
Title From backdoor key to backdoor completability: improving a known
measure of hardness for the satisfiable CSP

Authors Escamocher, Guillaume;Siala, Mohamed;O'Sullivan, Barry

Publication date 2018-06-08

Original Citation Escamocher G., Siala M., O’Sullivan B. (2018) From Backdoor
Key to Backdoor Completability: Improving a Known Measure
of Hardness for the Satisfiable CSP. In: van Hoeve WJ. (eds)
Integration of Constraint Programming, Artificial Intelligence, and
Operations Research. CPAIOR 2018, Delft, Netherlands, 26-28
June, Lecture Notes in Computer Science, vol 10848. Springer,
Cham, pp. 198-214. doi:10.1007/978-3-319-93031-2_14

Type of publication Conference item

Link to publisher's
version

https://link.springer.com/
chapter/10.1007%2F978-3-319-93031-2_14 -
10.1007/978-3-319-93031-2_14

Rights © Springer International Publishing AG, part of Springer
Nature 2018. This is a post-peer-review, pre-copyedit version
of an article published in Lecture Notes in Computer Science.
The final authenticated version is available online at: http://
dx.doi.org/10.1007/978-3-319-93031-2_14

Download date 2024-11-24 22:24:23

Item downloaded
from

https://hdl.handle.net/10468/6632

https://hdl.handle.net/10468/6632

From Backdoor Key to Backdoor
Completability: Improving a Known Measure of

Hardness for the Satisfiable CSP

Guillaume Escamocher, Mohamed Siala, and Barry O’Sullivan

Insight Centre for Data Analytics
Department of Computer Science, University College Cork, Ireland

{guillaume.escamocher, mohamed.siala, barry.osullivan}@insight-centre.org

Abstract. Many studies have been conducted on the complexity of Con-
straint Satisfaction Problem (CSP) classes. However, there exists little
theoretical work on the hardness of individual CSP instances. In this
context, the backdoor key fraction (BKF) [17] was introduced as a quan-
tifier of problem hardness for individual satisfiable instances with regard
to backtracking search. In our paper, after highlighting the weaknesses
of the BKF, we propose a better characterization of the hardness of an
individual satisfiable CSP instance based on the ratio between the size of
the solution space and that of the search space. We formally show that
our measure is negatively correlated with instance hardness. We also
show through experiments that this measure evaluates more accurately
the hardness of individual instances than the BKF.

1 Introduction

Finding a solution to a CSP instance is well known to be NP-hard, even when
considering satisfiable instances [3]. The complexity of CSP instances has been
extensively cataloged in the framework of complexity theory. However, attempts
to formally define instance hardness, to find out what makes some CSP instances
difficult to solve have been scarcer. A number of studies have been proposed
based, in particular, on the notion of constrainedness [9, 10], to predict the be-
havior of large sets of instances. Constrainedness compares the expected number
of solutions of constraint instances to their average size. It is straightforward to
compute, and is well-suited for large classes of problems, but it does not establish
a distinction between individual instances that have the same average tightness
but different solution spaces. On the other hand, only considering the solution
space is not enough to accurately predict instance complexity [18].

The Backdoor Key Fraction was proposed in [17] to characterize the hardness
of a given satisfiable CSP instance with respect to backtracking search based on
the notion of backdoor. A backdoor is a set of variables that, when properly
assigned, allows us to decide the remainder of the problem in polynomial time
using a given sub-solver [19]. The backdoor key fraction is based on the backdoor
key set. A variable is in the backdoor key set if its value is logically determined

by the settings of other backdoor variables. The key fraction is the ratio of the
backdoor key set size to the corresponding backdoor size. Unfortunately, as we
explain in Section 2, there are many classes of instances for which the backdoor
key fraction is ill-fitted. The main motivation behind our paper is to revisit this
measure by proposing a better characterization of instance hardness.

In this paper, we propose an improvement over the backdoor key fraction.
Intuitively, a solver finds an instance difficult if it contains many paths that do
not lead to a solution, where a path is a possible sequence of choices made by
the solver. Therefore, we define our completability measure as the number of
paths that are completable, meaning that they lead to a solution, divided by the
number of paths actually explored by the solver. This can be viewed as the ratio
between the solution space and the search space. If the ratio is close to 1, the
solver mostly branches on completable paths and can easily solve the instance.
If, however, the ratio is low, the solver explores a lot of dead-ends and finds the
instance hard. Completability can be seen as an improvement over the backdoor
key set. Indeed, as we explain in Section 2, both our metric and the backdoor key
fraction are composed of a ratio between a numerator that takes into account
the global interactions between the backdoor and the rest of the instance, and
a denominator that only relies on the internal structure of the backdoor.

The notion of completability has previously been used by [7], albeit in a com-
pletely different way. The author proposed to add constraints to CSP instances
to transform them into equivalent minimal instances, where an instance is min-
imal if any partial solution of size bounded by some predefined constant can be
extended to a solution [16]. On the other hand, we are computing a theoretical
measure and are not modifying any part of the observed instances. Nonetheless,
it is interesting to note how his intention was to make CSP instances easier by,
in essence, increasing the completability ratio of small subsets of variables. We
show that when some particular small subsets of variables, namely backdoors,
have a high completability ratio, then backtracking solvers have an easier time
finding a solution. His paper and ours are, therefore, consistent with each other
in their approach of completability. Another work closely related to the idea
of completable partial solutions can be found in [4]. The authors also consider
the ratio between the solution space and the search space within small sets of
variables (although not backdoors), but their measure is restricted to minimal
CSP instances, while our metric can measure any satisfiable CSP instance.

In the next section, we give the different notions used throughout the paper
and we highlight the limitations of the backdoor key fraction. In Section 3 we
adopt a theoretical approach to justify our measure. Finally, we present our
experimental study in Section 4.

2 CSP, Backdoor Key Fraction, and Backdoor
Completability

A CSP instance is a triplet 〈X ,D, C〉 where X is a set of variables {v1, v2, . . . , vn},
D is a set of domains {Dv1 , Dv2 , . . . , Dvn}, and C is a set of constraints. A domain

Dv is a set of integers (values) associated with the variable v. A constraint C
of arity k ≥ 1 is a pair (X (C),R(C)), where X (C) is a sequence of k variables,
and R(C) ⊆ Zk. The set of variables in X (C) is called the scope of C. The
constraint C is universal if every k-tuple of integers is in R(C). An assignment
is a pair 〈v, a〉 where v is a variable and a ∈ Dv. A value a is said to be assigned
to a variable v if Dv = {a}. An instantiation is a set of assignments where
each variable appears at most once. The scope of an instantiation S is the set
of variables {v | ∃〈v, a〉 ∈ S}. Let S be an instantiation and C be a constraint
such that X (C) = [vi1 , vi2 , . . . , vik]. We say that S violates C if ∀l ∈ [1, k], there
exists al such that 〈vil , al〉 ∈ S and 〈a1, a2, . . . ak〉 /∈ R(C). The instantiation
S is said to satisfy C if S does not violate C. An instantiation that does not
violate any constraint is called a partial solution. A solution to a CSP instance
〈X ,D, C〉 is a partial solution with a scope equal to X . Not every partial solution
can be extended to a solution. A CSP instance that admits a solution is called
satisfiable. The arity of a CSP instance is the greatest arity of its constraints.
When an instance is binary (i.e., of arity 2), two assignments 〈v, a〉 and 〈v′, a′〉
are incompatible if there exists a constraint C such that X (C) = [v, v′] such that
〈a, a′〉 /∈ R(C). Two assignments are compatible if they are not incompatible.

Definition 1. Let I be a CSP instance with n variables and let p be an integer
such that 1 ≤ p < n. We say that I is (p, 1)-consistent if for any partial solution
S of size p and for any variable v not in the scope of S, there is a value a ∈ Dv

such that S ∪ {〈v, a〉} is a partial solution. We also say that I is strongly (p, 1)-
consistent if it is (q, 1)-consistent for all q such that 1 ≤ q ≤ p.

A backdoor [19] is defined with regard to a particular sub-solver. We define
a sub-solver and the other notions the same way that [17] did.

Definition 2. An algorithm A that takes a CSP instance as input is a sub-
solver if:

1. For any CSP instance I, either A rejects I or A correctly recognizes I as
satisfiable or unsatisfiable. If I is recognized as satisfiable, then A also returns
a solution to I.

2. A runs in time polynomial in the size of I.

Now that we have explained the concept of sub-solvers, we can properly
define the notion of a backdoor to a CSP.

Definition 3. Let A be a sub-solver. Let I be a CSP instance. Let V be a subset
of the variables of I. We say that V is a backdoor for A of I if there exists a
partial solution Sp of scope V such that the instance I ′ obtained from I after as-
signing the value a to the variable v for each assignment 〈v, a〉 ∈ Sp is recognized
as satisfiable by A.

Informally, a backdoor is a (small) set of variables that, when properly as-
signed, makes the rest of the instance easy. When the sub-solver A is clear from
the context, we shall use “backdoor” instead of “backdoor for A”. Technically,
the set of all variables in an instance is always a trivial backdoor. Therefore, we
mainly focus on backdoors of minimal size.

Definition 4. Let A be a sub-solver and let I be a satisfiable CSP instance. Let
B be a set of variables of I. We say that a backdoor B for A of I is a minimal
backdoor if ∀v ∈ B, B\{v} is not a backdoor for A of I.

Before presenting our backdoor completability measure, we describe the ex-
isting metric that is closest to our own. This is the backdoor key fraction, intro-
duced in [17]. Backdoor keys are sets of dependent variables, where a dependent
variable is defined as follows:

Definition 5. Let I be a satisfiable CSP instance, let B be a subset of variables
of I, and let v ∈ B be a variable. Let S be a solution to I, and let Sp ⊂ S be
a partial solution of scope B\{v}. We say that v is a dependent variable with
respect to Sp if there is exactly one value a in Dv such that Sp ∪ {〈v, a〉} can be
extended to a solution to I.

Definition 6. Let I be a satisfiable CSP instance, let B be a backdoor for I,
and let v ∈ B be a variable. Let S be a solution to I, and let SB ⊂ S be a partial
solution of scope B and let Sv be equal to SB restricted to B\{v}. We say that
v is in the backdoor key set of B with respect to SB if v is a dependent variable
with respect to Sv.

The backdoor key fraction can now be defined.

Definition 7. Let B be a backdoor for a satisfiable CSP instance I, and let SB

be a partial solution to B. The backdoor key fraction of B with respect to SB

is the ratio between the number of variables in the backdoor key set of B with
respect to SB and the total number of variables in B. If B is empty, we say that
the backdoor key fraction of B is 0.

The last sentence is our own addition to account for the cases when the
backdoor is empty. Note that this follows the intuition of their paper. Indeed,
empty backdoors are associated with very easy instances, and their intention
was for the backdoor key fraction to be positively correlated with the hardness.

There are many cases where the backdoor key fraction is not useful. The au-
thors of [17] mentioned the case where given any backdoor and its corresponding
solution, one can always flip the truth assignment of any variable in the backdoor
and still extend the backdoor to a solution. In such instances, the backdoor key
fraction is equal to 0 for any backdoor. Another issue arises when a given CSP
instance I only has one solution, the backdoor key fraction of any non-empty
backdoor of I is by Definition 7 always 1. More generally, any backdoor variable
which is also part of the instance backbone (the set of variables that are assigned
the same values in all solutions [15]) is a dependent variable, and therefore is in
the backdoor key.

In general, hard instances with regard to backtracking algorithms are the
ones that offer many potentially wrong choices and few potentially right ones
to solvers. Therefore, if we want to quantify hardness, it makes sense to build
a measure that keeps track of both the size of the search space (the choices
that the solver can make) and the size of the solution space (the right choices).

What we define as the search space is the set of partial, local solutions while the
solution space is simply the set of global solutions.

Definition 8. Let I be a CSP instance and let B be a non-empty set of variables
of I. We say that the completability ratio of B is the ratio #completable

#partial where:

– #partial is the number of partial solutions of scope B.
– #completable is the number of partial solutions of scope B that can be ex-

tended to a solution to I.

We also say that the completability ratio of an empty set of variables is 1, and
that the completability ratio of a set of variables with no partial solution is 0.

From now on, we only apply the notion of completability ratio on minimal
backdoors within satisfiable CSP instances. However, this concept is general and
could be applied to any set of variables in any CSP instance (although the ratio
is trivially always 0 in unsatisfiable instances). In particular, the completability
ratio is not dependent on a particular sub-solver, and is unique for each set of
variables within a particular CSP instance. We define now our measure for a
whole instance.

Definition 9. Let A be a sub-solver and let I be a satisfiable CSP instance. The
backdoor completability for A of I is the average of the completability ratios of
all minimal backdoors for A of I.

Observe that backdoor completability can be used to study satisfiable CSP
instances of any arity. This is also the case for backdoor key fraction. Recall that
finding a solution to a satisfiable CSP instance is an NP-hard problem [3], so
such a restriction does not diminish the usefulness of either measure. It should
be noted also that we are not limited to binary instances. Indeed, in Section 4,
we present an experimental study on both binary and non-binary instances.

3 Theoretical Justification

In order to be a valid measure of hardness, backdoor completability needs to
correctly recognize both easy and hard classes. In the former case, this is done
by returning a high value for tractable classes. In the latter case, this is done
by returning a low value for a subset of decent size in each non-tractable class.
However, both tractability and backdoors are defined with regard to a specific
algorithm. So ideally backdoor completability should tag a class as tractable if
and only if the sub-solver used to define a backdoor solves the class.

In this section, we present an example to further explain what result we are
aiming for, then we state our main Theorem. We refer to (primal) constraint
graphs, tree decompositions and treewidth. We now recall the definitions of these
four concepts.

Definition 10. Let I be a CSP instance. The primal constraint graph of I is
the graph G such that:

Data: A satisfiable instance I with n variables v1, v2, . . . , vn.
Result: Either REJECT or SATISFIABLE.
Build primal constraint graph G of I;
if G is a tree then

Sort the n vertices of G to get an ordering v′1, v
′
2, . . . , v

′
n such that for each i

there is at most one j such that j < i and v′i is connected to v′j ;

else
return REJECT;

end
Establish (1, 1)-consistency on I;
for i← 1 to n do

Assign to the variable v′i the lowest value ai left in Dv′i
such that

{〈v′1, a1〉, 〈v′2, a2〉, . . . , 〈v′i, ai〉} is a partial solution;
if no such value exists then

return REJECT;
end

end
return SATISFIABLE;

Algorithm 1: A simple sub-solver based on (1, 1)-consistency.

– The vertices of G are the variables of I.
– There is a an edge between two vertices vi and vj of G if and only if there is

a non-universal constraint C of I such that X (C) contains both vi and vj.

In the case of binary instances, the primal constraint graph is called the
constraint graph. Part of the algorithms that we present is to build the tree
decomposition of some (primal) constraint graph.

Definition 11. Let G be a graph. Let T be a tree such that each vertex of T is
a set of vertices of G. We say that T is a tree decomposition of G if:

1. Each vertex of G belongs to at least one vertex of T .
2. If two vertices v1 and v2 are connected in G, then there is a vertex of T

containing both v1 and v2.
3. If two vertices t1 and t2 in T both contain some vertex v of G, then all the

vertices of T in the path between t1 and t2 also contain v.

Definition 12. Let G be a graph. The width of a given tree decomposition of
G is the number of vertices of G in the largest vertex of this tree decomposition,
minus one. The treewidth of G is the lowest width of all possible tree decompo-
sitions of G.

To illustrate the validity of our measure on one very specific example, consider
the class Ctree composed of the satisfiable binary CSP instances whose constraint
graph is a tree, the class Call composed of all satisfiable CSP instances of any
arity and with any (primal) constraint graph, and the sub-solver described by
Algorithm 1.

Algorithm 1 builds a solution to instances with a tree as a primal constraint
graph by starting from a random root after establishing (1, 1)-consistency and
then following along the branches of the tree. It correctly solves the class Ctree [5],
but not the class Call. Therefore, in order to be a valid measure of hardness for
these two classes and Algorithm 1, backdoor completability needs to be high
for all instances of Ctree and very low for at least some instances of Call. As we
show in a generalized version of this example in Theorem 1, this is what indeed
happens.

Note that we do not require backdoor completability to return a high value
for all instances of a given hard CSP class. A CSP class does not need to have
all of its instances hard to be considered hard. The general CSP is hard for all
solvers, even though most CSP instances are easy in practice.

Our Theorem covers the set of CSP classes {C1, C2, . . . }, such that each Cp
is the set of satisfiable CSP instances whose primal constraint graph treewidth
is upper bounded by p. These classes are hierarchically ordered by inclusion: for
each p, Cp ⊂ Cp+1. Therefore, any given sub-solver finds all classes up to some p
easy, meaning that it returns a solution to all instances from these classes, and
all larger classes hard, meaning that it rejects at least some instances from each
one of these subsequent classes. Note that the union of all the Cp is equal to the
NP-hard satisfiable CSP, so no sub-solver can find all the classes easy, unless
P=NP.

We are going to prove that for any sub-solver A belonging to a specific set
of algorithms based on local consistency, and for any aforementioned class Cp,
backdoor completability returns a very low value with regard to A for some of
the instances in Cp if and only if Cp is a hard class for A. We define “very low”
as exponentially inverse to the number of variables.

Theorem 1. Let p and p′ be such that p, p′ > 0. Let Ap,p′ be the sub-solver
described by Algorithm 2 and let Cp′ be the set of satisfiable CSP instances whose
primal constraint graph treewidth is upper bounded by p′. Then exactly one of
the two following statements is true:

– p ≥ p′ and for every instance I ∈ Cp′ , the backdoor completability for Ap,p′

of I is equal to 1.
– p < p′ and for every integer N there is an instance I in Cp′ with n variables

such that n > N and the backdoor completability for Ap,p′ of I is equal to
O(1

2n/p′).

To prove the second point of the Theorem, we shall build instances with a low
enough backdoor completability for Ap,p′ . Using binary constraints is enough to
do so, however we emphasize that instances in the class Cp′ can be of any arity,
so the scope of our result is not restricted to binary instances.

Definition 13. Let N > 1 and p′ > 1 be two integers. Then we call IN,p′ the
binary CSP instance defined in the following way:

1. Variables: 1+p′N variables v0, v1,1, v1,2, . . . , v1,p′ , v2,1, . . . , v2,p′ , v3,1, . . . , vN,p′ .

Data: A satisfiable instance I with n variables v1, v2, . . . , vn.
Result: Either REJECT or SATISFIABLE.
Build primal constraint graph G of I;
if (treewidth of G)≤ p′ then

Build a p′-wide tree decomposition T of G;
else

return REJECT;
end
Sort the n′ vertices of T to get an ordering v′1, v

′
2, . . . , v

′
n′ such that for each i

there is at most one j such that j < i and v′i is connected to v′j ;
Establish strong (p, 1)-consistency on all sets of variables that are entirely
contained within a single vertex vi;

for i← 1 to n′ do
for each variable vj in the vertex v′i of T do

Assign to vj the lowest value aj left in Dvj such that
{〈v1, a1〉, 〈v2, a2〉, . . . , 〈vj , aj〉} is a partial solution;

if no such value exists then
return REJECT;

end

end

end
return SATISFIABLE;

Algorithm 2: A sub-solver based on (p, 1)-consistency.

2. Domains: For each 1 ≤ i ≤ N and each 1 ≤ j ≤ p′, Dvi,j = {1, 2, . . . , p′}.
Furthermore, Dv0 = {1, 2, 3, . . . , N + 1}.

3. Constraints: For each 1 ≤ i ≤ N , for all 1 ≤ i1, i2 ≤ p′ such that i1 6= i2,
for each 1 ≤ a < p′, the assignments 〈vi,i1 , a〉 and 〈vi,i2 , a〉 are incompatible.

4. Constraints: For each 1 ≤ a ≤ N , for each 1 ≤ i ≤ p′, the assignments
〈v0, a〉 and 〈va,i, p′〉 are incompatible.

5. Constraints: For each 1 ≤ i ≤ N , for each 1 ≤ j ≤ p′, for each 1 ≤ a < p′,
the assignments 〈v0, N + 1〉 and 〈vi,j , a〉 are incompatible.

6. Constraints: All pairs of assignments that have not been mentioned yet are
compatible.

In addition, for each 1 ≤ i ≤ N , we call Vi the set of variables {vi,1, vi,2, . . . , vi,p′}
and we call ti the set of variables {v0} ∪ Vi.

Note that any non-universal constraint can only be between two variables
of a same set ti for some i. We give two figures to illustrate the constraints
within the variables of a set ti in an instance IN,p′ , in this case t2 in the instance
I7,4. Figure 1 illustrates points 3 and 6 from Definition 13, while Figure 2 il-
lustrates points 4, 5 and 6. In both figures, a circle represents the domains of a
variable, a dot represents a value in a domain and a dashed line connects two in-
compatible assignments. In Figure 1, a continuous line connects two compatible
assignments. In order to not clutter the figure, only the most representative pairs
of (in)compatible assignments are connected. For the same reason, in Figure 2

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

v2,1 v2,2 v2,3 v2,4

Fig. 1: The variables of V2 in I7,4, their domains and the related constraints.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

v2,1 v2,2 v2,3 v2,4

1 2 3 4 5 6 7 8
v0

Fig. 2: The constraints between the variable v0 and the set of variables V2 in I7,4.

pairs of compatible assignments are not shown, and only pairs of incompatible
assignments involving a value from the domain of v0 are connected.

To simplify the proof of the theorem, we first give some preliminary results
concerning the instances IN,p′ .

Lemma 1. Let N > 1 and p′ > 1 be two integers. Then the instance IN,p′

has exactly one solution, consisting of the assignment 〈v0, N + 1〉 and of the
assignments 〈vi,j , p′〉 for all 1 ≤ i ≤ N and 1 ≤ j ≤ p′.

Proof. It is easy to check that the set of assignments described in the statement
of the Lemma is indeed a solution. We prove that it is the only one. Let S be a
solution to I. let s0 be the value such that 〈v0, s〉 ∈ S and for all i and j such
that 1 ≤ i ≤ N and 1 ≤ j ≤ p′, let si,j be the value such that 〈vi,j , si,j〉 ∈ S.
For each 1 ≤ i ≤ N , we know from Definition 13.3 that at least one of the
si,1, si,2, . . . , si,p′ is equal to p′. So from Definition 13.4 we know that for each
1 ≤ i ≤ N , s0 6= i. So s0 = N +1. So from Definition 13.5 we know that si,j = p′

for all i and j such that 1 ≤ i ≤ N and 1 ≤ j ≤ p′. So we have shown that the
one and only solution to I is the one described in the Lemma. ut

Lemma 2. Let N > 1 and p′ > 1 be two integers. Then the instance IN,p′

belongs to Cp′ .

Proof. Cp′ is the set of satisfiable CSP instances whose primal constraint graph
treewidth is upper bounded by p′. From Lemma 1, we know that IN,p′ is satis-
fiable, so it only remains to prove that the treewidth of its constraint graph is
upper bounded by p′.

Let T be a graph with N vertices t1, t2, . . . , tN and N − 1 edges, such that:

– Each vertex ti is as defined in Definition 13: the set of the p′ + 1 variables
{v0, vi,1, vi,2, . . . , vi,p′}.

– For each 1 ≤ i < N , the pair (ti, ti+1) is an edge of T .

From the second point, T is a tree. Each variable vi,j of IN,p′ is in the vertex ti of
T and v0 is in every vertex of T , so the first condition in the definition of a tree
decomposition (Definition 11) is fulfilled. Since each non-universal constraint of
IN,p′ either involves v0 or is between two variables of a same set Vi, each edge
in the constraint graph of IN,p′ is contained in a vertex of T and the second
condition of Definition 11 is fulfilled. Furthermore, the only variable of IN,p′

that appears in several vertices of T is v0, which appears in all vertices of T , so
the third condition in Definition 11 is fulfilled. So T is a tree decomposition of
the constraint graph of IN,p′ . Since each vertex of T contains p′ + 1 variables of
I, the treewidth of the constraint graph of IN,p′ is (at most) p′. ut

Lemma 3. Let N , p and p′ be three integers such that N > 1 and 0 < p < p′. Let
B be a set of variables of IN,p′ such that v0 /∈ B. Then B is a backdoor for Ap,p′ of
IN,p′ if and only if B contains a variable from each set Vi = {vi,1, vi,2, . . . , vi,p′},
with at most one exception.

Proof. – B is a backdoor for Ap,p′ of IN,p′ ⇒ B contains a variable from each
set Vi, with at most one exception:
We first show that for each 1 ≤ i ≤ N , ti is strongly (p, 1)-consistent. Let i
be an integer such that 1 ≤ i ≤ N and let S be a partial solution of scope
W = {w1, w2, . . . , wq}, with q ≤ p and W ⊂ ti. Let v be a variable from
ti\W . We need to show that there is a value a ∈ Dv such that S ∪ {〈v, a〉}
is a partial solution. There are three cases to consider:
• v is v0: from Definition 13, 〈v0, j〉 is compatible with all assignments on

variables from Vi if i 6= j. So S ∪ {〈v, 2〉} is a partial solution if i = 1
and S ∪ {〈v, 1〉} is a partial solution otherwise.

• One of the variables from W is v0: let s0 be such that 〈v0, s0〉 ∈ S. There
are three possibilities for the value of s0. First possibility, s0 = N + 1. In
this case, we know from Definition 13.5 that all the other assignments
in S are of the form 〈wj , p

′〉, so S ∪{〈v, p′〉} is a partial solution. Second
possibility, s0 = i. In this case, we know from Definition 13.4 that none
of the other assignments in S is of the form 〈wj , p

′〉, and S ∪ {〈v, a〉} is
a partial solution, with a a value such that a 6= p′ and a 6= b for each
assignment 〈wj , b〉 ∈ S such that wj 6= v0. There is always such a value a,
because W has at most p variables, so W\{v0} has at most p−1 ≤ p′−2
variables. Third and last possibility, either s0 < i or i < s0 < N + 1. In
this case, S ∪ {〈v, p′〉} is a partial solution.

• Neither v nor any of the variables from W is v0: we know from Defini-
tion 13 that S ∪ {〈v, p′〉} is a partial solution.

So for each variable v ∈ ti\W , there is a value a ∈ Dv such that S ∪{〈v, a〉}
is a partial solution. So ti is strongly (p, 1)-consistent.

Let B′ be a set of variables of IN,p′ such that v0 /∈ B′. Suppose that there are
some i and j with i 6= j such that no variable from Vi ∪Vj is in B′. We have
just shown that ti (which we recall is Vi ∪ {v0}) and tj (which is Vj ∪ {v0})
are strongly (p, 1)-consistent. So establishing strong (p, 1)-consistency after
assigning the value p′ to the variables in B′ leaves at least the three values i,
j (because 〈v0, i〉 and 〈v0, j〉 are compatible with all assignments 〈v, p′〉 for
all variables v not in ti nor tj) and N + 1 (because 〈v0, N + 1〉 is compatible
with all assignments 〈v, p′〉 for all variables v of IN,p′) in Dv0 . However, the
only assignments in the unique solution to I are of the form 〈v, a〉, with a
the highest value in Dv, and Ap,p′ picks the lowest available value in each
domain. So even after assigning the correct values to B′ and establishing
strong (p, 1)-consistency, and whatever the order in which the sub-solver
sorts the variables, Ap,p′ will pick a wrong value when making its first choice
within t1 ∪ t2, and will eventually reject I. So B′ is not a backdoor for Ap,p′

of IN,p′ . So any backdoor B for Ap,p′ of IN,p′ not containing v0 contains at
least one variable in every set Vi, with at most one exception.

– B contains a variable from each set Vi, with at most one exception ⇒ B is
a backdoor for Ap,p′ of IN,p′ :
Let B be a set of N − 1 variables, each in a different set Vi, and none being
v0. Let i be the integer such that no variable from Vi is in B. Once we have
assigned the value p′ to all variables of B′ and established strong (p, 1)-
consistency, we know from Definition 13.4 that all the values 1, 2, 3, . . . , i−
1, i + 1, . . . , N − 1, N will be removed from Dv0 . Let a ∈ Dv and b ∈ Dw be
two values from the domains of two different variables v and w of ti\{v0},
such that a < p′ and b = p′. Since the only two remaining values in Dv0 are
i and N +1, we know from Definition 13.4 and 13.5 respectively that neither
〈v0, i〉 nor 〈v0, N+1〉 is compatible with both 〈v, a〉 and 〈w, b〉. So establishing
strong (p, 1)-consistency will make incompatible all such pairs of assignments
〈v, a〉 and 〈w, b〉 with v and w in ti\{v0}. From Definition 13.3, we know that
there is no partial solution to Vi that contains an assignment 〈v, a〉 with
a 6= p′. So establishing strong (p, 1)-consistency will make incompatible all
pairs of assignments 〈v, a〉 and 〈w, b〉 with v and w from ti\{v0} and either
a 6= p′ or b 6= p′, and will eventually remove all values other than p′ from the
domains of ti\{v0}. So from Definition 13.4, the value i will also be removed
from the domain of v0, leaving only the value N + 1 in this domain. Lastly,
from Definition 13.5, all values other than p′ will be removed from all other
domains, leaving only one value in each domain after establishing strong
(p, 1)-consistency. So B is a backdoor for Ap,p′ of IN,p′ . ut

Now that we have the results we need, we can prove the main theorem.

Proof of Theorem 1: Through the proof, we assume that “backdoor” and
“backdoor completability” are implicitly “backdoor for Ap,p′” and “backdoor
completability for Ap,p′” respectively.

– Suppose that p ≥ p′. Since p′ is a constant, building a tree decomposition of
width p′ is polynomial [2]. In general, it is well-known that using strong (p, 1)-
consistency alongside a p-wide tree decomposition solves the CSP restricted
to instances whose primal constraint graph has a treewidth bounded by p [6].
Therefore, the empty set is a minimal backdoor of I, and from Definition 9
the backdoor completability of I is 1.

– Suppose that p < p′. It is enough to show that for each integer N > 1, there
is an instance I ∈ Cp′ with n = p′N + 1 variables such that the backdoor
completability of I is equal to O(1

2n/p′). Let N > 0 be an integer and let I
be the instance IN,p′ defined in Definition 13.
• I is in Cp′ : from Lemma 2.
• I has n variables: from Definition 13.1.
• The backdoor completability of I is equal to O(1

2n/p′): let B be a minimal
backdoor of I. There are two possibilities for B:
∗ B contains v0. If we assign the correct value N + 1 to the back-

door variable v0, then we know from Definition 13.5 that after Ap,p′

establishes strong (p, 1)-consistency, only one value will remain in
every other domain. So any set of variables containing v0 is a back-
door of I, but among them only {v0} is a minimal backdoor of I.
In this case, there are N + 1 partial solutions of scope B (one for
each value in Dv0), and exactly one of them is a subset of a solution
({〈v0, N + 1〉}). Therefore the completability ratio of B is 1

N+1 .
∗ B does not contain v0. From Lemma 3, we know that B contains

at least one variable from each set Vi = {vi,1, vi,2, . . . , vi,p′}, with
at most one exception. From the same Lemma we also know that
containing one variable from each set Vi except one is a sufficient
condition for a backdoor. So, since B is minimal, B contains exactly
one variable from each set Vi except one. Note that all constraints
between any two variables of B are universal and that every domain
of B contains exactly p′ values, so there are p′N−1 possible partial
solutions of scope B. From Lemma 1, we know that there is only one
solution to I, so only one partial solution of scope B can be extended
to a solution and therefore the completability ratio of B is 1

p′N−1 .
We have shown that either B = {v0} and has a completability ratio of

1
N+1 or B is composed of N−1 variables from N−1 different sets Vi and

has a completability ratio of 1
p′N−1 . There are Np′N−1 possible backdoors

of the latter kind, so the backdoor completability of I is lower than 2
p′N−1 .

Recall than n = p′N + 1, so N = n−1
p′ and therefore 2

p′N−1 = O(2
p′n/p′).

Since p′ > p ≥ 1, O(2
p′n/p′) = O(1

2n/p′) and therefore the backdoor

completability of I is equal to O(1
2n/p′).

We have exhibited a satisfiable instance I ∈ Cp′ with n variables and a
backdoor completability equal to O(1

2n/p′). ut

We have formally proved that backdoor completability correctly measures
hardness for some precisely defined classes of instances and sub-solvers, namely
satisfiable CSP instances with bounded treewidth and sub-solvers based on local
consistency. Tractable classes relying on bounded treewidth are common [5, 8],
while consistency is a ubiquitous tool in modern solvers [13], so our result shows
that at least for some widely known algorithms and instance classes, backdoor
completability is a valid measure.

4 Comparison with the Backdoor Key Fraction

We present an experimental comparison between the backdoor key fraction and
the backdoor completability. Our experiments cover two different sets of prob-
lems: Quasigroup Completion With Holes (QWH) [1, 12], and random satisfiable
CSP. We used the Mistral [11] solver for both experiments with default settings.

For QWH, we generated 1100 instances of order 22, with a number of holes
equally spread over the range 192 to 222. This range was chosen to capture the
instances at hand around the observed peak of difficulty at 204 holes. Note that
[17] also used QWH instances to test the backdoor key fraction.

The inequality constraints are posted through the AllDifferent constraint
with the bound consistency algorithm of [14]. The sub-solver that we chose has
exactly the same configuration, however, with 500 failure limit. Note that the
sub-solver is guaranteed to run in polynomial time since constraint propagation is
polynomial as well. For each instance, we generated 100 minimal backdoors, using
the methodology described in [17]. For each backdoor, we randomly sampled 20
partial solutions.

Figure 3a represents the results of our experiments on QWH instances. The
x-axis represents the number of decisions required to find a solution, while the
left y-axis represents the backdoor key fraction and the right y-axis represents
backdoor completability. Each point represents an average of 50 instances, with
the 50 easiest instances in one group, the 50 next easiest ones in a second group,
and so on until the 50 hardest instances.

The correlation for the backdoor key fraction is good, with a Pearson coef-
ficient of .876. This is consistent with the results from [17]. The correlation for
backdoor completability is even better, with a coefficient of -.943; we recall that
the further away from 0 the coefficient is, the more correlated the values are.
This demonstrates that backdoor completability can prove a better quantifier of
instance difficulty than the backdoor key fraction, even in problems where the
latter has a good track record.

The second problem we studied is composed of random satisfiable CSP in-
stances with 60 variables and 1770 constraints. We generated 1200 such in-
stances, with an average tightness in each constraint equally spread over the
range 5% to 16%, with an observed peak of difficulty at 8%. The correlations for
backdoor key fraction and backdoor completability are presented in Figure 3b.
As in Figure 3a, the instances are sorted by difficulty in groups of 50.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+06 1e+07
 0.0001

 0.001

 0.01

 0.1

K
e
y
 F

ra
c
ti
o
n

C
o
m

p
le

ta
b
ili

ty

Effort (#nodes)

key fraction
completability

(a) QWH

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

K
e
y
 F

ra
c
ti
o
n

C
o
m

p
le

ta
b
ili

ty

Effort (#nodes)

key fraction
completability

(b) Random CSP

Fig. 3: Experimental results for QWH instances (top) and random CSP (bottom)

Table 1: Correlations between instance hardness and different measures.
QWH Random CSP

Pearson CC RMSE MAE Pearson CC RMSE MAE

Backdoor key fraction .876 .053 .032 .590 .186 .158

Backdoor completability -.943 .037 .029 -.975 .051 .044

We can see from these results that the backdoor key fraction is not adequate
for that type of instance. It grows with the hardness, as is expected, but does

not clearly distinguish between instances above a certain threshold of difficulty.
Indeed, we observed that most of the hardest instances in this set have only a
few variables that are not part of the backbone. In many cases all variables are
in the backbone and the instance has exactly one solution; as explained in the
remarks following Definition 7, the backdoor key fraction will always output 1
for instances with exactly one solution. This case (along with the other one men-
tioned in the last paragraph of Section 2) shows a limitation of the key fraction to
capture hardness in some instances. On the other hand, backdoor completability
does not study the variables separately, but examines the properties of the par-
tial solutions to a whole backdoor. It is therefore more refined than the backdoor
key fraction, in particular when looking at individual variables is not enough,
for example when comparing instances that have a backbone of similar (large)
size but different degrees of difficulty.

Table 1 contains the summary of our experiments. In addition to the Pearson
correlation coefficients (Pearson CC), the table also includes the normalized val-
ues for the root mean square error (RMSE) and mean absolute error (MAE), two
error measures for linear regression that [17] also reported. The results confirm
that backdoor completability is negatively correlated with instance hardness,
and that it measures the difficulty of instances in both sets more accurately
than the backdoor key fraction does.

5 Conclusion

We have introduced a new measure, backdoor completability, that characterizes
the hardness of an individual satisfiable CSP instance with regard to a given
solver. Backdoor completability can be viewed as an index of hardness; the lower
the value, the harder the instance. This measure is a crucial step towards the
understanding of what makes a particular instance difficult.

We provided a theoretical justification of our measure. We proved that for some
widespread classes of instances, namely CSP instances with bounded treewidth,
backdoor completability captures exactly the limits of tractability. We also pre-
sented an empirical comparison between our metric and the existing backdoor
key fraction, and showed that for some kinds of CSP instances, backdoor com-
pletability is reliable even though the backdoor key fraction is not.

The main motivation of our work is to revisit and to improve the backdoor
key fraction measure. In the future, it would be interesting to study the practical
usefulness of completability as it provides insights for designing search strategies.
Moreover, we believe that completability could eventually be useful in generating
hard instances since hard instances are the ones with low completability.

Acknowledgements

This research has been funded by Science Foundation Ireland (SFI) under Grant
Number SFI/12/RC/2289.

References

1. Achlioptas, D., Gomes, C.P., Kautz, H.A., Selman, B.: Generating satisfiable prob-
lem instances. In: Proceedings of AAAI, IAAI, July 30 - August 3, 2000, Austin,
Texas, USA. pp. 256–261 (2000)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

3. Dechter, R.: Constraint processing. Elsevier Morgan Kaufmann (2003)
4. Escamocher, G., O’Sullivan, B.: On the minimal constraint satisfaction problem:

Complexity and generation. In: Proceedings of COCOA, Houston, TX, USA, De-
cember 18-20, 2015. pp. 731–745 (2015)

5. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–32
(1982)

6. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In:
Proceedings of AAAI. Boston, Massachusetts, July 29 - August 3, 1990, 2 Volumes.
pp. 4–9 (1990)

7. Freuder, E.C.: Completable representations of constraint satisfaction problems. In:
Proceedings of KR. Cambridge, MA, USA, April 22-25, 1991. pp. 186–195 (1991)

8. Ganian, R., Ramanujan, M.S., Szeider, S.: Combining treewidth and backdoors for
CSP. In: 34th Symposium on Theoretical Aspects of Computer Science, STACS
2017, March 8-11, 2017, Hannover, Germany. pp. 36:1–36:17 (2017)

9. Gent, I.P., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search.
In: Proceedings of AAAI, IAAI, Portland, Oregon, August 4-8, 1996, Volume 1.
pp. 246–252 (1996)

10. Gomes, C.P., Fernández, C., Selman, B., Bessière, C.: Statistical regimes across
constrainedness regions. Constraints 10(4), 317–337 (2005)

11. Hebrard, E.: Mistral, a constraint satisfaction library. Proceedings of the Third
International CSP Solver Competition 3, 3 (2008)

12. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.:
Balance and filtering in structured satisfiable problems. In: Proceedings of IJCAI
August 4-10, 2001, Seattle, Washington, USA. pp. 351–358 (2001)

13. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif.
Intell. 159(1-2), 1–26 (2004)

14. López-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm
for bounds consistency of the alldifferent constraint. In: Proceedings of IJCAI,
Acapulco, Mexico, August 9-15, 2003. pp. 245–250 (2003)

15. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic ’phase transitions’. Nature
400(8), 133–137 (1999)

16. Montanari, U.: Networks of constraints: Fundamental properties and applications
to picture processing. Inf. Sci. 7, 95–132 (1974)

17. Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: A path to understanding
problem hardness. In: Proceedings of AAAI, IAAI, July 25-29, 2004, San Jose,
California, USA. pp. 124–130 (2004)

18. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theor.
Comput. Sci. 47(3), 85–93 (1986), https://doi.org/10.1016/0304-3975(86)90135-0

19. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
Proceedings of IJCAI, Acapulco, Mexico, August 9-15, 2003. pp. 1173–1178 (2003)

