
Title Grounded theory in software engineering research: a critical
review and guidelines

Authors Stol, Klaas-Jan;Ralph, Paul;Fitzgerald, Brian

Publication date 2016-05

Original Citation Stol, K.-J., Ralph, P. and Fitzgerald, B. (2016) 'Grounded theory in
software engineering research: a critical review and guidelines',
ICSE '16: Proceedings of the 38th International Conference on
Software Engineering, 14-22 May, Austin, Texas, 2884833: ACM,
pp. 120-131. doi: 10.1145/2884781.2884833

Type of publication Conference item

Link to publisher's
version

https://dl.acm.org/citation.cfm?doid=2884781.2884833 -
10.1145/2884781.2884833

Rights © ACM, 2016. This is the author's version of the work. It
is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was
published in ICSE '16 Proceedings of the 38th International
Conference on Software Engineering, pp. 120-131, http://
dx.doi.org/10.1145/2884781.2884833

Download date 2024-07-11 00:03:38

Item downloaded
from

https://hdl.handle.net/10468/7041

https://hdl.handle.net/10468/7041


Grounded Theory in Software Engineering Research: 
A Critical Review and Guidelines 

Klaas-Jan Stol 
Lero—the Irish Software Research 

Centre, University of Limerick 
Ireland 

klaas-jan.stol@lero.ie 

Paul Ralph 
Department of Computer Science 

University of Auckland 
New Zealand 

paul@paulralph.name 

Brian Fitzgerald 
Lero—the Irish Software Research 

Centre, University of Limerick 
Ireland 

bf@lero.ie 

ABSTRACT
Grounded Theory (GT) has proved an extremely useful research 
approach in several fields including medical sociology, nursing, 
education and management theory. However, GT is a complex 
method based on an inductive paradigm that is fundamentally 
different from the traditional hypothetico-deductive research 
model. As there are at least three variants of GT, some ostensibly 
GT research suffers from method slurring, where researchers 
adopt an arbitrary subset of GT practices that are not recognizable 
as GT. In this paper, we describe the variants of GT and identify 
the core set of GT practices. We then analyze the use of grounded 
theory in software engineering. We carefully and systematically 
selected 98 articles that mention GT, of which 52 explicitly claim 
to use GT, with the other 46 using GT techniques only. Only 16 
articles provide detailed accounts of their research procedures. We 
offer guidelines to improve the quality of both conducting and 
reporting GT studies. The latter is an important extension since 
current GT guidelines in software engineering do not cover the re-
porting process, despite good reporting being necessary for 
evaluating a study and informing subsequent research. 

CCS Concepts
• General and reference → Empirical studies

Keywords
Grounded theory, software engineering, review, guidelines 

1. INTRODUCTION
“And make-it-up-as-you-go-along may be OK, but then you
have to say, ‘I’m making-it-up-as-I-go-along, guys.’ ”

In: “Dialogue: More on Muddling Methods” [57] 

There is growing awareness that Software Engineering (SE) 
research must consider social, cultural and human aspects of 
software construction [6, 26, 62]. Scholars have consequently 
adopted diverse research methods from the social sciences. 
Qualitative research methods are increasingly employed in SE 
research as evidenced by journal special issues on their use in 
2007 [23] and 2011 [26]. One method that is attracting particular 
attention is grounded theory (GT) [2, 47]. A quick search in the 
Scopus database indicates the number of grounded theory studies 

in computer science has been growing for the last decade (Fig. 1). 
Early examples of the use of GT in software engineering are by 
Carver [13] and Coleman and O’Connor [18].  

Grounded theory is a method originally described by Glaser and 
Strauss in their seminal book The Discovery of Grounded Theory 
[38]. The goal of GT is to generate theory rather than test or 
validate existing theory. GT is suitable for investigating questions 
such as what’s going on here? [2]. 

As a relatively young discipline, SE has yet to establish and 
validate abundant formal theories. Given the unique and novel 
aspects of the underlying technology in SE, theories from other 
disciplines may not be easy to borrow and adapt for SE. Inductive 
approaches such as GT are therefore useful to construct a relevant 
conceptual and theoretical foundation for the field. 
Since its inception, GT has provided an extremely useful method-
ological approach in numerous disciplines—notably medical 
sociology [15], nursing [4], education [58] and management [52]. 
However, researchers have been criticized for using GT too 
casually, without clarifying that they have appreciated the 
intricacies of grounded theory, which is not only quite complex 
but also based on an inductive paradigm that is entirely different 
from the traditional hypothetico-deductive model [72]: 

“‘Grounded theory’ is often used as rhetorical sleight of 
hand by authors who are unfamiliar with qualitative 
research and who wish to avoid close description or 
illumination of their methods. More disturbing, perhaps, 
is that it becomes apparent, when one pushes them to 
describe their methods, that many authors hold some 
serious misconceptions about grounded theory.” 

It is therefore crucial that researchers appropriately design and 
accurately report studies using inductive methods including 
grounded theory. However, some software engineering articles 
that claim to use GT manifest considerable discrepancies between 
their description of what they have actually done and seminal GT 

Figure 1. Rise of grounded theory studies in computer science 
Source: Scopus (Aug 2015); search string: TITLE-ABS-KEY 

(“grounded theory”), limited to “computer science”  

0 

50 

100 

150 

200 

19
96

 
19

97
 

19
98

 
19

99
 

20
00

 
20

01
 

20
02

 
20

03
 

20
04

 
20

05
 

20
06

 
20

07
 

20
08

 
20

09
 

20
10

 
20

11
 

20
12

 
20

13
 

20
14

 
20

15
 

KJ Stol, P Ralph, B Fitzgerald (2016) International Conference on Software Engineering



guidance. To assess the scale of this problem in the software engi-
neering literature, we posed the following research question: 

Research Question: What is the state of practice of grounded 
theory research in software engineering? 
Several SE researchers have recently reported their experiences 
using GT and these provide useful guidance for prospective GT 
researchers [1, 17, 44]. However, this guidance does not extend to 
reporting GT studies. Reporting is important because this pro-
duces the persistent record that supports extension and contributes 
to the field’s cumulative body of knowledge. Furthermore, this 
paper presents a review of almost 100 articles through which we 
identify a number of key issues with GT studies in SE.  
We emphasize that our purpose is not to pedantically analyze and 
criticize the papers included in our study, nor to criticize the au-
thors of those studies in any way. Instead, we draw attention to 
prevalent misunderstandings of grounded theory as an approach, 
and contend that only research that embodies GT’s core principles 
(Sec. 2.1) should claim to be a grounded theory study. Based on 
the results below, we explore numerous considerations for con-
ducting and reporting grounded theory and uncover challenges 
peculiar to software contexts. Our contribution is consequently 
fourfold—we provide (1) an in-depth comparison of the three 
main variants of GT; (2) a critical analysis of the state of practice 
of the use of grounded theory in the software engineering litera-
ture; (3) a set of considerations for conducting and reporting GT 
studies in SE; (4) three significant challenges for applying GT to 
software engineering phenomena. 

This paper proceeds as follows. Section 2 presents a brief history 
of grounded theory (including its terminology and philosophical 
foundations) and a comparison of the different GT versions. 
Section 3 presents the research design that we employed. Section 
4 presents the analysis and results of our study. Section 5 dis-
cusses the results and offers a checklist for future GT studies. 
Section 6 concludes the paper. 

2. GROUNDED THEORY
2.1 Key Components of Grounded Theory 
Grounded Theory refers to a method of inductively generating 
theory from data [38]. GT studies often focus on unstructured text 
(e.g. interview transcripts, documents, field notes); however, they 
may also include structured text, diagrams and images, and even 
quantitative data [35].  
For the presentation of our analysis in Sec. 4, it is imperative to 
establish the key components of grounded theory. While GT has 
several variants (discussed in Sec. 2.3) they share many core fea-
tures, including the following: 

• Limit exposure to literature. Rather than beginning with a
comprehensive literature review, grounded theory proponents
(e.g. [19, 35]) recommend limiting exposure to existing
literature and theories to promote open-mindedness and pre-
empt confirmation bias (see Sec. 2.3 for different positions
regarding the literature). A major reason to limit study of the
literature is to prevent the researcher from testing existing
theories, or thinking in terms of established concepts.

• Treat everything as data. When Glaser says, “all is data,”
he means all—qualitative data, quantitative data, semi-struc-
tured data, pictures, diagrams, videos and even existing theo-
ries and literature [36, 69].

• Immediate and continuous data analysis. The researcher
begins analyzing data immediately and does not finish
collecting data before beginning analysis—data collection

and analysis are simultaneous [16], and subsequent data 
collection is driven by theoretical sampling, discussed next.  

• Theoretical sampling. The researcher identifies further data
sources based on gaps in the emerging theory or to further
explore unsaturated concepts. Theoretical sampling is
indeterministic, as opposed to conventional sampling
techniques [16] (see theoretical saturation below).

• Theoretical sensitivity, which refers to the researcher’s
ability to conceptualize, and to establish relationships
between concepts, lies at the heart of developing grounded
theory. Both Glaser [35] (Ch. 5) and Strauss and Corbin [68]
highlight the role of creativity in this process.

• Coding. The researcher uses inductive and abductive logic to
construct analytical codes and infer theoretical categories
from the data by labeling ‘incidents’ and their properties. The
researcher does not classify data into a preconceived coding
scheme, or infer categories from logically deduced
hypotheses [16]. Glaser and Strauss [38] did not use the term
abduction but emphasized induction to distance themselves
from the deductive theorizing that was prevalent at the time
of their publication. Both Glaser and Strauss later admitted a
role for deduction in GT [36, 70].

• Memoing. The researcher writes memos (e.g. notes, dia-
grams, sketches) to elaborate categories as they emerge,
describe preliminary properties and relationships between
categories, and identify gaps [16]. These memos play such an
important role in theory generation that Glaser baldly stated
that, “if the researcher skips this stage, he is not doing
grounded theory” [34] (Ch. 5, emphasis original).

• Constant comparison. From the start of the study, the re-
searcher constantly compares data, memos, codes and cate-
gories [8]. Both categories and data interpretations evolve
and saturate until they ‘fit’ the data [34].

• Memo sorting, also called theoretical sorting is the
continuous process of oscillating between the memos and the
emerging theory outline to find a suitable fit for all categories
that resulted from the coding [34, 70]. Like memoing, Glaser
argues that sorting cannot be skipped [35].

• Cohesive theory. The researcher attempts to move beyond
superficial categories and develop a cohesive theory of the
studied phenomenon.

• Theoretical saturation. The researcher stops collecting and
analyzing data when theoretical saturation is reached. Theo-
retical saturation refers to the point at which a theory’s com-
ponents are well supported and new data is no longer trig-
gering revisions or reinterpretations of the theory [34].

While this list of core features is by no means a complete descrip-
tion of grounded theory (both Glaser and Strauss have written 
numerous books to explain GT [34-36, 71]), it does highlight 
some distinctions from more traditional, deductive research meth-
ods. The above, however, largely ignores the differences between 
the various versions of GT, discussed in Section 2.3. 

2.2 Philosophical Foundations 
Research approaches are commonly (and simplistically) classified 
into two broad groups based on the epistemological positions of 
positivism and interpretivism [40]. GT can be confusing because 
it does not fit cleanly into either group. We briefly discuss 
ontology and epistemology, and then focus on how GT resists the 
classification of positivism and interpretivism. 

The positivist approach has long been applied in the physical 
sciences, and has led to tremendous growth of knowledge in the 
area. It comprises five pillars [43]: 



• Unity of the scientific method: the same approach to
knowledge acquisition applies to all forms of enquiry.

• Search for causal relationships: science aims to find
regularity and causal relationships among studied elements.

• Belief in empiricism: sense-experience is the only source of
knowledge but subjective perception is not acceptable.

• Science (and its process) is value-free: science has no
intrinsic values or perspectives; science is independent of
politics, ideology, morality, society and culture.

• Science is founded upon logic and mathematics: causal
relationships are demonstrated quantitatively, using the
universal language of math and the formal basis of logic.

Positivism assumes that: (1) the universe behaves according to 
inalterable, discoverable laws; (2) systems are merely the sum of 
their components (reductionism); (3) science should be 
reproducible, reliable, rigorous and objective. Different scientists 
observing the same phenomenon should therefore reach 
equivalent conclusions.  

Interpretivism makes the opposite assumptions (cf. [41]): (1) no 
universal truth or reality exists, rather, “the important reality is 
what people imagine it to be” [9]; (2) systems exhibit emergent 
behaviors not reducible to their component parts [33, 48]; (3) 
social science, which aims to understand and to interpret human 
behavior, is fundamentally different from natural science, and 
natural science methods including quantitative measurement, 
statistical significance and hypothesis testing are insufficient for 
understanding social phenomena [76]. Therefore, formulating 
hypotheses is not relevant to an interpretivist study. 
Understanding and explaining the social world requires emotion 
and empathy, which preclude pure objectivity [76]. Interpretivists 
have attacked positivism for promoting the myth of objectivity 
[56] and Berger and Kellner point out that “direct access to facts 
and laws ... is never possible, no matter what one’s standpoint ... 
there is no magic trick by which one can bypass the act of inter-
pretation” [5]. Interpretivists prefer qualitative methods, 
including interviews, case studies, ethnography and action 
research, arguing that these keep the researcher grounded in “the 
first-order, primary, lived concepts of everyday life” [21].   

While positivism and interpretivism can be cast as polar opposites 
[31], many studies do not sit neatly in either paradigm. We have 
experiments where the dependent variable is ‘measured’ by com-
bining the subjective ratings of expert judges [55], case studies 
with upfront hypotheses [63], interview studies where text is ana-
lyzed quantitatively [61] and mixed-method inquiries that com-
bine questionnaires with case studies [60]. “All qualitative data 
can be coded quantitatively” by counting words and categorizing 
statements; meanwhile “all quantitative data is based on 
qualitative judgment” because we have to make assumptions to 
interpret the numbers [73]. More fundamentally, these groups 
involve several interconnected philosophical positions that cannot 
be reduced to a single spectrum, let alone a Boolean variable.  
It is easy to mistake GT as a qualitative or interpretivist method 
because many GT studies focus on collecting and analyzing 
unstructured text. However, GT was developed in the 1960s, 
during the ontological and epistemological shift from positivism 
and objectivism to social constructionism and postmodernism. GT 
stems from a dissatisfaction with the way research was done, 
whereby new researchers were trained as “theoretical serfs” who 
tested the theories of “theoretical capitalists” [34] (p. 9), which 
could lack relevance to the real world. GT was developed due to a 
desire to build theories more rigorously and dispassionately by 
grounding them in objective reality.  

2.3 Versions of Grounded Theory 
Although Glaser and Strauss never explicated their epistemologi-
cal position in Discovery (and Glaser later argued that GT is 
paradigm-agnostic), their terminology reflects an objectivist 
stance. The title of their seminal book is ‘The Discovery of 
Grounded Theory’ [38] rather than for example Sensemaking with 
grounded theory—the term discovery suggests that an objective 
reality exists out there waiting to be discovered. Glaser speaks of 
an indicator-concept model, analysis of a core variable, and aims 
for parsimony in the developed theory, reflecting a position that 
aligns with objectivism. Both Glaser and Strauss and Corbin also 
used objectivist terminology in their definitions of theory as a set 
of concepts and relationships among them that together offer 
explanations and predictions (i.e. causality) [34, 68]. While Glaser 
maintains that GT is independent from any philosophical stance, 
Corbin has gradually shifted towards interpretivism [19]. 
Meanwhile, Charmaz (a student of Glaser), developed 
‘constructivist’ grounded theory by reinterpreting GT from a con-
structivist’s stance [16] that is closely connected to interpretivism.  
Due to extensive discussions on what constitutes grounded theory, 
it has been labeled a ‘contested concept’ [11]. Since Glaser and 
Strauss’s seminal book, GT has seen considerable evolution 
resulting in the emergence of different versions. Denzin lists no 
less than seven different versions [22], although he does not 
specify the differences between all of them. It is now widely 
acknowledged that there are at least three main streams of GT [1]: 
Glaser’s GT (classic or Glaserian GT); Strauss and Corbin’s GT 
(Straussian GT); and Charmaz’s constructivist GT.  

Glaser’s perspective is well reflected in the fact that he refers to 
his version of grounded theory as “classic” GT. He strongly disa-
grees with Strauss and Corbin’s version of GT [35] and has ar-
gued that Strauss and Corbin’s method is not grounded theory, but 
refers to it as “full conceptual description” [35]. Furthermore, 
Glaser has called ‘constructivist’ grounded theory a “misnomer” 
[37]. In this paper, we accept any version of grounded theory as 
‘grounded theory’—although we will argue below that 
consistency with a particular version is important. Table 1 
summarizes some of the key differences between the three main 
strands of GT. An additional difficulty in comparing GT versions 
is that Straussian GT is still evolving, as briefly mentioned above.  

Of the three main versions of GT, the difference between classic 
and Straussian GT has been discussed most extensively [10, 42, 
51]. Classic GT can be characterized as having a strong focus on 
emergence (of research questions, of codes, of theory), whereas 
Straussian GT meticulously suggests a set of ‘mini-steps.’ This 
difference in focus on emergence is captured succinctly by Stern: 
“Strauss, as he examines the data, stops at each word to ask, 
‘What if?’ Glaser keeps his attention focused on the data and 
asks, ‘what do we have here?’” [64] (our emphasis). Glaser 
requires any concept to be grounded in the data, whereas Strauss 
and Corbin go beyond the data by asking various questions on 
what might be to develop the emerging theory [35] (Ch. 8). 
Strauss’s approach has been described as “more free-wheeling 
flights of imagination,” which contrasts strongly with Glaser’s 
faithfulness to the data.  
There is little agreement on what constitutes theory. In classic GT, 
theory consists of concepts that are related to one another, 
offering explanation and prediction. Constructivist GT 
emphasizes understanding and acknowledges that data, 
interpretations, and resulting theory depend on the researcher’s 
view. In practice, however, such ontological and epistemological 
differences are rarely apparent in generated theories. 



Table 1. Some of the key differences between the three main strands of grounded theory 

Element Classic / Glaserian grounded theory Straussian grounded theory Constructivist grounded theory 
Research 
question 

Should not be defined a priori, but 
emerge from the research—this makes 
the RQ relevant to the field. The re-
searcher starts with an ‘area of interest.’ 
Literature in other areas may be 
consulted to increase the researcher’s 
“theoretical sensitivity.” Defining a RQ 
a priori is considered ‘forcing’ [35]. 

Research question may be defined 
upfront, derived from the literature or 
suggested by a colleague; RQ is often 
broad and open-ended. 

Research begins with “initial 
research questions,” which evolve 
throughout the study [16]. 

Role of the 
literature 

An extensive literature review should be 
delayed until after the theory is 
emerging to prevent the influence of 
existing concepts on the emerging 
theory. Until the researcher has defined 
the RQ, it is not clear which literature 
should be consulted. Existing concepts 
such as gender and age should not be 
included a priori, but must ‘earn’ their 
way into the emerging theory. 

The literature may be consulted 
throughout the process, as concepts 
from the literature may be used if 
applicable; to enhance theoretical 
sensitivity, as a secondary data 
source; to formulate questions for data 
collection or stimulate questions 
during analysis; to suggest areas for 
theoretical sampling [70] (p. 49). 

Acknowledges not only Glaser’s 
reasons for delaying the literature 
review but also the impracticality of 
this strategy. Charmaz highlights 
the need to tailor a literature review 
to fit the purpose of the GT study 
[16] (p. 306).  

Coding 
procedures 

Open coding: ‘fracturing’ of the data; 
line by line coding is recommended to 
achieve full theoretical coverage, but 
does not reject coding sentences or 
paragraphs, or whole documents [35]. 

Selective coding: delimiting coding to 
only those variables that relate to one 
(or in some cases, several) core 
variables to establish a parsimonious 
theory. The core variable guides further 
data collection.  

Theoretical coding: establishing 
conceptual relations between 
substantive codes, resulting in the 
development of hypotheses. Glaser 
proposes several ‘coding families,’ 
which are theoretical codes that can be 
used by researchers, though these must 
‘earn’ their way into the emerging 
theory (e.g. the Six C family in Fig. 4). 

Open coding: generation of 
‘categories’ and how they vary 
dimensionally. Coding can be done 
line by line or by sentence or 
paragraph, or even the whole 
document [70]. 
Axial coding: putting back data in 
new ways after open coding by 
identifying relationships between 
categories; this is effectively Glaser’s 
theoretical coding. Use of the 
‘paradigm model’ or ‘conditional 
matrix’ (an analytical tool in 
Straussian GT [70], Ch. 12) to 
identify context, conditions, action / 
interaction strategies and 
consequences. 
Selective coding: deciding on the 
central category that all major 
categories can link to [70]. 

Initial coding: examining data 
word-by-word, line-by-line or 
incident-by-incident to make sense 
of the text without injecting the 
researcher’s assumptions, biases, 
motivations. Similar to Glaser’s 
open coding. Charmaz recommends 
“coding with gerunds.” 

Focused coding: selecting 
categories from the most frequent 
or important codes, and using them 
to categorize the data; does not 
require a single core category or 
variable.   
Theoretical coding: specifying the 
relationship between categories to 
integrate them into a cohesive 
theory. 

Questions 
asked 
during 
analysis 

• What is this data a study of? [34]
• What category or what property of

what category does this incident in-
dicate?

• What is actually happening in the
data?

Asking questions about whom, when, 
where, how, with what consequences, 
and under what conditions phenomena 
occur, helps to ‘discover’ important 
ideas for the theory [69]. ‘Free-
wheeling flights of imagination’ [16] 

• What is this data a study of? [16]
• What do the data suggest? Pro-

nounce? Leave unsaid?
• From whose point of view?
• What theoretical category does

this specific datum indicate? [16]

Philo-
sophical 
influences 

Objectivism: There exists a single, 
correct description of reality; the 
researcher therefore discovers grounded 
theory from data [11].  

Pragmatism and symbolic 
interactionism: actors engage in a 
world that requires reflexive 
interaction; reality is constructed 
through interaction and relies on 
language and communication [14]. 

Social constructionism: social 
reality is constructed by our 
individual and collective action. GT 
emerges from “shared experiences 
and relationships with participants”; 
Observers are not neutral [16].  

Evaluation 
criteria 

The generated categories must fit the 
data, the theory should work (it must be 
able to explain or predict what will 
happen); the theory must have 
relevance to the action of the area, and 
the theory must be modifiable as new 
data appear [34] (p. 4-5). 

Seven criteria for the research process 
e.g. information on sample selection, 
major categories, derived hypotheses 
and discrepancies. Eight criteria 
regarding the empirical grounding, 
e.g. “are concepts generated?” “is 
variation built into the theory?” [70]. 

Credibility (e.g. is there sufficient 
data to merit claims?), originality 
(do your categories offer new 
insights?), resonance (does the GT 
make sense to participants), 
usefulness (does the GT offer use-
ful interpretations?) [16] (p. 337). 



While the 1998 edition of Strauss and Corbin’s book specifies 
open, axial and selective coding, the 2008 edition (authored by 
Corbin alone after Strauss’ death in 1996, making the term 
Straussian GT a misnomer and Corbinian more appropriate) no 
longer defines open and axial coding as separate activities [74]. 
This paper focuses on the 1998 version since it is very prevalent 
(in particular axial coding). As Table 1 shows, the three variants 
differ in their position with respect to key elements such as the 
role of the literature, but also in terminology and order of 
practices (e.g. coding procedures). For example, Strauss and 
Corbin interpret selective coding differently from Glaser. 
Furthermore, Strauss increasingly saw GT as a verificational 
method [16], a position that Glaser strongly rejects [35]. 

3. RESEARCH DESIGN
3.1 Study Identification and Selection 
To investigate the state of practice of GT research in SE, we 
reviewed a selection of articles reporting GT studies. We adopted 
an automated search strategy; that is, we collected our sample by 
searching specific online databases using specific search strings 
(see below). We chose this over manually browsing selected 
publication outlets because it is more efficient and replicable. We 
pilot tested several search strings. For example, we conducted a 
search on “grounded theory,” but this resulted in thousands of 
papers from other disciplines. We also tried limiting the search to 
the title, abstract and keywords, but some GT studies appear not 
to use the term ‘grounded theory’ in any of these fields. Based on 
this pilot test, we adopted the following query.  
Search String: “grounded theory” AND “software engineering” 

We searched Scopus, IEEE Xplore, the ACM Digital Library and 
ScienceDirect. We excluded Wiley Online and SpringerLink, as 
these are subsumed by Scopus. We adapted the search string to 
the specific characteristics of each database. Further constraints 
were introduced case-by-case to eliminate obviously irrelevant 
papers. Combining the search results and removing duplicates 
produced an initial dataset of 1,763 papers (Table 2). As this 
dataset is too large for manual analysis, we focused on articles 
published in well-known, peer-reviewed SE journals (Table 3). 

We did not consider conference contributions because journal 
papers tend to have endured greater review, be more polished and 
have more liberal page limits. We also did not consider articles 
from peer-reviewed magazines including Communications of the 
ACM and IEEE Software because they tend to have briefer 
methodological descriptions, given their practitioner-oriented 
focus. In the interests of representativeness, we further excluded 
specialist journals such as Requirements Engineering and the 
International Journal of Open Source Software and Processes.  

The selected journals coincide with those used in previous 
reviews (e.g. [39], except magazines as stated). We further added 
the Software Quality Journal and the journals that descended from 
the Journal on Software Maintenance: Research and Practice. 

Table 2. Searched databases and search constraints 

Database Search constraints No. 
Scopus N/A (full text) 1,668 
ScienceDirect Computer Science only (full text) 249 
IEEE Xplore Search on metadata only 73 
ACM DL Title, Abstract, Keywords only 13 

Subtotal 2,003 
Duplicates 240 

Total 1,763 

Table 3. Selected journals and number of papers included 

Journal Articles 
Information and Software Technology 42 
Journal of Systems and Software 16 
IEEE Transactions on Software Engineering 11 
Empirical Software Engineering 10 
Software Process: Improvement and Practice a 8 
Journal of Software: Evolution and Process b 4 
Software Quality Journal 3 
ACM Trans. Software Engineering and Methodology 3 
Journal of Software Maintenance and Evolution: 

Research and Practice c 
1 

a Merged with J Software: Evolution and Process in 2012  
b Successor of J Softw Maint Evol Research & Practice since vol. 24, 2012 
c Vol. 1-12 published as J Software Maintenance: Research and Practice 

We removed editorials, secondary studies (systematic reviews), 
and articles that present methodological reflections on the use of 
GT, rather than a specific GT study (e.g. [1, 12, 18, 46, 59]), 
resulting in a final set of 98 papers (available in an appendix 
[67]). Fig. 2 shows the articles’ distribution of publication year.  

3.2 Data Extraction  
We read all 98 papers to investigate the following questions. 

• What is claimed concerning the use of grounded theory? (e.g.
“we used grounded theory,” “we took a grounded theory
approach,” “the data were coding using GT techniques”);

• To what extent are different versions of grounded theory
discussed and used? To what extent do papers state their
epistemological stance?

• Is grounded theory mentioned in the title, keywords, abstract,
or research question (or objective / topic / purpose)?

• What specific GT techniques and practices are used? (e.g.
open coding, constant comparison, memoing);

• How is data collected and analyzed?
• What do GT studies produce and how do they present it?

(e.g. as a diagram);
• Was the literature review (if any) conducted before, during or

after the study; was the resulting theory (if any) integrated
back into the literature?

All information was recorded in a spreadsheet. We also took 
extensive notes concerning interesting findings that did not fit in 
our predefined questions. In several studies, for example, we 
noted clear deviations from GT principles, such as the use of 
(preconceived) ‘seed categories’ to guide initial analysis which is 
viewed as inappropriate in GT. The data extraction and coding 
was done by the primary author, which was reviewed by the 
remaining authors. 

Figure 2. Distribution of publication year of selected articles 
Note: Search conducted in Spring 2015, hence the drop in 2015. 

0"

5"

10"

15"

20"

25"

19
95

 
19

98
 
20

00
 
20

01
 
20

02
 
20

03
 
20

04
 
20

06
 
20

07
 
20

08
 
20

09
 
20

10
 
20

11
 
20

12
 
20

13
 
20

14
 
20

15
 



4. ANALYSIS AND RESULTS
In this section we address the use of GT, the level of detail 
presented, variants of GT and the type of output of studies. 

4.1 Grounded Theory “Use” is Ambiguous 
We analyzed all 98 articles to investigate their claim of using 
grounded theory, and found that many claims are quite ambigu-
ous. Fig. 3 (Box 1) shows that almost half (n=46) of the surveyed 
articles (n=98) merely borrow from grounded theory; for example: 

• “Using concepts of grounded theory […]”
• “data analysis was carried out using a modified version

of Grounded Theory”
Fifteen articles (Box 1.1 in Fig. 3) state that they use an approach 
that resembles, adapts, or is inspired by grounded theory, but do 
not in actual fact present a grounded theory study. An example of 
such a claim is: “In a method similar to the first step in grounded 
theory (Glaser and Strauss 1967) […] we identified a set of cate-
gories.” Such studies are clearly not grounded theory studies.   
Eighteen articles (Box 1.2 in Fig. 3) do not use the term ‘grounded 
theory’ in the main text at all (but only in its bibliography). 
Rather, they mention specific techniques such as ‘coding’ or 
‘theoretical saturation’ and cite seminal works on grounded 
theory, such as Glaser and Strauss’s Discovery book [38]. 
Thirteen other articles (Box 1.3) state that they use grounded 
theory ‘techniques’ or ‘procedures,’ and in most cases refer to 
coding and constant comparison. One example of such a statement 
is: “The ‘Open Coding’ and ‘Theoretical Coding’ techniques of 
Glaser (1978) have been applied iteratively to identify different 
categories and their properties.”	 Such statements do not claim 
that GT was used, merely GT techniques. In several cases, authors 
explicitly acknowledge that their study is not a GT study.  

This borrowing rhetoric is unusual in research methodology. We 
do not recall ever reading about studies that “use randomized 
controlled trial techniques,” were “inspired by survey methodol-
ogy,” or “adopted a modified questionnaire approach.” Claiming 
to “use grounded theory techniques” rather than GT wholly sug-
gests that authors are aware that GT is a comprehensive research 
method from which they are borrowing certain elements.  

The remaining 52 papers (Box 2 in Fig. 3) explicitly claim to use 
GT. Typical examples of such claims include (e.g. [30]): 

• “Using a grounded theory approach […]”
• “We used grounded theory to […]”
• “We generated a grounded theory”

Figure 3. Breakdown of the articles included in our review 

However, deciding whether or not a study uses grounded theory is 
far from trivial. While some articles clearly claim to use grounded 
theory, the phrasing of these claims varies substantially and some 
are ambiguous. For example, some studies use a “grounded theory 
approach.” In the absence of further clarification, we assume this 
means GT was used, however, it could be interpreted as an 
approach based on GT. This made it more difficult to decide 
whether or not the authors were actually claiming to use grounded 
theory. This is simultaneously a potential threat to the validity of 
our findings and a surprising finding itself. While our exact count 
(52 studies making claims to use GT) should be interpreted with 
caution, the fact that this is ambiguous, and any large proportion 
of studies borrowing from a method rather than using it, is 
unusual and potentially problematic for a sound evaluation of 
such a study.  
Of the 52 studies making a claim to have used GT, four studies 
(Box 2.1) deviated so sharply from GT that they have not used 
grounded theory at all. In three cases, the authors developed a set 
of preliminary categories, which were then combined with a 
“grounded theory approach”—starting with a classification from 
the literature is highly suspect, even when considering Strauss and 
Corbin’s quite liberal use of the literature (see Table 1).  

Of the 98 articles included in our review, six used the term 
‘grounded theory’ in the title and 14 specified ‘grounded theory’ 
as a keyword. This suggests that grounded theory was essential to 
these studies rather than an afterthought. While clearly no 
conclusion should be drawn based on the presence of GT as a 
keyword, given the limitations of some journals on the number of 
keywords (as low as three), it might suggest that these authors 
more consciously wished to signal the role of GT in their study. 

4.2 Many Studies Present Little to No Detail 
Of the 52 articles claiming to have done a grounded theory study, 
18 (Box 2.1 in Fig. 3) present no details at all beyond claims such 
as: “[we] used a grounded theory approach for data gathering 
and data analysis.” In some cases, a brief and usually incomplete 
summary of grounded theory is provided, for example, by stating 
that grounded theory consists of three coding phases. Besides 
being incomplete, it also suggests coding happens in three distinct 
phases, which is not what Glaser or Strauss had in mind. Many of 
these articles state that the conceptualization presented in those 
articles were developed using grounded theory, without shedding 
any light on the process through which this was done.  

We further inspected the 30 articles (Box 2.3) that present signifi-
cant methodological details, to investigate the extent to which 
different GT practices are mentioned and used (Table 4). While 
GT is not reducible to a set of independent practices, one still 
expects GT studies to report details on key practices associated 
with GT (cf. Sec. 2.1).  

However, many authors use GT techniques à la carte. Fewer than 
half of the 30 articles describe or confirm the use of key practices, 
such as simultaneous data collection and analysis (n=13), mem-
oing (n=12), memo sorting (n=4), constant comparison (n=13), or 
theoretical sampling (n=12). Fifteen articles confirm that data 
collection continued until theoretical saturation was reached. All 
but one article discuss data sources, elucidate data collection and 
describe coding practices. Details varied from a brief paragraph to 
an extensive presentation. We also found misinterpretations of 
key practices. One article claimed theoretical sampling, but 
instead of collecting additional data to further investigate as of yet 
unsaturated concepts in the emerging theory, a number of case 
companies were selected seemingly a priori based on their 
experience in the area that the researchers were investigating. 

Review 
N=98 

[2] Explicitly 
claiming GT 
N=52 

[1] Using GT 
techniques 
N=46 

[2.3.3] Coding details 
only 
N=14 

[2.3] Detailed 
N=30 

[2.2] Deviating from GT 
N=4 

[2.3.1] Comprehensive 
and detailed 
N=5 

[2.1] No details at all 
N=18 

[2.3.2] Comprehensive 
N=11 

[1.2] “GT” not mentioned, only specific 
techniques 
N=18 

[1.1] Adapted, inspired, resembles GT  
N=15 

[1.3] Claiming GT techniques 
N=13 



Table 4. Grounded theory practices used GT (n=52) 

Practice Papers reporting 
GT Practice details reported 30 

Simultaneous data collection and analysis 13 
Data sources and collection 29 
Theoretical sampling 12 
Coding 29 
Memoing 12 
Memo sorting 4 
Constant comparison 13 
Theoretical saturation  15 

Sixteen articles (Boxes 2.3.1, 2.3.2) provide a comprehensive 
presentation of their research method, of which five articles 
present extensive documentation about the GT research process 
[2, 18, 45, 47, 49]. Fourteen other articles provided details on the 
coding process only (Box 2.3.3). 

4.3 Many Studies Ignore GT Variants 
As discussed in Sec. 2.3, GT has several variants with significant 
differences with regards to the use of the literature, specific 
coding practices, and reflections on the role of the researcher in 
the research process. Of the 52 articles that claim to use grounded 
theory, 39 did not acknowledge the existence of different variants.  

To investigate which sources authors might have consulted in 
their study design, we looked at the citations to seminal GT 
works. Of the 39 articles that do not claim a specific GT variant, 
10 cited works on classic GT (Glaser, Glaser & Strauss), 13 cited 
works on Straussian GT (Strauss, Strauss & Corbin), and none 
cited constructivist GT. Thirteen articles cite conflicting seminal 
works on GT (e.g. [16, 19, 35]) without acknowledging any 
differences or indicating whose guidance they are following. Two 
articles cite works on all three variants of GT. One interpretation 
of this is that authors are now aware of the differences, and, in 
seeking to confer legitimacy on their research, provide copious 
references to several seminal works. However, we would argue 
that, had the authors actually read all three works, the existence of 
different variants would have been likely acknowledged. 

In several cases we found inconsistent usage of the claimed 
variant of grounded theory. Two articles claim or cite classic GT 
but use axial coding, a Straussian practice (Sec. 2.3). Another 
article claims to use Straussian GT, but uses one of the coding 
families offered by Glaser for increasing theoretical sensitivity 
[34] (p. 74). 

Table 5. Grounded theory variants acknowledged (n=52) 

Grounded theory variant claimed Articles 
Acknowledgment of different GT variants 13 

Explicit claim classic GT 5 
Explicit claim Straussian GT 8 
Explicit claim constructivist GT 0 

Variants not acknowledged 39 
Citing classic (Glaser / Glaser & Strauss) 10 
Citing Straussian (Strauss / Strauss & Corbin)  13 
Citing constructivist (Charmaz) 0 
Citing a combination of the above 13 
Citing others  3 

Epistemology acknowledged 5 
Interpretivist or constructivist 5 
Other 0 

Three articles do not refer to any of the seminal texts on GT but 
refer to other sources. These may be innocent mistakes or 
benevolent simplifications. Alternatively, and more worryingly, 
they may indicate researchers who are presenting their research 
under the guise of techniques they have heard of, but not 
investigated.  
Thirteen papers, however, do acknowledge the distinction 
between classic and Straussian GT—some in more detail than 
others. For example, one article stated that it incorporated “a 
Strauss and Corbin grounded theory approach to data gathering 
and analysis,” whereas other articles laid out the differences 
between the variants in detail. Of these, five claim to use classic 
GT, the other eight Straussian GT. None of the articles in our 
sample explicitly claim to use Charmaz’s constructivist GT. 
Finally, only five articles state an epistemological position; in all 
cases the authors claim their study to be an interpretivist one. In 
four of those cases, reference was made to seminal works by 
Glaser, and Strauss and Corbin, which align more closely with 
positivism, as outlined in Sec. 2.  

4.4 Few “GT” Studies Generate Theory 
Since grounded theory is a method of generating theory, we 
investigated the extent to which the 52 studies claiming to have 
used GT developed theories. While it depends on one’s definition 
of theory, few of the studies appear (or claim) to develop a theory, 
even though “a lack of existing theories” in a particular area is 
often given as a motivation to conduct a GT study.  

Eight articles presented contributions that were clearly cohesive 
theories consisting of constructs and relationships, while a ninth 
article presented a set of hypotheses that could be considered a 
theory. Some of the topics theorized by these studies include: 

• How is the software development process managed?
• How do software processes form and evolve?
• How do self-organizing agile teams self-organize?

Some articles present ‘theory’ in alternative forms instead of a set 
of concepts and relationships. For example, Hoda et al. [47] 
presented six roles that members of agile teams assume. Together 
these roles provide an explanation for the “social” process of self-
organization in agile teams, and as such they go beyond a mere 
taxonomy of roles. Therefore, we argue such a coherent set of 
findings can be considered a theory.  
In most cases, articles presented a graphical representation of the 
theory, usually simple boxes-and-arrows diagrams, to illustrate 
theoretical concepts and relationships. Three articles use Glaser’s 
‘Six C’ coding family [34] (p. 74) for visualization (e.g. Fig. 4). 
Other articles synthesized their results into various other types of 
contributions, including: 

• Conceptual frameworks, such as a framework of factors that
influence Software Process Improvement initiatives [29];

• Conceptual models, such as a model of the process for
managing collaborations in open source [7];

• A set of factors, such as success factors for globally-
distributed XP projects [53];

• A set of themes or categories, such as a set of categories
representing the characteristics of product managers [54].

Such contributions are useful as they offer new foundations for 
empirical studies, but often they do not form a ‘theory’ that, in 
Glaser’s words, “account for a pattern of behavior.” We observe 
that studies that produce a ‘set of themes’ rather than a theory tend  
only to borrow discrete practices from GT—what we call 
grounded theory à la carte.  



Figure 4. Example of the Six C coding family (from: [45]) 

Finally, ten articles present mere description. In many cases, the 
study’s results are structured based on a set of research questions, 
which are answered in detail using quotes from participants. This 
type of output is quite common for those studies that only used 
coding techniques, but do not make a theoretical contribution. 

5. DISCUSSION
A significant number of articles in our sample did not provide 
sufficient details for reviewers or readers to evaluate their 
methodological rigor. Several factors may contribute to a lack of 
methodological detail, including space constraints and simply not 
knowing what details to report. Since we only analyzed journal 
articles (rather than conference papers), space constraints are less 
valid as an excuse. Most seminal works on GT focus on how to 
collect and analyze data rather than what details to give in the 
methodology section of a paper. We therefore provide some 
general advice for reporting grounded theory studies followed by 
a list of specific details to include. 

5.1 Method Slurring 
Several SE articles claim to use grounded theory, yet do not 
appear to embrace its core characteristics (Sec. 2.2). If a study 
does not involve simultaneous data collection and analysis, 
constant comparison, coding, memoing and theory development, 
it is not a grounded theory study. If researchers collect most or all 
of their data before beginning analysis, collect or categorize data 
according to existing theory, base analysis on seed categories or 
preconceived analytical frameworks, they are not using grounded 
theory.  

Claiming to use a research method without actually following its 
guidelines is referred to as “method slurring” [3]. Based on other 
authors’ and our own observations, we suggest researchers might 
commit method slurring for at least five reasons: 

1. To confer legitimacy. Grounded theory is more structured
(and is therefore often perceived as more scientific) than
other methods of building theories from primarily unstruc-
tured data. Charmaz lamented that “Numerous researchers
have invoked grounded theory as a methodological rationale
to justify conducting qualitative research rather than adopt-
ing its guidelines to inform their studies” [16].

2. To avoid detailed and exhaustive literature review and
initial conceptualization: Many researchers may readily
embrace the grounded theory maxim of avoiding becoming

too familiar with the relevant literature, to excuse skipping 
necessary background work [72]. 

3. For simplicity. It is easier to state “we used grounded
theory” than to thoroughly explain how a researcher
converted a large amount of unstructured text into a cohesive
theory. However, given that grounded theory is not widely
understood (misunderstood, even) or known amongst SE
researchers, we argue that such claim does not suffice.

4. Because they simply do not understand GT or its
relationship to other research methods. Suddaby notes that
“researchers claim to have performed grounded theory
research, support their claims with a cursory citation to Gla-
ser and Strauss (1967),” while offering little description of
the applied method. When authors are invited to elaborate,
Suddaby continues, “to reveal how the data were collected
and analyzed, it becomes clear that the term ‘grounded
theory’ was interpreted to mean ‘anything goes’ ” [72].

5. Per referee’s suggestion. We know of cases where referees
have suggested to authors that the method they used “looks
like grounded theory.” Such authors may post-hoc present
their research as grounded theory where such a claim is not
valid, simply to satisfy reviewers.

Method slurring undermines grounded theory. Authors in the 
management literature have observed an “overly generic use of 
the term ‘grounded theory’ ” [72]. Researchers in Information 
Systems (which has considerable overlap with software 
engineering) have lamented that “the term ‘grounded theory’ 
itself has almost become a blanket term for a way of coding data” 
[75]. Others have referred to the “erosion of GT as a research 
method” [25, 64]. Using the term ‘grounded theory’ to denote any 
kind of theory building or qualitative data analysis undermines the 
legitimacy of GT, which prescribes a highly structured analytical 
approach. This engenders undue suspicion of GT studies, possibly 
hindering publication. 
Similarly, it undermines other qualitative methods. Grounded 
Theory is not the only valid method of either analyzing 
predominately qualitative data or generating theories. Numerous 
other qualitative methods exist [20]. Recasting interpretive 
interview studies, positivist case studies and ethnographies as 
grounded theory implicitly disparages and devalues these 
legitimate research approaches. There is nothing wrong with 
conducting an ethnography, for example, and researchers should 
not be hesitant to label their research as such. Theories can also be 
developed based on intuition and experience, or by extending and 
synthesizing existing research. 
Furthermore, method slurring misrepresents the current research. 
A key principle of science communication is accurately describing 
how data was collected and analyzed [32]. This allows reviewers 
and readers to evaluate the quality of a study. If a study claims to 
have used GT while actually doing something different, it violates 
this principle.  

Because so many GT articles lack methodological detail, it is 
difficult for readers to assess whether studies actually use 
grounded theory or simply reference grounded theory “as a 
methodological rationale” [16]. 

5.2 Considerations for Conducting and 
Reporting Grounded Theory 

Individual researchers will have their own styles and preferences 
for conducting and reporting their studies. However, to avoid 
method slurring (among other problems) we offer four broad 
recommendations.  

best ‘fit’ for our data was the Six C’s coding family [30,31,42] which
describes a category in terms of its Contexts, Conditions, Causes,
Consequences, Contingencies, and Covariances.

In the following section, we describe our results — the impact of
inadequate customer involvement on self-organizing Agile teams
— in terms of the Six C’s theoretical model for the category Lack
of Customer Involvement. Using the Six C’s model, we describe (1)
Contexts: the ambiance, that is, the context of the Agile develop-
ment teams in NZ and India, (2) Conditions: factors that are prereq-
uisites for the category, Lack of Customer Involvement, to manifest,
(3) Causes: reasons that cause lack of customer involvement, (4)
Consequences: outcomes or effects of lack of customer involve-
ment on self-organizing Agile teams, (5) Contingencies: moderat-
ing factors between causes and consequences, that is, Agile
Undercover strategies, and (6) Covariances: correlations between
different categories, that is, how Agile Undercover strategies change
when factors that cause Lack of Customer Involvement change.

4. Results

In the following sections we present our theory. We have
adapted Glaser’s Six C’s model diagram [30] to illustrate our theory
of lack of customer involvement (Fig. 2). The category Lack of Cus-
tomer Involvement is at the center of the diagram. Each of the Six
C’s are represented in the other rectangles in relation to the central
category, with corresponding subsection numbers (in circles)
where we describe them.

In the following sections, we have selected quotations drawn
from our interviews that shed particular light on the concepts.
Due to space reasons we cannot describe all the underlying key
points, codes, and concepts from our interviews and observation
that further ground the discussion.

4.1. Context

We interviewed 30 Agile practitioners from 16 different soft-
ware development organizations over 3 years, half of whom where
from New Zealand and half from India. Fig. 3 shows the partici-
pants and project details. In order to respect their confidentiality,

we refer to the participants by numbers P1–P30. All the teams
were using Agile methods, primarily combinations of Scrum and
eXtreme Programming (XP) — two of the most popular Agile meth-
ods today [14,19,13]. The teams practiced Agile practices such as
iterative development, daily stand-ups, release and iteration plan-
ning, test driven-development (TDD), continuous integration and
others. Participants’ organizations offered products and services
such as web-based applications, front and back-office applications,
and local and off-shored software development services.

The level of Agile experience varied across the different teams.
While some teams had under a year of experience, others had been
practicing Agile for over 5 years. The Indian teams were mostly
catering to off-shored customers in Europe and USA and most of
the NZ teams were catering to in-house customers, some of whom
were located in separate cities. We include more details of the con-
text in sections below as necessary.

4.2. Condition

Agile projects expand the role of the customer in software
development by involving them in writing user stories, discussing
product features, prioritizing the feature lists, and providing rapid
feedback to the development team on a regular basis [11,1,9,4].
The level of customer involvement that Agile demands is higher
than their involvement in traditional projects:

‘‘Commitment for that time from business. . . that’s something that
isn’t normally there in a [traditional] software development project
because [customers] throw [the project] over the wall and don’t
have to worry about it for 6 months!’’ — P5, Agile Coach, NZ

Most participants did not receive the level of customer involve-
ment that Agile methods demand (P1–P12, P14–P19, P21–P23,
P25, P26, P28–P30).

‘‘Sometimes [customers] only want to come back and see in 6
months what happened [in development].’’ — P16, Developer,
India

‘‘To get client involved in the process I think is the most difficult
part of Agile.’’ — P4, Developer, NZ

Fig. 2. The theory of Lack of Customer Involvement depicted using the Six C’s model (Context, Condition, Causes, Consequences, Contingencies, and Covariance).

524 R. Hoda et al. / Information and Software Technology 53 (2011) 521–534



Firstly, it is important to study grounded theory before starting. As 
several authors have noted, grounded theory may suffer from its 
‘apparent simplicity’ [31]. Superficially, GT appears to involve 
simply reading and categorizing some text. However, a key 
challenge in GT is that of theoretical sensitivity: a researcher’s 
capability to develop useful and interesting concepts that 
contribute to a theory. Furthermore, GT is a complicated research 
method with multiple variants and conflicting guidance. Many 
overviews and guiding literature for SE researchers do not even 
include grounded theory (cf. [27, 77]). Anyone considering a GT 
study should read several books before even deciding whether GT 
is the right method, let alone beginning data collection. Good 
introductions are available for classic GT [34, 38], Straussian GT 
[19], and constructivist GT [16]. Our review contains numerous 
exemplars (e.g. [2, 18, 45, 47, 49]), which may be consulted. GT 
should be considered from the conception of a study as it differs 
in quite significant ways from traditional studies as outlined in 
Sec. 2. Research cannot be reconstructed as GT at write-up.  

Secondly, researchers should describe their implementation of 
GT, not GT in principle. Some studies in our sample provided 
quite reasonable summaries of GT, but did not explain their 
practices, deviations or precisely what they did. Because GT is 
relatively new to SE, and to avoid method slurring, it is crucial to 
explain exactly what was done in the study at hand. In particular, 
we recommend explicitly describing how key practices (e.g. 
simultaneous data collection and analysis, constant comparison, 
memoing) were used. We also recommend explicitly describing 
deviations from GT guidelines.  

Thirdly, researchers should avoid ‘borrowing’ rhetoric. If 
techniques have been borrowed from the grounded theory 

literature, researchers should simply state that those techniques 
have been used without discussing GT. Practices including 
coding, memoing and constant comparison are all part of the 
contemporary qualitative data analyst’s toolbox. They can exist on 
their own, independent of their proponents or any particular 
research method. Bringing in GT clouds the issue.  
Finally, and related to the previous point, researchers should not 
claim to have used grounded theory when they have not. 
Researchers should describe how they analyzed data or generated 
theory. If using another method it should be named. If a 
researcher has developed his/her own method, it should be 
explained. If a researcher has proceeded ad hoc, such a 
“pragmatic, agile approach” should be explained rather than 
dressing it up as grounded theory. To be clear, we accept any 
variant of GT as grounded theory, in contrast to Glaser who only 
recognizes ‘classic’ GT (as described in the ‘Discovery’ book) 
and considers Straussian GT not to be GT [35] (p. 123). 
We further provide an extensive list of considerations for 
grounded theory in software engineering (Fig. 5), which include a 
variety of potentially relevant issues for consideration when 
conducting or evaluating a GT study. The items in Fig. 5 may be 
especially useful for novices writing their first GT study, experts 
who need to jog their memories for methodological dimensions to 
address, or anyone who struggles to explain how they collected 
and analyzed predominately qualitative data. The items in Fig. 5 
are synthesized from existing methodological guidance for GT 
and predominately qualitative studies (cf. [16, 24, 28, 78]), as well 
as our own experience in conducting qualitative studies. No single 
article can or should include all of these items. Instead, we offer 
them as a reminder of “questions to ask oneself” before and 

Figure 5. Specific considerations for conducting and reporting grounded theory 

General Grounded Theory Issues 
• What variant of grounded theory have you adopted? What

published guidance did you follow?
• How and why have you adapted, or deviated from, this variant

and guidance?
• State the research area or research question—either your initial

question, the question that emerged during your study, or
preferably both.

• State your epistemological and ontological positions (e.g.
interpretivism, critical realism).

• State the duration of the study.
Site Selection and Description 
• What organization, team, dataset, etc. did you study?
• Why did you study this data?
• Describe the context of the study (e.g. the kind of organization,

who is involved, what kind of software is being developed).
Role of the Literature in the Grounded Theory Study 
• Did you begin data collection with a clean theoretical slate?
• What topic areas did you review before and during the study?
• How does the literature inform, support or refute your analysis

and results?
Presenting and Evaluating Grounded Theory 
• Is the theoretical contribution clearly stated?
• Is the generated theory integrated back into the literature?
• Is the theory evaluated? If so, using which criteria?
• How might your own biases, preconceptions, background and

beliefs affect your analysis?

Grounded Theory Data Collection and Analysis 
• What data was collected (e.g. field notes, documents,

emails, video of meetings), how and when?
• Who collected and analyzed the data? Was it an individual

researcher or research team? If a team, who did what? How
was this coordinated?

• Describe the pacing of analyzing data, and how it continued
throughout the project.

• Describe your coding, memoing and sorting with examples.
• Describe the emergence of your core category, and how this

affected your analysis.
• If using classic GT, did you use any of Glaser’s coding

families? If so, which, and did the theoretical codes earn
their way into the theory?

• If using Straussian GT: state how you used the conditional
matrix.

• How and where was your data stored? How did you manage
the volume and heterogeneity of data?

• Describe your theoretical sampling with examples.
• Confirm that you employed constant comparison.
• When did you stop collecting data? Describe how

theoretical saturation became apparent.
• Describe how the selected GT variant affected data

collection and analysis.
• Did you conduct a reliability check; i.e., have your analysis

reviewed by someone else. If so, who, how, what did they
find and what changes resulted? Describe their expertise.



during a study and write-up. Simply confirming that a study 
follows the various core GT guidelines (e.g. simultaneous data 
collection and analysis, constant comparison, theoretical 
saturation) should be unnecessary. However, because GT is still 
relatively new to software engineering, and our study 
demonstrates some confusion about how GT works, clearly 
describing what was done and enumerating adherence to core 
guidelines will benefit readers, reviewers and editors. 

5.3 Challenges in Doing Grounded Theory 
Research in Software Engineering  

Software development contexts present several unusual challenges 
for grounded theory research. Most of the GT research we have 
read relies primarily on interviews and documents. However, 
software contexts provide diverse data sources including: source 
code, test suites, code commit logs, task and effort data from 
project management software, design diagrams (e.g. wireframes, 
class diagrams), design documents, domain models (e.g. 
scenarios, personas, user stories, use cases), project management 
documents (e.g. backlogs, burn-down charts), performance data, 
issue tracker data, photos of temporary diagrams (e.g. on white 
boards), online discussions (e.g. on IRC or Slack), contracts and 
financial statements. Combining these with the usual data (i.e. 
audio/video recordings of interviews and meetings, documents, 
email, field notes) exacerbates at least three challenges:  

1. Managing large amounts of heterogeneous data. Version
control, project management, team communication systems
and other technical affordances make it easy to get access to
an enormous, unreadable dataset. Capturing, storing,
indexing and managing all this data is practically
challenging. Systems appropriate for storing some data types
(e.g. NVivo for audio, video, transcripts and documents) may
be unsuitable for storing other data types (e.g. code).
Determining what to read when you have more text than you
can read in a lifetime is even more challenging. The
implications of data magnitude for theoretical sampling
remain unclear. However, one strategy is to choose an
explicit primary data source (e.g. interviews) and
theoretically sample from the remaining data based on leads
arising from the primary data source.

2. Coding unconventional texts. While they may apply more
broadly, the coding approaches associated with GT (e.g.
open and theoretical coding) were developed primarily for
analyzing unstructured text. It is not clear how to apply open
coding to design diagrams, structured text (e.g. use cases) or
source code. One approach is to open-code unstructured text
and move directly to memoing for more structured data.
Another is to adopt completely different analytical
techniques; for instance, static code analysis.

3. Cross-referencing participant statements with records.
Participants’ post-hoc reconstructions of how and why they
performed certain actions are less reliable than, for example,
their accounts of their current frustrations or enduring values.
Source code, commit logs, project management data and di-
rect observation allow the researcher to triangulate many in-
terviewee claims. This presents myriad challenges regarding
not only how to triangulate but also how to resolve conflict-
ing evidence.

6. CONCLUSION
Grounded theory is an increasingly popular research method in 
software engineering (see Fig. 2). However, grounded theory is 
complex and demanding, with several variants and conflicting 
guidance, and software engineering researchers may not be 

cognizant of its historical development or appreciate the 
differences across its three main variants. This paper aims to draw 
attention to this issue and to report on the use of Grounded Theory 
in SE. The contributions of this paper are fourfold:  

1. We provide a detailed comparison of the three main variants
of grounded theory, which may help aspiring grounded
theory researchers in software engineering to select the
variant that suits them best (Sec. 2);

2. Based on an analysis of almost 100 articles in nine prominent
SE journals, we found that many SE articles do not generate
a theory, do not clearly indicate which variant of grounded
theory is used and do not provide sufficient methodological
detail for rigorous evaluation (Sec. 4);

3. We offer integrated guidance for conducting and reporting
grounded theory research in software engineering, including
a set of suggestions for explaining the study’s data collection
and analysis procedures (Fig. 5);

4. We enumerate substantial challenges peculiar to conducting
GT research in software engineering, including the
proliferation of heterogeneous unstructured, semi-structured
and structured data (Sec. 5).

These contributions should be interpreted in light of several 
limitations. We limited our study to those articles published in 
nine well-known software engineering journals. While we believe 
these journals are a reasonable surrogate for the broader SE 
literature, the field has many more, including journals which are 
focused on specific research areas (e.g. Requirements 
Engineering). We also excluded conference papers, reasoning that 
page limits would force authors to include less methodological 
detail. Further sampling bias could come from articles missed due 
to our specific search string and search strategy, or due to 
publication bias. Furthermore, we can only analyze the way each 
study is reported rather than how it was done. A few missing 
methodological details clearly does not mean that the research is 
poor or that the authors are unskilled. Our review simply reveals 
that more methodological detail is needed and suggests potential 
details to include in future articles. 
We believe that grounded theory offers a highly suitable 
methodology to address social, cultural and human aspects in 
software engineering—several GT studies in SE have contributed 
novel and rich insights. As described above, software engineering 
presents non-trivial challenges for grounded theory research. 
However, grounded theory remains one of the most rigorous 
methods to generate new theories. This is a significant issue as the 
establishment of a strong theory base has been identified as an 
important challenge for the software engineering discipline [50, 
65, 66]. We believe well conducted GT studies can make 
significant contributions to our field and help to develop rich 
theories to inform future empirical studies in SE. 

7. ACKNOWLEDGMENTS
We thank Lutz Prechelt and the anonymous reviewers for 
constructive feedback. This work was supported, in part, by 
Science Foundation Ireland grant 13/RC/2094 to Lero—the Irish 
Software Research Centre (www.lero.ie); the Irish Research 
Council New Foundations Scheme 2014; Enterprise Ireland grant 
IR/2013/0021 to ITEA2-SCALARE (www.scalare.org); and the 
Royal Irish Academy under the Charlemont Award Programme. 

8. REFERENCES
[1] Adolph, S., Hall, W. and Kruchten, P. 2011. Using grounded 

theory to study the experience of software development. 
Empirical Software Engineering, 16, 4, 487-513. 



[2] Adolph, S., Kruchten, P. and Hall., W. 2012. Reconciling 
perspectives: A grounded theory of how people manage the 
process of software development. J Sys Softw, 85, 1269-
1286. 

[3] Baker, C., Wuest, J. and Stern, P.N. 1992. Method slurring: 
the grounded theory/phenomenology example. Journal of 
Advanced Nursing, 17, 1355-1360. 

[4] Benoliel, J.Q. 1996. Grounded theory and nursing 
knowledge. Qualitative Health Research, 6, 3, 406-428. 

[5] Berger, P. and Kellner, H. 1981. Sociology Reinterpreted: An 
Essay on Method and Vocation. Penguin, Harmondsworth. 

[6] Bertelsen, O. 1997. Toward a unified field of se research and 
practice. IEEE Softw., 14, 6, 87-88. 

[7] Bettenburg, N., Hassan, A.E., Adams, B. and German, D.M. 
2013. Management of community contributions: A case 
study on the Android and Linux software ecosystems. 
Empirical Software Engineering, 20, 1, 252-289. 

[8] Birks, M. and Mills, J. 2011. Grounded Theory: A Practical 
Guide. Sage. 

[9] Bogdan, R. and Taylor, S. 1975. Introduction to Qualitative 
Reseach Methods. Wiley & Sons, New York. 

[10] Boychuk Duchscher, J.E. 2004. Grounded Theory: 
Reflections on the emergence vs. forcing debate. Journal of 
Advanced Nursing, 48, 6, 605-612. 

[11] Bryant, A. and Charmaz, K. 2007. The SAGE Handbook of 
Grounded Theory. Sage. 

[12] Carvalho, L., Scott, L. and Jeffery, R. 2005. An exploratory 
study into the use of qualitative research methods in 
descriptive process modelling. Information and Software 
Technology, 47, 2, 113-127. 

[13] Carver, J. 2004. The Impact of Background and Experience 
on Software Inspections. Empir Software Eng, 9, 259-262. 

[14] Chamberlain-Salaun, J., Mills, J. and Usher, K. 2013. 
Linking symbolic interactionism and grounded theory 
methods in a research design: From Corbin and Strauss' 
Assumptions to Action. SAGE Open, 3, 3, 1-10. 

[15] Charmaz, K. 1990. "Discovering" illness: using grounded 
theory. Social Science and Medicine, 30, 11, 1161-1172. 

[16] Charmaz, K. 2014. Constructing Grounded Theory. Sage, 
2nd Ed. 

[17] Coleman, G. and O'Connor, R. 2008. Investigating software 
process in practice: A grounded theory perspective. Journal 
of Systems and Software, 81, 772-784. 

[18] Coleman, G. and O’Connor, R. 2007. Using grounded theory 
to understand software process improvement: A study of 
Irish software product companies. Information and Software 
Technology, 49, 6, 654-667. 

[19] Corbin, J. and Strauss, A. 2015. Basics of Qualitative 
Research: Techniques and Procedures for Developing 
Grounded Theory. Sage, 4th Ed. 

[20] Creswell, J.W. 2013. Qualitative Inquiry & Research 
Design: Choosing Among Five Approaches. Sage, 3rd Ed. 

[21] Denzin, N. 1983. Interpretive interactionism. In: G. Morgan 
(Ed.) Beyond Method. Sage, California. 

[22] Denzin, N. 2007. Grounded Theory and the Politics of 
Interpretation. Sage. 

[23] Dittrich, Y., John, M., Singer, J. and Tessem, B. 2007. 
Editorial: For the Special issue on Qualitative Software 
Engineering Research. Inform Soft Technol, 49, 6, 531-539. 

[24] Dube, L. and Pare, G. 2003. Rigor in information systems 
positivist case research: Current practices, trends and 
recommendations. MIS Quart., 27, 4, 597-635. 

[25] Duchscher, J.E.B. and Morgan, D. 2004. Grounded theory: 
reflections on the emergence vs. forcing debate. Journal of 
Advanced Nursing, 48, 6. 

[26] Dybå, T., Prikladnicki, R., Rönkkö, K., Seaman, C. and 
Sillito, J. 2011. Special issue on qualitative research methods 
in software engineering. Empir Software Eng, 16, 2. 

[27] Easterbrook, S., Singer, J., Storey, M.-A. and Damian, D. 
2008. Selecting empirical methods for software engineering 
research. In: F. Shull, J. Singer and D. I. K. Sjøberg (Eds.) 
Guide to Advanced Software Engineering. Springer. 

[28] Eisenhardt, K.M. 1989. Building theories from case study 
research. Academy of Management Review, 14, 4, 532-550. 

[29] Espinosa-Curiel, I.E., Rodríguez-Jacobo, J. and Fernández-
Zepeda, J.A. 2013. A framework for evaluation and control 
of the factors that influence the software process 
improvement in small organizations. Journal of software: 
Evolution and Process, 25, 4, 393-406. 

[30] Fagerholm, F., Ikonen, M., Kettunen, P., Münch, J., Roto, V. 
and Abrahamsson, P. 2015. Performance Alignment Work: 
How software developers experience the continuous 
adaptation of team performance in Lean and Agile 
environments. Inform Soft Technol. 

[31] Fitzgerald, B. and Howcroft, D. 1998. Towards dissolution of 
the IS research debate: from polarization to polarity. Journal 
of Information Technology, 13, 4, 313-326. 

[32] Garvey, W.D. and Griffith, B.C. 1971. Scientific 
communication: Its role in the conduct of research and 
creation of knowledge. American Psychologist, 26, 4. 

[33] Gell-Mann, M. 1999. Complex adaptive systems. In: 
Complexity: Metaphors, models and reality Westview Press. 

[34] Glaser, B.G. 1978. Theoretical Sensitivity. Sociology Press. 
[35] Glaser, B.G. 1992. Basics of Grounded Theory Analysis: 

Emergence vs Forcing. Sociology Press. 
[36] Glaser, B.G. 1998. Doing Grounded Theory: Issues and 

Discussions. Sociology Press. 
[37] Glaser, B.G. 2002. Constructivist Grounded Theory? Forum: 

Qualitative Social Research, 3, 3, Art. 12. 

[38] Glaser, B.G. and Strauss, A.L. 1967. The Discovery of 
Grounded Theory: Strategies for Qualitative Research. 
Aldine de Gruyter, New York. 

[39] Glass, R.L., Vessey, I. and Ramesh, V. 2002. Research in 
software engineering: an analysis of the literature. Inf Softw 
Technol, 44, 8, 491-506. 

[40] Goulding, C. 2002. Grounded Theory: A Practical Guide for 
Management, Business and Market Researchers. Sage. 

[41] Guba, E. and Lincoln, Y. 1994. Competing paradigms in 
qualitative research. In: N. Denzin and Y. Lincoln (Eds.) The 
Handbook of Qualitative Research. Sage. 

[42] Heath, H. and Cowley, S. 2004. Developing a grounded 
theory approach: a comparison of Glaser and Strauss. 
International Journal of Nursing Studies, 41, 141-150. 



[43] Hirschheim, R. 1985. Information systems epistemology: an 
historical perspective. In: E. Mumford, R. Hirschheim, G. 
Fitzgerald and A. Wood-Harper (Eds.) Research Methods in 
Information Systems. Elsevier. 

[44] Hoda, R., Noble, J. and Marshall, S. 2011. Grounded theory 
for geeks. In Proc. 18th Conference on Pattern Languages of 
Programs. 

[45] Hoda, R., Noble, J. and Marshall, S. 2011. The impact of 
inadequate customer collaboration on self-organizing Agile 
teams. Information and Software Technology, 53, 5, 521-534. 

[46] Hoda, R., Noble, J. and Marshall, S. 2012. Developing a 
grounded theory to explain the practices of self-organizing 
Agile teams. Empir Software Eng, 17, 6, 609-639. 

[47] Hoda, R., Noble, J. and Marshall, S. 2013. Self-organizing 
roles on agile software development teams. IEEE Trans 
Softw Eng, 39, 3, 422-444. 

[48] Holland, J.H. 1992. Complex Adaptive Systems. Daedalus, 
121, 1, 17-30. 

[49] Jantunen, S. and Gause, D.C. 2014. Using a grounded theory 
approach for exploring software product management 
challenges. Journal of Systems and Software, 95, 32-51. 

[50] Johnson, P., Ekstedt, M. and Jacobson, I. 2012. Where's the 
Theory for Software Engineering? IEEE Softw., 29, 5, 94-96. 

[51] Kelle, U. 2005. "Emergence" vs. "Forcing" of Empirical 
Data? A crucial problem of "Grounded Theory" 
Reconsidered. Forum: Qualitative Social Research, 6, 2. 

[52] Kenealy, G. 2008. Management Research and Grounded 
Theory: A review of grounded theory building approach in 
organisational and management research. The Grounded 
Theory Review, 7, 2, 95-117. 

[53] Layman, L., Williams, L., Damian, D. and Bures, H. 2006. 
Essential communication practices for Extreme Programming 
in a global software development team. Information and 
Software Technology, 48, 9, 781-794. 

[54] Maglyas, A., Nikula, U. and Smolander, K. 2013. What are 
the roles of software product managers? An empirical 
investigation. Journal of Systems and Software, 86, 12, 3071-
3090. 

[55] Mohanani, R., Ralph, P. and Shreeve, B. 2014. Requirements 
Fixation. In Proc. International Conference on Software 
Engineering. ACM. 

[56] Morgan, G. (Ed.). 1983. Beyond Method. Sage, CA, USA. 
[57] Morse, J.M. (Ed.). 1994. Critical Issues in Qualitative 

Research Methods. Sage. 
[58] Opie, C. 2004. Research Approaches. In: C. Opie (Ed.) 

Doing educational research. Sage, London. 

[59] Prechelt, L. and Oezbek, C. 2011. The search for a research 
method for studying OSS process innovation. Empirical 
Software Engineering, 16, 4, 514-537. 

[60] Ralph, P. 2015. Software engineering process theory: A 
multi-method comparison of Sensemaking-Coevolution-

Implementation Theory and Function-Behavior-Structure 
Theory. Inform Soft Technol, 70, 232-250. 

[61] Ralph, P. and Kelly, P. 2014. The Dimensions of Software 
Engineering Success. In: International Conference on 
Software Engineering. ACM, Hyderabad, India. 

[62] Seaman, C.B. 1999. Qualitative methods in empirical studies 
of software engineering. IEEE Trans Softw Eng, 25, 4. 

[63] Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E. and 
Bowdidge, R. 2014. Programmers' build errors: a case study 
(at google). In Proc. International Conference on Software 
Engineering. ACM. 

[64] Stern, P.N. 1994. Eroding grounded theory. In: J. M. Morse 
(Ed.) Critical Issues in Qualitative Research Methods. Sage. 

[65] Stol, K.J. and Fitzgerald, B. 2015. Theory-Oriented Software 
Engineering. Science of Computer Programming, 101, 79-98. 

[66] Stol, K.J., Goedicke, M. and Jacobson, I. 2016. Introduction 
to the special section—General Theories of Software 
Engineering: New advances and implications for research. 
Inf Softw Technol, 70, 176-180. 

[67] Stol, K.J., Ralph, P. and Fitzgerald, B. 2016. Appendix to 
"Grounded Theory Research in Software Engineering". 
University of Limerick. 

[68] Strauss, A. and Corbin, J. 1991. Basics of Qualitative 
Research: Techniques and Procedures for Developing 
Grounded Theory. Sage. 

[69] Strauss, A. and Corbin, J. 1994. Grounded Theory 
Methodology: An Overview. In: N. Denzin and Y. Lincoln 
(Eds.) Handbook of Qualitative Research. Sage. 

[70] Strauss, A. and Corbin, J. 1998. Basics of Qualitative 
Research: Techniques and Procedures for Developing 
Grounded Theory. Sage, 2nd Ed. 

[71] Strauss, A.L. 1987. Qualitative analysis for social scientists. 
Cambridge University Press. 

[72] Suddaby, R. 2006. From the editors: What grounded theory 
is not. Academy of Management Journal, 49, 4, 633-642. 

[73] Trochim, W. 2001. Research Methods Knowledge Base. 
Atomic Dog Publishing, Cincinnati, OH, USA. 

[74] Urquhart, C. 2013. Grounded Theory for Qualitative 
Research: A Practical Guide. Sage. 

[75] Urquhart, C., Lehmann, H. and Myers, M.D. 2010. Putting 
the 'theory' back into grounded theory: guidelines for 
grounded theory studies in information systems. Information 
Systems Journal, 20, 357-381. 

[76] Walker, R. 1988. Applied Qualitative Research. Gower, 
Hampshire. 

[77] Wohlin, C., Höst, M. and Henningsson, K. 2003. Empirical 
research methods in software engineering. In: ESERNET, 
volume LNCS 2765. Springer. 

[78] Yin, R.K. 2008. Case study research: Design and methods. 
Sage, CA, USA, 4th Ed. 




