
Title ASAP: Adaptive stall-aware pacing for improved DASH video
experience in cellular networks

Authors Zahran, Ahmed H.;Quinlan, Jason J.;Ramakrishnan, K.
K.;Sreenan, Cormac J.

Publication date 2018-06

Original Citation Zahran, A. H., Quinlan, J. J., Ramakrishnan, K. K. and Sreenan,
C. J. (2018) 'ASAP: Adaptive Stall-Aware Pacing for Improved
DASH Video Experience in Cellular Networks', ACM Transactions
on Multimedia Computing, Communications and Applications
(TOMM), 14(3s), pp. 1-23. doi: 10.1145/3219750

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://dl.acm.org/citation.cfm?id=3219750 - 10.1145/3219750

Rights © ACM 2018. This is the author's version of the work. It is
posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in ACM Transactions
on Multimedia Computing, Communications, and Applications
(TOMM), http://dx.doi.org/10.1145/3219750

Download date 2024-04-24 15:01:15

Item downloaded
from

https://hdl.handle.net/10468/6551

https://hdl.handle.net/10468/6551

6

ASAP: Adaptive Stall-Aware Pacing for Improved DASH
Video Experience in Cellular Networks

AHMED H. ZAHRAN∗, Dept. of Computer Science,
University College Cork, Ireland
JASON J. QUINLAN, Dept. of Computer Science,
University College Cork, Ireland
K. K. RAMAKRISHNAN, Dept. of Computer Science and Engineering,
University of California, Riverside
CORMAC J. SREENAN, Dept. of Computer Science,
University College Cork, Ireland

The dramatic growth of video traffic represents a practical challenge for cellular network operators in providing
a consistent streaming Quality of Experience (QoE) to their users. Satisfying this objective has so-far proved
elusive, due to the inherent characteristics of wireless networks and varying channel conditions as well as
variability in the video bitrate that can degrade streaming performance. In this paper, we propose stall aware
pacing as a novel MPEG DASH video traffic management solution that reduces playback stalls and seeks to
maintain a consistent QoE for cellular users, even those with diverse channel conditions. These goals are
achieved by leveraging both network and client state information to optimize the pacing of individual video
flows. We evaluate the performance of two versions of stall aware pacing techniques extensively, including stall
aware pacing (SAP) and adaptive stall aware pacing (ASAP), using real video content and clients, operating
over a simulated LTE network. We implement state-of-the-art client adaptation and traffic management
strategies for direct comparisons with SAP and ASAP. Our results, using a heavily loaded base station, show
that SAP reduces the number of stalls and the average stall duration per session by up to 95%. Additionally,
SAP ensures that clients with good channel conditions do not dominate available wireless resources, evidenced
by a reduction of up to 40% in the standard deviation of the QoE metric across clients. We also show that
ASAP achieves additional performance gains by adaptively pacing video streams based on the application
buffer state.

CCS Concepts: • Information systems→Multimedia streaming; • Networks→ Network performance
modeling; Network simulations;

Additional Key Words and Phrases: Adaptive bitrate video streaming, DASH, QoE, separable programming

∗Also with Electronics and Electrical Communication Engineering Dept., Cairo University, Egypt.

Authors’ addresses: Ahmed H. Zahran, Dept. of Computer Science,
University College Cork, Ireland, a.zahran@cs.ucc.ie; Jason J. Quinlan, Dept. of Computer Science,
University College Cork, Ireland, j.quinlan@cs.ucc.ie; K. K. Ramakrishnan, Dept. of Computer Science and Engineering,
University of California, Riverside, kk@cs.ucr.edu; Cormac J. Sreenan, Dept. of Computer Science,
University College Cork, Ireland, cjs@cs.ucc.ie.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:2 A. H. Zahran et al.

ACM Reference Format:
Ahmed H. Zahran, Jason J. Quinlan, K. K. Ramakrishnan, and Cormac J. Sreenan. 2018. ASAP: Adaptive
Stall-Aware Pacing for Improved DASH Video Experience in Cellular Networks. ACM Trans. Multimedia
Comput. Commun. Appl. 9, 4, Article 6 (June 2018), 23 pages

1 INTRODUCTION
Video streaming over cellular networks is growing rapidly, and is expected to reach 75% of all
cellular traffic by 20201. This rapid growth has network operators playing catch-up trying to
ensure that all of their customers are given a consistent Quality of Experience (QoE). In cellular
networks, offering quality assurances is especially challenging due to the complexities of the
wireless transmission medium. In a recent study by Conviva2, a majority of users identified video
stalls as the most irritating factor while streaming. Hence, it is surprising that approximately 50%
of video sessions encounter stalls3. There is a crucial need to develop a deep understanding of the
cause of video stalls, and to design techniques to minimize stalls.

Video streaming today involves a client player fetching segments from a server over HTTP. The
most popular standard is Dynamic Adaptive Streaming over HTTP (DASH). The client continuously
adapts the selected video quality based on prevailing network conditions. A well-known issue
with DASH is when multiple video users compete to share a network link, with several studies
[1, 14, 16] demonstrating that quality instability and stalls are very common. Such issues are greatly
exacerbated in wireless networks. To illustrate, when multiple users share a cell site, there are at
least three interacting control loops involved in the streaming process. The DASH client exercises
control on the video quality control loop with the server; the streaming server and client are
involved in the underlying TCP congestion control loop; and the base station scheduler controls
the resource allocation and scheduling over the downlink air interface control loop to the cellular
device. Each of these control loops operates independently and at different timescales, which often
leads to degraded streaming performance [4, 8].

Techniques proposed to improve streaming performance consider different approaches including
end-to-end [2, 6, 7, 12, 16, 20], network-based [4, 8, 14, 22, 28, 31], and hybrid solutions [3, 11, 22, 25].
In end-to-end solutions, changing the client adaptation logic and/or the server delivery behavior are
the common design elements. In network-based solutions, traffic shaping, trans-rating, and/or trans-
coding are examples of the functions considered. These approaches maintain the independence
between network operators and content providers, but they may lead to sub-optimal performance
because of this. For example, a streaming client may trade video quality by adopting an overly
conservative estimator for the available network throughput to reduce stalls. Similarly, network-
based solutions usually consider only network-state in their decisions and application state is
overlooked. Hence, a video client may still suffer from performance degradation, such as video stalls.
Hybrid solutions assume interaction between end-nodes and network agents. Additionally, these
solutions may assume integrated control loops for both the end-to-end level and the network level
by having a ’bird’s eye-view’ of the end-end system. But this comes at the cost of communication
overhead. The MPEG Server and Network Assisted DASH (SAND) standard provides such a
framework, with a DASH-Aware Network Element (DANE) as a network agent.
In delivering video over a wired link, the goal is to allocate resources in a fair manner so that

similar4 clients can have equivalent QoE [23]. The nature of wireless access implies that the
achievable data rate is a function of the channel condition at each client. In addition, each client’s
1CISCO Visual Networking Index. http://goo.gl/jFB2L7. Last accessed Apr 25 2017.
2Conviva QoE report. https://goo.gl/lwI2At. Last accessed: Apr 25 2017.
3mux.com blog. https://goo.gl/SS674Q Last accessed: Apr 25 2017.
4The similarity here considers factors such as device capability and other traffic to the user.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:3

channel condition can vary considerably over short time periods due to fading and other factors.
Thus, it must be recognized that achieving equivalent QoE across all clients, even if they are
similar, may be an unreasonable objective. Our experiments indicate that such a situation naturally
arises when video users with persistently different channel conditions share a single base station
leading to a large QoE gap. In such situations, users with poorer channel condition are not allocated
sufficient resource, leading to degraded QoE due to video stalls, while clients with good channel
conditions always seek to maximize their own QoE. Thus, steps must be taken to manage wireless
resources to ensure that clients with poorer channel conditions do not suffer unnecessarily by
redistributing channel resources aimed at reducing the extremes of QoE across different clients.
Specifically, it is desirable for the network to re-allocate resources to support clients on a short
term basis, without introducing substantial unfairness. Our approach is to guide this redistribution
process while balancing multiple considerations, including that of avoiding stalls.
In this research, we set out to see if we can eliminate stalls (or come close to it) for cellular

users through the use of a network agent that is aware of a limited amount of client state, and can
judiciously manage resources at the bottleneck wireless link. We further design a solution that can
manage the link resources such that the Quality of Experience across all clients is well-balanced,
thus promoting fairness. In [36], we propose Stall Aware Pacing (SAP) as a novel network-based
solution to improve the streaming performance in cellular systems. SAP indirectly integrates the
client-server quality control loop and the base station downlink scheduling process to reduce stalls
when a group of users share a congested cellular downlink air interface. SAP achieves this goal by
optimizing the delivery rate of individual packets of a flow, based on both application and network
states. In particular, we target resources to clients for whom a stall is imminent. These clients are
often, but not always, those at the cell edge. In this paper, we propose ASAP as an adaptive version
of SAP that adjusts the traffic pacing based on the application buffer state in all the clients. When
all the clients have sufficient media (video data) in their buffer, ASAP increases the amount of the
traffic forwarded towards the access network, allowing the base station scheduler to improve the
utilization of the available system resources. Additionally, we present the separable formulation of
our optimization model and show its scalability as the number of users increases. Furthermore, we
evaluate the streaming performance in the case of mobile users.

Our performance evaluation based on real video sessions (H.264 video streamed from a server to
actual clients running the GPAC video player) over a simulated LTE network shows that both SAP
and ASAP improve the stall performance for different DASH client adaptation algorithms in a wide
variety of operating conditions in comparison to state-of-the-art techniques. This evaluation setup
that combines real nodes over an emulated network enabled us to compare different solutions in a
controllable environment. Moreover, SAP and ASAP achieve this with only a modest reduction in
the average delivered video rate. Our contributions can be summarized as follows:

•We developed SAP and ASAP as novel network-based optimized pacing solutions whose design
captures the typical user perception for image quality while factoring in the impact of stalls.
Additionally, their design provides for differential user treatment to accommodate inherent design
features such as device capability or user priority.

•We present a collaborative and a non-collaborative version of SAP and ASAP. In the former,
the state of the client buffer is relayed by the client to the network-based pacing module while in
the latter an in-network algorithm operates on an estimate of the buffer-level at the client.

• We evaluate SAP and ASAP using a laboratory testbed with video clients using the GPAC
player to play streaming video content. The content is real H.264 video streamed from a server. Our
emulation-simulation hybrid environment simulates the LTE cellular network in a wide variety of
scenarios, including different user topologies and fading conditions.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:4 A. H. Zahran et al.

•We show that SAP reduces the number of stalls and the average stall duration by up to 95%,
leading to a dramatic reduction in the stall QoE penalty, by up to 85%. We show that SAP reduces
the variability in the client QoE by up to 40%, being especially effective when clients operate with
different network conditions. Finally, we conclude that the extra requirement for access to client
state information in collaborative SAP does not provide a noticeable benefit over non-collaborative
SAP.

• We show that ASAP improves stall and quality performance leading to increasing the overall
system QoE by up to 5%.
The rest of this paper is organized as follows. Background and related work is presented in

Section 2 followed by the design of SAP and ASAP in Section 3. We then present our performance
evaluation setup and results in Section 4. Conclusions and future work are presented in Section 5.

2 BACKGROUND AND RELATEDWORK
Adaptive streaming over HTTP, recently standardized as DASH, is becoming the dominant tech-
nique for transmitting video due to its ability to traverse firewalls and the abundance of HTTP
infrastructure. With DASH, the video is split into multiple segments and each segment is encoded
into different representations varying in their qualities. DASH video clients may change the video
quality at segment boundaries in response to variations in operating conditions. Client adaptation
strategies span different approaches including buffer-based, rate-based, and hybrid approaches
[19].
Huang et al. [15] propose a buffer-based strategy by which the buffer-level is mapped to the

selected video quality. Jiang et al. [16] propose FESTIVE as a rate based heuristic with randomized
scheduling of segment requests and stateful adaptive rate update strategy. In [6], De Cicco et al.
propose ELASTIC in which segment quality selection is based on a proportional integral controller.
In [20], Li et al. propose PANDA that employs self-traffic network probing to establish an accurate
estimate of the available network throughput. These adaptation strategies are a few representative
examples and the reader is referred to [19], and the references therein, for more extended coverage
of different adaptation strategies. The design of these strategies usually include design elements to
avoid stalls, such as maintaining a high value for the playout buffer occupancy and/or conservative
rate estimators. However, achieving the best streaming performance in the highly variable operating
conditions of a cellular network is difficult to achieve while solely relying on client adaptation.
A few server-based techniques have been proposed to improve streaming performance. In [7],

De Cicco et al. propose a closed-loop controller implemented at both the client and server to take
adaptation decisions and regulate packet transmissions from the server. In [12], Ghobadi et al.
propose Trickle as a server-side solution that enforces an upper-bound on the TCP congestion
window. This bound is adjusted according to the streaming rate and round-trip time. However,
such solutions are agnostic to the underlying operating conditions and are not designed to achieve
the best performance in highly variable bandwidth conditions observed in cellular networks, which
is the focus of our work.
A number of network-based solutions proposed to improve network resource sharing among

multiple video clients are more directly related to our work. In [14], Houdaille and Gouache
show that video rate shaping at a WiFi home gateway reduces the number of quality changes and
oscillations for bothMicrosoft’s Smooth Streaming and Apple’s HLS. In [28], Pu et al. employ a proxy
at the edge of network core. This proxy implements split TCP, rate-dependent packet prioritization,
and video transrating based on optimizing a system objective function integrating user rate-utility,
smooth rate switching, and buffer-level tracking. [35] takes advantage of mobile-CDN, as part of
the network operator infrastructure, to implement an application-level fair scheduler for video
rate control. The proposed scheduler integrates user, device, network, and TCP information in its

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:5

decisions. In [8], a target rate for every data and video stream is communicated to an underlying
minimum rate proportional scheduler at the base station. This target rate is estimated using an
adaptive guaranteed bit rate algorithm that is shown to match the optimal solution of maximizing
the total user utility under resource constraints. In [4], Chen et al. propose the AVIS scheduling
framework that throttles each stream to a rate in a specific range. The minimum rate in the range
is identified by solving an optimization problem that maximizes the total user utility in the wireless
system assuming limited resources. The maximum rate is determined based on the allocated
minimum rate and the next higher video rate. A crucial point of distinction for our SAP solution is
that we adopt a QoE-driven utility that integrates stall probability in its decision, and the ability
to incorporate device heterogeneity as a factor. Furthermore, the aforementioned network-based
solutions do not allow one to benefit from state updates from clients, thus distinguishing SAP, as it
can operate whether or not such collaboration is available.

Collaborative solutions assume some level of interaction between clients and network elements.
In [18], the authors investigate the impact of assisting DASH clients by hinting the recommended
quality rate in a large scale experiment. The authors show that such assitance leads to reducing
stalls and quality switches. In [22], Mok et al. propose using a network proxy in the content provider
network to assist the client in measuring the available bandwidth by monitoring packet round
trip times. The client integrates this estimate in its QoE-driven adaptation policy. In [31], the
authors show that maximizing the minimum buffer-level for multiple non-adaptive video clients in
a wireless system is an NP-hard problem. With the client providing the buffer-level at every epoch,
they propose a greedy scheduler for non-adaptive video and show its optimality if the wireless
medium remains stable between decision epochs.

In [3], Bouten et al. propose an in-network QoE-driven quality selection based on both network
and client information. The wired network resources are monitored using a packet sampling
approach to accurately forecast future available resources in wired networks. The network then
solves an optimization problem that maximizes a total video QoE metric that includes received
quality, the number of rate switches and stalls, subject to resource constraints. The result is passed
directly to the client which has been altered to use it in selecting the quality of the next segment.
Georgopoulos et al. [11] propose a framework to identify individual user quality for fair resource
allocation among a group of users. The estimated rate is then communicated directly back to the
customized client using the northbound interface of the software defined network controller. In
a collaborative setting, Cofano et al. [5] compared the performance of different network control
strategies that employ combinations of optimized bandwidth reservation and hinting of the quality
rate using a centralized SDN controller. The optimization framework is solely based on a rate
utility function that overlooks other relevant QoE-aspects such as stalls and switching. In [17],
Kleinrouweler et. al. show, using a simple SDN-based network controller, that assisting video
clients by hinting a quality rate can significantly improve the switching performance of video
clients. In contrast, SAP uses the solution of its optimization to indirectly impact the client behavior,
not requiring that the clients be altered to accept directions from the network. Thus, SAP also
maintains the independence of control functions of both network and content providers, which
from a practical viewpoint is advantageous for companies operating in this highly competitive
business sector.

3 SAP
3.1 SAP Overview
SAP is a stall-aware network element that manages a group of video flows and seeks to minimize
stalls, while improving the QoE of video clients sharing a cellular base station (BS). SAP achieves

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:6 A. H. Zahran et al.

SAP-PM

SAP-AL

SAP-Op

SAP-NL

DPI

Fig. 1. SAP Architecture, comprising the application state logger (SAP-AL), network state logger (SAP-NL),
SAP pacing optimizer (SAP-Op), and SAP pacing manager (SAP-PM)

this goal by pacing the delivery rate of video packets while considering both client application
and network state. Network state is captured by the amount of resources dedicated to clients
receiving video traffic, the number of clients and the channel quality information for individual
clients. Application state information includes video encoding information and the current video
buffer-level at the client. Figure 1 shows the SAP components.

SAP may operate in either a collaborative or non-collaborative mode. In collaborative mode, the
streaming client provides the application logger the current application state information. In the
non-collaborative mode, SAP has to adopt different techniques (e.g., deep packet inspection) to
obtain or estimate the application state information. SAP’s network state logger interacts with
network entities to collect relevant network state information including the number of DASH
clients, their corresponding channel quality information, and the amount of resources dedicated
for them at the BS. The pacing optimizer integrates the application and network state information
to determine the best delivery rate for each individual video flow. SAP’s pacing manager controls
the delivery rate for each flow based on the rate calculated by the optimizer.

3.2 Design of the SAP Pacing Optimizer
Typically, the adaptation algorithm of DASH determines the quality of the next segment it is going
to request. The time between consecutive requests is therefore of the order of a segment duration,
which is typically between 4-10 seconds for cellular networks. On the other hand, the cellular BS
scheduler executes every few milliseconds, and in LTE it allocates resources every two milliseconds.
Note that the base station maintains individual user queues, as shown in Fig. 1, which are serviced
by the scheduler according to the adopted resource allocation policy. Hence, implementing a fully
assisted solution, e.g., [5, 17], that performs rate hinting and/or rate control would require changing
the BS scheduler to enforce such traffic management policies. Considering the complexities involved
in changing the scheduler design, SAP adopts a different design that indirectly impacts the client
quality control and scheduler resource allocation decisions.

SAP’s optimization executes periodically at a frequency in between this BS scheduler frequency
and the client application adaptation frequency. We expect a typical period between 250 ms and 1
second as being suitable for performing this pacing optimization. Such period would enable SAP
to perform several rate adjustments per segment to orchestrate the interaction between different
streams without incurring excessive unnecessary processing overhead. Additionally, SAP may be
executed in response to a predefined set of triggers, such as client departure, client arrival, change
in network resources and/or similar related events. Alternatively, SAP’s optimizer could also be
invoked in a hybrid combination of both periodic and explicit trigger events.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:7

3.2.1 System Model. We consider a base station (BS) serving U DASH users that each have a
different channel quality identified by its spectral efficiency per resource unit (RU) γukbps/RU ,
where u ∈ {1..U }. We assume that the BS capacity is divided into a group of allocatable resource
units managed by the BS scheduler. In LTE, a resource block group (RBG) at an eNodeB represents
the allocatable resource unit. The size of a RBG would vary depending on the BS bandwidth. For
example, the RBG is a single resource block for a BS with 1.4MHz cell bandwidth while 2-resource
blocks form a single RBG in a BS with bandwidth of 3MHz or 5Mhz. As the BS bandwidth increases,
RBG are formed from larger resource block clusters to simplify the scheduler design.We assume that
C RUs are dedicated for DASH users. Generally, C would vary dynamically depending on different
factors, including the volume of non-video traffic that may be sharing the BS with DASH clients.
We assume the presence of a bandwidth slicer that distributes the cell bandwidth among different
traffic classes [4], e.g., DASH video, non-DASH video, and background traffic. In compliance with
DASH, we consider each video is split into S segments with each segment corresponding to a
duration of τ seconds. The videos are encoded into Q quality representations whose average rates
are denoted rq , where q ∈ {1..Q}.

3.2.2 SAP QoE-Oriented Design. The SAP pacing optimizer integrates stalls and video quality as
key aspects affecting the QoE performance of video delivery over cellular systems. Specifically, SAP
maximizes a video quality utility metric and minimizes a stall penalty that is a significant factor for
user QoE. SAP’s rate changes are presented to the client adaptation logic in a manner similar to
changes in the channel condition. Our evaluation confirms that SAP does not adversely impact the
end-client switching performance and in many cases reduces the number of quality switches.
SAP captures the visual quality using a tunable concave quality utility metric inspired by the

video quality metric (VQM) [27]. For the same content encoded at different rates, VQM varies
between 0 to 1, with higher quality having a lower value. Further, it is well understood that as the
encoding rate increases, the marginal improvement in quality reduces. Therefore, we propose an
exponential video quality utility measure, denoted by ϒu (xu), expressed as

ϒu (xu) = (1 − e−ρuxu /rq), (1)

where xu is the rate that would be allocated to user u and ρu is a tunable parameter that can be set
according to the device capability or based on operator requirements. Note that in Eq. (1), higher
rates have larger utility. Also, ϒu (xu) would have a larger marginal utility for low video rates in
comparison to higher ones. With users viewing video on a range of devices with varying capabilities,
the video rate utility would correspondingly vary across heterogeneous devices. One option to
account for this heterogeneity is to tune ρu by the operator to differentiate the quality of service
provided to users with different priorities. Given the exponential utility function is upper-bounded
by 1, ρu can be estimated as

ρu = −
rq

ru
log(ϵ) , (2)

where ru represents the maximum rate assigned to user u due to device capability or assigned user
priority. With ϵ being a small fraction, this design implies that ϒu (ru) = 1 − ϵ and that any increase
in the streaming rate beyond ru for user u would lead to an insignificant change in the user utility.
SAP seeks to capture the stall impairment by estimating the probability of buffer depletion at

the client, i.e., video stalls. A high probability value implies frequent stalls and/or longer stall
duration. User u would typically stall if the download time of the requested segment, denoted as du ,
is larger than the segment deadline Du . Du can be estimated as the time remaining until segment
playout. Since segments are typically downloaded sequentially, the next segment deadline equals
the buffer-level at the time of sending the segment request. The download time du depends on

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:8 A. H. Zahran et al.

the downloaded segment size and the delivery rate of this segment to the client. The downloaded
segment quality is independently selected by the client according to its adaptation policy based
on the application state information. Assuming that the wireless access link is the bottleneck, the
delivery rate of the segment would mainly depend on the resource scheduling at the BS, which of
course only considers network state information when it is allocating resources to its users.
In essence, SAP indirectly controls the BS scheduling, by managing the flow of packets toward

the BS, considering both network and application states. This is performed at an intermediate
timescale between the small BS scheduling period and the much longer quality adaptation time
scale. Hence, when the SAP pacing manager is executed, users can be classified into one of two
states

• new-request state in which the user has recently finished downloading a segment and is
requesting a new one, or

• mid-request state in which the user is still downloading a previously requested segment.
With the first class, SAP determines the stall probability of user u, denoted as πu , as

πu = Prob(du > Du) = Prob

(
Sϑu
xu
> Du

)
,

where xu represents the rate at which user u’s packets would be delivered to the BS and Sϑu
represents a segment size random variable conditioned on the selected quality level ϑu ∈ {1..Q}

corresponding to the selected xu . It is worth noting that for the new-request state, xu represents
the quality rate of the new segment that should ideally be requested by the client from SAP’s point
of view. This quality identifier ϑu is maintained by SAP as part of the flow state until it is updated
with the next segment request. Hence, if the system state made SAP to select a high quality rate at
the beginning of the segment, this decision would be supported until the next segment request,
even when network state changes.
If the user is in the mid-request state, the SAP pacing manager calculates the stall probability

using the conditional residual segment size distribution, denoted as FSϑu (.), and is expressed as

πu =
1 − FSϑu (bu + Duxu)

1 − FSSϑu
(bu)

, (3)

where bu represents the total transmitted bytes for the currently downloaded segment of user u.
Note that segment download deadline Du is reduced by the time elapsed since the last execution of
the SAP pacing optimization. Clearly, there is a need to monitor both downlink and uplink. The
downlink is monitored to determine the number of bytes transmitted per segment for each active
user. The uplink is monitored to identify new segment requests.

3.2.3 SAP Optimization Program. SAP maximizes the total quality utility minus the total stall
penalty for all users. This design is inspired by the desire to provide an improvement in the QoE
performance of video delivery on the cellular network, and particularly to seek consistent QoE for
users, even those with diverse wireless channel conditions. Our SAP pacing manager optimization
program is expressed as

max
xi

U∑
u=1

(ϒu (xu) − βπu)

such that ∑
u

xu/γu < ζ C (4)

xu ∈ {r̂1, ..., r̂Q } (5)

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:9

Table 1. Weibull distribution parameters for segment sizes

quality 1 2 3 4 5 6 7 8 9 10
Shape 2.65 2.7 2.72 2.84 2.9 3.18 3.07 3.21 3.15 3.20
Scale 132 210 313 419 586 973 1309 1666 2140 2388

where β represents non-negative weights for the switching and stall penalties, respectively. r̂i
represents the scaled version of the video encoding rate, and ζ represents a scaling factor to avoid
resource underutilization at the BS. We scaled the encoding rates ri to r̂i to compensate for the
overhead of lower layers such that the application goodput would match the target encoding rate.
Additionally, we employed the scaling factor ζ to avoid resource underutilization, resulting from
performing SAP rate control using the reported wide-band spectral efficiency while the scheduling
performed at base station is based on individual resource unit spectral efficiency.
The integration of quality and temporal components in the SAP optimization assist streaming

clients to avoid stalls, irrespective of the cause of stalls. Stalls may happen for different reasons
including significant changes in the user channel condition, sudden changes in network load (e.g.,
arrival of new users), and/or large increase in the video’s bandwidth demand due to the inherent
variable bitrate of compressed video. SAP accommodates many of these scenarios by dynamically
re-adjusting the resource allocation and thus controlling the packet delivery process to the BS
scheduler. By throttling a specific user, the BS is implicitly forced to serve the traffic of other users.
The operation of the SAP pace optimizer depends on the availability of a set of conditional

distributions for segment sizes using different encoding rates for a given segment duration. These
can be easily determined by fitting the segment size data to a suitable distribution. A set of such
distributions are prepared in advance by the network operator for a wide range of content, with
segment size data made available using one of several techniques. One option is to fetch byte-range
MPD files if they are available; these provide segment sizes for each encoding rate. Or segment sizes
can be obtained by iteratively downloading segments at several fixed qualities from the content
provider and recording the segment sizes. Alternatively, if there was cooperation with the content
provider, segment size data (or indeed distributions) could be provided to the network operator
directly. In this work, we obtain segment size data from the full iVID dataset [30] and fit this data
to a Weibull distribution using fitdistplus package in R.
Table 1 shows the scale and shape parameters of the fitted Weibull distributions for different

quality levels of all movies in the publicly available iVID dataset. The segment duration for these is
4 seconds.

The SAP pacing optimization program can be classified as a non-linear discrete optimization
problem. Solving such problems is usually time consuming and not necessarily feasible in real-time.
However, we ensure real-time operation by taking advantage of the problem structure. Since all
nonlinear terms are functions of a single optimization variable, the program can be formulated as a
separable programming problem that can be solved at a speed similar to linear programs [10, 13].

The separable model of SAP can be expressed as

max
U∑
u=1

Q∑
q=1

(ϒuq − βπuq)θuq (6)

such that
Q∑
q=1

θuq = 1 ∀u ∈ {1, ..,U } , (7)

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:10 A. H. Zahran et al.

 1

 10

 100

 1000

 5 10 15 20 25 30

SAP
AVIS

S
o
lu

ti
o
n
 T

im
e

(m
S
ec

)

Number of Users

Fig. 2. Solution time vs number of clients

∑
u

∑Q
q=1 r̂qθuq

γu
< ζC , (8)

θuq ∈ {0, 1} (9)

where ϒuq and πuq represent the quality utility and stall penalty for user u when assigned video
quality rate r̂q , respectively.

It is worth noting that separable modeling can be applied to other relevant streaming solutions
that share the common program structure, i.e., non-linear terms are only function of a single
optimization variable. For example, AVIS [4] also enjoys the same characteristic and it can be
reformulated as a separable program. Hence, one can achieve both optimized operation in real-time.

Figure 2 shows the box-plot the solution time of the separable implementation of both SAP and
AVIS versus the number of optimized user session. This figure is generated based on the solution of
500 randomly generated program instances using the same video specifications in the iVID data set
[30]. Additionally, cellular network relevant parameters (e.g., spectral efficiency, BS bandwidth,
etc.) matches those defined in standard LTE networks. The results shown were obtained using a
laptop with an Intel Core i7-4810MQ (2.8GHz) processor and 8GB RAM. It is worth noting that we
scaled the base station bandwidth as the number of users increases in order to ensure the program
feasibility, i.e., ensuring the presence of adequate resources to serve existing clients.

The figure illustrates that the program can be solved in few milliseconds for small scale programs.
For example, the solution time of programs with six users is less than 6msec. Additionally, it shows
that the solution time remains bounded to tens of milliseconds as the number of optimized sessions
increases. To illustrate, the solution time of SAP remains less than 110 milliseconds for the case of 30
users, which is foreseen as a sufficient bound on the number of video clients that are simultaneously
streaming video in the same cell. Hence, the separable implementation of SAP offers an optimal
resource management approach whose solution time is similar to unoptimized heuristics.

3.3 Collaborative vs. Non-collaborative SAP
The previous section detailed the design of SAP and how it makes use of network and application
states. SAP can operate in one of two modes: collaborative or non-collaborative. In collaborative
SAP, the application state logger acts as a DANE interface that receives status messages from the
client. This provides SAP with encoding information (rates and segment duration) and the client’s
current buffer-level. Note that the segment duration is used only for identifying the conditional
segment size distribution to apply. Encoding parameters would be provided at the beginning of the

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:11

session, while the buffer-level would be reported on a regular basis during the session. In the non-
collaborative case, we assume that the network operator would implement additional in-network
functions to identify the required information for SAP. We now explore the non-collaborative case
and consider two possibilities:

• Non-encrypted client-CDN communication. In this case, the operator would be able to
extract encoding parameters, such as encoding rates and segment duration, from the DASH de-
scription (MPD) file. To estimate the buffer-level, the SAP application state logger would need to
rely on deep packet inspection. Generally, the uplink mainly carries HTTP GET requests for video
segments and TCP ACK packets. By tracking HTTP requests, SAP can estimate a conservative
value for the client application buffer as detailed below.

• Encrypted client-CDN communication. In this case, SAP has to rely on a priori information
about video traffic. General guidelines for encoding rates used by different video content providers
are publicly available. Hence, SAP may rely on these public rates as alternatives for ri . Note that
the SAP pacing optimizer may use arbitrary discrete rates for ri with inter-rate gaps following the
public guidelines. A typical rate ratio between consecutive rates is 1.5. But, we believe that the
minimum rate is the most critical factor. Choosing the right value for the minimum rate is important,
especially for users with poor link conditions: choosing too small a value may over-throttle the flow
to the user, resulting in excessively poor QoE; on the other hand, choosing too large a value may
result in inefficient utilization of the available resources. For our work in this encrypted scenario,
we assume a technique to estimate the segment duration by observing the segment size of the
first few segments. This technique may assume a small segment duration (e.g., 4 sec) until a more
accurate estimate of the segment duration is calculated. Similar to the non-encrypted case, this
segment duration would be used to estimate the buffer-level as presented below.

3.3.1 SAP Buffer-level Estimator. The buffer-level estimation is needed in the non-collaborative
scenario to identify the delivery deadline of segments. The buffer-level, denoted as b, can be
estimated as the difference between the received and played video durations, denoted as Dr and
Dp respectively. Hence, the buffer-level can be calculated as

b = Dr − Dp . (10)

By knowing the segment duration and the number of received segments, the received media
duration can be directly estimated as their product. The number of received segments can be
determined by monitoring the HTTP GET requests on the user uplink, denoted as дu for user u.
The received video duration may be estimated as (дu − 1)τ seconds. It is important to note that this
approach would efficiently work in both non-encrypted and encrypted cases, provided that the
client requests segments in a sequential manner. However, if the client opts to abandon segments
while they are being downloaded, for example to request lower quality segments to avoid stalls,
then дu should correspond to sequential segment requests. Note that in such mechanisms today the
client is required to close the TCP connection to trigger abandonment of the requested segment
and establish a new connection to request the new segment. Hence, this exchange can be captured
to maintain an accurate estimate of дu .
The playout video duration can be estimated as the difference between the current wall clock,

denoted as tc , and the time at which playout starts, denoted as tp . The initial buffering depends on the
client implementation, but an initial buffering duration between 6 and 10 seconds is recommended
to reduce rebuffering events in mobile systems [34]. Our estimator assumes that the client would
always start after downloading the first segment. The validity of this assumption is based on
the observation that larger segment durations are used for cellular clients. It was shown in [24]
that using a large segment duration in mobile networks improves the user QoE and bandwidth

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:12 A. H. Zahran et al.

utilization. Hence, the estimated buffer-level would be close to the actual buffer-level. However,
it would be a conservative estimate for the buffer-level if the client actually has a larger initial
buffer. Additionally, this estimate would deviate from the actual buffer if the user intervenes with
the session, e.g., pause the playout. Note that in this case, the client would continue to download
the media until the buffer saturates and then would stop requesting segments until the playout
is resumed. In this case, SAP is agnostic to user action and would consider all clients as actively
playing out their entire buffer.
Since we depend on the real-clock to capture the play-out duration of the stream, the duration

of an interruption should be used to rectify the buffer-level estimate. In our estimator, stalls are
captured by negative buffer estimates. To rectify the buffer-level estimate, we shift our playout
reference time to the instant at which the client resumes playout after a stall. We assume that the
client would continue the playout once it receives a segment. Additionally, we reset the number of
received segments to 1 (i.e., дu = 2). Hence, we can consider tp as the time at which playout starts
or resume after a stall. Similarly, дu can be considered the number of stall-free received segments
since the client started or since the last stall.

3.4 Adaptive SAP (ASAP)
ASAP represents a dynamic SAP that aims to ensure stall immunity for video clients at risk of stalls
while avoiding unnecessarily impacting other streams. By design, SAP introduces a controlled
queue for individual streams before the typical client buffers at the cellular BS, as shown in Figure 1.
By adjusting the packet delivery rate towards BS queues, SAP impacts the behavior of the cellular
scheduling. Note that the BS scheduler will only allocate resources for clients with buffered packets
at the BS. Hence, SAP improves the stall immunity by pacing video packets to allow clients at risk
to be allocated resources by the BS scheduler. These clients are usually suffering from deteriorating
network conditions that lead to their playout buffer depletion. Hence, these clients needs more
resources to cope with the network condition to avoid stalls. These resources are obtained from
the common resource pool shared among all clients leading to reduced packet delivery rates for
other clients. While this support is necessary when there is a risk of stalls, it may not be necessary
as the buffered media in the application buffer of all clients is sufficiently high. In such scenario,
more data can be safely delivered towards the cellular BS queues in order to allow those users with
good channel condition to benefit from their high spectral efficiency. Hence, the average system
throughput and user QoE can be improved.
ASAP is proposed to achieve both stall immunity and improved video quality by adjusting ζ

based on the minimum buffer level among all active video clients. A higher ζ implies that SAP
operates using a relaxed resource constraint. By delivering more traffic to the access network,
the control of SAP over the BS scheduler behavior is reduced. On the contrary, using a smaller ζ
improves the chance of resource allocation to users facing the risk of stalls. Hence, ASAP adaptively
sets ζ as expressed below

ζ =

ζl , Bmin ≤ Bl

ζh , Bmin ≥ Bh

ζl +
(Bmin−Bl)(ζh−ζl)

(Bh−Bl)
, otherwise

where Bmin represents the minimum buffer level among all the video clients, Bl and Bh represent
lower and upper bounds on Bmin , ζl and ζh represents a lower and upper bounds for ζ .

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:13

Fig. 3. Evaluation Testbed

4 PERFORMANCE EVALUATION
4.1 Evaluation Setup
Our evaluation testbed is designed based on an empirical methodology that integrates the use
of realistic video content and player software, operating over a simulated cellular network, thus
promoting realism and enabling controlled repeatability of experiments across a range of configu-
rations. Fig. 3 shows our evaluation testbed, which is based on iVID D-LiTE testbed [29]. In the
following subsections, we present the key elements of our testbed. A full implementation details is
presented in [36] and its Appendix.

4.1.1 Streaming Clients. In our testbed, DASH clients are running over a version of Ubuntu
installed in Raspberry Pi 2 and standard net-books. The clients use GPAC 0.5.2-DEV-rev9855
that we extend with well-known/recent adaptation algorithms such as BBA2 [15], FESTIVE [16],
conventional (CONV) [16, 20], and ARBITER [37]. BBA2 represents the class of buffer-based
algorithms in which the quality selection mainly depends on the current buffer-level. FESTIVE
represents the class of conservative rate-based algorithms that are designed to operate well in
scenarios with shared bottlenecks. CONV represents another rate-based strategy that streams video
while trying to maintain the quality at a stable level as much as possible. ARBITER represents the
class of hybrid algorithms that integrate both application and network state in the quality selection
decision. The parameters of different streaming algorithms are set to the default values reported in
the papers cited. In all the evaluation scenarios, a client is configured to perform 8 seconds (two
segments) of initial buffering and 4 seconds (one segment) of rebuffering after any stall [32].

4.1.2 LTE Network Setup. The LTE network is implemented using the LTE-EPC network simu-
lator (LENA) module6 in ns37. In our setup, external nodes are connected to simulated nodes using
the ns-3 TAP mechanism, which uses a special net device called a TapBridge. In order to connect
LTE UEs to the external streaming clients, a second carrier sense multiple access (CSMA) net-device
(12.0.0.x network) is added to the UE, as LTE-net-devices are not compatible with the ns3-TAP
bridge. On the other side of the LTE network, the LTE packet gateway (PGW) is connected to the
network attached storage (NAS) server through a master node whose functionality is explained
below. We have modified the code of both the LENA scheduler and routing modules in ns3 as
described below.

5https://gpac.wp.mines-telecom.fr/
6LENA module. https://goo.gl/6D1Wfq. Last accessed: Dec 8, 2016.
7https://www.nsnam.org/

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:14 A. H. Zahran et al.

For proper routing of downlink packets, we added static routes for the 12.0.0.x network at the
remote node. Additionally, we changed the implementation of ipv4-list-rout-ing.cc to mangle the
destination address of downlink packets before entering and after exiting LENA devices to allow
the packets to travel through the tunnel between LTE PGW and UEs. The destination address is
changed from 12.0.0.x to 7.0.0.x before being forwarded to the PGW. Additionally, the destination
addresses of downlink video packets received at an LTE netdevice (7.0.0.x network) are changed
back to the actual client 12.0.0.x address and are then forwarded to the ns3 12.0.0.x TapBridge. For
uplink traffic, the packets follow the default gateway towards the PGW and are then forwarded
based on static routes that are installed at the LTE PGW and remote host node for the NAS network
(9.0.0.x) to be forwarded to the appropriate device. Each physical client node (Raspberry PI or
netbook) is configured with a default gateway which is the corresponding CSMA netdevice of the
connected LTE UE. The packets then proceed to the LTE PGW as the default gateway for LTE UEs.

In LENA, we consider the log distance path-loss channel model [9] for the link between eNodeB
and UEs. This pathloss is overloaded with fading traces generated using a tool provided with LENA.
The default LENA configuration parameters are used for both eNodeB and pathloss model. All our
evaluations are conducted with the proportional fairness (PF) scheduler at the eNodeB. We have
modified the PF scheduler implementation only so that user channel quality can be reported to the
traffic manager being evaluated.

4.1.3 Master Controller. The master controller node is responsible for orchestrating the evalua-
tion and performing traffic management functions during video sessions. More specifically, this
node configures the network and GPAC clients before an evaluation run starts. Note that network
configurations include parameters such as eNodeB bandwidth, eNodeB scheduler, and fading model,
while the client configuration parameters include the adaptation algorithm and streamed video
specifications. At the end of the run, it also collects performance logs from the clients for post
processing.
During the evaluation, the master controller performs traffic management functions. In our

evaluation, we compare the performance of three different traffic controllers including no traffic
control (noTC), AVIS [4], SAP, and ASAP. AVIS focuses on fair user allocation and reduction of
quality switches, but overlooks stalls in its design. Both AVIS and SAP optimization programs are
implemented using the Lindo solver8. The AVIS implementation is based on the continuous version
presented in [4] and both ASAP and SAP implementations are based on the separable programming
model. In our testbed, the AVIS parameters are set to the default values presented in [4]. The stall
weight β is set to 100 and the default utility saturation parameter ρu of all clients is set to 3Mbps
for both SAP and ASAP. 3Mbps is the maximum rate for HD resolution in the iVID video dataset.

ASAP, SAP and AVIS are periodically executed every 250 ms and the outcome of the optimization
program is used to throttle individual user queues using the traffic control command in Linux,
the operating system of the master controller node in our testbed. The master node maintains
a communication channel with the eNodeB to obtain user channel quality information (CQI)
required by both AVIS, ASAP, and SAP. Similarly, it maintains communication channels with
streaming clients to obtain relevant application information for the collaborative scenarios. In the
non-collaborative scenario, the buffer-level is estimated as presented in Section 3.3.1.

4.1.4 Evaluation Scenarios. In our evaluation, we consider a group of video users sharing a highly
loaded LTE eNodeB to capture the impact of streaming in a limited-resource environment. Our
performance evaluation shows that different trafficmanagement solutions have similar performance
in lightly loaded scenarios. Hence, we focus more on the more relevant highly loaded systems.

8http://www.lindo.com/

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:15

The eNodeB bandwidth is 1.4 MHz and has a transmission power of 30.2dBm. This eNodeB has 6
resource units split into 6 allocatable resource block groups (RBG) in the downlink. Each RBG can
support a PHY rate between 16 Kbps and 712 Kbps depending on the user reported channel quality
indicator value. In our evaluation, we consider two different user topologies in highly loaded cells
as detailed below.
We consider 6 DASH clients streaming 5-minute, 4-second segment, videos over a single LTE

eNodeB. In every session, the clients are introduced to the network separated by a 1 second time
gap. Each user streams a different five-minute video from the iVID dataset [30]9, whose videos
are encoded with 4-second segments at the following rates {235, 375, 560, 750, 1050, 1750, 2350,
3000, 3850, 4300} Kbps. Note that the base station is only used by the video users. In a more general
setup, other traffic may share the eNodeB and video users would be allocated a slice of the total
base station resources.
In the following, we first compare the performance of SAP to other traffic manager consider

static and mobile scenarios. We then present the performance enhancement achieved by ASAP.

4.2 Performance metrics
Our performance metrics include the average received data rate per session (rav), the average
number of stalls per session (nst), the average stall duration per session (tst), the average number
of switches per session (nsw), the average switching level (lsw), and a combined QoE metric (xq)
[26], which was originally developed in [21] and [33]. The QoE metric is expressed as [26]

xq =max(0, 0.17 + 5.67
qav
qQ

− 6.72 ∗
qstd
qQ

− 4.95φ),

where qav and qstd represents the average and standard deviation of the received quality level, and
φ represents the stall penalty and is expressed as

φ = 0.875 ∗max(0, 1 + ln(fst)/6) + 0.008333 ∗min(tst , 15),
where fst represents the frequency of stalls and tst is the average stall duration per session. The
results shown represents the average of each metric obtained across 15 runs.

4.3 Performance Results
4.3.1 Scenario 1: Collaborative Static Clients with Diverse Link Conditions . In this scenario,

we consider equally separated users with the nearest and farthest users being at 25m and 375m,
respectively, from the base station. Fig. 4 illustrates the distribution of the achievable rate per
resource unit for each user. Note that these rates are determined by mapping the reported CQI
value to the eNodeB as defined in the LTE standards. The figure shows that the closest client to the
eNodeB can achieve the highest PHY rate per RU (712 Kbps) almost all the time, while the farthest
client’s achievable rate is less than 200Kbps for 60% of the time.

Figure 5 illustrates the impact of stall weight on the streaming performance metrics for SAP-50,
SAP-100, and SAP-200, where X in SAP-X denotes the stall weight. This figure illustrates that as
the stall weight β increases from 50 to 100 a noticeable improvement in the stall metrics is achieved.
For example, the average number of stalls, nst , dropped by 63% and the average stall duration, tst ,
also dropped by 82%. Such drops lead to a reduction of 65% in the stall penalty φ. This improvement
is accompanied by a minimal impact only 2% in the average video quality rate. Note that increasing
the stall weight implies that SAP would be more sensitive to lower buffer levels and hence, would
allocate more resource to users at risk of stalls leading to a drop in the average streaming rate.
SAP-100 also shows a noticeable improvement in the switching performance in comparison to
9iVID Dataset. https://goo.gl/BP6LWR. Last accessed: Dec 8, 2016.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:16 A. H. Zahran et al.

 0

 20

 40

 60

 80

 100

 0 1
0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

C
D

F

Achievable RU Rate (Kbps)

U1

U2

U3

U4

U5

U6

Fig. 4. Achievable rate per resource unit (RU) per user in scenario 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

nst tst r'av n'sw lsw φ xq σ'q

No
rm

al
ize

d
M

et
ric

 V
al

ue

SAP-50 SAP-100 SAP-200

Fig. 5. Normalized streaming performance metrics for various stall weight β . r ′av = rav/235 , σ ′
q = σq/30,

and n′sw = nsw /5.

SAP-50. These performance metrics lead to approximately 9% improvement in the average QoE
metric xq . Increasing the stall weight beyond 100 does not lead to a significant improvement in
the overall system performance. For example, both SAP-200 and SAP-100 achieve the same stall
penalty and the same QoE. In the rest of this document, we show results for SAP-100. Hence, we
drop the SAP-X notation.

Fig. 6 shows the average of each of the performance metrics for different streaming algorithms.
SAP significantly improves the stall performance for all algorithms in comparison to both noTC
and AVIS. The existing diversity in the channel condition enabled SAP to achieve a significant
reduction in both the number of stalls, nst , and stall duration, tst . In conjunction with BBA2, SAP
reduces both nst and tst by 84% and 94% in comparison to noTC. SAP also reduces both nst and tst
of FESTIVE by 95%. Additionally, we note a significant reduction of 83% and 86% for nst and tst
when SAP is used with ARBITER. Similar performance gains are achieved by SAP in comparison to
AVIS. In fact, AVIS shows stall performance that is similar to or worse than noTC. The improvement
in stall performance by SAP thus reduces the stall QoE penalty φ by 50%, 89%, 66%, and 40% for
BBA2, FESTIVE, CONV, and ARBITER, respectively. In this scenario with users having diverse link
conditions, the user farthest from the eNodeB encounters most of these stalls.
The improved stall performance for SAP is due to its resource management strategy, that not

only ensures a minimum rate for every client, but also dynamically paces individual stream packets
to protect clients from stalling. Fig. 7 illustrates the resource shares allocated by SAP and AVIS for
individual streams. Clearly, Fig. 7a and Fig. 7b illustrates that in SAP more resources are allocated
to protect the farthest client who is more exposed to stalls. It is also interesting to observe that

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:17

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f s
ta

lls
 (n

st)

AVIS noTC SAP

(a) Avg. number of stalls

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l D
ur

at
io

n
(t s

t)[
Se

c]

AVIS noTC SAP

(b) Avg. stall Duration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l P
en

al
ty

 (φ
)

AVIS noTC SAP

(c) Avg. stall QoE penalty

 220

 240

 260

 280

 300

 320

 340

 360

ARBITER BBA2 CONV FESTIVEAv
g

Re
pr

es
en

ta
tio

n
Ra

te
 (r

av
)[K

bp
s] AVIS noTC SAP

(d) Avg. quality rate

 0

 5

 10

 15

 20

 25

 30

 35

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f S
w

itc
he

s (
n s

w
)

AVIS noTC SAP

(e) Avg. number of switches

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

ARBITER BBA2 CONV FESTIVE

Av
g

Sw
itc

h
Le

ve
l (

l sw
)

AVIS noTC SAP

(f) Avg. switch level

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05

ARBITER BBA2 CONV FESTIVE

Av
g

Q
oE

 (x
q)

AVIS noTC SAP

(g) Avg. QoE metric

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

ARBITER BBA2 CONV FESTIVE

Q
oE

 S
td

 D
ev

 (σ
q)

AVIS noTC SAP

(h) QoE std. dev.

Fig. 6. Performance metrics for scenario 1

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250 300

 0

 1

 2

 3

 4

 5

 6

SA
P

 R
es

ou
rc

e
A

ll
oc

at
io

n

Time (Sec)

Client 6

Client 5

Client 4

Client 3

Client 2

Client 1

(a) BBA2-SAP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 50 100 150 200 250 300

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

SA
P

 R
es

ou
rc

e
A

ll
oc

at
io

n

Time (Sec)

Client 6

Client 5

Client 4

Client 3

Client 2

Client 1

(b) FESTIVE-SAP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50 100 150 200 250 300

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

A
V

IS
 R

es
ou

rc
e

A
ll

oc
at

io
n

Time (Sec)

Client 6

Client 5

Client 4

Client 3

Client 2

Client 1

(c) FESTIVE-AVIS

Fig. 7. Comparing SAP and AVIS resource allocation with different algorithms

with BBA2, SAP is continuously supporting this user by allocating more resources over the entire
session duration, in comparison to only the initial part with FESTIVE. Note that BBA2 employs
a large buffer (240 sec) and its clients are continuously competing for the network resources. On
the contrary, FESTIVE employs a much smaller buffer (30 Sec). Hence, FESTIVE clients with good
channel conditions are able to fill their buffer and consequently delay their segment requests. Thus,
clients with poorer channel conditions are offered more transmission opportunities by the eNodeB
and SAP stall avoidance would kick in at a much lower frequency in comparison to BBA2. On the

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:18 A. H. Zahran et al.

other hand, Fig. 7c shows that while AVIS tends to avoid frequent rate changes it does not provide
the same level of stall protection to video clients.

Fig. 6d shows that introducing a network traffic controller, e.g., AVIS or SAP, results in reducing
the average representation rate rav . This reduction is expected, as pacing the traffic would slow the
delivery rate of packets, leading to lower rate estimates for rate-based strategies or lower buffer-
levels in buffer-based strategies. Fig. 6e and Fig. 6f show that SAP significantly reduced the average
number of switches nsw and average switching level lsw of BBA2 by 64% and 60%, respectively.
Excluding BBA2, the switching performance of the remaining algorithms is not significantly affected
by the traffic pacing/control functions.
Fig. 6g shows that the QoE metric xq drops when SAP is used. This reduction is due to SAP

reshuffling resources to help suffering clients - which are those close to the cell edge. Such reshuffling
reduces xq for users close to the eNodeB and increases xq for distant users.We emphasize that SAP
provides improved fairness, by reducing the variance in QoE as shown in Fig. 6h. The latter figure
shows that SAP reduces σq by 40%, 40%, 24%, and 26% in comparison to noTC for BBA2, FESTIVE,
CONV, and ARBITER, respectively.

4.3.2 Scenario 2: mobile collaborative clients. In this scenario, we consider six mobile users
moving in a bounded box around the base station. The box side is determined such that the
maximum distance between any client and the BS is 400m. The users are initially located equally
spaced along the cell diagonal and are allowed to randomly move according to a Gauss-Markov
mobility model with an average speed of 1 m/s and a memory factor equal to 0.8. When the user
reaches the simulated boundary, it moves back into the cell. Typically, the user who is handed off
to another cell would see similar network conditions in the new cell that he has been handed off to
in a uniformly loaded network.
Figure 8 plots the performance metrics for mobile users using different algorithms. The figure

shows that user mobility improves the user streaming performance in different ways. First, the users
have fewer stalls and higher quality rate in comparison to the static user scenario. Additionally, the
figure shows that SAP successfully eliminates the stalls encountered by the user for all the evaluated
streaming algorithms. Figure 8d also shows that, for all streaming strategies, SAP improves the
average video quality rate rav in comparison to both noTC and AVIS. This improvement reaches
4-5% in comparison to noTC. Figure 8e shows that SAP has insignificant impact on the average
number of switches. Additionally, the impact of SAP on the average switching level differs among
the tested algorithms as shown in Figure 8f. We believe that the switching behavior is generally
dominated by the design of the quality adaptation strategy. The average QoE is boosted by SAP for
all adaption strategies due to stall elimination and increased representation rates. However, this
improvement is accompanied by the increase of the standard deviation among streaming clients.

4.3.3 Collaborative vs. Non-collaborative SAP. In this section, we investigate the performance
of SAP in non-collaborative mode in which the buffer-level is estimated by SAP in comparison
to being collaboratively provided by the client. In the non-collaborative mode, we consider that
encoding information is available to SAP, but the instantaneous buffer-level has to be estimated
by SAP, using the estimation technique presented in Section 3.3.1. Fig. 9 shows the streaming
performance metrics averaged over all sessions. Note that we normalized some of the metrics to fit
all of them in one figure, and the normalization factors are indicated in the caption. This figure
shows that both collaborative and non-collaborative SAP achieve similar performance metrics for
all the adaptation algorithms. Additionally, Fig. 10 plots the correlation between individual client
performance metrics for both collaborative and non-collaborative scenarios. The figure shows a
high correlation for all metrics for all adaptation strategies except for the FESTIVE stall metric.
The low correlation for the FESTIVE stalls is due to a minor variation in the stall distribution

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:19

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f s
ta

lls
 (n

st)

noTC AVIS SAP

(a) Avg. number of stalls

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l D
ur

at
io

n
(t s

t)[
Se

c]

noTC AVIS SAP

(b) Avg. stall Duration

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

ARBITER BBA2 CONV FESTIVE

Av
g

St
al

l P
en

al
ty

 (φ
)

noTC AVIS SAP

(c) Avg. stall QoE penalty

 240

 260

 280

 300

 320

 340

 360

 380

ARBITER BBA2 CONV FESTIVEAv
g

Re
pr

es
en

ta
tio

n
Ra

te
 (r

av
)[K

bp
s] noTC AVIS SAP

(d) Avg. quality rate

 0

 5

 10

 15

 20

 25

 30

 35

 40

ARBITER BBA2 CONV FESTIVE

Av
g

N
um

be
r o

f S
w

itc
he

s (
n s

w
)

noTC AVIS SAP

(e) Avg. number of switches

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

ARBITER BBA2 CONV FESTIVE

Av
g

Sw
itc

h
Le

ve
l (

l sw
)

noTC AVIS SAP

(f) Avg. switch level

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15
 1.2

ARBITER BBA2 CONV FESTIVE

Av
g

Q
oE

 (x
q)

noTC AVIS SAP

(g) Avg. QoE metric

 0.5

 1

 1.5

 2

 2.5

 3

ARBITER BBA2 CONV FESTIVE

Q
oE

 S
td

 D
ev

 (σ
q)

noTC AVIS SAP

(h) QoE std. dev.

Fig. 8. Performance metrics for scenario 2

 0

 0.5

 1

 1.5

 2

 2.5

nst tst r'av n'sw lsw φ xq σ'q

No
rm

al
ize

d
M

et
ric

 V
al

ue

ARBITER-e
ARBITER

BBA2-e
BBA2

CONV-e
CONV

FESTIVE-e
FESTIVE

Fig. 9. Normalized streaming performance metrics for collaborative and non-collaborative scenarios. -e
denotes the non-collaborative version. r ′av = rav/235 , σ ′

q = σq/3, and n′sw = nsw /15.

across the clients. Only the farthest client encounter stalls in the collaborative scenario while in
the non-collaborative scenario the second farthest client also has a couple of stalls. Hence, we
conclude that integrating the buffer estimation technique with SAP can be sufficient, thus avoiding
any frequent updates from the streaming end client. Consequently, the network does not need to

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:20 A. H. Zahran et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

nst tst rav nsw lsw φ xq

Co
rr

el
at

io
n

ARBITER BBA2 CONV FESTIVE

Fig. 10. The correlation between the performance metrics of collaborative and non-collaborative scenarios

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

nst tst r'av n'sw lsw φ xq σ'q

No
rm

al
ize

d
M

et
ric

 V
al

ue

FESTIVE ARBITER BBA2 CONV

Fig. 11. ASAP performance normalized to corresponding SAP metrics.

have a direct interface with client software or be aware of the local state of the individual client
adaptation.

4.3.4 ASAP. We evaluate the performance of ASAP in the static user setup presented in Section
4.3.1. In the shown results, we set ASAP parameters as follows: ζl = 1, ζh = 1.2, Bl = 5, and Bh = 10.
Figure 11 plots the performance metrics of ASAP normalized to the corresponding SAP metrics for
different algorithms. ASAP improves the stall performance across all the algorithms. ASAP reduces
the number of stalls by up to 100%. Additionally, ASAP increases the average quality rate for the
tested adaptation strategies, by up to 3.6%, except for BBA2, for which a drop of 1% is observed.
We believe this drop is the continuous activity of BBA2 due to it large buffer size (240 sec). Hence,
clients never manage to fill in their buffer and are continuously competing for resources. Hence,
users in worse network conditions may not have the chance to fill in their buffer and hence, ASAP
usually operates on low values for ζ . On the other hand, other strategies with smaller buffers fill in
their buffers and temporarily do not use network resources allowing other clients to fill in their
buffers. Hence, ASAP operates at higher values for ζh allowing higher requested streaming rates.
ASAP shows insignificant impact on the switching performance of SAP. The overall QoE metric is
boosted by 1%-5% for different algorithms.

The implementation of a assisted streaming solution, such as SAP and ASAP, needs to maintain
flow state and to act upon this state. This state comprises a network part (e.g., link quality) and
an application part (e.g., buffer-level). The storage requirements for such information is quite
small and can easily scale with the number of user flows. Note that SAP and ASAP decisions are

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:21

generated only for the users sharing a single base station. Hence, the solution can be implemented
in a scalable manner, with separate instantiations for each base station, and could be implemented
even in a distributed manner. Thus, we do not anticipate any scalability issues from a processing
perspective. There may be additional requirements depending on the implementation. For example,
a collaborative solution implies the implementation of an interface to interact with streaming
endpoints, such as a DASH-Aware Network Element (DANE) as a network agent. On the other
hand, a non-collaborative solution would require the implementation of a buffer estimator per flow.
In both cases, the control signaling load will be limited and can easily scale.

5 CONCLUSIONS
The ability of DASH video streaming clients to operate effectively over cellular networks is poor, due
to the inherent variability of both video datarates and the wireless channel quality. In highly loaded
systems, these characteristics may lead to streaming issues, such as stalls. Unlike the situation
when using wired links, it must be recognized that achieving equivalent QoE across all clients
is not a reasonable objective. Fairness is not absolute, but is rather a function of the channel
conditions available to each client. Thus, steps must be taken to manage wireless resources to
ensure that clients with poorer channel conditions do not suffer unnecessarily, even as clients with
good channel conditions seek to maximize their own QoE. This can be achieved by the network
redistributing channel resources so as to reduce extremes of QoE across clients. SAP seeks to
re-allocate wireless resources in favor of a client that becomes less likely to experience a stall,
without significantly degrading the QoE of other users. In this paper, we present SAP as a traffic
management solution to improve the streaming performance of a group of DASH video users
competing for a base station’s resources. SAP integrates both application and network state to
optimally pace individual stream delivery. Our extensive experiments show that SAP significantly
reduces video stalls encountered by different users in comparison to the state of the art solutions.
Additionally, SAP reduces the QoE variability across multiple clients, leading to a more consistent
experience for static users. The introduction of adaptive pacing rate in ASAP further enhances the
streaming performance by reducing the stalls and improving the user QoE. Our current evaluation
setup involves a combination of real-experimentation and simulations operating in real-time. This
setup limits the scalability of our evaluation and in the future we plan to explore ways in which we
can address this limitation.

ACKNOWLEDGMENTS
This publication has emanated from research conducted with the financial support of Science
Foundation Ireland (SFI) under Grant No.: 13/IA/1892. This work was supported in part by NSF
grant CNS-1619441.

REFERENCES
[1] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis. 2012. What Happens when HTTP Adaptive Streaming

Players Compete for Bandwidth?. In Proceedings of the 22nd International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV ’12). Toronto, Canada, 9–14.

[2] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen. 2013. Server-based Traffic Shaping for Stabilizing
Oscillating Adaptive Streaming Players. In Proceeding of the 23rd ACM Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV ’13). Oslo, Norway, 19–24.

[3] N. Bouten, R. de O. Schmidt, J. Famaey, S. Latré, A. Pras, and F. De Turck. 2015. QoE-driven in-network optimization
for Adaptive Video Streaming based on packet sampling measurements. Computer Networks 81 (2015), 96 – 115.

[4] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chiang. 2013. A Scheduling Framework for Adaptive
Video Delivery over Cellular Networks. In Proceedings of the 19th Annual International Conference on Mobile Computing
& Networking (MobiCom ’13). Miami, Florida, USA, 389–400.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

6:22 A. H. Zahran et al.

[5] G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mascolo. 2016. Design and Experimental
Evaluation of Network-assisted Strategies for HTTP Adaptive Streaming. In Proceedings of the 7th International
Conference on Multimedia Systems (MMSys ’16). Article 3, 12 pages.

[6] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. 2013. ELASTIC: A Client-Side Controller for Dynamic Adaptive
Streaming over HTTP (DASH). In 20th International Packet Video Workshop (PV). San Jose, CA USA, 1–8.

[7] L. De Cicco and S. Mascolo. 2014. An Adaptive Video Streaming Control System: Modeling, Validation, and Performance
Evaluation. Networking, IEEE/ACM Transactions on 22, 2 (April 2014), 526–539.

[8] D. De Vleeschauwer, H. Viswanathan, A. Beck, S. Benno, Gang Li, and R. Miller. 2013. Optimization of HTTP adaptive
streaming over mobile cellular networks. In INFOCOM, 2013 Proceedings IEEE. Turin, Italy, 898–997.

[9] V. Erceg, L. J. Greenstein, S. Y. Tjandra, S. R. Parkoff, A. Gupta, B. Kulic, A. A. Julius, and R. Bianchi. 1999. An
empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in
Communications 17, 7 (Jul 1999), 1205–1211.

[10] A. Galperin and Z. Waksman. 1981. A separable integer programming problem equivalent to its continual version. J.
Comput. Appl. Math. 7, 3 (1981), 173 – 179.

[11] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race. 2013. Towards Network-wide QoE Fairness Using
Openflow-assisted Adaptive Video Streaming. In Proceedings of the 2013 ACM SIGCOMM Workshop on Future Human-
centric Multimedia Networking (FhMN ’13). Hong Kong, China, 15–20.

[12] M. Ghobadi, Y. Cheng, A. Jain, and M. Mathis. 2012. Trickle: Rate Limiting YouTube Video Streaming. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference (USENIX ATC’12). Berkeley, CA, USA, 191–196.

[13] D. S. Hochbaum and J. George Shanthikumar. 1990. Convex Separable Optimization is Not Much Harder Than Linear
Optimization. J. ACM 37, 4 (Oct. 1990), 843–862.

[14] R. Houdaille and S. Gouache. 2012. Shaping HTTP Adaptive Streams for a Better User Experience. In Proceedings of the
3rd Multimedia Systems Conference (MMSys ’12). Chapel Hill, North Carolina, 1–9.

[15] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. 2014. A Buffer-based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service. In Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM
’14). Chicago, Illinois, USA, 187–198.

[16] J. Jiang, V. Sekar, and H. Zhang. 2012. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video
Streaming with FESTIVE. In Proceedings of the 8th International Conference on Emerging Networking Experiments and
Technologies (CoNEXT ’12). Nice, France, 97–108.

[17] Jan Willem Kleinrouweler, Sergio Cabrero, and Pablo Cesar. 2017. An SDN Architecture for Privacy-Friendly Network-
Assisted DASH. ACM Trans. Multimedia Comput. Commun. Appl. 13, 3s, Article 44 (June 2017), 22 pages.

[18] Jan Willem Kleinrouweler, Britta Meixner, and Pablo Cesar. 2017. Improving Video Quality in Crowded Networks
Using a DANE. In Proceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV’17). ACM, New York, NY, USA, 73–78.

[19] J. Kua, G. Armitage, and P. Branch. 2017. A Survey of Rate Adaptation Techniques for Dynamic Adaptive Streaming
Over HTTP. IEEE Communications Surveys Tutorials 19, 3 (thirdquarter 2017), 1842–1866.

[20] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. 2014. Probe and Adapt: Rate Adaptation for HTTP
Video Streaming At Scale. EEE Journal on Selected Areas in Communications 32, 4 (2014), 719–733.

[21] R.K.P. Mok, E.W.W. Chan, and R.K.C. Chang. 2011. Measuring the quality of experience of HTTP video streaming. In
Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on. Dublin Ireland, 485–492.

[22] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. 2012. QDASH: A QoE-aware DASH System. In Proceedings of
the 3rd Multimedia Systems Conference (MMSys ’12). Chapel Hill, North Carolina, 11–22.

[23] M. Mu, M. Broadbent, A. Farshad, N. Hart, D. Hutchison, Q. Ni, and N. Race. 2016. A Scalable User Fairness Model for
Adaptive Video Streaming Over SDN-Assisted Future Networks. IEEE Journal on Selected Areas in Communications 34,
8 (Aug 2016), 2168–2184.

[24] D. M. Nguyen, L. B. Tran, H. T. Le, N. P. Ngoc, and T. C. Thang. 2015. An evaluation of segment duration effects in HTTP
adaptive streaming over mobile networks. In 2015 2nd National Foundation for Science and Technology Development
Conference on Information and Computer Science (NICS). 248–253.

[25] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck. 2015. QoE-Driven Rate Adaptation Heuristic for Fair
Adaptive Video Streaming. ACM Trans. Multimedia Comput. Commun. Appl. 12, 2, Article 28 (Oct. 2015), 24 pages.

[26] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. De Turck. 2015. QoE-Driven Rate Adaptation Heuristic for Fair
Adaptive Video Streaming. ACM Trans. Multimedia Comput. Commun. Appl. 12, 2, Article 28 (Oct. 2015), 24 pages.

[27] M.H. Pinson and S. Wolf. 2004. A new standardized method for objectively measuring video quality. Broadcasting,
IEEE Transactions on 50, 3 (Sept 2004), 312–322.

[28] W. Pu, Z. Zou, and C. W. Chen. 2012. Video adaptation proxy for wireless Dynamic Adaptive Streaming over HTTP. In
Packet Video Workshop (PV), 2012 19th International. Munich-Garching, Germany, 65–70.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

Adaptive Stall Aware Pacing 6:23

[29] J. J. Quinlan, D. Raca, A. H. Zahran, A. Khalid, K. K. Ramakrishnan, and C. J. Sreenan. 2016. D-LiTE: A platform for
evaluating DASH performance over a simulated LTE network. In 2016 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN). Rome, Italy, 1–2.

[30] J. J Quinlan, A. H. Zahran, and C. J. Sreenan. 2016. Datasets for AVC (H.264) and HEVC (H.265) for Evaluating Dynamic
Adaptive Streaming over HTTP (DASH). In Proc. of ACM MMsys 2016 (dataset track). Klagenfurt, Austria.

[31] A. Seetharam, P. Dutta, V. Arya, J. Kurose, M. Chetlur, and S. Kalyanaraman. 2015. On Managing Quality of Experience
of Multiple Video Streams in Wireless Networks. Mobile Computing, IEEE Transactions on 14, 3 (March 2015), 619–631.

[32] T. C. Thang, H. T. Le, H. X. Nguyen, A. T. Pham, J. W. Kang, and Y. M. Ro. 2013. Adaptive video streaming over HTTP
with dynamic resource estimation. Journal of Communications and Networks 15, 6 (Dec 2013), 635–644.

[33] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. 2013. Model for estimating QoE of video delivered using HTTP
adaptive streaming. In 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013). Ghent,
Belgium, 1288–1293.

[34] Jun Yao, Salil S. Kanhere, Imran Hossain, and Mahbub Hassan. 2011. Empirical Evaluation of HTTP Adaptive Streaming
under Vehicular Mobility. In NETWORKING 2011, Jordi Domingo-Pascual, Pietro Manzoni, Sergio Palazzo, Ana Pont,
and Caterina Scoglio (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 92–105.

[35] F.Z. Yousaf, M. Liebsch, A. Maeder, and S. Schmid. 2013. Mobile CDN enhancements for QoE-improved content delivery
in mobile operator networks. Network, IEEE 27, 2 (March 2013), 14–21.

[36] Ahmed H. Zahran, Jason J. Quinlan, K. K. Ramakrishnan, and Cormac J. Sreenan. 2017. SAP: Stall-Aware Pacing
for Improved DASH Video Experience in Cellular Networks. In Proceedings of the 8th ACM on Multimedia Systems
Conference (MMSys’17). ACM, New York, NY, USA, 13–26.

[37] A. H. Zahran and C. J. Sreenan. 2016. ARBITER: Adaptive rate-based intelligent HTTP streaming algorithm. In 2016
IEEE International Conference on Multimedia Expo Workshops (ICMEW). Seattle, WA, USA, 1–6.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 9, No. 4, Article 6. Publication date:
June 2018.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 SAP
	3.1 SAP Overview
	3.2 Design of the SAP Pacing Optimizer
	3.2.1 System Model
	3.2.2 SAP QoE-Oriented Design
	3.2.3 SAP Optimization Program

	3.3 Collaborative vs. Non-collaborative SAP
	3.3.1 SAP Buffer-level Estimator

	3.4 Adaptive SAP (ASAP)

	4 Performance Evaluation
	4.1 Evaluation Setup
	4.1.1 Streaming Clients
	4.1.2 LTE Network Setup
	4.1.3 Master Controller
	4.1.4 Evaluation Scenarios

	4.2 Performance metrics
	4.3 Performance Results
	4.3.1 Scenario 1: Collaborative Static Clients with Diverse Link Conditions
	4.3.2 Scenario 2: mobile collaborative clients
	4.3.3 Collaborative vs. Non-collaborative SAP
	4.3.4 ASAP

	5 Conclusions
	Acknowledgments
	References

