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Abstract—Hand motion tracking traditionally re-
quires highly complex and expensive systems in terms
of energy and computational demands. A low-power,
low-cost system could lead to a revolution in this
field as it would not require complex hardware while
representing an infrastructure-less ultra-miniature (∼
100µm - [1]) solution. The present paper exploits the
Multiple Point Tracking algorithm developed at the
Tyndall National Institute as the basic algorithm to
perform a series of gesture recognition tasks. The
hardware relies upon the combination of a stereo-
scopic vision of two novel Lensless Smart Sensors
(LSS) combined with IR filters and five hand-held
LEDs to track. Tracking common gestures generates a
six-gestures dataset, which is then employed to train
three Machine Learning models: k-Nearest Neigh-
bors, Support Vector Machine and Random Forest.
An offline analysis highlights how different LEDs’
positions on the hand affect the classification accu-
racy. The comparison shows how the Random Forest
outperforms the other two models with a classification
accuracy of 90-91 %.

Keywords - Lensless Smart Sensor, Machine
Learning, Random Forest, Gesture Recognition

I. Introduction
Gesture recognition represents an important topic of
research used in a wide range of applications: Hu-
man Computer Interface, Sign languages, Entertainment,
Augmented/Virtual Reality and many others. In the
field of sign-language contributions to gesture recognition
could be found in [2], while in speech recognition in
[3]; a detailed survey of some recent works on hand
gesture recognition using 3D depth sensors is given in
[4]. Different approaches have been employed to provide
a solution starting from the well-known camera-based
system. In [5] it is demonstrated how the computational
complexity is quite high for conventional vision-based
hand detection and tracking. Many of those works share
the same Machine Learning (ML) approach to perform
a classification task and inspire the present paper. The
novelties here illustrated rely upon the combination of
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two infrared (IR) filters and 5 LEDs being tracked. Two
separate light tracking systems based on Lensless Smart
Sensors (LSSs) [1] exploit the principle of stereo-vision to
range and track multiple LEDs located at different key
points on the hand, simultaneously moving within the
Field-of-View (FoV) [6]. A gesture can thus be described
by a sequence of tridimensional positions of the tracked
LEDs. A gesture recognition algorithm relying on differ-
ent ML techniques was designed and an analysis is con-
ducted to highlight how different positions of the LEDs
affect the classification accuracy. Different State-of-the-
Art techniques are evaluated in terms of their perfor-
mance through Misclassification Rate (MCR): k-Nearest
Neighbors (kNN), Support Vector Machine (SVM), Ran-
dom Forest (RF) [7], [8]. The manuscript is organized
as follows: Section II gives a brief presentation of the
Hardware Setup, while the Multiple Point Tracking al-
gorithm to derive the 3D positions of 5 LEDs is explained
in Section III. The main contribution of the paper is
provided in Section IV and V: first, the Frame-based
Approach is introduced [7] and applied to the framework;
the protocol applied to generate the dataset needed in the
training phase is briefly summarised; finally the trained
algorithms are employed to evaluate the classification
accuracy associated to each gesture. Conclusions and
future works are described in Section VI.

II. Hardware Setup
The hardware is based on the novel LSS. As discussed
in [1], [9], currently smallest traditional focusing cam-
eras are roughly 1 mm in diameter, with size limited
by need for lenses. By shifting some of the burden of
focusing to computation, new classes of lensless imagers
much smaller than traditional focusing systems could
be designed. Those ultra-miniature computational im-
age sensors employ phase gratings with optimal optical
properties and are integrated with CMOS photodetector
matrices (Size ∼ 100µm; Cost ∼ a few Euro cents; depth
of field ∼ 1mm→∞). In Fig.1 each sensor is embedded
in a 3D-printed casing and covered with an IR filter (on
the front) to properly match the wavelengths of the 5
LEDs -890nm- which are equipped on the hand through
a 3D-printed hand mounted fixture. The position of
each LED in 3D is obtained through the Single Point



Tracking algorithm: the distance along Z is calculated
using trigonometry together with the Snell’s Law while
the lateral and vertical displacements (along X and Y)
w.r.t. the reference frame can be derived according to
the striking’ position of the LED w.r.t. the LSSs’ focal
points [6].

Fig. 1: Hardware Setup - Labels: - F (Middle Finger) - LP (Lower
Palm) - T (Thumb) - UP1 (Upper Palm 1) - UP2 (Upper Palm 2)

III. Multi-Point Tracking
The Multi-Point Tracking algorithm can be structured
into two main phases: calibration and tracking.

A. Calibration Phase
The calibration phase is assumed that the hand is kept
still in front of the sensors with the palm and fingers open
and the middle finger pointing upwards. The calibration
is performed once at system start to capture the LEDs
relative distances from each other and use them as a
reference in the Tracking Phase. The detection to identify
the points within the field-of-view is performed through
hard-thresholding by looking at the LEDs’ intensities.
Exploiting the positions of the LEDs on the stationary
hand the labels (see Fig. 1) are assumed to be known.
The 2D coordinates in the image domain together with
the assigned labels are singularly processed according to
the Single Point Tracking algorithm [6]. As shown in the
Hand Setup, it is noticeable how the points lying on
the palm LP,UP1 and UP2 are characterized by fixed
relative distances thus providing a useful information to
be used in the Tracking Phase. The matrix of relative dis-
tances of the palm coordinates is computed and stored.

B. Tracking Phase
The tracking algorithm explained in this subsection
refers to using a iteration. The tracking phase can be
performed continuously by iterating the algorithm every
time a new frame is captured. The detection is per-
formed using the same reference threshold used during
the calibration phase. If the number of detected points
is asymmetric among the two LSSs or is less than 3,
the useful information to provide an estimate of the
current coordinates is given by the previous frames by
applying a polynomial function (deg = 2) that fits the
last ten progressive time stamps and the corresponding
stored coordinates. In case of successful detection the
2D coordinates in the image domain are individually

processed according to the Single Point Tracking al-
gorithm [6]. Combinations of three tracked LEDs are
generated without repetitions: the sought combination
is represented by the one that shows the closest matrix
of relative distances to the matrix stored during the cali-
bration phase. By permuting the three LEDs composing
the identified combination, the labels’ assignment is per-
formed by establishing the permutation which provides
the minimum residuals w.r.t. calibration matrix. The
fingers are labeled according to their reciprocal positions
w.r.t. the palm’s plane. A detailed explanation of the
multi-point algorithm can be found in [10].

IV. Formulation
A. Dataset
We here consider a multi-classification problem where
each class is identified with a gesture. The vocabulary
of gestures is reported in Table I.

Gesture Label Description
1 - Forward Forward movement along Z
2 - Backward Backward movement along Z
3 - Triangle X-Y: Basis parallel to X
4 - Circle X-Y plane
5 - Line Up - Down X-Y plane
6 - Blank None of the previous gestures

TABLE I: Gestures Vocabulary

The last class is added to model the "non - gesture"
class that embeds all of the movements not included
in the first 5 classes. The gestures are performed at
different distances and positions w.r.t. the sensors while
keeping the movement within the space between the
two sensors (Fig. 1). Established through experimental
validation, a viable capture time needed to describe a ges-
ture consists of 50 captures at 20fps, which corresponds
to a window of 2.5 seconds gesture. Faster movements
are contained in such window, while slow ones could
be either classified correctly or uncompleted, thus the
blank class. The latter includes the hand rotation as a
non-gesture as well. The LSSs together with the 3D-
printed casings were placed on a selection of laptops
during the data collection to take into account also the
variability among different displays’ heights and to make
the recognition more robust for general usage. The user
is also required to perform each of the combinations
(clockwise/counterclockwise/different vertex as starting
point) making the switch to a left hand-based system im-
mediate. In Fig. 2 an example for each class is provided.
In the data collection 10 individuals were involved to
derive a total of 600 gestures. The sample size is detoned
as D = {(X1, Y1), ..., (Xi, Yi), ..., (Xn, Yn)}, where Xi
embeds the features extracted from the ith gesture and
Yi is the associated class label.

B. Feature Extraction
The feature extraction here presented is based upon
the concept of Frame-based Descriptor [7]. The latter
represents a successful approach for extracting features
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Fig. 2: Green: Starting Point - Red: Ending Point

from inertial measurements, i.e. 3D accelerometers. It
is of great interest applying it to a dataset of different
nature which consists of trajectories of the absolute po-
sitions indexed by time. Each trajectory of the positions
([tx, ty, tz]) is divided into M + 1 contiguous portions
of equal length (M = 10); every contiguous portion
constitutes a frame [7]. For each frame, i.e. j ∈ [1, ...,M ]
and each trajectory i.e. t ∈ [tx, ty, tz], the following
quantities are computed:
• µj,t : the continuous component of the Discrete

Fourier Transform (DFT), representing the mean;
• εj,t : the energy computed without the contribution

of the continuous component of the DFT;
• δj,t : the entropy computed without the contribution

of the continuous component of the DFT;
• σj,t : standard deviation;
• γj : axis correlation.

They are vectorized to represent
the ith gesture as follows: Xi =
(µ1,i, ..., µm,i, ε1,i, ..., εm,i, δ1,i, ..., δ1,m, σ1,i, ..., σm,i,
γ1,i, ..., γm,i) ∈ R1×p, where each variable embeds
the features related to the three axis x, y, z. In [7]
a hard thresholding is used to identify to segment
the gesture by establishing how the energy and the
variance of the inertial signals change. The reason why
no gesture identification is performed here is related
to the application. The defined scenario is a simple
drawing application where the user is able to paint on
the screen and control the tools through gestures by
waving the hand in front of the LSSs sensors. Here,
there is always energy associated to the trajectories
making the previous approach unreliable. The idea is
not to train the models with segmented gestures but
with fixed windows containing the entire gestures.

C. Training
kNN classifies inputs according to the k closest training
vectors (Metric distance: Euclidean norm) in the fea-

ture space by majority of vote. The SVMs are mod-
elled through One Versus All approach. The kernel of
choice is the RBF (Radial Basis Function): K(xi, xj) =
e−γ||xi−xj ||2 . The RF is an ensemble of decision trees
where each tree is trained by bootstrapping with replace-
ment a dataset Dboot ∈ Rn×p. Each node splitting is per-
formed by choosing the ith feature (among √p features
randomly selected at each split) that minimizes the Gini
criterion [8]. The tuning of the neighborhood size k, the
SVM hyperparameters C, γ and the number of trees ntree
(Table II) are all determined through 10-fold Stratified
Cross-Validation as the preferred method to leave-one-
out CV. It avoids skewness in the training-test datasets
separation and performs better in the model selection
[11]. The analysis are performed using MATLAB on a
Desktop Machine (Intel i5, 3.5 Ghz, 16 GB RAM).

Dataset k-NN - k SVM - [γ, C] RF - ntree

C. of M. 15 [0.0146, 5936.6] 830
F 14 [0.0091, 138.9] 690
LP 7 [0.057, 3727.6] 280
T 12 [0.0146, 2330.0] 520
UP1 9 [0.0146, 33.9] 520
UP2 13 [0.0146, 15264] 270

TABLE II: Optimal Parameters - Labels: C. of M. (Center of
Mass) - F (Middle Finger) - LP (Lower Palm) - T (Thumb) - UP1
(Upper Palm 1) - UP2 (Upper Palm 2)

V. Offline Analysis
The offline analysis is performed by repeating the 10-fold
Cross Validation process employing the optimal param-
eters and averaging the 10 test sets’ (created by the 10-
fold CV) generalization performances. The comparison of
classification accuracies pictured in Fig. 3 highlights how
the RF is able to describe better the complexity of the
data. Both kNN and SVM perform slightly better with
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Fig. 3: Accuracies Comparison - Full Dataset

the F dataset than the other datasets (SVM - F classifies
very closely to UP1). Such a result is coherent with the
chosen hardware setup (Section 1): the sensors placed on
top of the display follow its tilting. The F dataset might
perform better since the middle finger is closer to the
focal points of the LSSs. The RF performs better on the

92.0 %

0.0 %

2.0 %

1.0 %

3.0 %

3.0 %

6.0 %

81.8 %

0.0 %

2.0 %

7.1 %

4.1 %

3.0 %

1.0 %

57.5 %

28.3 %

10.1 %

1.0 %

4.1 %

0.0 %

10.2 %

75.7 %

6.1 %

5.1 %

5.1 %

2.0 %

4.0 %

5.0 %

75.8 %

9.1 %

13.1 %

3.0 %

7.1 %

17.1 %

23.2 %

37.3 %

Forward Backward Triangle Circle Up/Down Blank

Predicted

Forward

Backward

Triangle

Circle

Up/Down

Blank

T
ru

e

Fig. 4: Confusion Matrix kNN - Full Dataset UP2

LP dataset than the F one, for which could be related



to the typologies of different boundaries built by the
algorithms. We first analyze the worst case scenario: kNN
with the UP2 dataset. Fig. 4 highlights how it struggles
to model the Blank gesture. The result is coherent as
the Blank gesture needs to capture all the non-gestures’
diversities. The improvement of the accuracies related
to the SVM and RF reported in Fig. 3 are also well
explained by the associated confusion matrices (Fig.5).
Even by increasing the complexity of the models the
difficulty of modeling the last class is noticeable. The
precision brought by the SVM is particularly increased
with the Blank Gesture and the Line Up/Down ges-
ture while the misclassification among the Circle and
the Triangle gestures remains almost untouched. The
latter is lowered by introducing the RF model where
the classification accuracy related to the Triangle and
the Circle has increased greatly. The imprecision of
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the Blank gesture which was more spread out among
the classes in Fig. 4 is here concentrated around the
geometrical figures: uncompleted triangles or diagonal
lines and swipes could often be interpreted as triangles.
This suggests that the Frame-based Approach may not
represent a good choice when dealing with geometrical
gestures described by absolute positions. In Fig. 6 it is
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illustrated that increasing the number of trees doesn’t
affect the accuracies, thus guaranteeing a faster predic-
tion without sacrificing the precision. Such a result could
become very useful when dealing with the computational
burden in an online gesture recognition. To evaluate the
importance of the extracted features, the RF is trained
with UP2 dataset and the optimal ntree: the Out-of-Bag
samples corresponding to each built tree are considered.

Fig. 7: Features Importance

In Fig. 7 the percentage increase in MCR is pictured
by considering the classification accuracy if the OOB

samples are run down the related trees with the mth

variable randomly permuted (m ∈ [1, ..., p]) [8]. It is
noticeable how the mean, the energy and the standard
deviation are the most important factors which affect
influence the prediction: the first shows the highest
decrease in accuracy on the z axis which is significant
mostly in the classification of the forward and the back-
ward movements. The importance is primarily focused
on the nucleus of the gesture in the energy and the
standard deviation features where the hand motion is
characterized by most of the variability.

VI. Conclusions
The paper presented the novelty associated with the
RAMBUS LSSs and their potentialities in hand-tracking
applications. In particular, it was shown that the Multi-
Point algorithm allows the identification and tracking
of 5-LEDs located at key points on the hand and the
application of the Frame-based Descriptor to the current
framework. The offline analysis pointed out the ability
of the RF to generalize better than the SVMs and kNN
algorithms. The confusion matrices show the behavior
of the classification as a function of the gestures. Even
if straight movement are modeled well, the misclassifi-
cation among the Circle, the Triangle and the Blank is
still significant. The discussion pointed out the difficulty
to model the non-gesture class as the category which
contains the most variability in terms of possible hand
motions. The RF represents a promising choice as a
starting point to furtherly improve the accuracy and the
robustness of the gesture recognition. A different feature
extraction approach and the real-time implementation
will be the main objectives of future works.

References
[1] P. Gill et al., “Optical, Mathematical and, Computational

Foundations of Lensless, Ultra-Miniature Diffractive Imagers
and Sensors,” in International Journal on Advances in Sys-
tems and Meaurements, Rambus Labs, Sunnyvale, 2014.

[2] S. Escalera et al., “Challenges in Multimodal Gesture Recog-
nition,” Journal of Machine Learning Research, vol. 17, no. 72,
pp. 1–54, 2016.

[3] L. R. Rabiner, “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition,” in Proceedings
of the IEEE, 1989, pp. 257–286.

[4] S. Mitra and T. Acharya, “Gesture Recognition: A Survey,”
IEEE Transactions on Systems, Man and Cybernetics - Part
C, vol. 37, no. 3, pp. 311–324, 2007.

[5] X. Suau et al., “Real-Time Head and Hand Tracking based
on 2.5D Data,” in 2011 IEEE International Conference on
Multimedia and Expo, July 2011, pp. 1–6.

[6] L. Abraham et al., “3D Ranging and Tracking Using Lensless
Smart Sensors,” in Smart Integration Systems, Cork, 2017.

[7] G. Belgioioso et al., “A Machine Learning based Approach
For Gesture Recognition from Inertial Measurements,” in 53rd
IEEE Conf on Decision and Control, Dec 2014, pp. 4899–4904.

[8] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, Oct 2001.

[9] P. Gill et al., “Lensless Ultra-Miniature Computational Sen-
sors and Imagers,” in SensorComm, Barcelona, Spain, 2013.

[10] L. Abraham et al., “Hand Tracking and Gesture Recognition
using Lensless Smart Sensors,” in IEEE Sensors, pp. 1–8,
submitted.

[11] R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” vol. 14, 03 2001.


