current) along the Irish south coast (Fernand et al., 

2006; Hill et al., 2008) that is driven by the seasonal thermohaline front between the 

Irish and Celtic Seas. This coastal jet is known to advect HABs from the Celtic Sea 

westward, and given the striking similarity in the occurrence of Muggiaea atlantica in 

Bantry Bay and the Western English Channel (WEC), it is reasonable to suggest the 

WEC population, which is now a resident population surviving over winter (Blackett 
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et al., 2014; Blackett et al., 2015), might be a source for the Bantry Bay 

summer/autumn populations. While the data from Bantry Bay was insufficient to 

empirically establish a link with the WEC, research based on the PML zooplankton 

dataset has shown patterns in the zooplankton community which strongly imply a role 

for the Celtic Sea Front (Southward, 1980; Southward et al., 1995). Southward et al. 

(1995) categorically showed that warm or cold years had a temporal effect on the 

annual arrival of ‘warm water’ zooplankton into the Celtic Sea, although they did not 

invoke the Celtic Sea Front as the mechanism underlying these community changes. 

However, a fuller understanding of the front dynamics was not available at the time 

(Hill et al., 2008), and the pattern Southward et al. (1995) described would be 

explained by the effect of ambient temperature on front formation, intensity and 

eventual dissipation (Hill et al., 2008).  

Thermohaline fronts: a potential edge over the jellyfish 
 

 Implicating the Celtic Sea Front as a seeding mechanism for M. atlantica 

populations north of the English Channel has important implications for salmon 

farming industry in Ireland and Scotland. The front driven coastal jet continues along 

the south and west Irish coastline and northward along the Scottish west coast, 

potentially advecting M. atlantica into many important salmon farming sites. Because 

the front is geographically stable and because it can now be monitored using satellite 

data (Fig. 3.1), this raises the possibility of an early warning system for the salmon 

farming industry and it would be a useful exercise to look for correlations between M. 

atlantica blooms and changes in the weather and satellite archival data. While accurate 

estimates of M. atlantica and indeed other harmful species are sparse for much of the 

operational history of salmon farms in Ireland (25 years plus), there is accurate 

mortality data for much of that time (Marine Harvest Ireland Ltd., pers. comm.) and 
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this could be used as a proxy for the presence of harmful species. Together with 

weather and satellite archives, which are now largely freely available, there are 

sufficient data to begin exploring a model combining the Celtic Sea Front dynamics – 

shelf/bay exchanges along the west – mortality data and jellyfish presence. Teasing 

apart the exact cause of mortalities will be difficult, as there is evidence that jellyfish 

may be the vector for injury and the subsequent secondary infections (Ferguson et al., 

2010; Delannoy et al., 2011; Rodger et al., 2011a), and furthermore pathogens and 

environmental variables can interact synergistically to increase morbidity/mortalities 

(Bosch-Belmar et al., 2016a). Nonetheless, exploring these drivers in a theoretical 

model is likely to yield new lines of enquiry and investigating the statistical power of 

different variables could enhance monitoring techniques by refining when, where and 

how much sampling is required.  

 The investigation of the Celtic Sea Front during 2015 (Chapter 3) was a direct 

follow up to the study in Bantry Bay (Chapter 2), and a core aim of the work was to 

establish the distribution of M. atlantica with respect to the Celtic Sea Front. While 

M. atlantica was present in the vicinity of the front, the abundance was relatively low 

compared with other years (see Figs. 2.4 & 2.5) and testing an association with the 

front was not possible. Analysis of the gelatinous zooplankton community provided 

strong evidence that the front represents a barrier to gelatinous zooplankton. Previous 

work has demonstrated partitioning of large scyphozoan jellyfish at the Celtic Sea 

Front (Houghton et al., 2006; Doyle et al., 2007b; Bastian et al., 2011) and here the 

same pattern is demonstrated for predominantly hydromedusae community.  

While there was little evidence that any gelatinous taxa were aggregated at the 

front, the lack of vertical resolution in the plankton sampling does impose restrictions 

on how one might interpret the data. Integrated vertical sampling, when standardised 
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to indiv. m-3, gives an impression of homogeneity which is known to be 

unrepresentative of actual zooplankton distributions (Folt and Burns, 1999; Benoit‐

Bird et al., 2013). Although this is not a criticism of the methods in Chapter 3, 

integrated tows will likely obscure predator – prey relationships that might be 

detectable through stratified sampling. Vertical niche separation is commonly reported 

amongst gelatinous taxa (Williams and Conway, 1981; Mackie et al., 1987; Graham 

et al., 2001), and using sophisticated video profiling systems that account for vertical 

distribution has demonstrated specific trophic relationships at other frontal systems 

(Luo et al., 2014). Furthermore, Luo et al. (2014) was able to show aggregation of 

some gelatinous taxa within the frontal zone. These aggregations are likely to be the 

result of passive and behavioural factors (Folt and Burns, 1999; Graham et al., 2001), 

and are more probable for herbivorous filter feeding tunicates that are adapted to 

respond to relatively short pulses of productivity (Deibel, 1985; Holland, 2016). For 

example, prolonged upwelling might lead to a mature frontal community favouring 

mesotrophic gelatinous predators (Luo et al., 2014), but there is little evidence to 

suggest that prolonged upwelling occurs in the Celtic Sea (Cooper, 1967; Le Fèvre, 

1987; Schultes et al., 2013).     

 Though there was no evidence that the Celtic Sea Front enhanced gelatinous 

zooplankton populations through passive and bottom up process, however, it may 

enhance gelatinous populations in a less direct manner. The warm stable stratified 

conditions in the Celtic Sea are thought to enhance gelatinous abundance in other 

frontal systems (Pagès and Gili, 1992), and if sufficient copepod prey were present, it 

would certainly represent a favourable environment for M. atlantica (Blackett et al., 

2014; Blackett et al., 2015). Conversely, research on HABs suggests that the stratified 

conditions in the Celtic Sea support dinoflagellates rather than diatoms (Raine, 2014) 



Chapter 7 - Discussion 

 

167 

 

and this is likely to be detrimental for herbivorous copepods and possibly also for 

copepods predators like M. atlantica (Purcell, 1982). These are simplistic scenarios, 

and work in the WEC has shown that the high reproduction in the M. atlantica 

populations is predicted on a complex interaction between plankton phenology and 

variation of environmental variables (Blackett et al., 2015). At this time, more surveys 

with greater temporal resolution are needed to show whether M. atlantica reproduces 

in the Celtic Sea or not.  

Fronts and Eddies: the same but different? 
 

The study on the mid-Atlantic warm core (anticyclonic) eddy (Chapter 4) 

revealed the physical eddy structure had a profound influence over the distribution of 

the gelatinous zooplankton, with a 12-fold decline in gelatinous abundance within the 

eddy core. The faunal poverty of the eddy core was also evident across the entire 

zooplankton community with the exception of several large crustacean species that 

were more abundant in the eddy core. Previous work has documented the gelatinous 

zooplankton biomass in warm core eddies (Davis and Wiebe, 1985; Wiebe et al., 1985) 

and a more specific taxonomic description of the gelatinous taxa across a cold core 

eddy was provided by (Suárez-Morales et al., 2002). Nonetheless, this is possibly the 

first detailed description of gelatinous zooplankton across a warm core eddy and 

demonstrates that the mesoscale heterogeneity evident in primary productivity 

(McGillicuddy, 2016), macrozooplankton (Wiebe et al., 1985) and micronekton (Boyd 

et al., 1986) is also evident in gelatinous zooplankton. Perhaps the most important 

aspect of the eddy study is the impact of such biological heterogeneity on 

biogeochemical cycling within the top 1000 m or more of the oceanic ecosystem. In 

this instance the eddy contained no herbivorous plankton indicating an oligotrophic 

ecosystem with the biomass concentrated in a small number of mesotrophic predators, 
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and might be loosely described as a biological ‘hole’ in the ocean. Early research 

would suggest that this oligotrophic ecosystem is characteristic of anticyclonic eddies 

containing Gulf Stream or Sargasso Sea water, with a net downward flux of nutrients 

(Gaube and McGillicuddy, 2017). However, previous work has found quite the 

opposite: a Gulf Stream warm core eddy increased its macrozooplankton biomass, 

exceeding adjacent productive slope waters, and enabling a community shift to 

mesotrophic predatory zooplankton (Davis and Wiebe, 1985; Wiebe et al., 1985). An 

evolving understanding of eddy dynamics, which includes eddy pumping, Ekman 

induced vertical nutrient transport and lateral eddy stirring suggests that warm core 

eddies can exceed the chlorophyll levels of cold core eddies at times (Gaube and 

McGillicuddy, 2017).  

In a sense, an eddy represents a contradiction: the physics of eddies enable the 

upward transfer of nutrient from deeper layers via eddy pumping (McGillicuddy, 

2016), and lateral mixing (Joyce, 1984), yet, observations and modelling studies also 

indicate isolated core water masses that resist exchange (Davis and Wiebe, 1985; 

Samuelsen et al., 2012). In this respect the eddy and thermohaline boundaries are 

similar, in that they both enable mixing and enhanced primary productivity, but remain 

a barrier to gelatinous zooplankton and mesoplanktonic taxa (Chapter 3). But there are 

also profound differences: the thermohaline front being coupled to topography, 

remains stable, whereas eddies can potentially carry an isolated community 

considerable distances (Shoosmith et al., 2005). Pulses of productivity at the front are 

mediated through stochastic weather events and predictable tidal events, but are 

probably dispersed rapidly due to the open nature of the system (Le Fèvre, 1987). 

Pulses of productivity in eddies, except for a seasonal element, are likely to be entirely 
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stochastic (McGillicuddy et al., 2007) and each eddy will evolve in a variable manner, 

but crucially that productivity has the potential to reach the higher mesotrophic levels.  

These fundamental differences change the way these features might be used 

by higher gelatinous predators, which includes reptiles, birds and fish species which 

are known to associate with frontal systems (Bakun, 2006; Block et al., 2011; Scales 

et al., 2014a). A stable system like the Celtic Sea Front could become a reliable 

foraging area as part of a calculated migration route (Barnard, 2004), whereas, eddy 

foraging is more likely to be the result of a random encounter. While the major eddy 

fields present a broadly stable eddy producing region (Stommel, 1958; Chelton et al., 

2011) and are therefore also reliable, encountering the ‘right’ eddy at the right time 

would still be a random process due to the variation mentioned above. Biotelemetry 

of leatherback turtles in the north Atlantic does show a lack of pattern (Luschi et al., 

2003; Ferraroli et al., 2004), however, upon encountering the ‘right’ eddy they have 

been shown to remain there for an extended period (Doyle et al., 2008b).  

There remains a huge amount of work to be done in order to better understand 

the interaction between eddies and gelatinous zooplankton, and the similarities in the 

boundary dynamics of both eddies and thermohaline fronts might offer a cost effect 

way of studying some aspects of mesoscale eddy biology. Advances in satellite 

sensors have made it relatively easy to monitor certain aspects of frontal systems such 

as temperature, chlorophyll and spatial movement, yet the ground-truthing needed to 

relate these remotely sensed changes to biological changes above the lowest trophic 

levels is lagging behind. The Celtic Sea Front is a well described frontal system in the 

literature and offers a good model for studying “frontal- boundary/zooplankton 

interactions”. Moreover, the substantial oceanic holoplanktonic community in the 

Celtic Sea during 2015, which is probably periodic (Southward, 1980; Southward et 
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al., 1995), provides an opportunity to study holoplanktonic oceanic taxa along a 

dynamic frontal boundary less than 20 km from the coastline. In the past, bycatch from 

trawl based fisheries surveys have provided adequate data with which to study the 

ecology of scyphozoans, however, for the smaller hydromedusae and ctenophores 

targeted surveys with specific sampling gear will be required to progress the field.  

Mitigation against jellyfish incursions into fish farms 
 

Throughout these studies and in conjunction with plankton sampling described 

in Chapters 2 and 5, investigations were carried out into the potential use of a bubble 

curtain as a barrier to harmful jellyfish species. The experiments in the LIR flume tank 

with a model silicone ‘jellyfish’ revealed some interesting insights into the interaction 

between waves and a slightly negatively buoyant jellyfish. At a greater wave height 

and shorter wave period, a greater number of ‘jellyfish’ passed through the bubble 

curtain, and likewise at greater airflow, a greater number of ‘jellyfish’ passed through 

the bubble curtain. In short, as the system became more turbulent, the ‘jellyfish’ passed 

through the bubble curtain at an accelerated rate, propagating forward in an elliptical 

movement known as Stokes Drift (Fig. 5.9). Stokes Drift is a second order movement 

imparted by waves and likely be exacerbated in the exposed energetic site around the 

Irish coast. The early qualitative observations in Bantry Bay suggested that the bubble 

curtain would be effective at stopping large Chrysaora hysoscella, Linnaeus 1767, 

however, these tests were carried out with a vastly overpowered system, creating a 

massive plume of bubbles, and replicating such a system over an entire farm would be 

economically untenable and impractical. Nonetheless, fine tuning the system to reduce 

power consumption might make it more feasible.  
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 It is possible a bubble curtain system might have some application in very 

sheltered sites where wave energy is slight, and there are many such sites in Norway, 

Scotland and the Americas where sites are situated in fjord systems, or very enclosed 

bays and estuaries. However, it is crucial that a proposed system be accompanied by 

a physical characterisation of each site and an ecological characterisation of the 

problem species occurring there. Unpublished observations referenced in chapter 5 

indicate variation in the vertical distribution of hydromedusae at different Irish sites, 

most likely driven by bathymetry, weather and oceanographic processes. However, 

these data represent snap shots of the hydromedusae abundance and distribution and 

there is a lack of detailed temporal studies which may well reveal important changes 

that are relevant to mitigation measures.   

In addition to preventing harmful jellyfish from entering fish cages, the study 

in chapter 6 investigated the efficacy of a non-toxic coating which might reduce the 

harmful hydroids that resident on the cages (Baxter et al., 2012a; Blöcher et al., 2013b; 

Bosch-Belmar et al., 2016b). Despite a lack of effect on the hydroids and indeed the 

other macrofoulers, the evidence of an effect on the microscopic fouling organisms 

was encouraging. Teasing apart the physical and chemical properties which govern 

interactions between a substrate and a settling organism is complex, and it seems likely 

that the complex topographic structure of the net attenuates the intended hydrophilic 

effect of the coating. Although the field of biofouling is branching out in exciting 

directions, with an increasing focus on non-toxic antifouling and foul-release 

technologies, and on bio-engineering surfaces to take advantage of natural 

successional development and allelopathy (Callow and Callow, 2011). Unfortunately, 

much of the work is driven by the requirements of the shipping industry, which uses 

flat coupons and a restricted group of model fouling organisms (e.g. barnacles and 
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algae of the Ulva genera) more relevant to ship hull fouling, and does not include 

hydroids (Callow and Callow, 2011).  

Early work on E. larynx has shown some preferences in terms of settlement 

(Pyefinch and Downing, 1949; Hawes, 1958) and other hydroid species do respond to 

microbes or their metabolites when settling (Müller et al., 1976), and a greater focus 

on the settlement behaviour, and chemical cues involved is likely to yield new 

strategies to reduce hydroid fouling. Future studies of biofouling should also place 

some emphasis on the phenology of fouling, cleaning regimes and fish health. 

Hydroids as a cause of injury has been established in several regions, but there are also 

potential links between biofouling and the transmission of pathogens to fish (De Nys 

and Guenther, 2009; Floerl et al., 2016). Interactions between fish and the biofouling 

community are likely to be influenced by seasonal and environmental components 

(Bosch-Belmar et al., 2016a), and the current level of data collection at farms 

precludes an in depth analysis of all the components.   

 

Concluding Remarks and future research 
 

The current research has contributed new insights into several aspects of gelatinous 

zooplankton ecology. While this knowledge has contributed to the investigation of 

mitigations measures tested in Chapters 5 and 6, it is clear that there are still 

considerable knowledge gaps in terms of gelatinous ecology and impacts on finfish 

aquaculture. The research presented here could be built upon in a number of ways, and 

the following are just some of the potential areas considered during the completion of 

this thesis.   
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 The potential link between Muggiaea atlantica in Irish coastal waters and the 

Western English Channel could be further investigated by combining 

oceanographic modelling, zooplankton data from L4 (WEC), zooplankton data 

and fish mortalities from Irish aquaculture sites. The short term predictive 

model of Raine et al., (2010) and the HABs monitoring programme in Ireland 

provide a good template to start this research. There may be adequate data to 

begin this research, however, the full potential of this type of modelling relies 

on large quantities of data and as yet, there is no long term zooplankton 

monitoring in Ireland.  

 Following the above, there is enormous scope to turn Irish salmon farms into 

zooplankton monitoring stations, collecting data to address their own needs 

and providing a valuable long term data set for ecologist. Currently, different 

farms follow various protocols for gathering zooplankton data, and once 

archived the data appears to lie largely dormant. With relatively minor changes 

to daily routines and perhaps using a centralised cloud based IT system, the 

industry in Ireland could move towards a near real-time monitoring 

programme.  

 Future research cruises at the Celtic Sea front should sample the front during 

September – October to maximise the chances of encountering M. atlantica in 

high abundance. The sampling regime should also include stratified vertical 

sampling and stable isotope analysis to investigate the actual vertical 

distribution of gelatinous taxa and their trophic position within the Celtic Sea 

ecosystem. The coastal jet that likely transports M. atlantica along the south 

coast lies several km off the coastline and it would be feasible to sample this 

feature manually from a small craft. Therefore, further preliminary work 
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investigating gelatinous zooplankton in the jet is feasible without a large 

research vessel.  

 As with the Celtic Sea Front, and for the same reasons, future sampling of 

mesoscale eddies should also include stratified vertical sampling and stable 

isotope analysis. Mesoscale eddies occur off the shelf edge in the north east 

Atlantic and further research from the Celtic Explorer is eminently feasible and 

does not require an extended trans-Atlantic voyage. Eddies form off the 

northern shelf edge current and in combination with satellite tracking, presents 

an exciting opportunity to observe the evolution of a gelatinous community 

inside an isolated body of water. 

 The shifting zooplankton community in the Celtic Sea is a fascinating topic, 

and the mechanism controlling these changes remains vague at present. Here 

again, oceanographic modelling may be able to provide some insight into the 

processes which drive the transition from a ‘cold-water’ to a ‘warm-water’ 

community (Southward et al., 1995). The influx of oceanic taxa (i.e. ‘cold-

water’) revealed in chapter 3 is likely to alter the food web and modelling these 

changes using Ecopath and Ecosim would be a useful way of trying to 

understand these changes.   

 Future research on a bubble curtain ‘barrier’ would benefit from reducing the 

scale of the Donegal experiment. A small scale experiment in a relatively 

shallow bay where Pelagic noctiluca occurs would be an ideal testing ground. 

In this respect, the dimensions and velocity of large P. noctiluca aggregations 

represents a knowledge gap, and could easily be gathered form small craft in 

coastal waters. For example, drop down cameras could be used to estimate the 

depth of aggregations and satellite tracked drogues used to track movement. 
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This type of basic ecological data is missing at present and is an important part 

of any potential mitigations strategy.    

 The field of antifouling is progressing in exciting ways, and biomimetics or 

bioengineering hold a lot of potential in terms of developing non-toxic 

technology (Callow and Callow, 2011). The aquaculture industry would 

benefit from a wider perspective and further collaboration with chemistry, 

biochemical and even medical researchers which could likely progress 

antifouling mitigation on salmon farms.  

 Aquaculture is likely to change and in fact will be forced to change in respond 

to environmental and legislative changes in the future. Moving cages to deeper 

offshore locations and/or having totally enclosed circulatory systems are just 

2 possible changes. This means that farms will be exposed to different 

challenges and in turn changes the focus for applied research. To address these 

changes, it will be necessary to take a more integrated approach to aquaculture 

research, combining ecology, economics, policy and social sciences.   

The above is not intended as an exhaustive list possible research ideas, but does 

summarise where perhaps substantial knowledge gaps still exist. One area not covered, 

but which is of considerable concern from both an ecological and aquaculture industry 

perspective is ocean warming. The potential consequences of ocean warming includes 

a wider reproductive period of some species and potential arrival of tropical species, 

which may mean a greater abundance of gelatinous zooplankton for longer periods 

annually. It may also mean the northward migration of cold water species (e.g. the 

lions mane Cyanea capillata) and unpredictable changes to polyp strobilation which 

may well reduce the abundance of some taxa. Ocean warming could deepen seasonal 

thermoclines affecting the formation of the Celtic Sea Front, and more intense thermal 
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gradients would lead to an intensification of the front with largely unknown 

consequences for sites in the southwest and further north. Similarly, ocean warming 

will change the stratification of the semi-enclosed bays in the southwest/west and 

potentially alter the vertical distribution of harmful species, and potentially alter the 

way shelf/bay exchanges occur at present. Any of these changes will have important 

consequences for the pelagic ecosystem around Ireland, and also for salmon 

aquaculture operating within that ecosystem. Understanding these changes and how 

aquaculture can respond to them remains a considerable challenge and it is hoped the 

studies presented here add to the knowledge base, with which some of these challenges 

can be addressed in the future. 
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Table S3.1. Presence/absence table for all zooplankton taxa identified from Celtic Sea samples (N=49).  8 

Station  2 4 6 8 1

0 

1

2 

1

4 

1

6 

1

8 

2

0 

2

2 

2

4 

2

6 

2

8 

3

0 

3

2 

3

4 

3

6 

3

8 

4

0 

4

2 

4

4 

4

6 

4

8 

5

0 

5

2 

5

4 

5

6 

5

8 

6

0 

6

2 

6

4 

6

6 

6

8 

7

0 

7

2 

7

4 

7

6 

7

8 

8

0 

8

2 

8

4 

8

6 

8

8 

9

0 

9

2 

9

4 

9

6 

9

8 

Hydromedusae                                                   

Aglantha digitalis x x x x x x x x x x x x x x x x x x x x x x x x   x  x    x x x x x     x x x x x x x x 

Amphinema 

rugosum 

              x                                    

Bougainvillia   x                                                

Clytia 

hemisphaerica 

  x  x  x x x x x x x            x x x x x x  x x x x x x x x x x x x x x x x x  x 

Cosmetria 

pilosella 

    x          x                                    

Cyanea species                          x                         

Euphysa aurata                 x                 x                 

Eutima gracilis      x    x  x      x     x         x     x           x   

Laodiciea 

undulata 

    x x       x                  x   x                 

Leuckartiara 

octona 

x  x x   x x x x x x x x x x  x x x          x  x x x x x x   x     x x x x x 

Lizzia blondina x x x x x x x x x x x x x x x x x x x x x x x x   x    x  x x x x x x x       x x x x 

Melicertum 

octocostatum 

    x                                              

Metrocomella 

polydiademata 

  x x                       x x x x    x   x x             

Obelia sp. x x x x x x x  x x x x    x  x    x         x x  x x  x  x   x x x      

Podcoryne 

borealis 

    x x                                             

Unidentified 

species 

       x         x    x x x x x                       x  x 

 9 

 10 

 11 

 12 
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Table S3.1 continued. Presence/absence table for all zooplankton taxa identified from Celtic Sea samples (N=49).  13 
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Siphonophora                                                  

Muggiaea    

atlantica 

           x             x x x x x  x x x x x x x x x x x          

       Polygastric            x              x x x x  x x x x x x x x x x x          

        Eudoxid                         x x  x x   x x x  x x x x x x          

Nanomia bijuga   x x x x x x x x x x x x x x x x x x x  x x    x x   x x x x       x x x x  x   x 

N. bijuga larvae            x  x x x  x x x x x x                          x x 

Agalma elegans   x x x  x x x x  x x  x    x   x     x x x x    x x x   x x x    x  x    

   A. elegans 

larvae 

  x x   x x x x x x x x x  x x x x x x x x  x x x x x   x x x x x x x x x   x x  x  x  

Ctenophora                                                   

Pleurobrachia 

pileus 

  x x x x x x x x x x x   x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

Beroe sp.     x x x x              x     x  x     x x x               

Bolinopsis 

infundibulm 

      x        x     x       x  x x      x       x  x x     

Tunicata                                                   

Appendicularia x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  x 

Chaetognatha                                                   

Sagitta elegans x x x x x x x x x x x x x x x x x x x x x x x  x x x x x x x x x x x  x x x  x x x  x  x x x 

Sagitta setosa                                         x x x        

Echinodermata                                                   

Ophiuroidea 

larvae 

  x x x   x x x x x x x x x  x x x x x x x  x x x x x    x x x x x x x x x x x   x  x  

Echinoidea larvae              x x x x x x x x x x x      x     x x x x x            

Phytoplankton                                                   

Ceratium sp.   x x x x x x x x x x x            x x x x x x     x  x   x x      x  x  

Noctiluca sp.         x                       x x  x                

 14 
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Table S3.1 continued. Presence/absence table for all zooplankton taxa identified from Celtic Sea samples (N=49).  17 
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Mollusca                                                   

Limacina sp. x x x x x x x x x x x x x x x x x x x x x x x x x x  x      x x   x     x x x x x x x 

Clione sp. x x x x x x x  x x x x x x x x x x x x x x x x                    x    x x 

Bivalve larvae    x x           x       x        x x             x x x  x  

Polychaeta                                                   

Tomopteris sp. x x x x x x x x x x x x x x  x x x x x x x   x  x    x x x x x x x   x x x x x x x x x x 

Syllidae                        x        x x   x   x    x        

Poecilochaetidae   x x x x x  x x x x x x x x x x x  x x x x x  x x x x   x   x  x x x x x x  x x x  x  

Polychaete larvae x  x x x x x x x x x x x x x x x x x x x x x x      x x    x    x x x x x x x x  x  

Magelonidae x x x x x x  x x x x x  x x  x x x  x    x  x x    x    x   x x x  x x x x x x x 

Phoronid larvae         x x x x  x x                       x        x x    

Polychaete larvae x  x x x x x x x x x x x x x x x x x x x x x x      x x    x    x x x x x x x x  x  

Crustacea                                                   

Copepods x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 

Euphausiid                                 x x                 

Megalops x x x x x x x x x x x x x  x x  x x x x x x  x     x x x       x x x x x x x x    

Zoea x x x x x x x x x x x x x x x x x x x x x x x x x x x  x x x x x x x x x  x x x x x x x x  x x 

Hyperiid x x x x x x x     x                                      

Lepeophtheirus 

sp. 

            x x         x x       x x    x  x x x x x x x x x     

Caprellid                                          x x x x x x    

 18 
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Table S3.1 continued. Presence/absence table for all zooplankton taxa identified from Celtic Sea samples (N=49).  23 
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Actinopterygii                                                   

Arnoglossus 

laterna 

     x x    x x  x  x   x x x x  x                        x x x 

Buglossidium 

luteum 

     x x         x x      x                     x       

Callionymus spp.   x x x x x x  x x   x x x  x x x x x                  x  x  x x x  x x x 

Chelidonichthys 

lucerna 

                x     x                   x    x      

Chelon labrosus                        x                 x          

Ctenolabrus 

rupestris 

                      x                          x  

Echiodon 

drummondi 

x x x  x                                             

Glyptocephalus 

cynoglossus 

x x x x            x                                  

Gobidae x x  x x x x x x   x x x x  x x x x x x     x    x  x x       x x x x x x x x x 

Hippoglossoides 

platessoides 

      x                                            

Hyperoplus 

lanceolatus 

                                          x        

Labrus bergylta x                                         x x  x     

Limanda limanda     x                                              

Merluccius 

merluccius 

    x  x x     x x x     x                              x 

Microchirus 

variegatus 

     x x    x x x x    x   x x                x        x   x x 

Microstomus kitt    x             x                                  

Pollachius 

pollachius 

     x                                             

 24 

 25 
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 26 

Table S3.1 continued. Presence/absence table for all zooplankton taxa identified from Celtic Sea samples (N=49).  27 
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Raniceps raninus x           x         x                             

Sardina 

pilchardus 

    x x x x       x  x x x x x x                            x 

Scomber 

scombrus 

      x    x  x x  x  x x x x x x x                         x x 

Scophthalmus 

rhombus 

                               x      x             

Scorpionidae                                            x x x     

Trachinus draco                                           x   x x x x  

Trachurus 

trachurus 

                  x                                

Trigladae    x  x x    x  x x  x                      x         x  x  

Unidentified 

species 

     x x  x x       x    x                           x   

Fish Eggs x x x x x    x x x x x x x x x x x x x x x                 x x x x x x x  x  

 28 

 29 

 30 

 31 
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Table S3.2. Mass measurements of individual zooplankton species 32 

Group Species 

Dry mass 

(mg) C (mg) Reference 

Cnidaria Aglantha digitale 0.0148826 0.0015899 7 

Cnidaria Hydractina borealis 0.02396 0.006009168 7 

Cnidaria Lizzia blondina 0.0003944 0.00005166 7 

Cnidaria Leuckartiara octona 0.06928 0.006503 7 

Cnidaria Clytia hemisphaerica 0.1522 0.018615 7 

Cnidaria Eutimia gracilis 0.085638 0.011218681 7 

Cnidaria Laodicea undulata 0.424274 0.0570523 7 

Cnidaria Metrocomella polydiademata 0.424274 0.0570523 7 

Cnidaria Obelia species 0.004316 0.001557 7 

Cnidaria Muggiaea atlantica (poly) 1.656 124.3656 10 

Cnidaria Muggiaea atlantica (Eu) 0.35 36.61 10 

Cnidaria Nanomia bijuga 12.404 1.7278772 Na 

Cnidaria N. bijuga larvae 0.6202 0.08639386 Na 

Cnidaria Agalma elegans 15.60344346 2.173559674 Na 

Cnidaria A. elegans larvae 1.560344346 0.217355967 na 

Ctenophora Pleurobrachia pileus 16.58405066 0.713114178 7 

Ctenophora Beroe species 157.2337832 11.32083239 7 

Ctenophora Bolinopsis infundibulum 1845.071195 27.67606792 7 

Actinopterygii Glyptocephalus cynoglossus 0.039623142 0.015849257 11 

Actinopterygii Microchirus variegatus 0.189095754 0.075638302 11 

Actinopterygii Buglossidium luteum 0.076244993 0.030497997 11 

Actinopterygii Pollachius pollachius 0.112463906 0.044985562 11 

Actinopterygii Trachurus trachurus 0.116637459 0.046654984 11 

Actinopterygii Scomber scombrus 0.327501441 0.131000576 11 

Actinopterygii Pleuronectes platessa 3.051112288 1.220444915 11 

Actinopterygii Arnoglossus laterna 0.07882 0.031528 11 

Actinopterygii Gobidae 0.088092908 0.035237163 11 

Actinopterygii Chelon labrosus 0.025219293 0.010087717 11 

Actinopterygii Merluccius merluccius 0.021760512 0.008704205 11 

Actinopterygii Ctenolabrus rupestris 2.837749393 1.135099757 11 

Actinopterygii Raniceps raninus 0.560535295 0.224214118 11 

Actinopterygii Labrus bergylta 0.116637459 0.046654984 11 

Actinopterygii Callionymus species 0.061449623 0.024579849 11 

Actinopterygii Trachinus draco 0.028716323 0.011486529 11 

Actinopterygii Echiodon drummondi 0.10989 0.043956 11 

Actinopterygii Trigladae Species 0.380616789 0.152246716 11 

Actinopterygii Chelidonichthys lucerna 0.380616789 0.152246716 11 

Actinopterygii Scorpionidae 0.298731964 0.119492786 11 

Actinopterygii Scophthalmus rhombus 0.062002125 0.02480085 11 

Actinopterygii Hyperoplus lanceolatus 0.041167176 0.016466871 11 

Actinopterygii Microstomus kitt 0.092042868 0.036817147 11 

Actinopterygii Sardina pilchardus 0.10989 0.043956 11 

Actinopterygii Limanda limanda 0.089431583 0.035772633 11 



 

203 

 

Table S3.2. continued. 33 

Group Species 

Dry mass 

(mg) C (mg) Reference 

Actinopterygii Fish larvae 0.1483 0.05932 6 

Actinopterygii Fish egg 0.109 0.0436 5 

Mollusca Limacina species 0.03636 0.00803556 4 

Mollusca Clione species 1.741 0.384761 2 

Copepoda Copepods 0.112308 0.053319 8 

Decapoda Megalops 0.555 0.2202 1 

Decapoda Zoea 0.304 0.1332 1 

Amphipoda Hyperiidae 0.4295 0.1767 3 

Copepoda Lepeophtheirus species 0.4295 0.1767 8 

Tunicata Appendicularia 0.00349 0.00161 11 

Chaetognatha Sagitta elegans 0.1840772 0.074131024 11 

Chaetognatha Sagitta setosa 0.1840772 0.074131024 11 

Polychaeta Tomopteris species 0.51368812 0.27048 11 

Polychaeta Polychaete larvae 0.0113 0.00595 11 

Echinodermata Ophiuroidea 0.0216 0.00864 6 

Echinodermata Asteroidea 0.05839 0.023359 6 
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Diversity and occurrence of siphonophores in Irish 

coastal waters. 

Haberlin, D., Mapstone, G., McAllen, R., McEvoy, A.J. and Doyle, T.K. 

Published in Biology and Environment: Proceedings of the Royal Irish Academy, 

2016, Vol. 116, No. 2, pp. 119-129 



 

219 

 

Paper II 
 

First observations of the freshwater jellyfish 
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Doyle, T.K., 2016. 
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