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Highlights: 

 Novel methodology for representing modal choice into energy system models is presented 

 Heterogeneity of transport users is introduced to differentiate modal perceptions 

 Preferences accounted through monetization of intangible costs  

 Value of time and level of service variables are accounted by the model 

 Approach paves the way to new policy analyses involving novel attributes 

 

Abstract:   

This study presents MoCho-TIMES, an original methodology for incorporating modal choice into energy-

economy-environment-engineering (E4) system models. MoCho-TIMES addresses the scarce ability of E4 

models to realistically depict behaviour in transport and allows for modal shift towards transit and non-

motorised modes as a new dimension for decarbonising the transportation sector. The novel methodology 

determines endogenous modal shares by incorporating variables related to the level-of-service (LoS) of 

modes and consumers’ modal perception within the E4 modeling framework. Heterogeneity of transport 

users is introduced to differentiate modal perception and preferences across different consumer groups, while 

modal preferences are quantified via monetization of intangible costs.  A support transport simulation model 

consistent with the geographical scope of the E4 model provides the data and mathematical expressions 

required to develop the approach. This study develops MoCho-TIMES in the standalone transportation sector 

of TIMES-DK, the integrated energy system model for Denmark. The model is tested for the Business as 

Usual scenario and for four alternative scenarios that imply diverse assumptions for the new attributes 

introduced. The results show that different assumptions for the new attributes affect modal shares and CO2 

emissions. MoCho-TIMES inaugurates the possibility to perform innovative policy analyses involving new 

parameters to the E4 modeling framework. The results find that authority’s commitment to sustainability is 

crucial for a paradigmatic change in the transportation sector.  

 

1. Introduction  
Transport is a key driver of economic development and it plays a fundamental role in supporting quality of 

life. However, it is also responsible for approximately 28% of total final energy use and for 23% of the world 
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energy-related CO2 emissions [1]. Transport is regarded as the most complicated sector to decarbonise, due 

to multiple reasons. Its rate of growth of energy use and CO2 emissions is 2% a year, the highest among all 

the end-use energy sectors. Moreover, the global growth of transportation activity has been tracking that of 

GDP and is strongly linked to the increase of population and incomes [2]. Mobility demand per capita in 

non-OECD counties is still far below the levels in OECD countries, but is expected to grow at fast pace [3]. 

While the power and heat sectors have many efficient and renewable energy based technologies available to 

enable a technology switch, the transportation sector lags behind. Some low-carbon technologies have 

appeared in the market [4], but they are still characterised by high investments costs that slow a large-scale 

deployment. Moreover, new transportation technologies have to face the slow turnover rate of the existing 

vehicle stock and the lock-in effect originated by the existing infrastructure. So far, the efforts to reduce 

transportation emissions by technological improvements and fuel standards have been offset by the increase 

of activity. The International Energy Agency (IEA) estimates in its baseline scenario a doubling of current 

transport energy use by 2050 and slightly more than a doubling of associated CO2 emissions worldwide [5]. 

Experts agree on the strategy to pursue a reduction in transport externalities. The IEA suggests a combination 

of four technological and behavioural measures to promote concurrently: avoiding travelling, shifting to 

different modes, improving vehicle performance and switching to lower-carbon fuels [5]. Another set of 

measures suggested includes development of efficient technologies, changes in pricing and budgeting, 

changing attitudes, infrastructure supply, innovative institutional arrangements and development of new 

methods [6]. Given these premises, it is clear that the behavioural dimension plays a key role and that a 

behavioural change is a precondition for the decarbonisation of the transportation sector. 

Energy system models are powerful tools for supporting long-term decision making and planning in the 

energy sector. In this paper we focus on a specific family of them, the TIMES/MARKAL models, belonging 

to the category of energy-economy-environmental-engineering (E4) optimization models. TIMES and 

MARKAL models have been used for more than three decades to identify least-cost resources and 

technology deployment pathways towards greenhouse gas (GHG) emission-free energy systems and 

exploring alternative scenarios under several constraints [7], [8], [9], [10], [11], [12]. The major strength of 

E4 models lies in their ability to provide a detailed representation of the technological, economic and 

environmental dimensions of the integrated energy system and in their capability to explore decarbonisation 

pathways considering cross-sectoral dynamics and synergies. On the other hand, E4 models are still weak at 

depicting consumer behaviour [13], [14], [15]. This lack, to a certain extent, has reduced the credibility of E4 

models’ policy evaluations [16]. E4 models normally represent only a “system wide” decision maker, with 

perfect information and foresight and who takes rational decisions only based on pure economic criteria. 

However, individuals’ preferences and behavioural attitudes are a fundamental aspect of decision making in 

the transportation sector. Therefore, the behavioural dimension shall be integrated in E4 models, to validate 

their application in transport policy analysis. This paper aims at filling this gap by proposing a new 

methodology, called MoCho-TIMES, that enables to incorporate modal choice (the choice that individuals 

make in selecting the means of traveling, e.g. car, public transport, bike or walk, for a specific trip) within E4 

optimization models. Integrating modal choice within E4 models helps to identify the barriers limiting modal 

shift to zero- and low-carbon modes and to understand what kind of policies and regulation mechanisms can 

potentially trigger such modal shift. The theoretical basis of consumer choice is presented in Section 2, 

which reviews as well the representation of modal choice in transport and energy system models. Then, 

Section 3 presents all the aspects of this novel methodology. The results for the Business as Usual (BaU) 

scenario and for the alternative scenarios are analysed in Section 4, which also provides some insights on the 

capabilities of the approach. A discussion of the most innovative and critical aspects of MoCho-TIMES is 

provided in Section 5, together with recommendations for future research. Finally, Section 6 presents some 

concluding remarks of this study. 
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2. Theory and representation of modal choice  
Modal choice consists of an individual facing two or more alternative transportation modes among which to 

choose. Given the finite and exhaustive set of mutually exclusive choice alternatives, modal choice can be 

represented by discrete choice models [17]. According to the classical formulation of discrete choice models 

[18] [19], individuals choose among the available alternatives based on an index of preference, called utility, 

which depends on the characteristics of the alternatives and on the characteristics of the individual. 

Traditionally, in discrete choice models the utility is a linear function of parameters and attributes, plus an 

error term, which accounts for the fact that the modeller is able to capture only a subset of all the attributes 

affecting modal choice [19]. These attributes are generally socioeconomic variables, which account for 

diversity in modal perception across the population, and level-of-service (LoS) variables, defining the 

characteristics of the alternatives as perceived by the consumers. Moreover, alternative-specific constants 

(ASC) are used to take attributes that are not under the modeller’s control into account. Discrete choice 

models calculate the probability that a consumer chooses a certain alternative from the choice set by 

comparing the utilities of the different alternatives. A rational consumer will choose the alternative from 

which he gets the greatest utility. The most popular technique for modeling modal choice has been through 

logit and probit models, because they are able to account for variation of preferences across the population 

[17]. An important characteristic of modal choice is that it is a spatial problem: the choice of the mean of 

transport for a trip strongly depends on the trip length, on its origin and destination and on the local 

availability of public transport and transport infrastructure.  

A review of the LoS, socio-economic and demographic attributes highly relevant for mobility behaviour has 

been performed. Table 1 recollects the attributes affecting modal choice in some transport models found in 

the literature [20], [21], [22], [23], [24], [25], [26].  

Table 1: Attributes relevant for modal choice in transport models 

 Attribute LTM 

[20] 

RMS 

[21] 

CSTDM 

[22] 

NTM 

[23] 

Cherchi et 

al., 2002 

[24] 

Cherchi 

et al., 

2003 [25]  

De Jong 

et al., 

2004 [26] 

Demographic Age x x x x  x x 

Gender x x x x x x x 

Presence of 

children 

x x x x    

Level of 

education 

 x    x  

Role in the family      x  

Geography 

location 

x x x x    

Licence 

ownership 

  x x x x x 

Car ownership x x x x x x x 

Household size   x x   x 

Socioeconomic Income x x x x  x x 

Employment 

status/labour 

market 

association 

x x x x  x x 

Student enrolled   x     
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Number of 

weekly working 

hours (part-

time/full-time) 

  x   x  

Freelence/employ

ee  

  x  x x  

LoS Car Free time x x x     

In-vehicle time    x x x x 

Monetary cost x x x x x x x 

Congestion time x x x     

Distance x x x x   x 

Comfort     x x  

Ferry time/cost x   x    

Parking/Toll cost x x x x x  x 

LoS public 

transport 

In-vehicle time x x x x x x x 

Initial waiting 

time 

x x x     

Transfer waiting 

time 

x x x x x x x 

Transfer time x x x  x x x 

Access/Egress 

time  

 x x x   x 

Distance x x x x   x 

Transit fare x x x x x x x 

Reliability      x  

Comfort      x  

Delay/Reliability     x x  

LoS non- 

motorized 

Travel time x x x x x x x 

Distance x x x x x  x 

Transport models have a long tradition of representing modal choice. Their structure generally consists in 

four steps: trip generation, trip distribution, modal choice and route assignment. In the third stage, modal 

shares are traditionally determined though multinomial logit model (MNL) or nested logit model (NMNL) 

accounting for many attributes describing the observed characteristics of the modes and the observed 

characteristics of the consumers. These types of transport models are normally characterized by a high level 

of population segmentation, with the rationale that behaviour is an individual feature and therefore attempts 

to capture it should be pursued to provide as much heterogeneity as possible. The population is traditionally 

segmented based on demographics and socio-economic variables, which allow differentiating the LoS of the 

modes across consumer groups. More recently, the use of attitude-based consumer disaggregation is 

becoming popular [27]. Considering attitudes of the population as criteria for consumer segmentation, in 

particular travel behaviour and willingness to change behaviour, provides a better starting point for initiatives 

promoting sustainable transport. In fact, it allows for establishing priorities and targeting different groups of 

people with ad hoc policies [26], [28]. Moreover, empirical results show a link between lifestyle and 

sustainability in travel behaviour, claiming a paradigmatic shift in transport regulation from demand 

management towards lifestyle adjustments [29]. 

In the field of energy system modeling, the improvement of the behavioural dimension of transport and the 

representation of modal choice is an innovative topic. Traditionally, in optimization E4 models the end-use 

mobility demands are specified exogenously for each mode. Several technologies compete to fulfil the 
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projected mode-specific mobility demands. However, technologies compete within a mode, but not between 

modes, thus preventing endogenous modal shift [30]. This was a limitation, because modal shift is an 

efficient lever to cut CO2 emissions in the transportation sector. At first, the contribution of modal shift 

towards GHG-emissions reduction was determined by means of “what if” analyses, which assess the effect 

of exogenously assumed levels of modal shift on the whole energy system and on the environment [5], [31], 

[32], [33]. Recently, the interest of researchers is addressing the integration of modal choice [13], [16]. A 

review of the representation of behaviour in integrated energy and transport models recognised two main 

approaches to incorporate behaviourally realistic modal choice into bottom-up (BU) optimization E4 models 

[13]. The first and most traditional approach consists of linking an E4 model with an external simulation 

transport model that incorporates the behavioural variables in a non-linear framework (such as constant 

elasticities of substitution, or an MNL model) and that determines the modal shares [34], [35], [36]. The 

other approach consists of determining modal shares directly within the E4 model, by broadening its 

classical structure to integrate some transport-specific variables relevant for modal choice, such as those in 

Table 1 [37], [38], [39]. Despite the development of the second method requires substantial changes in the 

traditional model structure to incorporate transport-related attributes, integrating modal choice directly 

within the E4 model has several benefits. First, modal shift is evaluated with a whole-energy system 

perspective, which strengthens the reciprocal implications of transformations in the energy and transportation 

sectors. This is particularly important, as the energy and transportation sector are expected to become more 

strictly integrated in the future. Then, it inaugurates the possibility to assess novel policies involving 

transport-related and behavioural variables within an E4 model. MoCho-TIMES belongs to the second 

category of the taxonomy described above. 

 

3. Methodology 
The methodology proposed in this paper aims to incorporate behaviourally realistic modal choice in 

optimization E4 models. The E4 model used in this study is the TIMES (The Integrated MARKAL EFOM 

System) model, and the approach presented is called MoCho-TIMES (Modal Choice in TIMES).  TIMES is 

a model generator developed and maintained by the Energy Technology Systems Analysis Program 

(ETSAP), a Technology Collaboration Programme of the IEA [40]. It is a partial equilibrium, linear 

optimization model for the energy system: it determines the solution as the minimization of the sum of the 

total system cost of the energy system discounted to a reference year, subject to certain restrictions. TIMES 

is based on the bottom-up approach and thus it is said to be “technology-rich”, because it describes the 

technical, economic and environmental characteristics of the technologies of the energy system in detail. 

These characteristics make it a powerful tool for energy planners to identify the most cost-effective portfolio 

of resources and technologies to fulfil future energy-service demands under several constraints. TIMES is 

also a valuable tool for performing long-term energy system analyses, for assessing long-term dynamics 

across different sectors of the energy system, for testing policies affecting the energy system and for 

exploring alternative scenarios. A detailed description of TIMES is provided by [40] while [39] and [41] 

describe the traditional representation of the transportation sector within TIMES models. While this study 

integrates the methodology into a TIMES energy systems model, the intention is to produce a tool replicable 

by any E4 model. 

The development of MoCho-TIMES relies on and requires a transport simulation model, consistent with the 

geographical scope of the analysis, which works as support model. This support model includes modal 

choice and is the main source of data for implementing the methodology hereby proposed. For this 

demonstrative study, the support model is the Landstrafikmodellen (LTM), also called “the Danish National 
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Transport Model” [42], [43]. A detailed description of LTM and of its representation of modal choice is 

provided in Section 3.1.  

This demonstrative version of MoCho-TIMES has been developed as a standalone model, which includes 

only the transportation sector of TIMES-DK, the integrated energy system model for Denmark [30], [44], 

[45]. The passenger transport demands are defined exogenously from the base year (BY) of 2010 until the 

end of the time horizon (2050) and are expressed in million-passenger kilometres (Mpkm). The modes that 

compete to fulfil such travel demands are: private car, bus, train, S-train, metro, bike and walk. Modes are 

not represented by a unique technology, but include several technologies with different powertrains. The 

model optimizes the system, determining the least-cost modal shares and vehicle shares that satisfy the 

mobility demands simultaneously, and subject to the constraints described below in this section. The novel 

modeling features characterising MoCho-TIMES are described in detail in Section 3.2.  

The authors acknowledge previous work by [41], [46] and [47] as source of inspiration for the approach of 

MoCho-TIMES. Nonetheless, a primary difference is that MoCho-TIMES enables incorporating modal 

choice in E4 models, while MESSAGE-Transport [41] and COCHIN-TIMES [46] improve the 

representation of vehicle choice. 

 

3.1 The Danish National Transport Model LTM 

The Danish National Transport Model (LTM), is a comprehensive transport demand model for Denmark 

[42]. Based on a simulation framework, it is able to forecast the passenger and freight transport demand in 

Denmark from 2010 until 2030. It is highly disaggregated geographically, in order to be able to represent 

mobility flows between zones: it includes 907 zones for Denmark and 371 zones for the surrounding 

countries. The main source of data is the Danish National Travel Survey, also denominated TU survey [48]. 

This survey has been investigating the travel habits of the Danish population by recollecting mobility diaries 

and socio-economic data since 2006. 

Within LTM, the passenger transport model consists of several interacting sub-models. First, the population-

synthesizer forecasts the characteristics and the distribution of the Danish population in a given year. Then, 

the population is grouped into households and input into the demand model, which determines the mobility 

demand. Finally, such demand is iteratively assigned to the transport infrastructure (to account for the fact 

that an increase in demand corresponds to more congestion) until reaching convergence. The final output of 

LTM describes how the demand related to the modes car, bus, train, S-train, metro, walk and bike is 

distributed across the zones in each year. A detailed description of LTM is provided by [43]. Within the 

scope of this study, it is worth focusing on the travel demand model and in particular on the modal choice 

step, useful to understand the modeling decisions adopted for developing MoCho-TIMES. The demand 

model consists of three steps: 

 Trip generation: it determines the total number of trips generated and attracted in each zone. For this 

purpose, an MNL model considering the socio-economic characteristics of the households is used 

 Trip distribution: the number of trips generated and attracted is used to predict the most likely trip 

flow pattern between origins and destinations through a gravity model. The output of this step is a 

cross-modal origin-destination (OD) matrix, which describes the trip distribution pattern across the 

zones 

 Modal choice: an MNL model calculates modal shares comparing the utility functions of the modes 

available. The outputs of this step are the mode-specific OD matrices 

Modal choice in LTM is performed every year (𝑦) considering a wide range of attributes. As anticipated in 

Section 2, the attributes relevant for modal choice are socio-economic variables and LoS variables. The LoS 
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covers a wide range of attributes related to travel-time components, as shown in Equations 1-3 (for each year 

𝑦). The travel time for car (𝑇𝑖𝑚𝑒𝑐𝑎𝑟) is calculated as a combination of free-flow travel time (𝑓𝑓𝑡𝑐𝑎𝑟), 

congestion time (𝑐𝑡𝑐𝑎𝑟), ferry-sailing time (𝑓𝑠𝑡𝑐𝑎𝑟) and ferry-waiting time (𝑓𝑤𝑡𝑐𝑎𝑟) multiplied by some penalty 

factors (congestion penalty (𝑐𝑝), ferry-sailing penalty (𝑓𝑠𝑝), ferry-waiting penalty (𝑓𝑤𝑝)). All the attributes for 

the LoS of car are calculated in the route assignment model. For public transport, the travel time (𝑇𝑖𝑚𝑒𝑃𝑇) is 

determined in a schedule-based assignment model. It consists of four components, namely in-vehicle time 

(𝑖𝑛𝑣𝑃𝑇), departure waiting time (𝑑𝑝𝑤
𝑃𝑇

), waiting time at the stop (𝑤𝑡𝑡𝑃𝑇) and walking time (𝑤𝑘𝑡𝑃𝑇), weighted by 

some penalty factors (waiting penalty (𝑤𝑡𝑡𝑝), walking penalty (𝑤𝑘𝑡𝑝). For non-motorized modes the travel 

time (𝑇𝑖𝑚𝑒𝑁𝑀 ) is just the travel time itself (𝑡𝑡𝑁𝑀). 

𝑇𝑖𝑚𝑒𝑐𝑎𝑟,𝑦 =  𝑓𝑓𝑡𝑐𝑎𝑟,𝑦 + 𝑐𝑡𝑐𝑎𝑟,𝑦 ∗ 𝑐𝑝 + 𝑓𝑠𝑡𝑐𝑎𝑟,𝑦 ∗ 𝑓𝑠𝑝 +  𝑓𝑤𝑡𝑐𝑎𝑟,𝑦 ∗ 𝑓𝑤𝑝          Equation 1 

𝑇𝑖𝑚𝑒𝑃𝑇,𝑦 =  𝑖𝑛𝑣𝑃𝑇,𝑦 + 𝑑𝑝𝑤𝑃𝑇,𝑦 + 𝑤𝑡𝑡𝑃𝑇,𝑦 ∗ 𝑤𝑡𝑡𝑝 + 𝑤𝑘𝑡𝑃𝑇,𝑦 ∗ 𝑤𝑘𝑡𝑝          Equation 2 

𝑇𝑖𝑚𝑒𝑁𝑀,𝑦 =  𝑡𝑡𝑁𝑀,𝑦              Equation 3 

In LTM, the LoS terms and the costs of each mode 𝑚 are joined in a generalized time measure (𝐺𝑇𝑇𝑚,𝑦). As 

shown in Equation 4, the generalized time is obtained by taking the quotient of the cost component and the 

value of time (VoT). 

𝐺𝑇𝑇𝑚,𝑦 =  𝑇𝑖𝑚𝑒𝑚,𝑦 +  
𝐶𝑜𝑠𝑡𝑚,𝑦

𝑉𝑜𝑇
              Equation 4 

The VoT is the marginal substitution cost between travel time and travel cost and it states how much a 

consumer is willing to pay to reduce the travel time of one unit [49]. The VoT adopted in LTM and in this 

study differs between segments, depending on the purpose of the trip and on the income level of the 

consumer [50]. The relationship between the VoT and the income level is shown in Table 2, from which it 

results that richer people are willing to spend more to save travel time.  

Table 2: Value of time by income group in DKK/hour (personal elaboration from [50]) 

Income 

class 

Personal income 

[100k DKK/year] 

Weighted average VoT 

in 2010 [DKK/hour] 

Very Low <200 50.8 

Low 200-500 87.6 

Medium 500-800 145.9 

High >800 240.5 

For each mode, the generalized time and other dummy variables related to the socio-economic characteristics 

of the household and to the type of zone where the trip occurs are multiplied by the model parameters 

(obtained through log-likelihood maximisation) and finally aggregated in the utility functions [43]. The 

utility functions of the different modes are compared for every year within a MNL model, which determines 

the modal shares.  

This overview of LTM is the fundamental background required to understand the main modeling choices 

done while developing MoCho-TIMES. In fact, MoCho-TIMES aims at being solely grounded on well-

founded behaviour and consumer choice theory and relies on the data and mathematical expressions of the 

generalized time of LTM [48].  
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3.2 MoCho-TIMES: Overview and structure 

Traditionally, E4 models assume a central, global decision maker who carries out decisions on behalf of the 

average consumer, with full information and perfect rationality while aiming to maximize the system’s 

economic utility only accounting for costs. Under these modeling assumptions, the modal shares and the 

technology portfolio determined by the models represent a configuration optimum for the system, but not for 

the consumers’ perspective. Moreover, new vehicles penetration is characterised by a sharp pattern: as soon 

as a technology becomes cost-effective, it obtains the entire market share. This phenomenon is denominated 

“winner-takes-all” behaviour or “knife-edge” behaviour [46]. However, modal choice depends on consumer 

preferences and, as highlighted in Table 1, the attributes affecting it are more than purely economic. Diverse 

groups of consumers have different perceptions of these attributes, which results in disparate preferences 

towards modal adoption. Therefore, incorporating consumer heterogeneity into the modeling framework is a 

precondition for representing realistic modal choice behaviour. In this way, each group of transport users 

chooses its own optimal set of modes and technologies, thus leading to a variety of modes each year. Beside 

heterogeneity, representing behaviourally realistic modal choice in E4 models requires incorporating the 

main variables affecting it, as described in Table 1. To account for these two major requirements, the 

innovative methodology of MoCho-TIMES consists in two main steps: 

1. Divide transport users into heterogeneous groups with different modal preferences  

2. Incorporate intangible costs (disutilities) that assume different values across the diverse 

groups of transport users 

The rest of this section provides a description of these two modelling innovations in Section 3.2.1 and 

Section 3.2.2, then describes the other constraints required for developing MoCho-TIMES in Section 3.2.3 

and finally provides an overview of the model structure in Section 3.2.4. 

 

3.2.1 Incorporating demand-side heterogeneity  

Population heterogeneity is required to account for the diversity of behaviour across different groups of 

consumers [51]. From a modeling perspective, incorporating heterogeneity consists of dividing transport 

users into groups characterized by different attitudes towards modal choice, which are reflected in different 

intangible costs. In MoCho-TIMES, heterogeneity is introduced by splitting the total travel demand into 

segments, each one associated to a specific group of transport users. Identifying the dimensions according to 

which transport users are split is crucial, because they need to capture the key differences between the groups 

and their modal preferences. The dimensions for the heterogeneity are a subset of the demographic and 

socioeconomic attributes in LTM: 

 Region of residential location: Denmark East (DKE) and Denmark West (DKW) 

 Type of residential location: urban (U), suburban (S) and rural (R) 

 Income level of the household: high (H), medium (M), low (L), very low (VL) 

Overall, this characterization of heterogeneity allows to differentiate 24 groups of transport users with 

different preferences in modal choice, as visible in Figure 1. 
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Figure 1: Schematic illustration of heterogeneous consumer groups 

The first two levels of the segmentation introduce spatial characterisation in the model, which is fundamental 

when dealing with transportation analysis. The type of residential location, i.e. the type of area from which 

the trips depart, affects accessibility to public transport and attractiveness of car (e.g. metro and S-train are 

not available in DKW, waiting-time and walking-time for train are higher in rural areas and car is 

characterised by higher congestion-time in urban areas). Therefore, these splits enable differentiating the LoS 

of the modes across the population. The third split distinguishes the perception of the LoS of the modes for 

consumers living in the same residential location by considering their income levels. The rationale behind 

such a split is provided by Table 2, which shows that the income level affects the VoT, so that people weigh 

time and cost in a different way depending on their wedge. Consumer segmentation according to the income 

level is based on TU survey [52], while the split according to the type of residential location is based on the 

OD matrix of LTM. As shown in Figure 2, the zones of LTM are labelled as urban, suburban and rural, 

taking the density and the total population in every zone into account [53]. Matching the travel demand 

distribution provided by the OD matrix with the U/S/R label reveals how the total travel demand distributes 

across the types of urbanization. 

 
Figure 2: Classification of the zones of LTM by type of residential location 
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3.2.2 Quantifying modal preferences 

After heterogeneity is integrated by splitting the mobility demand into segments corresponding to groups of 

transport users living in the same type of residential location and with similar income level, the intangible 

costs need to be incorporated in the model. These serve to capture the non-economic factors affecting modal 

choice into the expression of the generalized cost, as well as to differentiate modal perception across the 

heterogeneous demand segments through monetization. In order to incorporate intangible costs in the model, 

the expression of the modal cost is changed. The generalized cost (𝐺𝐶) characterising each mode (𝑚), per 

each consumer group (𝑐𝑔) and in each year (𝑦) is the sum of three terms, as shown in Equation 5: fuel cost 

(𝐹𝐶), non-fuel cost (𝑁𝐹𝐶) (including operation and maintenance cost and investment cost) and intangible 

costs (𝐼𝑛𝐶𝑜𝑠). 

𝐺𝐶𝑚,𝑐𝑔,𝑦 =  𝐹𝐶𝑚,𝑦 + 𝑁𝐹𝐶𝑚,𝑦 + 𝐼𝑛𝐶𝑜𝑠𝑚,𝑐𝑔,𝑦                               Equation 5   

The latter term of Equation 5 is the one that introduces the non-monetary costs perceived by consumers and 

that differentiates the perception of the mode across consumer groups. In fact, the same mode has associated 

different intangible costs (𝐼𝑛𝐶𝑜𝑠) for each consumer group. This is due to the expression of the intangible 

costs, shown in Equation 6: it is the product of the LoS, which is affected by the type of residential location, 

and the VoT, which is related to the income level of the 𝑐𝑔. Other attributes that also contribute to the utility 

of a transport mode, e.g. car ownership, presence of children in the family, are not included in this 

formulation. 

𝐼𝑛𝐶𝑜𝑠𝑚,𝑐𝑔,𝑦 =  𝐿𝑜𝑆𝑚,𝑐𝑔,𝑦 ∗ 𝑉𝑜𝑇𝑚,𝑐𝑔,𝑦                                                Equation 6 

The expressions of the LoS in MoCho-TIMES are the same as those in LTM described in Equations 1-3, in 

order to maintain consistency with the support model. In particular, the LoS in MoCho-TIMES are obtained 

aggregating the quantities of LTM at the level defined by the heterogeneity. Another important difference 

between MoCho-TIMES and the support model is that the latter characterizes modal perception through the 

generalized time (see Equation 4), while the novel model adopts the generalized cost. As optimization 

models take decisions based on least-cost criteria, the monetization of the LoS is required. It is worth noting 

that all the technologies belonging to the same mode are characterised by the same intangible cost. 

Nonetheless, the methodology is flexible enough to allow differentiating this cost across technologies, if 

required.  

Figure 3 compares the intangible cost perceived by VL income consumers living in the three types of 

residential locations for Denmark East in 2030 with the non-fuel cost (the sum of the capitalized investment 

costs and operation and maintenance costs) and fuel cost. In all the residential locations and for all the 

modes, intangible costs account for the greatest share of the generalized costs. Moreover, Figure 3 shows that 

the intangible costs assume diverse values for the three types of residential location, which proves that the 

differences in modal perception of consumers living in urban, suburban and rural areas are reflected in the 

intangible costs. 
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Figure 3: Comparison of non-fuel cost, fuel cost and intangible cost for VL income consumers in Denmark East in 2030 in the three 

types of residential locations 

Consumers with different income levels are characterized by distinct magnitudes of intangible costs, as 

visible in Figure 4 (for suburban areas in Denmark East in 2030. Figures for the other urbanization types, in 

Denmark West and in other years are slightly different). This is evidence of the fact that the VoT is 

proportional to the income level (see Table 2). As a consequence, MoCho-TIMES adopts the modes 

characterised by better LoS to move high income groups, while for less attractive modes such as walk and 

bike it prioritizes consumers with lower income level. This is done while respecting the constraints described 

in Section 3.2.3. 
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Figure 4: Intangible costs faced by consumers living in suburban areas in Denmark East in 2030 per mode and per income level 

 

3.2.3 Incorporating the other variables influencing modal choice in MoCho-TIMES 

In addition to consumers’ heterogeneity and intangible costs, MoCho-TIMES also incorporates other 

parameters that influence modal choice. These are the monetary budget, availability of transport 

infrastructures, travel time budget, travel patterns, maximal modal shares and maximum rate of shift. A 

description of these features is provided in this section.    

 

3.2.3.1 Monetary budget 

Traditionally, E4 models determine the optimal configuration of the future energy system by comparing the 

lifetime costs of the technologies available and the fuel production chains as perceived by a central energy 

planner. The costs accounted are related to the supply of the energy resources and to the technology capacity 

expansion and operation: investment costs, fixed and variable operation and maintenance costs, fuel costs 

and delivery costs. Nonetheless, when incorporating modal choice in the modeling framework, the 

perspective of the central energy planner must be substituted with that of the consumers. These consumers 

also perceive other costs, such as availability of infrastructure, ticket fares for public transport and fuel taxes, 

parking cost, vehicle registration tax (VRT) and ownership tax for private car. In order to render 

comprehensively the mechanism of consumers’ modal choice, these costs have been integrated into MoCho-

TIMES. Fares for public transportation modes are calculated from the TU Survey [52], while for car the cost 

of parking is obtained from [54], the insurance cost from [55] and the registration and ownership taxes from 

[56]. Nonetheless, the central planner does not face these costs, which hence shall not be accounted in the 

total system cost. Therefore, these consumer-perceived costs of driving car and using public transport are 

included in the model as commodities, which are consumed by the modes in order to fulfil the travel 

demands. The model tracks how much consumer-perceived cost commodities are consumed by the four 

income groups (H, M, L and VL). In addition, income-group specific monetary budgets limit the 

consumption of the consumer-perceived cost commodities. The monetary budgets are obtained considering 

the monetary requirement in the BY of MoCho-TIMES calibrated to the baseline demand projection of the 



13 
 

LTM. The monetary budget ensures that the different classes of income groups do not spend for mobility 

more money than historically observed. At the same time, since the monetary budget includes both transit 

and private car, the constraint does not fix the relative modal shares of these two classes of mode and allows 

modal shift. 

 

3.2.3.2 Transport infrastructure 

Transport infrastructure is a key driver of travel demand and modal choice [6], [57], [58]. In transport 

simulation models such as [20] and [21], the level of utilization of the road network affects congestion time 

and travel time for car and thus influences the LoS. On the other hand, in energy system models transport 

infrastructures are more rarely represented. The rationale for incorporating infrastructure in MoCho-TIMES 

is that there must always be enough infrastructure capacity to accommodate the travel demand. There are 

five transport infrastructures represented in MoCho-TIMES: road for bus and car, three railways for train, S-

train and metro and bicycle lane for bike. These transport infrastructures are not represented explicitly in the 

model, but as commodities that the modes consume in order to fulfil the mobility demand. The existing 

infrastructure commodities are free, but limited. The amount of extra travel demand with respect to the BY 

that the existing infrastructures can accommodate before saturating depends on their capacity utilization 

levels. These are calculated for each infrastructure as the ratio between the maximum traffic volume and the 

infrastructure capacity [59], [60]. After the existing infrastructures saturate, the model accommodates the 

extra travel demand by investing in new infrastructures, with a cost associated [61], [62]. More details 

regarding the representation of transport infrastructure are provided in [39]. 

 

3.2.3.3 Travel time budget 

The rationale of the travel time budget (TTB) has been provided by [63], which claims that, in different 

geographical areas, historical periods and socio-economic contexts, people dedicate the same amount of time 

to mobility. The TTB has been incorporated in MoCho-TIMES to ensure that transport users dedicate to 

mobility an amount of time consistent with historical observations. From the modeling perspective, the TTB 

is a constraint that limits the availability of the travel time commodity, which is consumed by all the modes 

and technologies when fulfilling the travel demands. Travel time is constant across all the technologies 

belonging to the same mode (with the exception of electric and normal bikes). Moreover, travel times are 

specific to the region and type of residential area from which the trip originates. Travel times are obtained 

from TU Survey [52] as described in [39]. The TTB per capita for the BY of MoCho-TIMES is 58.4 

minutes/day, very similar to that observed by TU survey, which is 54.8 minutes/day [52]. The difference 

between the two quantities is due to the fact that TU survey includes more modes in the analysis.  

 

3.2.3.4 Modal travel patterns, maximal modal shares and maximum rate of shift 

MoCho-TIMES characterizes the modal travel patterns, which define how modes contribute to meet the 

travel demands. The modal travel patterns for the BY, shown in Table 3, are obtained from TU Survey [52]. 

Some additional flexibility is provided to the model to fulfil the future travel demands. From year 2012 

onwards, the travel patterns of private modes (car, bike and walk) are relaxed by 12% with respect to the BY, 

while those of public transport (bus, train, S-train and metro) are relaxed by 10%.  

Table 3: Modal travel patterns in 2010 

 Denmark East Denmark West 

 Urban Suburban Rural Urban Suburban Rural 

Car 33% 35% 31% 18% 34% 48% 
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Bus 56% 25% 19% 32% 31% 37% 

Train 52% 30% 18% 39% 37% 24% 

Metro 92% 3% 5%    

S-train 75% 20% 5%    

Bike 50% 28% 22% 34% 24% 43% 

Walk 72% 21% 7% 39% 40% 21% 

Modal competition in MoCho-TIMES is regulated also through a set of constraints that limits the maximal 

modal shares in 2050. These upper bounds are calculated comparing the modal travel patterns in Table 3 

with the distribution of the total travel demand across regions and urbanization types. The rate of modal shift 

is also limited, based on linear interpolation between the modal shares in the BY and the maximal modal 

shares in 2050. A more extensive discussion of these approaches is given in [39] 

 

3.2.4 Structure of MoCho-TIMES 

A simplified schematic overview of the structure of MoCho-TIMES is provided in Figure 5. Each mode can 

fulfil 24 demand segments, which correspond to the 24 heterogeneous consumer groups differentiated by 

region, type of residential location and income level (see Figure 1). The modes have an intangible cost 

associated to each demand segment. These costs monetize the modal perception of the consumer group 

associated to the demand segment and are calculated outside of the model as shown in Equation 6. Moreover, 

each mode contributes in its specific way to fulfil the demands, as defined by the travel patterns (see Table 

3). To fulfil the travel demands, the modes do not just consume fuels, as in traditional TIMES models, but 

require in input also other commodities: infrastructure, travel time and consumer-perceived costs. These 

commodities are provided by some processes (on the left part of Figure 5), which availability is bounded. 

The existing infrastructures (represented by just one process in Figure 5) are limited, and when saturated the 

model can endogenously decide to invest in new infrastructures, which have associated costs. The TTB 

limits the overall consumption of travel time. The monetary budgets for the four income groups (represented 

by just one process in Figure 5) limit their expenditure in public transport and private cars.  
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Figure 5:  Scheme of the structure of MoCho-TIMES 

 

3.3 Scenario definition   

Five scenarios are analysed in this study: a BaU scenario and four alternative scenarios that involve different 

LoS of modes, consumer perceptions, taxation schemes, infrastructure deployments and incentives to public 

transport with respect to the BaU scenario. The two dimensions for the alternative scenario matrix are 

authority commitment (A) and individual commitment (I), both characterised by the dichotomy high/low 

(HI/LO). A schematic overview of the four alternative scenarios is provided in Figure 6. 
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Figure 6: Scenario matrix, with authority commitment and individual commitment as dimensions 

A general description of the four alternative scenarios follows. More details on the assumptions for the BaU 

and alternative scenarios are provided in Table 1 of Appendix I:  

 HIA-HII (High Authority commitment – High Individual commitment): leaders and consumers are 

aligned in fighting climate change and local air pollution, aiming at a more sustainable transportation 

system. After 2020, the authority builds new bike lanes, bus lanes, one new metro line, one new S-

train line and a new electrified railway. The Government also encourages the use of public transport 

by decreasing the fares and increasing parking prices, especially in urban areas. In order to promote 

the adoption of alternative fuelled vehicles (AFV) and efficient vehicles, the authority also increases 

the taxes on diesel and gasoline from 2020 and on natural gas from 2030. The VRT for cars in 2020 

is set at the same levels as before the reform of 2016 [64] for fossil fuelled cars. On the other hand, 

plug-in hybrid (PHEV) only pay 20% of payable VRT and battery electric vehicles (BEV) and fuel 

cell electric vehicles (FCEV) are exempted from VRT. Following the investments in infrastructure, 

the careful urban planning and the integration of the public modes, the LoS of public transport after 

2020 is assumed to improve by approximately 10% in this scenario. Instead, the lack of investments 

in new roads and the increase of public lanes lead to a decrease in car speed. High individuals’ 

commitment towards sustainability consists of a greater willingness to spend time travelling (+10% 

TTB with respect to BaU), a better perception of the walking time and waiting time associated with 

the use of transit, a better perception of bike and walking, a lower availability to spend time in traffic 

with car and a reduction of the value of time (-10% VoT with respect to BaU).   

 HIA-LOI (High Authority commitment – Low Individual commitment): the Government strives to 

promote a sustainable transportation sector and puts in practice the same measures as described in 

the previous scenario (HIA-HII). Nonetheless, regarding the individual commitment, transport users 

are reluctant to change behaviour. After 2020, consumers are more willing to spend time in traffic 

when using car transport with respect to BaU, but less willing to spend time accessing the public 

transport station and waiting for transit, and do not perceive any attractiveness in walking and 
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cycling. They dedicate less time to mobility (-5% TTB with respect to BaU) and give a high value to 

savings of travel time (+10% VoT with respect to BaU) 

 LOA-LOI (Low Authority commitment – Low Individual commitment): this scenario corresponds to a 

future characterised by general disinterest towards climate change and environmental issues. The 

authority only builds new road infrastructure, thus improving only the LoS of car and bus. Moreover, 

it does not incentivize public transport fares, does not set new taxes on fuels, nor increase the VRT 

of fossil-fuelled cars.  Consumers’ low commitment towards sustainability is described in the same 

way as for the individual’s commitment of HIA-LOI.  

 LOA-HII (Low Authority commitment – High Individual commitment): individuals alone commit 

towards a more sustainable transportation sector, without any support from the Government. This 

scenario is characterised by the same variables as LOA-LOI concerning the authority commitment 

and by the same variables as HIA-HII concerning the individual commitment. 

 

4. Results 
MoCho-TIMES endogenously determines the modal shares from 2010 until 2050. It also determines the 

optimal technology fleet within each mode, the fuel consumption, fuel prices, investments in new transport 

infrastructures, emissions and other traditional outputs from E4 models. This section is structured as follows: 

firstly, Section 4.1 describes the results for the BaU of MoCho-TIMES, compares them with those of the 

support model LTM and focuses on the capability of the model to observe how modal shift occurs across 

diverse consumer groups. Secondly, Section 4.2 tests the behaviour of the model via a scenario analysis that 

evaluates how alternative assumptions for the newly incorporated variables affect modal share and CO2 

emissions.  

 

4.1 Business as Usual scenario 

Although MoCho-TIMES allows to analyse many aspects of the transportation sector, the focus of this study 

is primarily on modal shares, which are determined endogenously within the model. Figure 7 shows the 

modal shares for the BaU scenario, aggregated on all the demand segments. During the time horizon of the 

model, the total travel demand increases by about 31%. In the long-term, car transport is responsible for the 

majority of this increase, with a significant contribution from trains and bikes. In the medium-term, the 

activity of car is reduced due to the uptake of buses. These dynamics occur due to the unchanging vehicle 

prices of new cars in the medium-term, coupled with an improvement in the LoS of buses, which reduce the 

intangible costs for consumers. Nonetheless, after 2035 buses stop being used because the cost of car 

technologies significantly reduce, resulting in a shift towards cars. As road infrastructure saturates the model 

chooses to seize investing in more, but rather to adopt more train and bike transport. The increase in the use 

of metro and S-train is largely limited by the fact that it only exists in DKE and that it would require 

expensive investments in additional infrastructure. Walking strongly reduces with respect to the BY due to 

its high intangible cost. 
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Figure 7: Aggregated modal shares in the BaU scenario 

A comparison between the modal shares of MoCho-TIMES with those of its support model LTM is shown in 

Figure 8 for the years 2010, 2020 and 2030. The time horizon of LTM is limited to 2030, and so the 

comparison is drawn until this year. This comparison shows that MoCho-TIMES is able to reproduce the 

results of its support model satisfactorily. The modal shares of the two models in 2010 are identical and in 

2020 and 2030 the main differences consists in the fact that the market share of bus transport for MoCho-

TIMES is higher with respect to LTM, at the expense of train transport.  
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Figure 8: Comparison of modal shares between LTM and MoCho-TIMES for 2010, 2020 and 2030 

MoCho-TIMES has the capability to analyse how modal shift occurs in the different types of residential 

locations (urban, suburban and rural) while providing insights on modal adoption for each consumer group. 

The modal shares of Figure 7 are the aggregated result of the underlying choices of the heterogeneous 

consumers, which are characterised by diverse modal perceptions and preferences. The differentiation of the 

intangible costs across consumer groups allows for modal shares to vary by type of urbanization and income 

level, as shown in Figure 9. The aggregated patterns of modal adoption shown in Figure 7 (e.g. mid-term 

buses uptake, car saturation and long-term uptake of bikes and trains) are also visible at a disaggregated level 

in Figure 9. The opportunity of observing modal shares at a consumer group level is extremely important, as 

it provides insight to which segmentation(s) modal shift actually occurs and allows to differentiate the 

willingness to adopt sustainable modes across different transport users. In this way, it is possible to identify 

groups which are most averse to modal shift, to understand their reasons and to tackle them with ad-hoc 

policies. Furthermore, Figure 9 shows that transport users who live in rural areas have fewer options 

available to shift away from travel via car, which leads to an increase of the use of car across all income 

groups in rural areas. Urban and suburban areas are served by a wider variety of modes, which allows lower 

income classes to decrease their use of car transport after 2040 with respect to the BY. The use of cars in 

urban areas begins to plateau in the medium to long-term. Across all types of urbanization, VL and L income 

classes are witnessed to be more willing to shift away from car as a mode of transport, while wealthier 

consumer groups are more reluctant to reduce their dependence on car. In particular, high-income groups 

have a tendency to use fast modes of transport to travel, while their adoption of slow modes, e.g. bike, is the 

lowest. In urban areas, there is a shift away from car transport mainly towards train and bike transport. The 
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increase in train transport in this case is due to the better LoS offered by train in the long-term, such that its 

intangible costs become lower than that of car counterpart. The increase in the use of train, which is the 

fastest mode, leads time savings large enough to enable an increased use of bike, which is slow yet not 

expensive, while respecting the TTB constraint. 

 

Figure 9: Modal shares for the three types of residence location, disaggregated at income group level (aggregated for DKE and 

DKW). (a) urban, (b) suburban, (c) rural 

 

4.2 Alternative scenarios 

The sensitivity of MoCho-TIMES to the assumptions of key variables is hereby tested via illustrative 

scenarios, which explore how alternative assumptions can result in larger share of public transport and low-

carbon modes that can potentially reduce CO2 emissions. The costs of these scenarios, such as total system 

cost, investment cost, O&M cost and fuel cost related to the modes, cost of new infrastructures and subsidies 

are excluded from the discussion.  

For the four scenarios described in Section 3.3, MoCho-TIMES determines the modal shares shown in 

Figure 10. As expected, the diversity of assumptions for the variables results in different modal shares. The 

two scenarios that imply high commitment by the authority (HIA) are characterised by the lowest increase in 

the use of car transport. The HIA-HII and HIA-LOI scenarios mostly differ in the fact that in case of high 

commitment of transport users (HII) bike transport plays a major role in fulfilling future travel demand, 

while in case of low consumer engagement train transport is the mode characterised by the highest increase 

in the long-term. In the scenarios characterised by low commitment from the authority (LOA-HII, LOA-

LOI), car is the main mode meeting the future extra mobility demand. These two scenarios mostly differ in 

that bike transport is used more frequently in the case of high commitment of consumers (but still less than in 

HIA-HII and BaU), while in case of low commitment of individuals, buses and trains are preferred 
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alternatives. In particular, buses feature the most in the medium-term and trains in the long-term. Moreover, 

in these scenarios metro and S-train do not gain as much importance as in case of high authority 

commitment. While it is not reported in this paper, MoCho-TIMES has the ability to analyse how different 

consumer groups shift mode as a consequence of different assumptions, as shown for the BaU scenario in 

Figure 9. 

 

Figure 10: Modal shares in the four scenarios. HIA-HII:  High authority commitment – High Individual commitment; HIA-LOI: 

High authority commitment – Low Individual commitment; LOA-LOI: Low authority commitment – Low individual commitment; 

LOA-HII: Low authority commitment, high individual commitment 

The trend of CO2 emissions from the Danish transportation sector is compared for the BaU scenario and for 

the four scenarios analysed in Figure 11. The HIA-HII and HIA-LOI scenarios, which are characterised by 

lower increase of car usage and high use of public transport and bike transport, in the long-term reach a deep 

cut of CO2 emissions. On the other hand, the scenarios corresponding to a low commitment of authority 

imply even higher CO2 emissions than in the BaU scenario. Even if these results are relative to the Danish 

context, they highlight that the authority commitment towards sustainability is of primary importance to 

significantly reduce the carbon intensity of the transportation sector. If the Government does not commit 

towards sustainability, all the efforts of individuals alone are mostly nullified. 
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Figure 11: Trend of CO2 emissions from BY until 2050 in BaU scenario and in the four scenarios analysed  

 

5. Discussion and future research 
MoCho-TIMES moves a step forward in the representation of human behaviour in BU optimization energy 

system models and improves the representation of consumers’ choice in transport. The methodology 

proposed does not require any change in the TIMES code, although the model structure must be restructured, 

as shown in Figure 5. Moreover, a significant amount of data is required and the incorporation of the 

intangible costs implies several extra model calculations.  

The main limitation of MoCho-TIMES is that its development requires a transport simulation model with the 

same geographical scope as the E4 model. The transport model works as a support model, providing a 

disaggregated description of the mobility demand (via an OD matrix) and of the LoS attributes. Fortunately, 

for many countries and regions dedicated transport models are available, e.g. LTM for Denmark [20], RMS 

for Ireland [21] and CSTDM for California [22]. Even when a transport simulation model for the 

geographical area analysed is not available, many of the data required for incorporating modal choice in E4 

optimization models can be obtained from a geographically consistent travel survey. Concerning the use of 

transport models as support to the development of MoCho-TIMES, it is worth noting that the time horizon of 

the energy system model and of the transport simulation model may differ. In fact, E4 models are mainly 

used for exploring energy scenarios in the long-term, while transport simulation models are used to forecast 

the transport demand and the traffic distribution in the medium-term. Therefore, the latter category relies on 

data related to the socio-economic characteristics of the population and to the availability of infrastructure. 

This is the case for LTM, which forecasts the development of the Danish transportation sector until 2030, 

while MoCho-TIMES models the transportation sector with a time horizon of 2050. The difference in time 

horizon between the two models implies that the modeller has to make several assumptions for the transport-

related variables between 2030 and 2050. A possible way to overcome this limit is performing some scenario 

and sensitivity analyses on the uncertain variables, as done in Section 4.2.  

A further possible source of challenges lies in the fact that modal-choice within MoCho-TIMES is 

determined at a highly aggregated level, for macro clusters of consumers. As behaviour is an individual trait, 

any attempt to capture it should be pursued at individual level. The scientific literature shows that modal 

choice is deeply affected by behavioural features, hence transport models simulate modal choice at individual 

or household level [17]. Compared to these levels of detail, the heterogeneity integrated in MoCho-TIMES 

falls short. However, it manages to capture some variability of modal preferences across the population, 
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enough to overcome the “mean-decision maker” perspective [41]. In fact, by splitting the mobility demand in 

several segments corresponding to different consumer groups, the model determines the optimal modal 

shares separately for each consumer group. The mix of modes within the demand segments is obtained from 

the combined action of the travel pattern constraints and the maximal modal shares, which respectively set 

some shares on how modes fulfil the demands and regulate the maximum penetration of each mode. The 

variation in modal shares across demand segments (see Figure 9) is obtained from the intangible costs, which 

differentiate consumer-specific modal preferences, and from the difference in the monetary budget across 

income-groups.  

The authors find that the level of heterogeneity incorporated in this study is adequate for the scope of the 

analyses that are normally carried with E4 models. Nonetheless, the approach allows to define the number of 

heterogeneous consumers group in a flexible way. If an analysis needs a more refined level of heterogeneity 

for exploring consumers’ choices more in depth, it is possible to split the overall mobility demand according 

to more dimensions. Possible additional dimensions are the socio-economic and demographic attributes 

listed in Table 1. Another valuable criterion for demand splitting is according to trip distance, which would 

enable a better regulation of competition between modes, as done in [39]. Theoretically, having as many 

demand segments as the number of households, or even individuals, would be ideal. Nonetheless, a high 

number of demand segments leads to model intractability. Therefore, finding a good trade-off between 

model size and representation of the population is crucial. An important effort for the modeller is that of 

determining the minimum number of dimensions that allows to create an exhaustive distinction between the 

main consumer groups. The comparison of the results of LTM and MoCho-TIMES until 2030 proves that the 

latter is able to reproduce the results of its support model suitably, even if with aggregated transport 

demands. An alternative approach to represent population heterogeneity and the differences of modal 

perception across the consumer groups consists in implementing the “clones”, deviations from the “mean-

consumer” perspective equivalent to the error term of the utility function of discrete choice models [46], 

[47]. For this approach, it is important to choose the right amount of clones that ensures variability of results, 

while avoiding model intractability, as observed by [13]. The use of the clones would ensure enough 

variation in the results as to avoid the “winner-takes-all” phenomenon.  

Another shortcoming of MoCho-TIMES lies in its vague spatial framework. Transport models require a 

precise description of the spatial context, as they simulate modal choice after the origin and destination of the 

trips are identified (see Section 3.1). On the other hand, in MoCho-TIMES the only spatial reference is the 

region and the type of residential location (urban, suburban and rural). Therefore, the LoS attributes define 

the performances of the modes only at level of macro area. However, MoCho-TIMES is not meant to study 

what mode is adopted for a certain trip, but rather to analyse modal choice dynamics at aggregated level and 

to explore how modal shift and long-term changes in the whole energy system affect each other. 

The final reflection concerns the ability of MoCho-TIMES of depicting modal-choice in a behaviourally 

realistic way. Consumers are characterized by perfect-information, perfect-foresight and perfect-rationality, 

due to the intrinsic nature of TIMES models. Even in transport simulation models, utility maximization, 

perfect-rationality and perfect-information are the assumptions underlying modal choice modeling. However, 

these situations are far from the reality, because choices are biased from optimality in many aspects. Recent 

studies on travel behaviour claim that choice mechanisms for modal choice are more complex than described 

by MNL models [58], [65]. Consumers deviate from rationality and utility maximization in three respects: 

nonstandard preferences, nonstandard beliefs, and nonstandard decision making [66]. These studies advocate 

a more extended use of evidences from behavioural economics in transport models in order to improve the 

representation of modal choice and other aspects of travel behaviour. 

This paper has presented and tested the novel approach of MoCho-TIMES as a standalone mode, including 

only the transportation sector of TIMES-DK. The authors recommend as next step of research the integration 



24 
 

of MoCho-TIMES within a whole energy system model, in order to introduce behaviourally realistic modal 

shift as an option to decarbonise the energy system. This enables assessing the effect of energy system 

dynamics on modal shares and vice versa, within a unique modeling framework. On one side, it allows to 

analyse how variations in the LoS of the modes and consumers’ perception of the modes affect the rest of the 

energy system and, on the other side, how modal shares and fuel consumption in the transportation sector are 

influenced by decisions in the power and heat and other end-use sectors. It is especially important to 

integrate transport and energy system analysis in a unique framework, given that the transportation sector is 

expected to become increasingly integrated into the energy system, with more interconnection and cross-

sectoral influences. Once MoCho-TIMES is integrated within the whole energy system, several new policy 

analyses can be performed with respect to traditional E4 models. To this extent is it worth noting that the 

intangible costs act for the transportation sector as an additional barrier to its decarbonisation. As observed 

by [41], when incorporating heterogeneity and intangible costs into the model, a higher carbon tax is 

required to achieve an equivalent GHG abatement with respect to a traditional E4 model. Although the 

methodology allows having a better insight on consumer choice, the inclusion of an extra cost-term makes 

CO2 reduction measures for the transportation sector more expansive and thus more unlikely to happen than 

in other sectors. Consistency across sectors is fundamental to avoid this issue and therefore the improvement 

of the representation of behaviour in the transportation sector shall be matched with the inclusion of hurdle 

rates and intangible cost in the other energy sectors. Besides, it is important to consider that for MoCho-

TIMES the total system cost is obtained subtracting the intangible costs out of the objective function. This is 

done to only account for the monetary costs incurred by the central planner. 

 

6. Conclusions 
MoCho-TIMES proposes a novel methodology to incorporate modal-choice within BU optimization energy 

system models. For this class of models, it fills the gap regarding the representation of behaviour in the 

transportation sector and inaugurates the possibility to perform scenario and policy analysis involving 

transport-related and soft variables, as advocated by [13]. For this study, the methodology has been 

developed and tested in the standalone transportation sector of Denmark. The approach is grounded on the 

consumer choice modeling theory, described in Section 2. The methodology of MoCho-TIMES is described 

in detail in Section 3. A transport simulation model consistent with the geographical scope of the E4 model 

in which modal choice is meant to be incorporated is required. The transport model works as a support 

model, which provides the data and the mathematical expressions for integrating modal choice in the E4 

framework. MoCho-TIMES introduces heterogeneity of transport users and intangible costs to differentiate 

the LoS and the modal perception across different consumer groups. Overall, the innovative model structure 

and the constraints described in Section 3.2.4 contribute to the heterogeneity in outcomes: every year several 

modes contribute to fulfil the total travel demand, each mode being more or less suitable for a specific 

consumer group. Modal shares are not determined exclusively according to least-cost criteria, because 

MoCho-TIMES captures also other attributes affecting modal choice: the LoS of the modes and the 

socioeconomic and demographic characteristics of the consumer groups. This is the first study to the authors’ 

knowledge that equips E4 models with modal choice without the use of an external model. This new feature 

on the one hand incorporates real household’s modal preferences and perceptions, which increases the 

credibility of the policy analyses carried-out. On the other hand, it enables to understand in the same 

modelling framework how changes in modal perception, improvements in the LoS of the modes, technology 

improvements, infrastructure availability, market conditions and policy levers can lead to deploy low-carbon 

technologies that contribute to achieve a carbon-neutral transportation sector. These new capabilities of 

MoCho-TIMES are demonstrated in Section 4, which analyses in four illustrative scenarios how alternative 
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assumptions of key variables influence modal shares and CO2 emissions. Another praise of MoCho-TIMES 

consists in the fact that it provides insights on how modal shift occurs in the different types of residential 

location and for diverse consumer groups. This new insight enabled by the model is particularly valuable, as 

it allows to design more effective and efficient policies encouraging the transition to a fossil-free 

transportation sector. On the one hand, MoCho-TIMES identifies the consumers groups more willing to shift 

towards zero- and low-carbon modes, thus allowing to establish priorities. On the other hand, the novel 

approach supports the understanding of the most suitable policy levers to target the different consumers 

groups. The results in Section 4.1 show that a shift away from car transport is more likely to happen in urban 

and suburban areas rather than in rural ones, which are less served by public transport. Moreover, lower 

income classes seem more willing to shift away from car transport. Finally, the analysis of the trend of CO2 

emissions of the alternative scenarios points out that regulation and active participation of the Government in 

transport planning are fundamental to promote a paradigmatic shift in transport and to encourage the 

sustainable transition. The results of the model suggest that providing alternatives to car for traveling, 

building new infrastructures, improving the LoS and the accessibility to public transport, especially in rural 

areas, and setting up an effective taxation and incentive scheme are measures of primary importance to lead 

the transition of transport towards sustainability.  
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Glossary 
Alternative-specific constants (ASC) 

Alternative fuelled vehicles (AFV) 

Business as Usual scenario (BaU) 

Base year (BY) 

Battery electric vehicles (BEV) 

Bottom-up (BU) 

California Statewide Travel Demand Model (CSTDM) 

Consumer group (CG) 

Danish Kroner (DKK) 

Denmark East (DKE) 

Denmark West (DKW) 

Energy-economy-environment-engineering (E4) 

Energy Technology Systems Analysis Program (ETSAP) 

Fuel cell electric vehicles (FCEV) 

Gross domestic product (GDP) 

Greenhouse gas (GHG) 

High income level (H) 

High Authority commitment – High Individual commitment (HIA-HII) 
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High Authority commitment – Low Individual commitment (HIA-LOI) 

International Energy Agency (IEA) 

Level-of-service (LoS) 

Landstrafikmodellen, Danish National Transport Model (LTM) 

Low income level (L) 

Low Authority commitment – High Individual commitment (LOA-HII) 

Low Authority commitment – Low Individual commitment (LOA-LOI) 

Medium income level (M) 

Million-passenger kilometres (Mpkm) 

Multinomial logit model (MNL)  

Modal Choice in TIMES (MoCho-TIMES) 

Nested logit model (NMNL) 

Origin-destination (OD) 

Organisation for economic co-operation and development (OECD) 

Plug-in hybrid (PHEV)  

Regional Modeling System (RMS) 

The Integrated Markal Efom System (TIMES) 

Travel time budget (TTB) 

The Danish National Travel Survey (TU) 

Very low income level (VL) 

Value of time (VoT) 

Vehicle registration tax (VRT) 

 

References 
 

1. Sims R, Schaeffer R, Creutzig F, Cruz-Núñez X, D’Agosto M, Dimitriu D, Figueroa Meza MJ, 

Fulton L, Kobayashi S, Lah O, McKinnon A, Newman P, Ouyang M, Schauer JJ, Sperling D, Tiwari 

G. Transport. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group 

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer O, 

Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, 

Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds.)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014. 

 

2. International Energy Agency. Transport, energy and CO2. IEA-Publications. 2009. 

 

3. Zhang H, Chen W, Huang W. TIMES modelling of transport sector in China and USA: Comparisons 

from a decarbonization perspective. Applied Energy 2016;162:1505–1514. doi: 

http://dx.doi.org/10.1016/j.apenergy.2015.08.124. 

 

4. Roskilly AP, Palacin R, Yan J. Novel technologies and strategies for clean transport systems. 

Applied Energy 2015;157:563-566. doi: https://doi.org/10.1016/j.apenergy.2015.09.05.1 

 

5. International Energy Agency. Energy Technology perspectives. IEA-Publications. 2012. 

 

6. Schwanen T, Banister D, Anable J. Scientific research about climate change mitigation in transport: 

a critical review. Transportation Research part A: Policy and Practice 2011;45(10):993-1006. doi: 

https://doi.org/10.1016/j.tra.2011.09.005. 

 

http://dx.doi.org/10.1016/j.apenergy.2015.08.124
https://findit.dtu.dk/en/catalog?l%5Bauthor%5D=Roskilly%2C+A.+P.
https://findit.dtu.dk/en/catalog?l%5Bauthor%5D=Yan%2C+J.
https://doi.org/
https://doi.org/10.1016/j.tra.2011.09.005


27 
 

7. Chiodi A, Gargiulo M, Rogan F, Deane JP, Lavigne D, Rout UK, Ó Gallachóir B. Modelling the 

impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system. Energy 

Policy 2013;53(0):169-189. doi: http://dx.doi.org/10.1016/j.enpol.2012.10.045. 

 

8. McCollum D, Yang C, Yeh S, Ogden J. Deep greenhouse gas reduction scenarios for California–

Strategic implications from the CA-TIMES energy-economic systems model. Energy Strategy 

Reviews 2012;1(1):19-32. doi: https://doi.org/10.1016/j.esr.2011.12.003. 

 

9. Yang C, Yeh S, Zakerinia S, Ramea K, McCollum D. Achieving California's 80% greenhouse gas 

reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy 

economic systems model. Energy Policy 2015;77:118-130. doi: 

https://doi.org/10.1016/j.enpol.2014.12.006. 

 

10. Føyn THY, Kenneth K, Balyk O, Grohnheit PE.A global renewable energy system: A modelling 

exercise in ETSAP/TIAM. Applied Energy 2011;88(2):526-534. 

doi://doi.org/10.1016/j.apenergy.2010.05.003. 

 

11. Bahn O, Marcy M, Vaillancourt K, Waaub JP. Electrification of the Canadian road transportation 

sector: A 2050 outlook with TIMES-Canada. Energy Policy 2013;62:593-606. doi: 

https://doi.org/10.1016/j.enpol.2013.07.023. 

 
12. Gambhira A, Tse LKC, Tong D, Martinez-Botas R. Reducing China’s road transport sector 

CO2 emissions to 2050: Technologies, costs and decomposition analysis. Applied Energy 
2015;157:905-917. doi: https://doi.org/10.1016/j.apenergy.2015.01.018 

 

13. Venturini G, Tattini J, Mulholland E, Ó Gallachóir B. Improvements in the representation of 

behaviour in integrated energy and transport models. International Journal of Sustainable 

Transportation [under review]. 

 

14. Schäfer A. Introducing behavioral change in transportation into Energy/Economy/Environment 

Models. Policy Research working paper no. WPS 6234. Washington, DC: World Bank; 2012. 

 

15. Waisman HD, Guivarch C, Lecocq F. The transportation sector and low-carbon growth pathways: 

modelling urban, infrastructure, and spatial determinants of mobility. Climate Policy 

2013;13(1):106–129. doi: http://dx.doi.org/10.1080/14693062.2012.735916. 

 

16. De Carolis J, Daly H, Dodds P, Keppo I, Li F, McDowall W, Pye S, Strachan N, Trutnevyte E, 

Usher W, Winning M, Yeh S, Zeyringer M. Formalizing best practice for energy system 

optimization modelling. Applied Energy 2017;194:184-198. doi: 

http://dx.doi.org/10.1016/j.apenergy.2017.03.001. 

 

17. Train K. Qualitative choice analysis – Theory, econometrics and application to automobile demand. 

The MIT press; 1986. 

 

18. Domencich T, McFadden D. Urban travel demand - A behavioral analysis.North Holland Publishing 

Co. Amsterdam; 1975. 

 

19. Ben-Akiva M, Lerman SR. Discrete choice analysis – Theory and application to travel demand, The 

MIT press; 1985. 

 

http://www.sciencedirect.com/science/article/pii/S0301421512009263#!
http://dx.doi.org/10.1016/j.enpol.2012.10.045
https://doi.org/10.1016/j.esr.2011.12.003
https://doi.org/10.1016/j.enpol.2014.12.006
https://findit.dtu.dk/en/catalog?l%5Bauthor%5D=F%C3%B8yn%2C+Tullik+Helene+Ystanes
https://findit.dtu.dk/en/catalog?l%5Bauthor%5D=Karlsson%2C+Kenneth+Bernard
https://findit.dtu.dk/en/catalog?l%5Bauthor%5D=Karlsson%2C+Kenneth+Bernard
https://doi.org/10.1016/j.enpol.2013.07.023
http://dx.doi.org/10.1080/14693062.2012.735916


28 
 

20. Rich J, Overgaard Hansen C. The Danish national passenger model – Model specification and 

results. European Journal of Transport and Infrastructure Research 2016;16(4):573-599. 

 

21. National Transport Authority. Regional Modelling System – Full demand model specification report; 

2017. 

 

22. Cambridge Systematics. California Statewide Travel Demand Model, Version 2.0 - Model overview 

- Final report; 2014. 

 

23. Hamre TN. NTM 5 – The Norwegian national transport model – Version 5, TØI report 555/2002. 

Oslo, Norway; 2002. 

 

24. Cherchi E, Ortúzar J de D. Mixed RP/SP models incorporating interaction effects – Modelling new 

suburban train services in Cagliari. Transportation 2002;29(4):371-395. 

 

25. Cherchi E, Ortúzar J de D. Alternative specific variables in non-linear utilities: influence of 

correlation, homoscedasticity and taste variations. 10th International Conference on Travel Behaviour 

Research. Lucerne, Switzerland; 2003.  

 

26. De Jong G, Gunn H, Ben-Akiva M. A meta-model for passenger and freight transport in Europe. 

Transport Policy 2004;11(4):329-344, doi: https://doi.org/10.1016/j.tranpol.2004.03.001. 

 

27. Grischkat S, Hunecke M, Bohler S, Haustein S. Potential for the reduction of greenhouse gas 

emissions through the use of mobility services. Transport policy 2014;35:295-303. doi: 

http://dx.doi.org/10.1016/j.tranpol.2014.06.007. 

 

28. Thornton A, Evans L, Bunt K, Simon A, King S, Webster T. Climate change and transport choices: 

segmentation model - A framework for reducing CO2 emissions from personal ravel. Department for 

Transport, UK; 2011. 

 

29. Fan Y, Khattak A. Time use patterns, lifestyles, and sustainability of nonwork travel behaviour. 

International Journal of Sustainable Transportation 2012;6(1):26-47. doi: 

http://dx.doi.org/10.1080/15568318.2011.553770. 

 

30. Balyk O, Andersen SK, Dockweiler S, Gargiulo M, Karlsson K, Næraa R, Petrovic S, Tattini J, 

Termansen BL, Venturini G. TIMES-DK: Technology-rich multi-sectoral optimisation model of the 

Danish energy system. Energy Strategy Reviews [under review]. 

 

31. Banister D, Anderton K, Bonilla D, Givoni M, Schwanen T. Transportation and the Environment. 

Annual review for environment and resources 2011;36:247–270. doi: 

https://doi.org/10.1146/annurev-environ-032310-112100.  

 

32. Replogle MA, Fulton L. A global high shift scenario - Impacts and potential for more public 

transport, walking, and cycling with lower car use. ITDP and UCDavis; 2014. 

 

33. GEA writing team. Global Energy Assessment: toward a sustainable future. Cambridge University 

Press. Cambridge, UK; 2012. 

 

34. E3MLab, ICCS at National Technical University of Athens. PRIMES-TREMOVE Transport Mode - 

Detailed model description; 2014. 

 

https://doi.org/10.1016/j.tranpol.2004.03.001
http://dx.doi.org/10.1016/j.tranpol.2014.06.007
http://dx.doi.org/10.1080/15568318.2011.553770
https://doi.org/10.1146/annurev-environ-032310-112100


29 
 

35. Girod B, van Vuuren DP, Deetman S. Global travel within the 2°C climate target. Energy Policy 

2012;45:152-166. doi: https://doi.org/10.1016/j.enpol.2012.02.008.       

 

36. Brand C, Tran M, Anable J. The UK transport carbon model: An integrated life cycle approach to 

explore low carbon futures. Energy Policy 2012;41:107-124. doi: 

https://doi.org/10.1016/j.enpol.2010.08.019. 

 

37. Daly HE, Ramea K, Chiodi A, Yeh S, Gargiulo M, Ó Gallachóir B. Incorporating travel behaviour 

and travel time into TIMES energy system models. Applied Energy 2014;135:429-439. doi: 

https://doi.org/10.1016/j.apenergy.2014.08.051. 

 

38. Pye S, Daly H. Modelling sustainable urban travel in a whole systems energy model. Applied 

Energy 2015;159:97-107. doi: https://doi.org/10.1016/j.apenergy.2015.08.127. 

 

39. Tattini J, Gargiulo M, Karlsson K. Reaching carbon neutral transport sector in Denmark – Evidence 

from the incorporation of modal shift into the TIMES energy system modelling framework, Energy 

Policy 2018;113.  

 

40. Loulou R, Goldstein G, Kanudia A, Lehtilä A, Remne U, Documentation for the TIMES Model - 

Part I: TIMES concept and theory. Energy Systems Technology Analysis Programme; 2016.   

 

41. McCollum DL, Wilson C, Pettifor H, Ramea K, Krey V, Riahi K, Bertram C, Lin Z, Edelenbosch 

OY, Fujisawa S. Improving the behavioral realism of global integrated assessment models: An 

application to consumers’ vehicle choices. Transportation Research Part D: Transport and 

Environment 2016;55:322-342. doi: https://doi.org/10.1016/j.trd.2016.04.003. 

 

42. Rich J, Nielsen OA, Brems K, Hansen CO. Overall design of the Danish National transport model. 

Annual Transport Conference at Aalborg University; 2010. 

 

43. Rich J. The Weekday Demand Model in LTM – Model For Generation, Destination and Mode 

Choice. Lyngby, Denmark; 2015. 

 

44. Petrović S, Karlsson K. Residential heat pumps in the future Danish energy system. Energy 2016; 

114:787-797. doi: http://dx.doi.org/10.1016/j.energy.2016.08.007. 

 

45. Danish Energy Agency. Documentation of Interact. https://ens.dk/en/our-services/projections-and-

models/models/documentation-interact; 2017 [accessed 27.01.2017].  

 

46. Bunch DS, Ramea K, Yeh S, Yang C. Incorporating behavioral effects from vehicle choice models 

into bottom-up energy sector models. Research Report UCD-ITS-RR-15-13; 2015. 

 

47. Ramea K. Integration of vehicle consumer choice in energy systems models and its implications for 

climate policy analysis. University of California Davis, ProQuest Dissertation Publishing; 2016. 

 

48. Christiansen H, Skougaard B Z, Documentation of the Danish National Travel Survey, Report 10. 

DTU Transport; Lyngby, Denmark. 2015. 

 

49. Mackie P, Nellthorp J, Laird J, Ahmed F. Toolkit for the economic evaluation of the World Bank 

transport projects – Final report. A report to the World Bank; 2003. 

 

50. Rich J. Qualification of value-of-time values in LTM. DTU Transport – report 35426-1;Lyngby, 

Denmark; 2015. 

https://doi.org/10.1016/j.enpol.2012.02.008
https://doi.org/10.1016/j.enpol.2010.08.019
https://doi.org/10.1016/j.apenergy.2014.08.051
http://doi.org/10.1016/j.apenergy.2015.08.127
https://doi.org/10.1016/j.apenergy.2015.08.127
https://doi.org/10.1016/j.trd.2016.04.003
http://dx.doi.org/10.1016/j.energy.2016.08.007
https://ens.dk/en/our-services/projections-and-models/models/documentation-interact
https://ens.dk/en/our-services/projections-and-models/models/documentation-interact


30 
 

 

51. Cayla JM, Maizi N. Integrating household behavior and heterogeneity into the TIMES-Households 

model. Applied Energy 2015;139:56–67. doi:10.1016/j.apenergy.2014.11.015 

 

52. Transport DTU. Danish National Travel Survey - Dataset TU0615v1from May 2006 to December 

2015; 2016.  

 

53. Eurostat. European cities – The EU-OECD functional urban area definition, 

http://ec.europa.eu/eurostat/statistics-explained/index.php/European_cities_%E2%80%93_the_EU-

OECD_functional_urban_area_definition; 2017 [accessed 24.1.2017]. 

 

54. Statistics Denmark. Prices and consumption – Table FU51. http://www.statistikbanken.dk/1220; 

2017 [accessed 19.5.2017]. 

 

55. Federation of Danish Motorists. Bilbudget 2017 - Billigere at køre efter rundstykker,  

http://www.fdm.dk/filer/FDM_bilbudget_2017.pdf?fmtms=1482959003; 2017 [accessed 19.5.2017]. 

 

56. Skatteministeriet. Ejerafgift - vægtafgift - registreringsafgift - vejbenyttelsesafgift - 

nummerpladeafgift – motoransvarsforsikringsafgift. http://www.skm.dk/skattetal/satser/satser-og-

beloebsgraenser/alt-om-bilbeskatning; 2017 [accessed 19.5.2017]. 

 

57. Moeckel R, Fussell R, Donnelly R, Mode choice modelling for long-distance travel. Transportation 

letters 2015;7(1)35-46. doi: http://dx.doi.org/10.1179/1942787514Y.0000000031. 

 

58. Mattauch L, Ridgway M, Creutzig F. Happy or liberal? Making sense of behaviour in transport 

policy. Transportation research part D: Transport and Environment 2016;45:64-83. doi: 
https://doi.org/10.1016/j.trd.2015.08.006. 

 

59. The Danish Road Directorate. Statsvejnettet 2015 - Oversigt over tilstand og udvikling. Copenhagen, 

Denmark; 2015. 

 

60. Den Boer E, van Essen H, Brouwer F, Pastori E, Moizo A. Potential of modal shift to rail transport - 

Study on the projected effects on GHG emissions and transport. Delft, The Netherlands; 2011. 

 

61. The Danish Road Directorate.  Anlægsudgifter, 

http://www.vejdirektoratet.dk/DA/Sider/Default.aspx; 2016 [accessed on 11.11.2016].  

 

62. The Danish Road Directorate. Driftsudgifter, http://www.vejdirektoratet.dk/DA/Sider/Default.aspx; 

2016 [accessed on 11.11.2016].  

 

63. Schäfer A, Victor DG. The future mobility of the world population. Transportation Research Part A: 

Policy and Practice 2000;34(3):171–205. doi: https://doi.org/10.1016/S0965-8564(98)00071-8.       

 

64. Skatteministeriet. Lov om ændring af registreringsafgiftsloven, brændstofforbrugsafgiftsloven og 

forskellige andre love. Skattemin j.nr. 15-1604999; 2015. 

65. Avineri A. On the use and perspective of behavioural economics from the perspective of transport 

and climate change. Journal of transport geography 2012;24:512-521. doi: 

https://doi.org/10.1016/j.jtrangeo.2012.03.003. 

 

66. Della Vigna S. Psychology and Economics: Evidence from the Field. Journal of Economic Literature 

2009;47(2):315-72. doi: https://doi.org/10.3386/w13420. 

http://ec.europa.eu/eurostat/statistics-explained/index.php/European_cities_%E2%80%93_the_EU-OECD_functional_urban_area_definition
http://ec.europa.eu/eurostat/statistics-explained/index.php/European_cities_%E2%80%93_the_EU-OECD_functional_urban_area_definition
http://www.statistikbanken.dk/1220
http://www.fdm.dk/filer/FDM_bilbudget_2017.pdf?fmtms=1482959003
http://www.skm.dk/skattetal/satser/satser-og-beloebsgraenser/alt-om-bilbeskatning
http://www.skm.dk/skattetal/satser/satser-og-beloebsgraenser/alt-om-bilbeskatning
http://dx.doi.org/10.1179/1942787514Y.0000000031
https://doi.org/10.1016/j.trd.2015.08.006
http://www.vejdirektoratet.dk/DA/Sider/Default.aspx
http://www.vejdirektoratet.dk/DA/Sider/Default.aspx
https://doi.org/10.1016/S0965-8564(98)00071-8
https://doi.org/10.1016/j.jtrangeo.2012.03.003


31 
 

 


