<table>
<thead>
<tr>
<th>Title</th>
<th>Synthesis of novel quinine analogs and evaluation of their effects on Trypanosoma cruzi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ceole, Ligia F.; Gandhi, Hirenkumar; Villamizar, Luz H.; Soares, Maurilio J.; O'Sullivan, Timothy P.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2018-02</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
</tbody>
</table>
http://dx.doi.org/10.4155/fmc-2017-0184
Access to the full text of the published version may require a subscription. |
| Rights | © 2018 Newlands Press. For full bibliographic citation, please refer to the version available at www.future-science.com |
| Embargo information | Access to this article is restricted until 12 months after publication by request of the publisher. |
| Embargo lift date | 2019-01-30 |
| Item downloaded from | http://hdl.handle.net/10468/7168 |

Downloaded on 2020-06-26T07:41:58Z
The published manuscript is available at Future Medicinal Chemistry via:

Synthesis of novel quinine analogues and evaluation of their effects on *Trypanosoma cruzi*

Ligia F. Ceole¹#, Hirenkumar Gandhi²,³#, Luz H. Villamizar⁴, Maurilio J. Soares¹, Timothy P. O'Sullivan²,³,⁵*

¹Laboratory of Cell Biology, Carlos Chagas Institute/Fiocruz, Curitiba, PR, Brazil
²School of Chemistry, University College Cork, Cork, Ireland.
³Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.
⁴Laboratory of Molecular Biology of Trypanosomatids, Carlos Chagas Institute/ Fiocruz, Curitiba, PR, Brazil.
⁵School of Pharmacy, University College Cork, Cork, Ireland.¹

Abstract

Background: Chagas disease is a tropical disease caused by the hemoflagellate protozoan *Trypanosoma cruzi*. There is no vaccine for Chagas disease and available drugs (e.g. benznidazole) are effective only during the acute phase, displaying a variable curative activity in the established chronic form of the disease. New leads with high efficacy and better toxicity profiles are urgently required. **Methodology:** A library of novel quinine derivatives was synthesised using Heck chemistry and evaluated against the various developmental forms of *T. cruzi*. **Conclusions:** Several novel quinine analogues with trypanocidal activity have been identified with the para-nitro-substituted derivative displaying a submicromolar IC₅₀ which is 83 times lower than quinine and three times lower than benznidazole. Transmission electron microscopy analysis demonstrated that these compounds induced a marked vacuolisation of the kinetoplast of intracellular amastigotes and cell-derived trypomastigotes.

Keywords
Chagas disease, quinine, Heck coupling, *Trypanosoma cruzi*, trypanocides, kinetoplast vacuolisation, ultrastructure

¹ # LFC and HG contributed equally to this work.
1. Introduction

Chagas disease is a tropical neglected disease caused by the hemoflagellate protozoan *Trypanosoma cruzi* [1]. An estimated 6 million to 7 million people are infected worldwide, mostly in Latin America. Chagas disease has spread to other continents over the last century driven by movement of people and international trade.

There is currently no vaccine for Chagas disease and the available drugs (nifurtimox and benznidazole) were developed more than four decades ago [2]. Both are effective only if given soon after infection at the onset of the acute phase. The efficacy of both diminishes, however, the longer a person has been infected [3]. These compounds do not completely reduce the parasite load in the bloodstream and may display serious side effects [4]. The associated side effects, including anorexia, vomiting, peripheral polyneuropathy and allergic dermopathy, can in some cases lead to treatment discontinuation [5]. Therefore, there is an on-going global effort to find new natural and synthetic compounds with high efficacy and less adverse side effects.

Quinine is the major alkaloid found in the bark of various species of *Cinchona* (*Rubiaceae*) trees [6]. It was the first effective treatment for malaria until the 1940s, when other drugs with fewer side effects (such as chloroquine and artemisinin) replaced it [7]. More recently, it has been demonstrated that quinine possesses potent schizonticidal action against intra-erythrocytic malaria parasites [8]. Merschjohann and co-workers investigated the effect of 34 alkaloids on the growth of *Trypanosoma brucei* and *T. congolense in vitro*. Quinine, berbamine, berberine, cinchonidine, cinchonine, emetine, ergotamine, quinidine and sanguinarine showed trypanocidal activities with \(ED_{50} \) values below 10 µM [9]. Ruiz-Mesia *et al.* tested several *Cinchona* alkaloids isolated from *Remijia peruviana* against *T. cruzi* and found that only quinine displayed moderate trypanocidal activity [10]. A similar observation was also made by Sepúlveda-Boza and Cassels [11].

Given the well-known activity of quinine derivatives against the apicomplexan *Plasmodium*, we wondered if similar analogues might be effective against the pathogenic protozoan *T. cruzi*. Three main types of modification have been traditionally made to the quinine scaffold, namely modification of the quinolone/quinuclidine ring, substitution of the hydroxyl group or manipulation of the stereochemical configuration [12, 13]. It has been demonstrated that both the hydroxyl group and quinolone ring are
essential for antimalarial activity [14]. More recently, the terminal alkene in quinine has
been identified as a versatile synthetic handle, particularly in the development of novel
asymmetric catalysts [15-19]. The manipulation of this fragment in medicinal chemistry
is less common. Significantly, Dinio et al. found that the introduction of aryl
substituents was associated with higher potency against both quinine-sensitive and
quinine-resistant strains of Plasmodium [20]. Furthermore, Bhattacharjee et al. have
proposed a binding model which suggests that the quinine vinyl group may be important
for activity [21].

In view of these results, we sought to employ a similar strategy against T. cruzi.
Modification of the alkene by way of Heck chemistry should be relatively straight
forward [22]. A library of quinine analogues generated in this fashion should provide
insights into the importance of the alkene functionality and highlight possible structure
activity relationships.

2 Experimental Protocols

2.1 Reagents and data collection

MTT (Thiazolyl Blue Tetrazolium Bromide) was purchased from Invitrogen (Carlsbad,
CA, USA). Benznidazole, DAPI (4',6-Diamidine-2'-phenylindole dihydrochloride),
DMSO (dimethyl sulfoxide) and DMEM (Dulbecco's Modified Eagle's Medium) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine serum was
purchased from Thermo Fisher Scientific (Carlbad, CA, USA). All solvents were
purified and dried using standard methods prior to use. Commercially available reagents
were used without further purification. The reactions were monitored by thin layer
chromatography (TLC), using MERCK pre-coated silica gel 60-F254 aluminium plates.
Visualisation of spots on TLC plates was done by UV light. Column chromatography
with 230-400 mesh silica gel was used as the purification method. A gradient
combination of dichloromethane and methanol was used as eluent. 1H-NMR spectra
were recorded on an Avance NMR instrument operated at 400 MHz. 13C-NMR spectra
were recorded on an Avance NMR instrument operated at 100 MHz. All spectra were
recorded at room temperature (approximately 20 °C) in deuterated chloroform (CDCl3).
Chemical shifts values were reported in ppm with TMS as an internal reference and J
values were given in Hertz. The following abbreviation were used for 1H-NMR spectra
to indicate the signal multiplicity: s (singlet), d (doublet), dd (double doublet), ddd
(double double doublet), m (multiplet). HRMS were determined with Waters LCT
Premier Time of Flight spectrometer in electrospray ionisation (ESI) mode using 50%
water/acetonitrile containing 0.1% formic acid as eluent and samples were made up in
acetonitrile.

2.2 General synthetic procedure for compounds 2-5 and 8-11

Quinine (1) (250 mg, 0.77 mmol), palladium(II) acetate (8.7 mg, 0.039 mmol), and
triphenylphosphine or tri(o-tolyl)phosphine (0.077 mmol, 10 mol%) were added to a
sealed, oven-dried tube under an inert atmosphere of nitrogen. The aryl halide (1.54
mmol, 2.0 equiv.) in degassed, anhydrous toluene (1.5 mL) was added to the reaction
tube via syringe, followed by triethylamine or tributylamine (1.54 mmol, 2.0 equiv.).
The reaction mixture was stirred at 111 °C until the reaction had reached completion.
The reaction mixture was allowed to cool to room temperature and the solvent was
removed in vacuo to furnish a reddish coloured semi-solid material. The crude solid was
dissolved in dichloromethane (10 mL), filtered through a cotton plug and the resulting
filtrate was concentrated in vacuo at 50-55 °C for 3 hours to fully remove the excess
base. The residue was purified using silica gel column chromatography using a gradient
solvent system of dichloromethane and MeOH (98:2 to 85:15). The fractions containing
the product were combined and the solvent was removed in vacuo to afford the product
as an amorphous solid.

2.3 11-(Phenyl)-quinine (2)[20]

Off-white solid, yield 89%; 1H-NMR (400MHz, CDCl3): δ 8.65 (1H, d, J = 4.4 Hz),
7.76 (1H, d, J = 9.2 Hz), 7.61 (1H, d, J = 4.4 Hz), 7.10 (5H, m), 6.99 (2H, m), 6.58 (1H,
m), 6.32 (1H, d, J = 15.8 Hz), 5.79 (1H, dd, J1 = 7.6 Hz, J2 = 15.8 Hz), 4.46 (1H, OH),
3.70 (3H, s), 3.55 (1H, m), 3.42 (1H, m), 3.17 (2H, m), 3.03 (1H, m), 2.86 (1H, m), 2.20
(2H, m), 1.88 (2H, m), 1.38 (1H, m); 13C-NMR (100MHz, CDCl3) : δ 158.7, 147.0,
143.8, 143.6, 135.7, 133.02, 131.4, 128.6, 126.2, 122.8, 119.1, 100.1, 66.1, 60.4, 58.7,
55.7, 44.5, 36.8, 27.6, 24.2, 18.8; HRMS (ESI): m/z mass calc for C26H29N2O3 (M+H+)
401.2229, Found 401.2233.

2.4 11-(Bis-3,5-trifluoromethyl)phenyl-quinine (3)
Off-white solid, yield 86%; \(^{1}\)H-NMR (300MHz, CDCl\(_3\)): \(\delta 8.70 \text{ (1H, d, } J = 4.5 \text{ Hz),}
8.01 \text{ (1H, d, } J = 9.2 \text{ Hz), 7.66 (2H, s), 7.40 (1H, dd, } J_1 = 2.6 \text{ Hz, } J_2 = 9.3 \text{ Hz), 7.26-7.31 (5H, m), 7.20 (1H, m), 6.40 (1H, d, } J = 16.1 \text{ Hz), 6.10 (1H, dd, } J_1 = 7.9 \text{ Hz, } J_2 = 16.1 \text{ Hz), 5.29 (1H, s), 4.0 (3H, s), 3.45 (1H, m), 3.33 (2H, m), 2.97 (2H, m), 2.54 (1H, m), 1.77 (1H, m), 1.67 (2H, m), 1.62 (2H, m); \(^{13}\)C-NMR (100MHz, CDCl\(_3\)): \(\delta 157.8, 147.7, 144.4, 139.4, 138.0, 132.1, 132.0, 131.8, 128.5, 128.4, 127.6, 126.7, 125.8, 120.4, 118.4, 101.5, 72.2, 60.4, 57.3, 55.7, 43.1, 39.9, 28.2, 27.6, 22.3; HRMS (ESI): \(m/z\) mass calc for C\(_{26}H_{27}N_2O_2F_6\) (M+H\(^+\)) 537.1977 Found 537.1970.

2.5 11-(3,4,5-Trifluorophenyl)-quinine (4)
Off-white solid, yield 71%; \(^{1}\)H-NMR (400MHz, CDCl\(_3\)): \(\delta 8.69 \text{ (1H, d, } J = 4.5 \text{ Hz), 7.71 (1H, d, } J = 9.2 \text{ Hz), 7.68 (1H, d, } J = 4.5 \text{ Hz), 7.01 (1H, dd, } J_1 = 2.4 \text{ Hz, } J_2 = 9.2 \text{ Hz), 6.94 (1H, d, } J = 2.3 \text{ Hz), 6.75 (2H, m), 6.50 (1H, d, } J = 16.1 \text{ Hz), 6.23 (1H, d, } J = 15.8 \text{ Hz), 5.81 (1H, dd, } J_1 = 7.6 \text{ Hz, } J_2 = 15.8 \text{ Hz), 4.55 (1H, OH), 3.66 (3H, s), 3.56 (1H, m), 3.41 (1H, m), 3.16 (1H, m), 3.03 (1H, m), 2.85 (1H, m), 2.30 (1H, m), 2.16 (2H, m), 1.90 (1H, m), 1.37 (1H, m); \(^{13}\)C-NMR (100MHz, CDCl\(_3\)): \(\delta 158.3, 152.5, 150.1, 147.0, 143.7, 143.6, 139.4, 131.4, 130.7, 130.2, 125.3, 122.3, 118.9, 110.2, 110.0, 99.9, 66.1, 60.3, 57.6, 55.4, 44.3, 36.9, 27.5, 24.3, 21.1, 18.5; HRMS (ESI): \(m/z\) mass calc for C\(_{26}H_{26}N_2O_2F_3\) (M+H\(^+\)) 455.1946 Found 455.1951.

2.6 11-(2,4,6-Trifluorophenyl)-quinine (5)
Off-white solid, yield 69%; \(^{1}\)H-NMR (300MHz, CDCl\(_3\)): \(\delta 8.69 \text{ (1H, d, } J = 4.5 \text{ Hz), 8.0 (1H, d, } J = 9.2 \text{ Hz), 7.51 (1H, d, } J = 4.5 \text{ Hz), 7.35 (1H, dd, } J_1 = 2.6 \text{ Hz, } J_2 = 9.3 \text{ Hz), 7.27 (1H, d, } J = 2.7 \text{ Hz), 6.84 (2H, m), 6.20 (1H, d, } J = 15.8 \text{ Hz), 6.08 (1H, dd, } J_1 = 7.9 \text{ Hz, } J_2 = 15.8 \text{ Hz), 5.55 (1H, d, } J = 4.2 \text{ Hz), 3.92 (3H, s), 3.45 (1H, m), 3.18 (2H, m), 2.69 (2H, m), 2.43 (1H, m), 1.87 (2H, m), 1.63 (1H, m), 1.53 (2H, m); \(^{13}\)C-NMR (100MHz, CDCl\(_3\)): \(\delta 164.2, 162.2, 157.8, 147.7, 147.4, 144.4, 136.2, 131.7, 127.5, 126.7, 121.5, 118.3, 109.8, 109.6, 101.4, 72.2, 60.3, 57.4, 55.7, 43.1, 39.6, 28.2, 27.6, 22.1; HRMS (ESI): \(m/z\) mass calc for C\(_{26}H_{26}N_2O_2F_3\) (M+H\(^+\)) 455.1946 Found 455.1942.

2.7 11-(4-Nitrophenyl)-quinine (8)
White solid, yield 82%; \(^{1}\)H-NMR (400MHz, CDCl\(_3\)): \(\delta 8.69 \text{ (1H, d, } J = 4.5 \text{ Hz), 8.0 (2H, m), 7.71 (1H, d, } J = 9.2 \text{ Hz), 7.66 (1H, d, } J = 4.5 \text{ Hz), 7.29 (2H, m), 6.99 (1H, dd,
2.8 11-(4-Methoxyphenyl)-quinine (9)[20]
Off-white solid, yield 68%; 1H-NMR (400MHz, CDCl3): δ 8.68 (1H, d, J = 4.5 Hz), 7.71 (1H, d, J = 9.3 Hz), 7.69 (1H, d, J = 4.5 Hz), 7.16 (3H, m), 7.07 (1H, d, J = 8.6 Hz), 6.99 (1H, dd, J1 = 2.3 Hz, J2 = 9.2 Hz), 6.92 (1H, d, J = 2.3 Hz), 6.71 (1H, d, J = 8.7 Hz), 6.49 (1H, d, J = 15.8 Hz), 6.33 (1H, dd, J1 = 7.6 Hz, J2 = 15.8 Hz), 5.69 (1H, m), 4.55 (1H, m), 3.73 (3H, s), 3.65 (3H, s), 3.63 (1H, m), 3.55 (1H, m), 3.41 (1H, m), 3.16 (2H, m), 3.0 (1H, m), 2.85 (1H, m), 2.29 (1H, m), 2.14 (2H, m), 1.90 (2H, m), 1.40 (2H, m); 13C-NMR (100MHz, CDCl3): δ 158.3, 147.0, 143.9, 143.7, 132.8, 132.2, 131.3, 128.6, 127.4, 126.2, 122.3, 119.0, 114.0, 99.8, 66.1, 60.4, 57.6, 55.8, 55.3, 44.3, 37.0, 27.6, 24.4, 18.5; HRMS (ESI): m/z mass calc for C26H27N3O4 (M+H+) 446.2080 Found 446.2080.

2.9 11-(4-Cyanophenyl)-quinine (10)
Off-white solid, yield 63%; 1H-NMR (400MHz, CDCl3): δ 8.63 (1H, d, J = 4.48 Hz), 7.70 (1H, d, J = 9.27 Hz), 7.59 (1H, d, J = 4.52), 7.42 (2H, m), 7.18 (2H, m), 6.98 (2H, m), 6.47 (1H, d, J = 15.8 Hz), 6.33 (1H, dd, J1 = 7.65 Hz, J2 = 15.78 Hz), 5.93 (1H, m), 4.51 (1H, m), 3.63 (3H, s), 3.51 (1H, m), 3.47 (1H, m), 3.13 (2H, m), 3.0 (1H, m), 2.85 (1H, m), 2.29 (1H, m), 2.13 (2H, m), 1.85 (2H, m), 1.37 (2H, m); 13C-NMR (100MHz, CDCl3): δ 158.3, 147.0, 143.9, 143.8, 143.6, 140.04, 132.4, 132.1, 131.5, 131.4, 126.8, 122.2, 118.9, 111.4, 99.94, 66.1, 60.4, 57.6, 55.4, 44.1, 37.1, 27.5, 24.4, 18.6; HRMS (ESI): m/z mass calc for C27H27N3O2 (M+H+) 431.2335 Found 431.2326.

2.10 11-(4-Methylphenyl)-quinine (11)[20]
White solid, yield 87%; 1H-NMR (400MHz, CDCl3): δ 8.71 (1H, d, J = 4.51 Hz), 7.80 (1H, d, J = 9.12 Hz), 7.70 (1H, d, J = 4.48 Hz), 7.45 (1H, d, J = 8.31 Hz), 7.25 (2H, m), 7.10 (2H, m), 6.52 (1H, s), 6.42 (1H, d, J = 15.8 Hz), 5.97 (1H, dd, J1 = 7.70 Hz, J2 =
15.8 Hz), 4.55 (1H, m), 3.77 (3H, s), 3.59 (1H, m), 3.47 (1H, m), 3.18 (1H, m), 3.1 (1H, m), 2.94 (3H, m), 2.26 (3H, s), 1.90 (2H, m), 1.37 (2H, m); 13C-NMR (100MHz, CDCl3): δ 158.5, 147.2, 144.0, 143.7, 139.1, 131.7, 131.6, 130.9, 126.4, 125.6, 122.3, 119.0, 100.1, 66.1, 60.4, 57.6, 55.8, 55.6, 47.6, 44.3, 37.1, 29.7, 27.7, 27.5, 24.4, 20.1, 18.6; HRMS (ESI): m/z mass calc for C27H31N2O2 (M+H+) 415.2386 Found 415.2386.

2.11 Synthetic procedure for (9S,8S)-9-amino-(9-deoxymethyl)-epiquinine (6)[19]

Quinine (1) (2g, 6.16 mmol) and triphenylphosphine (2 g, 7.62 mmol) were charged to a three neck 100 mL RBF followed by 50 mL of dry tetrahydrofuran under a nitrogen atmosphere. The reaction was cooled to -5 °C and stirred until the solution turned clear. Diisopropyl azodicarboxylate (DIAD) (1.5 g, 7.42 mmol) was added dropwise via syringe at -5 °C. The reaction was stirred for 30 minutes before diphenylphosphoryl azide (DPPA) (2.1 g, 7.63 mmol) was added dropwise via syringe at -5 °C. The reaction mixture was heated to room temperature and stirred for a further 18 hours. The reaction mixture was subsequently stirred at 60 °C for 2 hours. Triphenylphosphine (2.1 g, 8.0 mmol) was added and stirring continued for 4 hours. The reaction mixture was cooled to room temperature and deionised water (2.0 mL) was added before stirring for 18 hours. The solvent was removed in vacuo and the remaining aqueous layer was extracted with CH2Cl2:2M HCl (1:1, 80 mL). The dichloromethane layer was discarded and the aqueous layer was concentrated in vacuo. The crude product was purified via recrystallisation from hot methanol (4.0 mL) to afford (9S,8S)-9-amino-(9-deoxymethyl)-epiquinine hydrochloride as an off-white solid. The salt was basified with saturated sodium bicarbonate solution (20 mL) and extracted with CH2Cl2 (3 x 20 mL). Removal of the solvent in vacuo furnished (9S,8S)-9-amino-(9-deoxymethyl)-epiquinine (free base) as a yellow oil in 75% yield.

1H-NMR (300 MHz, CDCl3): δ 8.75 (1H, d, J = 4.55 Hz), 8.04 (1H, d, J = 9.22 Hz), 7.65 (1H, br, s), 7.45 (1H, d, J = 4.48 Hz), 7.39 (1H, dd, J1 = 2.75 Hz, J2 = 9.24 Hz), 5.81 (1H, ddd, J1 = 7.35 Hz, J2 = 10.25 Hz, J3 = 17.52 Hz), 4.99 (2H, m), 4.60 (1H, d, J = 10.25 Hz), 3.97 (3H, s), 3.28 (1H, dd, J1 = 10.25 Hz, J2 = 13.85 Hz), 3.10 (1H, m), 2.81 (2H, m), 2.28 (1H, m), 1.63 (1H, m), 1.56 (2H, m), 1.44 (1H, m); 13C-NMR (100MHz, CDCl3): δ 157.7, 147.9, 144.8, 141.8, 131.8, 128.8, 121.2, 119.9, 114.3, 102.1, 61.9, 56.4, 55.6, 52.5, 41.0, 39.9, 28.2, 27.6, 26.1; HRMS (ESI): m/z mass calc for C20H25N3O (M+H+) 324.2076 Found 324.2075.
2.12 Synthetic procedure for 11-phenyl-(9S,8S)-9-amino-(9-deoxymethyl)-epiquinine

(7)[19]

(9S,8S)-9-Amino-(9-deoxymethyl)-epiquinine (6) (100 mg, 0.31 mmol), palladium(II) acetate (3.48 mg, 0.0155 mmol), and triphenylphosphine (0.077 mmol, 0.031 mmol) were added to a sealed, oven-dried tube under an inert atmosphere of nitrogen. Iodobenzene (0.62 mmol, 2.0 equiv.) in degassed, anhydrous toluene (1.5 mL) was added to the reaction tube via syringe followed by triethylamine (0.62 mmol, 2.0 equiv). The reaction mixture was stirred at 111 °C until the reaction had reached completion after 18 h. The reaction mixture was allowed to cool to room temperature and the solvent was removed \textit{in vacuo} to furnish a reddish coloured semi-solid material. The crude solid was dissolved in dichloromethane (10 mL) and filtered through a cotton plug. The resulting filtrate was concentrated \textit{in vacuo} before extraction with CH\textsubscript{2}Cl\textsubscript{2}:2M HCl (1:1, 20 mL). The dichloromethane layer was discarded and the aqueous layer was concentrated \textit{in vacuo}. The crude product was purified \textit{via} recrystallisation from hot methanol (3.0 mL) to afford 11-phenyl-(9S,8S)-9-amino-(9-deoxymethyl)-epiquinine hydrochloride as a yellow solid. The salt was basified with saturated sodium bicarbonate solution (10 mL) and extracted with CH\textsubscript{2}Cl\textsubscript{2} (2 x 10 mL). Removal of the solvent \textit{in vacuo} furnished 11-phenyl-(9S,8S)-9-amino-(9-deoxymethyl)-epiquinine as a yellow solid in 84% yield.

1H-NMR (300MHz, CDCl\textsubscript{3}): \(\delta\) 8.77 (1H, d, \(J = 4.52\) Hz), 8.04 (1H, d, \(J = 9.22\) Hz), 7.51 (1H, d, \(J = 4.32\) Hz), 7.40 (1H, dd, \(J1 = 2.65\) Hz, \(J2 = 9.34\) Hz), 7.26-7.31 (5H, m), 7.20 (1H, m), 6.40 (1H, d, \(J = 16.1\) Hz), 6.18 (1H, dd, \(J1 = 7.94\) Hz, \(J2 = 16.1\) Hz), 4.68 (1H, s), 4.0 (3H, s), 3.45 (1H, m), 3.33 (2H, m), 2.97 (2H, m), 2.54 (1H, m), 1.77 (1H, m), 1.67 (2H, m), 1.62 (2H, m); 13C-NMR (100MHz, CDCl\textsubscript{3}): \(\delta\) 157.8, 147.9, 144.8, 137.2, 132.6, 132.0, 130.5, 128.6, 127.3, 126.1, 121.4, 119.0, 101.3, 71.7, 61.3, 56.7, 55.8, 52.2, 41.2, 39.0, 27.9, 27.7, 25.9; HRMS (ESI): \textit{m/z} mass calc for C\textsubscript{26}H\textsubscript{29}N\textsubscript{2}O\textsubscript{3} (M+H+) 400.2389 Found 400.2389.

2.13 Vero Cells

Vero cells (ATCC CCL-81) were kept in 75 cm2 tissue culture flasks at 37 °C in a humidified 5% CO\textsubscript{2} atmosphere with DMEM supplemented with 5% fetal bovine serum. For the weekly seeding, cell monolayers were washed twice with PBS (pH 7.2),
trypsinised and the detached cells were collected by centrifugation for 5 min at 800g. The cells were inoculated at 9×10^5 cells/flask in fresh medium and kept as described above.

2.14 Parasites
Epimastigote forms of *Trypanosoma cruzi*, clone Dm28c, were kept at 28 °C in LIT (Liver Infusion-Tryptose) medium supplemented with 10% inactivated fetal bovine serum, with passages at every three days. Parasites from 72-hour cultures were used for the experiments.

Cell-derived trypomastigotes were obtained from the supernatant of previously infected Vero cell cultures and used for re-infections. Briefly, Vero cells (1.3x10⁶ cells) and cell-derived trypomastigotes (ratio 1:10) were seeded into 75 cm² tissue culture flasks in DMEM medium. After 4 h of incubation, the cultures were washed with DMEM to remove non-internalized parasites and then kept in DMEM at 37 °C in a humidified 5% CO₂ atmosphere. Cell-derived trypomastigotes were collected in the supernatant 96 h post-infection.

2.15 Drug assays on epimastigotes
Three-day-old culture epimastigotes were collected, adjusted to a concentration of 5×10^6 cells/well in 100 µL LIT medium and seeded into 96 well plates. Different concentrations of the compounds were then added (final concentrations in 200 µL: 3.125, 6.25, 12.5, 25, 50 and 100 µM) and the plates were incubated for 24 h at 28 °C. Benznidazole (7.81, 15.625, 31.25, 62.5 and 125 µM) was used as a positive control. Cell viability was assessed by the MTT methodology [23]. Briefly, after incubation with the drugs, 50 µL MTT (previously prepared at 10 mg/mL in PBS) was added to each well, with final concentration of 2 mg/mL MTT per well. The plates were wrapped in aluminium foil, incubated for 4 h at 28 °C, centrifuged for 15 min at 500g and the supernatant was removed. For cell lysis, 50 µL of a SDS/HCl solution (10% SDS, 0.01 M HCl) was added to each well. After solubilisation, absorbance of the samples was read at 570 nm in an ELISA plate reader (Biotek Model EL800, Winooski, VT, USA). Dose-response curves were obtained with GraphPad Prism software (La Jolla, CA, USA) and the IC₅₀/24 h value (concentration that inhibits culture growth in 50%) was then calculated. Absorbance of untreated cells (negative control) was used as 100% cell viability. The percentage of no-viable cells in each treatment was estimated by
comparison with the negative control. Experiments were made in biological duplicate, each one in technical triplicate.

2.16 Drug assays on intracellular amastigotes and cytotoxicity
Vero cells (5x10^3 cells/well) and cell-derived trypomastigotes (ratio 1:20) were seeded into 96-well plates in DMEM medium. After 4 h of incubation, the cultures were washed with DMEM to remove non-internalized parasites and then kept in 300 µL DMEM at 37 °C in a humidified 5% CO2 atmosphere. After 24 h of incubation, the infected Vero cell cultures with intracellular amastigotes were incubated with DMEM containing different drug concentrations (final concentration ranging from 0.078 to 2000 µM) in a total volume of 200 µL/well. After incubation for additional 24 h the plates were washed with PBS, fixed for 5 minutes with cold methanol and cell nuclei were stained with DAPI (5 µg/mL). Images were obtained with an Operetta imaging system (Perkin Elmer, Waltham, MA, USA) on the DAPI channel, at 20x magnification. About 30-40 fields per well were captured, each field with five stacked images.

It has been shown that Operetta is a reliable methodology for amastigote counting [24]. By using the Operetta Imaging system Harmony Software (Perkin Elmer, USA) the following parameters were defined: (a) percentage of infected Vero cells, (b) number of amastigotes per host cell, and (c) the Infectivity Index (II = a x b). The IC50/24 h value was then estimated from II, by comparing with the control (100% viability). Dose-response curves were obtained with GraphPad Prism software. For cytotoxicity with the synthetic compounds, the parameter used was the total number of Vero cell nuclei. All experiments were performed in a single biological experiment, in technical sextuplicates. The Selectivity Index was obtained according to the formula:

SI=CC50/IC50.

2.17 Drug assays on cell-derived trypomastigotes and cytotoxicity
Cell-derived trypomastigotes were collected, adjusted to a concentration of 1x10^7 cells/well in 100 µL DMEM medium and seeded into 96-well plates. Different concentrations of 9 were then added (final concentrations in 200 µL: 1.562, 3.125, 6.25, 12.5, 25, 50 and 100 µM) and the plates were incubated for 2 h at 37 °C (longer incubation times resulted in transformation into the amastigote form). Benznidazole (up to 1000 µM) was used as control. Cell viability was assessed by the MTT methodology,
by incubating with 2 mg/mL MTT for 2 h at 37 °C. For cell lysis, 50 µL DMSO plus 50 µL of a SDS/HCl solution were added to each well. After solubilisation, absorbance of the samples was read at 570 nm in an ELISA plate reader and the IC₅₀/2 h value was then estimated.

For cytotoxicity, Vero cells (1.25x10⁵ cells/ml) were seeded in 96-well plates, 100 µl per well, and cultivated for 24 h. Thereafter, different concentrations of 9 were added (final concentrations in 200 µL: 12.5, 25, 50 and 100 µM) and the plates were incubated for 2 h at 37 °C. Cell viability was assessed by the MTT methodology. Briefly, after incubation with the drugs, 50 µL MTT (previously prepared at 10 mg/mL in PBS) was added to each well, with final concentration of 2 mg/mL MTT per well. The plates were wrapped in aluminium foil, incubated for 2 h at 37 °C. For cell lysis, 50 µL of DMSO was added to each well. After solubilisation, absorbance of the samples was read at 570 nm in an ELISA plate reader. Dose-response curves were obtained with GraphPad Prism software (La Jolla, CA, USA) and the CC₅₀/2 h value was calculated. Absorbance of untreated cells (control) was used as 100% cell viability. Experiments were made in biological duplicate.

2.18 Infectivity assay

Vero cells (6x10⁶ cells/well) and 9-treated (IC₅₀/2 h value) trypomastigotes (ratio 1:10) were seeded into 6-well plates in DMEM medium. After 2 h of incubation, the cultures were washed with DMEM to remove non-adherent parasites and then incubated for further 48 h. After this time the cell cultures were fixed for 5 minutes with cold methanol and the cell nuclei were stained with 5 µg/mL DAPI. The percentage of infected Vero cells and the total number of intracellular amastigotes was estimated by counting 2,000 host cells in 05 randomly selected microscopic fields photographed in a Leica DMI6000B fluorescence microscope (20x objective) associated to a Leica AF6000 deconvolution software (Leica Microsystems, Buffalo Grove, IL, USA). The Infectivity Index (II) was calculated as described previously.

2.19 Scanning Electron Microscopy (SEM)

Cell-derived trypomastigotes (4.5x10⁷/well) were incubated for 2 h with 12.5 µM 9, washed with PBS and fixed for 2 h with 2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2. The cells were then adhered for 10 minutes to glass coverslips previously coated with 0.1% poly-L-lysine. The cells were washed in 0.1 M cacodylate
buffer and post-fixed for 5 minutes with 1% osmium tetroxide in this same buffer. After
washing in buffer the samples were dehydrated in graded acetone series and dried in a
Leica CPD300 critical point drier (Leica Mikrosysteme GmbH, Vienna, Austria). The
coverslips were adhered to SEM stubs and coated with 20-nm thick gold layer in a
Leica EM ACE200 sputtering device. The cells were then observed in a Jeol
JSM6010Plus-LA scanning electron microscope. Untreated trypomastigotes were used
as control.
Additionally, Vero cells (1.25x10^5/well) and 9-treated trypomastigotes (ratio 1:10) were
seeded into 24-well plates in DMEM medium, each well containing a glass coverslip.
The cell cultures were incubated for 2 h, washed with PBS to remove non-adherent
parasites and the coverslips were then fixed with glutaraldehyde and processed as
above.

2.20 Transmission Electron Microscopy
Infected Vero cells with intracellular amastigotes (24-hour-old cultures) were incubated
for 24 h with 1, 8, 9 and 11 and then processed for conventional transmission electron
microscopy. Briefly, the cell cultures were fixed for 2 h with 2.5% glutaraldehyde in 0.1
M cacodylate buffer pH 7.2, washed in buffer and then post-fixed for 1 h with 1%
osmium tetroxide in cacodylate buffer. The samples were dehydrated in graded acetone
series and embedded in Embed812 resin (EMS, Hatfield, PA, USA). Ultrathin sections
were collected on copper grids, stained with uranyl acetate and lead citrate and observed
under a Jeol 1400Plus transmission electron microscope at 80 kV.
Cell-derived trypomastigotes (4.5x10^7/well) were incubated for 2 h with the IC_{50}
value of 9 (12.5 µM), washed with PBS, fixed for 2 h with 2.5% glutaraldehyde in cacodylate
buffer and processed as above. Furthermore, Vero cells (6x10^6 cells/well) and 9-treated
trypomastigotes (ratio 1:10) were seeded into 6-well plates in DMEM medium. The cell
cultures were incubated for 2 h, 24 h or 48 h, washed with PBS, and then fixed with
glutaraldehyde and processed as above.

3. Results and discussion
3.1 Chemistry
The synthetic route to the compound library is outlined in Figure 1. Based on our
previous efforts to develop novel quinine-derived organocatalysts [19], the target
compounds 2 to 11 were synthesized via a palladium-catalysed Heck coupling of commercially available quinine and the appropriate aryl halide under a nitrogen atmosphere (Table 1). This Heck chemistry displayed high selectively, with the trans-isomer being formed exclusively in each case. Conversion to the Heck product was found to be dependent on the choice of ligand and base, as well as the nature of the aryl halide. Palladium acetate in combination with triphenylphosphine proved generally efficacious, although recourse to tri(o-tolyl)phosphine was required in some cases (entries 3, 4). Likewise, while triethylamine was a suitable base for this reaction (entries 1, 9), the higher reaction temperatures afforded by use of tri-n-butylamine generally afforded higher yields overall (entries 2-8). In terms of substrate scope, fluorinated aryl halides were found to be less reactive (entries 4, 5). The reactivity suffered further as the number of fluorines on the aryl ring was increased, with pentafluorophenyl iodide failing to react under optimised conditions. Finally, replacement of the hydroxyl with an amine group by way of a Mitsunobu-Staudinger reaction furnished 6 with complete inversion of stereochemistry. The resulting amine derivative was subjected to Heck coupling with phenyl iodide affording 7 in 84% yield as the trans-isomer.

\[
\begin{align*}
\text{(i)} & \quad (\text{Ar} = \text{Ph}) \\
\text{(ii)} & \quad (\text{Ar} = 3,5\text{-Bis(trifluoromethyl)}\text{phenyl}) \\
\text{(iii)} & \quad (\text{Ar} = 4\text{-Nitrophenyl})
\end{align*}
\]
Figure 1. Synthesis of quinine analogues; Reagents and conditions: (i) Pd(OAc)$_2$ (5 mol%), triphenylphosphine or (tri-o-toly)phosphine (10 mol%), Ar-X (2 equiv.), triethylamine or tributylamine (2 equiv.), toluene, reflux, N$_2$, 24 h. (ii) DIAD (1.2 equiv.), diphenylphosphorylazide (1.3 equiv.), triphenylphosphine (2.6 equiv.), anhydrous tetrahydrofuran, -10 to 60 °C, 75%. (iii) Pd(OAc)$_2$ (5 mol%), triphenylphosphine (10 mol%), Ph-I (2 equiv.), tributylamine (2 equiv.), toluene, reflux, N$_2$, 24 h, 84%.

Table 1. Optimised conditions for the synthesis of quinine analogues via Heck coupling

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>Ar-X</th>
<th>Ligand</th>
<th>Base</th>
<th>Time</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>I</td>
<td>PPh$_3$</td>
<td>Et$_3$N</td>
<td>16 h</td>
<td>89%</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Br</td>
<td>PPh$_3$</td>
<td>n-Bu$_3$N</td>
<td>24 h</td>
<td>86%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Br</td>
<td>P(o-tol)$_3$</td>
<td>n-Bu$_3$N</td>
<td>34 h</td>
<td>71%</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>Br</td>
<td>P(o-tol)$_3$</td>
<td>n-Bu$_3$N</td>
<td>34 h</td>
<td>69%</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>I</td>
<td>PPh$_3$</td>
<td>n-Bu$_3$N</td>
<td>18 h</td>
<td>84%</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>Br</td>
<td>PPh$_3$</td>
<td>n-Bu$_3$N</td>
<td>18 h</td>
<td>82%</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>Br</td>
<td>PPh$_3$</td>
<td>n-Bu$_3$N</td>
<td>18 h</td>
<td>68%</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>Br</td>
<td>PPh$_3$</td>
<td>n-Bu$_3$N</td>
<td>18 h</td>
<td>63%</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>I</td>
<td>PPh$_3$</td>
<td>Et$_3$N</td>
<td>16 h</td>
<td>87%</td>
</tr>
</tbody>
</table>

3.2 Biological evaluation

Compounds 1 to 7 were initially screened against culture epimastigotes, in order to assess their possible trypanocidal activity. The existence of an intracellular epimastigote-like form as an intermediate stage within the mammalian host supports the preliminary screening of trypanocidal compounds on this non-infectious stage of the
parasite [25]. Naturally occurring quinine (1) showed very weak activity (IC\textsubscript{50}/24 h higher than 100 µM) (Table 2, entry 1). On foot of the promising results previously reported by Dinio \textit{et al.}, the introduction of an aryl-substituent onto the olefinic side chain was investigated [20]. This modification was accompanied by an increase in potency with phenyl-substituted 2 displaying an IC\textsubscript{50}/24 h of 31.37 µM (entry 2). This improved activity may be partially rationalised by the increase in lipophilicity associated with the presence of the non-polar phenyl ring (cLogP 4.12 vs. 2.51). Extending this logic further, fluorine is often used to modulate the physicochemical properties of drugs, such as lipophilicity or electron density [26]. Fluorinated analogues 3-5 were found to be comparable to 2 (entries 3-5). Compound 3, which was the most lipophilic derivative (cLog P 5.87) with two trifluoromethyl substituents on the aromatic ring, was the best candidate within this group, with an IC\textsubscript{50}/24 h of 18.86 ± 3.9 µM (entry 3). We also wished to ascertain whether the secondary alcohol group was a prerequisite for activity. Replacing the hydroxyl in quinine with an amine \textit{via} Mitsunobu-Staudinger chemistry afforded 6 which was, unsurprisingly, discovered to be inactive (entry 6). Indeed, culture epimastigotes remained alive in the presence of 100 µM of 6 over six days, when the cultures were then discarded. However, when 6 was subjected to a palladium-mediated coupling with phenyl iodide to furnish 7, the phenyl-substituted product displayed activity similar to 2 in spite of the absence of the hydroxyl group (entries 7 vs 2).

Table 2.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>IC\textsubscript{50} (µM) Epimastigote</th>
<th>IC\textsubscript{50} (µM) Amastigote</th>
<th>CC\textsubscript{50} (µM) Vero cell</th>
<th>SI Amastigote</th>
<th>cLog P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>>100</td>
<td>80.35</td>
<td>288.46</td>
<td>3.59</td>
<td>2.51</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>31.37 ± 3.96</td>
<td>7.50</td>
<td>18.46</td>
<td>2.46</td>
<td>4.12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>18.86 ± 3.95</td>
<td>15.00</td>
<td>5.19</td>
<td>0.35</td>
<td>5.87</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>40.29 ± 9.01</td>
<td>5.19</td>
<td>6.35</td>
<td>1.22</td>
<td>4.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>44.28 ± 4.55</td>
<td>17.31</td>
<td>22.50</td>
<td>1.30</td>
<td>4.54</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>>100</td>
<td>818.18</td>
<td>1365.35</td>
<td>1.67</td>
<td>2.41</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>35.14 ± 9.64</td>
<td>30.58</td>
<td>20.77</td>
<td>0.68</td>
<td>4.01</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>55.32 ± 6.36</td>
<td>0.96</td>
<td>10.6</td>
<td>11.04</td>
<td>4.06</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11.30 ± 4.21</td>
<td>1.15</td>
<td>7.4</td>
<td>6.43</td>
<td>3.96</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>63.98 ± 9.68</td>
<td>8.09</td>
<td>11.43</td>
<td>1.41</td>
<td>3.97</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>40.89 ± 2.28</td>
<td>2.31</td>
<td>7.8</td>
<td>3.38</td>
<td>4.63</td>
</tr>
<tr>
<td>12</td>
<td>BZ</td>
<td>59</td>
<td>3.07a</td>
<td>3920.00a</td>
<td>1276.87a</td>
<td></td>
</tr>
</tbody>
</table>

IC₅₀: inhibitory concentration for 50% of parasites after 24 h
CC₅₀: cytotoxic concentration for 50% of Vero cell cultures after 24 h
SI: selectivity index
BZ: benznidazole
cLog P calculated using Chemaxon Marvinsketch software package.

*aSee ref 27

Since this initial screening had returned some promising results, these compounds were next tested against intracellular amastigotes. The majority were found to active with IC₅₀ values ranging from 5 to 31 µM (Table 2, entries 2-5, 7 and Figure 2A-C), apart from quinine (80.35 µM, entry 1) and 6 (818.18 µM, entry 6) in line with earlier results. Notably, all compounds were more active against intracellular amastigotes than culture epimastigotes. The introduction of an aromatic ring was found to be strongly beneficial, with phenyl-substituted 2 being 10-fold more active than quinine (entry 2 vs 1). Similarly, phenyl-substituted 7 was 27 times more effective than amine 2 (entry 7 vs 6). The impact of the substitution pattern on the aromatic ring is apparent when comparing 3,4,5-trifluorinated 4 to 2,4,6-trifluorinated 5. Despite both compounds being isomers of one another, 4 is over three times more potent than 5. All of the active compounds showed relatively high cytotoxicity against the host Vero cells (Figure 2D-F). Quinine and 6, the two inactive compounds, were significantly less cytotoxic. The best Selectivity Index (SI) value was obtained for quinine with an SI of 3.59.
Figure 2. Dose response curves after incubation of *T. cruzi* intracellular amastigotes (A-C) and Vero cells (D-F) with different concentrations of compounds 1 to 11. Compounds were grouped according to their lower (A, D), medial (B, E) or higher (C, F) activity.

In a search for compounds with improved trypanocidal activity but with reduced cytotoxicity, a second set of quinine derivatives bearing para-substituted aromatic rings was synthesised. The different para-substituents included both electron-withdrawing (e.g. cyano- and nitro-) and electron-donating groups (e.g. methyl and methoxy).

Gratifyingly, while these compounds displayed comparable activity against culture epimastigotes, they displayed noticeably higher activity against the intracellular amastigote forms (Table 2, entries 8-11 and Figure 2D-F). The IC₅₀/24 h values ranged
from 1 to 8 µM, which was within the range of our control drug benznidazole (3.1 µM). The most potent compound, which incorporated a para-nitro, was 83 times more effective than quinine and three times more effective than benznidazole with a submicromolar IC50 of 0.96 µM (entry 8). The effectiveness of 8 was further confirmed by visualising the clearance of T. cruzi amastigotes in infected Vero cells incubated with 8 at levels ranging from 0.078 µM to 10 µM (Figure 3). While the molecule with the most highly electron-withdrawing group was most active (entry 8), the compound with the most highly electron-donating group as almost as effective (entry 9), with no obvious relationship emerging between the nature of the substituents and biological activity. Although the effective concentration was reduced following the introduction of the para-substituents, the resulting compounds were still found to be toxic in mammalian cells. Nevertheless, the resulting selectivity indexes were better than that of quinine, with the most potent compound having the highest SI value (entry 8).
Figure 3. Detection of *T. cruzi* amastigotes in infected Vero cells with the Operetta Imaging System using Harmony software. Images from a representative experiment with 8. Infected Vero cell cultures were incubated for 24 h with quinine derivatives and then fixed with methanol. Nuclei of host cells and intracellular amastigotes were stained with DAPI and then automatically counted. A. Untreated control; B. 0.078 µM 8; C. 0.625 µM 8; D. 1.25 µM 8; E. 5 µM 8; F. 10 µM 8. Scale bar = 100 µm.
Since the best SI values were obtained with 8, 9 and 11, these were selected for further analysis by transmission electron microscopy to compare the ultrastructure of intracellular amastigotes in treated and untreated host cell cultures (Figure 4A). Incubation with quinine (reference compound) resulted in morphological alteration in the reservosomes (lysosome-related organelles), which appeared more electron-dense (Figure 4B). Interestingly, treatment with 8 resulted in no noticeable structural changes in the amastigotes (data not shown). By contrast, 9 induced a large vacuolisation of the kinetoplast, a specific region of the single mitochondrion where DNA (k-DNA) is accumulated (Figure 4C). This effect has previously been observed in T. cruzi treated with different drugs [28-30]. Compound 11 induced an enlargement of a vacuole close to the flagellar pocket membrane, which appears to be the contractile vacuole complex (Figure 4D). This osmo-regulation system is well characterized in T. cruzi epimastigotes [31, 32]. It is possible that these compounds are influencing the osmo-regulatory process of the parasite.

Figure 4. Ultrastructural analysis of intracellular T. cruzi amastigotes by transmission electron microscopy (TEM). Vero cells were incubated for 4 h with trypomastigotes (ratio 10:1) and then washed to remove non-adherent parasites. After
24 h, the infected cells were treated with the IC$_{50}$ value of compounds and fixed for TEM. **A:** Untreated control. **B:** Quinine; reservosomes (R) lose their circular profile and appear with an electron-dense matrix. **C:** Compound 9; the asterisks indicate enlargement of the kinetoplast region. **D:** Compound 11; Note the enlargement of the contractile vacuole (CV), located close to the flagellar pocket. **F:** flagellum; **G:** Golgi complex; **K:** kinetoplast DNA; **N:** nucleus; **R:** reservosome.

Due to the large morphological alteration induced in the amastigotes kinetoplast by 9, the effect of this compound was further analysed on cell-derived trypomastigotes. The IC$_{50}$/2 h was estimated as 12.5 µM. Interestingly, in incubations for 2 h, the benznidazole solution had no effect up to 1000 µM, inhibiting at most 42% of trypomastigotes. However, 9 showed high cytotoxicity against Vero cells (CC$_{50}$/2 h=33.33 µM; SI=2.67) (Figure 5). The ultrastructure of 9-treated trypomastigotes was then analyzed by scanning (SEM) and transmission (TEM) electron microscopy (Figure 6). By SEM, treated parasites appeared with a round body with pointed tips. By TEM, the parasites showed the same large vacuolization in the kinetoplast, as observed with the treated intracellular amastigotes.

Figure 5. Determination of Vero cell cytotoxicity (CC$_{50}$) (A) and effect on cell-derived trypomastigotes (IC$_{50}$) (B) for compound 9, after incubation for 2 h at 37°C.
Figure 6. Scanning (A,B) and transmission (C,D) electron microscopy of cell-derived trypomastigotes incubated for 2 h with 12.5 µM compound 9. Note the rounding of the middle portion of the cell body (B), when compared to the typical undulating morphology of untreated parasites (A). Observation by transmission electron microscopy (C, D) shows an enlargement of the kinetoplast region (asterisk in D). The kinetoplast DNA (K) also appears less compact than that of control parasites (C). N: nucleus; G: Golgi complex; FP: flagellar pocket; K: kinetoplast.

Trypomastigotes treated with 9 were next used to infect Vero cells. It was noted that the round parasites were still able to adhere (Figure 7) and infect the host cells. The kinetoplast vacuolization of the resulting intracellular parasites was visible after 24 h (Figure 8A, B), but intracellular parasites with altered morphology were no longer visible after 48 h (Figure 8C, D). The percentage of infected cells (Table 3) was slightly reduced (about 20%), but there was a significant decrease in the number of intracellular amastigotes per cell after 48h post-infection (about 45%), when compared to untreated control cultures. Considering the infection index, the inhibition rate reached 55%. This result indicated that the treatment of trypomastigotes with 9 lead to decreased
infectivity, but the remaining parasites with normal morphology were able to maintain the infection.

Figure 7. Scanning (A) and transmission (B) electron microscopy of Vero cells 2 h after infection. Trypomastigotes were treated with IC50/2 h before to cell infection. Note that the round parasites are still able to adhere (A) and to enter (B) the host cells.

Table 3. T. cruzi trypomastigotes were treated for 2 h with 12.5 µM (IC50/2 h) and then used to infect Vero cell cultures. The percentage of host cell infection and the number of intracellular amastigotes was then estimated 48 h post infection.

<table>
<thead>
<tr>
<th></th>
<th>% Infection</th>
<th>amastigotes / cell</th>
<th>Infectivity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>20.12</td>
<td>1.19</td>
<td>23.94</td>
</tr>
<tr>
<td>9</td>
<td>16.31</td>
<td>0.66</td>
<td>10.76</td>
</tr>
<tr>
<td>% Inhibition</td>
<td>18.94</td>
<td>44.54</td>
<td>55.04</td>
</tr>
</tbody>
</table>
Figure 8. Transmission electron microscopy of intracellular *T. cruzi* amastigotes 24 h (A, B) and 48h post-infection (C, D). A and C: untreated controls. B and D: Infection with 9-treated trypomastigotes. Intracellular parasites with an enlarged kinetoplast are still present 24 h post-infection (B), but parasites with normal morphology prevail after 48 h and maintain the infection (D). C: cytostome; F: flagellum; G: Golgi complex; K, kinetoplast; N: nucleus.

4. Conclusions

Our data indicates that modification of the vinyl group in quinine, in particular by the incorporation of an aromatic ring, is associated with increased trypanocidal activity against *T. cruzi*. Both the substitution pattern and choice of substituents on the ring were found to impact on potency. *Para*-substituted derivatives were discovered to be especially effective, with *para*-nitro-substituted 8 displaying a submicromolar IC$_{50}$ which is 83 times lower than quinine and three times lower than benznidazole. These compounds were less cytotoxic than the quinine lead, with the most efficacious compound 8 having an SI value of 11.04. We have further shown that these molecules can induce significant morphological changes including large kinetoplast vacuolisation in both intracellular amastigotes and cell-derived trypomastigotes. In summary, this
work demonstrates that modification of the quinine scaffold, in particular by incorporation of an aryl ring onto the vinyl group, affords compounds with high trypanocidal activity against *T. cruzi*. Such an approach offers significant potential for the development of new drugs for the treatment of Chagas disease.

5. Future Perspective

Many millions of people worldwide are infected with *T. cruzi*, the causative agent of Chagas disease. In spite of this, Chagas remains a neglected disease, with the main treatments having been developed many decades ago. Long term use of these therapies is associated with severe side-effects and instances of treatment failure are becoming increasingly common. Additionally, while Chagas disease was once largely confined to Latin America, it has become more widespread in recent years due to increased population movements. Indeed, some have suggested that an increase in global temperatures due to climate change may lead to even greater global prevalence. These factors underline the importance of developing new, safe and efficacious alternatives.

Quinine has long been used as an anti-parasitic compound, but had fallen out of favour with the introduction of cheaper and more effective aminoquinolines such as chloroquine. However, increased parasite resistance has resulted in renewed interest in quinine, both as a standalone medication or in combination with other drugs with complementary modes of action. This interest is also partly due to the versatile nature of the quinine molecule which offers multiple opportunities for further manipulation. Furthermore, advances in synthetic chemistry, such as palladium-catalysed carbon-carbon bond formation, have facilitated the modification of the quinine scaffold in novel ways. This combination of “old molecules” with “new chemistry” opens up new avenues for the development of effective leads in treating neglected, parasitic diseases.

6. Acknowledgements

The authors thank the Program for Technological Development in Tools for Health-PDTIS FIOCRUZ for the use of its facilities (Platform RPT07C – Confocal and Electron Microscopy-PR). H.G. wishes to thank the Irish Research Council for funding.

7. Financial & competing interests disclosure

This work was supported by the Irish Research Council [Government of Ireland PhD Scholarship GOIPG/2013/113], Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) and Fundação Oswaldo Cruz (Fiocruz). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Executive Summary:
- Novel, aryl-substituted analogues of quinine display significantly increased trypanocidal activity against *T. cruzi*.
- *Para*-substituted aromatic analogues are especially potent, with the *para*-nitro-derivative displaying a submicromolar IC$_{50}$ which is three times lower than benznidazole.
- Compounds with either electron-donating and electron-withdrawing substituents in the *para*-position are equally effective.
- Analysis by transmission electron microscopy analysis confirmed that these compounds induced a marked vacuolisation of the kinetoplast of *T. cruzi* intracellular amastigotes and cell-derived trypomastigotes.

References:

*Demonstrates the effectiveness of modifying the quinine scaffold as a route to novel anti-malarial compounds.

*Describes Operetta, an image-based system that determines the effect of compounds against T. cruzi amastigotes, but is also capable of estimating the toxicity of compounds on host cells.

