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1.1 Thesis contributions 

The contributions of this thesis inform the design and implementation of industrial analytics 

solutions based on Industry 4.0 principles and heuristics. These intertwined research 

contributions consist of a (1) unified design methodology to describe the socio-technical 

roles, responsibilities, and processes relating to the development of industrial analytics 

capabilities within a large-scale manufacturing facility, (2) industrial data pipeline to 

streamline and automate the process of data integration, exploration and model building 

using traditional industrial information systems and protocols that provide access to 

time-series operating data, and (3) industrial cyber-physical system based on fog computing to 

enable production-ready machine learning models to be deployed and operationalised to 

inform real-time decision-making in the factory. The following sections describe the 

characteristics, usage and benefits of each contribution. 

1.1.1 Unified design methodology for industrial analytics  

The unified design methodology provides a systematic and structured approach 

for multidisciplinary teams tasked with delivering industrial analytics. The 

particular aspects of the methodology where novelty is claimed relates to the mapping 

of the entire industrial analytics lifecycle as a closed-loop process, which considers the 

processes needed to support the creation of high-quality models (section 1.1.2), and the 

processes needed to enable the deployment of production-ready models in real-time 

factory operations (section 1.1.3). Other unique aspects of the methodology include the 

integration of multidisciplinary perspectives to form acceptance and performance 

criteria for evaluating technical implementations based on Industry 4.0 principles (e.g. 

decentralised decision-making), internal stakeholder concerns (e.g. resilience, security 

etc.), communication latency and reliability, and maturity benchmarking. 

1.1.2 Industrial data pipeline for automated time-series processing 

The industrial data pipeline provides factory-to-cloud integration to automate 

pre-processing of time-series data, and present the analytics-ready data to 

engineering and analytics personnel. The particular aspect of the industrial analytics 

pipeline where novelty is claimed relates to the orchestration of factory and cloud 

compute modules, which collaborate to ingest, clean and merge several proprietary 

time-series data logs, before producing a single analytics-ready data set that can be 
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accessed using an open and standard web service interface. After manual data 

exploration, modelling and testing activities have been undertaken by the engineer or 

practitioner, the final production-ready analytics model can be deployed to inform real-

time decision-making in the factory (section 1.1.3).  

1.1.3 Fog computing architecture for embedded machine learning 

The industrial cyber-physical system based on fog computing provides the 

mechanism for deploying and embedding production-ready machine learning 

models (section 1.1.2) in real-time factory operations. The particular aspects of the 

industrial cyber-physical system where novelty is claimed relates to the application of 

fog computing as an approach for delivering real-time machine learning within industrial 

environments, and addressing prominent Industry 4.0 design principles and stakeholder concerns 

relating to emerging technologies and systems. The following section describes details 

of the implemented fog computing architecture that align with these criteria; 

 Decentralised Intelligence: emerging systems for Industry 4.0 are expected to 

support decentralised decision-making, which requires intelligence (e.g. machine 

learning models) to be embedded and accessible throughout the factory and 

supply chain. This differs from traditional cloud architectures, where intelligence 

is persisted and executed from a central location, with results relayed to the 

necessary distributed components. The fog computing approach facilitates 

decentralised intelligence by persisting and executing shadow copies of machine 

learning models on compute/fog nodes, which can be located in close proximity 

to the relevant factory operations.  

 Near Real-time Performance: emerging industrial cyber-physical systems are 

expected to extend and inform existing automation networks, which demands 

cyber-physical architectures that can handle time-dependent engineering 

scenarios. Such time-dependent scenarios may be more challenging to address 

using cloud computing architectures given model execution can depend on the 

availability and performance of external connectivity (e.g. broadband). However, 

the fog computing approach greatly reduces dependencies on external 

connectivity by persisting and executing machine learning models on 

compute/fog nodes located inside the factory’s network. 
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 Industrial Data Privacy: emerging systems for Industry 4.0 are expected to 

provide appropriate levels of industrial data privacy, which has been traditionally 

realised using strict governance and firewall policies on industrial automation 

and controls networks. However, controlling data privacy can become more 

challenging when using standard cloud computing approaches, given real-time 

industrial data streams are continuously transmitted outside the factory’s 

network boundaries. The fog computing architecture offers an alternative 

approach that only requires real-time industrial data to be transmitted to the 

local compute/fog node, and thereby mitigates the need to transmit real-time 

industrial data outside the factory’s automation and control networks.  

 Openness and Interoperability: emerging systems for Industry 4.0 are 

expected to employ open standards, with the intention of promoting system 

interoperability, service-orientation and reusable intelligence. This contrasts with 

traditional industrial information systems and technology, which are commonly 

based on commercial and proprietary technologies. The fog computing 

approach embraces open internet standards (e.g. HTTP) to ensure models can 

be executed by third party systems and processes using web service calls, while 

results (e.g. fault detected) can be propagated to other service interfaces. 

1.2 Chapter introduction 

This chapter discusses the background, motivation, contributions and structure of this 

thesis. These discussions provide context for future chapters, while also positioning 

research contributions within the broader Industry 4.0 and engineering domain. 

1.3 Background and motivation 

The Irish Research Council’s Enterprise Partnership Scheme (EPS) funded this PhD 

research. The national research initiative is designed to support industry and academic 

collaboration, with the intention of addressing real-world challenges using practical and 

applied research. Given their global reputation as leaders in the field of biomedical 

device production, DePuy Ireland (Johnson & Johnson) was chosen as the industry 

partner. This partnership provided access to operational teams, processes and 

technologies to apply research efforts. These resources were engaged periodically to 
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elicit requirements, survey technologies, and validate approaches. The primary 

contributors from academic and industrial organisations are summarised in Table 1. 

Name Domain Contribution 

Peter O’Donovan 
IERG Research Group 

Engineering 
Informatics 

Modelled and developed all theoretical and 
technology aspects of the industrial analytics 
architecture and cyber-physical system. 

Dr. Dominic O’Sullivan 
IERG Research Group 

Energy 
Engineering 

Supervised research efforts and provided guidance 
related to primary engineering systems and principles. 

Dr. Ken Bruton 
IERG Research Group 

Energy 
Engineering 

Supported onsite technology deployment and 
validated the quality of engineering data needed for 
technical implementations. 

Donal Og Cusack 
DePuy Ireland 

Operations Facilitated requests for access to teams, data and 
systems, and relayed information regarding the 
organisation’s technology roadmap for Industry 4.0. 

Table 1 Primary research contributors 

The industry partner’s motivation for participating in this research centred on 

developing better insights on emerging industrial analytics technologies (e.g. big data, 

internet-of-things, and machine learning) and their relationship to Industry 4.0. These 

insights are important to industry, given the poor availability of standard, formal and 

prescribed methods for developing industrial analytics capabilities, and nebulous and 

noisy nature of the commercial market. Indeed, facilities may possess different 

understandings of industrial analytics. While one facility may claim every data-driven 

insight demonstrates analytics capabilities (e.g. performance metrics, descriptive 

statistics etc.), another may hold the view only advanced predictive and prescriptive 

analytics models (e.g. machine learning) should be classified as such. Although different 

arguments may be made regarding formal definitions, this thesis considers industrial 

analytics to centre on advanced predictive analytics models because of their alignment 

with Industry 4.0 objectives (i.e. moving operations from reactive to predictive). This 

view of industrial analytics depends on multidisciplinary personnel to apply engineering 

knowledge and technology to solve real-time operational challenges (e.g. process 

automation, equipment maintenance etc.), incorporating both legacy and emerging 

industrial technologies. 

1.3.1 Multidisciplinary engineering 

The manifestation of Industry 4.0 operations depends on the emergence of 

multidisciplinary engineers that can computationally encode principles of mechanical, 
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process and electrical engineering, using models and methods from computer science, 

software engineering and statistics, to name a few. Although the computational 

encoding of engineering knowledge can be observed in industry (e.g. control logic 

running on automation networks), the complexity associated with Industry 4.0 

environments shall impose significantly higher demands in terms of scalability (e.g. 

larger operational data), integration (e.g. factory-to-cloud communications), latency (e.g. 

real-time control), and technologies (e.g. legacy and emerging technologies). Indeed, 

these emerging challenges have resulted in multidisciplinary expertise being highlighted 

as prominent impediment to Industry 4.0 adoption. Hence, this thesis possesses strong 

themes of multidisciplinary research, borrowing and applying concepts from the fields 

of industrial engineering, software engineering, computer/data science and information 

systems technologies.  

1.3.2 Industrial predictive analytics 

The primary goal of Industry 4.0 is to deliver self-adaptive and self-configuring 

manufacturing operations. Achieving this goal depends on the creation of collective 

intelligence, which shall be derived from many industrial analytics models (e.g. energy 

optimisation, prognostics, inventory etc.) distributed across the factory. However, 

although the manufacturing domain is engulfed with hype regarding the high-level 

benefits of industrial analytics and Industry 4.0, widely accepted technical roadmaps and 

transformations are less prominent. These artefacts are necessary to provide technical 

foundations (e.g. formal methodologies and architectures) for developing industrial 

analytics capabilities. Without such technical foundations, industrial analytics processes 

and pipelines may become prohibitively expense and time-consuming, stemming from 

inadequate technical integration, interoperability and performance.  

Although the term ‘industrial analytics’ may be subject to many definitions, when used in 

the context of Industry 4.0, industrial analytics generally refers to advanced methods 

supporting data-driven prediction (e.g. machine learning) and scenario simulation, 

which can enable smart manufacturing transformations (e.g. reactive to predictive 

operations). Hence, the industrial analytics aspects of this thesis focus exclusively on the 

development and deployment of machine learning models for Industry 4.0. 
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1.3.3 Industrial cyber-physical systems 

The emergence of Industry 4.0 is entirely dependent on the design and development of 

cyber-physical systems. These systems enable objects and processes from the factory 

(i.e. physical world) to be computationally virtualised (i.e. cyber world), and subjected to 

numerous prediction and simulation scenarios (e.g. energy optimisation, remaining 

useful life) to inform operational decision-making. In many respects, cyber-physical 

systems extend current automation and control networks, where additional compute 

resources enable the delivery of real-time industrial analytics (e.g. predictive or 

prescriptive analytics), which may otherwise be difficult to achieve using control logic 

deployed on a single controller. 

Importantly, one should appreciate the relationship between industrial analytics and 

industrial cyber-physical systems. While industrial analytics focuses on building models 

that encode engineering knowledge (e.g. fault prediction), industrial cyber-physical 

systems comprise the infrastructure, methods and technologies that enable industrial 

analytics models to be embedded in real-time factory operations. Thus, industrial 

analytics models can be developed and executed independent of industrial cyber-

physical systems, but do not adhere to many Industry 4.0 design principles and 

guidelines, which emphasise real-time, open and interoperable decision-making.  

1.4 Case study: Industry 4.0 AHU monitoring  

The design methodology, industrial analytics architecture and cyber-physical system 

presented in this thesis were deployed to the industrial partner’s large-scale 

manufacturing facility, with the intention of demonstrating and validating the proposed 

approaches, while also deploying an Industry 4.0 aligned technical solution that can 

facilitate energy engineering applications. In addition to being central to Industry 4.0 

objectives, the potential benefits and awareness of industrial energy efficiency have been 

widely circulated. Some of these reports suggest that buildings alone account for 

between 20% and 40% of the world’s total energy consumption, while industrial AHU’s 

on average account for 40% of an industrial sites total energy consumption [1]. These 

high energy consumption levels may be attributed to quality standards and regulations 

associated with many industrial processes (e.g. cleanrooms) that must comply with 

stringent international standards [2]. The combined industrial and commercial usage of 

AHU’s accounts for between 10% and 20% of total energy consumption in developed 
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countries [1]. Given the significant energy consumption of AHU’s, the primary energy 

case study in this thesis focuses on the application of an industrial analytics architecture 

and cyber-physical system to facilitate the identification of AHU operating faults using 

embedded industrial machine learning applications.  

In general, the energy performance of buildings rarely meet the performance levels 

suggested by the design phase. This may be due to poor equipment selection, incorrect 

installation, inadequate commissioning, or improper maintenance for large-scale AHU’s 

and HVAC Systems [3]. Hence, studies addressing these issues have been able to 

demonstrate that 20% to 30% energy savings can be achieved by recommissioning 

AHU operations to eradicate operating faults [4], while other studies focused on on-

going commissioning of building systems for peak efficiency have reported savings of 

an average of 20% of total energy cost [3]. Where both recommissioning and on-going 

commissioning approaches have been employed, studies have reported 44% savings on 

electricity consumption and 78% savings on gas consumption over a 10-year period. 

Figure 1 illustrates common components an AHU that are used to maintain 

environmental conditions and thermal comfort for the space. To begin with, air enters 

the unit either from outside, or recirculated from the space (i.e. return air). Once the air 

enters the unit the supply fan pulls the air through the unit to supply the space. As the 

air passes each component it is treated to meet target conditions (e.g. maintain 

temperature of 20 degrees), which may include filtering, heating or cooling the air 

before supplying air to the space etc. The components that should be active in the unit 

at any particular point-in-time can be inferred from the AHU operating mode. 

 

Figure 1 AHU schematic with primary components 
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Figure 2 illustrates logical control transitions from heating to cooling operations that 

show four discrete AHU operating modes, which change in response to an increasing 

outdoor temperature (from left to right). At the extreme left of the illustration the 

outside temperature may be low relative to the internal temperature setpoint, and 

therefore the AHU’s heating components are engaged. As the outside temperate rises 

and becomes closer to the desired temperature setpoint, the AHU’s heating 

components are deactivated as the outside and return air can be mixed to supply the 

space. Finally, when the outside temperature exceeds the temperature setpoint cooling 

components are engaged along with the maximum outside air, while further increases in 

the outside temperature results in the outside air being minimised, and cooling 

components being maximised. The four AHU operating modes are summarised below; 

 Mode 1: engage heating components while only incorporating minimum 

outside air to meet circulation requirements for the space. 

 Mode 2: combine the outside and return air without engaging heating or 

cooling components. 

 Mode 3: combine the maximum outside air with some cooling operations. 

 Mode 4: engage cooling components while only incorporating minimum 

outside air to meet circulation requirements for the space. 

 

Figure 2 AHU control sequence and operating modes 

A building energy management system commonly monitors the performance of AHU’s 

in manufacturing facilities. These information systems receive inputs from sensors 

residing in the AHU, and raise alarms when upper or lower limits of operations are 

breached. However, these alarms are basic triggers that do not indicate faulty or 

improper operation. The control logic that governs the operation of AHU’s enforces 

self-adjusting operation, whereby the improper actions of one faulty component may be 
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compensated by other components. Figure 3 illustrates how hot water energy can be 

wasted due to a faulty heating coil control valve. Given the control reading indicate 

both heating and cooling coils are closed (i.e. 0%), the temperature of the outside air 

should not change after passing the coils. However, the illustration shows there is a 5 

OC rise in temperature, and therefore the heating coil control value can be assumed to 

be physically open despite the reading indicating otherwise. Such faults can go 

unnoticed for long periods of time due to the AHU being able to use the cooling coil 

simultaneously to counteract the heating, and maintain control of the setpoint. 

 

Figure 3 Example of undetected fault in a heating coil component 

A machine learning model using the Support Vector Machine (SVM) algorithm was 

created to identify heating component faults for this case study. This model was trained 

using labelled AHU time-series data from previous research, which was previously 

undertaken by other IERG research engineers - Dr. Ken Bruton and Dr. Dominic 

O’Sullivan. Thus, this thesis does not claim any novelty or contribution of the AHU 

diagnostics or prognostics, but rather focuses on the methods and technical architecture 

to facilitate the development and deployment of these models for large-scale Industry 

4.0 operations. These contributions include the development of an industrial analytics 

architecture comprising (a) an industrial data pipeline to automate the batch ingestion, 

cleaning and presentation of time-series data for building machine learning models, and 

(b) an industrial cyber-physical system to embed production-ready machine learning 

models in real-time factory operations and decision-making. 
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1.5 Research objectives 

The primary objective of this research was to develop guidelines, theories and technical 

architectures for Industry 4.0 embedded machine learning applications. Figure 4 

illustrates common design and implementation properties for industrial analytics and 

cyber-physical systems, which serves to highlight differences between current 

approaches, and those proposed by this research. The current design and 

implementation properties are predominantly based on observations from industry 

engagement, while the proposed approaches represent the primary objectives and 

impact of this research. Although one may argue current approaches observed through 

industry engagement may not be representative of other large-scale manufacturing 

facilities, each of the current design and implementation properties have also been 

identified from the literature (e.g. centralised cloud-based intelligence is much more 

common than decentralised intelligence).  

 

Figure 4 Comparison of current and proposed industrial analytics approach 



Thesis Introduction 

Page 20 of 217 

The following points elaborate on the differences between current and proposed 

industrial analytics approaches depicted in the illustration; 

 Perspective refers to design concerns of those developing the industrial 

analytics infrastructure, with current approaches embodying design perspectives 

from specific disciplines (e.g. technology, process engineering etc.), while the 

proposed approach encourages design perspectives that incorporate concerns 

from multiple disciplines.  

 Methodology relates to the underlying methods and processes informing the 

design of the industrial analytics infrastructure, with current approaches 

adopting ad hoc practices, while the proposed approach promotes the idea of 

formal and systematic methods.  

 Architecture describes technical components and relationships for the 

industrial analytics infrastructure, with current approaches depicting hierarchal 

technology layers, while the proposed approach proposes a closed-loop lifecycle 

architecture that traces data flows throughout the factory.  

 Guidelines inform the development of high-level design requirements and 

ideologies for the industrial analytics infrastructure, with current approaches 

influenced by internal organisation-level policies, guides and personnel, while 

the proposed approach adopts Industry 4.0 design principles.  

 Evaluation relates to the procedures used to assess the industrial analytics 

infrastructure, with current approaches focused on commercial technology 

acquisition and feature availability, while the proposed approach encourages the 

use of performance metrics and assessments.  

 Intelligence refers to where the primary computation and decision-making is 

undertaken in the industrial analytics infrastructure, with current approaches 

favouring central intelligence and processing (e.g. cloud server), while the 

proposed approach encourages decentralised intelligence and processing.   

 Workflows depict the processes associated with the development and 

deployment of industrial analytics models, with current approaches depending 
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on manual and human-assisted methods, while the proposed approach 

encourages automation using technology.  

 Technology describes behaviours towards technology adoption, with current 

approaches utilising commercial and proprietary solutions, while the proposed 

approach adopts the ideology of open and standards-driven technology.  

 Integration refers to the methods underpinning system interconnectivity and 

interoperability, with current approaches depending on custom integration 

routines, while the proposed approach considers the application of standard 

programmatic interfaces.  

 Analytics relates to the delivery and usage scenarios for industrial analytics 

models, with current approaches applying analytics on batch (i.e. historic) 

operational data from standalone computers, while the proposed approach 

promotes the use of embedded industrial analytics in the factory to positively 

affect real-time decision-making and operations.  

1.6 Research process 

This thesis employed an action research process, which incorporates perspectives of 

participants and researchers to deliver applied contributions [5]. The action research 

process supports the expansion of scientific knowledge through the development of 

real-world and practical solutions, which can be a useful approach in contemporary or 

underdeveloped fields [6], [7]. Hence, action research typically begins with concepts and 

ideas rather than fixed hypotheses [8] – e.g. considering ‘how’ something may be 

achieved or applied, rather than ‘why’ a particular phenomenon occurs. However, 

action research can deliver highly relevant and insightful outcomes relating to practical 

problems [9], and can be considered an appropriate process to bridge potential gaps 

between academic research and industrial practices [6]. In particular, action research 

processes have been used extensively to facilitate technology prototyping, participant 

engagement, and field-based observations [9]. 

Of course, similar research processes can be found in the literature. Figure 5 illustrates 

prominent interpretative methodological processes referred to as the ‘pillars of 

information system research’ – consisting of development research, action research and 

grounded theory [6]. Given the similarities between these processes, choosing a 
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particular approach does not appear to be an exact science. However, action research 

was chosen to guide this research given its suitability for developing new theories [8], 

bridging gaps between theory and practice [8], implementing innovative technologies 

[6], investigating complex events and processes [10], empowering the development of 

unique perspectives [8], and identifying new logic [11].  

 

Figure 5 Pillars for technology and information system research [6] 

Figure 6 illustrates five phases comprising the action research process, while these 

phases are summarised in Table 2. The process begins with the identification of a 

problem, objective or situation that requires action (e.g. produce new theory or process 

[6]). Thereafter, subsequent phases guide research efforts from problem identification 

(i.e. diagnosing) to definitive findings (i.e. specifying learning). These phases are 

undertaken iteratively, with the findings from each iteration informing the next iteration 

(e.g. omitting ineffective solutions), which improves and refines the technology, theory 

or system being developed [8]. In essence, this type of iterative research process can 

naturally be classified as longitudinal analysis [6]. 
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Figure 6 Action research process model 

Phase Description 

Diagnosing This phase focuses on the definition or identification of the 
problem to be solved or investigated. 

Action Planning Once the problem has been identified, this phase focuses on 
considering possible solutions or approaches. 

Taking Action Given several possible solutions, this phase focuses on choosing 
and applying a particular solution to the problem. 

Evaluating After a particular solution has been applied to the problem, this 
phase considers the consequence s of the applied action. 

Specify Learning The final phase outlines general findings of the process, which 
may indicate further iterations of the process are needed to solve 
the problem being investigated. 

Table 2 Phases of action research process 

1.7 Publications  

The following section specifies the academic publications associated with this thesis. 

1.7.1 Journal articles  

Year Title Journal Reference 

Diagnosing

Action 
Planning

Taking 
Action

Evaluating

Specify 
Learning
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2015 Big data in manufacturing: a 
systematic mapping study 

Journal of Big Data [12] 

2015 An industrial big data pipeline 
architecture for smart 
manufacturing 

Journal of Big Data [13] 

2016 Case study: the implementation of 
a data-driven industrial analytics 
methodology and platform for 
smart manufacturing 

Journal of Prognostics and 
Health Management 

[14] 

2016 IAMM: a maturity model for 
measuring industrial analytics 
capabilities in large-scale 
manufacturing facilities 

Journal of Prognostics and 
Health Management 

[15] 

2017 A fog computing based Industry 
4.0 cyber-physical system for open 
and embedded analytics  

Manufacturing Letters [16] 

2018 A systematic review of industrial 
cyber-physical system design and 
implementation dimensions 

Journal of Manufacturing 
Systems 

Submitted 

2018 A performance analysis and 
evaluation of cloud and fog 
computing cyber-physical 
interfaces for Industry 4.0  

Journal of Manufacturing 
Systems 

Submitted 

Table 3 Lead author journal articles 

1.7.2 Conference proceedings  

Year Title Conference Reference 

2015 An industrial big data pipeline for 
Prognostics and Health 
Management (PHM) 

PHM Society Annual Conference [17] 

2017 A systematic mapping of cyber-
physical systems research for 
Industry 4.0 

International Manufacturing 
Conference 

[18] 

Table 4 Lead author conference proceedings 

1.7.3 Other publications  

Year Title Type Title Reference 

2015 Enabling effective operational 
decision-making on a combined 
heat and power system using 
the 5C architecture 

Journal Procedia CIRP [19] 

2016 Design and development of a 
software tool to assist ISO 

Journal Journal of Engineering 
Manufacture 

[20] 
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50001 implementation in the 
manufacturing sector 

2017 Automatically Identifying and 
Predicting Unplanned Wind 
Turbine Stoppages Using 
SCADA and Alarms System 
Data: Case Study and Results 

Journal Journal of Physics [21] 

2018 Development and application 
of a machine learning 
supported methodology for 
measurement and verification 
(M&V) 2.0 

Journal Energy and Buildings [22] 

Table 5 Contributing author publications 

1.8 Thesis layout 

The following points summarise the remaining chapters of this thesis; 

 Chapter 2 presents a literature review comprising a thematic investigation of 

smart manufacturing, and a systematic analysis of the methods pertaining to the 

design and implementation of Industry 4.0 cyber-physical systems. 

 Chapter 3 presents a unified design methodology for developing industrial 

analytics architectures and infrastructures, which are aligned with common 

stakeholder concerns, and Industry 4.0 design principles. 

 Chapter 4 presents the application of the design methodology in a large-scale 

manufacturing facility, and the demonstration of fog computing as a means of 

embedding machine learning models with real-time automation and control 

networks using cyber-physical interactions. 

 Chapter 5 presents the performance results (e.g. latency) from stress testing 

cloud and fog computing cyber-physical interfaces, and discusses aspects of the 

demonstrated implementation aligned with Industry 4.0. 

 Chapter 6 presents the conclusions derived from this research, and relates these 

findings to the primary research objectives. 
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2.1 Chapter introduction 

This chapter reviews the emerging multidisciplinary engineering field of Industrial Cyber 

Physical Systems, which shares many similarities with Industrial Internet-of-Things. Although 

both terms may be used interchangeably [23], this chapter uses Industrial Cyber Physical 

Systems given its adoption in the fields of industrial systems and engineering, while many 

legacy sensing and automation technologies do not naturally support internet messaging 

and data exchanges. Therefore, this chapter takes the view that contemporary industrial 

cyber physical systems comprise both internet-of-things and legacy operation 

technology, while also possessing formal methods and approaches relevant to industrial 

engineering applications (e.g. equipment maintenance). 

2.2 Cyber-physical systems 

Industrial cyber-physical systems enable objects and processes residing in the physical 

world (e.g. manufacturing facility), to be tightly coupled with compute, communication 

and control systems in the cyber world [24]. Cyber-physical interfaces promote data 

transmissions between both worlds using numerous technologies, including wireless 

sensors, phones, tablets, and web services, to name a few [25]. Conceptually, these 

cyber-physical interfaces result in the manifestation of ‘cyber twins’, where each physical 

object in the real world, exists as a virtual entity in the cyber world. In turn, these virtual 

entities may be individually and/or collectively analysed, interrogated and simulated to 

derive operational insights and inform better decision-making.  

The emerging network paradigm promising to bridge industrial physical and cyber 

worlds is that of the internet-of-things, which comprises internet-enabled devices and 

gateways to sense, collect, send and receive data [26]. In terms of manufacturing, this 

may include interactions with sensors, controllers, actuators, radio-frequency-

identification (RFID) tags, global positioning systems (GPS), and high-definition 

cameras [26], to name a few. Naturally, these broad and pervasive interactions produce 

large data repositories (i.e. big data) describing factory operations [24]. Where sufficient 

high-quality data has been compiled, these datasets can be analysed using machine 

learning to make useful predictions (e.g. predict equipment failures). Figure 7 illustrates 

Google search trends between 2012 and 2016 for internet-of-things and big data, which 
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clearly shows a convergence in Q4 2015. Theoretically, internet-of-things would be 

impeded where big data technologies did not exist. 

 

Figure 7 Google trends for cyber-physical system technologies captured September 2016 

The remainder of this chapter explores the relationship between Industry 4.0 (i.e. smart 

manufacturing), industrial cyber-physical systems, and the multidisciplinary computing 

and engineering disciplines that inform the field. The following points summarise the 

three main sections of this chapter; 

1. Motivation and adoption. Investigating the business motivation for adopting 

industrial cyber-physical systems (e.g. Industry 4.0). 

2. Research challenges and directions. Assessing the prominent current and 

future research challenges for industrial cyber-physical systems. 

3. Multidimensional systematic analysis. Synthesising literature pertaining to 

industrial cyber-physical systems to describe multidisciplinary perspectives and 

methods relating to design, application, implementation and standards. 

2.3 Motivation and adoption 

The adoption of cyber-physical systems is motivated by the desire to implement smart 

manufacturing operations. The term smart manufacturing refers to an emerging data-

driven paradigm focused on the creation of manufacturing intelligence using real-time 

pervasive networks and data streams in the factory [27]–[30], with experts predicting 

that it may become a reality in the next 10 to 20 years. The overarching objective of 

smart manufacturing is similar to traditional manufacturing and business intelligence, 

which is responsible for transforming low-granularity raw data, to high-granularity 

actionable and insightful information. Such transformations are an important aspect of 
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operational intelligence, given low-granularity operational data (e.g. time-series) is 

difficult to interpret, thereby making it inadequate for timely decision-making. In 

contrast, high-granularity information provides easily interpretable knowledge that can 

positively impact operations using assistive decision-making. However, smart 

manufacturing differs from traditional manufacturing intelligence given its extreme 

focus on seamless operating intelligence, where real-time collection, aggregation and 

sharing of knowledge across physical and computational processes to derive a self-

optimising production environment [31]. Essentially, smart manufacturing ensures every 

aspect of the factory is monitored, optimised and visualised [27], [31], [32]. 

Table 6 outlines operating and technology differences between traditional and smart 

manufacturing facilities, with the former characterised by precise and reactive 

operations, and the latter embodying intelligent and predictive operations capable of 

self-optimisation and self-configuration. This self-based intelligence may discover and 

execute computations that would be too complex or obscure for personnel to model 

using traditional methods [24].  

 
Data Source 

Today’s Factory Industry 4.0 

Attributes Technologies Attributes Technologies 

Component Sensor Precision Smart sensors & 
fault detection 

Self-aware 
Self-predict 

Degradation 
monitoring & 
remaining useful 
life 

Machine Controller Producibility & 
performance 

Condition-based 
Monitoring & 
Diagnostics 

Self-aware 
Self-predict 
Self-compute 

Up-time with 
predictive health 
monitoring 

Process  Network Productivity & 
OEE 

Lean operations: 
work and waste 
reduction 

Self-configure 
Self-maintain 
Self-organise 

Worry-free 
productivity 

Table 6 Comparison between today’s factory and smart manufacturing [24] 

During the transition to smart manufacturing, some high-level business transformations 

can be expected. Examples of these transformations are provided below; 

 Knowledge-embedded operations enabled by information and engineering 

systems possessing the knowledge and intelligence for ‘smart’ operations. 

 Predictive and preventive operations replacing operations based on reactive 

and responsive decision-making. 
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 Performance-based operations receiving more attention, with an emphasis on 

minimising energy and material usage, while maximising sustainability, health 

and safety, and economic competitiveness. 

 Distributed intelligence focusing on the goals and objectives of the entire 

organisation, rather than vertical and isolated decision-making. 

 Multidisciplinary workforces derived from engineering, computing, and 

statistical disciplines, which are capable of delivering smart infrastructures and 

engineering applications. 

 Convergence of information and operation technology departments to 

ensure legacy technology does not impede the adoption of emerging 

technologies for smart manufacturing. 

There are many challenges that can impede these transformations, including legacy 

systems, proprietary technologies, quality assurance, regulatory enforcement and 

technical resources, to name a few. Arguably, the dependency on multidisciplinary 

expertise encompassing engineering, computing, analytics, design, planning, automation, 

and production represents the greatest challenge [33], [34]. Given these technical and 

personnel challenges, smart manufacturing is considered too complex for any single 

organisation to address [35]. Thus, several groups and initiatives were formed to 

support smart manufacturing adoption.  

2.3.1 Industry initiatives and groups 

Currently, there are numerous government, academic and industry groups promoting 

and supporting smart manufacturing. The most prominent of these include the Smart 

Leadership Coalition (SMLC) [31], Technology Initiative SmartFactory [36], Industry 

4.0 [37], and The Industrial Internet Consortium (IIC). Given the contemporary, 

qualitative and multi-dimensional nature of smart manufacturing, some aspects of these 

initiatives may employ different terminology, but share an overarching vision of real-

time, pervasive and data-driven intelligence for optimising factory operations. Arguably, 

SMLC and Industry 4.0 represent the most recognised smart manufacturing initiatives, 

with each loosely coupled to their geographical origins (i.e. US and EU). Figure 8 

illustrates Google search trends for these initiatives between 2012 and 2016, with 

Industry 4.0 the most popular term since Q4 2014. 



 

Page 31 of 217 

 

Figure 8 Google trends for smart manufacturing captured September 2016 

The SMLC working group comprises academic institutions, government agencies and 

industry partners. This diversification may filter bias perspectives, while ensuring 

challenges relevant to the broader manufacturing community are addressed. In terms of 

tangible contributions, the SMLC has produced theoretical assets, such as technology 

roadmaps, recommendations and guidelines, as well as technology artefacts, including 

an open smart manufacturing platform (SM Platform) and an industrial marketplace 

that facilitates plug-and-play deployment of smart manufacturing applications.  

Industry 4.0 refers to a high-tech strategy developed by the German government to 

highlight the economic benefits of smart manufacturing. The term Industry 4.0 stems 

from a logical naming convention referencing each industrial revolution, with 4.0 

referring to an anticipated fourth revolution (i.e. smart manufacturing), which shall be 

enabled by cyber-physical systems, comprising ubiquitous sensing, simulation and 

analytics. Following the same logic, previous industrial revolutions are labelled 1.0, 2.0 

and 3.0. The first industrial revolution (Industry 1.0) was brought about by the 

availability of water and steam power, which enabled mechanical production processes, 

with the first mechanical loom employed in 1784. The second industrial revolution 

(Industry 2.0) was brought about by the availability of electricity, which facilitated the 

advent of mass production processes and the division of labour. Finally, the third 

industrial revolution (Industry 3.0) was brought about by advanced electronics, which 

enabled control networks to automate production processes, with the first 

programmable logic controller (PLC) introduced in 1969.  
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2.3.2 Technical roadmap and adoption 

There are three logical phases of smart manufacturing adoption, and cyber-physical 

system implementation, with each phase providing benefits exponentially more 

beneficial than the one previous [38]. These phases are summarised below; 

 Phase 1 - data integration and contextualisation. Initially, facilities evaluate 

data availability across the factory (e.g. sensors, controllers, databases etc.) to 

form a global understanding of data assets. These integrations are typically 

complex and time-consuming, accounting for up to 90% of adoption effort 

where multiple legacy devices, systems and protocols exist. Once data has been 

consolidated during this phase, facilities may experience a positive impact on 

operating costs, health and safety, and environmental factors given data 

discovery and accessibility improvements. 

 Phase 2 - simulation, modelling, and analytics. Given the availability of 

high-quality accessible operational data, facilities interrogate these datasets to 

build models that describe, predict or prescribe intelligent actions that can 

positively impact operations. Once these models have been constructed and 

validated, facilities may realise many operational efficiencies, such as improved 

production rates or product customisation. 

 Phase 3 - process and product innovation. Where large repositories of 

manufacturing intelligence (i.e. models) exist, ‘game changing’ insights for 

process and product innovation may emerge. These insights differ from those 

of previous phases, given they are based exclusively on the discovery of new 

knowledge (e.g. correlation unknown to engineering first principles). Once 

facilities attain such insights, they may realise exponential increases in 

operational efficiencies capable of disrupting entire markets.  

Most facilities adopting smart manufacturing must navigate these phases. Generally, the 

effort needed to realise each phase, and the benefits derived from each phase, are 

negatively correlated. The potential benefits from each phase (1 to 3) increases, while 

implementation effort for each phase (1 to 3) decreases. Therefore, facilities initially 

experience significant effort during industrial data integration, with modest gains in 

operational intelligence, while each subsequent phase may require less effort, but 

demonstrate greater improvements in operational intelligence. This easing effect could 
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be attributed to residual and cumulative technologies, knowledge and skills transferring 

from previous phases.  

Facilitates that realise smart manufacturing will be positioned to address many 

contemporary business and engineering challenges, such as increased global competition 

and rising energy costs, while also shortening production cycles and enhancing just-in-

time product customization capabilities [31], [34]. Many of these benefits may be 

associated with demand-driven supply chains, which employ real-time, Internet-aware, 

collaborative and synchronised technologies, to optimise operational efficiencies. These 

potential efficiencies include (1) reducing capital intensity by 30%, (2) reducing product 

cycle times by up to 40%, as well as (3) overarching efficiencies across energy, 

emissions, throughput, yield, waste, and productivity. Where these factory-level 

efficiencies are considered in a broader geographical context, smart manufacturing can 

contribute significantly to the greater economy. Indeed, research from Fraunhofer 

Institute and Bitkom estimated Industry 4.0 could be worth up to 267 billion Euros to 

the German economy by 2025 [39].  

2.3.3 Business and technical impediments 

Facilities transitioning to smart manufacturing may encounter numerous technical 

challenges. These range from real-time technologies and infrastructures needed for self-

optimising operations, to the acquisition of multidisciplinary personnel for Industry 4.0 

engineering systems (i.e. industrial cyber-physical technology) [31]. Of course, the extent 

of these challenges may vary from factory-to-factory. For example, challenges facing 

greenfield (e.g. new facilities) and brownfield (i.e. legacy facilities) sites are quite 

different [27]. When compared to brownfield sites encumbered by legacy devices, 

systems and protocols, greenfield sites are better placed to adopt smart manufacturing 

technology, given they present the opportunity to design and implement industrial 

cyber-physical technologies from the ground-up. In the case of brownfield sites, simply 

replacing legacy technology can be difficult for a number of reasons:  

 Historic technology investment. Over the last 40 years, manufacturing 

facilities invested in information, control and automation technology to 

optimise production and business processes. Given this investment, facilities 

may resist replacing technologies before their end-of-life. 
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 Regulatory and quality constraints. Certain manufacturing facilities (e.g. 

pharmaceuticals and medical devices) are subject to internal and external 

regulatory and quality control. These regulations and controls can limit 

technology choices to pre-approved and risk-assessed technologies. Although 

processes may exist to amend such policies, the effort and risk associated with 

doing so may quell initial enthusiasm for technology replacement.  

 Dependency on proprietary systems or protocols. While industrial and 

automation standards exist to promote interoperability, their adoption across 

manufacturing environments can be sporadic. Historically, manufacturing 

environments have been known to utilise closed, ad-hoc and proprietary 

environments. These environments exemplify technology lock-in, where the 

adoption of smart technology largely depends on particular vendor offerings.  

 Weak vision and commitment. Given the path to smart manufacturing may 

not always be clear, management and visionaries are needed to guide internal 

initiatives. Where such leadership does not exist, facilities may struggle to 

construct a business case for replacing legacy technology. 

 Quality risks and disruption. Generally, technology projects are considered 

high-risk due to historic project failures and overruns. Although failed technical 

implementations may be considered the primary risk, operational impacts and 

inefficiencies during the period of user training and adoption represent potential 

secondary risks. These combined risk factors may postpone smart technology 

adoption until such time that lost opportunities affect competitiveness. 

 Emerging technologies and methods. Transitioning to smart manufacturing 

depends on the integration of mainstream and emerging information technology 

paradigms (e.g. service-oriented architecture, internet-of-things) across industrial 

environments. However, modern manufacturing facilities are predominantly 

constructed on operation and automation technology. Therefore, replacing 

legacy technology with smart equivalents may depend on the attitudes and 

perspectives of current operation technology personnel. 

2.3.4 Prominent standards and technologies  

Manufacturing environments incorporating standards should demonstrate 

interoperability and openness. Such standards can be found at different levels in the 

factory’s technology ecosystem, encompassing (a) field devices, (b) automation and 
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control, and (c) enterprise systems [40]. Generally, these standards can decrease the 

time, risk and cost of system implementation and integration by promoting formal and 

consistent methods [41]. Therefore, environments embodying standards may experience 

smoother transitions to smart manufacturing, when compared to those constructed 

using proprietary or ad-hoc approaches.  

FIELD DEVICES 

Field device standards enable data collection and control across physical devices (e.g. 

controllers) in the factory. These standards expose software interfaces and architectures 

for programming control logic and data collection. Common field device standards 

include OPC, MTConnect, BACnet, Modbus, and LonWorks [42], with each differing 

in their level of openness, architecture and abstraction.  

AUTOMATION AND CONTROL 

Automation and control standards comprise theories, methods and architectures for 

designing and implementing process-driven networks. Common standards include ISA-

88, ISA-95, MESA, SCOR, and DiRA [43], [44]. Of these standards, ISA-88 and ISA-95 

are widely adopted for integrating sensing, control and information systems [45], with 

ISA-88 focusing exclusively on factory-level integrations, and ISA-95 extending these 

integrations to the enterprise (i.e. factory-to-enterprise integration). 

ENTERPRISE SYSTEMS  

Enterprise system standards enable data exchanges and system integrations between 

factory technologies. Many of these standards originate from distributed, cloud, and 

Internet computing, where open and distributed messaging are fundamental 

requirements. Common enterprise standards include HTTP, MQTT, SOAP, WSDL, 

XML, and B2MML, to name a few. Generally, these standards reside within open and 

module service-oriented architectures, which orchestrate communication and 

processing between distributed components and systems. 

2.4 Research challenges and directions  

Cyber-physical systems represent the primary enabling technology for smart 

manufacturing and Industry 4.0, with the design and development of future engineering 

systems largely dependent on their existence [46]. Indeed, research funding bodies in 

the EU and US identified the field of cyber-physical systems as a critical component in 
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the technological evolution of many business domains [47]–[50]. These research efforts 

aim to amalgamate knowledge and principles from computing and engineering 

disciplines (e.g. networking, software, control, mechanical etc.), while incorporating 

industry and academic collaboration [46].  

Many terms have been used to describe the application of emerging sensing and 

analytics to industry. These terms include industrial cyber-physical systems (ICPS), 

cyber-physical production systems (CPPS), and industrial internet-of-things (IIoT), to 

name a few. Although these emerging paradigms can be applied differently to address 

particular engineering scenarios, cyber-physical systems typically function in one of two 

ways, either as a technology (a) delivering decision-making information directly to 

workers, or (b) enabling automatic self-optimising operations using machine-to-machine 

communication [23]. Additionally, these approaches can be adopted as stepwise 

progressions, where initial implementation employs human-assisted decision-making, 

with the intention of transitioning to automated self-optimising behaviour. However, 

the ability to achieve self-optimisation may depend on current technology capabilities, 

quality and regulation constraints, and multidisciplinary expertise.  

Cyber-physical systems incorporating legacy control and internet-of-things technology 

are needed for Industry 4.0 engineering applications, which enable decision-makers 

visualise real-time data streams throughout the supply chain [26]. Given appropriate 

insights can be derived from such streams, decision-makers can target operational 

improvements and efficiencies (e.g. energy consumption, maintenance scheduling, 

optimised control and equipment maintenance). In the context of cyber-physical 

systems, operational efficiencies (e.g. self-optimisation) are commonly derived using 

predictive analytics and computer simulations in the cyber-world (e.g. cloud), before 

being relayed to the physical-world [24], [26], [51]. High-quality and robust cyber-

physical interactions may improve work intensity and resource usage, while providing 

opportunities to substitute low-skilled and manual processes [23]. However, despite 

these potential benefits, manufacturing facilities are behind the curve in terms of cyber-

physical system adoption [26]. Indeed, studies from the German Federal Ministry of 

Education and Research, and the Office of Technology Assessment at the German 

Bundestag, both suggest the broader adoption of cyber-physical system technology 

remains ‘relatively low’ [23].  
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Given industrial cyber-physical systems comprise both legacy and emerging 

technologies, design and implementation must aim to support current devices and 

systems until their end-of-life [26], while augmenting automation and control networks 

to incorporate advanced analytics and real-time cyber-physical interactions [51]. Where 

these challenges are perceived as unattainable or disruptive, senior management may 

choose to defer technology adoption [26]. Other potential reasons for deferral include 

concerns regarding cyber security, commercial sensitivity, and control performance [25]. 

Due to the contemporary nature of industrial cyber-physical systems, the specification 

of competencies, architectures, and technologies remain open [23]. Although this 

openness presents significant research opportunities, insufficient prescription and 

formalisms complicate implementation efforts, requiring developers and engineers to 

take full ownership of system integration and technology selection scenarios, of which 

they may possess limited knowledge. Therefore, much of the current research centres 

on theoretical and conceptual methods to formalise different aspects of system design 

and implementation (e.g. architecture, security, control etc.) [25]. However, while such 

research provides an important foundation, the manufacturing domain needs more 

applied research demonstrating real-world implementations [26]. The high-level 

classification of research opportunities in the field are summarised below [46]; 

1. Abstractions and architectures to facilitate the modular design and 

implementation of cyber-physical systems. These representations aim to 

seamlessly integrate control, communication and computation, while 

incorporating heterogeneous systems using a ‘plug-and-play’ approach. 

2. Distributed computing and network control to address challenges pertaining 

to time and event management across geographical boundaries (e.g. factory-to-

cloud communication latency). These techniques, methods and technologies 

must address variable time delays, communication failures, decentralised real-

time decision-making scenarios, and secure communications.  

3. Verification and validation methods to ensure hardware and software 

components are dependable, reconfigurable, trustworthy and certifiable. These 

methods ensure cyber-physical components can reliably operate according to 

the specifications of quality, regulatory and safety policies. 

These research opportunities must also be considered from multiple perspectives, such 

as those of process control, information technology, and management. For example, an 
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architecture developed by a control engineer may focus extensively on algorithmic 

robustness, while a system engineer may choose to focus more on interoperability and 

data exchanges. Given the highly multidisciplinary nature of industrial cyber-physical 

systems, contributions from each discipline demonstrate natural bias, which indicates 

there are no globally accepted requirements, methods and technologies for industrial 

cyber-physical systems. However, design principles for Industry 4.0 provide a complete 

set of heuristics upon which to base future specifications. General design principles can 

be extracted individually from overlaps in the literature, while some publications have 

made efforts to collate and discuss core principles [52]–[54]. 

2.4.1 Open and consistent architectures  

Where diverse manufacturing technology profiles exist, cyber-physical systems may 

need to accommodate multiple system architectures [25]. These architectures may 

incorporate components developed using different programming languages (e.g. Java, 

.NET, C++, Python etc.), and distributed across mobile, cloud and desktop 

environments, weaving numerous runtime environments in to the fabric of cyber-

physical systems. Given such diverse technologies and environments, cyber-physical 

system implementations must leverage open and neutral technology architectures to 

promote flexibility, integration and interoperability. These open architectures typically 

include formal data exchange protocols, to provide consistent contractual guidelines 

and interfaces for messaging between cyber-physical components. However, current 

open architectures supporting enterprise systems do not consider the peculiarities and 

nuances of operation technology, which requires new architectures and technologies to 

integrate localised automation and control networks with the cyber-world [55]. 

2.4.2 Data management and processing 

Fundamentally, data management and processing provides accessible, homogeneous, 

contextualised, and consistent data models for reporting and analysis [25], [51]. These 

models may include different types of data, from time-series measurements (e.g. hourly 

temperature), to contemporary data (e.g. social networks)[26]. However, realising such 

models can be difficult where participating data streams employ arbitrary naming 

conventions, or proprietary technologies. In these scenarios, data mapping, labelling and 

contextualisation must be undertaken to align data from each system [24], [51]. Once 
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data models have been produced, data processing techniques can be used to inform 

decision-making, generate knowledge, or support real-time operations [56].  

Table 7 and Table 8 describe data and processing requirements identified for Industry 

4.0, which were extracted from 88 research publications using content analysis [56]. 

While data requirements demonstrate the need to model, integrate and populate (i.e. 

content) data to incorporate different dimensions of industrial operations, processing 

requirements highlight application scenarios (e.g. pattern recognition) dependent on 

high-quality data availability. Interestingly, these data requirements demonstrate the 

dimensions of Industry 4.0 integrations, including horizontal approaches for integrating 

systems across operating divisions (e.g. energy and manufacturing systems), vertical 

approaches for integrating data from different levels of hierarchical automation 

networks (e.g. field device, supervisory control etc.), and lifecycle approaches for tracing 

data flows across all possible dimensions.  

Main Category Sub Category Frequency Requirements Description 

Data model  Unify semantics 15 Unify information models and meanings 

Unify interfaces 12 Unify interfaces and communications 

Data integration Integrate lifecycle 10 Integrate data along the lifecycle of cyber-
physical systems 

Integrate horizontally 13 Integrate data along the value chain and 
network 

Integrate vertically 11 Integrate data of the automation pyramid 

Data content Include produce data 3 Include product data and description 

Include process data 7 Include production processes data and 
description 

Include business data 1 Include business data and parameters 

Include sensor data 12 Include sensor and actor data from cyber-
physical systems 

Table 7 Data requirements for Industry 4.0 [56] 

Main Category Sub Category Frequency Requirements Description 

Decision 
processing 

Ad-hoc networking 21 Build networks depending on situation 

Optimise network 18 Optimise network in local decision-making 

Admit autonomy 8 Admit autonomy in decision-making of cyber-
physical systems 

Utilise models 13 Utilise comprehensive models of real 
production 

Monitor conditions 13 Monitor, diagnose and perform actions online 

Knowledge 
representation 

Detect patterns 7 Detect patterns and similarities in production 

Prepare data 7 Prepare, compile and filter data 

Transform know-
how 

6 Transform know-how and expert knowledge 

Predict parameters 7 Predict decision parameters based on past data 
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Real-time 
processing 

Access status 14 Access the status of cyber-physical systems in 
real-time 

Access description 2 Access the description of cyber-physical 
systems in real-time 

Build networks 4 Build cyber-physical system networks in real-
time 

Control production 9 Control operative production in real-time 

Table 8 Processing requirements for Industry 4.0 [56] 

2.4.3 Event management and processing  

A fundamental aspect of cyber-physical systems is that of industrial measuring and 

monitoring, where real-time operating measurements are continuously evaluated using 

logic residing in the cyber world, which can trigger events that inform other systems and 

components of state changes or actions (e.g. fault detected) [25]. Indeed, such events 

are the primary source of information for describing and analysing manufacturing 

processes [26]. The logic used to identify and trigger events can be derived from existing 

control logic, engineering first principles, or new knowledge discovery. Although some 

events may comprise simple rule-based conditions, cyber-physical systems can support 

comprehensive and wide-reaching event management, using scalable and robust 

compute resources (e.g. cloud) to facilitate real-time advanced computation (e.g. 

equipment prognostics) and factory-wide monitoring (e.g. comparative analysis).  

Distributed and decentralised event notification for cyber-physical systems may be 

realised using (1) request/response patterns, or (2) publish/subscribe patterns. In the 

case of request/response, clients (e.g. software agents) in the factory transmit 

measurements to a server (i.e. request), and are notified if these measurements triggered 

an event (i.e. response). To achieve continuous monitoring, this pattern requires clients 

to periodically poll servers (e.g. 60 seconds) for event notifications. This differs from 

publish/subscribe, where clients can subscribe to particular events, and receive push 

notifications when these events occur (i.e. without continuously polling). Given less 

round-trips and polling behaviours, publish/subscribe patterns can reduce bandwidth, 

CPU cycles and power consumption [25]. 

2.4.4 Real-time performance 

The notion of real-time performance is central part to Industry 4.0 and cyber-physical 

systems. Essentially, real-time systems are those which are engineered to operate within 
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particular timing constraints. These systems differ from traditional software systems 

given their deterministic execution, which is a prerequisite for guaranteeing execution 

response times (i.e. worst case execution time). Although traditional embedded control 

systems (i.e. automation networks) may exhibit deterministic execution, emerging 

distributed embedded systems (e.g. cyber-physical systems) possess additional 

communication latency and computation overhead (e.g. model execution), while 

delivering the same quality-of-service (QoS) [55]. This may involve real-time 

measurements from the physical world (i.e. factory) being propagated to the cyber 

world (i.e. cloud) for analysis, with results being used to improve decision-making or 

adjust operations [26]. However, such scenarios can increase in complexity where 

heterogeneous systems and distributed parallel processing must be supported [25].  

A system’s real-time operating performance may be classified as (1) hard real-time, (2) 

soft real-time or (3) near real-time. Of these classifications, hard real-time systems are 

those whose operation is incorrect (i.e. failed) where execution exceeds the timing 

constraint in a single instance. Typically, these are mission-critical systems (e.g. braking 

system in a vehicle), whereby execution outside the expected time-window serves no 

logical purpose (e.g. brakes engaging after crash). Greater operating leniency is afforded 

to soft real-time systems, whose operation may still be regarded as correct where 

execution occasionally exceeds the timing constraint (e.g. temporary loss of audio 

during video conferencing). However, continually violating timing constraints can 

degrade system performance, and eventually result in a complete system failure, where 

no further value can be derived from the system’s execution. Loosening timing 

constraints further, near real-time systems are those whose operation are not bound to 

particular timing constraints, but endeavour to execute without delay. Although the type 

of real-time system being developed may be largely dependent on the application, given 

the hardware, software and expertise needed to implement tightly control deterministic 

systems, budgetary and resourcing constraints may also be contributory factors. 

Figure 9 illustrates typical operating parameters for real-time execution. Of these 

parameters, worst-case execution time (WCET) indicates whether particular systems can 

perform to the level expected of particular scenarios (e.g. process control and 

automation). In contrast, best-case execution time (BCET) indicates the system’s 

maximum performance threshold. Given maximum performance implies optimal 

operating conditions (i.e. low-demand placed on system), reliably maintaining this state 
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is unrealistic for many real-world applications. However, best-case execution can 

provide insights on hardware configurations and code quality, insofar as optimal 

combinations can be identified when performance increases. Apart from hardware and 

software assets, other factors that may impact performance include program inputs (e.g. 

size of data) and execution context (e.g. cache and processor), with empirical testing of 

these variables being a common approach to real-time performance analysis.  

 

Figure 9 Illustration of worst and base case execution [55]  

2.4.5 Multidisciplinary engagement 

Given the engineering and technology convergences comprising industrial cyber-

physical systems, the training, development and management of multidisciplinary 

operational teams is significantly important [23]. These teams inform the development 

of real-time distributed automation networks, combing expertise from information 

technology, electronics, engineering and mechanical systems, with in-depth knowledge 

of facilities, to prescribe interventions and applications [23]. Generally, technology-

oriented teams excel when working with data (e.g. integration), but do not possess the 

domain expertise for meaningful interpretation [57]. In contrast, engineering-oriented 

teams possess the domain expertise to identify operation data-driven insights, but do 

not possess the technical skills to implement high quality, robust and scalable 

technology platforms and systems.  
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2.5 A systematic review and analysis of industrial 
cyber-physical system research 

This section presents findings from a broad systematic review of industrial cyber-

physical systems, extracting prominent themes across control, software and engineering 

disciplines, while highlighting prominent perspectives, technologies, applications and 

methods. A systematic review methodology was chosen due to the contemporary nature 

of the field, and the significant deviations between research perspectives and technical 

approaches. The four dimensions of the review are described below, which were 

designed to answer questions to inform implementation during this research; 

1. Design (section 2.5.2): what perspectives are used to form the theoretical basis 

for industrial cyber-physical system implementation? 

2. Applications (section 2.5.3): which industrial applications and factory 

operations demonstrate applications of industrial cyber-physical systems? 

3. Implementation (section 2.5.4): what technology paradigms, technologies and 

formats are used to support industrial cyber-physical system implementation? 

4. Standards (section 2.5.5): which technology and industrial standards are 

relevant to industrial cyber-physical systems? 

2.5.1 Methodology 

REVIEW PROTOCOL 

At the beginning of the process, several search terms were evaluated to determine the 

relevancy of retrieved publications. Once a primary search term was chosen, digital 

sources were interrogated to identify candidate publications, which were manually 

screened using inclusion and exclusion criteria. This criteria filtering was iterated several 

times before finalising publications for review. Given the completion of publication 

filtering, an electronic spreadsheet was created to record publication metadata (e.g. title, 

authors, year etc.), and dimension classifications (e.g. programming language, system 

modelling etc.). As publications were reviewed, researchers used the spreadsheet to 

classify contributions and properties of the research. After synthesising the entire 

publication repository, the collected spreadsheet data was visualised to highlight 

prominent approaches and methods.  
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Initial search evaluations suggested the most relevant publications were found using 

broad search strategies. Therefore, the search terminology simply comprised synonyms 

of ‘Industrial Internet of Things’, ‘Industrial Cyber Physical Systems’ and 

‘Manufacturing’. This search strategy was applied to prominent sources, databases and 

indexes, including (1) Science Direct, (2) Mendeley, (3) ACM Digital Library, (4) 

Engineering Village, (5) IEEE Xplore, (6) Scopus, (7) Web of Science, (8) 

ResearchGate, and (9) Google Scholar. After publication filtering and refinement, 93 

peer-reviewed conference and journal publications remained. Figure 10 illustrates the 

geographical origins of these publications, with Germany and China being the most 

prominent contributors. 

THREATS TO VALIDITY  

Although systematic reviews provide rigorous and robust methods for synthesising the 

literature, potential threats pertaining to the validity of the research should be 

considered. The primary threats considered for this review are summarised below; 

 Search strategy: given publications were identified and filtered using a formal 

search strategy, biases could influence which publications were included. This 

threat was managed in a couple of ways. First, the search strategy was derived 

from group discussions to dilute biases. Second, two or more researchers 

filtered each dimension of the literature, with inclusion and exclusion criteria 

discussed and debated over much iteration.  

 Search sources: although the digital repositories used to identify publications 

are prominent sources of academic literature, other relevant sources of industrial 

cyber-physical system research may exist. This threat was managed using 

different types of digital sources to provide a cross-section of research 

publications (e.g. indexes, databases, crawlers, and social repositories).  

 Classification accuracy: due to the diverse and discipline-specific terminology 

used across industrial cyber-physical system research, some interpretation and 

inference is needed to synthesise the literature. Given the need for such 

decision-making, potential misclassifications could impact results. Although this 

threat cannot be completely removed, the review protocol ensured two or more 

researchers classified each publication, and research efforts focused more on 

relevance to smart manufacturing, rather than prominence alone. This meant 

minor misclassifications should not impact the narrative of the review.
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Figure 10 Geographical distributions of industrial cyber-physical publications
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2.5.2 Design of industrial cyber-physical systems 

2.5.2.1  MULTIDISCIPLINARY DESIGN PERSPECTIVES 

The concept of cyber-physical systems is not new, with embedded systems from the 

1970’s demonstrating interactions between physical and compute components (e.g. 

vehicle braking systems) [58]. However, emerging industrial cyber-physical systems 

differ greatly in their scope, complexity, and distributed networking capabilities, while 

broader engineering disciplines (e.g. process engineering, computer science etc.) are 

needed to realise implementation. These disciplines provide knowledge and perspectives 

that address design challenges relevant to industrial cyber-physical systems.  

Figure 11 illustrates the intertwined and overlapping nature of design perspectives 

relating to cyber-physical systems. In this example, design perspectives are depicted as 

the intersection between design concerns (i.e. x-axis), and parts comprising cyber-

physical systems (i.e. y-axis). These perspectives include control robustness, control 

performance and software design. Although it appears some perspectives share 

common design concerns, each concern may differ in context. For example, both 

software and control perspectives are concerned with ‘computing platform 

performance’. However, this concern may lead software engineers to optimise analytics 

execution in the cloud, while control engineers may aim to improve aspects of control 

logic on the automation network.  

 

Figure 11 Example of cyber-physical design perspectives [58] 

Figure 12 illustrates the distribution of multidisciplinary design perspectives extracted 

from the literature, which include (1) software, (2) control, (3) design, (4) social, and (5) 

robotics. Generally, software design perspectives focus on information systems and 
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technology infrastructures for data transmission, processing and analysis, which provide 

the platform for cyber-physical interactions, while control design perspectives focus on 

distributed, robust, resilient and high-performance industrial control strategies, which 

ensure secure and reliable control processes. Less prominent perspectives found in the 

literature include those of design, social and robotics, encompassing methodologies 

facilitating the design process, protocols supporting human computer interaction, and 

integrations enabling smart robotics, computation and analytics. 

 

Figure 12 Distribution of multidisciplinary design perspectives 

2.5.2.2 MODELLING APPROACHES  

Given the existence of multidisciplinary design perspectives, different modelling 

approaches may be employed to align with these perspectives. Therefore, the design of 

industrial cyber-physical systems may comprise multiple modelling approaches. These 

approaches create abstract representations of the proposed system, which may be 

evaluated, interrogated and analysed in lieu of technical implementation. Modelling 

before implementation enables the early identification of technical issues, vulnerabilities 

and limitations, which reduce the costs associated with technical pivoting downstream, 

while also providing stakeholders and development partners with a common 

understanding and vocabulary. 

Figure 13 illustrates the distribution of modelling approaches extracted from the 

literature. These approaches were derived during the review process to synthesise and 

consolidate disparate low-level approaches (i.e. terminology and technical depth varied 
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significantly). The modelling approaches identified include (1) conceptual, (2) software 

and (3) mathematical modelling, with conceptual modelling frequently used to 

formulate an understanding of the domain (e.g. cyber-physical system components) for 

technical and non-technical stakeholders. Although conceptual models are particularly 

useful during early stages of projects, they do not embody the formal and standard 

notation needed for technical implementation. Such details are more precisely described 

using software and mathematical modelling, comprising standard methods for 

modelling system components and simulations. Table 9 compares the primary strengths 

and weaknesses of the aforementioned modelling approaches. 

 

Figure 13 Distribution of modelling approaches 

Models Strengths Weaknesses References 

Conceptual Clear representations of 
where the system or 
technology functions within 
the domain. 

Lack of technical prescription 
and formalisms. 

[42], [59]–[127] 

Software Formal and consistent way 
of modelling requirements 
and technical 
implementation. 

Formalisms may not possess 
vocabulary or representations 
for the domain being 
modelled, while performance 
execution may not be derived 
using these models alone. 

[71], [74], [80], 
[81], [91], [92], 
[94], [96]–[98], 
[101], [102], [117], 
[126], [128]–[135] 

Mathematical Formal and consist way of 
validating execution 
performance in lieu of 
implementation. 

Removed from domain 
modelling, requirements 
analysis and technical details 
needed to implement broader 
real-world systems.  

[67], [72], [73], 
[79], [81], [86], 
[98], [104], [121], 
[136]–[144][67], 
[72], [73], [104], 
[136]–[140], [145], 
[146] 

Table 9 References for modelling approaches 
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2.5.2.3 MODELLING LANGUAGES  

A modelling approach depends on suitable languages to describe and formalise 

technical specifications. The modelling languages supporting industrial cyber-physical 

systems design can be broadly classified as software and mathematical. Of these 

classifications, languages with software origins target component and system-level 

design (e.g. information system architecture), while mathematical modelling languages 

focus more on algorithm-level design (e.g. control logic).  

Figure 14 illustrates the distribution of modelling languages extracted from the 

literature, and Table 10 provides high-level descriptions and references supporting the 

data visualisation. Although the reported use of these languages for industrial cyber-

physical system design is modest, the Unified Modelling Language (UML), Petri Nets, 

Systems Modelling Language (SysML), and Service Oriented Modelling Language (SOA 

ML) are the most prominent. Of the less prominent modelling languages, Domain 

Specific Modelling Language (DSML) represents an alternative to general-purpose (e.g. 

UML) modelling languages, which encourages the creation of unique modelling 

notations for particular business domains. Given the interdisciplinary nature of 

industrial cyber-physical systems, domain-specific modelling languages that capture the 

semantics and vocabulary of the field may prove useful to formalise design and 

development processes, when compared to more general-purpose languages. 

 

 Figure 14 Distribution of modelling languages 
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Language Description References 

Domain Specific 
Modelling Language 
(DSML) 

High-level modelling methodology for 
specific domains 

[134] 

Extended Enterprise 
Modelling Language 
(eEML) 

Modelling language for enterprise 
systems 

[109] 

Petri Net Mathematical modelling language for 
describing distributed systems 

[72], [77], [121], 
[137] 

SOA ML Modelling language for designing 
service-oriented architectures 

[42], [77], [117] 

SPEEDS Design approach demonstrated for 
real-time automation and control. 

[145] 

Systems Modelling 
Language (SysML) 

Modelling language for analysis, design 
and verification of complex systems 

[132], [145] 

Unified Modelling 
Language (UML) 

General-purpose modelling language 
for visualising system design 

[80], [94], [108], 
[133] 

Table 10 References for modelling languages 

In terms of borrowing from existing modelling approaches, the Unified Modelling 

Language (UML) and System Modelling Language (SysML) represent mature and 

standard languages for modelling software components and systems. Both languages are 

based on symbolic and visual notation that convey system design. UML’s primary 

notation consists of structural (e.g. class), behavioural (e.g. use case), and interactive 

(e.g. sequence) diagrams. These diagrams aim to remove ambiguity and unknowns from 

the software design process, by enabling developers to consider system design from 

many different perspectives. Although UML diagrams are most commonly used to 

support object-oriented software development, additional notation is required for 

system engineering (e.g. system-to-system communication). Thus, SysML was 

developed to support system engineering efforts by extending UML’s symbolic notation 

(e.g. activity diagram), and introducing additional requirements and parametric diagrams 

for modelling constraints and timing scenarios (e.g. automation and control). 

Apart from component-level software and system modelling, cyber-physical systems 

may also be concerned with low-level algorithm design, process validation, distributed 

operation and concurrent execution, which can be more easily modelled using 

mathematical modelling languages. The primary mathematical modelling language 

observed from the literature was that of PetriNets. These models are used to describe 
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event-driven, concurrent and distributed systems, using graphs of ‘places’ and 

‘transitions’, with ‘places’ representing the current state (e.g. valve closed), and 

‘transitions’ representing events (e.g. open valve) that change state (e.g. valve open).  

2.5.2.4 REFERENCE ARCHITECTURES AND MODELS 

While modelling languages can provide the methods and notation for designing 

industrial cyber-physical systems from the bottom-up, reference architectures and 

models provide standard, systematic and prescribed approaches (e.g. technical 

templates) for connecting industrial systems and technologies. Based on observations 

from the literature, both mature and emerging reference architectures and models have 

been proposed to support Industry 4.0 operations. These architectures and models can 

standardise integration, terminology, and technologies, which can greatly simplify time-

consuming data acquisition, processing and analytics activities.  

Figure 15 illustrates reference architectures and models extracted from the literature, 

while Table 11 provides a high-level description and references supporting the data 

visualisation. Of those identified, ISA-95 and RAMI 4.0 are the most prominent 

industrial architectures and models. The ISA-95 is a mature and widely adopted five-

part industrial automation standard published by the International Society of 

Automation (ISA) that captures many of the technical layers relevant to cyber-physical 

systems (e.g. sensing, control etc.), while Reference Architecture Model Industry 4.0 

(RAMI) is a more contemporary standard that was specifically designed to support the 

multifaceted nature of Industry 4.0 operations. Other reference architectures and 

models of industrial origin include the Manufacturing Enterprise Solutions Association 

(MESA) for managing business processes, Product-Resource-Order-Staff-Architecture 

(PROSA) for architecting holonic manufacturing systems, and Automotive Open 

System Architecture (AUTOSAR) for industrial automotive control. Notably, the 

concept of holonic systems promoted by PROSA are theoretically aligned with the 

Industry 4.0 ideology of self-organising, modular, embedded and decentralised decision-

making. However, the less prominent architectures and models identified do not appear 

to embody sufficient breadth to support Industry 4.0 operations.  



 

Page 52 of 217 

 

Figure 15 Distribution of architectures and models 

Architecture Description Reference 

Automotive Open System 
Architecture (AUTOSAR) 

Open and standard software architectures for 
automotive electronic control units 

[145] 

ISA-95 Standard for automating interfaces between 
enterprise and control systems 

[71], [77], [83], 
[124] 

Manufacturing Enterprise 
Solutions Association 
(MESA) 

Reference model supporting business 
processes in the factory 

[71] 

OASIS Reference Model for 
Service Oriented 
Architecture (SOA-RM) 

Reference model for managing and unifying 
multiple service-oriented applications 

[117] 

Product-Resource-Order-
Staff-Architecture (PROSA) 

Reference model for supporting holonic 
manufacturing systems 

[117] 

Purdue Enterprise Reference 
Architecture (PERA) 

Reference model for developing enterprise 
architectures 

[71] 

Reference Architecture 
Model Industry 4.0 (RAMI) 

Model describing Industry 4.0 compliant 
production equipment and processes  

[114], [120] 

Table 11 References for architectures and models 

ISA-95’s hierarchical model (Figure 16) depicts factory-to-enterprise integration as five 

distinct technical levels, which are process (Level 0), instrument (Level 1), monitoring 

and control (Level 2), operations management (Level 3), and business planning (Level 

4). The hierarchical ISA-95 model was initially designed to support centralised 

automation and control technology (i.e. Industry 3.0), but may also be adapted to 
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support Industry 4.0 operations. In addition to ISA-95’s reference model, other parts of 

the standard address details regarding the data flows, objects and relationships that may 

exist between each layer of the model.  

 

Figure 16 ISA-95 reference architecture 

The ISA-95 model demonstrates strong vertical integration (i.e. factory-to-enterprise 

integration), but emerging industrial cyber-physical systems for Industry 4.0 depend on 

both vertical and horizontal integration. Thus, multi-directional integration scenarios are 

an important aspect of RAMI 4.0’s three-dimensional architecture (Figure 17), 

comprising hierarchical levels (e.g. field device, controller etc.), product lifecycle value 

stream (e.g. production, maintenance etc.), and architecture layers (e.g. asset, integration 

etc.). Of these dimensions, the product lifecycle (IEC 62890) and hierarchical levels 

(IEC 62264) are based on IEC standards, with the latter dimensions sharing the same 

standard as ISA-95’s reference model.  
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Figure 17 RAMI 4.0 reference model 

2.5.2.5 DESIGN OBSERVATIONS RELEVANT TO THESIS 

Consistent design perspectives and requirements for industrial cyber-physical systems are 

not evident in the literature. Although there may be many reasons for poor consensus 

within the literature, some of the contributing factors proposed by this research include 

the (a) contemporary nature of research relating to industrial cyber-physical systems, (b) 

inconsistent understanding regarding how cyber-physical technology relates to 

traditional fields of engineering, computer science, and information systems, and (c) 

poor integration and acceptance of multidisciplinary concerns and perspectives. Hence, 

much of the current literature hold discipline-specific perspectives, with control and 

software perspectives being particularly prominent. The control perspectives inform 

concurrent control and guaranteed process execution (e.g. real-time performance), while 

software perspectives enable the extension of traditional control systems to embed 

additional manufacturing intelligence, scenario simulation and advanced analytics (e.g. 

machine learning for self-optimisation). 

The most prominent modelling approaches found in the literature employed conceptual, 

software and mathematical models. Theoretical and conceptual models convey high-

level details and schematics for industrial cyber-physical systems. These models are 

valuable when developing a common understanding of the domain’s primary 

components (e.g. programmable controllers), communicating methodological 

approaches (e.g. workflows), and illustrating engineering applications (e.g. equipment 

maintenance). However, conceptual models do not typically follow a formal 

convention, or provide the technical details to support the transition from concept to 

implementation. Technical transitions depend on software models to visualise the 
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components and interactions that occur at different levels of abstraction, from high-

level analysis, to low-level implementation. Unlike conceptual models, software models 

typically adhere to formalisms that encourage consistency, continuity and collaboration. 

These formal software models may be used to validate software designs against 

functional requirements, but reported demonstrations encountered during the review 

process did not indicate how these models could be used to measure execution 

performance (e.g. worst case execution time), which is an important part of embedded 

systems (e.g. control networks) that depend on code execution within a set time-

window, or where systems are comprised of distributed components that execute 

concurrently. This type of performance analysis may be realised using mathematical 

models to simulate performance and verify system, control and algorithm design in lieu 

of implementation. Therefore, the benefits and concerns associated with these 

modelling approaches (i.e. concept, software and performance) should be considered an 

integral part of a unifying design methodology for industrial cyber-physical systems.  

The modelling techniques and tools used to design industrial cyber-physical systems naturally 

mirror the disciplinary design perspectives of the researcher, with existing modelling 

languages (e.g. UML) and tools used to guide design efforts. Although using existing 

modelling techniques and tools makes sense to pioneer initial efforts, many of these 

tools were not created to address the requirements, concepts and vocabularies relevant 

to industrial cyber-physical systems, and therefore one might consider how to integrate 

and connect these modelling tools to form a coherent and unified design methodology for 

industrial cyber-physical systems.  

2.5.3 Application of industrial cyber-physical systems 

2.5.3.1 TARGETED OPERATIONS AND DEPLOYMENTS 

The deployment of cyber-physical systems within industrial operations can be broadly 

classified as those relating to (a) specific engineering applications (e.g. process 

optimisation, fault detection etc.), or (b) enabling engineering technology (e.g. 

frameworks to execute predictive engineering models). While engineering applications 

leverage advanced computation, simulation and analytics to inform operational 

decision-making, enabling engineering technologies provide frameworks, infrastructures 

and processes that ensure robust and reliable operation. In essence, enabling 

engineering technologies are utilised by engineering applications to access, process and 
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report operational information. Although there are many possible engineering 

applications applicable to Industry 4.0, they each share the objective of contributing 

some intelligence to realise self-optimising and self-configuring operations. 

Figure 18 illustrates the current distribution of targeted operations extracted from the 

literature (i.e. areas where cyber-physical systems have been deployed), while Table 12 

provides a high-level description and references supporting the data visualisation. Of 

those identified, research targeting contributions towards advancing platform enabling 

technology (e.g. architectures and methods) was most prominent, which was followed 

closely by research specifically applying cyber-physical technology to process, control 

and automation. However, given enabling technology transcends any one particular 

operational area, and logically precedes the development of more specific engineering 

applications, the prominence of enabling technology may be attributed to the early stage 

of the field. The benefits of less prominent cyber-physical engineering applications 

relating to maintenance, planning and energy are largely driven by Industry 4.0 

objectives relating to operating reliability (e.g. 100% uptime) and energy efficiency.  

 

Figure 18 Distribution of targeted operations and deployments 

Target References 

Technology [42], [59], [61], [63]–[66], [68], [70], [72]–[74], [76]–[80], [84], [85], [87], 
[88], [90], [92], [94]–[100], [106], [109], [117]–[120], [124], [126], [127], 
[129]–[135], [145], [147]–[149] 

Process [64], [67], [71], [75], [77], [79], [81], [86], [88], [90], [91], [93], [97], [98], 
[101], [102], [104], [107], [109], [111], [113], [115], [117], [121], [123], 
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[128], [129], [131], [133]–[136], [138]–[143], [146], [150] 

Maintenance [24], [60], [62], [68], [76], [78], [89], [105], [110], [122], [125] 

Planning [24], [86], [90], [112], [123], [141], [142], [146] 

Energy [82], [110], [116], [118], [144] 

Logistics [83], [86], [90], [103], [114] 

Scheduling [86], [90], [107], [123], [137] 

Supply Chain [86], [99], [108], [120] 

Quality [74] 

Table 12 References for targeted operations and deployments  

2.5.3.2 ENGINEERING AND COMPUTING APPLICATIONS 

An industrial cyber-physical system can be programmed using a wide-range of 

computing, mathematical, and statistical methods, and applied to any number of 

engineering applications and scenarios. Although capturing such diversity can be 

difficult, themes and classifications (Figure 19) derived from the literature include 

applications for (1) information technology supporting fundamental networking, 

infrastructure, security and management, (2) operation technology enabling the automation, 

control and monitoring of industrial processes, and (3) Industry 4.0 technology (e.g. cyber-

physical systems) capable of delivering predictive and self-regulating operation. These 

classifications may be considered somewhat hierarchical, with Industry 4.0 technologies 

residing at the top of the stack, extending principles from both information and 

operational technology (i.e. technology convergence between information and operation 

technology). In a similar manner, operation technology extended many principles and 

components (e.g. computer networks, database systems etc.) of information technology 

to realise industrial automation and control, while information technology provides the 

foundational layer for these engineering informatics domains.  
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Figure 19 Classification of engineering and computing applications 

Figure 20 illustrates the distribution of engineering and computing applications 

extracted from the literature, while Table 13 provides descriptions and references 

supporting the data visualisation. Of the engineering and computing applications 

identified, those focusing on remote monitoring, remote control and self-optimisation 

are most prominent. In the case of remote monitoring and control, such results should 

be expected given the scope of these applications are rather broad and generic, while 

arguably being one of the most common applications of technology in modern 

factories. A more insightful trend is the existence of self-oriented applications (i.e. all 

derivations of self-*), which demonstrates the field of industrial cyber-physical systems 

shares a common understanding and vocabulary with recognised Industry 4.0 

objectives. In addition, the presence of applications focusing on smart connections 

emphasises the need for connectivity between systems, devices and repositories (e.g. 

internet-of-things, legacy interfaces) to facilitate interconnectivity for Industry 4.0. 
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Figure 20 Distribution of engineering and computing applications 

2.5.3.3 APPLICATION INSIGHTS RELEVANT TO THESIS 

The literature indicates that the general application and purpose of industrial cyber-

physical systems are consistent with Industry 4.0 goals and objectives, such as self-

configuration, self-optimisation, self-awareness etc. These high-level classifications 

overlap with the type of analytics models used to fulfil engineering operations (e.g. self-

configuration may suggest the use of prescriptive or recommendation models), while 

they also differentiate industrial cyber-physical systems from similar cyber-physical 

technologies servicing other domains. Another differentiating characteristic relates to 

the presence of data streams with differing latencies, where some engineering scenarios 

(e.g. control) depend on real-time data streams, while others (e.g. modelling) employ 

batch data streams. Despite the potential importance of these data streams to Industry 

4.0, industrial analytics, and industrial cyber-physical systems, the literature largely 

overlooks the relationship and potential relevance of these data streams to industrial 

cyber-physical systems. Given poor data governance and management can increase the 

cost, and reduce the return-on-investment of industrial analytics initiatives, applications 

of industrial cyber-physical systems should aim to demonstrate a strong understanding 

of data flows and lifecycles throughout the factory.  

Although the number of reported real-world industrial cyber-physical systems are 

modest, there are two prominent themes relating to the application of cyber-physical 

system technology to industrial operations. These themes are summarised below;  
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 Engineering Informatics applications that focus on delivering information 

and operation technology convergences that enable cyber-physical interactions 

between traditional manufacturing environments, and more contemporary 

technologies. In essence, such research efforts aim to deliver the technical 

artefacts (e.g. system architecture) needed to extend current technologies, and 

incorporate advanced analytics, optimisation and simulation.  

 Engineering Encoded applications focus on encoding engineering first 

principles to monitor, optimise and control specific industrial operations (e.g. 

equipment maintenance, energy optimisation etc.). These encoded applications 

are almost entirely concerned with the results derived from execution, rather 

than making meaningful contributions to the underlying computing or 

technology supporting the application.  

Given the complimentary contributions and insights derived from both classifications 

of engineering applications, engineering encoded and engineering informatics applications must 

be embraced to support the development of well-balanced industrial cyber-physical 

systems that can be applied to real-world Industry 4.0 factory operations. 
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Classification Application References 

Industry 4.0 Collaborative Communication [67], [77], [79], [80], [82], [84], [98], [100], [103] 

Industry 4.0 Human Assistance [76], [117] 

Industry 4.0 Resilient Control [62], [100], [114], [126], [129], [135] 

Industry 4.0 Self-adjust [51], [59], [65], [77], [81], [87], [88], [126], [138], [139], [143], [144], [151] 

Industry 4.0 Self-aware [51], [65], [67], [77], [110], [113] 

Industry 4.0 Self-compare [51], [62], [69], [113], [150], [151] 

Industry 4.0 Self-configure [51], [67], [68], [77], [81], [87], [111], [113], [124], [127], [150], [151] 

Industry 4.0 Self-learning [67], [87], [114], [118], [132] 

Industry 4.0 Self-optimise [42], [62], [67], [72], [77], [88], [92], [98], [102], [123], [125], [137], [140]–[143], [146], [151] 

Industry 4.0 Traceability [83], [88], [91]–[93], [102], [108], [121], [134], [141], [142] 

Industry 4.0 Visibility & Virtualisation [90], [91], [93], [94], [102], [121], [123] 

Information Technology Business Workflows [72], [83], [85], [90], [92], [102], [110] 

Information Technology Data Management [72], [74], [86], [93], [122], [128], [130] 

Information Technology Design Improvement [64], [79], [115], [117], [118], [122], [124], [127], [129], [131]–[133], [135], [145] 

Information Technology Interoperability [121], [124], [125], [127], [132] 

Information Technology Modelling Semantics [127], [133]–[135], [145] 

Information Technology Prediction [60], [64], [89], [90], [98], [108], [123], [125], [128] 

Information Technology Security [95] 

Information Technology Smart Connections [42], [51], [62], [65], [66], [80], [86], [89], [117], [119], [120], [126], [130] 

Operation Technology Condition & Health Monitoring [51], [62], [64], [65], [69], [89], [90], [98], [122], [125], [140], [151] 

Operation Technology Event Processing [74], [88], [101], [103], [110], [120], [121], [123] 

Operation Technology Fault Detection [60], [64], [65], [121], [122], [128] 

Operation Technology Remaining Useful Life [51], [64], [69] 

Operation Technology Remote Control [90]–[92], [97], [98], [127], [145] 

Operation Technology Remote Monitoring [61], [67], [68], [73]–[75], [87], [88], [90], [91], [97], [101], [103], [107], [109], [110], [116], [119], [128], 
[150], [152] 

Operation Technology Virtual Design & Verification [133], [134] 

Table 13 References for engineering and computing applications
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2.5.4 Implementation of industrial cyber-physical systems 

2.5.4.1 TECHNOLOGY PARADIGMS AND METHODS  

The current industrial cyber-physical system ecosystem comprises both mature and 

contemporary technologies. Figure 21 illustrates technology paradigm classifications 

extracted from the literature. Of these classifications, Internet (e.g. cloud and web 

services) and enterprise (e.g. object-oriented programming) are the most prominent. 

These represent mature and familiar technologies capable of managing distributed 

computing scenarios using enterprise computing, networking and power capabilities 

(e.g. personal desktop computer). However, such requirements differ from the 

restricted power, connectivity and compute capacity synonymous with industrial cyber-

physical systems (e.g. sensors and microcontrollers). Although some mobile and 

emerging technologies may address these requirements, they are less prominent in the 

literature. Logically, this could be expected given potentially smaller communities, 

unfamiliar development tools, and limited legacy system support. However, mobile and 

emerging technologies demonstrate strong alignment with Industry 4.0 objectives (e.g. 

interoperability, product customisation, decentralisation), industrial cyber-physical 

systems (e.g. resilient low-power communication), and cross-sector ‘smart’ paradigms 

(e.g. smart grid, smart home etc.).  

 

Figure 21 Classification of technology paradigms and methods 
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Figure 22 illustrates the distribution of technology paradigms and methods extracted 

from the literature, while Table 14 provides descriptions and references supporting the 

data visualisation. Of the technology paradigms and methods identified, service-

oriented computing and cloud computing are most prominent, which may be somewhat 

attributed to Industry 4.0 design principles encouraging modularity and service-

orientation. These technical characteristics can facilitate reusability, maintenance and 

distributed processing using open interfaces. These interfaces can be used to support 

interoperability between disparate enterprise systems, and commonly deployed on cloud 

computing platforms to promote scalability and fault tolerance using dynamic (i.e. 

elastic) provisioning, where compute resources (e.g. memory, processors etc.) are 

programmatically initiated on-demand. In essence, the amalgamation of cloud 

computing with service-oriented architectures provide the fundamental technologies for 

cloud manufacturing.  

 

Figure 22 Distribution of technology paradigms and methods 

Although cloud and service-oriented computing can support distributed engineering 

scenarios, intelligence and processing (e.g. decision-making) typically remain central (e.g. 

cloud server), with distributed client software depending on consistent and resilient 

connections to the primary services. However, given industrial cyber-physical systems 

comprise networks-of-networks with varying bandwidth, architectures dependent on 
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persistent connections to centralised services are not naturally suited to real-time 

automation and control scenarios. To address such scenarios, decentralised paradigms 

supporting distributed and autonomous decision-making may be considered. Both 

software agents and fog computing exemplify decentralised paradigms, where compute 

nodes can operate autonomously to deliver intelligence on the outer edge of pervasive 

networks. In addition to removing dependencies on cloud connectivity, decentralised 

paradigms may also reduce network traffic, improve scalability and enhance security for 

industrial cyber-physical systems. 

In terms of application user interfaces, web and mobile paradigms are the most 

prominent. Although web applications operate solely within web browsers, mobile 

applications can be delivered using web browsers, or native mobile platforms (e.g. iOS, 

Android etc.), with browser-based delivery particularly convenient for supporting cross-

platform scenarios. More contemporary application interfaces enabled by virtual and 

augmented reality paradigms are gaining more attention, but widely accepted standards 

for development and deployment are not evident. Therefore, while these contemporary 

and interactive interfaces offer potential for industrial innovation, their demonstrated 

application to industrial cyber-physical systems appears limited.  
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Classification Technology Purpose References 

Interactive Context Aware Sense physical environment and adapt behaviour [80], [81], [94], [130], [132] 

Interactive Human Computer Interaction Optimise human interactions with the cyber world [75], [76], [90], [117] 

Interactive User Experience Design and implement human centred systems [76], [92] 

Emerging 3D Modelling and Printing Facilitate additive manufacturing for Industry 4.0 [75], [117], [118] 

Emerging Augmented Reality Overlay cyber objects in the physical world [76], [117] 

Emerging Cloud Manufacturing Enable distributed and service-oriented manufacturing [59], [63], [66], [72], [83], [84], [103], [107], [109] 

Emerging Fog Computing Propagate cloud services to the edge of networks  [108] 

Emerging Software Agents Execute actions on behalf of another entity (i.e. virtual surrogates) [75], [77], [81], [98], [100], [109], [111], [114], 
[116], [117], [124], [130] 

Emerging Virtual Reality Model physical objects in a virtual world  [109], [117] 

Enterprise Data Mining Examine data repositories to derive insights [63], [65], [81], [82], [98] 

Enterprise Knowledge Representation Encode knowledge in a form understood by computers  [71] 

Enterprise Middleware Mediate communication between different systems [74], [81], [85], [87], [91], [97], [99], [102], [108], 
[110] 

Enterprise Object-oriented Programming Combine data and functions representing real-world entities  [65], [115], [131], [133] 

Internet Cloud Computing Deliver elastic compute and storage for performance and scalability [51], [62]–[66], [68]–[70], [73], [74], [77], [82], 
[83], [96], [103], [111], [116], [120] 

Internet RESTful API Provide lightweight and open methods for remote program execution [71], [80], [119], [124], [133], [147] 

Internet SOA, Web & Cloud Services Provide enterprise-level methods for remote program execution [42], [61], [63], [65]–[67], [70]–[72], [77], [80]–
[82], [87], [91], [92], [94], [103], [108]–[110], 
[117], [119], [120], [124], [128], [147], [150], [153] 

Internet Web & Browser Applications Enable front-end interaction with backend applications [24], [62], [71], [75], [78], [96], [122], [153] 

Mobile Geo Location Track and trace physical objects using location services [75], [85], [90], [102] 

Mobile Instant Messaging Push notifications and messages to end-users and programs [74], [76], [96] 

Mobile Mobile Computing Embed mainstream mobile devices across industrial systems [51], [74], [85], [96], [110], [122], [125], [128] 

Table 14 References for technology paradigms
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2.5.4.2 PROGRAMMING LANGUAGES AND FRAMEWORKS 

Any number of programming languages and frameworks may support the development 

of industrial cyber-physical systems, including those tools, language and frameworks 

synonymous with current and emerging paradigms. Figure 23 illustrates technology 

classifications for programming languages and frameworks that were extracted from the 

literature. Based on these classifications, programming languages and frameworks 

associated with enterprise technologies are the most prominent. Many of these 

enterprise technologies support distributed computing scenarios and demonstrate 

strong adoption across different sectors, but were not initially developed for low-power 

and resource-limited scenarios (e.g. internet-of-things). Hence, such scenarios may be 

better served by programming languages and frameworks associated with emerging 

mobile and internet-of-things technologies, which are specifically designed to address 

such constraints.  

 

Figure 23 Classification of programming languages and frameworks 

Figure 23 illustrates the distribution of programming languages and frameworks 

extracted from the literature, while Table 15 provides descriptions and references 

supporting the data visualisation. Of the programming languages and frameworks 

identified, Java was most commonly used to develop software modules for industrial 

cyber-physical systems. Although one could focus on Java’s prominence, the broader 

utilisation of object-oriented programming languages seems more significant, with Java, 

C# and other .NET languages evident in 20% of reviewed publications. Arguably, these 
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mature languages and frameworks may be deemed more favourable than contemporary 

counterparts due to the availability of stable production-ready libraries (e.g. distributed 

communication), significant development communities, previous development 

experience, and integrated tool support (e.g. development environments). Such 

resources are difficult to ignore, given they have the potential to greatly reduce technical 

effort, when compared to emerging technologies that are at an early stage.  

Apart from traditional object-oriented languages and frameworks, more contemporary 

development technologies demonstrating some adoption include Android for 

developing end-user mobile applications, Java 3D for supporting additive 

manufacturing and immersive human-computer interaction, Bosch XDK Kit for 

programming the internet-of-things, and Jade for enabling decentralised multi-agent and 

holonic industrial systems. While these development technologies may gain more 

industry adoption over time, both Android and Jade platforms are particular well-

aligned with Industry 4.0 design principles focusing on decentralised processing and 

decision-making.  

 

Figure 24 Distribution of development technologies 
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Classification Technology Description Reference 

3D  Java 3D 3D API for OpenGL and Direct3D [80], [106], [107] 

3D  Unity 3D Cross-platform game engine with 3D rendering [109] 

Enterprise C/C++ General-purpose programming language [67], [106] 

Enterprise C# Standards-based general-purpose programming language [109], [128], [142] 

Enterprise Java General purpose cross-platform programming language [76], [106], [107], [109], [117], [126], 
[133], [139], [150], [152] 

Enterprise JBoss High-performance and scalable middleware [77] 

Enterprise Microsoft .NET Windows-based development framework for mobile, web and 
desktop applications 

[101], [108], [128] 

Industrial ibaLogic v4 System for signal processing and automation  [146] 

Industrial OPC .NET .NET library for OLE Process Control [61] 

Internet ASP.NET Open source sever-side web application framework [108] 

Internet HTML 5 Language for presenting content on the web [71], [103], [150] 

Internet Java Server Pages (JSP) Server-side language for creating dynamic web applications [152] 

Internet JavaScript Client-side scripting language for interactive web applications [152] 

Internet PHP Open source general-purpose scripting language [108] 

Internet Windows Communication 
Foundation (WCF) 

Framework for building service-oriented applications [61] 

Internet-of-Things Bosch XDK Kit Development kit for IoT programmable sensors and platforms [133] 

Internet-of-Things Jade Java framework for developing intelligent agent systems [75], [154] 

Internet-of-Things System J Language for designing and programming concurrent and 
distributed systems 

[139] 

Mobile Android Linux-based mobile platform  [68], [74], [76], [117] 

Mobile iOS Mobile platform for Apple devices [62], [78] 

Table 15 References for development technologies
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2.5.4.3 DATA FORMATS AND MESSAGE EXCHANGE INTERFACES 

While service-oriented computing and architectures enable messaging between disparate 

systems, these messages must encode data using formats that can be interpreted by 

participating systems (e.g. open and standard formats), and interoperate through 

interfaces for sending and receiving communications (e.g. RESTful). Figure 25 

illustrates the distribution of data formats and message exchange interfaces extracted 

from the literature, while Table 16 provides descriptions and references supporting the 

data visualisation. Of the data formats identified, the general-purpose and human-

readable Extensible Markup Language (XML) and Java Script Object Notation (JSON) 

are most prominent. Although encoding data using XML or JSON facilitates open, 

standard and human-readable data representation, XML provides a more 

comprehensive convention for encoding data documents. Examples of such 

conventions include support for metadata attributes, prefixing, and mixed content (e.g. 

data, images and files). These conventions contrast with JSON’s lightweight format, 

where encoding relies predominantly on key/value pairs of strings, and hierarchal 

relationships are depicted using simple nesting structures. In turn, this lightweight and 

intuitive encoding approach can produce smaller packets to facilitate data transmission. 

 

Figure 25 Distribution of data formats and messaging 
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Method Description Reference 

Extensible Markup Language 
(XML) 

Markup language for encoding document 
formats for human and machine 
consumption 

[67], [71], [75], 
[80], [81], [83], 
[88], [108], [116], 
[119], [128], [147] 

JavaScript Object Notation 
(JSON) 

Lightweight data encoding and exchange 
format supporting system interoperability 

[80], [116], [147], 
[148] 

Simple Object Access 
Protocol (SOAP) 

Protocol specification supporting data 
exchange and invocation for web services 

[108], [119], [128] 

Representation State 
Transfer (RESTful) 

Architectural style for enabling 
interoperability and modularity across 
Internet-based systems 

[71], [147] 

Message Queue Telemetry 
Transport (MQTT) 

Lightweight publish-subscribe protocol for 
decentralised low-power communication 

[133] 

Comma Separated Values 
(CSV) 

Flat file format for storing one-dimensional 
data 

[116] 

Web Services Description 
Language (WSDL) 

XML-based language for describing web 
service specifications and rules 

[108] 

Table 16 References formats and messaging 

Encoded data messages are transmitted between disparate systems using message 

exchange interfaces. Based on findings from the literature, the Simple Object Access 

Protocol (SOAP) and Representation State Transfer (REST) are most commonly used 

for cyber-physical interactions. While XML and JSON are independent of data retrieval 

methods, they are synonymous with web service implementations based on SOAP and 

REST, which provide open, standard and consistent interfaces for exchanging messages 

and executing distributed software modules. These web services can be developed using 

tools and libraries from mainstream technology platforms and frameworks (e.g. Java, 

.NET). Although SOAP and REST can produce similar functionality (i.e. distributed 

execution), their underlying characteristics are different. In particular, REST is an 

architectural style that employs Hypertext Transfer Protocol (HTTP) transmission and 

semantics exclusively to relay operations to remote applications (e.g. GET = retrieve, 

POST = create, PUT = update, DELETE = delete), while SOAP is a full-featured XML-

based message protocol for information exchange that supports many different 

communication protocols (e.g. HTTP, SMTP etc.). Choosing an approach depends on 

scenarios requirements, with REST’s minimal specification potentially advantageous 

when lightweight data transmissions are required, and SOAP’s comprehensive 

specification more aligned with larger data transmissions, programmatic rules and 

constraints, and enterprise security integration.  
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Of the less prominent formats and interfaces found in the literature, the Message Queue 

Telemetry Protocol (MQTT) seems particularly relevant to industrial cyber-physical 

systems supporting Industry 4.0 operations. MQTT is a lightweight machine-to-

machine connectivity protocol for the internet-of-things, which utilises a publish-

subscribe model to exchange information amongst disparate systems and devices. The 

publish-subscribe model offers many benefits over request-response models (i.e. SOAP 

and REST) for certain cyber-physical systems with low-power and low-compute 

characteristics (e.g. embedded devices used instead of computers), including (a) lower 

energy consumption, (b) better bandwidth efficiency, and (c) smaller footprint. These 

benefits are largely derived from more efficient exchanges, where the publish-subscribe 

model removes the need for participating systems to continually poll each other looking 

for updates or changes. Although not directly evident from the literature, the use of 

MQTT may increase as mainstream tools and technologies provide better integration 

for the standard, and more cyber-physical implementations progress beyond proof-of-

concept (i.e. reusing existing knowledge of SOAP and REST provides an easier route 

for proof-of-concepts). 

2.5.4.4 NETWORK INFRASTRUCTURES AND TECHNOLOGIES 

Emerging industrial cyber-physical systems depend on networks to connect and 

monitor physical phenomena. Figure 26 illustrates the different type of network 

technologies extracted from the literature, which have been classified as those relating 

to (a) enterprise, (b) internet-of-things and (c) industrial networks. Generally, enterprise 

networks utilise mainstream technologies, process data centrally (e.g. server), support 

line-of-business applications and possess static network boundaries. These 

characteristics contrast with internet-of-things networks, which possess elastic network 

boundaries (e.g. mobile device or sensor residing off-site to relay information to 

industrial systems and operations) and decentralised processing capabilities to deliver 

scalability, flexibility and pervasive computing. Interestingly, industrial networks share 

characteristics with both enterprise and internet-of-things computing, with static 

network boundaries traditionally used to define control networks, and embedded 

computing utilised to enable decentralised control operations. 
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Figure 26 Classification of network technologies 

Figure 27 illustrates the distribution of network technologies extracted from the 

literature, while Table 17 provides descriptions and references supporting the data 

visualisation. Of the networking technologies found in the literature, Wireless Local 

Area Networks (WLAN) are the most prominent. These networks provide a wide-range 

of devices (e.g. mobile, laptop etc.) with untethered connectivity, which can support 

communications between software and hardware components residing within the 

physical layer (i.e. factory floor) of cyber-physical systems. Another prominent wireless 

networking technology that goes beyond connectivity alone is that of Wireless Sensor 

Networks (WSN). WSN’s consist of distributed autonomous sensors that monitor 

physical conditions (e.g. temperature), and execute operations to maintain a desired 

state (e.g. minimum temperature) - these operations may be undertaken by individual 

sensors, or through collaboration with other sensors. In terms of relevance to industrial 

applications, WSN’s can enable sensor deployment in difficult to reach areas (e.g. 

rotating blade), and provide a minimally evasive and scalable approach for extending 

sensing capabilities (e.g. disruptions or costs associated with cabling).  
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Figure 27 Distribution of network technologies 

In the context of Industry 4.0 and industrial cyber-physical systems, Software Defined 

Networks (SDN) may represent an important network technology. SDN’s are 

programmable computer networking abstractions, which enable the programmatic 

creation of dynamic, flexible and scalable networks. Thus, SDN’s may be used to 

centralise network provisioning, refine security control, lower operating costs, and 

virtually integrate networks (e.g. WSN and cloud infrastructures). Due to the dynamic, 

flexible and scalable nature of SDN’s, they may be particularly useful when supporting 

data-intensive industrial applications (e.g. big data, virtualisation etc.), and enabling 

industrial cyber-physical systems to enact self-configuring network operations without 

the need for human intervention.  

2.5.4.5 IMPLEMENTATION OBSERVATIONS RELEVANT TO THESIS 

At present, mature and well-established technologies are being chosen to implement 

industrial cyber-physical systems, with fewer real-world demonstrations of 

contemporary cyber-physical and internet-of-things technologies. The strongest themes 

within the literature highlight the use of cloud computing, service-oriented computing, object-

oriented programming and wireless sensor networks to support cyber-physical system 

implementation. Apart from wireless sensor networks, these technologies are 

synonymous with mainstream and enterprise computing, where they are typically used 

to centrally store and process information. However, design principles and commentary 

relating to Industry 4.0 promote the notion of decentralised real-time decision-making 
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and control on low-power and low-compute platforms (e.g. machine-to-machine 

communication undertaken on the outer edge of networks). Thus, emerging 

technologies supporting decentralised computing architectures and low-latency 

communications should be considered for industrial cyber-physical system 

implementation.  

The decentralised and autonomous technologies identified from the literature include 

multi-agent systems, holonic systems and fog computing, with each possessing unique methods, 

concepts and tools to support implementation. Of these technologies, fog computing 

may be considered the least mature, but the extension and relationship with cloud 

computing provides the benefit of familiarity, which one might hope reduces the 

friction commonly associated with industrial technology adoption. In addition, some 

similarities associated with developing cloud and fog computing services should reduce 

the learning curve and decrease implementation time for engineers and developers. The 

primary challenges relating to fog computing implementations include (a) insufficient 

supporting frameworks mean developers must write and manage more code, (b) less 

prescription regarding the low-level and high-level technical components needed to 

support the implementation, and (c) getting buy-in from internal stakeholders regarding 

the introduction of new methods or technologies.  
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Classification Network Description Reference 

Enterprise Local Area Network (LAN) Network connecting devices using cables within a limited area [91], [128] 

Enterprise Ring Network Network topology where each node connects to two other nodes [129] 

Enterprise Virtual Private Network (VPN) Network connecting two private networks using public wires [69], [119] 

Enterprise Wireless Local Area Network 
(WLAN) 

Short-range local network connecting devices wirelessly that can 
be implemented using different wireless standards 

[62], [64], [65], [83], [87], [91], [96], 
[101], [114], [152] 

Enterprise Wi-Fi Wireless implementation of IEEE 802.11 standard  [68], [83], [91] 

Industrial Advanced Meter Infrastructure (AMI) Network of sensors and meters capturing data for load control 
and energy management 

[144] 

Industrial Control Area Network (CAN) Enables microcontrollers and devices to communicate directly 
without host computers 

[68] 

Industrial Distributed Control System (DCS) Computerised control system for connecting and managing 
controllers  

[120] 

Industrial Sensor Area Network (SAN)  Interactive and cooperative sensing network comprised of wired 
and wireless sensors 

[64], [82], [92], [130] 

Industrial Supervisory Control and Data 
Acquisition (SCADA) 

Software and hardware components for remotely controlling and 
managing industrial processes 

[61], [77], [81], [120], [124] 

IoT Industrial Wireless Network (IWN)  Robust and resilient wireless sensing for industrial environments [96] 

IoT Motion Control Network  Embedded sensing to obtain motor operation data [93] 

IoT Measuring Control Network  Embedded sensing to obtain precise position information [93] 

IoT Software Defined Network (SDN) Programmatically initialised controlled and managed networks [96], [97], [147], [148] 

IoT Wireless Sensor Network (WSN) Distributed and autonomous sensors used to monitor physical or 
environmental conditions 

[63], [65], [74], [84], [85], [106], [108], 
[110], [119], [148] 

Table 17 References for network paradigm
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2.5.5 Standards for industrial cyber-physical systems 

2.5.5.1 CONNECTIVITY AND COMMUNICATION 

Emerging industrial cyber-physical systems depend on standards and methods to 

promote seamless connectivity. If these standards are embraced during system design 

and implementation, the produced industrial cyber-physical systems should exhibit 

openness and interoperability. Figure 28 illustrates classifications for connectivity and 

communication standards extracted from the literature, with the main categories 

including (a) internet-of-things, (b) networking, (c) industrial automation, (d) internet 

technologies and (e) mobile technologies. Of these classifications, standards associated 

with the internet-of-things are most prominent, which may be due to Industry 4.0 

requirements pertaining to low-power, pervasive, and decentralised networks. These 

emerging networks and standards differ from traditional enterprise and industrial 

networks, with the latter possessing greater compute and power resources, static 

network boundaries, and centralised processing and storage topologies (e.g. clients 

connect to server for intelligence, processing and reporting capabilities). Although there 

are many variables to consider before adopting particular standards, those supporting 

decentralised decision-making have the advantage of being directly aligned with 

Industry 4.0 design principles, while such approaches may also facilitate system 

scalability, and low-latency processing (e.g. real-time performance).  

 

Figure 28 Classification of connectivity and communication standards 
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Figure 29 illustrates the distribution of connectivity and communication standards 

extracted from the literature, while Table 18 provides descriptions and references to 

support the data visualisation. The most prominent connectivity and communication 

standard utilised in industrial cyber-physical systems was Radio Frequency Identification 

(RFID). This wireless tagging technology embeds or attaches information to physical 

objects, which facilitates seamless object identification and the transmission of metadata 

using RFID readers. Thus, many applications using RFID technology typically embody 

some aspect of tracking (e.g. product moving downstream). Although less prominent in 

the literature than RFID, Near Field Communication (NFC) supports similar usage 

scenarios, and can be considered a subset of RFID. One of the key differentiators of 

both technologies relates to operating range - NFC requires tags and readers to be in 

close proximity (e.g. 20cm), while RFID tags can be read from up to 15 meters.  

 

Figure 29 Distribution of connectivity and communication standards 

While RFID, ZigBee and NFC standards naturally align with the pervasive, low-power 

and decentralised aspects of industrial cyber-physical systems, more traditional control 

and automation communication standards are also needed to facilitate legacy 

connectivity. Indeed, the findings from the literature highlight the use of OLE Process 

Control Unified Architecture (OPC UA), MT Connect and Modbus within industrial 

cyber-physical systems. Similarly, the adoption of existing open internet standards and 

conventions are also evident, with Hypertext Transfer Protocol (HTTP) being widely 
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used to support messaging between factory, enterprise and cloud platforms. Thus, the 

availability of emerging technology standards, should not mean current or legacy 

standards are discarded, but rather form an important part of an industrial cyber-

physical system’s compatibility and integration strategy.  

A number of less prominent emerging standards were found in the literature, which 

may increase in popularity over the coming years due to natural alignments with 

Industry 4.0 design principles and requirements. Firstly, agent computing and 

architectures have been demonstrated in other domains as a means of promoting 

decentralised decision-making, and therefore the Foundation for Intelligent Physical 

Agents (FIPA) could gain more acceptance for industrial cyber-physical system 

implementation. Secondly, software defined networks enable the programmatic creation 

and administration of computer networks, which may be used to good effect to create 

highly scalable and flexible networks for the many devices and systems that shall 

comprise Industry 4.0 operations. Hence, standards such as OpenFlow (or similar) shall 

be used to abstract conventional computer networking, much in the same way cloud 

computing removed the need to configure physical servers. Finally, lightweight 

communication protocols that are more suited to low power and compute 

environments (e.g. dispersed smart sensors) should gain wider adoption, which should 

eventually result in Message Queue Telemetry Transport (MQTT) replacing HTTP for 

distributed messaging and communication.  
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Classification Standard Description References 

Internet File Transfer Protocol (FTP) Protocol for transferring files between client and server [116], [128] 

Internet Hypertext Transfer Protocol (HTTP) Protocol supporting distributed hypermedia applications [61], [80], [96], [107], [116], [119], [124], [128], 
[147] 

Internet Secure Socket Layer (SSL) Cryptographic protocols for secure network communications [119] 

IoT Constrained Application Protocol (CoAP) Application protocol for Internet-based resource-constrained devices  [80], [133], [148] 

IoT Control Area Network Open (CANOpen)  Communication protocol for automation and embedded systems [61] 

IoT Foundation for Intelligent Physical Agents 
(FIPA) 

Collection of standards for heterogeneous and interacting agents [124] 

IoT Internet Protocol Version 6 (IPv6) Communication protocol for node identification and traffic routing throughout the Internet [63], [64], [82], [133] 

IoT IPv6 Over Lower Power Wireless Personal Area 
Network (6LoWPAN) 

Conceptual model supporting devices with low-power and limited processing capabilities [87] 

IoT Lightweight Machine-to-Machine (LWM2M) Communication protocol for resource-constrained device management and data transmissions between 
clients and servers 

[133] 

IoT Message Queue Telemetry Transport (MQTT) Lightweight publish/subscribe message protocol for distributed communication [133] 

IoT Near Field Communication (NFC) Communication protocols enabling devices to exchange information when they are in close proximity [96] 

IoT Object Naming Services (ONS) Lookup service for discovering product and service information using an electronic product code [99] 

IoT OpenFlow Communication interface for programmatically manipulating network control and routing (i.e. software-
defined networks) 

[97] 

IoT Radio Frequency Identification (RFID) Electromagnetic tagging system for object tracking and identification [63], [65], [73], [74], [80]–[82], [84], [85], [87], [90]–
[93], [96], [99], [101], [102], [108], [110], [114], 
[115], [117], [118], [121], [123], [130], [141], [142], 
[152] 

IoT Wireless Highway Addressable Remote 
Transducer (HART) 

Field device protocol for self-organising and self-healing mesh architectures [148] 

IoT Zigbee High-level specification for low-power and low-bandwidth wireless applications [61], [64], [65], [74], [82], [119], [148], [152] 

Mobile 3G/4G Mobile communications technology supporting voice and data transmission [64] 

Mobile Bluetooth Wireless standard for building close-proximity personal area networks [64], [65] 

Mobile Frequency Division Multiple Access (FDMA) Method for managing radio frequency communications using multiple sub-channels [73] 

Mobile IEEE 802.15  Group of several standards for different applications of wireless personal area networks  [65], [96] 

Mobile Time Division Multiple Access (TDMA) Method for managing radio frequency communications using timeslots [73] 

Network Ethernet Network protocol controlling data transmissions across local area networks [62], [64], [65], [67], [68], [73], [152] 

Network Internet Protocol Version 4 (IPv4) Communication protocol for node identification and traffic routing throughout the Internet [64] 

Network Machine Access Control (MAC) Unique identifier for network interfaces [73], [74] 

Network Open Systems Interconnection (OSI) Standard communication model for telecommunication and computer systems [119] 

Network Transmission Control Protocol/Internet 
Protocol (TCP/IP) 

Protocols describing the addressing, transmission and routing of network packets  [63], [111], [128], [146] 

Network Universal Asynchronous Receiver Transmitter 
(UART) 

Hardware supporting configurable data format and transmission speeds [68], [71] 

Network User Datagram Protocol (UDP) Connectionless protocol for sending short messages to hosts [111], [128], [133] 

Table 18 References for connectivity and communication standards
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2.5.5.2 CONTROL AND AUTOMATION  

Given many industrial cyber-physical systems shall extend current control and 

automation networks, knowledge pertaining to prominent standards and processes may 

be necessary to inform design and implementation. Figure 30 illustrates the main 

classifications for control and automation standards extracted from the literature, 

including those standards (a) supporting device integration and interoperability, (b) 

guiding the creation and implementation of control logic, and (c) governing the design 

and implementation of control systems.  

 

Figure 30 Classification of control and automation standards 

Figure 31 illustrates the distribution of control and automation standards extracted from 

the literature, while Table 18 provides descriptions and references to support the data 

visualisation. Of the specific control and automation standards identified, the ISA-95 

standard was most prominent. ISA-95 is a five-part standard for establishing interfaces 

between automation and business systems, with the intention of achieving factory-to-

enterprise integration. While the literature predominantly refers to the standard as ISA-

95, the standard also may be referred to internationally as IEC/ISO 62264. A key 

benefit of ISA-95 is that it provides organisations with a common vocabulary and 

methodology upon which to centre operations, and guide technical integrations between 

business and industrial systems. In the context of industrial cyber-physical systems, ISA-

95 may reduce the complexity associated with data and system integration, when 

compared to industrial environments that are not standards compliant. 
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Figure 31 Distribution of control and automation standards 

Of the control standards identified, AutomationML was identified as potentially 

important to Industry 4.0. Automation ML is an XML-based open standard for storing 

and exchanging industrial engineering and automation information, which enables 

industrial systems and tools to interoperate seamlessly. The format comprises four 

distinct types of information – (1) topology consisting of properties, and relationships 

to other components, (2) geometry containing graphical and dimensional information 

about the component, (3) kinematics relating to chains of dependency that affect 

motion planning, and (4) logic comprising algorithms, processing instructions and read-

write operations. Although not demonstrated in the literature, industrial cyber-physical 

systems could update these dimensions to realise self-configuration. 

The prominent standards relating to device-level integration and interoperability include 

Electronic Device Description Language (EDDL), Field Device Tool (FDT) and Field 

Device Integration (FDI). Of these standards, EDDL simply describes the accessible 

information on digital devices, which may be used by process control systems to 

support device diagnostics, configuration and collaboration. As internet-of-things and 

other Industry 4.0 technologies are adopted in the factory, technologies such as EDDL 

shall be needed to manage and control the use of on-premises devices. Indeed, the 

information layer of RAMI 4.0 utilises EDDL for device management, which 

emphasises EDDL’s relevance to Industry 4.0 and cyber-physical systems. Although the 
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device descriptors provided by EDDL are important, the FDI standard combines 

EDDL and FDT with the intention of unifying device integration for automation and 

control environments, and thereby providing end-users with the ability to present real-

time information from the factory with minimum effort. Although similar standards 

already exist, some of the primary benefits associated with FDI include platform and 

protocol independence, open specification, international standardisation, and OPC-UA 

compatibility. Thus, the FDI standard demonstrates strong alignment with Industry 4.0 

design principles (e.g. use of open standards), while also facilitating compatibility with 

other industry standards (e.g. OPC-UA).  

2.5.5.3 STANDARDS OBSERVATIONS RELEVANT TO THESIS 

Historically, the adoption of communication and control standards in real-world 

industrial and manufacturing environments has proved challenging. However, modern 

facilities are certainly more aware of the benefits of standards, such as reducing 

implementation costs and promoting system interoperability, to name a few. Given 

these benefits are now well-known, one may question why standards are not 

commonplace throughout modern facilities. The following points discuss some reasons 

why achieving complete standards adoption within many factories may prove difficult; 

 Lifetime of hardware and software in industrial environments can extend to 

decades, which provides engineers and technology personnel with unique 

challenges relating to legacy system management and integration. Given these 

legacy controllers and systems may use proprietary technologies, integrating 

them within the factory’s current standards can be difficult without some 

element of technology replacement. Therefore, legacy artefacts that cannot be 

replaced can represent gaps in a facility’s standards policy and coverage. 

 Operation technology expertise in industrial environments traditionally 

outweighs information technology expertise. Although this category of 

technology expertise is imperative to traditional manufacturing, operation 

technology personnel may not be familiar with mainstream and enterprise 

communication standards, which continue to permeate the factory floor due to 

the introduction of more contemporary technologies (e.g. cloud-based real-time 

dashboards for production lines). Thus, sufficient knowledge of contemporary 

technologies shall be needed to enforce holistic standards policies. 
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The use of communication standards synonymous with the internet-of-things was 

prevalent throughout the literature, with RFID or HTTP evident in almost half of the 

reviewed publications. Although the prevalence of internet-of-things related standards 

may initially appear to contradict previous comments regarding impediments relating to 

contemporary technology adoption across industrial environments, many of these 

publications relate to proof-of-concept and controlled demonstrations (e.g. offline lab 

environment), and therefore are not real-world deployments. However, these findings 

emphasise the intent of the research community to develop cyber-physical applications 

using embedded sensors and internet-of-things technology, which shall invariably 

provide the foundations for many Industry 4.0 operating scenarios. 

In comparison to communication standards, control and automation standards were 

given much less consideration in the literature pertaining to industrial cyber-physical 

systems. This imbalance may be attributed to the strong emphasis on computing and 

technology throughout the literature, where the contributing researchers do not possess 

knowledge of control or automation standards. Of those control standards identified 

from the literature, standards focused on device and systems integration are most 

prevalent, which makes sense given the disparate and disconnected nature of many real-

world industrial environments.  

Given the number of options pertaining to standards, facilities must appreciate that 

standards compliance depends on the adoption of standards at different levels within 

their information and cyber-physical systems. Indeed, choosing and committing to one 

standard may be of little benefit where lower-level components or services depend on 

proprietary technologies, and therefore the promotion of “standards thinking” at each 

level of system design seems prudent. In addition, facilities should not confuse standards 

and open standards. Although both can decrease the cost of implementation and improve 

interoperability, the former can still manifest scenarios where facilities are locked-in to 

using particular hardware, software and services.  

As real-world industrial operations and environments are highly secure and extremely 

risk adverse, cyber-physical system implementations related to this research should aim 

employ standards that already exist within the facility, rather introducing new standards 

which are not understood by internal stakeholders. This approach enables any cyber-

physical implementation to inherit policies, procedures and security measures, while also 

limiting potential disruption and quality assurance procedures that may arise from the 
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introduction of new standards. In addition, proof-of-concept projects and research 

demonstrations are unlikely to possess sufficient influence or resources to change 

internal policies pertaining to standards. Finally, the multidisciplinary nature of this 

research also means sufficient time, attention or expertise cannot be realistically given to 

evaluating, comparing and integrating control and automation standards that cover 

factory and enterprise operations. 
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Classification Standard Description References 

Control Automation Markup 
Language (Automation ML) 

Data format for storing and exchanging factory information [81], [120] 

Control IEC 61131-3 Software architecture and programming languages for controllers [77], [133] 

Control ISO 15331 Standard for managing industrial manufacturing data [124] 

Control PROFIBUS Standard for fieldbus communication [94] 

Control PROFINET Standard for fieldbus communication over industrial ethernet [135] 

Integration Electronic Device 
Description Language 
(EDDL)  

Technology for describing information accessible on digital devices [42], [120] 

Integration Field Device Integration 
(FDI)  

Unifying device integration technology encompassing EDDL, FDT and OPC UA [42], [120] 

Integration Field Device Tool (FDT) Technology for communicating and configuring field devices [42], [120] 

Integration IEC 62264 International standard for enterprise-control system integration based on ISA-95 [120], [124] 

Integration IEC 62769  Standard for technology mapping FDI concepts [42] 

Integration ISA-95 Standard for automating interfaces between enterprise and control systems  [71], [77], [83], [124] 

System IEC 15288 Standard for system engineering processes and lifecycles [124] 

System IEC 61499 Generic model for distributed control systems [67], [77] 

System IEC 62890 Lifecycle management for industrial processes, control and automation [120] 

System IEEE 1588 Protocol for synchronising network clocks to realise sub-microsecond control [129] 

System IEEE 802.1 AR Cryptographic and immutable device identifier [95] 

System ISO 9241-21 Standard focused on ergonomics for human-computer interaction [76] 

Figure 32 References for control and automation standards
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2.6 Chapter conclusions 

This chapter considered industrial cyber-physical systems in the context of the 

impending smart manufacturing revolution and Industry 4.0, while also identifying 

current perspectives, approaches and applications in the field. Thus, the review intends 

to capture, synthesise and present highly contemporary and multidisciplinary 

information relating to disparate technologies, methods and challenges, with the 

intention of informing collaboration across control, engineering and software 

disciplines. Indeed, insufficient interdisciplinary context could be contributing to the 

manufacturing domain demonstrating poor adoption of industrial cyber-physical system 

and internet-of-things technology. Other possible factors inhibiting adoption include 

the integration of legacy systems, compliance and quality policies, concerns regarding 

performance and security, and inadequate technology prescription. 

After observing the current state of the field, there is an obvious need for unifying 

design methodologies to formalise the multidisciplinary design of industrial cyber-

physical systems for Industry 4.0, incorporating the necessary control, software and 

engineering perspectives to provide facilities with holistic, standardised and prescribed 

approaches to guide implementation. Ideally, the unifying design methodology should 

integrate existing modelling approaches (e.g. UML or SysML) to simplify adoption, and 

focus on prescribing the underlying processes that connects these models. Thus, the 

remainder of this thesis focuses on the creation of a unified design methodology that 

connects some of the disparate modelling approaches from the literature, and facilitates 

interdisciplinary comprehension, development and implementation of industrial cyber-

physical systems. Thereafter, the proposed unified design methodology is employed to 

develop and deploy an industrial cyber-physical system within the industrial partners 

manufacturing facility, which serves to integrate and demonstrate many of the 

contemporary technologies (e.g. machine learning, internet-of-things and big data) on 

the facility’s Industry 4.0 adoption roadmap. 
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3.1 Chapter introduction 

This chapter presents a multidisciplinary design approach for industrial cyber-physical 

systems and auxiliary architectures, which support embedded predictive analytics (e.g. 

machine learning) for Industry 4.0 engineering applications. Given the reported 

shortcomings of industrial cyber-physical system design found in the literature, a novel 

unified design methodology addressing conceptual, software and performance concerns 

for industrial cyber-physical system design is proposed. Figure 33 illustrates the unified 

design methodology’s phases, beginning with conceptual domain modelling, and 

culminating with performance analysis. 

 

Figure 33 Proposed design process and transitions 

3.2 Design process 

Given the contemporary and multidisciplinary nature of industrial cyber-physical 

systems, formal design methodologies and architectures must emerge to support 

implementation. Existing design approaches found in literature may be classified as 

conceptual, software or mathematical modelling. The approaches chosen depend on the 

concerns of the system designer, with conceptual models suited to establishing domain 

understanding, software models needed to support technical implementation, and 

mathematical models used to simulate performance. However, designing industrial 

cyber-physical systems for Industry 4.0 are too complex to rely on a single modelling 

approach, and therefore, the proposed unified design methodology focuses on 

providing a framework to connect and integrate multiple modelling approaches, while 

ensuring technical implementations adhere to Industry 4.0 design principles, stakeholder 

concerns and minimum performance specifications. Figure 34 illustrates the proposed 

unified design methodology, while each phase is summarised below; 

 Phase 1 develops a common representation of data flows supporting industrial 

analytics and cyber-physical interactions in the factory. This phase produces a 
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conceptual architecture depicting systems, component, and devices to support 

the building and deployment of analytics models. 

 Phase 2 produces formal software models to support implementation. This 

phase synthesises conceptual models to derive static and dynamic models of the 

system, which reduces functional ambiguity by providing multiple perspectives 

of the proposed system. 

 Phase 3 implements an industrial cyber-physical system capable of delivering 

real-time embedded analytics in the factory. This phase commissions 

technologies and develops components to realise system implementation, which 

are continuously evaluated using Industry 4.0, stakeholder and functional 

acceptance criteria. 

 Phase 4 measures system performance (i.e. worst-case execution) to determine 

suitability for different industrial scenarios.  This phase measures and observes 

system operations for a particular timeframe, before building a simulation to 

estimate worst-case execution time (i.e. guaranteed execution time).
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Figure 34 Proposed unified design methodology 
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3.2.1 Phase 1: Lifecycle model 

This phase aims to produce a conceptual lifecycle model that can be easily interpreted 

by technical and non-technical teams from numerous disciplines. The lifecycle overlays 

data flows across the factory, and conceptualises technical components needed to 

bridge gaps in connectivity, integration, contextualisation and interoperability. Given 

each factory’s technical ecosystem shall differ, lifecycle modelling depends extensively 

on investigation, elicitation and collaboration with internal stakeholders. Once 

sufficiently refined, the conceptual lifecycle can be used to inform the creation of 

technical software models (i.e. phase 2).  

Figure 35 illustrates the lifecycle modelling process for producing an industrial lifecycle. 

The process begins with fundamental requirements gathering and design steps, before 

identifying components needed to facilitate a closed-loop model building (e.g. explore 

data, train model, test model and deploy model) and model execution (e.g. send real-

time data to production-ready model to make prediction about factory operations) 

lifecycle. The individual sub-processes and steps for this phase are discussed in the 

following sections.  
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Figure 35 Conceptual modelling process 
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FUNDAMENTALS 

Fundamental actions define the focus, scope and boundaries of the lifecycle. Initially, 

the particular area of operations (e.g. energy) being considered for cyber-physical 

transformation should be specified (e.g. energy), which enables researchers and 

practitioners to focus their attention on specific operational teams, processes and 

information systems. Thereafter, the identified operational teams should be engaged to 

derive an appropriate understanding of current operations and systems before 

undertaking modelling activities. 

An important aspect of industrial cyber-physical system design not given due 

consideration in the literature relates to the management of information system latency. 

Given industrial systems can demonstrate both batch and real-time operations (e.g. 

building systems control environmental conditions in real-time, but can archive 

operating data in batch), these operating latencies must be incorporated to ensure 

components, systems and operations are appropriately classified. Typically, batch 

streams contain components to support model building (i.e. train machine learning 

model), while real-time streams contain components to support model execution (i.e. 

inform factory operations).  

Finally, defining operational boundaries partitions the roles and responsibilities of 

industrial teams and personnel, while also highlighting natural interdisciplinary 

relationships. These boundaries can be aligned with current operational units (e.g. 

operational technology, information technology etc.) to reuse existing skills and 

knowledge, which should limit the amount of upskilling required to deliver cyber-

physical technologies. Considering there are no widely accepted standards, methods or 

practices for designing contemporary industrial cyber-physical systems, operational 

boundaries can provide structure, understanding and formalism that could otherwise be 

overlooked during the design process. 

MODEL BUILDING 

Model building incorporates components needed to support data access, exploration 

and modelling. These components are aligned with common tasks one would undertake 

to construct a pipeline to build data-driven models (e.g. collect data, clean data etc.). 

The ultimate objective of model building is to produce high-quality and insightful 

analytics models, which can inform decision-making and positively impact factory 

operations. However, given such models are entirely dependent on the availability of 
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accurate historical operating data, current information systems relating to the target 

factory operations (e.g. energy) must be identified. Once these industrial information 

systems are known, the associated components for archiving, ingestion, transformation, 

access and deployment should be added to the conceptual lifecycle model (i.e. 

appropriate operational area and data latency stream). Where certain technical 

components are not found, they should be added to the lifecycle and highlighted for 

implementation. A similar process should be followed when components are 

inadmissible due to conflicts with particular Industry 4.0 design principles (e.g. closed 

and proprietary components). The following points summarise the main types of 

components related to model building; 

 Data archiving components periodically collect operational data and 

updating an underlying historical data repository 

 Data ingestion components facilitate integration scenarios between the 

underlying historical data repository and another data source 

 Data transformation components clean, format and consolidate data 

ingested from the underlying historical data repository 

 Data access components support data requests from end-users, applications 

and systems for historical operational data 

 Model deployment components enables the transmission of analytics 

models to locations accessible to other end-users, applications or systems 

MODEL EXECUTION 

Model execution incorporates components to embed, score and propagate analytics 

intelligence throughout the factory. The primary objective of model execution is to 

embed analytics insights from high-quality models in real-time factory operations, and 

thereby facilitate the provision of timely and continuous knowledge that can positively 

impact operations. However, given this desired state depends on continuous real-time 

data, appropriate sources of operating measurements (e.g. instruments for air handling 

unit) must be identified. Once sources of real-time measurements exist, current 

technical components facilitating data streams, model execution and analytics 

integrations should be added to the conceptual lifecycle model. In a similar manner to 

the model building process, components that are not present, or conflict with Industry 
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4.0 design principles, should be included in the lifecycle and highlighted for technical 

implementation. The following points summarise the main types of components related 

to model execution; 

 Embedded factory components provide analytics accessibility and visibility to 

end-users, applications and systems across the targeted factory operations 

 Model execution components enable scoring and evaluation of real-time 

measurements streamed from embedded components 

 Analytics output components control dissemination and notification of data 

insights to end-users, applications and systems 

3.2.2 Phase 2: Technical model  

This phase aims to transition conceptual components to formal software models that 

can inform implementation. To achieve this transition, high-level roles, components 

and connections in the lifecycle can be used to identify candidate use cases and classes. 

Of course, these use cases and classes shall need refinement and pruning to ensure 

sufficient implementation details are captured, while limiting redundancy in the final 

software model. The final software model should include consolidated use cases for the 

cyber-physical system, with static (i.e. structural) and dynamic (i.e. runtime) perspectives 

of each proposed use case.Figure 36 further illustrates this software design and 

modelling process. The process begins with information extraction (e.g. use cases) from 

the conceptual lifecycle model, before this information is used to construct the static 

and dynamic software perspectives, which encompass structural, algorithmic and 

runtime perspectives that inform technical implementation.  
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Figure 36 Software design and modelling process
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EXTRACTION 

Given elicitation and collaboration was undertaken previously, fundamental 

requirements can be extracted from the conceptual lifecycle model, which include use 

cases and classes to generate static models to specify objects and attributes for the 

proposed system implementation, and dynamic models to illustrate collaborations 

between these objects. The use cases and classes can be identified from the lifecycle 

model where connections (i.e. data flows) between components are evident. These 

connections indicate primary system use cases relating to data production, processing 

and transmission, to name a few. Similarly, components residing on connection 

endpoints should indicate system classes. However, given the high-level nature of 

conceptual models, candidate use cases and classes may need further evaluation and 

refinement before inclusion in static or dynamic models. Therefore, some acceptance 

criteria (e.g. technical meetings, design principles etc.) should be established to ensure 

the authenticity and accuracy of the candidate specifications. Where acceptance is not 

achieved, knowledge of previous shortcomings may be incorporated in future iterations 

of the extraction process to realise a positive outcome. Indeed, negative outcomes 

throughout the modelling process should be considered a trigger to iterate and refine. 

STATIC MODEL 

Static modelling further develops candidate use cases and classes previously identified 

during the extraction, and encodes these details using the Unified Modelling Language 

(UML). UML was chosen to encode static models due to its prominence in the 

literature and application within industry. The refinement of use cases focuses on 

describing algorithmic flows (i.e. step-by-step instructions describing the scenario) to 

avoid ambiguities by encoding precise and interpretable instructions using symbolic 

notation (i.e. UML activity diagrams), while the refinement of classes focuses on 

defining attributes and properties using similar symbolic methods (i.e. UML class 

diagram). Similar to the extraction process, acceptance criteria should be established to 

encourage reflection and refinement of the static model. 

DYNAMIC MODEL 

Dynamic modelling provides another perspective of the proposed software system. 

Although activity diagrams from the static model provide details regarding functions 

and operations for each use case, they do not specify the classes responsible for 

invoking those actions, or how classes may collaborate to fulfil use cases. These 
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dynamic perspectives can be realised using the symbolic notation of UML sequence 

diagrams, which depict runtime collaborations between class objects during their 

execution lifetime. Initially, the static model is used to guide the creation of the dynamic 

model. Previously developed activity flows (i.e. symbolic use cases) are synthesised to 

identify classes that collaborate to fulfil the described scenario (e.g. upload data from 

factory). These classes are placed in the order they appear in the activity diagram, which 

should be indicative of their place in the collaborative sequence. Similarly, the order of 

actions and decisions from activity diagrams are also used to identify other potential 

collaborations between classes. This iterative process may continue until such time the 

dynamic model contains sufficient detail for technical implementation. Given the 

measure of sufficient detail can be considered highly subjective, acceptance criteria 

should be established to encourage objectivity and control against over-engineering.  

3.2.3 Phase 3: Implementation 

This phase aims to supplement the technology agnostic software models with more 

concrete implementation details. These technical and design details are needed to guide 

real-world development and deployment, which should encompass the hardware, 

software and service requirements for each use case.  

SYSTEM IMPLEMENTATION 

The overall system architecture can be derived by iterating use cases, and specifying 

artefacts (e.g. hardware) needed to achieve the specified behaviour. First, the need for 

infrastructure components are evaluated. Possible components considered may include 

computers, servers, cloud services, gateways, routers, networks, mobile devices, and 

internet-of-things sensors, to name a few. The identified infrastructure components can 

then be commissioned using the appropriate channels within the organisation. Second, 

messaging requirements to support distributed communication are assessed. While 

infrastructure components provide the platform and compute resources upon which to 

build communications, messaging services are needed to facilitate programmatic 

distributed communications (e.g. message queues). Finally, components and classes 

defined for use cases should be evaluated to determine if similar functionality already 

exists within the organisation. However, given the contemporary nature of industrial 

cyber-physical systems, components relating to emerging technologies and practices 

shall inevitable need some initial development (e.g. machine learning model 
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deployment). However, technical development should decrease naturally overtime as 

more use cases are implemented.  

ACCEPTANCE EVALUATION 

Once use cases have been technically implemented, the focus should be placed on 

deploying an increment of the system for theoretical, stakeholder and technical 

acceptance evaluations, which server as quality control mechanisms for the process. In 

the context of industrial cyber-physical system for Industry 4.0, these theoretical 

evaluations and assessments include (a) Industry 4.0 design principles (Table 19) to 

ensure sufficient alignment with emerging guidelines and recommendations for smart 

manufacturing technology, (b) stakeholder concerns (Table 20) pertaining to 

commercial sensitivity, privacy and security (e.g. where and how is data stored), and (c) 

functional performance (Table 21) relating to scalability, reliability and resilience (e.g. 

number of sensors processed, performed correct calculation). In the event of 

assessment results not yielding sufficiently positive outcomes, the system architecture 

can be refined with this knowledge to improve the proposed technical implementation, 

before triggering another iteration of assessments to validate improvements. 

Principle Description 

Interoperability Technologies and systems should be capable of exchanging 
communications using open and consistent standards, which 
supports the development of collective system intelligence. 

Virtualisation Capability to virtualise factory-level components, machinery and 
processes should be developed to enable complex permutations to 
be evaluated using simulation and decision-support. 

Decentralisation Emerging network architectures are highly heterogeneous (e.g. 
mobile, laptops, augmented reality etc.) and distributed, which 
industrial cyber-physical systems must manage with robust, reliable 
and responsive designs.  

Real-time Many industrial operations (e.g. process control) depend on real-
time sensing and actuation, and therefore, real-time constraints and 
boundaries shall exist for some cyber-physical applications. 

Table 19 Industry 4.0 design principles 

The facility stakeholder assessment addresses internal concerns regarding Industry 4.0 

and cyber-physical system adoption. Although the unified design methodology 

prescribes fundamental stakeholder concerns, these should be adjusted and extended to 
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capture the technology and operating concerns of each facility, with the intention of 

building stakeholder confidence in the proposed technical implementation. 

Concern Description 

Data security Concerns regarding the transmission and execution of operational 
data beyond the factory’s corporate and automation networks 

Legacy integration Concerns regarding compatibility with legacy technologies and 
systems that received significant financial and time investments 

Regulation Concerns regarding compliance with current quality assurance and 
regulation policies 

Performance Concerns regarding both operating (e.g. accuracy, real-time 
capability etc.) and end-user performance (i.e. reduced productivity)  

Disruption Concerns regarding operational disruptions (e.g. downtime) 
resulting from implementing emerging and untested technologies 

Knowledge Concerns regarding inadequate technical and engineering 
knowledge to rollout emerging technologies 

Table 20 Fundamental stakeholder concerns 

Finally, functional assessments verify the system operates consistently, predictably and 

accurately. In some instances, these assessments can be automated using predefined test 

cases and scenarios, consisting of input data and expected outcomes, while other 

assessments may require some manual evaluation. Where automated assessments can be 

used, outputs generated by the system (e.g. file processed) can be compared with the 

expected outcome from predefined test cases to verify technical and logical integrity. 

Dimension Description 

Data ingestion Functions pertaining to data integration across information 
systems, programmable logic controllers, and emerging devices 

Data processing Functions pertaining to harmonising and contextualising operations 
data using cleaning and transformation routines  

Model execution Functions supporting model deployment and execution within an 
industrial analytics workflow 

Real-time scoring Functions pertaining to the real-time execution and scoring of 
predictive analytics models in the factory (i.e. embedded analytics) 

Model accuracy Functions pertaining to the assessment of an analytics model 
accuracy and validity 

Decision outputs Functions pertaining to the propagation of analytics outputs to 
third party components, systems and nodes  

Table 21 Functional assessment dimensions
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Figure 37 Technical implementation process 
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3.2.4 Phase 4: Performance measurement  

The phase aims to estimate the worst-case execution performance of the implemented 

industrial cyber-physical system, which essentially determines the systems suitability for 

time-dependent Industry 4.0 engineering applications, while also being of importance to 

Industry 4.0 design principles (i.e. real-time capability) and stakeholder concerns (i.e. 

performance). In addition to these primary concerns, performance measurements may 

also be used to benchmark and compare different system implementations throughout 

the organisation, or highlight positive performance changes due to system 

modifications. 

Generally, performance analysis approaches can be classified as (1) pre-implementation 

and (2) post-implementation. Pre-implementation approaches build physical models to 

simulate execution of the proposed system, which enables performance and 

impediments to be determined in lieu of technical implementation. However, this 

approach depends on detailed modelling of the engineering scenario (e.g. conditions 

and branches), and enabling technology platforms (e.g. hardware, software and 

networking). If details used to build these models are inaccurate, the simulated 

performance may not be indicative of real-world performance observed post-

implementation. In contrast, post-implementation analysis collects data by observing 

system execution to estimate best and worst-case performance. Although such 

approaches do not provide upfront performance guarantees, incorporating real-world 

data ensures performance results are representative of the target environment. 

Regardless of the performance method chosen, the basic idea of performance 

assessment is to identify constraints and bottlenecks that can be resolved through 

incremental improvement. 

Given the generic nature of the unified design methodology (i.e. not coupled to single 

industrial application), and inherent complexities associated with modelling the diversity 

of industrial technologies, the design methodology can only describe post-

implementation analysis to measure performance. Figure 38 illustrates the main stages 

of this process. Initially, planning aims to establish the primary experiment parameters 

(e.g. timeframe). Once these parameters have been clearly defined, technical 

components (e.g. agent to log communication latency) that are needed to measure 

execution are deployed and configured. Finally, the system operations being measured 
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are continuously executed and persisted in a log file, which informs the development of 

analytics and/or simulation to estimate system performance. 

PLANNING 

Although many environmental and technical variables could potentially impact system 

performance, three fundamental variables should be identified during the planning 

stage. First, the location of the proposed embedded analytics application should be 

identified so that performance measurements can be taken from the target location. 

While this may not always be possible due to internal governance policies, location-

specific testing can be useful due to potential differences in bandwidth and network 

constraints throughout the factory. In a similar manner, hardware upon which 

embedded applications are deployed may also impact performance, and therefore, 

performance analysis should aim to replicate or utilise the target technology 

environment. Second, communication endpoints (e.g. cloud server, internet-of-things 

gateways etc.) responsible for relaying analytics scores (i.e. results) to factory-embedded 

applications should be identified. Given communication latency increases based on 

endpoint proximity and traffic routing, performance should be measured using the 

same type of endpoints that are exposed by the implemented system. Finally, the 

specific industrial analytics engineering application (e.g. predictive maintenance for air 

handling units) should be identified. Given model complexity (e.g. inputs, outputs, 

linear/non-linear etc.) may impact execution time, performance measurements must 

utilise the same industrial analytics model.  

SETUP 

After experimental variables have been established (i.e. planning), the setup focuses on 

deploying the technical components and configurations needed to collect performance 

data. Initially, software agents for logging communication requests are deployed to the 

target location. These agents are responsible for continuously monitoring and logging 

execution times, from acquiring real-time data from factory data sources (e.g. 

controllers), to executing and scoring industrial analytics models. Ideally, these agents 

can obtain real-time data streams, and utilise this real-time data as input for the analytics 

model. However, static input data can also be used when solely concerned with cyber-

physical interactions (i.e. excluding the performance of data acquisition from 

controllers). Regardless of the data source employed, logging agents should 

continuously acquire and score real-time data at set intervals (e.g. 1-minute frequency), 
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until the agent’s runtime exceeds the experiment timeframe (e.g. 1-hour), or completes a 

particular number of iterations (e.g. 50,000 requests sent). Although these parameters 

should align with time-constraints and characteristics of the industrial application being 

considered (e.g. building control may have greater time windows than process control), 

they may also be used to observe system operation under different levels of stress (e.g. 

50 or 100 concurrent connections). 

PERFORMANCE ANALYSIS 

Estimating the execution performance of the system consists of two parts. The first part 

of the process describes the procedure for classifying, observing and logging 

communication and execution times (e.g. data acquisition, analytics execution etc.), 

while the second part of the process may construct physical models to simulate 

operating boundaries, or present data analysis using the execution logs to estimate 

worst-case execution time, and summarise general system performance (e.g. reliability, 

consistency etc.). During the first part of the process, a single loop encapsulates the 

logging sequence (i.e. while(measuring)), and continues to execute until the agent’s runtime 

exceeds the experiment timeframe (i.e. measurement == false). This timeframe is evaluated 

before initiating each new loop. At the beginning of each loop, the agent’s background 

timer is reset to ensure the previous logs are cleared, before logging execution times for 

data acquisition, message transmissions, and analytics scoring. In the event of the 

observed worst-case execution time exceeding the timing constraints of the industrial 

engineering application, the technical components that are negatively impacting 

performance should be identified and modified before undertaking additional 

performance analysis. 
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Figure 38 Post implementation performance measurement process
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3.3 Chapter conclusions 

Given industrial cyber-physical systems for Industry 4.0 require new theories and 

methods to inform implementation, this chapter presents a multidisciplinary unified 

design methodology that integrates and connects prominent modelling approaches (i.e. 

conceptual, software and mathematical) evident in the literature, which are needed to 

address specific design concerns for industrial cyber-physical systems (e.g. domain 

understanding, performance etc.). In particular, the methodology emphasises and 

highlights criteria pertaining to Industry 4.0 design principles, common stakeholder 

concerns, and technical functionality. Of course, while the methodology aims to deliver 

structure and formalism to multidisciplinary design processes for industrial cyber-

physical systems, the methodology cannot be overly prescriptive due to the unique 

combinations of people, technologies and applications that may exist. Thus, engineers, 

designers and developers using methodology may need to interpret, customise and 

extend parts of the proposed processes to meet their own requirements. 
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4.1 Chapter introduction 

This chapter presents the application of the unified design methodology during the 

development of an energy-oriented industrial cyber-physical system, which was 

undertaken in a large-scale manufacturing facility located in Cork, Ireland. The 

following summary outlines the main sections of the chapter; 

 Phase 1 lifecycle modelling (section 4.2) describes the development of a 

conceptual model based on the industrial partners current operations, which 

was used to develop an understanding amongst all stakeholders. 

 Phase 2 software modelling (section 4.3) demonstrates the extraction of 

primary use cases from the conceptual model, and the construction of software 

and system models to define technical specifications. 

 Phase 3 technical development (section 4.4) presents the technical 

implementation and evaluation of a fog computing architecture supporting real-

time and embedded cyber-physical interactions in the factory, and a cloud 

computing architecture facilitating the development of analytics models.  

 Phase 4 performance measurement (section 4.5) outlines the setup, 

configuration and data collection procedures used to stress test the cyber-

physical system implementation, and compare the performance of different 

cyber-physical interfaces (i.e. fog versus cloud computing). 

4.2 Phase 1: Lifecycle modelling 

4.2.1 Fundamentals 

This research was undertaken with an industrial partner in the form of DePuy Johnson 

& Johnson. The collaborator was engaged at different stages to (a) interact with 

operational teams across automation, operation technology, information technology, big 

data, and data analytics, and (b) evaluate the operation of an industrial cyber-physical 

system in a large-scale manufacturing facility. However, given significant governance 

policies and procedures surrounding production systems, the technical design, 

development and performance aspects of this research were applied to existing auxiliary 
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industrial energy systems. In particular, the real-time and continuous monitoring of 

industrial AHU’s that supply the production environments. 

Industry 4.0 adoption is an important aspect of DePuy Johnson & Johnson’s strategic 

roadmap. Of the operational teams engaged, many were focused on developing smart 

data-driven methods to improve operations. These methods typically differed from 

team-to-team, resulting in many disparate architectures, technologies, and tools being 

deployed in the facility. Such approaches may suffer from duplicated effort, increased 

licensing costs, and poor technology cohesion. High-level improvements could 

potentially be achieved across teams by formalising methodologies, reducing 

dependencies on proprietary technology, and promoting greater standards adoption.  

Figure 39 illustrates the primary roles and responsibilities identified for the conceptual 

lifecycle model. These roles and responsibilities were defined through engagement with 

industry, and deliberations with fellow researchers. The four identified roles were 

Operation Technology, Information Technology, Data Analytics and Embedded 

Analytics. Of these roles, Operation Technology and Information Technology support 

data integration and management, while Embedded Analytics and Data Analytics 

facilitate analytics model building and deployment. Furthermore, each role should 

identify and adopt open standards and technologies whenever possible. 

 

Figure 39 Operational boundaries identified in DePuy Johnson & Johnson 
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The following section describes the interdisciplinary roles, responsibilities and operating 

boundaries identified in DePuy Johnson & Johnson. 

 Operational Technology manages industrial information and automation 

systems, which are responsible for monitoring, persisting, archiving, and 

integrating operation data across the factory. They typically collaborate with 

Information Technology to realise factory-to-cloud integration, and facilitate the 

adoption of contemporary technologies synonymous with Industry 4.0 (e.g. 

internet-of-things, big data, machine learning etc.).  

 Information Technology fulfil a wide-range of roles across the enterprise 

including the provisioning of compute resources, information system 

development, business intelligence, data management and integration. They 

ensure Data Analytics can access analytics-ready data by providing information 

system infrastructures and architectures that transmit and clean operation data 

from heterogeneous data sources in the factory. 

 Data Analytics employ data-driven methods and tools (e.g. machine learning) 

to derive insights that may positively affect operations. They must engage with 

Embedded Analytics to (a) identify and comprehend operating-specific 

analytical questions, and (b) evaluate models that attempt to answer these 

questions.  

 Embedded Analytics operationalise applications, tools and models in the 

factory to affect real-time decision-making. They utilise subject matter expertise 

of specific operations to guide Data Analytics efforts, while ensuring Operation 

Technology provide the appropriate real-time measurements to factory 

embedded models. 

4.2.2 Model building 

An on-premises Cylon Building Management System (BMS) was identified as the main 

source of AHU operational data, and was therefore chosen as the primary industrial 

information system needed for building machine learning models. The BMS was 

deployed on a dedicated computer (i.e. BMS-PC) to display real-time measurements, 

implement setpoint alarms, and archive operational data at 5AM each day. The 

archiving process collected operational data for the previous 24-hours from PLC’s, and 
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appended each sensor’s CSV log file with the newly acquired measurements. The BMS 

archive consumed 1.06 GB of disk space, and consisted of 838 log files, with each 

storing historical measurements for a single sensor. The timespan of measurements in 

each log file ranged from a couple of months to 4 years. The largest file in the archive 

measured 13 MB, while the smallest file measured a mere 1 KB. Approximately 5% of 

files were larger than 5 MB, which could loosely be associated with log files containing 4 

years of data, while files smaller than 1 MB were somewhat indicative of (a) new sensors 

that recently began archiving, or (b) legacy sensors where archiving was disabled. 

However, file size cannot be used reliably to predict date ranges. For example, two log 

files measuring 5MB and 12MB may contain the same date ranges and measurement 

resolutions, but the latter may contain higher precision readings, which simply 

consumes more bytes on disk. 

Requirement Summary Currently Exists 

Data archiving Current archiving capabilities are provided by a software 
module referred to as CC Reports. This module collects 
measurements from PLC’s every 24-hours and persists 
data for each sensor in CSV files. 

Yes 

Data ingestion There are currently no components for ingesting or 
integrating BMS data with third-party systems. However, 
building analytical models depends on being able to 
ingest operational data. 

No 

Data transformation Given there are many anomalies (e.g. missing values) 
may be observed in operational data, components to 
transform and clean data are necessary as a precursor to 
analytics and model building activities. 

No 

Data access For engineering, statistical and operational personnel to 
building analytics models, BMS data must be easily 
accessible using a standard and common interface. 

No. 

Table 22 Primary technical concerns for model building 

Figure 40 illustrates the conceptual model building stream that connects the BMS to the 

cloud (i.e. factory-to-cloud connectivity), produces analytics-ready operational data for 

inspection, and provides an open data interface to enable data exploration, model 

building and deployment. The illustration utilises the previously identified operational 

roles to define theoretical data processing stages, which serve to partition technical 

components and systems, and highlight the interconnection between different 

operational units. DePuy Johnson & Johnson reported the use of ISA-95 to guide 

information system integration in the factory. Based on discussions and interactions 

with those implementing the ISA-95 standard, Levels 0 to 3 of the ISA-95 architecture 
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were allocated to Operation Technology. These levels represented (a) factory 

environment at Level 0, (b) sensors and instrumentation at Level 1, (c) automation and 

control at Level 2, and (d) industrial information systems at Level 3 (e.g. Cylon BMS 

and associated data repository). Although multiple levels of the ISA-95 architecture are 

depicted, the model building process is mainly concerned with the manifestation of 

operational data in Level 3 – with an ingestion engine embedded in the factory to 

stream operational data to the Information Technology stage. Once received from the 

factory, the Information Technology stage focuses on delivering analytics-ready data, 

and ensuring analytics activities are simplified by promoting data accessibility for those 

associated with the Data Analytics stage. The following sections provide a more in-

depth description of each of these stages. 

 

Figure 40 Conceptual model building stream  
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OPERATION TECHNOLOGY  

Components in the Operational Technology stage are used to archive operational data 

and establish communication with Information Technology. The reference architecture 

illustrates an example of operational data being transmitted from the factory to an 

industrial information system (BMS), which periodically executes an archival process 

that persists data in a log file. These logs are stored on disk and accessed by an ingestion 

engine component before being transmitted to a global data repository. Although the 

specific systems and storage formats may change from scenario-to-scenario, the ISA-95 

architecture should ensure processing and data flows remain the same. 

Given analytical questions emanating from the factory cannot be answered without 

having access to high-quality historical data, Operating Technology components are 

fundamental to data exploration and model building. Of the components depicted in 

the model building data stream, industrial information systems and associated archives 

are commonplace in modern manufacturing facilities. Where these components do not 

exist, the proposed lifecycle dictates that Operation Technology are responsible for 

implementing the necessary archiving solutions. In contrast to the common availability 

of industrial information systems, data ingestion components and communication 

endpoints are less likely to exist due to the pronounced separation between Operation 

and Information Technology. However, such components are needed to encourage 

greater convergences between these stages. Therefore, Operation and Information 

Technology must collaborate to agree specifications and protocols to support ingestion 

and integration, with Information Technology being primarily responsible for 

implementation and deployment. 

INFORMATION TECHNOLOGY 

Components in the Information Technology stage are used to store, process and 

prepare operational data transmitted from Operation Technology. The collaborative 

effect of these components automates the production of analytics-ready data. The 

model building stream illustrates interactions between these components using the 

example of AHU data from the BMS being prepared for analysis. Initially, AHU data 

transmitted from Operation Technology is tagged and stored in the data lake. This 

transmission triggers a call to the workflow engine, which checks if any active 

workflows are associated with AHU’s. Given the existence of an AHU workflow, the 

workflow engine constructs and executes a data processing job. These jobs consist of 
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multiple processing modules, with each performing a single operation on the AHU data 

(e.g. sort by timestamp, remove duplicates etc.) to produce the final data set.  

The Information Technology stage exposes communication endpoints connected to 

Operation Technology and Data Analytics. As previously mentioned, the inbound 

endpoint for Operation Technology facilitates the transmission of data from the 

factory, while a second inbound endpoint from Data Analytics enables those 

undertaking analysis to access the (a) final output (i.e. clean analytics-ready data) from a 

particular workflow (e.g. AHU workflow), or (b) intermediary output from a particular 

workflow stage. To illustrate the usefulness of this concept, consider a scenario where 

the final output from a workflow aggregates a time-series using daily averages, but 

analytical questions later arise that require access to 15-minute datasets. By following 

the multistage approach, it should be possible to access 15-minute data from an earlier 

stage of the workflow, before daily average was applied. Thus, reducing duplicated 

processing effort, decrease maintenance, and promote reusability.  

Information Technology components depicted in the model building stream may exist 

in facilities where cloud-based big data infrastructures for business intelligence and 

analytics have been adopted. Where these components exist in a business enterprise 

context, they may require some configuration and customisation to work with typical 

operational data (e.g. time-series). In facilities where these components and capabilities 

do not exist, Information Technology personnel should be primarily responsible for 

their design, development and implementation. These components abstract Data 

Analytics personnel from time-consuming and complex processing of ad hoc and 

proprietary operational data, while also being fundamentally important to the scalability 

and resilience offered by the eventual technical implementation.  

The workflow processes responsible for data preparation comprise multiple data 

processing modules, which are positioned in a particular order to produce a clean 

analytics-ready dataset (i.e. the order depends on the transformations needed for the 

inbound data). Analytics-ready datasets are similar to tidy datasets, where each column 

refers to a single variable/feature/measurement, and each row refers to a single 

observation at a point in time. Each processing module in a workflow exposes inputs 

and outputs, which enables chains of processing modules to be interconnected (i.e. the 

output from one providing the input for the other).  
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DATA ANALYTICS 

Components in the Data Analytics stage use data-driven methods to derive insights that 

can positively impact operations. To facilitate these particular objectives, Data Analytics 

personnel must acquire analytics-ready data, build insightful data-driven models, and 

prepare these models for factory deployment. The Data Analytics stage exposes 

communication endpoints connecting to Information Technology and Embedded 

Analytics. The outbound endpoint to Information Technology facilitates the acquisition 

of analytics-ready data from workflows, while the outbound endpoint to Embedded 

Analytics (i.e. after the model building process) enables the deployment of models to 

real-time data streams in the factory, which shall be described later in the model 

execution section. The inbound endpoint from Information Technology may trigger 

actions on existing models (e.g. re-training) when new training data becomes available 

from Information Technology workflows. Data Analytics components should 

demonstrate turnkey data analysis (i.e. no pre-processing), model building, model 

standardisation and deployment capabilities. Thereby automating low-value and manual 

activities, which can afford more time to high-value activities.  

Data Analytics components may exist in facilities that currently utilise business and data 

analysis. Examples of common components include those relating to statistical software 

tools (e.g. R and SAS). However, less components may include those supporting the 

automation of model building, training and deployment. Where such components do 

not exist, Data Analytics and Information Technology personnel must collaborate to 

define specifications, with Information Technology leading implementation.  

4.2.3 Model execution 

Component-level sensors in AHU’s may be used to predict system health and energy 

inefficiencies. Examples of such measurements include mechanical component 

positions, temperature, and airflow. These measurements in DePuy Johnson & Johnson 

are transmitted in real-time across automation and control networks, which can be read 

using an OPC server installed on the BMS-PC. Table 23 outlines the real-time 

measurements identified for the AHU used in this research (AHU9). 
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Section Measurement Section Measurement 

Return air Temperature [°C] Heating coil Off coil air [°C] 

Return air Humidity [%] Cooling coil Supply water [°C] 

Return air Enthalpy [kJ/kg] Cooling coil Return water [°C] 

Return air CO2 [ppm] Cooling coil Valve position.[%op] 

Return air VSD [%] Cooling coil Off coil air [°C] 

Return air Flow [m3/s] Humidification Temperature [°C] 

Return air Motor power [kW] Humidification Humidity [%] 

Return air Damp. Position  [%op] Humidification Dew-point [°C] 

Exhaust air Damp. Position  [%op] Humidification Status [1/0] 

Outside air Temperature [°C] Humidification Valve position. [%op] 

Outside air Temperature  2[°C] Reheat coil Supply water [°C] 

Outside air Humidity [%] Reheat coil Return water [°C] 

Outside air Humidity  2[%] Reheat coil Valve position. [%op] 

Outside air Enthalpy [kJ/kg] Reheat coil Off coil air 
temperature[°C] 

Outside air Enthalpy 2 [kJ/kg] Supply air Temperature [°C] 

Outside air Damp. Position [%op] Supply air Humidity [%] 

Frost coil Supply water [°C] Supply air Enthalpy [kJ/kg] 

Frost coil Return water [°C] Supply air CO2 [ppm] 

Frost coil Valve position [%op] Supply air VSD [%] 

Frost coil Off coil air [°C] Supply air Flow [m3/s] 

Mixed air Temperature [°C] Supply air Motor power [kW] 

Mixed air Humidity [%] Supply air Pressure [Pa] 

Mixed air Enthalpy [J/kg] Zone Temperature [°C] 

Heating coil Supply water [°C] Zone Humidity [%] 

Heating coil Return water [°C] Zone CO2 [ppm] 

Heating coil Valve position.[%op]   

Table 23 Real-time measurements identified for AHU9 

Table 24 presents the technical modules specified in the methodology, and summarises 

their relationship to the real-time AHU measurements previously identified. Gaps in 

requirements are later addressed using a conceptual model, which depicts how required 

technical components may interact to embed machine learning in factory operations.  



Implementation & Demonstration 

Page 117 of 217 

Requirement` Summary Currently Exists 

Embedded analytics Being able to embed analytics in different locations in 
the factory provides the necessary intelligence to affect 
real-time operations. Although some large LCD displays 
report high-level production and energy consumption to 
promote awareness, advanced real-time analytics (e.g. 
machine learning) capabilities are not currently 
embedded in factory operations.  

No 

Model execution A technology agnostic process or platform for executing 
production-ready analytics models enables machine 
learning models to be executed outside traditional 
desktop statistical software. Currently, advanced 
analytics models developed by data analytics teams in 
DePuy Johnson & Johnson are executed as batch 
routines within particular software applications (e.g. SAS, 
R etc.). 

No 

Analytics output Where real-time analytics models predict a particular 
event or occurrence, other systems, people or models 
may need to be notified of the result. This notification 
and interoperability was not evident in DePuy Johnson 
& Johnson, but this may be expected given the lack of 
real-time analytics capabilities. However, such fluid 
communications would appear unavoidable for those 
aspiring to achieve self-adaptive Industry 4.0 factories. 

No 

Table 24 Requirements for real-time and continuous model execution 

Figure 41 illustrates the proposed execution stream of the conceptual model, which 

delivers real-time and embedded analytics to the factory. In essence, the model 

execution stream depicts the high-level structure of an industrial cyber-physical system 

for Industry 4.0, with operating data streaming from the physical-world (i.e. factory) to 

the cyber-world (i.e. cloud or other compute platform) for analysis. Although not 

restricted to the analytics classifications presented, models focusing on event processing 

(e.g. issue identified and raised), self-awareness (e.g. equipment’s understanding of how 

issues impact overall health and efficiency), self-compare (e.g. equipment’s ability to 

compare operating performance with other units in the fleet), and self-configure (e.g. 

equipment’s intelligence to adjust operation based on insights) are significantly aligned 

with the objectives of Industry 4.0 and cyber-physical systems. These analytical insights 

are returned to the physical-world (i.e. factory) to inform human-in-the-loop and 

automation decision-making, and invoke triggers that notify other systems of these 

decisions and actions.  
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Figure 41 Conceptual model execution stream  

PHYSICAL SPACE 

The granularity of monitoring and virtualisation (i.e. cyber-twinning) can be considered 

at different levels, including (a) component (e.g. valve position in AHU), (b) machine 

(e.g. all measurements comprising an entire AHU) and (c) process (e.g. measurements 

from multiple systems). A factory embedded agent can read measurements associated 

with these sources, and continuously stream real-time measurements to the cyber-world 

for analysis. Similarly, these software-based agents listen for responses from the cyber-
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world, and notify the appropriate personnel and systems (e.g. CMMS for maintenance 

requests) of these outcomes. 

Given technical components did not exist in DePuy Johnson & Johnson to support the 

embedding of machine learning models in factory operations, it was necessary to 

provision the development of an embedded analytics factory agent comprising factory-

to-cloud (e.g. HTTP) and OPC client libraries to (a) read real-time measurements using 

an OPC-UA server, (b) transmit these measurements to the cyber-world, and (c) push 

notifications broadcast notable results to third-party systems.  

CYBER SPACE 

The cyber-world establishes digital representations of components, machines and 

processes that reside in the factory. These digital representations are commonly referred 

to as digital twins, while virtualisation describes the technical process used to create 

digital twins. Once entities and processes from the physical world are virtualised in the 

cyber-world, the manifested digital twin can be interrogated and analysed to derive 

analytics insights. Although many analytics methods may be used to generate useful 

operational insights, the conceptual model execution stream highlights prominent 

model classifications based on Industry 4.0 objectives, and methods extracted from the 

literature. These layered classifications are placed in logical order, with insights from 

lower layers being useful to the layers above (e.g. equipment should be aware of its own 

state, before looking to compare its operation to others). In many respects, such 

prescribed analytics classifications differentiate industrial cyber-physical systems from 

generic cyber-physical and internet-of-things implementations.  

 Event processing layer embodies deductive and deterministic logic based on 

engineering first-principles, which can highlight fundamental issues and assert 

corrective action. In terms of implementation, facilities may mirror control logic 

in the cloud to simulate factory operations, or encode specific subject matter 

expertise using conditional rules and statements. 

 Self-aware layer considers models constructed using deductive and inductive 

reasoning, which determine the health or state of digital twins. Typically, models 

promoting self-awareness for components and equipment utilise diagnostic and 

prognostic methods to (a) determine current operating health, and (b) estimate 

remaining useful life. 
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 Self-compare layer promotes secondary and broader analytical reasoning to 

determine normal operating health and performance, with the intention of 

providing greater context to insights of self-awareness. Establishing greater 

context may be achieved by (a) evaluating historic operating behaviours and 

patterns, (b) comparing current operating patterns with those of digital twins in 

the same fleet, and (c) simulating different scenarios to highlight more efficient 

operating patterns.  

 Self-configure layer comprises prescriptive models that consume analytics 

insights propagated from the lower layers, and produce corrective actions to 

improve operational efficiencies. In the context of Industry 4.0 and industrial 

cyber-physical systems, self-configuration relates to control logic optimisation 

changes, which are relayed to the factory and automatically pushed to the 

control network. 

Although the model execution and cyber-physical stream depicts many industrial, 

technical and analytics components interacting, implementation efforts undertaken in 

DePuy Johnson & Johnson only incorporate those necessary to (a) demonstrate the 

design methodology, and (b) implement an AHU issue identification scenario (i.e. self-

aware component-level model). In terms of existing real-time industrial analytics 

capabilities, current efforts relating to the cyber-physical systems and digital twins were 

limited, and mainly consisted of approaches that did not naturally align with Industry 

4.0. In particular, there was an overreliance on proprietary technologies, poor levels of 

system interoperability, and insufficient understanding of how to address real-time and 

scalability challenges. 

4.2.4 Conceptual analytics lifecycle  

A closed-loop conceptual lifecycle supporting industrial analytics development and 

deployment can be realised by merging the proposed model building and execution 

streams. Figure 42 illustrates the relationship and interconnectivity between the 

respective streams, which provides a basic level of detail to inform software modelling 

and technical implementation. These basic details aim to strike the balance between 

technology neutrality, while also trying to highlight important details that may be 

important to the final specification.  
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Figure 42 Relationship between model building and model execution streams 

4.3 Phase 2: Software modelling 

4.3.1 Extraction 

To begin moving towards a more formal software or requirements model, easily 

identifiable use cases were extracted from the conceptual model. Figure 43 presents the 

use case model developed during the extraction process. The primary actors (i.e. people 

or systems) are displayed outside the diagram boundary, which for this scenario are the 

main operating teams from the conceptual model. Although this choice of actor may be 

considered quite broad, the overlap with the conceptual model provided a strong 

association between both representations, while specific sub-systems can be introduced 

during static and dynamic modelling. 

The main use cases and system behaviours linking different parts of the conceptual 

model are represented as labelled ovals within the diagram, and connected to the 

primary actors (i.e. teams) that initiate these behaviours. Table 25 summarises each use 

case, while the static and dynamic models presented later in this chapter provide further 

details relating to the actions and execution of each case. 
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Use Case Description 

Log Data The data archiving process undertaken by the building management 
system, and other industrial information systems. 

Collect Data The data collection process for accessing the building management 
system’s data archives. 

Transmit Data The data transmission process for sending 24-hour data from the 
factory, to a scalable and fault tolerant repository (e.g. cloud). 

Store Data The process for accepting data transmissions from the factory, and 
persisting the transmitted files. 

Clean Data The processing workflows responsible for preparing analytics-ready 
data, which may comprise several cleaning actions. 

Expose Data The contextual processes that create and manage the naming of 
directories and files, with the intention of simplifying data access. 

Access Data The process undertaken by analytics end-users to acquire the data 
needed to train, build and test models. 

Build Model The general process of building a production-ready machine 
learning model. 

Deploy Model The process of deploying and sharing an open and technology-
agnostic machine learning model, with the intention of making the 
model accessible and executable by other systems. 

Stream Data The acquisition of real-time measurements from devices or 
controllers within the factory, which are needed to serve as input to 
production-ready and executable machine learning models. 

Score Model The real-time scoring and execution of machine learning models, 
which are accessible by systems embedded in the factory floor. 

Relay Score The third-party systems, endpoints and processes that should be 
notified of model results and predictions.  

Table 25 Description of use cases 
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Figure 43 Primary use cases extracted from conceptual model 

4.3.2 Static model 

The static model supplements previous use case descriptions by highlighting prominent 

actions, and illustrating typical workflows between these actions. Although many 

alternative scenarios and actions could be considered, these use cases are extremely 

procedural, and comprise immutable operating data. Therefore, use cases were 

modelled assuming correct operation. An initial activity diagram is provided below for 

reference, with the remaining activity diagrams presented in Appendix A. 

Figure 44 illustrates the activity and workflow of the log data use case. The process 

begins with the building management system (or other) initiating the archive data, which 

typically occurs at the same time each day. During this process the data from the 

previous 24-hours is read from each controller, before being appended to an 

appropriately labelled log file (e.g. sensor identifier), and saved to an appropriate 

network drive or location.  
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Figure 44 Activity diagram for log data 

4.3.3 Dynamic model 

The dynamic model supplements the previous use case and static model with (a) details 

about how users, components and systems may interact with each other to fulfil the 

necessary behaviour, and (b) identify more specific actors (e.g. systems) that were 

naturally abstracted by the use of teams within the use case model. Pseudo-code was 

used within the sequence diagrams to convey intent, which could inform and guide the 

subsequent technical implementation. An initial sequence diagram is provided below for 

reference, with the remaining sequence diagrams presented in Appendix B. 

Figure 45 illustrates the sequential actions and interactions for the log data use case. The 

building management system (Cylon BMS) initiates the data archiving routine every 24-

hours, and determines the controllers from which to collect data. A natural looping 

sequence occurs, whereby the building management system reads the data stored within 

each controller’s memory, appends the retrieved data to the current log file, and saves 

the amended file to the network.  
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Figure 45 Sequence diagram for log data 

4.4 Phase 3: Technical development 

4.4.1 System implementation 

The technical system implementation utilised multiple architectures. A fog computing 

architecture was used to implement the industrial cyber-physical system and enable real-

time embedded machine learning model execution, while a more common cloud 

computing architecture was employed to implement batch data integration, processing 

and exploration. The details, reasons and benefits of these architectural choices are 

described in the following sections. 

FOG COMPUTING CYBER-PHYSICAL SYSTEM FOR MODEL EXECUTION 

Figure 46 illustrates the composition of the fog architecture for delivering real-time 

embedded machine learning using cyber-physical interactions. In essence, the cloud 

platform stores production-ready machine learning models for different engineering 

application scenarios (e.g. equipment prognostics), which can be disseminated to fog 

nodes that are capable of delivering local and secure execution. Each fog node’s identity 

and engineering scenarios are registered on the cloud platform to ensure only relevant 

PMML models are downloaded and synchronised. Once machine learning models exist 

on the fog (i.e. shadow copy of model), they can be continuously polled using streaming 
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operational data to deliver predictions that inform decision-making (e.g. control 

changes), without depending on external connectivity or services (e.g. broadband). 

 

Figure 46 Composition of fog computing with cyber-physical interactions 

Figure 47 illustrates the primary components and technologies used to implement the 

industrial cyber-physical system for embedding machine learning models in Industry 4.0 

engineering applications.  
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Figure 47 Fog computing architecture, components and technologies 

SENSING LAYER 

The sensing layer contained much of the current equipment and systems needed to 

continuously acquire real-time measurements, with additional components developed to 

mediate communications between physical and cyber environments. A summary of 

sensing components and operations are described below; 
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 AHU9 represents the overall equipment being monitored for this 

demonstration, which consisted of several instruments measuring temperatures 

and mechanical positions (e.g. valves and dampers). 

 PLC-AHU9 controls the operation of AHU9, using the real-time 

measurements of the unit’s instrumentation to determine appropriate heating 

and cooling operations. In turn, the cyber-physical system architecture leverages 

the PLC’s existing real-time stream to connect the physical and cyber worlds.  

 Cylon BMS monitors energy and environmental conditions in the factory. The 

information system continuously reads measurements from PLC’s, displays 

these measurements on-screen, raises alarms when necessary, and archives 

measurements every 24-hours.  

 OPC-UA server exposes a consistent and standard interface for 

programmatically acquiring real-time measurements from PLC-AHU9, which 

could be engaged using OPC client libraries or manually constructed SOAP web 

service requests.  

 Embedded software agents mediate communications between the physical 

and cyber worlds, using an OPC client library to acquire and transmit real-time 

measurements from PLC-AHU9 to the fog gateway (i.e. Raspberry Pi), and 

pushing pertinent notifications to third-party systems. A simple configuration 

file was designed to guide the agent’s execution process, primarily consisting of 

the agent’s unique identifier and jobs matching PLC’s with URL’s of machine 

learning models hosted on the fog. 

FOG LAYER 

The fog layer contains the technical components needed to accept incoming 

measurements, automatically execute machine learning models and return the analytical 

outcomes to the factory. A summary of fog components and operations are described 

below; 

 Raspberry Pi provided the platform for the fog gateway, which hosted the 

service API for factory-to-fog communications, machine learning models for 

particular engineering applications (e.g. AHU issue identification), and analytics 

execution engine for real-time scoring. The portability of the Raspberry Pi 
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aligned with the principles of fog computing, whereby one may strategically 

deploy gateways to improve latency, and reduce dependencies on external 

communication channels (e.g. broadband). 

 RESTful API provided an open and standards-driven interface that enabled 

embedded software agents in the factory, to invoke an AHU issue identification 

machine learning model residing on the fog gateway, using real-time 

measurements acquired from PLC-AHU9.  

 OpenScoring engine supported the execution of PMML-encoded machine 

learning models stored on the fog gateway, using the RESTful API to obtain the 

input parameters for the model (e.g. AHU measurements), and exact name of 

the machine learning model to execute. 

 Engineering models relates to a repository on the fog gateway that can store 

multiple PMML-encoded machine learning models. In the cyber-physical system 

implementation, a single AHU issue identification model was stored in the 

repository to demonstrate and measure the operation of the cyber-physical 

system. Given the embedded software agent must always be aware of the 

machine learning model to execute, the RESTful API and OpenScoring engine 

use this information to choose the engineering model from the repository. 

 Synchronisation engine maintains the engineering models repository using a 

background service, which downloads new models, and updates existing 

models. A basic tagging system using comma separated values describes the fog 

gateway’s engineering application (i.e. AHU monitoring), which is passed to the 

cloud’s RESTful API to identify relevant PMML models for synchronisation.  

CLOUD LAYER 

The cloud layer contains the technical components needed to maintain information 

about the fog gateways deployed in the factory (e.g. identity, engineering applications 

etc.), persist machine learning models in a global repository, and discharge models to 

fog gateways when contextually relevant models are added or updated. A summary of 

cloud components and operations are described below; 

 AWS API Gateway provided a secure and scalable service for implementing 

the cloud layers RESTful API, which was primarily used to communicate with 
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factory deployed fog gateways (i.e. Raspberry Pi), and orchestrate the retrieval 

and dissemination of relevant PMML models. Apart from the auto-scaling and 

concurrent connectivity offered by the AWS API Gateway service, other 

benefits included in-built version management, and seamless integration with 

other AWS compute services (e.g. HTTP requests from the fog were connected 

to AWS’s serverless computing service to distribute PMML models).  

 AWS Lambda delivered a serverless compute platform for hosting and 

enacting software modules written in Python (e.g. lookup PMML models with 

particular tag), which enabled the technical process to focus on modular task-

level development, rather than being concerned with the inherent overheads 

associated with server-level hosting, deployment and maintenance. The primary 

serverless modules deployed were (1) an authentication module to verify the 

credentials of each fog gateway, and (2) PMML synchronisation module to 

ensure each fog gateway could be automatically updated. These modules were 

connected to the AWS Gateway API so inbound HTTP requests from fog 

gateways were routed automatically to invoke the appropriate module. As with 

most AWS services, the AWS Lambda service possessed in-built auto-scaling 

capabilities to handle variable throughput, with no significant technical overhead 

in terms of administration or management.  

 AWS S3 persisted a global repository of production-ready and deployable 

PMML engineering models, which provided a scalable, fault tolerant, secure and 

version controlled environment for storing files. A simple tagging system was 

used to label PMML files (e.g. AHU for issue identification model) so the AWS 

Lambda service could match fog gateways with relevant models.  

 AWS RDS SQL stored metadata about deployed fog gateways, including 

authentication credentials, factory environment, and tags denoting relevant 

engineering applications (e.g. AHU), which was consumed by AWS Lambda 

modules as needed. In addition to scalability, the AWS RDS SQL service 

provided automatic backup and disaster recovery features that were of particular 

importance and interest to the industrial partner’s stakeholders. 
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FACTORY-TO-CLOUD DATA ANALYTICS PIPELINE FOR MODEL BUILDING 

A factory-to-cloud data pipeline was implemented to automate the common pre-

processing routines for predictive modelling and data analysis. These routines included 

the data acquisition, cleaning and storage of energy data archives from the facilities 

building management system. Figure 48 illustrates the implemented system and cloud 

layers of the data pipeline, with components in the system layer comprising components 

that connect existing industrial systems to the cloud, and the cloud layer comprising 

cloud services configured to receive, process and serve the clean data. 

 

Figure 48 Cloud computing architecture, components and technologies 

SYSTEM LAYER 

The system layer contains legacy components, systems or technologies operating in the 

factory, and purpose-built components that connect and stream operating data 

produced by these systems to the cloud. A summary of system layer components are 

described below; 
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 Clyon BMS periodically archived energy data every 24-hours, which included 

15-minute measurements for AHU9. These archive log files were appended 

each day (i.e. data was not overwritten), and saved as human-readable CSV files 

on the local computer. Thereafter, the ingestion engine was programmed to 

interrogate the energy archive to achieve factory-to-cloud integration. 

 Ingestion engine streamed archives of AHU operational data to the cloud 

every 24-hours. The engine was implemented using Python and AWS software 

development libraries, and deployed as a daily scheduled task on the Cylon BMS 

computer. Upon triggering the task each day, the ingestion engine read a 

configuration file to acquire communication endpoints (i.e. destination of data 

transmission), security credentials and targeted data sources. In this case, the 

ingestion engine was programmed to interrogate the BMS energy archive of 

CSV files, and transmit these logs to the cloud platform for processing. 

CLOUD LAYER 

The cloud layer contains managed cloud services that were configured and programmed 

to receive, process and store time-series operating data, which was extracted and 

transmitted from the building management system in the factory. A summary of cloud 

layer services and components are described below; 

 AWS API Gateway functioned as the primary interface between the ingestion 

engine in the factory, and workflows residing on the cloud. After transmission 

from an ingestion agent in the factory completed, the AWS API Gateway 

triggered a workflow engine implemented in AWS Lambda, which initiated data 

cleaning and transformation workflows associated with the ingested data. 

 AWS Lambda provided serverless compute resources to implement individual 

data processing workflow modules. In the context of the workflow 

implemented for the AHU, this involved the creation of workflow modules for 

(a) parsing Cylon CSV log files to produce a standard time-series format 

consisting of timestamp and measurement, (b) contextualisation of log files to 

provide meaningful names, and (c) merging of individual log files to produce a 

single logical dataset (e.g. combining measurements for AHU9 in a single file). 
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 AWS RDS SQL stored metadata pertaining to data processing workflows and 

modules, which was used by the workflow engine to establish the order of 

cleaning and transformation operations. The implemented relational model 

enabled modules to be associated with one or more workflows, and easily 

moved to different points in the workflow. 

 AWS S3 was used to implement a global data lake for energy archives, and stage 

the output from each step in a workflow (i.e. allowing the next step to take the 

previous output as input). The workflow processing modules (i.e. AWS 

Lambda) utilised AWS S3 as the primary method for persistence, which 

decoupled processing modules from each other, and provided some resilience 

against processing failures (i.e. processing modules were not chained and 

dependent on each other directly). 

 AWS SQS maintained job queues for each AWS Lambda data processing 

module (e.g. recently uploaded Cylon data needs to be converted to a uniform 

format), and provided input parameters for these processing modules (e.g. the 

location of the AHU data file to be processed). These queues instilled resilience 

in data processing workflows by maintaining an ordered list of execution 

requests, which were only dispatched based on the availability of sufficient data 

processing resources.  

CYLON/AHU WORKFLOW  

Figure 49 illustrates the processing pattern implemented for the AHU workflow, with 

each stage associated with an (a) AWS SQS message queue to receive instructions, (b) 

AWS Lambda background data processing module, and (c) AWS S3 storage repository 

to persist output. After the ingestion engine transmits Cylon data to the cloud, the initial 

workflow engines checks to see if there are any associated workflows (i.e. cleaning and 

transformation for that data source). Given the availability of the AHU workflow, the 

engine retrieves the execution routine from AWS RDS SQL, and initiates the workflow 

by submitting a data processing job to the first queue (i.e. Stage 1). After the job has 

completed the output is stored in AWS S3, before adding a job to the queue of the next 

processing module (i.e. Stage 2). This feedforward pattern continues until there are no 

further data processing modules to execute, with the output of the last stage 

representing the final output of the workflow. 
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Figure 49 Implemented AHU workflow pattern 

Figure 50 shows the native form of BMS energy data transmitted to AWS S3. This 

format is not analytics-ready given peculiarities in its structure. Firstly, header 

information on the first row provides metadata about the log file, such as the 

measurement type and interval (i.e. 900 seconds), rather than variables or features. 

Secondly, the structure is primarily designed to provide compact data redundancy for 

operational data, with each row containing data for the previous 10 days. Column A 

contains timestamps for the first measurement of each row, which is contained in 

Column C. For example, the first value on the second row has a timestamp of 

14/04/12 17:30, with a corresponding measurement of 23.02. Timestamps for each 

measurement after Column C must be manually derived by incrementally adding 15-

minute values to the first timestamp (i.e. from Column A). Column B specifies the 

number of measurements on each row, starting from Column C (i.e. first value). 

Although 1024 measurements are specified for each row in the screenshot, logging 

issues or outages can affect the number of measurements archived. Given a 

measurement frequency of 900 seconds (i.e. 15 minutes), each row of 1024 

measurements should contain 10 days of data, which means adjacent rows overlap with 

9 days of redundant data. Each row in the screenshot shows data logging at the same 

time every 24 hours (i.e. 5:30pm), but it was common for this pattern to shift without 

warning, which meant several control checks were needed to ensure timestamps and 

measurements were parsed correctly.  
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Figure 50 Ingested log file for AHU return air temperature 

The first two stages in the AHU workflow transformed the Cylon BMS format to a 

basic time-series. Figure 51 shows the data output after cylon-log (stage 1 processing 

module) and ahu-points (stage 2 processing module) were applied. This shows data 

redundancy has been removed, with each row associated with a single observation (i.e. 

point-in-time), and each column representing a single measurement. The normalisation 

of BMS data provided subsequent processing modules with a more conventional format 

upon which to execute data transformations. 

 

Figure 51 AHU return air temperature after Stage 1 and 2 

Figure 52 shows the output from stage 3, where individual sensor logs for AHU9 were 

merged to a tidy dataset. This dataset represents a single entity (i.e. AHU9), with each 

row containing a single observation (i.e. point-in-time), and each column containing a 

single measurement (e.g. return air temperature). The availability of such formats can 

greatly reduce the data wrangling and pre-processing effort associated with data 

analytics, while a formal naming convention was borrowed from previous research to 

identify individual AHU measurements [1]. 
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Figure 52 AHU log file after Stage 3 

4.4.2 Implementation assessment 

During the implementation the assessment criteria from the design methodology were 

used to evaluate technical decisions. The intention of the qualitative assessment criteria 

is to ensure important criteria are being considered, rather than providing a mechanism 

to measure compliance with particular criteria. However, a more quantitative evaluation 

of the cyber-physical system implementation shall be presented when measuring 

performance (section 4.5). The following sections outline the assessment criteria 

proposed by the design methodology, and describes how these criteria were ultimately 

addressed by the technical implementation.  

INDUSTRY 4.0 ASSESSMENT 

Table 26 presents the Industry 4.0 assessment criteria proposed by the design 

methodology, and comments summarising how these criteria were addressed within the 

technical implementation. 

Criteria Comments 

Interoperability Given the implemented cyber-physical system promotes open and 
standard communication using HTTP, messaging interoperability 
between systems can be achieved without impediment (e.g. factory agent 
sends push notifications to other services when something changes), 
while also enabling components of the cyber-physical system to be easily 
substituted (e.g. Python factory agent can be implemented by another 
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organisation using Java). In addition to messaging interoperability, 
incorporating PMML to persist and execute machine learning models, 
ensures compatibility and interoperability with a wide-range of statistical 
and analytics software, which enables personnel to build, deploy and 
import models from the proposed cyber-physical system. 

Virtualisation The implemented cyber-physical system enables virtualisation using 
an embedded software agent (i.e. Python software agent) to stream real-
time AHU measurements to the fog gateway (i.e. Raspberry Pi), where an 
issue identification machine learning model provides self-awareness 
insights regarding current state. Of course, more complex and aggregated 
virtualisation scenarios shall arise, but the basic pattern of operation 
between the agent and gateway may persist.  

Decentralisation The architecture of fog and agent computing promotes decentralised 
storage, processing and intelligence, where operations are undertaken on 
the edge of networks, rather than centralised in a particular locale. The 
fog gateway (i.e. Raspberry Pi) possessed the necessary software, machine 
learning and communication capabilities to (a) operate autonomously 
across different networks, and (b) service embedded software agents 
monitoring components, machinery or processes.  

Real-time Although the real-time, scalability and resilience of the implemented 
cyber-physical system shall be discussed in the following sections, the 
decentralised and localised characteristics of fog computing encourages 
low-latency, reliable and resilient communication, especially when 
compared to cyber-physical systems depending on roundtrips between 
the factory and cloud. 

Service Oriented Messaging between the main factory, fog and cloud components depend 
exclusively on RESTful API services, while the utilisation of SOAP-based 
services were needed to acquire real-time measurements from the OPC-
UA server. In addition to service interactions between components of the 
cyber-physical system, embedded software agents implemented push 
notifications to third-party systems enabling these messages to be sent to 
a service endpoint (i.e. other system listening for incoming messages). 

Modularity Given the cyber-physical system embraces decentralisation and service-
orientation, modularity naturally occurs given the low-level operations 
and processes are hidden behind interfaces (e.g. agent sends and receives 
outcome of model execution without knowing the type of model or 
software that undertook the analysis). In the case of the cyber-physical 
system, service interfaces provide access to the different modules. 

Table 26 Industry 4.0 assessment criteria  

STAKEHOLDER ASSESSMENT 

Table 27 presents the common stakeholder assessment criteria proposed by the design 

methodology, and comments summarising how these criteria were addressed within the 

technical implementation. 

Criteria Comments 

Data security One of the common concerns associated with cyber-physical systems 
regards the transmission and persistence of operational data in the cyber-
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world, which has been traditionally associated with the cloud. However, 
the implemented cyber-physical system utilises the fog computing 
paradigm to refrain from transmitting or persisting operational data 
outside the organisations local or extended network, and thus ensuring 
the cyber-physical system can align with existing policies governing the 
operation of local networked devices (e.g. PLC’s). 

Legacy integration Given the historic investment placed in existing control networks and 
technology infrastructure, facilities can resist change when it requires 
extensive technology replacement (e.g. installing internet-of-things smart 
sensors). The implemented cyber-physical system addresses this concern 
using embedded software agents, which may embody different protocols 
to interact with many different devices. In this particular implementation 
of the system, the embedded software agent utilised OPC to stream 
measurements from a legacy PLC, rather than requiring the industry 
partner to replace the existing technology.  

Regulation Many large-scale manufacturing facilities adhere to strict quality assurance 
and regulation, the content of which may include technologies, systems 
and processes governing production. Thus, some facilities may be 
concerned that new technology paradigms may infringe upon current 
regulatory compliance. While one cannot state the cyber-physical system 
complies with all regulatory requirements, the implementation strategy 
promotes the ideology of extension rather than replacement. This meant 
existing technologies that may already have been subject to audit or 
assessment, were always used instead of introducing new technologies or 
components (e.g. BMS archiving, PLC’s for real-time measurements). 

Performance The performance and dependability of industrial automation and control 
systems has been demonstrated for decades, and therefore, extending 
these stable systems to incorporate emerging technologies naturally raises 
concerns regarding performance (e.g. guaranteed execution times, 
communication failure rates, concurrent throughput etc.). Given cyber-
physical systems incorporate additional compute layers (e.g. operating 
systems, analytics engines), deterministic and consistent real-time 
execution shall exceed that of control networks. However, the local and 
embedded topology of the fog compute cyber-physical system aims to 
address two primary performance concerns by (a) reducing dependencies 
on external communication channels (i.e. broadband) that could result in 
control messages being dropped, and (b) promoting shorter roundtrips 
between the physical-world (e.g. embedded software agent) and cyber-
world (e.g. Raspberry Pi gateway).   

Disruption Traditionally, technology development and adoption carries the risk of 
disruption to standard business operations. Such concerns are amplified 
in real-time manufacturing production scenarios, where there can be less 
tolerance to missed or inaccurate operation. To reduce some concerns 
regarding disruption, the implemented cyber-physical system separates 
existing control technology (i.e. sensing layer) from the cyber-physical 
technology (i.e. fog and cloud), and therefore does not interfere with the 
current operation of the control network. However, when control 
engineers begin to depend on real-time results and outputs from the 
cyber-world to influence control logic, the potential for disruption 
increases given tighter integration.  

Knowledge A practical and well-founded concern pertaining to the adoption of 
cyber-physical systems, relates to the current knowledge, skillset, and 
expertise of personnel within the organisation (e.g. machine learning, 
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internet-of-things, big data). Where sufficient internal expertise does not 
exist, facilities may become dependent on consultants and service 
providers to deliver key strategic technologies and infrastructure for 
Industry 4.0 operations. The implemented cyber-physical system aims to 
reduce the knowledge burden by (a) following a systematic design 
methodology that prescribes the relationships and interactions, and (b) 
delivering a technical platform that abstracts and automates some of the 
technical details (e.g. uploading a PMML file can automatically make the 
machine learning model available to embedded software agents that may 
already exist in the factory).  

Table 27 Stakeholder assessment criteria 

FUNCTIONAL ASSESSMENT 

Table 28 presents the functional assessment criteria proposed by the design 

methodology, and comments summarising how these criteria were addressed within the 

technical implementation.  

Criteria Comments 

Data integration A core requirement of cyber-physical systems is the need to integrate data 
from systems and sensors, encompassing both legacy and contemporary 
technologies. The periodic integration of the BMS’s log files was 
implemented to support model building, while the continuous streaming 
of real-time AHU operating measurements was achieved using OPC-
enabled embedded software agents. As more integration scenarios are 
encountered, the embedded software agents may be extended to 
incorporate additional communication drivers and protocols, without 
impacting the fundamental operation of the cyber-physical system. 

Data processing Given the multitude of industrial technologies and information systems 
from which operational data can be collected, the ability to process, 
transform and clean data is critical to produce harmonised, consistent and 
homogeneous analytics-ready data. The analytics pipeline supporting 
model building efforts implemented such features, with AWS S3 utilised 
as a data lake to store inbound data from the BMS, and AWS Lambda 
and AWS SQS used to realise a highly-scalable (i.e. auto-scaling) and fault 
tolerant workflow. Of course, some data processing components 
developed for the Cylon BMS and AHU workflow may need to be 
extended when new data sources are added, while other data processing 
components (e.g. detect missing values) are naturally more reusable. 

Model execution An overlooked aspect of industrial analytics relates to the ability to 
integrate and execute models (e.g. machine learning models) as part of 
enterprise and industrial information systems, with more attention given 
to developing analytics pipelines, data exploration and model building 
using statistical software applications (e.g. R, Tableau etc.). The cyber-
physical system implementation enables the transition from model 
building to execution using the PMML standard for encoding machine 
learning models, and the OpenScoring engine to provide model execution 
capabilities that could be enacted independent of the underlying software. 

Real-time scoring To affect real-time decision-making in the factory, continuous streams of 
operating data must be transmitted and scored by a suitable analytics 
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engine. Given the availability of model execution capabilities (i.e. PMML 
and OpenScoring engine), an embedded software agent capable of 
mediating communications between the physical-world and cyber-world 
was developed. In the implemented cyber-physical system, the embedded 
software agent utilised OPC to read continuous measurements from 
AHU9, which was encoded as a JSON request object, and transmitted to 
the OpenScoring analytics engine running on the Raspberry Pi (i.e. fog 
gateway) to achieve real-time scoring. 

Score validity Ensuring analytics models are of sufficient quality (e.g. accuracy, 
execution speed etc.) before deployment is dependent on model building 
processes. Although the analytics pipeline built for the Cylon BMS and 
AHU operational data simplifies the process of data exploration and 
model building, it does not directly affect the validity of the models 
produced. However, this assumes processing routines applied to 
incoming data have not introduced data issues (i.e. misaligning 
timestamps etc.). Therefore, when new data processing routines and 
workflows are introduced, the data output needs to be sampled and 
compared with the original source to flag any potential issues. 

Score propagation Due to the interconnected nature of Industry 4.0 and cyber-physical 
systems, many systems may need to know of particular operational 
changes in the factory (e.g. machine learning model finds issue in an 
AHU, and notifies facilities a replacement is needed). The embedded 
software agent in the cyber-physical system mediates communications 
between the physical and cyber-worlds, and maintains an active list of 
service URL’s to push notifications to third-party systems. Of course, the 
receiving system must be listening for transmissions at the specified 
service URL, and expect the agreed data format (e.g. JSON object 
currently used to define AHU issue).  

Table 28 Functional assessment criteria 

4.5 Phase 4: Performance measurement  

The primary objective of the performance phase was to observe the lower and upper 

execution boundaries (i.e. execution latency) of the technical implementation. Such 

system properties must be known for control and engineering scenarios that are time 

dependent. Although the technical implementation embodies batch and real-time 

operations, only those associated with cyber-physical interactions are typically subject to 

low-latency demands. Therefore, the cyber-physical interface connecting the physical 

(e.g. factory) and cyber (e.g. fog gateway) worlds is the fundamental component being 

measured. The following section describes the setup, configuration and execution of 

load testing experiments to measure the performance of the technical implementation 

using cloud-based and fog-based cyber-physical interfaces. 
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4.5.1 Setup 

The cloud and fog cyber-physical technologies used for the experiment utilised entry-

level and standard configurations. Given the contrasting differences in architecture and 

resources, choosing an out-of-the-box approach appeared to be the easiest way to 

protect from potential biases, while experiments were executed in close proximity to 

reduce fluctuating environmental conditions (e.g. broadband throughput, local network 

activity etc.) contaminating the observed measurements. Figure 53 illustrates the main 

components of the experimental setup. A test computer was setup to host JMeter - an 

open source Apache application for load testing web resources and API’s. The JMeter 

agent was configured with experiment parameters to send, receive and measure 

transmissions for each cyber-physical interface. The platforms behind the cyber-physical 

interfaces were furnished with a simple predictive model encoded as PMML, with the 

OpenScoring engine installed to enable real-time scoring of the model.  

 

Figure 53 Experiment setup for cloud and fog cyber-physical interfaces 
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NETWORK ENVIRONMENT 

Although the implemented industrial analytics pipeline and cyber-physical system were 

deployed to the industrial partners operating environment, the load and stress testing of 

these implementations needed to be undertaken off-site to prevent any negative affect 

on existing networks or infrastructure. Therefore, to facilitate the experiment a 

temporary local network was setup in the university. A Huawei HG659B wireless router 

with 4 Ethernet ports was used to create a local new network, comprising two primary 

devices - (a) Test-PC hosting the JMeter agent software for logging request/response 

latency for cloud and fog cyber-physical interfaces, and (b) Raspberry Pi with the 

OpenScoring engine to facilitate the real-time scoring of machine learning models. The 

Test-PC specification consisted of an Intel Core i5-4380U CPU @ 2.80GHz processor, 

4 GB memory, and 200 GB solid-state hard drive, running on Windows 8.1 Enterprise. 

Once devices were setup on the network, several broadband speed tests were 

undertaken to ensure consistent throughput for cyber-physical interactions with the 

cloud, with observed measurements ranging from 30-40Mbps download and 8-10Mbps 

upload.  

JMETER AGENT FOR LOGGING 

To measure cyber-physical interactions (e.g. factory to cloud analytics), the JMeter 

software was installed on the BMS PC to operate as a surrogate for the embedded 

factory agent in the cyber-physical system. This enabled load testing measurements to 

isolate the performance of cyber-physical interactions, which represent the extension 

point between legacy and emerging control paradigms. Although other factors may 

impede performance (e.g. control protocols used to read measurements), the objective 

of the performance evaluation is to demonstrate the operating boundaries and 

limitations associated with the embedding of advanced analytics. Therefore, the cyber-

physical interface and interactions between the factory and analytics execution are the 

performance measurements of interest.   

CLOUD INTERFACE AND CONFIGURATION 

The cloud-based cyber-physical interface was constructed using a general-purpose 

Amazon Web Services (AWS) EC2 compute instance – more specifically, a t2.micro 

instance comprising one virtual CPU, one gigabyte of memory, and Linux-based 

operating system. Given the availability of the cloud compute platform, the 
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OpenScoring engine was downloaded from the GitHub repository, before a build 

process was executed using Apache Maven to create the directories and executables. 

Once the build process completed, a PMML encoded AHU issue identification model 

was copied to the default model directory (i.e. /openscoring/model) and named 

AhuHeaTFault.pmml. Finally, the Java-based server-side standalone version of the 

OpenScoring analytics engine was initiated, which started the RESTful web service 

interface to enable client applications to score the AHU model (e.g. factory agent, 

JMeter agent etc.). To ensure client HTTP requests could pass-through AWS security 

policies, the default security configuration was updated to permit HTTP requests to the 

OpenScoring engine on port 8080. 

FOG INTERFACE AND CONFIGURATION 

The fog-based cyber-physical interface was developed using a Raspberry Pi3 Model B to 

host the analytics model and execution engine. This device comprised a 64-bit ARMv8 

1.2GHz processor, one gigabyte of memory, in-built Wi-Fi capabilities, and Linux-based 

operating system. The setup and configuration of the OpenScoring engine and analytics 

model for testing (i.e. AHU model) mirrored that of the cloud interface. The 

OpenScoring engine was downloaded and built using Apache Maven to produce the 

necessary directories and executables. After the build process completed, the PMML 

encoded model was copied to the OpenScoring engine’s model directory (i.e. 

/openscoring/model). Finally, the Java-based server-side OpenScoring analytics engine 

was started to enable client applications score the AHU model (e.g. factory agent, 

JMeter agent etc.). Although AWS demonstrated default security policies that impeded 

communication on port 8080, the Raspberry Pi did not require such modifications 

given it was situated on a local trusted network. However, opening ports to allow 

communications may be necessary where local firewalls separate client applications (e.g. 

factory agent) and the analytics engine (e.g. OpenScoring RESTful service). 

4.5.2 Performance analysis 

After some experimentation with stress parameters, an interval of 250 milliseconds was 

chosen to execute test cases. This interval provided sufficient frequency to stress the 

system when scaled to hundreds of concurrent connections, while also providing the 

opportunity to illustrate workloads that can be easily managed. Table 29 describes the 

properties for execution and load testing scenarios (i.e. T1 to T4). The number of 
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concurrent threads for each test determines the level of stress placed on the cyber-

physical interface, with each thread tasked with executing 1,000 communication 

request/response loops.  

Test Threads (concurrent) Loops (per thread) Total Loops 

T1 50 1,000 50,000 

T2 100 1,000 100,000 

T3 250 1,000 250,000 

T4 500 1,000 500,000 

Table 29 Concurrent execution scenarios 

Figure 54 shows the JMeter load testing plan comprising the aforementioned execution 

scenarios for cloud (AWS) and fog (Pi) cyber-physical interfaces. The screenshot shows 

the basic naming convention used to differentiate between cyber-physical interfaces, 

concurrent threads, and execution loops for scenario, while also highlighting the main 

JMeter controls used to measure and monitor execution (i.e. HTTP Request, View 

Results Table etc.). 

 

Figure 54 JMeter load testing plan 

Figure 55 shows the HTTP request configuration employed for real-time scoring of the 

industrial analytics model. With the exception of the IP address and port number, these 
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settings are the same for each execution scenario. The following points summarise the 

primary configuration parameters; 

 Protocol specifies the communication protocol to use during the load testing 

scenarios. In this instance, HTTP was employed to align with the RESTful API 

exposing the OpenScoring engine for model execution. 

 IP address and port number define the endpoint (e.g. server) of the analytics 

execution engine (i.e. OpenScoring), and the port upon which communication 

should be directed. The values displayed relate to the fog interface, which 

resided on the local network, and listened for inbound messages (e.g. real-time 

operating measurements) on port 8080. Of course, these values changed for 

cloud interface testing scenarios. 

 Method and path describe the HTTP verbs that should be used to transmit 

measurements to the OpenScoring engine (e.g. POST, GET, PUT), and the 

relative path to the model that should be executed. In this instance, the POST 

method was used to adhere to the OpenScoring interface, with the AHU issue 

identification model used for each execution scenario (i.e. AhuHeaTFault). 

 Body data contains the input parameters expected by the analytics model, with 

each numerical measurement set to zero. During the load testing process, 

JMeter packages the body data in a HTTP request using the previously defined 

variables (e.g. protocol, IP address etc.), and receives a HTTP response with the 

result of the model execution (i.e. real-time scoring result).  
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Figure 55 HTTP request configuration for real-time scoring 

Figure 56 shows JMeter’s view results component that continuously logs HTTP 

requests and responses during load testing. The optional filename property was set for 

each execution scenario, with a simple naming convention employed to label the results 

for each scenario. These log files provided the data necessary to interrogate and 

visualise the performance of fog and cloud cyber-physical interfaces. The main column 

headings related to communication performance are described below; 

 Sample (milliseconds) logs the time between when the request was sent, and 

when the agent has received and processed the entire response.  

 Status (success/fail) logs whether a particular request received a successful 

response, without raising errors or exceptions (i.e. request sent, model executed, 

and response returned). 

 Latency (milliseconds) logs the time between when the request was sent, and 

when the agent began to receive the response (i.e. not complete processing of 

the response). 

 Connection time (milliseconds) logs the time taken to establish a connection 

between the client (i.e. JMeter) and server (i.e. cyber-physical interface), before 

transmitting the load testing HTTP request. 
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Figure 56 JMeter logging of concurrent execution 

4.5.3 Threats to performance validity 

The performance measurements collected during testing can be influenced by different 

operating environments and parameters. However, these particular variables are largely 

unpredictable, and representative of real-world environments (i.e. every factory shall 

comprise unique and changing variables). The following points summarise the primary 

threats considered during the testing phase; 

 Environment: the environment used for measuring performance comprises 

hardware, software and services to facilitate connectivity (i.e. switches, routers, 

cabling, bandwidth etc.). The quality, specification and configuration of these 

resources can vary significantly, and are subject to random times of decreased 

performance (e.g. high network traffic). 

 Model: the analytics model used may impact measured performance when the 

required input datasets are large (i.e. transmission overhead), or computational 

complexity of the model increases the runtime of the execution phase (i.e. 

delaying response to the factory agent). 
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 Connectivity: the measured performance of the cloud interface depends on 

broadband uptime, throughput and consistency, which can change dynamically 

depending on service provider agreements and network policies.  

 Benchmark: given the stress testing protocol executes requests at 250 

millisecond intervals, the analysis uses 250 milliseconds as the latency 

benchmark to demonstrate where control threads begin to overlap. This 

benchmark can be replaced with a time-constraint for a particular industrial 

engineering and control application. 

4.6 Chapter conclusions 

This chapter applied the previously presented design methodology to produce an 

industrial analytics architecture comprising two sub-systems. These complimentary 

systems were the (a) data analytics pipeline to transmit, clean and store archived data 

needed for data analysis and modelling, and (b) industrial cyber-physical system for 

delivering embedded machine learning applications using fog computing. After the 

implementation process, several experiments were designed and executed to evaluate 

and compare the performance of cloud and fog cyber-physical interfaces as a means of 

delivering near/real-time analytics to the factory. The results of these experiments are 

analysed and discussed in the next chapter. 
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Results & Discussion 
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5.1 Chapter introduction 

This chapter presents results from the technical implementation undertaken in Phase 3 

of the methodology, with the intention of establishing performance boundaries that 

demonstrate the system’s ability to comply with timing constraints (e.g. real-time 

requirements) and communication throughput (e.g. concurrent connections) for 

particular engineering applications, while also illustrating how the proposed cyber-

physical system implementation aligns with Industry 4.0 design principles. The primary 

sections of this chapter include; 

 Cyber-physical performance (section 5.2) compares latency and consistency 

of cloud and fog interfaces, which are responsible for connecting measurements 

from the factory, with advanced analytics models in the cyber world.  

 Industrial analytics capability (section 5.3) evaluates the broader benefits 

realised from the real-world implementation, including alignment with Industry 

4.0 design principles and stakeholder concerns. 

5.2 Cyber-physical performance  

The extension of industrial control and automation networks for Industry 4.0 depend 

on cyber-physical interfaces (e.g. fog and cloud). These interfaces provide gateways to 

advanced and complex computational resources (e.g. machine learning, big data, cloud 

computing etc.), which possess the technical potential to deliver self-aware and self-

optimising factories. However, given the technical overheads (e.g. system software, 

model execution and inter-networking) associated with these resources, cyber-physical 

interfaces cannot deliver the same performance as embedded systems. Therefore, cyber-

physical performance must be carefully measured and evaluated to determine suitability 

for particular control and engineering scenarios. The primary measures of performance 

presented and discussed in this analysis are; 

 Latency of interfaces (section 5.2.1) relates to the exact time it takes to 

transmit operational data to the cyber-world, execute an industrial analytics 

model, and return the result to the factory to inform decision-making. 
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 Consistency of interfaces (section 5.2.2) refers to how often communications 

between the cyber (e.g. cloud) and physical worlds (i.e. factory) were successful, 

and identifies points of performance degradation. 

A load testing procedure was undertaken (section 4.5) on cyber-physical interfaces 

supported by fog and cloud computing architectures, with the intention of comparing 

the performance of the novel fog architecture for delivering embedded industrial 

analytics implemented during this research, and more common cloud computing 

methods. The hardware, configurations and infrastructure employed during data 

collection were based on default configurations. Table 30 outlines the execution 

scenarios (i.e. T1 to T4) and associated parameters used for load testing fog and cloud 

cyber-physical interfaces.  

Results Test Threads (concurrent) Loops (per thread) Total Loops 

Figure 57 T1 50 1,000 50,000 

Figure 58 T2 100 1,000 100,000 

Figure 59 T3 250 1,000 250,000 

Figure 60 T4 500 1,000 500,000 

Table 30 Load testing concurrent execution scenarios 

Figure 57, Figure 58, Figure 59, and Figure 60 visualise the results captured from the 

load testing scenarios (i.e. T1 to T4), and provide summary statistics relating to each 

cyber-physical interfaces performance dataset. Although additional scenarios were 

undertaken during this research, the T1 to T4 scenarios sufficiently demonstrated the 

performance degradation and vulnerabilities of both cyber-physical interfaces, which 

made many of the other results redundant and repetitive (e.g. 200 threads told the same 

story as 250 threads). The incremental stressing of the interfaces can be observed by 

analysingT1 to T4, where typical latency in milliseconds gradually increases, and more 

high-latency outliers are introduced. In addition, the load testing and data collection 

routine was undertaken on different days, to ensure data used for analysis was void of 

identifiable anomalies (e.g. broadband issues). Notable observations and trends 

identifiable from the primary performance datasets (i.e. Figure 57, Figure 58, Figure 59, 

and Figure 60) include;  
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 Average latency recorded for the fog’s cyber-physical interface outperformed 

the cloud interface for each load-testing scenario, with the performance gap 

being most evident for T2. 

 Performance outliers for the cloud’s cyber-physical interface are evident 

across all load-testing scenarios, with significant high-latency communications 

observed for T3 and T4. Although performance outliers for the fog interface are 

also evident, they are less common and consistent.  

 Performance consistency of the cloud’s cyber-physical interface appears more 

resilient to increasing numbers of concurrent connections, with normal 

operation (i.e. excluding outliers) demonstrating less variability and lower-

latency than the fog interface. This trend can be best exemplified by T3, where 

the cloud’s normal operation demonstrates much lower-latency.  

 Inherent capabilities of fog and cloud cyber-physical interfaces contribute to 

performance degradation in different ways. The fog’s local topology can deliver 

reliability (i.e. no observed failed communications), but with modest processing 

capability (e.g. maximum capacity for T3 and T4), while the cloud’s dependency 

on external connectivity offers less reliability (e.g. outliers and communication 

failures from T1 to T4), but can deliver greater processing capabilities. 

Although these high-level observations provide some performance insights, the 

following sections further investigate the performance datasets, to explore, analyse and 

compare the latency and consistency of the fog and cloud cyber-physical interfaces. 
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Fog Analytics  Cloud Analytics 

  

Figure 57 T1 results showing fog and cloud interface latency with 50 concurrent connections

250ms (TARGET) 

80.76ms (CLOUD) 

23.21ms (FOG) 
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Fog Analytics  Cloud Analytics 

  

Figure 58 T2 results showing comparison of fog and cloud analytics latency with 100 concurrent connections

26.1ms (FOG) 

250ms (TARGET) 
300.3ms (CLOUD) 
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Fog Analytics  Cloud Analytics 

  

Figure 59 T3 results showing comparison of fog and cloud interface latency with 250 concurrent connections 

588.1ms (CLOUD) 

250ms (TARGET) 

408.5ms (FOG) 
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Fog Analytics  Cloud Analytics 

  

Figure 60 T4 results showing comparison of fog and cloud analytics latency with 500 concurrent connections 

250ms (TARGET) 

1874ms (CLOUD) 

1252ms (FOG) 
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5.2.1 Latency of interfaces 

Given the deterministic and real-time characteristics of automation and control 

networks, the latency of cyber-physical interactions dictates the industrial engineering 

applications and scenarios the system may facilitate. This section employs descriptive 

statistics and visualisations to evaluate different aspects of performance latency 

observed from testing the fog and cloud cyber-physical interfaces.  

 Mean latency describes the average performance observed for fog and cloud 

cyber-physical interfaces. Given this statistic utilises each measurements value to 

determine average performance, operational outliers can greatly influence the 

asserted latency.  

 Median latency describes the performance measurement denoting the 50th 

percentile of each dataset. Given this statistic focuses on the position of 

measurements rather than measured values, sporadic operational outliers do not 

significantly impact the asserted latency. 

 Interquartile latency range describes the measurements observed within the 

middle 50% of each dataset. Given the skewed nature of the datasets (i.e. 

existence of outliers), the interquartile range provides an effective means of 

analysing the distribution and spread of measured latency, with lower 

interquartile ranges indicating less operating variability and stress. 

Table 31 summarises the mean and median latency performance of fog and cloud 

interfaces for each execution scenario. The mean and median statistics for both 

interfaces are partitioned in two sections, with the best performing cyber-physical 

interface highlighted for each scenario and statistic. For example, the median difference 

between fog and cloud latency for the T2 scenario was 9.10 milliseconds, with the 

difference highlighted orange to indicate the cloud outperformed the fog. These 

statistics reaffirm previous assertions regarding average latency, with the fog interface 

outperforming the cloud across all execution scenarios. However, the cloud interface 

demonstrates superior performance for T2, T3 and T4 scenarios, when high-latency 

outliers are removed from the analysis (i.e. median measurement). In essence, this 

dichotomy demonstrates the inherent capabilities of both interfaces, with the fog’s 

localised and embedded topology facilitating less high-latency measurement, and the 
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cloud’s superior compute capacity evident when sporadic high-latency performance 

outliers are negated. 

 
Scenario Fog Mean Cloud Mean Mean Diff. Fog Median Cloud Median Median Diff. 

T1 @ 50 23.21 80.76 57.55 13.00 19.00 6.00 

T2 @ 100 17.00 300.30 283.30 26.10 17.00 9.10 

T3 @ 250 409.00 588.10 179.10 409.00 19.00 390.00 

T4 @ 500 1252.00 1874.00 622.00 1288.00 55.00 1233.00 

Table 31 Summary of mean and median latency performance 

Although mean and median statistics provide a single metric to gauge and compare 

cyber-physical interface latency, they abstract details relating to each interface’s broader 

operating and latency patterns (e.g. upper and lower boundaries). Extrapolating a single 

statistic to broader operating ranges can be achieved using the interquartile range, which 

highlights performance measurements contained within the middle 50% of the dataset 

(i.e. measurements between the 25th and 75th percentile). In the context of this 

performance analysis, increases in the interquartile range are indicative of greater 

variability of each interface’s middle operating range. 

Table 32 presents the interquartile statistics for fog and cloud cyber-physical interfaces 

across each execution scenario. The table contains latency performance denoting the 

measurements positioned at 25% (i.e. 1Q) and 75% (i.e. 3Q), with the interquartile 

range calculated as difference (i.e. IQ = 3Q – 1Q). To simplify comparison of cyber-

physical interfaces for each scenario, the last column (IQ Diff) shows the difference 

between the fog and cloud’s interquartile ranges, with colour coding used to highlight 

the cyber-physical interface demonstrating the lowest operating range. The initial 

execution scenarios T1 and T2 show modest differences in operating ranges, with fog 

and cloud interfaces both recording the lowest interquartile range for T1 and T2 

respectively. However, the cloud cyber-physical interface demonstrated greater 

resilience as more concurrent connections (i.e. T3 and T4) were applied, while the fog 

interface’s interquartile range drifted significantly between 100 (T2) and 250 (T3) 

concurrent connections.  
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Scenario Fog (1Q) Fog (3Q) Fog (IQ) Cloud (1Q) Cloud (3Q) Cloud (IQ) IQ Diff. 

T1 @ 50 9.00 18.00 9.00 16.00 36.00 20.00 11.00 

T2 @ 100 11.00 29.00 18.00 16.00 20.00 4.00 14.00 

T3 @ 250 165.00 582.00 417.00 16.00 31.00 15.00 402.00 

T4 @ 500 828.00 1602.00 774.00 26.00 136.00 110.00 664.00 

Table 32 Interquartile latency ranges of fog and cloud interfaces (milliseconds) 

As with the median statistic, the interquartile range utilises measurements at a position 

within the distribution, which naturally mitigates the effect of sporadic high-latency 

outliers. Therefore, the interquartile ranges can be considered beneficial for providing 

insights regarding potential operating boundaries, but do not indicate how consistently 

these operating ranges can be achieved. However, boxplot diagrams can be used to 

visualise both the interquartile ranges, and performance outliers. Figure 61 illustrates the 

segments of a boxplot, comprising a box denoting the interquartile ranges (i.e. 1Q, 

Median and 3Q), and upper/lower whiskers encapsulating the dataset. The boundaries 

for these whiskers are determined by multiplying the interquartile range by 1.5, with 

measurements outside this range considered operational outliers.  

 

Figure 61 Illustration of boxplot segments 

Figure 62 demonstrates changes in latency performance using the fog interface across 

all execution scenarios (i.e. T1 to T4) using the boxplot visualisation. This visualisation 

clearly shows the increase in normal operating ranges (i.e. interquartile range) from T1 

to T4. To ensure these ranges are easily identifiable, the y-axis depicting latency in 
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milliseconds uses a logarithmic scale. As previously reported in Table 32, the fog 

interface’s interquartile operating range increases significantly from T2 to T3, but the 

boxplot visualisation also provides insights to operational outliers. These insights 

highlight operational outliers for T1 and T2 being exclusively high-latency (i.e. greater 

than normal operating range), but low-latency outliers materialise across T3 and T4 

scenarios (i.e. less than normal operating range). This change in outlier patterns depicts 

the fog interface reaching capacity, with occasional high latency communications 

observed in T1, becoming the normal range of operation in T4. 

 

Figure 62 Fog interface performance measurements  

Figure 63 demonstrates changes in latency performance using the cloud interface across 

all execution scenarios (i.e. T1 to T4) using the boxplot visualisation. As with the 

previous boxplot, the cloud interface latency measurements measured in milliseconds 

are displayed on the y-axis, which uses logarithmic scaling to clearly highlight the 

interquartile ranges for each scenario. The operating range consistency can be observed 

by the lack of spread in the interquartile range from T1 to T4, while the 1st quartile 

latency measurement remains at 16 milliseconds for T1 to T3. This demonstrates the 

cloud interface’s lower operating boundaries (e.g. best case execution) were not 

significantly affected by additional concurrent connections, and while the interquartile 

operating range and 1st quartile measurements increase for T4, the deviation is modest 

when compared to those observed for the fog interface. However, additional outlier 

information highlights extreme outliers for all execution scenarios. Similar to the outlier 

pattern observed with the fog interface, outliers observed from T1, T2 and T3 

execution scenarios become part of the normal operating range for T4. This highlights 
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the interface’s ability to respond to requests is gradually decreasing (i.e. longer requests 

are becoming normal), which is reinforced by the increased spread and variance in the 

normal interquartile operating range. Therefore, while the cloud interface demonstrated 

low latency execution, there are certainly concerns regarding the reliability and 

consistency of execution (i.e. performance drift due to outliers). 

 

Figure 63 Cloud interface performance measurements  

5.2.2 Consistency of interfaces 

The consistency of interfaces focuses on determining communication reliability and 

resilience. While previous latency analysis evaluated normal operating ranges, there was 

no significant attention given to worst-performing, or failed communications. These 

negative attributes are important where industrial engineering or control applications 

possess stringent real-time constraints. To consider the consistency of each cyber-

physical interface, the following sections present; 

 Maximum execution time showing the worst-case observed request and 

response cycle for each execution scenario (i.e. T1 to T4).  

 Number of failed communications recorded for each cyber-physical interface 

during the load testing experiments (i.e. no response).  

 Number of missed benchmarks exceeding the 250 millisecond target utilised 

to simulate a time constrained Industry 4.0 scenario. 
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Figure 64 illustrates the maximum latency observed for fog and cloud interfaces across 

each execution scenario (i.e. T1 to T4), while Table 33 summarises the primary 

measurements, with differences highlighted to indicate the best performing interface for 

each scenario. Although maximum execution time may be considered a crude measure 

of consistency and/or reliability, observing the maximum execution time across 

multiple scenarios provides an indication of worst case execution. The findings show 

the fog interface recorded significantly lower maximum execution times compared to 

the cloud interface, with differences in maximum latency measured at 92.9% (T1), 

99.4% (T2), 67.7% (T3) and 91.0% (T4). These significant differences in maximum 

latency may be attributed to the localised and embedded characteristics of the fog 

interface, which embodies less dependencies on network routing and external 

connectivity than the cloud interface.  

Although not central to discussions relating to consistency, one pattern worth 

mentioning relates to the findings from T3, where the fog and cloud interfaces recorded 

higher maximum execution times at 250 concurrent connections, when compared to 

500 connections (i.e. T4). Given the counterintuitive nature of these findings, one can 

only assume environmental factors (e.g. network traffic) impeded performance during 

the load testing for T3. However, fog and cloud interfaces were tested on the same day 

to ensure both interfaces were subject to the same environmental factors, which 

explains why both interfaces demonstrate increased maximum latency for T3. Such 

random fluctuations are difficult to avoid, and are representative of network intensive 

manufacturing and operational technology environments.  



Results & Discussion 

Page 163 of 217 

 

Figure 64 Maximum execution times  

 
Scenario Fog Max. Cloud Max. Difference Max. Difference Max. (%) 

T1 @ 50 2,571 36,034 33,463 92.9% 

T2 @ 100 436 70,397 69,961 99.4% 

T3 @ 250 32,798 101,401 68,603 67.7% 

T4 @ 500 7,536 83,370 75,834 91.0% 

Table 33 Summary of maximum execution times for fog and cloud interfaces 

Figure 65 illustrates the percentage of failed communications (i.e. no response) for each 

execution scenario, while Table 34 summarises the number and percentage of these 

failures, with the best performing cyber-physical interface highlighted as the percentage 

difference of failure rates between the fog and cloud interface. Assuming the correct 

operation of technology components (i.e. hardware, software and network), these 

particular failure rates can be attributed timeouts from excessive loads being placed on 

the cyber-physical interfaces. Given these failures are recorded as zero milliseconds 

during load testing, failed communications can be easily identified and filtered from 

successful communications.  

The fog interface did not record any failed communications for T1 to T4, successfully 

responding to 100% of requests for T1 (50,000 requests), T2 (100,000 requests), T3 

(250,000 requests) and T4 (500,000 requests). In contrast, while the cloud interface 

demonstrated comparable failure rates for T1 (0%), modest failures were evident for T2 
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(0.11%) and T3 (1.42%), with more substantial failures observed for T4 (6.6%). These 

findings highlight the suitability of fog computing where consistent and reliable cyber-

physical interactions are needed to support real-time engineering applications and 

scenarios (e.g. industrial control processes). Although cyber-physical cloud interfaces 

may facilitate industrial engineering systems and scenarios that are tolerant to occasional 

failures, those focused on Industry 4.0, real-time and self-optimising decision-making 

must naturally strive to minimise failed communications. 

 

 

Figure 65 Percentage of failed communications  

 
Scenario Fog (Failed) Fog (% of All) Cloud (Failed) Cloud (% of All) Failed Diff. (%) 

T1 @ 50 0 0.00% 0 0.00% 0.00% 

T2 @ 100 0 0.00% 112 0.11% 0.11% 

T3 @ 250 0 0.00% 3,556 1.42% 1.42% 

T4 @ 500 0 0.00% 32,994 6.60% 6.60% 

Table 34 Summary of failed communications for fog and cloud interfaces 

Figure 66 Percentage of executions exceeding 250 milliseconds illustrates the percentage 

of executions that exceeded the 250 millisecond performance target, while Table 35 

summarises measurements recorded for each execution scenario, with the best 

performing cyber-physical interface presented as the percentage difference of missed 

benchmark executions. Compared to previous analysis of consistency measurements 
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(e.g. failed communications), the 250 millisecond benchmark used for this analysis is 

somewhat arbitrary. This particular time constraint was initially chosen to match the 

time interval used for testing, with the intention of highlighting when execution cycles 

began to overlap (i.e. another response was sent before receiving the previous request). 

However, the target execution time can be changed where engineering scenarios possess 

a particular time constraint.  

The percentage of executions exceeding the 250 millisecond target for fog and cloud 

interfaces in T1 are practically equal, with the cloud interface exceeding the target on 

380 occasions (0.76%), and the fog interface missing the target on 270 occasions 

(0.74%). Similarly, the differences observed for T2 are somewhat modest, with the 

cloud interface exceeding the target on 942 occasions (0.94%), and the fog interface 

missing the target on 407 occasions (0.41%). However, the additional loads applied by 

T3 and T4 greatly increased the number of execution cycles that exceeded the 250 

millisecond target. Indeed, 66.85% of the fog interface’s executions exceeded the target 

for T3, compared to 5.33% using the cloud interface. These trends continued for the T4 

execution scenario, with 99.53% (fog) and 21.23% (cloud) of executions missing the 

250 millisecond target. While previous discussions relating to consistency (e.g. failed 

communications) focused on worst performing measurements, the benchmark analysis 

demonstrates how performance consistency can also be evaluated against specific time 

constraints (e.g. expected response time for industrial process control).  

 

 

Figure 66 Percentage of executions exceeding 250 milliseconds  
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Scenario Fog (Missed) Fog (% of All) Cloud (Missed) Cloud (% of All) Missed Diff. (%) 

T1 @ 50 380 0.76% 370 0.74% 0.02% 

T2 @ 100 407 0.41% 942 0.94% 0.53% 

T3 @ 250 167,116 66.85% 13,316 5.33% 61.52% 

T4 @ 500 497,665 99.53% 106,128 21.23% 78.30% 

Table 35 Executions exceeding 250 milliseconds for fog and cloud interfaces  

5.2.3 Summary of cyber-physical performance 

The performance analysis of fog and cloud cyber-physical interfaces illustrates some of 

the strengths and weaknesses of both approaches. In particular, industrial engineering 

applications dependent on raw compute performance (e.g. execution of complex 

machine learning models) may benefit from interfacing with the cloud, while those 

applications demanding consistent and reliable real-time execution (e.g. minimise failed 

communications) may choose to interface using the fog paradigm. Of course, many 

engineering applications shall require a mixture of both compute latency and 

consistency to satisfy requirements, which may be addressed by altering the hardware 

and software architecture of the underlying cyber-physical platform.  

Given the cloud interface utilised for load testing was based on public commercial 

cloud services, on-premises private cloud configurations could potentially reduce 

limitations relating to consistency and reliability. However, such configurations may 

negatively impact the computational capacity of the interface, with auto-scaling, on-

demand provisioning and data accessibility offered by large datacentres being diluted by 

in-house alternatives. Similarly, the underlying implementation supporting the fog 

interface could also be augmented to address observed limitations relating to compute 

power and capacity; 

 Clustering of embedded devices (e.g. Beowulf Cluster) enables processes to be 

distributed across multiple devices and executed in parallel, which increases the 

number of computational threads available to the request. 

 Load balancing can be employed to distributed requests to different 

embedded devices based on particular criteria (e.g. round-robin, idle device 

status etc.). Although load balancing shares similarities with clustering, these 

requests are executed in isolation, rather than as part of one parallel task. 
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 Technological advancement shall logically increase the compute capacity of 

embedded and internet-of-things devices year-on-year (e.g. Moore’s Law), and 

therefore, compute limitations associated with fog computing architectures are 

likely to dissipate in the medium to long-term. 

Considering the Industry 4.0 design principles focused on real-time operations and 

decision-making, industrial cyber-physical systems supporting engineering and control 

applications must strike the balance between performance and consistency. Although 

cloud interfaces have been primarily used to support cyber-physical system 

implementations, there are genuine limitations regarding consistency, reliability and 

external risk factors (e.g. broadband downtime). While the fog interface also possesses 

limitations in terms of compute capacity, the extent of such limitations can be reduced 

through design, engineering and innovation. In contrast, the inconsistency of the 

cloud’s real-time performance is asymptomatic of its underlying topology and 

architecture. Therefore, the decentralisation, flexibility and consistency offered by fog 

computing would appear suited to industrial cyber-physical systems supporting Industry 

4.0 engineering application and scenarios. 

5.3 Industrial analytics capability 

While the previous performance analysis focused solely on communication latency and 

consistency, the capability analysis presented in this section measures the broader 

impact of the implemented industrial analytics architecture (e.g. data integration, 

interoperability etc.). This capability analysis employs a maturity model to measure, 

compare and benchmark industrial analytics capabilities before and after the system 

implementation. Maturity models have been used to assess readiness and operating 

capabilities for Industry 4.0 [149], energy management [155], risk management [156], 

business intelligence [157], and data quality management [158], to name a few.  

The maturity model development process prescribed by De Bruin et al. [159] was used 

to design and build the model, which was given the name Industrial Analytics Maturity 

Model (IAMM). The development process consists of six sequential phases (Figure 67), 

with each phase characterising and shaping the model for its domain and application.  
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Figure 67 Model development phases [159] 

5.3.1 Development of maturity model 

PHASE 1 - SCOPE 

The scope phase defines model boundaries using predefined criteria (Table 36), which 

includes the model’s primary focus and stakeholders. A model’s focus can be domain-

specific or generic. Generic models are those that may be applied across different 

domains (e.g. quality), while domain-specific models are coupled to a particular scenario 

(e.g. software development). Groups of personnel or users that have a vested interest in 

the model’s creation are known as stakeholders. These stakeholders typically inform the 

model’s development, or benefit from its application. Common examples of 

stakeholder groups may include academia, practitioners, and government entities. 

Table 36 shows that the IAMM’s focus is domain-specific (i.e. embedded industrial 

analytics), with academic researchers and industry practitioners considered the primary 

stakeholders. These stakeholders can utilise the model to (a) illustrate current 

capabilities, (b) highlight areas for improvement, and (3) measure the impact of 

initiatives (i.e. positive/negative changes).  

Criteria Options Selection 

Focus of Model Domain Specific  

 General  

Stakeholders Academia  

 Practitioners  

 Government  

 Combination  

Table 36 Scope criteria selection for IAMM 

PHASE 2 – DESIGN 

The design phase defines the model architecture and application using predefined 

criteria (Table 37). These criteria provide a deeper understanding of (1) who will use the 

model, (2) why they need the model, and (3) how they can apply the model. A key 

aspect of the design phase was to manage the trade-off between domain accuracy and 
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The CMM has gained such global acceptance that high maturity scores are one of the requirements for accepting 

off-shoring partners.  The SEI has created six maturity models in total and has recently incorporated three legacy 

CMMs into one maturity model now named the Capability Maturity Model Integration – CMMI (Ahern et al. 

2004). Two other stand alone models include the People Capability Maturity Model and the Software 

Acquisition Capability Maturity Model. However, the SEI is not the only developer of methods to assess 

maturity. More than 150 maturity models have been developed to measure, among others, the maturity of IT 

Service Capability, Strategic Alignment, Innovation Management, Program Management, Enterprise 

Architecture and Knowledge Management Maturity. Unlike CMM which has reached the level of a compliance 

standard (Mutafelija and Stromberg 2003), most of these models simply provide a means for positioning the 

selected unit of analysis on a pre-defined scale.   

Whilst maturity models are high in number and broad in application, there is little documentation on how to 

develop a maturity model that is theoretically sound, rigorously tested and widely accepted.  This paper seeks to 

address this issue, by presenting a model development framework applicable across a range of domains.  Support 

for this framework is provided through the presentation of the consolidated methodological approaches, 

including testing, undertaken by two universities while independently developing maturity models in the 

domains of Business Process Management (BPM) and Knowledge Management (KM) respectively.  Throughout 

this paper, these models will be referred to as the Business Process Management Maturity (BPMM) model and 

the Knowledge Management Capability Assessment (KMCA) model.  This paper is structured so that the generic 

phases required for development of a general maturity model are identified first.  Next, each phase is discussed 

in detail using the two selected maturity models as examples. Finally, conclusions are drawn regarding the 

potential benefits from utilisation of such a model and limitations and future research are identified.    

DEVELOPMENT FRAMEWORK 

The importance of a standard development framework is emphasised when considering the purpose for which a 

model may be applied including whether the resulting maturity assessment is descriptive, prescriptive or 

comparative in nature.  If a model is purely descriptive, the application of the model would be seen as single 

point encounters with no provision for improving maturity or providing relationships to performance.  This type 

of model is good for assessing the here-and-now i.e. the as-is situation.  A prescriptive model provides emphasis 

on the domain relationships to business performance and indicates how to approach maturity improvement in 

order to positively affect business value i.e. enables the development of a road-map for improvement.  A 

comparative model enables benchmarking across industries or regions.  A model of this nature would be able to 

compare similar practices across organizations in order to benchmark maturity within disparate industries.  A 

comparative model would recognize that similar levels of maturity across industries may not translate to similar 

levels of business value.  It is argued that, whilst these model types can be seen as distinct, they actually 

represent evolutionary phases of a model’s lifecycle.  First, a model is descriptive so that a deeper understanding 

of the as-is domain situation is achieved.  A model can then be evolved into being prescriptive as it is only 

through a sound understanding of the current situation that substantial, repeatable improvements can be made.  

Finally, for a model to be used comparatively it must be applied in a wide range of organizations in order to 

attain sufficient data to enable valid comparison.  The proposed standard development framework forms a sound 

basis to guide the development of a model through first the descriptive phase, and then to enable the evolution of 

the model through both the prescriptive and comparative phases within a given domain.  Furthermore, we 

propose that, whilst decisions within the phases of this framework may vary, the phases themselves can be 

reflected in a consistent methodology that is able to be applied across multiple disciplines.  Figure 1 summarises 

the phases included in the generic framework. 

Design    Populate Test Deploy Scope Maintain 

 

Figure 1: Model Development Phases 

Whilst these phases are generic, their order is important. For example, decisions made when scoping the model 

will impact on the research methods selected to populate the model or the manner in which the model can be 

tested.  In addition, progression through some phases may be iterative, for example it may be a case of ‘design’, 

‘populate’ and ‘test’ and dependent upon the ‘test’ results, necessary to re-visit and adjust decisions made in 

earlier phases. The usefulness of this lifecycle model is best reflected by showing how it has been applied for the 

independent development of the BPMM and KMCA models.   
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model simplicity. Although simple models may abstract particular nuances of the 

domain, complex models can create user adoption challenges (e.g. time-consuming 

assessment process). 

The IAMM’s audience was classified as internal executives and management, given 

these personnel are typically invested in developing better insights, and improving 

efficiencies using industrial analytics. A self-assessment method controlled by staff 

members was chosen to measure capabilities, which would be driven by internal 

requirements, roadmaps and objectives (e.g. Industry 4.0), while incorporating multiple 

applications, perspectives and dimensions (e.g. engineering, automation, technology 

etc.) to evaluate maturity.  

Criteria Options Selection 

Audience Internal Executives and Management  

 External Auditors and Partners  

Method  Self-Assessment  

 Third Party Associated  

 Certified Practitioner  

Driver  Internal Requirement  

 External Requirement  

Respondents Management  

 Staff  

 Business Partners  

Application Single Entity / Single Region  

 Multiple Entities / Single Region  

 Multiple Entities / Multiple Regions  

Table 37 Design criteria selection of IAMM 

A maturity model structure and application can take two forms. First, models may 

employ a multi-level approach. Such models adhere to the continuous maturity 

principle, where dimensions of the model may assert different levels of maturity (e.g. 

engineering could be Level 5, while technology could be Level 3). This approach is 

useful when modelling multifaceted domains, and identifying operational strengths and 

weaknesses. Second, models may also employ a single-level approach. These models 

adhere to the staged maturity principle, which employs a single label to classify overall 

maturity (e.g. manufacturing facility Level 4). This approach suits scenarios where 
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natural linear progressions exist (e.g. beginner to advanced), and no details of composite 

capabilities are needed. 

Given multiple disciplines and dimensions that exist for industrial cyber-physical 

systems and industrial analytics (Table 38), the IAMM’s architecture utilises the 

dimensions of the industrial analytics lifecycle (Figure 42) to outline a multi-level 

approach. By using the primary dimensions of the industrial analytics lifecycle, the 

assessment process can compartmentalise criteria that directly affect different aspects of 

industrial analytics capabilities (e.g. industrial data integration).  

Dimension Levels Rationale 

Open Standards 10 Standards-based technologies and protocols are needed to 
promote interoperability between different stages in the 
industrial analytics lifecycle. 

Operation Technology 10 Operation Technology must support the systems and 
processes that facilitate the acquisition of industrial data in 
the factory. 

Information Technology 10 Information Technology must provide the infrastructure 
and technologies needed to support the transmission and 
processing of data between different areas of the industrial 
analytics lifecycle. 

Data Analytics 10 Data Analytics must possess the knowledge and skills 
necessary to model engineering problems that can be 
deployed in factory operations. 

Embedded Analytics 10 Embedded Analytics must facilitate the deployment of 
data-driven models in the factory to affect real-time 
decision-making across operations. 

Table 38. IAMM architecture and dimensions 

PHASE 3 – POPULATE 

The populate phase defines model components and subcomponents, which relate to 

different aspects of the domain’s capability being assessed. Such components may be 

identified using numerous formal methods, such as literature reviews, stakeholder 

interviews, surveys, and case studies, to name a few. Given multi-dimensional maturity 

models for measuring industrial analytics capabilities do not exist in literature, the 

IAMM was populated (Figure 68) using knowledge derived through interactions with a 

large-scale industrial partner (i.e. DePuy Ireland). The IAMM contains dimension 

components - (1) Open Standards, (2) Operation Technology, (3) Information 

Technology, (4) Data Analytics, and (5) Embedded Analytics, and capability 

subcomponents (highlighted blue) that describe processes and technologies considered 

important to the maturity of each dimension. 
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Figure 68. Industrial analytics maturity model architecture 

To evaluate the maturity of each dimension’s subcomponents, hypothesis statements 

(Table 39) are used to determine approximate truth. These types of statements enable 

practitioners to approximate maturity using an agreement scale (Yes=2, Partially=1, or 

No=0), which provides a simple method for scoring and measuring. In turn, the 

maturity level for each dimension can be derived by calculating the average score of its 

subcomponents.  

Code Component Hypothesis Statement 

D1.1 Devices & Network Protocols Devices and instrumentation in the factory are accessed 
using open technology standards. 

D1.2 Cloud-to-Factory Integration The factory floor is connected with cloud platforms 
using open technology standards. 

D1.3 Data I/O Acquisition Archived operational data can be queried using standard 
I/O interfaces. 

D1.4 Model Building Data-driven models are interoperable with other 
software, platforms and engines. 

D1.5 Model Scoring Production-ready data-driven models are accessed and 
scored using standard protocols. 

D2.1 Data Archiving All data points and measurements in the factory are 
archived in a central location. 
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D2.2 Data Accessibility Archived data is labelled, catalogued, identifiable, and 
directly accessible. 

D2.3 Cloud Integration Real-time operations utilize cloud computing for large-
scale data storage, processing or analysis. 

D2.4 Resource Provisioning New compute or technical resources are provisioned to 
support analytics efforts. 

D2.5 Response Time Basic provisioning and support requests relating are 
fulfilled in 24 to 48 hours.  

D3.1 Data Management Governance policies exist for cataloguing, storing, 
processing, and identifying data sources. 

D3.2 Large-scale Processing Scalable and robust architectures exist to support 
exponential increases in data throughput. 

D3.3 Pipeline Automation Manually data processing and cleaning routines have 
been automated using workflow pipelines. 

D3.4 Resource Provisioning New compute or technical resources are provisioned to 
support analytics efforts. 

D3.5 Response Time Basic provisioning and support requests relating are 
fulfilled in 24 to 48 hours.  

D4.1 Data Modelling Data transformation, wrangling and preparation activities 
are undertaken using our own statistical tools and 
libraries. 

D4.2 Line-of-Business Reporting Performance reporting and analysis is undertaken using 
productivity tools such as MS Excel. 

D4.3 Descriptive Analytics Basic data relationships and patterns are identified in 
each month using statistical software packages. 

D4.4 Advanced Analytics Predictive data-driven models are regularly built to 
inform decision-making. 

D4.5 Model Deployment Accurate data-driven models are always deployed to 
provide end-users with access to the new knowledge. 

D5.1 Domain Expertise Subject matter experts guide analytics investigations and 
questions relating to factory operations.  

D5.2 Operational Knowledge Subject matter experts informing analytics efforts always 
possess an intimate knowledge of the process being 
investigated. 

D5.3 Real-time Scoring Production-ready models are always deployed in the 
factory to positively impact real-time operations and 
decision-making. 

D5.4 Data Visualisation Knowledge contained in models is presented to end-
users in a manner that simplifies decision-making. 

D5.5 Performance Metrics Top-line metrics are used extensively in embedded 
analytics applications throughout the factory. 

Table 39 Industrial analytics maturity model assessment 

PHASES 4 TO 6 - TEST, DEPLOY AND MAINTAIN 

These phases relate to stakeholder feedback and model improvement protocols. The 

test phase engages stakeholders to determine if the model’s architecture sufficiently 

represents the domain, while deploy and maintain phases utilises stakeholder feedback 
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to continuously refine the model. Given the IAMM’s design, structure and 

completeness originated from real-world requirements and analysis activities described 

during the implementation, further testing the model’s alignment with the domain was 

not necessary. Therefore, these phases are somewhat superfluous to this analysis, but 

relevant to future work that should be undertaken by the industry partner. 

5.3.2 Threats to model validity 

The potential threats to the IAMM’s validity can be classified as (1) those generally 

associated with maturity models, and (2) those stemming from model-specific design 

decisions. Both types of threats are described in Table 40. 

Threat Discussion 

Accuracy Given IAMM focuses on approximating industrial analytics capabilities for 
comparison and benchmarking, accuracy was not considered a major issue. A 
greater threat relates to maintaining assessment consistency across longitudinal 
analysis. However, this challenge may be addressed by tightening assessment 
guidelines to ensure consistency between assessors, while also developing in-
house quality policies to validate the integrity of assessments.  

Scoring There is a natural trade-off between model granularity and usability. High-level 
models may omit details to simplify assessment, while low-level models may 
come with significant overheads that impede usability. IAMM adopts somewhat 
of a hybrid perspective, whereby a complete architecture guides assessment, but 
simplified scoring facilitates adoption. However, these trade-offs may be 
adjusted in future iterations of the model based on real-world feedback.  

Bias All maturity models are subject to design bias. This cannot be avoided given the 
level of interpretation involved in the initial model construction. To reduce the 
potential for researcher design bias, the IAMM architecture was formed using 
multiple operational perspectives acquired through industry partner 
engagement. In addition, iterative refinement and practitioner feedback should 
also facilitate the dilution of any design bias overtime. 

Coverage Given the potential complexity of modelling an entire domain, maturity models 
typically address specific maturity characteristics. IAMM focuses on operational 
dimensions related to cyber-physical systems and Industry 4.0, including 
technology convergences and industrial analytics capabilities. However, the 
criteria proposed to measure these capabilities during the design phase may not 
provide appropriate coverage of the domain. Although such gaps are largely 
unavoidable for new maturity models, gaps in domain coverage can be 
addressed when refining the model. 

Table 40 Summary of model validity threats  

5.3.3 Application of maturity model 

This section describes the deployment and application of the IAMM to measure the 

impact of the cyber-physical system on the industry partner’s industrial analytics 

capabilities. The impact was determined by undertaking capability assessments before 
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and after the cyber-physical system implementation. In addition to highlighting changes 

strengths and weaknesses relating to industrial analytics capabilities, the application of 

the IAMM also demonstrated the usefulness of the model for benchmarking capabilities 

across departments and facilities. 

ASSESSMENT PROTOCOL 

Figure 69 illustrates the assessment protocol used to measure industrial analytics 

capabilities. The diagram depicts assessment actions undertaken by three separate 

assessors in the outer section (i.e. score, reason etc.), before these actions were 

synthesised to determine capability scores for each dimension. The assessors comprised 

two academic researchers, and one automation engineer employed by the industry 

partner, which represent the intended domains of the IAMM (i.e. academia and 

industry). Table 41 summarises each step in this assessment protocol. 

 

Figure 69 Capability assessment protocol 
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Step Description 

Score Each assessor evaluated and scored the hypothesis statements (Table 4) before and after 
the implementation of the cyber-physical system. 

Reason For each assigned score, assessors were required to provide a textual description 
rationalising and justifying their decision. 

Code In addition to a description, assessors were required to explicitly label the industrial 
analytics lifecycle model to highlight where the capability improvement was realised. 

Discuss After scoring, reasoning and coding components of the IAMM, assessors presented their 
assertions, and the validity of these assertions were evaluated by the group. 

Synthesise Finally, individual assessments were synthesised during group discussions to form the 
final capability levels (i.e. before and after implementation). These unified capability 
results are presented and discussed in the following sections.  

Table 41 Capability assessment protocol 

Figure 70 illustrates the changes in industrial analytics capabilities, before and after the 

implementation of the industrial cyber-physical system. Although the facility’s 

traditional engineering, control and automation systems were state-of-the-art, the 

capability assessment highlighted gaps relating to the development, management and 

deployment of industrial analytics models, and the adoption of Industry 4.0 design 

principles (e.g. open standards). These gaps are discussed in the following sections. 

 

Figure 70 Comparison of industrial analytics capabilities 
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INDUSTRIAL ANALYTICS LIFECYCLE 

Figure 71 illustrates the industrial analytics lifecycle, with codes from Table 39 used to 

identify where particular improvements were observed. This lifecycle model depicts 

closed-loop data flows between multidisciplinary teams, which can be used to establish 

clear boundaries and responsibilities, and illustrate the primary data streams of 

importance to industrial analytics (i.e. batch and real-time streams). Batch streams are 

responsible for acquiring, cleaning and serving operational data to facilitate model 

creation and development, while real-time streams are concerned with embedding these 

models in real-world operations to inform timely decision-making (e.g. self-configuring 

industrial systems).  

As previously mentioned, the codes overlaid (e.g. D1.2) on the industrial analytics 

lifecycle correspond to the IAMM’s hypothesis statements (Table 39). These codes were 

attached during the assessment protocol, where assessors were required to explicitly 

highlight and rationalise assertions. The final codes presented indicate capability 

improvements were evident throughout most of the industrial analytics lifecycle.  

 

Figure 71 Coded analysis of industrial analytics lifecycle 
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OPEN STANDARDS 

Apart from operation technology (Figure 72), positive changes relating to standards 

were observed throughout the industrial analytics lifecycle. Although some standards 

were evident (e.g. OLE Process Control) for automation and controls, data and cloud 

integration was supported by proprietary commercial offerings, resulting in capability 

improvements for D1.2, D1.4 and D1.5. These particular improvements are discussed 

further in Table 42. 

 

Figure 72 Open standards comparison 

Component Rationale 

D1.1  
Devices & Network 
Protocols 

Some open standards (e.g. OLE Process Control) are currently used for building 
automation and control, but the cyber-physical system implementation does not 
target improvements at this level. Therefore, no capability changes were expected 
or recorded.  

D1.2  
Cloud-to-Factory 
Integration 

The industrial analytics lifecycle (Figure 71) shows Hypertext Transfer Protocol 
(HTTP) supporting factory-to-cloud integration. However, a cloud-based 
proprietary software library was used to support aspects of integration, and 
therefore the improved capability assigned was only deemed ‘partial’. 

D1.3  
Data I/O Acquisition 

OLEDB, ODBC and standard I/O streams could be used to access data 
repositories on the network. Similar to device standards, the cyber-physical 
implementation being assessed does not target improvements in factory-level 
I/O, and therefore, no capability changes were expected or recorded. 

D1.4  
Model Building 

Most of the analytics observed were part of commercial offerings, and did not 
appear to adhere to any open standards or practices. Indeed, there was no 
obvious means of accessing the data or model outputs from these systems or 
applications. Given the cyber-physical implementation employs the Predictive 
Modelling Markup Language (PMML) to encode, share and deploy industrial 
analytics models, full agreement with the assessment hypothesis statement was 
deemed appropriate. 

D1.5  There was no evidence of industrial analytics models being deployed or used in 
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Model Scoring real-time, and therefore no standards existed to support these operations. In 
contrast, the cyber-physical implementation utilises open web services to score 
PMML analytics models in real-time. These services are initiated using standard 
HTTP requests, while data exchanges are facilitated using machine-readable 
JavaScript Object Notation (JSON). Full agreement with the hypothesis 
statement was deemed appropriate given the comprehensive use of standards to 
support real-time model scoring. 

Table 42 Open standards assessment 

OPERATION TECHNOLOGY 

The positive changes observed for operation technology largely stemmed from 

increases in data accessibility and integration with cloud computing technologies (Figure 

73). Although these particular capability improvements were most evident for D2.2 and 

D2.3, descriptions for all assessment criteria are provided in Table 43. 

 

Figure 73 Operation technology comparison 

Component Rationale 

D2.1  
Data Archiving 

Given the cyber-physical implementation only interacted with the Building 
Management System (BMS), and these data points were already setup and 
configured to log every 24 hours, there were no obvious capability changes or 
improvements.  

D2.2  
Data Accessibility 

The current data repositories exhibited arbitrary naming conventions, and were 
largely inaccessible (i.e. resided on isolated PC). Therefore, the cyber-physical 
implementation improved accessibility by using a workflow to contextualise 
operating data, and making analytics-ready data centrally available to end-users. 

D2.3  
Cloud Integration 

There was no prior evidence of cloud integration, but the cyber-physical 
implementation integrated with cloud services to provide large-scale data 
processing capabilities.  

D2.4  
Resource Provisioning 

No policies or processes existed to provision tools or technologies for 
industrial analytics activities. Given the internal and corporate nature of such 
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capabilities, the cyber-physical implementation could not influence changes. 

D2.5 
Response Time 

More general policies (e.g. technology requisition) for provisioning resources 
did not provide prompt turnaround times. Given the technical nature of the 
industrial cyber-physical system implementation, such capabilities were not 
directly addressed or affected. 

Table 43. Operation technology assessment 

INFORMATION TECHNOLOGY 

Given few convergences existed between operation and information technology before 

the cyber-physical system implementation, many positive capability changes were 

observed (Figure 74). These improvements are discussed in Table 44. 

 

Figure 74 Information technology comparison 

Component Rationale 

D3.1 
Data Management 

While factory-level data repositories used arbitrary naming for data points, the 
implemented cloud repository (i.e. data lake) comprised tags describing the 
origin and application of the data. These tags formed a catalogue to identify 
data sources for mapping, cleaning and end-user lookups.  

D3.2 
Large-scale Processing 

Due to the cyber-physical system’s auto-scaling cloud configuration, data 
ingestion and workflow processes can scale to manage large datasets and 
interoperate with big data tools.  

D3.3 
Pipeline Automation 

A formal workflow processes facilitated the turnkey cleaning and 
transformation of operational data, resulting in the automatic production of 
analytics-ready data for both end-users and third party systems.  

D3.4 
Resource Provisioning 

The ability of cloud computing to deliver on-demand provisioning of compute 
and storage resources, meant the cyber-physical system was capable of realising 
seamless provisioning of services, which previously required internal personnel 
to undertake manual setup and configuration.  

D3.5 The on-demand and automatic provisioning enabled by factory-to-cloud 
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Response Time integration facilitated instant response times.  

Table 44 Information technology assessment 

DATA ANALYTICS 

The positive capability changes for data analytics were largely realised by automating the 

preparation of analytics-ready operational data, and facilitating the utilisation of 

different statistical software (Figure 75). These changes demonstrated capability 

improvements for D4.1, D4.3, D4.4 and D4.5. A broader discussion of these capability 

changes are presented in Table 45. 

 

Figure 75 Data analytics comparison 

Component Rationale 

D4.1 
Data Modelling 

Existing information systems were used to monitor and report operational 
data, but there was no evidence of advanced analytics models (e.g. machine 
learning) being used to inform decision-making. However, the cyber-physical 
system facilitated model building using R Studio and open source libraries to 
build a simple issue identification scenario, which formed the basis for testing 
the system’s underlying performance. 

D4.2 
Line-of-Business 
Reporting 

The current infrastructure employed ad hoc analysis using MS Excel and MS 
SQL to build historic reports (e.g. last week/month etc.). Given the cyber-
physical system did not target or affect line-of-business reporting, these 
capabilities remained unchanged.. 

D4.3 
Descriptive Analytics 

The cyber-physical system provided access to analytics-ready operational 
data, which could be consumed using statistical software capable of reading 
CSV formats. Therefore, these capabilities were largely improved by the 
availability and accessibility of operational data from the workflow engine. 

D4.4 
Advanced Analytics 

The cyber-physical system demonstrated advanced analytics capabilities by 
building, deploying and executing an issue identification model, using both 
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cloud and fog computing architectures.  

D4.5 
Model Deployment 

The cyber-physical system demonstrated the ability to deploy PMML 
encoded industrial analytics models to facilitate real-time scoring and 
operational decision-making. 

Table 45 Data analytics assessment 

EMBEDDED ANALYTICS 

The capability changes in embedded analytics stemmed from the ability to 

operationalise analytics models in the factory, enabling the real-time scoring of PMML 

encoded analytics models (Figure 76). This resulted in capability improvements relating 

to D5.1, D5.2, and D5.3. A broader discussion and rationale for these capability 

improvements are presented in Table 46. 

 

Figure 76 Embedded analytics comparison 

Component Rationale 

D5.1 
Domain Expertise 

The ability to incorporate subject matter expertise was facilitated by the industrial 
analytics lifecycle, where engineering knowledge relating AHU diagnostics was 
used to construct and encode an analytics model with PMML, which was later 
utilised to measure cyber-physical system performance. 

D5.2 
Operational 
Knowledge 

The observed analytics teams were comprised of individuals with backgrounds in 
statistics, maths, and physics, with an under appreciation for engineering and 
domain knowledge pertaining to factory operations. Given the multidisciplinary 
design methodology and implementation strategy underpinning the cyber-
physical system, there is a natural focus on the integration of operational and 
domain knowledge with technology. 

D5.3 
Real-time Scoring 

The operationalisation and real-time scoring of industrial analytics models did 
not form part of existing operations. After the cyber-physical system 
implementation, software agents embedded in the factory possessed the ability to 
obtain continuous data streams from PLC’s, and score PMML encoded analytics 
models in real-time.  
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D5.4 
Data Visualisation 

A couple of information dashboards and software systems in the factory 
reported historical operational data (e.g. energy usage). However, the cyber-
physical system did not extend these capabilities, and therefore, data visualisation 
capabilities were unaffected. 

D5.5 
Key Performance 
Metrics 

Existing operational teams employed metrics to gauge performance and 
efficiencies (e.g. production output to energy utilisation). Given the cyber-
physical system did not enhance or inform these metrics, there was no observed 
capability change. 

Table 46 Embedded analytics assessment 

5.3.4 Summary of capability assessment 

There are many challenges associated with developing and improving industrial analytics 

capabilities. Common challenges include managing heterogeneous technologies and 

platforms, forming multidisciplinary teams, and defining prescriptive approaches, to 

name a few. These challenges are exacerbated further where no methods exist to 

evaluate current capabilities, or strategically identify areas for improvement (e.g. 

technical roadmap). Thus, the IAAM maturity model was designed to measure the 

impact of the cyber-physical system on industrial analytics capabilities. The results 

presented in this chapter showed positive improvements across several maturity 

dimensions, which should be expected given the lack of analytics operations or 

infrastructure before implementation. The measured improvements for industrial 

analytics capabilities are outlined below; 

 Open standards were previously neglected in favour of proprietary commercial 

technologies, which reduced the interoperability and accessibility needed to 

support Industry 4.0 scenarios. In contrast, the demonstrated implementation 

introduced open technology standards to support data encoding (e.g. JSON) 

and transmissions (e.g. HTTP), meaning communication and integration with 

other systems and services could be realised more efficiently. 

 Factory-to-cloud integration was not evident during the initial capability 

assessment, with corporate virtual machines chosen to provide additional 

compute capacity. However, this strategy suffered from slow provisioning and 

approval processes, while scaling and altering configurations were manual 

endeavours. The demonstrated implementation leveraged the public cloud to 

overcome these challenges, and deliver a more seamless analytics pipeline to 

support data preparation, exploration and model building. 
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 Real-time industrial analytics using advanced predictive models (e.g. machine 

learning) were not used to inform timely decision-making, but some commercial 

software systems (e.g. BMS and MES) provided summary statistics and metrics 

to relay operating states. The implementation provided an automated analytics 

pipeline to build predictive models, and delivered the infrastructure enabling 

model deployment to the factory. This provided the facility with an open, 

efficient and streamlined process for embedding real-time industrial analytics. 

The value of capability assessments becomes apparent over time. Therefore, capability 

assessments should not be considered isolated events, but rather as something that 

belongs to a longitudinal process that continuously monitors, improves and compares 

capability levels. In turn, this process naturally produces benchmarks for comparing 

capabilities across departments and facilities, while also demonstrating improvements 

and advancements to management. Although the IAMM provides a foundational 

framework to support capability assessment, facilities should extend and customise the 

model’s architecture as needed. The proposed model does not proclaim to capture 

every dimension and aspect of industrial analytics, and therefore, refinements and 

extensions are encouraged to enhance representation of the domain.  

5.4 Chapter conclusions 

This chapter presented results pertaining to the real-time performance of cyber-physical 

interfaces using fog and cloud computing approaches, and an evaluation of the broader 

industrial analytics capabilities (e.g. interoperability, integration etc.) from the cyber-

physical system implementation. These results served to highlight many positive 

changes relating to open standards, data processing, and real-time scoring, while also 

discussing the merits of fog computing as an implementation approach for industrial 

cyber-physical systems. 
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6.1 Chapter introduction 

This chapter presents the concluding remarks and insights from this research. The 

following sections contemplate how the characteristics and operations of the industrial 

partner informed the researcher’s perspective of real-world smart manufacturing 

adoption efforts, and how this research identified and addressed theoretical and 

technical gaps that were observed within this real-world environment.  

This thesis contributes to knowledge through the presentation of theoretical and 

technical artefacts that support the design and implementation of industrial analytics 

solutions in the context of Industry 4.0. The individual contributions presented include 

the (1) unified design methodology to provide multidisciplinary teams with a formal and 

consistent design process, (2) industrial data pipeline to automate industrial data 

integration and cleaning to reduce the effort and complexity associated with data 

preparation, and (3) industrial cyber-physical system based on fog computing architecture to deploy 

and embed machine learning models within real-time factory operations.  

6.2 Insights from industrial collaboration 

This research commenced at a time when awareness and overall interest in smart 

manufacturing and Industry 4.0 was modest compared to present day. Due to the 

limited body of knowledge at that time, many of the industrial partner’s smart 

manufacturing initiatives appeared to follow technology-first approaches, without 

thoroughly considering domain requirements, formal methods, or industry standards 

that may support Industry 4.0 adoption. Thus, many aspects of this thesis were guided 

by the idea that Industry 4.0 efforts should embrace guidelines and requirements, which 

directly influence technology development, selection and deployment using quantitative 

and qualitative measurements. Table 47 describes some of the main internal 

perspectives and approaches observed through industry engagement, with research 

notes/commentary that consider how some of these perspectives may conflict with 

Industry 4.0 principles and operations. 
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Dimension Internal perspective and assumptions Researcher’s perspective and observations 

Big Data  Equipment throughout the factory consistently logs data 

 Integrating with operational systems and data sources is not complex 

 Operating insights can be derived by placing many datasets in a single location 

 Data logging and integration tasks were generally overlooked, but consistently presented the greatest 
impediment to delivering internal analytics and reporting projects. 

 Oversimplifying the process of deriving operational insights may be attributed to the background of the 
personnel that formed the analytics teams. 

 Given most of the industrial data sources encountered onsite were less than a couple of Gigabytes in size, 
the pressing need for big data systems and pipelines seems premature. 

Cloud 
Computing 

 Public cloud computing providers will not be permitted by corporate governance 

 Private cloud computing platforms are equivalent to public offerings 

 Internal technology personnel were not well-informed about the public cloud (e.g. AWS) 

 Choosing to ignore the auto-scaling, managed services and technical support provided by public cloud 
providers could greatly increase the cost of producing Industry 4.0 infrastructures and applications. 

Centralised 
Database 

 Time-series data generated by equipment and processes from across all of the 
organisation’s manufacturing facilities should be stored in a single centralised 
relational database  

 Technology personnel promoted the idea that existing relational databases in the 
facility were both infinitely scalable and real-time capable 

 Existing information and operation technology teams did not believe any additional 
skills or knowledge were required to facilitate smart manufacturing operations 

 Choosing to employ a centralised database to support smart manufacturing operations across 
geographically distributed sites would appear to violate Industry 4.0 design principles relating to 
decentralisation, while also introducing many practical problems related to reliable real or near-time 
communications. 

 Critical questions relating to upper operating capacity, fault tolerance and scaling strategies were largely 
ignored, which is likely to result in the accumulation of technical debt.  

 Discussions relating to data persistence, querying and processing did not employ definitive use cases and 
operating scenarios to inform decision-making. 

Data Analytics  Current factory operations employ advanced data analytics 

 Existing industrial systems include the analytics needed for smart manufacturing 

 Any future gaps in analytics capabilities can be overcome by off-the-shelf software 

 Confusion between visualisation, summary statistics, and predictive analytics 

 A shared and common understanding of data analytics does not exist between teams, which can create 
some friction when agreeing technical roadmaps, software adoption etc. 

 Recruitment of analytics personnel appeared to be biased towards those with maths and physics 
backgrounds, while overlooking those with engineering and computing subject matter expertise. The 
potential issues with such policies would appear to be (a) finding problems to solutions that already exist 
(e.g. computer vision for identifying defect parts), and (b) not possessing the skills/knowledge to 
operationalise the analytics models. 

Embedded 
Analytics 

 Not currently focused on applying analytics models to real-time operations  Overlooking the importance of embedded analytics shall naturally reduce the return-on-investment of data 
analytics efforts. 

 By not ensuring data and embedded analytics efforts can converge, the development and accumulation of 
knowledge from data analytics has poor utility in the context of smart manufacturing operations.  

Openness & 
Integration 

 Technical and analytics efforts by different teams will converge naturally 

 Current technical and analytics outputs are ‘easily’ extended/changed 

 Challenges that arise in the future can be solved through software purchases 

 Industrial operations are based on open and consistent standards 

 Technical and analytics initiatives relating to smart manufacturing adoption were generally oversimplified, 
with many important design and implementation decisions overlooked in favour of reported progress. 

 Although some standards were evident, there was no strong commitment to encourage openness and 
standards across technical or analytics projects. 

 Proprietary commercial software and systems would appear to dominate the facilities decision-making. 

Table 47 Primary research notes and observations that influenced research efforts 
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The initial research direction set by the industry partner focused on the use of 

centralised cloud and big data platforms to store, process and analyse data for smart 

manufacturing operations. Although centralising operational data may be beneficial for 

many scenarios (e.g. data warehousing, reporting etc.), pursuing an entirely centralised 

approach for smart manufacturing appeared to conflict with several design principles 

associated with Industry 4.0 (e.g. decentralised operations and real-time decision-

making). However, such conflicts were not identified by internal teams given these 

initiatives were not subject to feedback or acceptance testing aligned with these 

principles, which naturally promotes poor technology alignment and/or subjective 

success criteria. While one could not say with absolute certainty why internal teams 

resisted testing assumptions or measuring feedback using relevant methods, these 

approaches could be driven by concerns or uncertainty relating to interdisciplinary 

topics, and/or inadequate understanding of emerging Industry 4.0 design principles or 

requirements. 

In the context of the operating teams encountered during this research, there was no 

significant agreement or universal understanding of the technologies relevant to smart 

manufacturing, or how these technologies will ultimately be applied to real-time factory 

operations. Although some consensus (e.g. technology preferences) was evident 

between different teams, individual disciplinary bias invariably contributed to debate 

around roadmaps, milestones and prioritisation. Indeed, insufficient interdisciplinary 

expertise and collaboration could prove to be one of the most significant barriers to 

smart manufacturing adoption within the facility. Being aware of such potential barriers 

and conflicts provided this research with the opportunity to define formal methods that 

may unify some of these disparate perspectives, and demonstrate an approach for 

developing and deploying predictive machine learning applications under the umbrella 

of an industrial cyber-physical system, while incorporating relevant Industry 4.0 design 

guidelines and best practices.  

Some of the internal perspectives promoting the notion that plug-and-play solutions 

will eventually be used to enable smart manufacturing operations would appear to be 

unrealistic. As the field matures there will invariably be many engineering and 

technology building blocks, but facilities must also appreciate that much of the promise 

of smart manufacturing relates to the discovery of new knowledge and methods, which 

in many instances will be derived from their own proprietary processes. Hence, to 
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achieve these particular competitive advantages facilities must still commit to managing 

their growing operational data, training and upskilling personnel, and implementing 

appropriate infrastructures, technologies and communications for Industry 4.0.  

6.3 Impact of primary research contributions 

Given the aforementioned state of Industry 4.0 initiatives centred on engineering 

informatics, the primary high-level objectives of this research centred on producing 

interdisciplinary guidelines to support the design and development of industrial analytics 

systems to enable industrial machine learning applications. Figure 77 highlights the 

design and implementation dimensions for industrial analytics and cyber-physical 

systems that were impacted by the contributions from this thesis. The following 

sections summarise and conclude how these contributions facilitated changes to design 

and implementation approaches. 
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Figure 77 Comparison of current and proposed industrial analytics approach 

6.3.1 Industrial analytics design methodology 

A unified design methodology to promote the development of industrial analytics 

capabilities was presented as one component of this thesis. This design methodology 

promoted a bottom-up approach for designing information systems and architectures to 

support data-driven Industry 4.0 applications, and provided engineering and technology 

teams with a shared perspective of the industrial analytics lifecycle. The proposed 

lifecycle created an awareness of the distinct roles and data flows pertaining to factory 

operations, while also highlighting pertinent acceptance criteria in the form of Industry 

4.0 design principles, corporate stakeholder concerns and functional requirements.  
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PERSPECTIVE 

The perspective dimension refers to design concerns of those developing the industrial 

analytics infrastructure, with current approaches embodying design perspectives from 

specific disciplines (e.g. technology, process engineering etc.). Given the teams focused 

on Industry 4.0 initiatives were comprised of qualified and experienced personnel, the 

overriding perspectives of each team tended to closely follow the discipline-specific 

perspective held by the majority. This type of dynamic proved largely counterproductive 

when trying to establish facility-wide viewpoints with regard to progressing Industry 4.0 

and industrial analytics capabilities. However, the development and application of the 

unified design methodology presented in this research provided internal teams with a 

shared multidisciplinary perspective for implementing industrial analytics and cyber-

physical systems. After creating, presenting and applying the unified design 

methodology, existing operational teams were introduced to the conceptual industrial 

analytics lifecycle model to promote multidisciplinary perspectives, which served to; 

 Classify primary teams and disciplines. Although teams were aware of each 

other’s existence, there were no prominent methods for information sharing or 

collaboration. In addition, some teams possessed the freedom to redefine 

themselves in response to trends, which invariably resulted in unintended 

overlaps and duplication between these teams (e.g. multiple ‘big data’ teams 

emerged during the first 12 months of this research). To prevent these overlaps 

from occurring in the future, the lifecycle model classified the primary teams 

and disciplines needed to deliver industrial analytics in the factory, which 

provided each team with an opportunity to commit to fulfilling a particular role 

based on their domain expertise, and encouraged teams to collaborate rather 

than address every problem (e.g. engineering, big data, machine learning etc.). 

 Highlight logical connections between teams. In addition to classifying 

teams and disciplines, the lifecycle model highlights logical relationships and 

connections between systems and processes managed by each team. These 

connections depict how data flows throughout the factory, while also identifying 

technical components needed to bridge gaps in current connectivity, integration, 

contextualisation and interoperability. This enabled each team to be more aware 

of the teams they should be collaborating with to realise a more cohesive and 
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unified approach to industrial analytics, and emphasised to some extent how 

changes to existing systems and processes may impact other teams. 

 Outline primary responsibilities for each team. Although most personnel 

were aware of which teams were responsible for traditional systems and 

processes (e.g. energy management system), much ambiguity and disagreement 

was evident when discussing contemporary information systems and processes 

(e.g. big data processing). Thus, many teams appeared to be overly ambitious 

regarding the breadth of technology and analytics challenges they were 

addressing, which one could argue negatively impacted the demonstrated and 

quantified outputs from these teams. The lifecycle model provided some 

boundaries regarding the responsibilities of each team, with the intention of 

encouraging cross-team collaboration, and providing guidelines to determine 

which teams should take ownership of contemporary systems and processes as 

they emerge in the factory. 

PROCESS  

The process dimension relates to the underlying methods and approaches informing the 

design of systems delivering industrial analytics for Industry 4.0, with current 

approaches adopting ad hoc practices and procedures, while the proposed approach 

promoted the idea of formal and systematic methods. Based on interactions with the 

industry partner’s internal teams, there were few instances of formal or systematic 

approaches supporting the design or implementation of Industry 4.0 information 

systems. The formal processes adopted by some teams (e.g. Lean or SCRUM) were 

general-purpose process models, and therefore did not possess specific details to 

prescribe, guide or evaluate the design of Industry 4.0 systems. Hence, the design 

methodology presented in this research provided greater prescription to guide design 

and implementation efforts, which served to; 

 Connect conceptual, software and implementation models. The design 

decisions for Industry 4.0 and related systems were modelled internally at 

different levels of abstraction, with corporate/management producing high-level 

conceptual models, and engineering/computing focused on lower-level design 

and implementation models. In addition to differing abstractions, these 

modelling approaches also possessed unique vocabularies and symbols, which 

served to obfuscate requirements and ideas. Although enforcing a single 
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modelling language or process was considered internally, the natural resistance 

from staff and potential negative impacts on operations were deemed too great 

to enact change. Thus, the unified design methodology provided an alternative 

approach to connect, extract, and integrate design details from conceptual, 

software and implementation models, without forcing disparate internal 

stakeholders to move from their existing modelling activities. 

 Prescribe fundamental acceptance criteria for Industry 4.0 initiatives. The 

internal teams responsible for developing information systems, emerging 

technologies, and data analytics to support Industry 4.0 operations, were largely 

focused on the discovery and exploration of technologies, with less attention 

given to the general requirements and concerns for Industry 4.0, which should 

naturally inform and govern technology selection. Therefore, to increase 

awareness and encourage teams to consider technologies and systems in the 

context of Industry 4.0, the unified design methodology prescribed and 

highlighted acceptance criteria observed through interactions with stakeholders 

in the facility, and those evident in the literature. 

ARCHITECTURE 

The architecture dimension references the technical components comprising the 

proposed industrial analytics infrastructure, with current approaches commonly utilising 

hierarchal technology layers (e.g. ISA-95), while the proposed approach considers how 

these technical components can form a natural closed-loop lifecycle. Although many 

arguments can be made relating to architectural decisions, the lifecycle architecture was 

proposed to provide designers and stakeholders with some context regarding the 

positioning of systems and technologies, while also demonstrating the importance of 

making analytics and intelligence accessible to factory operations. A more definitive and 

prescribed lifecycle architecture was deemed necessary after observing numerous 

discussions between internal teams failing to produce a consensus regarding the 

position of information and control systems in the ISA-95 reference model. Thus, the 

unified design methodology from this research proposed the notion of an industrial 

analytics lifecycle, which served to; 

 Classify data flows throughout the factory. The industrial information 

systems observed within the facility (i.e. building management system and 

related controllers) demonstrated loose data management and governance 
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practices, which resulted in significant amounts of time being used to discover 

and access data repositories. To demystify some of the intertwined and complex 

relationships impeding data discovery, the unified design methodology classified 

(a) the ownership of data sources and systems using the identified operating 

teams, and (b) the communication latency of each source and system. These 

classifications provided stakeholders with a common understanding of data 

ownership and information flows throughout the factory, while also giving 

some context to batch and real-time processes.  

 Highlight the lack of embedded intelligence. Before the introduction of the 

unified design methodology, the perceived view of architecture followed one 

depicting hierarchal technology layers, where data moved from the factory floor 

at the bottom layer, to enterprise and reporting systems residing in the top 

layers. Although there is nothing inherently wrong with such hierarchical 

perspectives, in this instance the intelligence and insights derived at the top 

layers were disconnected from factory operations. Hence, the unified design 

methodology proposed the idea that architecture could be designed around the 

lifecycle of data flowing through the factory, and data-driven intelligence 

incorporated in real-time operations (e.g. energy).  

GUIDELINES 

The guideline dimension refers to the development of high-level design requirements 

and ideologies for the industrial analytics infrastructure, with current approaches 

influenced by internal organisation-level policies, guides and personnel, while the 

proposed approach encourages the use of Industry 4.0 design principles. In most 

instances, the observed Industry 4.0 initiatives utilised existing policies and procedures 

governing the application of technology (e.g. use of public cloud providers was not 

permitted). Of course, these guideline pre-dated Industry 4.0 and smart manufacturing 

endeavours, which naturally meant specific requirements or characteristics associated 

with Industry 4.0 could be easily overlooked. An investigation of these emerging 

requirements within the literature, highlighted some conflicts with internal policies and 

guidelines, including the inability of systems to (a) automatically scale up or down based 

on-demand, (b) embed advanced analytics in factory operations, and (c) deliver systems 

that are open and non-proprietary, to name a few. Thus, the design methodology 
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addressed these conflicts by describing and encouraging guidelines aligned with core 

Industry 4.0 design principles and concerns, which served to; 

 Created an awareness of Industry 4.0 design principles. Before the unified 

design methodology was proposed, internal teams were not aware of the 

emerging design principles pertaining to Industry 4.0. These design principles 

focused and provided context to team-level discussions around industrial 

analytics, systems and processes, which were being considered as part of the 

partners overall technical roadmap. 

 Highlight potential shortcomings of existing guidelines. The emerging 

design principles and requirements for Industry 4.0 enabled internal teams to 

reflect on previous and on-going projects, and highlight where certain 

shortcoming in existing guidelines potentially conflicted with Industry 4.0 

alignment. One notable guideline that was reversed during these discussions was 

the use of the AWS public cloud platform, which could provide significantly 

more on-demand compute capacity than the corporate private cloud. 

EVALUATION 

The evaluation dimension relates to the procedures used to assess industrial analytics 

systems and capabilities, with current approaches focused on commercial technology 

acquisition and feature availability, while the proposed approach encourages the use of 

performance metrics and assessments. There were no formal evaluation methods 

governing the acceptance of Industry 4.0 technologies and systems, and therefore 

internal evaluation methods were somewhat subjective and ad hoc. These evaluations 

focused on comparing planned and implemented features, with successful evaluations 

implying the implemented systems were delivered as planned. Although such 

evaluations denote successful implementation, they overlook the general real/near-time 

performance requirements for Industry 4.0. Thus, the unified design methodology 

introduced the notion that industrial cyber-physical systems (and similar) supporting 

Industry 4.0 operations should be subject to real/near-time performance analysis and 

evaluation, which may be undertaken pre-implementation using simulation, or post-

implementation using real-world stress testing. The definition of performance and 

acceptance criteria to evaluate systems supporting Industry 4.0 served to; 
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 Introduce multidimensional performance for Industry 4.0. This evaluation 

and acceptance criteria ensured fundamental concerns were considered during 

the design process, which incorporated Industry 4.0, corporate stakeholder, and 

functional concerns. These concerns provided some context upon which to 

evaluate successful designs and implementations, while also encouraging 

participants to develop a greater appreciation for concerns outside their core 

discipline and/or perspectives. 

 Quantify assessment of industrial analytics capabilities. The introduction 

of the industrial analytics maturity assessment arose from the inability of 

internal teams to objectively measure current capabilities, or describe the impact 

of particular design/implementation changes. Hence, the maturity model 

presented in this provided a tool to measure and compare capabilities, such as 

openness, factory-to-cloud integration, and real-time analytics. Although there 

are many directions and applications for the tool, the maturity model has been 

used by internal teams to investigate the value of projects that are not bound to 

hard engineering applications (e.g. frameworks, architectures etc.). 

6.3.2 Implementation of industrial analytics architecture 

A fog computing architecture was used to implement the industrial cyber-physical 

system and enable real-time embedded machine learning model execution, while a more 

common cloud computing architecture was used to develop an industrial data pipeline 

to support batch data integration, processing and exploration. The performance analysis 

of fog and cloud cyber-physical interfaces illustrated some of the strengths and 

weaknesses of both approaches. In particular, industrial engineering applications 

dependent on raw compute performance (e.g. execution of complex machine learning 

models) may benefit from interfacing with the cloud, while those applications 

demanding consistent and reliable real-time execution (e.g. minimise failed 

communications) may choose to interface using the fog paradigm. Of course, many 

engineering applications shall require a mixture of both compute latency and 

consistency to satisfy requirements, which may be addressed by altering the hardware 

and software architecture of the underlying cyber-physical platform.  
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INTELLIGENCE  

The intelligence dimension refers to where the primary computation and decision-

making is undertaken in the factory, with current approaches favouring central 

intelligence and processing (e.g. service residing on cloud server), while the proposed 

approach encourages decentralised intelligence and processing (e.g. services embedded 

on the edge). In the context of this research, the data processing, reporting and 

manufacturing intelligence produced by the building management systems was 

performed on a centralised server, with informed decision-making regarding energy 

performance and optimisation dependent on access to the server. In addition, other 

industrial information systems encountered during the general investigative stages of 

this research (e.g. manufacturing execution system) exhibited the same intelligence 

characteristics.  

Although this research does not claim centralised intelligence should be considered a 

negative trait, such computation does not naturally align with Industry 4.0 design 

principles and requirements pertaining to decentralised and autonomous decision-

making, where consistent, secure and reliable connections to central servers and 

resources may not be feasible due to the increasing number of disparate devices, sensors 

and technologies distributed across networks-of-networks. Thus, the industrial cyber-

physical system implemented during this research investigated the potential use of 

fog/edge processing to embed predictive machine learning models in real-time factory 

operations. 

WORKFLOWS 

The workflow dimension relates to the data processing activities needed to support the 

development and deployment of industrial analytics models, with current approaches 

depending heavily on manual activities, while the proposed approach encourages 

automated and scalable data processing workflows. Although somewhat trivial when 

observing from a high-level, the time and cost associated with industrial data acquisition 

and cleaning represented significant portions of project effort. These substantial efforts 

were required to (a) identify owners of each data source, (b) verify data was actively 

logging on a day-to-day basis, (c) implement the necessary tools and/or protocols to 

acquire the necessary data, and (d) transform the acquired data to a consistent and 

analytics-ready state.  
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Based on observations during this research, these individual workflow tasks required 

much discussion, investigation and implementation to resolve. While these tasks may be 

unavoidable due to different technology permutations, or the need for human 

engagement on-site (e.g. data owners), the manual approach employed by engineering 

and analytics teams meant efforts were typically duplicated across projects. Thus, the 

industrial data pipeline supporting factory-to-cloud integration automated the ingestion, 

processing and serving of analytics-ready data. 

TECHNOLOGY 

Technology describes behaviours towards technology adoption, with current 

approaches utilising commercial and proprietary solutions, while the proposed approach 

adopts the ideology of open and standards-driven technology. No policies regarding 

technology openness were evident during the research, with those technologies and 

systems encountered typically appearing closed or proprietary, which naturally impedes 

opportunities for integration and interoperability with third-party systems and data 

consumers. However, classifying systems using different levels of openness can be 

obfuscated where on-site administrators possess insufficient system knowledge, which 

may result in open and/or standard interfaces not being presented.  

In the case of the building management system used in this research, the commercial 

software vendor did not expose an open or standard interface for third-party 

applications, which meant energy insights (e.g. excessive use of compressed air) could 

not be seamlessly integrated with other systems and processes relevant to optimising 

and maintaining energy operations in the factory. Such closed systems conflict with 

Industry 4.0 principles encouraging the use of openness and standards, and therefore 

can impede facilities from developing a technology ecosystem that supports smart 

manufacturing operations. Therefore, the industrial cyber-physical system implemented 

during this research sought to demonstrate how openness and/or standards can be 

considered at different layers, from industrial protocols (i.e. OPC-UA) for data 

acquisition, to encoding embedded machine learning models (i.e. PMML) for real-time 

predictive analytics. 

INTEGRATION 

Integration refers to the methods underpinning system interconnectivity and 

interoperability, with current approaches depending on custom and ad hoc integration 

routines, while the proposed approach considers the application of standard 
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programmatic interfaces. The data integration approaches used across analytics and 

Industry 4.0 projects were largely inconsistent, and employed different tools, protocols 

and processes. Given the lack of uniformity relating to data integration, these methods 

were classified as ad hoc and custom integrations. In addition to the risk of duplicating 

data integration routines, the sporadic adoption of different integration tools introduced 

additional overhead in terms of (a) upskilling and training of staff, and (b) creating 

dependencies on particular integration tools (i.e. changing data integration tools may 

stop another application from working correctly). Thus, the industrial data pipeline and 

cyber-physical system implementations presented in this research employed web service 

interfaces to standardise data requests for energy data. 

ANALYTICS  

The analytics dimension relates to the delivery and usage scenarios for industrial 

analytics models, with current approaches applying analytics on batch (i.e. historic) 

operational data from standalone computers, while the proposed approach promotes 

the use of embedded industrial analytics in the factory to positively affect real-time 

decision-making and operations. The internal analytics teams engaged during this 

research used statistical software applications (e.g. R or SAS) for data exploration and 

predictive modelling, and business intelligence applications (e.g. Tableau or Qlikview) 

for data summary and visualisation. One of the main issues identified with these 

standard analytics operations related to the inadequate throughput of operational 

insights to the factory, which must be facilitated to enable (a) timely human-assisted 

decision-making, and (b) automated machine-to-machine decision-making. Although 

developing data-driven insights using desktop applications forms an important part of 

the analytics process, for Industry 4.0 scenarios these insights must be accessible to real-

time factory operators and systems to deliver results (e.g. energy savings). Thus, the 

overall industrial analytics architecture and energy fault detection scenario demonstrated 

how traditional analytics processes for model building (i.e. data pipeline), could be 

integrated with embedded real-time analytics (i.e. cyber-physical system) to deliver 

insights to factory-level operations. 

6.4 Scope and limitations 

Given the pervasiveness of both smart manufacturing and industrial cyber-physical 

systems, the contributions and implementations presented in this research were aligned 
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with the resources and timeframe available. The following points highlight some of the 

more prominent limitations of this research;  

 Review methods and process: given the inconsistent research themes and 

multidisciplinary influences relating to industrial analytics and cyber-physical 

systems for Industry 4.0, the broad review methods and processes were adopted 

with the intention of creating a well-rounded understanding of the factors that 

may influence design and implementation. Although systematic mapping and 

review processes are appropriate for underdeveloped fields, there is an inherit 

trade-off in the depth that can be delivered on one particular topic.  

 Predictive engineering applications: although cyber-physical systems may 

incorporate different forms of analytics and simulation models, this research 

focused exclusively on predictive engineering applications that employ machine 

learning methods, and how these applications could be integrated with industrial 

cyber-physical systems and processes.  

 Machine learning implementations: the perspective that industrial predictive 

analytics resides within the machine learning domain was adopted by this 

research. However, the focus on machine learning was primarily driven by 

industry interest relating to the technology, and its adoption does not aim to 

discount the usefulness or applicability of traditional statistical methods, or 

future artificial intelligence approaches. In addition, such scope refinement was 

also important to facilitate the development and deployment of a real-world 

industrial cyber-physical system.  

 Industrial energy operations: the deployment and testing of the industrial 

cyber-physical system utilised energy operations in the factory, and more 

specifically the identification of operational issues within an AHU. This area of 

operations was chosen for two reasons. Firstly, energy information systems and 

databases were of good quality and maintained regularly. Secondly, internal 

governance policies did not significantly restrict access to these energy 

information systems and databases.  

 Communication interfaces: given the reasonable quality of energy 

information systems and databases, the implemented industrial cyber-physical 
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system only needed to support a subset of potential device and file-based data 

sources (i.e. SQL and OPC-UA). However, the need to manage large and 

obscure libraries of communication interfaces shall continue to decrease as 

more high-level protocols and interfaces are adopted, with OPC-UA receiving 

significant industry support for ISA-95 and RAMI 4.0 specifications. 

6.5 Future work 

The knowledge and insights generated from this research have formed the basis of an 

Enterprise Ireland commercialisation project, which will extend the fog computing 

industrial cyber-physical system concept as a commercial platform to share and deploy 

production-ready machine learning models across industry. The primary advances from 

this future research include; 

 Interchangeable cloud and fog interfaces: implementation of expert rules to 

determine when the industrial cyber-physical system should use (a) fog 

interfaces, or (b) cloud interfaces to execute machine learning models (e.g. use 

the cloud for more intensive computation when latency constraints are loose). 

 Industrial analytics marketplace: development of an industrial analytics 

marketplace that enables ‘one-click’ deployment of PMML-encoded machine 

learning models, whereby researchers and third-party developers can license 

production-ready models to large-scale manufacturing facilities. 
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Appendix A – Activity Diagrams 

Collect data activity diagram 

 

Figure 78 Activity diagram for collect data use case 

Transmit data activity diagram 

 

Figure 79 Activity diagram for transmit data use case 

Store data activity diagram 

 

Figure 80 Activity diagram for store data use case 
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Clean data activity diagram 

 

Figure 81 Activity diagram for clean data use case 

Expose data activity diagram 

 

Figure 82 Activity diagram for expose data use case 

Access data activity diagram 

 

Figure 83 Activity diagram for access data use case 
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Build model activity diagram 

 

Figure 84 Activity diagram for build model use case 

Deploy model activity diagram 

 

Figure 85 Activity diagram for deploy model use case 
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Stream data activity diagram 

 

Figure 86 Activity diagram for stream data use case 

Score model activity diagram 

 

Figure 87 Activity diagram for score model use case 
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Relay score activity diagram 

 

Figure 88 Activity diagram for relay score use case 

Appendix B – Sequence Diagrams 

Collect data sequence diagram 

 

Figure 89 Sequence diagram for collect data use case 
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Transmit data sequence diagram 

 

Figure 90 Sequence diagram for transmit data use case 

Store data sequence diagram 

 

Figure 91 Sequence diagram for store data use case 
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Clean data sequence diagram 

 

Figure 92 Sequence diagram for clean data use case 

Expose data sequence diagram 

 

Figure 93 Sequence diagram for expose data use case 
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Access data sequence diagram 

 

Figure 94 Sequence diagram for access data use case 

Build model sequence diagram 

 

Figure 95 Sequence diagram for build model use case 
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Deploy model sequence diagram 

 

Figure 96 Sequence diagram for deploy model use case 

Stream data sequence diagram 

 

Figure 97 Sequence diagram for stream data use case 
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Score model sequence diagram 

 

Figure 98 Sequence diagram for score model use case 

Relay score sequence diagram 

 

Figure 99 Sequence diagram for relay score use case 


