<table>
<thead>
<tr>
<th>Title</th>
<th>A nonlinear analysis of spatial compliant parallel modules: Multi-beam modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hao, Guangbo; Kong, Xianwen; Reuban, Robert L.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2011-03</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://www.sciencedirect.com/science/article/pii/S0094114X10002326</td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.1016/j.mechmachtheory.2010.12.007</td>
</tr>
<tr>
<td></td>
<td>Access to the full text of the published version may require a subscription.</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright © 2010, Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Mechanism and Machine Theory. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mechanism and Machine Theory, [46, August 2010] http://dx.doi.org/10.1016/j.mechmachtheory.2010.12.007</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/717</td>
</tr>
</tbody>
</table>

Downloaded on 2020-10-06T23:45:22Z
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-beam Modules

Guangbo Hao, Xianwen Kong¹, Robert L. Reuben

Department of Mechanical Engineering, Heriot-Watt University, Edinburgh, UK, EH14 4AS

ABSTRACT: This paper presents normalized, nonlinear and analytical models of spatial compliant parallel modules—multi-beam modules with a large range of motion. The models address the non-linearity of load-equilibrium equations, applied in the deformed configuration, under small deflection hypothesis. First, spatial nonlinear load-displacement equations of the tip of a beam, conditions of geometry compatibility and load-equilibrium conditions for a spatial three-beam module are derived. The nonlinear and analytical load-displacement equations for the three-beam module are then solved using three methods: approximate analytical method, improved analytical method and numerical method. The nonlinear-analytical solutions, linear solutions and large-deflection FEA solutions are further analyzed and compared. FEA verifies that the accuracy of the proposed nonlinear-analytical model is acceptable. Moreover, a class of multi-beam modules with four or more beams is proposed, and their general nonlinear load-displacement equations are obtained based on the approximate load-displacement equations of the three-beam module. The proposed multi-beam modules and their nonlinear models have potential applications in the compliant mechanism design. Especially, the multi-beam modules can be regarded as building blocks of novel compliant parallel mechanisms.

Keywords: Nonlinear analysis; Compliant mechanisms; Spatial modules

1. Introduction

Compliant parallel mechanisms/modules (CPMs) transmit motions/forces by deflections of their compliant members and have the characteristics of both conventional parallel mechanisms [1-2] and fully compliant mechanisms [3-4]. It is well known that CPMs possess many potential advantages such as zero backlash, no need for lubrication, reduced wear, high precision and compact, monolithic configuration. They can be used in a variety of applications, especially where high-precision movements are required, such as precision motion stages, precision robotics, and MEMS sensors and actuators [5-8]. Due to their merits, CPMs have received much attention over the past decade.

CPMs mainly fall into two categories: lumped compliance mechanisms and distributed compliance mechanisms. Compared to lumped compliant joints, distributed compliant joints can produce a large range of motion as well as a reduced stress concentration, and their elastic averaging can permit inexact constraint designs. There are three main approaches to design of compliant mechanisms: (a) Pseudo-Rigid-Body-Model synthesis methods [9-11], (b) Continuum Structure Optimization methods [12-14], and (c) innovative design methods such as the constraint-based design approach [15-16], the building block approach [17], the screw theory based approach and the freedom and constraint topology approach [18-20].

Traditional linear analysis or Pseudo-Rigid-Body-Models [4] have limited application for compliant mechanisms usually only providing an initial estimate for displacements as a reference for nonlinear analysis. Non-linearities in force-displacement characteristics of a basic cantilever beam (Euler-Bernoulli beam) have three sources: material non-linearity, geometric non-linearity and non-linearity of load-equilibrium equations. The material non-linearity can be neglected for most applications and the geometric non-linearity will also be ignored in this paper due to small deflection assumption. To capture the nonlinearities of force-displacement equations, the load-equilibrium conditions should be applied in the deformed configuration of compliant mechanisms [5, 21-22], which is different from the configuration before deformation as used in linear load-equilibrium. There are two main methods of solving force-displacement equations: a) differential equation based methods [5, 23], and b) energy methods, such as Castigliano's theorem [24, 25] and virtual work principle [4]. Awtar [5] has derived the analytical and nonlinear force-displacement equations of a basic cantilever beam of length L in matrix form under the small deflection assumption, which applies provided that the transverse displacement is less than 0.1L. These nonlinear equations can be directly used to define the buckling conditions and capture the effects of load-stiffening and elastokinematic nonlinearities, both resulting from axial forces in the beams [5, 26]. Zelenika et al [22] also proposed the nonlinear equations of a leaf spring in the cross-spring pivot in the deformed configuration. Nevertheless, these equations can not be generally used due to the limitation of derivation, and the complication of solution using numerical method. Awtar et al [27, 23] further studied the elastic averaging effect in multi-beam parallelogram flexure mechanisms, analyzed the characteristics of a double parallelogram flexure module and proposed simple and accurate approximations. This body of work revealed the fact that any difference in the axial forces acting on the beams will cause an unequal transverse stiffness change in the beams, and result in rotational yaw. Based on the contributions in [15], Hao and Kong [28] proposed a 3-DOF (degrees of freedom) CPM for translation. This CPM has good characteristics such as the kinemostatic-decoupling and large range of motion.

This paper builds on the above advances, and investigates the nonlinear modeling of spatial CPMs with multiple Euler-Bernoulli beams under small deflection and plane cross-section assumption. A multi-beam module is composed of a motion stage and a base connected using three or more slender beams [3, 5]. In addition to being an independent CPM in its own right, e.g. as a vibratory bowl feeder [29-30] and a compliant assembly system device [31], a multi-beam module can also be used as building blocks of new spatial compliant mechanisms [32-33]. This offers an alternative to spatial CPMs composed of a number of planar compliant modules with distributed compliance, which have been proposed elsewhere [23, 34-35]. Dai et al [29] have already analyzed the compliance of a three-legged rigidly connected compliant platform using screw theory using the linear compliance matrix for each leg. Ding et al [30] have also carried out a dynamic analysis of a vibratory bowl feeder with three spatial compliant legs based on a characteristic equation. Recently, a tilted three-beam spatial compliant module, producing three rotations, is analyzed to define layouts of actuators using screw theory [36]. However, as yet, there has been no analysis of a spatial module with three or more uniform non-tilted slender beams.

¹Corresponding author, Phone: +44(0)1314513688, Email address: X.Kong@hw.ac.uk
Accordingly, this paper focuses on multi-beam modules with uniform non-tilted beams (Fig. 1). The reasons for this choice are that the uniform beam is one of the most common flexure elements and the non-tilted arrangement is simple enough to allow for closed-form analysis in terms of constraint-based design. This paper is organized as follows. In Section 2, spatial nonlinear load-displacement equations of the tip of a beam, conditions of geometry compatibility and load-equilibrium conditions of the spatial three-beam module are derived. In Section 3, three approaches are proposed to solve the nonlinear load-displacement equations for the three-beam module, and the validity condition, extensible application, accuracy and advantages/limitations of each model are discussed, and the approximate model is compared with the linear model. In Section 4, FEA is conducted to verify the proposed approximate analytical model for the three-beam module. In Section 5, a class of multi-beam spatial modules is proposed, and the general equations of load-displacement for these modules are summarized. Finally, conclusions are drawn.

2. Spatial three-beam module analysis

In order to simplify equations and make translational displacements and rotational angles (or forces and moments) comparable, all translational displacements and length parameters are normalized by the beam length L, forces by Ei/L^2, bending moments by Ei/L, and torques by GJ/L. Here, E denotes the Young's modulus, I denotes the second moment of the area of a cross-section, G denotes the shear modulus, and J denotes the polar second moment of the area of the cross-section.

Throughout the paper, non-dimensional quantities are represented by the corresponding lower-case letters, and all beams have round cross-sections with the same diameter D_0 unless otherwise indicated.

The three-beam module (Figs. 1 and 2) is composed of a base, three beams and a motion stage. The base and motion stage, which are both assumed to be rigid, are connected by the three compliant beams. Here, the three beams are uniformly spaced around a circle of radius r_0 on the base and on the motion stage, and all external loads, p (axial force), f_x, f_y (transverse forces), m_x (torque), m_y and m_z (bending moments), are acting at the centre, O', of the motion stage and cause the motion stage to move by deformation of the three beams. p, f_x, f_y and m_z are the forces along the X-, Y- and Z-axes, respectively; m_x, m_y and m_z are the moments about the X-, Y- and Z-axes, respectively. For the purpose of simplification, the gravity of the motion stage (including the payloads on it) is integrated into the axial force, and the weights of the compliant beams, which are very small, are neglected.
In the initial configuration, a mobile rigid body coordinate system O’-XYZ’ and a global fixed coordinate system O-XYZ are coincident and both origins are at the centre, O’, of the motion stage (Fig. 2). All translational displacements of the new origin, O’, along the X-, Y- and Z-axes are denoted by \(x_i \) (axial displacement), \(y_i \), and \(z_i \) (transverse displacements), respectively; All rotational displacements (angles) of the motion stage about the X-, Y- and Z-axes are denoted by \(\theta_{x_i} \) (torsional angle), \(\theta_{y_i} \) and \(\theta_{z_i} \) (bending angles), respectively. All loads and displacements shown in all figures are represented by the non-dimensional quantities in the coordinate system O-XYZ. The object is to investigate the translational displacements, \(x_i, y_i \), and \(z_i \), and the rotational displacements, \(\theta_{x_i}, \theta_{y_i} \) and \(\theta_{z_i} \), of the motion stage as a function of the applied loads: \(p_i, f_{y_i}, f_{z_i}, m_{x_i}, m_{y_i}, \) and \(m_{z_i} \).

In terms of the constraint-based design [5], the three out-of-plane DOF of the three-beam spatial module are suppressed, and its motion stage is constrained to move within the YZ plane, which leaves \(y_i, z_i \), and \(\theta_{x_i} \) as the DOF. If the pitch radius \(r_i \) of the beams (hence the motion stage) becomes relatively large, the rotation of the motion stage about the X-axis will be constrained as well.

2.1. Nonlinear load-displacement equations of the tip of a cantilever beam

The centre of the free-end of the cantilever beam is used as the point (tip) at which the loads and translational movements are defined. Here, the loads, \(p_i, f_{y_i}, f_{z_i}, m_{x_i}, m_{y_i}, m_{z_i} (i=1, 2, 3) \), denote internal loads acting at the tip, \(\alpha_{i0} \), of the \(i_0 \)-th beam, and are the corresponding reactions at the point \(\alpha_0 \) on the motion stage as shown in Fig. 2. \(p_i, f_{y_i}, f_{z_i} \) are the forces along the X-, Y- and Z-axes, respectively; \(m_{x_i}, m_{y_i}, m_{z_i} \) are the moments about the X-, Y- and Z-axes, respectively. \(\theta_{x_i}, \theta_{y_i} \) and \(\theta_{z_i} \) are rotational displacements of the free-end of the \(i_0 \)-th beam about the X-, Y- and Z-axes, respectively. \(x_i, y_i \) and \(z_i \) \((i=1, 2, 3)\) are translational displacements of the tip of the \(i_0 \)-th beam along the X-, Y- and Z-axes, respectively.

Under the conditions of linear elasticity and small deflections, the principle of superposition [24] can be applied to straightforwardly deal with the spatial combined deformation of a beam. The combined deformation can be regarded as the combination of two bending deformations in the XY and XZ planes, respectively, and a torsional deformation about the X-axis. The bending of a beam in a given plane can be analyzed using the nonlinear load-displacement equations derived by Awtar [5, 23]. An alternative derivation for the nonlinear analysis of planar deflection of a beam can also be found in Appendix A.

Equations (A. 12a) and (A. 13a) allow the nonlinear load-displacement equations for the \(i_0 \)-th beam \((i_0 = 1, 2, 3)\) for bending in the XY and XZ planes to be written as

\[
\begin{align*}
\left[\begin{array}{c}
\Delta f_{y_{i0}} \\
\Delta m_{y_{i0}}
\end{array} \right] &= \left[\begin{array}{ccc}
\alpha & \beta & \gamma \\
\delta & \varepsilon & \zeta
\end{array} \right]
\left[\begin{array}{c}
\Delta y_{i0} \\
\Delta \theta_{y_{i0}}
\end{array} \right] + \left[\begin{array}{c}
p_{y_{i0}} \\
-p_{\theta_{y_{i0}}}
\end{array} \right], \\
\left[\begin{array}{c}
\Delta f_{z_{i0}} \\
\Delta m_{z_{i0}}
\end{array} \right] &= \left[\begin{array}{ccc}
\alpha & \beta & \gamma \\
\delta & \varepsilon & \zeta
\end{array} \right]
\left[\begin{array}{c}
\Delta z_{i0} \\
\Delta \theta_{z_{i0}}
\end{array} \right] + \left[\begin{array}{c}
p_{z_{i0}} \\
-p_{\theta_{z_{i0}}}
\end{array} \right],
\end{align*}
\]

where the second term on the right hand side of Eqs. (1) or (2) shows the load-stiffening effect, and the terms after the second can be neglected for most applications. Equations (1) and (2) are valid under the assumption that the moment about the Y(Z)-axis acting at any location on the beam does not affect the bending in the XY (XZ) plane, i.e. that the two bending deformations are decoupled or are weakly coupled.

The axial displacement of the \(i_0 \)-th tip can be obtained by adding Eqs. (A. 12a) and (A. 13a) (contributions from bending in the XY and XZ planes) and deducting one of the duplicated terms (purely elastic effect):
2.2. Conditions of geometric compatibility

For small absolute values of rotational angles (in the order of 0.1), the rotation sequence of three Euler angles is insignificant [37] and its contribution can be neglected. Due to the rigidity of the motion stage, the geometric compatibility of the rotational angles can be described:

\[\theta_{x1} = \theta_{y1} = \theta_{z1} \]
\[\theta_{y1} = \theta_{z1} = \theta_{x1} \]
\[\theta_{z1} = \theta_{x1} = \theta_{y1} \]

(5a)
(5b)
(5c)

The translational displacement relationships between the tip of the \(i \)-th beam and the centre of the motion stage can be expressed as

\[\begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} = \begin{bmatrix} x_0 - x'_0 \\ y_0 - y'_0 \\ z_0 - z'_0 \end{bmatrix} + \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} - \begin{bmatrix} x'_0 \\ y'_0 \\ z'_0 \end{bmatrix} + \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \]

(6)

where \(x'_0, y'_0 \) and \(z'_0 \) are the coordinates of the tip of the \(i \)-th beam relative to the global fixed coordinate system after only the rotations of the motion stage (no movement at the point \(O' \)). \(x'_0, y'_0 \) and \(z'_0 \) are the local coordinates of the tip of the \(i \)-th beam relative to the mobile rigid body coordinate system (\(x_1 = 0, y_1 = r_2 \sin(\pi/3), z_1 = r_2 \cos(\pi/3) \) for the tip 1, \(x_2 = 0, y_2 = 0, z_2 = r_3 \) for the tip 2, \(x_3 = 0, y_3 = r_3 \sin(\pi/3), z_3 = r_3 \cos(\pi/3) \) for the tip 3).

The coordinates \(x'_0, y'_0 \) and \(z'_0 \) can be further expressed in a rotation matrix form as

\[\begin{bmatrix} x'_0 \\ y'_0 \\ z'_0 \end{bmatrix} = R_Z(\theta_{z1})R_Y(\theta_{y1})R_X(\theta_{x1}) \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} \]

(7)

where \(R_X, R_Y \) and \(R_Z \) are the sequential rotation matrices [18] about the X-, Y- and Z-axes, respectively.

For small rotation angles, high order terms of rotational angles in the product of three rotation matrices above can be neglected, so:

\[R_Z(\theta_{z1})R_Y(\theta_{y1})R_X(\theta_{x1}) = \begin{bmatrix} 1 & -\theta_{z1} & \theta_{y1} \\ \theta_{z1} & 1 & \theta_{x1} \\ -\theta_{y1} & -\theta_{x1} & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & \theta_{z1} & \theta_{y1} \\ \theta_{z1} & 1 & \theta_{x1} \\ -\theta_{y1} & -\theta_{x1} & 1 \end{bmatrix} \]

(8)

Combining Eqs. (6) - (8), and substituting the local coordinate values of the tips into the result, the displacements of the tips can be expressed as follows:

\[x_1 = x_0 - \sqrt{3}r_3 \theta_{z1}/2 + r_2 \theta_{y1}/2 \]
\[x_2 = x_0 - r_2 \theta_{y1} \]
\[x_3 = x_0 + \sqrt{3}r_3 \theta_{z1}/2 + r_2 \theta_{y1}/2 \]
\[y_1 = y_0 - r_2 \theta_{x1}/2 \]
\[y_2 = y_0 + r_2 \theta_{x1} \]
\[y_3 = y_0 - r_2 \theta_{x1}/2 \]
\[z_1 = z_0 + \sqrt{3}r_3 \theta_{z1}/2 \]
\[z_2 = z_0 \]
\[z_3 = z_0 - \sqrt{3}r_3 \theta_{z1}/2 \]

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

2.3. Load-equilibrium conditions

From the free body diagram in Fig. 2, the equilibrium conditions of the motion stage in the deformed configuration can be described:
where \hat{x}_i, \hat{y}_i and \hat{z}_i can be obtained from the result of substituting Eq. (8) into Eq. (7).

Neglecting the contribution of rotations in Eq. (18), this simplifies to:

$$p = p_1 + p_2 + p_3$$ \hspace{1cm} (19)

$$f_y = f_{y1} + f_{y2} + f_{y3}$$ \hspace{1cm} (20)

$$f_z = f_{z1} + f_{z2} + f_{z3}$$ \hspace{1cm} (21)

$$m_y \approx m_{y1} + m_{y2} + m_{y3} + (p_1 + p_3 - 2p_2)\frac{r_3}{2}$$ \hspace{1cm} (22)

$$m_z \approx m_{z1} + m_{z2} + m_{z3} + (p_3 - p_1)\sqrt{3}\frac{r_3}{2}$$ \hspace{1cm} (23)

$$m_x \approx m_{x1} + m_{x2} + m_{x3} + (f_{z1} - f_{z3})\sqrt{3}\frac{r_3}{2} + [2f_{y2} - (f_{y1} + f_{y3})]r_3/2\delta$$ \hspace{1cm} (24)

3. Solution to the nonlinear load-displacement analysis for the three-beam module

The constitutive, compatibility and equilibrium conditions of Sections 2.1 to 2.3 now permit a solution of the nonlinear load-displacement equations in terms of the geometry of the three-beam module. Three methods of increasing accuracy and complexity are presented in this section: an approximate analytical method, an improved analytical method, and a numerical method.

3.1 Approximate analytical solution

An initial FEA showed that, when forces alone are acting, each of two bending angles is approximately two orders of magnitude smaller than its corresponding one of two transverse displacements (θ_y, θ_y to z_3), and the torsional angle is almost zero. Therefore, the rotational angles are dropped out wherever appropriate below.

a) Solution for θ_y and θ_z

Substituting Eq. (2) into Eq. (22) and again neglecting all the rotational displacements:

$$(p_1 + p_3) - 2p_2 \approx \frac{m_y + (3c + ph)z_i}{r_3/2}$$ \hspace{1cm} (25)

Similarly, the substitution of Eq. (1) into Eq. (23) yields

$$(p_3 - p_1) \approx \frac{m_z - (3c + ph)y_i}{\sqrt{3}\frac{r_3}{2}}$$ \hspace{1cm} (26)

From Eqs. (9) to (11), one can obtain

$$(x_1 + x_2) - 2x_2 = 3r_3 \sin \theta_y$$ \hspace{1cm} (27)

Substituting Eqs. (3) and (12) - (17) into Eq. (27), and substituting Eq. (25) into the result gives the rotational displacement

$$\theta_y \approx \frac{2}{3r_3} \left(\frac{1}{d} + y_r^2 r + z_r^2 r \right) [m_y - (3c + ph)z_i] = 2\theta_{x_1}y_i$$ \hspace{1cm} (28)

Similarly, the rotational displacement θ_z can also be obtained from Eqs. (9), (11), (3), (12), (14), (15), (17) and (26) as

$$\theta_z \approx \frac{x_1 - x_2}{\sqrt{3}r_3} \approx \frac{2}{3r_3} \left(\frac{1}{d} + y_r^2 r + z_r^2 r \right) [m_z - (3c + ph)y_i] = 2\theta_{x_2}z_i$$ \hspace{1cm} (29)

b) Solution for y and z

Substituting Eq. (1) into Eq. (20) and combining Eqs. (12) - (14), we obtain

$$f_y = f_{y1} + f_{y2} + f_{y3} = ay_1 + c\theta_y + p_1(ey_1 + h\theta_y) + ay_2 + c\theta_y + p_2(ey_2 + h\theta_y) + ay_3 + c\theta_y + p_3(ey_3 + h\theta_y)$$

$$= (3a + pe)y_i + (3c + ph)\theta_y + (2p_2 - (p_1 + p_3)) \frac{1}{2} r_3 \theta_y e$$ \hspace{1cm} (30)

Rewriting Eq. (30) and replacing θ_y with $-2\theta_{x_3}z_i$ based on Eq. (29), we obtain the transverse translational displacement

$$y_i = \frac{(3c + ph)(-2\theta_{x_3}z_i) + [(p_1 + p_3) - 2p_2] \frac{1}{2} r_3 \theta_{x_3} e}{3a + pe}$$ \hspace{1cm} (31)

The transverse translational displacements z_i can be obtained by substituting Eq. (2) into Eq. (21), combining Eqs. (15) - (17) and replacing θ_y with $-2\theta_{x_2}y_i$ based on Eq. (28):
\[z_s = \frac{f_z + (3c + ph)(-2\theta_{ax}y_j, i) + (p_3 - p_1)\sqrt{3}}{2} r_j \theta_{ax} e \]
\[\frac{3a + pe}{(3a + pe)^2} \]

Finally, substituting Eqs. (25) and (26) into Eqs. (31) and (32), respectively, we obtain the two transverse displacement equations:

\[y_s \approx f_y - (3c + ph)(2\theta_{ax}z_i, j) + [m_y + (3c + ph)z_s] \theta_{ax} e \approx f_y + m_y \theta_{ax} e \]
\[\frac{3a + pe}{(3a + pe)^2} \]

\[z_s \approx f_z + (3c + ph)(2\theta_{ax}y_i, j) + [m_z - (3c + ph)y_s] \theta_{ax} e \approx f_z + m_z \theta_{ax} e \]
\[\frac{3a + pe}{(3a + pe)^2} \]

\(c\) Solution for \(\theta_{ax}\)

Combining Eqs. (1) and (2), and substituting the result along with Eq. (4) into Eq. (24), we have

\[m_x \approx 3\theta_{ax} + 3ar_5 \theta_{ax} \delta + pe_3 \theta_{ax} \delta + \frac{\sqrt{3}}{2} r_j (p_1 - p_3) \varepsilon_s \delta + \frac{1}{2} [2p_2 - (p_1 + p_3)] \gamma_j, \delta \]
\[\text{Substituting Eqs. (25) and (26) into Eq. (35), and substituting Eqs. (33) and (34) into the result, we obtain the torsional angle } \text{ (rotational displacement):} \]

\[\theta_{ax} \approx \frac{m_x \delta + (m_z f_z + m_y f_y) e l (3a + pe)}{3(\delta + ar_3^2 + \frac{p}{3} er_3^2)} \]
\[\text{If the torque is normalized by } ELL \text{ (rather than by } GI/L), \text{ the torsional angle } \theta_{ax} \text{ becomes} \]

\[\theta_{ax} \approx \frac{m_x + (m_z f_z + m_y f_y) e l (3a + pe)}{3(\delta + ar_3^2 + \frac{p}{3} er_3^2)} \]
\[\text{d) Solution for } x_s \]

From Eqs. (9) to (11), we have

\[x_s = (x_1 + x_2 + x_3) / 3 \]
\[\text{Substituting Eqs. (3) and (12) - (17) into Eq. (38), substituting Eqs. (25) and (26) into the result and omitting some high order terms of rotational angles, we obtain the axial translational displacement:} \]

\[x_s \approx \frac{p}{3d} + (y_s^2 + z_s^2)i + \frac{p}{3} (y_s^2 + z_s^2) r + r_o^2 y_s^2 i + \frac{p}{3} r_o^2 z_s^2 r + 2(y_s \theta_{ax} - z_s \theta_{ax}) r - \frac{2}{3} (m_y y_s + m_z z_s) \theta_{ax} r \]
\[\text{where the terms with } r_s \theta_{ax}^2 \text{ are retained since } \theta_{ax} \text{ is the DOF, and they are related to the radius } r_s. \]

In summary, the approximate displacements of the motion stage for a given set of loads are obtained as follows:

1. Calculate the torsional angle \(\theta_{ax}\) using Eq. (36) [or Eq. (37)];
2. Solve for \(y_s\) and \(z_s\) by substituting the torsional angle into Eqs. (33) and (34);
3. Calculate \(\theta_{ax}\) and \(\theta_{ay}\) by substituting \(\theta_{ax}\), \(y_s\), and \(z_s\) into Eqs. (28) and (29);
4. Obtain the axial displacement \(x_s\) using Eq. (39).

When \(m_z f_z = m_y f_y\), which includes five special cases: \(m_z = m_y = 0; f_z = f_y = 0\); \(m_z = m_y = 0; f_z = 0.5f_y\); \(m_z = 0.5f_y = 0\); and \(m_z = 0, f_z = 0.5f_y\). Eq. (36) simplifies to \(\theta_{ax} = m_0 \delta (3(\delta + ar_3^2 + \frac{p}{3} er_3^2)/3)\). This condition holds when the resultant transverse force is perpendicular to the resultant bending moment. In particular, in the case: \(m_z = m_y = 0\), the three DOF equations [Eqs. (33), (34), and (36)] are independent, and in the case: \(m_z = 0.5f_y\) and \(m_y = 0.5f_y\), the three rotational angles [Eqs. (28), (29), (30) and (36)] are all equal to zero as long as the axial force \(p = 0\) and \(m_z = 0\). Furthermore, according to Eqs. (28), (29), (30), (34), (36), and (39), when only a torsional moment is imposed on the motion stage, two of the translational displacements, \(y_s\) and \(z_s\), and two of the rotational displacements, \(\theta_{ax}\) and \(\theta_{ay}\), are zero while \(\theta_{ax} = m_0 \delta (3(\delta + ar_3^2))\) and \(x_s = r_s \theta_{ax}^2 i\) (negative), and this reveals how torsion can reduce the axial displacement \(x_s\). If only the two transverse forces are imposed on the motion stage, the spatial three-beam module can be regarded as a good 2-D translation joint.

It can also be observed from Eqs. (28), (29), (30), (34), (36) and (39) that:

(a) The axial force \(p\) affects the transverse displacements \((y_s, z_s)\), which reflects the load-stiffening effect. Either of the two transverse displacement equations shows that the buckling condition \(p_{crit} = 3a\varepsilon r = 30\) occurs when the transverse stiffness becomes zero. The torsional angle \(\theta_{ax}\) decreases with increasing (positive) \(p\), which also shows the load-stiffening effect. The torsional angle equation shows a second buckling condition \(p_{crit} = 3[\delta + ar_3^2]/(er_3^2)\) when the transverse stiffness becomes zero. Therefore, the buckling load for the spatial three-beam module is \(p_{crit} = \max(p_{crit}, p_{crit}) = 30\).

(b) The axial displacement \(x_s\) has three components: purely elastic effect from the axial force alone, purely kinematic effect such as \((y_s^2 + z_s^2)i + r_o^2 \theta_{ax}^2 i + 2(y_s \theta_{ax} - z_s \theta_{ax}) r\) and elastokinematic effect such as \(r_o^2 (y_s^2 + z_s^2) r f r + 2r_o^2 \theta_{ax}^2 r f r - 2(m_y y_s + m_z z_s) \theta_{ax} r f r\). Similarly, the bending angle, \(\theta_{ay}\), is also composed of three components.

(c) The torsional angle has a dominant effect on the accuracy of the above equations in comparison with \(\theta_{ax}\) and \(\theta_{ay}\). The smaller \(|\theta_{ax}|\) is, the more accurate are the force-displacement equations.

(d) All the three rotational angles decrease as \(r_s\) increases. For a typical value 0.6 of \(r_s\) and \(\theta_{ax} = 0, \theta_{ay}\) and \(\theta_{ay}\) can be in the order of \(1 \times 10^{-5}\) if \(d = 40000\) (i.e. \(LD_{pe} = 50\)). This reveals the fact that the essence of constraint-based design is a combination of the effects of large values of \(d\) and small values of \(r_s\). Furthermore, if \(\theta_{ax}\) and \(y_s\) (or \(z_s\)) are all relatively large in absolute value, \(\theta_{ay}\) (or \(\theta_{ax}\)) is affected by purely kinematic effect: \(-2 \theta_{ax, i} \) (or \(-2 \theta_{ay, i}\)) dominantly.

(e) The translational displacement, \(y_s\) (or \(z_s\)), is weakly dependent on \(m_x, m_y, m_z, p\) and \(f_z\) (or \(f_y\)) (Maxwell Reciprocity [5,
24), and strongly dependent on f_j (or f_j). Here, f_j (or f_j) is a dominant load in determining y_j (or z_j), whereas m_x, m_y, m_p, p and f_j (or f_j) are non-dominant loads. Furthermore, torsional angle θ_{α_j} is weakly dependent on m_y, m_z, f_j, f_z and p, and strongly dependent on m_x (m_x is a dominant load in determining θ_{α_j}).

3.2 Improved analytical method

For relatively large absolute values of θ_{α_j} (even including θ_{α_j} or θ_{α_j}), the dependence of a transverse translational displacement on the relevant non-dominant loads becomes significant, particularly if the absolute values of the relevant dominant load are small relative to the non-dominant ones. Moreover, the purely kinematic effect and the elasto-kinematic effect in Eq. (4), the second-order terms in rotational angles neglected in the rotation contributions in Eq. (8), and the rotation contributions in Eq. (18) need also to be retained wherever appropriate. In addition, we may approximate θ_{α_j} and θ_{α_j} using Eqs. (28) and (29), respectively, in the appropriate derivation below.

Using Eq. (18), Eqs (22) - (24) for the moment-equilibrium conditions after deformation can be rewritten as

$$y_j = m_j + m_{z,y} + m_{z,y} + (p_1 + p_3 - 2p_2)\frac{r_j}{2} + (p_1 - p_3)\sqrt{\frac{5}{2}} r_j \theta_{\alpha_j} + [2f_{2y} - (f_{1z} + f_{3z})] \frac{1}{2} r_j \theta_{\alpha_j} + (f_{1z} - f_{3z}) \frac{\sqrt{3}}{2} r_j \theta_{\alpha_j}$$ \hspace{1cm} (40a)

$$z_j = m_z + m_{x,z} + m_{x,z} + (p_3 - p_1)\sqrt{\frac{5}{2}} r_j + [(m_1 + p_3) - 2p_2] \frac{r_j}{2} r_j \theta_{\alpha_j} + (f_{x,y} - f_{y,y}) \sqrt{\frac{5}{2}} r_j \theta_{\alpha_j} + ([f_{1z} + f_{3z}] - 2f_{2y}) \frac{1}{2} r_j \theta_{\alpha_j}$$ \hspace{1cm} (40b)

$$m_j \delta_j = \delta m_{z,y} + m_{z,y} + (f_{1z} - f_{3z}) \frac{\sqrt{3}}{2} r_j + [2f_{2y} - (f_{1z} + f_{3z})] \frac{1}{2} r_j + (f_{3y} - f_{y,y}) \sqrt{\frac{5}{2}} r_j \theta_{\alpha_j} + [2f_{2z} - (f_{1z} + f_{3z})] \frac{1}{2} r_j \theta_{\alpha_j}$$ \hspace{1cm} (40c)

From Eqs. (1), (2), and (12) - (17), one can obtain

$$f_{1z} - f_{3z} = \sqrt{5}a r_j \theta_{\alpha_j} + (p_1 + p_3)(e_{z,x} - h_{\theta_{\alpha_j}}) + (p_1 + p_3)e_{z,x} \sqrt{5}r_j \theta_{\alpha_j} / 2$$ \hspace{1cm} (41a)

$$2f_{2z} - (f_{1z} + f_{3z}) = 3a r_j \theta_{\alpha_j} + [(p_1 + p_3)(e_{x,y} + h_{\theta_{\alpha_j}}) + 4p_2 + (p_1 + p_3)] e_{y,x} \theta_{\alpha_j} / 2$$ \hspace{1cm} (41b)

$$2f_{2z} - (f_{1z} + f_{3z}) = (p_1 - p_3)(e_{y,x} + h_{\theta_{\alpha_j}}) + (p_1 - p_3) e_{y,x} \theta_{\alpha_j} / 2$$ \hspace{1cm} (41c)

$$2f_{2z} - (f_{1z} + f_{3z}) = [2p_2 - (p_1 + p_3)](e_{y,x} - h_{\theta_{\alpha_j}}) + (p_1 - p_3) e_{y,x} \theta_{\alpha_j} / 2$$ \hspace{1cm} (41d)

where $p_1 + p_3$ and $4p_2 + (p_1 + p_3)$ can also be represented by $[2p_1 + (p_1 + p_2)]/3$ and $2p_2 - (p_1 + p_2)$, respectively.

Retaining the bending angles in Eqs. (31) and (32), the two transverse displacements are obtained as

$$y_j = \frac{f_j - (3c + ph)\theta_{\alpha_j} + [(p_1 + p_3) - 2p_2] \frac{1}{2} r_j \theta_{\alpha_j}}{3a + pe}$$ \hspace{1cm} (42)

$$z_j = \frac{f_j - (3c + ph)\theta_{\alpha_j} + (p_1 - p_3) \frac{1}{2} r_j \theta_{\alpha_j}}{3a + pe}$$ \hspace{1cm} (43)

where accurate solutions for $(p_1 + p_3) - 2p_2$ and $p_2 - p_1$ can be obtained by substituting Eq. (41) into Eqs. (40a) and (40b) and combining the results with Eqs. (1), (2) and (12)-(17):

$$(p_1 + p_3) - 2p_2 = \frac{m_j + [(3c + ph)z_j - (3b + pg)\theta_{\alpha_j}] - [(m_j - [(3c + ph)y_j + (3b + pg)\theta_{\alpha_j}])\theta_{\alpha_j} - (3a + pe) r_j^2 \theta_{\alpha_j} / 2}{(r_j / 2)(\theta_{\alpha_j}^2 + (h - 1)^2 + 1)}$$ \hspace{1cm} (44)

$$p_3 - p_1 = \frac{m_z - [(3c + ph)y_j + (3b + pg)\theta_{\alpha_j}] + [(m_j + [(3c + ph)z_j - (3b + pg)\theta_{\alpha_j}])\theta_{\alpha_j} - (3a + pe) r_j^2 \theta_{\alpha_j} / 2}{(r_j / 2)(\theta_{\alpha_j}^2 + (h - 1)^2 + 1)}$$ \hspace{1cm} (45)

For relatively large absolute values of θ_{α_j}, Eq. (28) is re-written as

$$\theta_{\alpha_j} = \frac{2}{3r_j^2} \left(\frac{1}{d} + (y_j^2 + z_j^2 + r_j^2 \theta_{\alpha_j}^2) r_j \right) [m_j + (3c + ph)z_j - m_j \theta_{\alpha_j} / 2 - 2 \theta_{\alpha_j} / 3 + 2 \theta_{\alpha_j}^2 z_j]$$ \hspace{1cm} (46)

The substitution of Eqs. (29), (44) and (45) into Eq. (46) produces

$$\theta_{\alpha_j} = \frac{2}{3r_j^2} \left(\frac{1}{d} + (y_j^2 + z_j^2 + r_j^2 \theta_{\alpha_j}^2) r_j \right) [m_j + m_x \theta_{\alpha_j} / 2 - 2 \theta_{\alpha_j} / 3 + 2 \theta_{\alpha_j}^2 z_j]$$ \hspace{1cm} (47)
Similarly, Eq. (29) is re-written as

\[\mathbf{\bar{\sigma}}_{i} = \mathbf{\bar{\sigma}}_{i}^* + \mathbf{\bar{\tau}}_{i} \mathbf{\bar{\tau}}_{i} + \mathbf{\bar{\tau}}_{i}^* \mathbf{\bar{\tau}}_{i} + 2 \mathbf{\bar{\sigma}}_{i} \mathbf{\bar{\tau}}_{i} \mathbf{\bar{\tau}}_{i} \]

(48)

Substituting Eqs. (28), (44) and (45) into Eq. (48), we have

\[\theta_{sz} \approx \frac{2}{3r_{3s}} \left(\frac{1}{d} + \left(y_{s}^2 + z_{s}^2 \right) r \right) \left[m_{z} - (3c + ph) y_{s} + m_{y} \theta_{sz}(h - 1) \right] \theta_{sz} \approx 3a + pe \]

(49)

Then, substituting Eqs. (44) and (45) into Eqs. (42) and (43), respectively, the two transverse displacements can be obtained as

\[y_{s} \approx f_{y} - (3c + ph) \theta_{sz} + \left[m_{y} - (3c + ph) y_{s} \right] \theta_{sz}(h - 1) \theta_{sz} \approx 3a + pe \]

(50)

\[z_{s} \approx f_{z} + (3c + ph) \theta_{sz} + \left[m_{z} - (3c + ph) y_{s} \right] \theta_{sz}(h - 1) \theta_{sz} \approx 3a + pe \]

(51)

Equations (50) and (51) can be further simplified as

\[y_{s} \approx f_{y} - (3c + ph) \theta_{sz} + \left[m_{y} - (3c + ph) y_{s} \right] \theta_{sz}(h - 1) \theta_{sz} \approx 3a + pe \]

(52)

\[z_{s} \approx f_{z} + (3c + ph) \theta_{sz} + \left[m_{z} - (3c + ph) y_{s} \right] \theta_{sz}(h - 1) \theta_{sz} \approx 3a + pe \]

(53)

where \(\theta_{sz} \approx \frac{2}{3r_{3s}} \left(\frac{1}{d} + \left(y_{s}^2 + z_{s}^2 \right) r \right) \left[m_{z} - (3c + ph) y_{s} + m_{y} \theta_{sz}(h - 1) \right] \theta_{sz} \approx 3a + pe \)

Substituting Eq. (41) into Eq. (40c) and combining with Eq. (4), we have

\[m_{s} \delta = 3c \theta_{sz} + (3c + ph) \theta_{sz} + (3c + ph) \theta_{sz} + \theta_{sz}(h - 1) \theta_{sz} + 3a \theta_{sz} \theta_{sz} \]

(54)

We can further substitute Eqs. (44), (45), (47), (49), (52) and (53) into Eq. (54) and omit some high order terms of rotational angles. Then we simplify the torsional angle as follows:

\[\theta_{sz} \approx \frac{1}{3} \left(\theta_{sz} + (3c + ph) \theta_{sz} + (3c + ph) \theta_{sz} + \theta_{sz}(h - 1) \theta_{sz} \right) + \frac{1}{2} \left(\frac{2}{3} \theta_{sz} \theta_{sz} \right) \theta_{sz} \]

(55)

where \(\theta_{sz} = \frac{f_{z} + m_{z} \theta_{sz}(h - 1) \theta_{sz} \approx 3a + pe \}

Only one real solution is the desired solution for the equation with one unknown \(\theta_{sz} \). Equation (55) can be shown to reduce to Eq. (36) for relatively small \(\theta_{sz} \).

In addition, substituting the torsional angle \(\theta_{sz} \) obtained from Eq. (55) into Eqs. (52) and (53), the two transverse displacements, \(y_{s} \) and \(z_{s} \), can be found.

Once \(\theta_{sz}, y_{s} \) and \(z_{s} \) have been obtained, the other two rotational angles, \(\theta_{y} \) and \(\theta_{x} \), can be obtained using Eqs. (47) and (49), and the axial displacement can then be obtained using Eqs. (3) and (9) - (17) as

\[x_{s} \approx \frac{1}{3} \left(x_{s} + x_{s} + x_{s} \right) \approx \frac{P}{3d} \left(y_{s}^2 + z_{s}^2 \right) r + \frac{1}{3} \left(y_{s}^2 + z_{s}^2 \right) \theta_{sz} \]

(56)

Substituting Eqs. (44) and (45) into Eq. (56) and making further simplification, we have

\[x_{s} \approx \frac{P}{3d} \left(y_{s}^2 + z_{s}^2 \right) r + \frac{1}{3} \left(y_{s}^2 + z_{s}^2 \right) \theta_{sz} \theta_{sz} \]

(57)

Equations (47), (49), (52), (53), and (55) are the improved analytical load-displacement equations for large \(\theta_{sz} \), which can capture more nonlinear effects. It can be shown that \(\theta_{sz}=0 \) for the five special loading cases: \(m_{s}=m_{y}=m_{z}=0; m_{s}=m_{y}=m_{z}=0; m_{s}=0, m_{y}=0, m_{z}=0 \).

If \(m_{s} \) or \(m_{z} \) in Eqs. (52) and (53) and all of the dominant transverse forces are very small in absolute value, we can obtain more accurate solutions to the load-displacement equations. Starting from the \(\theta_{sz}, \theta_{y} \) and \(\theta_{x} \) obtained above, the two accurate transverse displacements \((y_{s} \) and \(z_{s} \) can be obtained from Eqs. (50) and (51). Then, we can obtain more accurate values of \(\theta_{sz} \).
\(\theta_{sy}, \theta_{sz} \) and \(x_i \) step-by-step by substituting the above \(y_i \) and \(z_i \) into Eqs. (55), (47), (49) and (57).

3.3 Numerical method

Exact solutions for the nonlinear load-displacement equations can be obtained numerically without the need for approximation, although this has the disadvantage that the qualitative behavior of the CPMs is more difficult to explore.

The numerical scheme involves seven unknown terms: \((p_i+p_j)-2p_2, p_3-p_1, \theta_{sy}, \theta_{sz}, y_i, \) and \(z_i\) are obtained by solving the seven following equations, obtained from Eqs. (42)-(46), (48) and (54):

\[
y_i = \left[f_y - (3c + ph)\theta_{sz} + [(p_1 + p_3) - 2p_2] \frac{1}{2} \frac{r_2}{r_3} e_i \right] / (3a + pe) \quad (58)
\]

\[
z_i = \left[f_z + (3c + ph)\theta_{sz} + (p_1 - p_3) \frac{\sqrt{3}}{2} \frac{r_2}{r_3} e_i \right] / (3a + pe) \quad (59)
\]

\[
(p_1 + p_3) - 2p_2 = \left[m_s + [(3c + ph)\theta_{sz} - (3b + pg)\theta_{sy}] - [(m_s - [(3c + ph)\theta_{sz} - (3b + pg)\theta_{sy}])\theta_{sz} (h - 1) - (3a + pe)r_2^2 \theta_{sy} \theta_{sz} / 2 \right] \quad (60)
\]

\[
p_3 - p_1 = \left[m_s - [(3c + ph)\theta_{sz} - (3b + pg)\theta_{sy}] + [(m_s + [(3c + ph)\theta_{sz} - (3b + pg)\theta_{sy}])\theta_{sz} (h - 1) + (3a + pe)r_2^2 \theta_{sy} \theta_{sz} / 2 \right] \quad (61)
\]

\[
3r_2\theta_{sy} = \left[(p_3 + p_1) - 2p_2 - 6r_1\theta_{sz}y_i + 6r_1\theta_{sz}(k + 0.5) + [(p_1 + p_3) - 2p_2] (y_i^2 + z_i^2) \right] r_i \quad (62)
\]

\[
+ [(p_1 + p_3) - 2p_2] - 2p_3 \theta_{sz} y_i + [(p_1 + p_3) - 2p_2] \frac{\sqrt{3}}{2} \theta_{sz} z_i + 2[(p_1 + p_3) - 2p_2] (y_i \theta_{sz} - z_i \theta_{sy}) q \quad (63)
\]

\[
\sqrt{3} r_2 \theta_{sz} = \left[(p_3 + p_1) - 2p_2 - 2\sqrt{3} r_1 \theta_{sz} z_i + 2\sqrt{3} r_1 \theta_{sz} (k + 0.5) + (p_3 - p_1) (y_i^2 + z_i^2) \right] r_i \quad (64)
\]

\[
+ [(p_1 + p_3) - 2p_2] \frac{1}{3} \frac{\sqrt{3}}{2} \theta_{sz} z_i + 2(p_3 - p_1) (y_i \theta_{sz} - z_i \theta_{sy}) q \quad (65)
\]

\[
m_s \delta = 3\partial_{ss} + (3c + ph)(\theta_{sz} + \theta_{sy}) + (3a + pe)r_2^2 \theta_{sz} \quad \text{(66)}
\]

Once \((p_1+p_2)-2p_2, p_3-p_1, \theta_{sy}, \theta_{sz}, y_i, \) and \(z_i\) have been obtained using Maple `fsolve` function, they can be substituted into Eq. (56) to obtain the axial displacement \(x_i\). We can also obtain \(p_1, p_2, \) and \(p_3\) by combining Eqs. (60), (61) and (19), which is useful for further stress analysis.

3.4 Discussion

a) Validity condition of the proposed approaches

The proposed models are valid only for small deflections (usually all normalized displacements less than 0.1 [5]) and large ratios of length to diameter, i.e. slenderness ratios (usually \(L/D_0\) more than 10 [38] for slender beams ignoring shear deformation). If the proposed nonlinear models are applied to the analysis of CPMs under the conditions of large deflections or small slenderness ratios (for Timoshenko beams), errors between the analytical results and real results will be unacceptable, but these models can still capture certain nonlinear constraint characteristics of the CPMs.

Let us now discuss the range of \(r_3\) under given conditions. If we make a rotational angle (such as \(\theta_{sz}\)) smaller than \(\alpha\) times (usually \(\geq 50\)) a corresponding transverse displacement (such as \(y_i\)) in absolute value under only one transverse force acting (such as \(f_y\)), we have the following relationship based on Eq. (29):

\[
\frac{2}{3r_2^2} \left[\frac{1}{d} + y_i^2 \right] (-3cy_i) \leq y_i / \alpha
\]

The above equation is simplified to determine the range of \(r_3\):

\[
r_3^2 \geq 12\alpha / d
\]

b) Extensible application of the proposed approaches to CPMs with regular polygon cross-section beams and varying-thickness beams

It should be noted that the above normalized and nonlinear models are also applicable for the CPMs with regular polygon cross-section beams (ignoring warping effect under torsion), but the non-dimensional coefficient \(d\) should be modified accordingly. For example, for the square cross-section multi-beam module, \(d=12/\left(TL\right)^2\) (\(T\) is the thickness of the beam). Moreover, these models can be used to deal with generalized beam modules by modifying the coefficients \(a, b, c, d, e, g, h, i, j, k, q, r\) and \(s\) based on Ref. [23], and using \(\delta=G(E\alpha_0)\) and then replacing \(m_0\) with \(2a_m\delta_0\) in Eqs. (36), (55) and (64). The generalized beam, with the same overall beam length \(L\), is composed of two uniform compliant segments (each normalized length is \(\alpha_0\)) and one rigid segment.

c) Characteristics of three approaches

In order to illustrate the applicability of the various solutions, an example three-beam CPM is analyzed below. The CPM is taken to be made from an aluminum alloy for which Young’s modulus, \(E\), is 69,000 N/mm² and Poisson’s ratio, \(v\), is 0.33. The dimensions are \(D_0=4\) mm (\(d=2500\)), \(R=30\) mm (\(r_0=0.6\)) and \(L=50\) mm. All the normalized external transverse forces need to be approximately over [-3.6, 3.6] yielding normalized transverse displacements over [-0.1, 0.1] as shown in Fig. 5.
The normalized external torque needs to be approximately in the order of 1.8 to limit the torsional angle to the order of 0.1. Other normalized external loads may be all of order of 1.8 or greater compared with the pre-determined loads.

In practice, the simpler and more analytical the approach is, the more useful the analysis for design of CPMs is. If each of the dominate forces for transverse displacements, such as \(f_x \) for \(y_z \), is relatively large (for example, 2 times larger than all the relevant non-dominant moments in absolute value) or two bending moments are both zero \((m_x=m_z=0) \), the approximate analytical solution should be acceptable for design purposes (the case under the latter condition is shown in Fig. 3). When the above condition does not hold, a balance needs to be made between accuracy and complexity.

Table 1 shows the calculated displacements of the motion stage of the three-beam module for the approximate and improved analytical models and for the numerical model under loads: \(f_x=2, m_z=10 \) \((m_x=20) \) and \(p=m_x=m_y=m_z=0 \), i.e. where the torsional angle is relatively large.

<table>
<thead>
<tr>
<th>Method</th>
<th>Displacements</th>
<th>(y_z)</th>
<th>(z_x)</th>
<th>(x_s)</th>
<th>(\theta_x)</th>
<th>(\theta_y)</th>
<th>(\theta_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate analytical method</td>
<td>0.00</td>
<td>0.0702</td>
<td>-0.00930</td>
<td>0.0112</td>
<td>-9.518×10^{-3}</td>
<td>0.0438</td>
<td></td>
</tr>
<tr>
<td>Improved analytical method</td>
<td>0.00513</td>
<td>0.0755</td>
<td>-0.00424</td>
<td>0.0131</td>
<td>-1.106×10^{-3}</td>
<td>0.0607</td>
<td></td>
</tr>
<tr>
<td>Numerical method</td>
<td>0.00514</td>
<td>0.0764</td>
<td>-0.00436</td>
<td>0.0131</td>
<td>-1.111×10^{-3}</td>
<td>0.0609</td>
<td></td>
</tr>
<tr>
<td>Error between improved and approximate analytical methods</td>
<td>100%</td>
<td>7.02%</td>
<td>7.80%</td>
<td>14.50%</td>
<td>13.94%</td>
<td>28.08%</td>
<td></td>
</tr>
</tbody>
</table>

We can observe from Table 1 that, for relatively large \(\theta_x \), the error \(([\text{improved analytical result} - \text{approximated analytical result}] \times 100\% \) is relatively large and is unacceptably high for \(y_z \) since the dominant load \(f_x \) for \(y_z \) is zero. Table 1 also shows that the approximations for the improved analytical method are reasonable, leading to very small differences between the analytical and numerical solutions. If the loading is changed to \(f_x=2, m_z=5 \) \((m_x=10) \), and \(p=m_x=m_y=m_z=0 \), the error in the torsional angle reduces from the 28.08% in Tab. 1 to 6.40%.

Figure 4 shows that the torsional angle error between the improved and approximate analytical (or numerical) methods increases at an accelerating rate as the ratio of \(f_x \) to \(m_x \) decreases starting at around 1.6, and also verifies the accuracy of the improved analytical method. It is concluded that the difference between the solutions obtained using these two methods decreases with the increase of the transverse loads.

![Fig. 3 Comparison of results obtained using three approaches (case with no bending moments acting).](image1)

![Fig. 4 Comparison for fixed product of \(m_x f_x \).](image2)

d) Linear analytical approaches

If the effects of load-stiffening and elastokinematic non-linearities in Eqs. (1) - (4) are all neglected, the linear load-
displacement equations of the tip of the i_{th} beam are:
\[
\begin{align*}
[f_{b_{x}}] &= \begin{bmatrix} a & c \end{bmatrix} \begin{bmatrix} y_{b_{x}} \
\end{bmatrix}, \\
[m_{b_{x}}] &= \begin{bmatrix} a & c \end{bmatrix} \begin{bmatrix} c & b \end{bmatrix}, \\
[f_{b_{y}}] &= \begin{bmatrix} a & c \end{bmatrix} \begin{bmatrix} z_{b_{y}} \
\end{bmatrix}, \\
[-m_{b_{y}}] &= \begin{bmatrix} a & c \end{bmatrix} \begin{bmatrix} z_{b_{y}} - \theta_{b_{y}} \
\end{bmatrix}
\end{align*}
\] (65)

Using Eq. (65), and following the solution process in section 3.1, one can obtain the linear load-displacement equations of the motion stage as
\[
\begin{align*}
\theta_{xx} &\approx \frac{m_{x} \delta}{3(\delta + ar_{z}^{2})}; \quad \theta_{yy} \approx \frac{2}{3r_{y}^{2}d} (m_{y} + 3c \bar{z}_{x}) - 2\theta_{xx} \bar{y}_{y} i; \quad \theta_{zz} \approx \frac{2}{3r_{z}^{2}d} (m_{z} - 3c \bar{z}_{y}) - 2\theta_{xx} \bar{z}_{y} i, \\
y_{y} &= \frac{f_{y} - (3c + ph) \theta_{zz}}{3a}; \quad z_{y} \approx \frac{f_{z} + (3c + ph) \theta_{yy}}{3a}, \\
x_{y} &= \frac{p}{3d} + y_{y}^{2} i + z_{y}^{2} i + r_{y}^{2} \theta_{yy}^{2} i + 2(y_{y} \theta_{zz} - z_{y} \theta_{yy}) k
\end{align*}
\] (66)

where $\bar{y}_{y} = f_{y} / 3a$, $\bar{z}_{y} = f_{z} / 3a$.

Figures 5-7 show a comparison of results using linear and nonlinear approximate analytical analysis for $m_{x} = m_{y} = m_{z} = 0$ (in which case, $\theta_{aa} = 0$). Figure 7 also shows that Eq. (66) only captures the effects of dominant loads (such as m_{z}, f_{z}) upon the rotational displacements (like θ_{zz}) while the nonlinear equation [Eq. (29)] captures the effects of all loads upon the rotational displacements. Thus, the linear equations may be applicable under a very small range of deflection, such as that indicated by the rectangular area in Fig. 7 drawn for 1.65% error compared with the nonlinear analysis.

If the purely kinematic component in Eq. (3) is also neglected, the single beam load-displacement equations are simplified and the approximate linear load-displacement equations of the motion stage, similar to the ones used in [29-30], can be derived (see Ref. [32] for details).
4. FEA verification for the three-beam module

The displacements obtained for the example CPM using FEA with Comsol large-deformation analysis are compared with the three nonlinear methods in Tab. 2. The FEA translational displacements were given directly by the software, and the rotational angles were calculated from the displacements of points \(\alpha_1, \alpha_2, \) and \(\alpha_3 \) using Eqs. (9), (10) and (13). The other nonlinear results were obtained by first normalizing the loads then substituting these into the analytical equations correspondingly to obtain the normalized translational displacements and the actual rotational angles (in radians). The actual translational displacements (in mm) were then obtained by multiplying the normalized translational displacements by \(L \).

Table 2 shows that the displacement errors ((analytical result - FEA result)/analytical result \times 100\%) between FEA method and any of the three analytical nonlinear methods are within 3.5% and considerably less for \(\theta_\alpha \) (analytical result - FEA result). Here, the bold data are the normalized translational displacements. As mentioned earlier, it can be observed from Tab. 2 that the two bending angles, \(\theta_{ax} \) and \(\theta_{by} \), are approximately two orders smaller than the normalized transverse translational displacements, \(\gamma_1 \) and \(\xi_1 \), respectively, and the torsional angle, \(\theta_\alpha \), is 3.33 \times 10^{-6} \text{ small}.

Figures 8-11 show more results obtained using both the FEA and the approximate analytical equations [Eqs. (28), (29), (33), (34), (36) and (39)] without moments acting. It can be seen from these figures that the average errors between the analytical results and FEA results for a given force are acceptable. This verifies the accuracy of the proposed nonlinear equations for the spatial three-beam module.

Table 2

<table>
<thead>
<tr>
<th>Method</th>
<th>(\gamma_1) (mm)</th>
<th>(\gamma_2)</th>
<th>(\gamma_3)</th>
<th>(\xi_1)</th>
<th>(\xi_2)</th>
<th>(\xi_3)</th>
<th>(\theta_{ax}) (radian)</th>
<th>(\theta_{by}) (radian)</th>
<th>(\theta_\alpha) (radian)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEA method</td>
<td>1.0050</td>
<td>0.02010</td>
<td>0.0403</td>
<td>8.0534 \times 10^{-8}</td>
<td>-0.0120</td>
<td>-2.3958 \times 10^{-4}</td>
<td>2.5986 \times 10^{-5}</td>
<td>-1.0802 \times 10^{-8}</td>
<td>3.33333 \times 10^{-8}</td>
</tr>
<tr>
<td>Approximate analytical method</td>
<td>0.9985</td>
<td>0.01998</td>
<td>0.0400</td>
<td>8.0000 \times 10^{-8}</td>
<td>-0.0120</td>
<td>-2.3958 \times 10^{-4}</td>
<td>2.6690 \times 10^{-5}</td>
<td>-1.0682 \times 10^{-8}</td>
<td>0</td>
</tr>
<tr>
<td>Improved analytical method</td>
<td>1.0050</td>
<td>0.02012</td>
<td>0.0403</td>
<td>8.0534 \times 10^{-8}</td>
<td>-0.0121</td>
<td>-2.4279 \times 10^{-4}</td>
<td>2.6689 \times 10^{-5}</td>
<td>-1.0753 \times 10^{-8}</td>
<td>6.5715 \times 10^{-11}</td>
</tr>
<tr>
<td>Numerical method</td>
<td>1.0050</td>
<td>0.02012</td>
<td>0.0403</td>
<td>8.0533 \times 10^{-8}</td>
<td>-0.0121</td>
<td>-2.4280 \times 10^{-4}</td>
<td>2.6631 \times 10^{-5}</td>
<td>-1.0658 \times 10^{-8}</td>
<td>-2.8988 \times 10^{-11}</td>
</tr>
<tr>
<td>Error between approximate analytical method and FEA</td>
<td>0.65 %</td>
<td>0.74 %</td>
<td>0.00 %</td>
<td>8.2 %</td>
<td>0.02 %</td>
<td>2.66 %</td>
<td>1.10 %</td>
<td>3.333333 \times 10^{-8}</td>
<td></td>
</tr>
<tr>
<td>Error between improved analytical method and FEA</td>
<td>0.00 %</td>
<td>0.00 %</td>
<td>0.82 %</td>
<td>0.82 %</td>
<td>2.44 %</td>
<td>2.87 %</td>
<td>3.333333 \times 10^{-8}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7 Rotational angle about the Z-axis.

Fig. 8 Axial displacement verification: (a) for different \(P \), (b) for different \(F_y \).
Fig. 9 Y displacement verification: (a) cross-axis coupling from different P, (b) primary stiffness.

Fig. 10 Bending angle about the Z-axis: (a) for different P, (b) for different F_y.

Fig. 11 Torsional angle for different F_y.

If only the torsional moment, $M_x = G I_x/L = 1.3069 \times 10^4$ Nmm, is imposed on the motion stage, the analytical result using Eq. (36) and FEA result of the rotational angle θ_{sx} are respectively 0.0495 radians and 0.0494 radians, an error of about 0.2%.

A prototype of a three-beam module, made of engineering plastic, have been fabricated using 3-D printer for initial qualitative analysis (see Appendix C for details). The preliminary test results with the prototype comply with the modeling presented in this paper.

5. Multi-beam spatial module analysis

In this section, we will deal briefly with multi-beam modules with more than three beams only having three in-plane DOF, in particular five classes of multi-beam module with different layouts of beams. As in the case of the three-beam spatial module, the loads are taken to be acting at the center of motion stage, and the coordinate system, displacements and loads are defined in the same way. Figure 12 shows six-beam spatial modules with a variety of layouts.
In the following, we limit ourselves to multi-beam spatial modules, which have an even number of beams, \(n \), and in which all beams are uniformly distributed around a circle [Fig. 12(a)]. Apparently, the multi-beam module has good dynamic performance of high band-width and large buckling load with the increasing of the number of beams, but in turn results in large primary motion stiffness.

The approximate analytical load-displacement equations for a motion stage in four-beam and six-beam spatial modules can be obtained in a similar way to the approximate analytical model for the three-beam module:

\[
\begin{align*}
\theta_{sx} &\approx \frac{m_i \delta + (m_i f_z + m_s f_y) e l}{4(\delta + ar_x^2 + \frac{P}{4} er_x^2)} \\
y_{s} &\approx \frac{f_y + m_i \theta_{sx} e}{4a + pe} \\
z_{s} &\approx \frac{f_z + m_i \theta_{sx} e}{4a + pe} \\
\theta_{sy} &\approx \frac{1}{2} \left(\frac{1}{d^2} \right) (y_x^2 r + z_x^2 r) \left[m_y + (4c + ph) z_y \right] - 2 \theta_{sx} y_s i \\
\theta_{sz} &\approx \frac{1}{2} \left(\frac{1}{d^2} \right) (y_x^2 r + z_x^2 r) \left[m_z - (4c + ph) y_z \right] - 2 \theta_{sx} z_s i \\
x_{s} &\approx \frac{P}{4d} \left(\frac{y_x^2 + z_x^2}{2} \right) i + \frac{P}{4} \left(\frac{y_x^2 + z_x^2}{2} \right) r + \frac{P}{4} r_x^2 \theta_{sx}^2 r + 2(y_x \theta_{sx} - z_x \theta_{sy}) k - \frac{1}{2} (m_y y_s + m_z z_s) \theta_{sx} r
\end{align*}
\]

(67)

\[
\begin{align*}
\theta_{sx} &\approx \frac{m_i \delta + (m_i f_z + m_s f_y) e l}{6(\delta + ar_x^2 + \frac{P}{6} er_x^2)} \\
y_{s} &\approx \frac{f_y + m_i \theta_{sx} e}{6a + pe} \\
z_{s} &\approx \frac{f_z + m_i \theta_{sx} e}{6a + pe} \\
\theta_{sy} &\approx \frac{1}{3} \left(\frac{1}{d^2} \right) (y_x^2 r + z_x^2 r) \left[m_y + (6c + ph) z_y \right] - 2 \theta_{sx} y_s i \\
\theta_{sz} &\approx \frac{1}{3} \left(\frac{1}{d^2} \right) (y_x^2 r + z_x^2 r) \left[m_z - (6c + ph) y_z \right] - 2 \theta_{sx} z_s i \\
x_{s} &\approx \frac{P}{6d} \left(\frac{y_x^2 + z_x^2}{2} \right) i + \frac{P}{6} \left(\frac{y_x^2 + z_x^2}{2} \right) r + \frac{P}{6} r_x^2 \theta_{sx}^2 r + 2(y_x \theta_{sx} - z_x \theta_{sy}) k - \frac{1}{3} (m_y y_s + m_z z_s) \theta_{sx} r
\end{align*}
\]

(68)

The general load-displacement equations for spatial multi-beam modules can be summarized as follows:
\[
\begin{align*}
\theta_{xx} & = \frac{m_x \delta + (m_z f_z + m_y f_y) e l (na + pe)}{n(\delta + ar_n^2 + \frac{p}{n} er_n^2)} \\
y_x & = \frac{f_z + m_x \theta_{xx} e}{na + pe} \\
z_x & = \frac{f_z + m_x \theta_{xx} e}{na + pe} \\
\theta_{xy} & = \frac{1}{4r_n^2} \sum_{i=1}^{\frac{n^{1/2}}{2}} \sum_{j=1}^{(n-1)/2} \frac{\cos \frac{i\pi}{n}}{n^2} \left(\frac{1}{d} + y^2 z^2 r + \frac{p}{n} \left(y^2 + z^2 \right) r + r^2 \theta_{yz} + \frac{p}{n} r^2 \theta_{yz} r + 2 \left(y \theta_{yz} - \frac{p}{n} \left(\frac{y}{n} \right) \right) \right) \theta_{xx} i \\
\theta_{xz} & = \frac{1}{4r_n^2} \sum_{i=1}^{\frac{n^{1/2}}{2}} \sum_{j=1}^{(n-1)/2} \frac{\sin \frac{i\pi}{n}}{n^2} \left(\frac{1}{d} + y^2 z^2 r + \frac{p}{n} \left(y^2 + z^2 \right) r + r^2 \theta_{yz} + \frac{p}{n} r^2 \theta_{yz} r + 2 \left(y \theta_{yz} - \frac{p}{n} \left(\frac{y}{n} \right) \right) \right) \theta_{xx} i \\
x_x & = \frac{p}{na} + \frac{y^2 + z^2}{2} \theta_{yz} i + \frac{p}{n} \left(y^2 + z^2 \right) r + r^2 \theta_{yz} i + \frac{p}{n} r^2 \theta_{yz} r + 2 \left(y \theta_{yz} - \frac{p}{n} \left(\frac{y}{n} \right) \right) \theta_{xx} r
\end{align*}
\]

where, \(j_0 = \begin{cases} 0 & \text{for } n/4 = \text{int} \\ 1 & \text{for } n/4 \neq \text{int} \end{cases} \), the beam number \(n \) is even and \(n < \frac{2s}{L} \), \(r_n \) denotes the nondimensional pitch circle radius of the beam tips. If the torque is normalized by \(EI/L \), the torsional angle becomes

\[
\theta_{xx} \approx \left[m_x + (m_z f_z + m_y f_y) e l (na + pe) \right] / [n(\delta + ar_n^2 + \frac{p}{n} er_n^2)].
\]

6. Conclusions

The nonlinear and analytical load-displacement equations of the spatial multi-beam CPMs, with round or regular polygon cross-section beams have been formulated and analyzed by mathematical transformation and substitution. A method has also been presented to analyze the spatial combined deformation of compliant beams or mechanisms.

For a set of given payloads exerted on the motion stage of the spatial three-beam module, one can obtain quickly the displacements using the proposed nonlinear models as compared with FEA or other numerical methods. The larger the pitch circle radius of beam tips, the smaller the absolute value of the torsional angle and therefore the more accurate the proposed approximate analytical model. It has been verified using the large-deflection FEA that the accuracy of the proposed analytical model is acceptable. In the case of our example CPM, the maximum transverse displacements for the proposed spatial modules are approximately 5.0 mm (0.1 L) under small deflection’s condition.

An analysis of the modules proposed in Figs. 12(b) – (e) and a comparison between experiment results at the macro- and micro-scale and analytical results will be areas for further investigation.

References

Appendices

A. Nonlinear analysis of a beam for the bending only in the XY (XZ) plane

Figure A1 shows a deformed beam for the bending only in XY plane.

![Deformed beam](image)

Fig. A1 Deformation of a beam.

Based on the Euler’s formula and load equilibrium condition after deformation, we can obtain the differential equation of a beam under small deflection as

\[y''(x) = m_{ze} + f_y(1+x_e - x) - p[y_e - y(x)] \]

where \(m_{ze} + f_y(1+x_e - x) - p[y_e - y(x)] \) is the bending moment acting at any \(x \) location of the beam about the Z-axis; \(m_{ze}, f_y \) and \(p \) are, respectively, the bending moment about the Z-axis, the transverse force along the Y-axis and the axial force along the X-axis acting at the free-end of the beam; \(y_e \) and \(x_e \) are, respectively, the transverse displacement along the Y-axis and axial displacement along the X-axis of the free-end of the beam; \(y(x) \) is the transverse displacement of any \(x \) location on the beam along the Y-axis. The subscript \(e \) denotes the free-end.

The above equation can be rewritten as

\[y''(x) - py(x) = m_{ze} + f_y(1+x_e - x) - py_e \] \hspace{1cm} (A.1)

The boundary conditions for Eq. (A.1) are

\[
\begin{align*}
&y=0 \text{ when } x=0; \\
&y'=0 \text{ when } x=0.
\end{align*}
\] \hspace{1cm} (A.2)

Awtar [5] used a homogeneous 4th-order differential equation, obtained by differentiating Eq. (A.1) with respect to \(x \) twice, to solve load-displacement equations.

This appendix presents alternative solution to Eq. (A1) (non-homogeneous 2nd-order differential equation) directly by combining the general solution to the corresponding homogeneous differential equation and the particular solution to the non-homogeneous differential equation.

The general solution to the corresponding homogeneous differential equation (\(y'' - py = 0 \)) is

\[y = Ae^{kx} + Be^{-kx} \] \hspace{1cm} (A.3)

where \(k^2=\alpha \).

The particular solution to the non-homogeneous differential equation is assumed as

\[y=Cx+D \] \hspace{1cm} (A.4)

Substituting Eq. (A.4) into the Eq. (A.1), we can obtain

\[-k^2(Cx+D) = m_{ze} + f_y(1+x_e) - k^2y_e - f_yx \]

Then we have

\[
\begin{align*}
-k^2C &= -f_y; \\
-k^2D &= m_{ze} + f_y(1+x_e) - k^2y_e.
\end{align*}
\]

i.e.

\[
\begin{align*}
C &= f_y/k^2; \\
D &= -m_{ze} - f_y(1+x_e) + k^2y_e/k^2.
\end{align*}
\] \hspace{1cm} (A.5)

Combining Eqs. (A.3), (A.4) and (A.5), we can obtain the general solution to the non-homogeneous 2nd-order differential equation as

\[y = Ae^{kx} + B e^{-kx} + f_yx - m_{ze} - f_y(1+x_e) + k^2y_e \] \hspace{1cm} (A.6)

Substituting the boundary condition, Eq. (A.2), into Eq. (A.6), we can obtain

\[
\begin{align*}
A + B - m_{ze} - f_y(1+x_e) + k^2y_e &= 0; \\
Ak - Bk + f_y/k^2 &= 0.
\end{align*}
\]

Solving the above equations, we then obtain
\[
\begin{aligned}
A &= \frac{1}{2} \left(m_{xz} + f_1(1 + x_x) - k^2 y_x \right) \frac{f_x}{k^3} \\
B &= \frac{1}{2} \left(m_{xz} + f_1(1 + x_x) - k^2 y_x \right) \frac{f_x}{k^3}
\end{aligned}
\]

(A. 7)

Substituting Eqs. (A. 5) and (A. 7) into Eq. (A. 6), the general solution to Eq. (A. 1) is obtained as

\[
y(x) = \frac{m_{xz} + f_1(1 + x_x) - k^2 y_x}{k^2} \frac{f_x}{2} - \frac{f_y}{k} \left(e^{kx} - e^{-kx} \right) + \frac{f_x}{k^2} x - \frac{m_{xz} + f_1(1 + x_x) - k^2 y_x}{k^2}
\]

(A. 8)

An analogous solution can also be obtained in terms of trigonometric functions rather than the above hyperbolic functions for negative values of \(p \).

When \(x = 1 \), the transverse displacement \(y \) and the rotational angle \(\theta \) about the Z-axis of the free-end can be obtained using Eq. (A. 8) as

\[
y = y(1) = \frac{m_{xz} + f_1(1 + x_x) - k^2 y_x}{k^2} \frac{f_x}{k^3} + \frac{f_y}{k^3} \sinh kx + \frac{f_x}{k^2} x - \frac{m_{xz} + f_1(1 + x_x) - k^2 y_x}{k^2}
\]

i.e.

\[
y = \frac{f_1(k - \tanh k)}{k^3} + \frac{m_{xz}(\cosh k - 1)}{k^3} + \frac{f_y}{k^3} \sinh k - \frac{f_x}{k^2} \cosh k
\]

(A. 9)

\[
\theta = \theta(1) = \frac{m_{xz} + f_1(1 + x_x) - k^2 y_x}{k^2} \frac{f_x}{k^3} + \frac{f_y}{k^3} \sinhk k + \frac{f_x}{k^2} x - \frac{m_{xz} + f_1(1 + x_x) - k^2 y_x}{k^2}
\]

i.e.

\[
\theta = \frac{f_y(k - \tanh k)}{k^2} + \frac{m_{xz}(\cosh k - 1)}{k^3} - \frac{f_x}{k^2} \cosh k
\]

(A. 10)

Equations (A. 9) and (A. 10) are same as the results derived in [5, 23].

As in [5], the axial displacement can be divided in two parts: a purely elastic component and a kinematic component as

\[
x = \delta^e_x + \delta^k_x
\]

where \(\delta^e_x = p/d_x \), which is the purely elastic component, \(\delta^k_x \) is the kinematic component.

The kinematic component can be obtained as follows:

\[
d = d_x \cos \theta = (1 + \tan^2 \theta)^{1/2} dx = (1 + y^2)^{1/2} dx \approx (1 + \frac{1}{2} y^2) dx
\]

Then we obtain

\[
\int_0^{1+d} d = \int_0^{1+y} \left(1 + \frac{1}{2} y^2 \right) dx
\]

i.e.

\[
1+ \delta^e_x = 1 + (\delta^e_x + \delta^k_x) + \frac{1}{2} \int_0^{y^2} dx
\]

Then above equation can be rewritten as

\[
\delta^k_x = \frac{1}{2} \int_0^{y^2} dx
\]

(A. 11)

Substituting Eq. (A. 8) into Eq. (A. 11) and combining with the purely elastic component, we can obtain the axial displacement (see [5] for detailed expression).

Then making approximations for all load-displacement equations of the free-end of the beam based on the Taylor series expansion, we obtain

\[
\left[f_y \right] = \left[a \right] \left[c \right] \left[y_x \right] + \left[e \right] \left[h \right] \left[y_x \right] + \left[p \right] \left[m_{xz} \right] \left[y_x \right] + \frac{1}{1400} \left[1 \right] + \frac{1}{1700} \left[1 \right] + \cdots
\]

(A. 12a)

\[
x = \frac{1}{d} p + \left[y_x, \theta_x \right] \frac{1}{d} \left[k \right] \left[y_x \right] + \left[q \right] \left[\theta_x \right] \frac{1}{d} \left[g \right] \left[y_x \right] + \left[q \right] \left[\theta_x \right] \frac{1}{d} \left[h \right] \left[y_x \right] + \cdots
\]

(A. 12b)

Similarly, the load-displacement equations of the free-end of a beam for the bending only in the XZ plane can be obtained as

\[
\left[f_z \right] = \left[a \right] \left[c \right] \left[z_x \right] + \left[e \right] \left[h \right] \left[z_x \right] + \left[p \right] \left[m_{xz} \right] \left[z_x \right] + \frac{1}{1400} \left[1 \right] + \frac{1}{1700} \left[1 \right] + \cdots
\]

(A. 13a)

\[
x = \frac{1}{d} p + \left[z_x, \theta_x \right] \frac{1}{d} \left[k \right] \left[z_x \right] + \left[q \right] \left[\theta_x \right] \frac{1}{d} \left[g \right] \left[z_x \right] + \left[q \right] \left[\theta_x \right] \frac{1}{d} \left[h \right] \left[z_x \right] + \cdots
\]

(A. 13b)
where \(m_{pe}, f, \) and \(p \) are, respectively, the bending moment about the Y-axis, the transverse force along the Z-axis and the axial force along the X-axis acting at the free-end of the beam; \(z, x, \) and \(\theta \), are, respectively, the transverse displacement along the Z-axis, the axial displacement along the X-axis and the rotational angle about the Y-axis of the free-end of the beam.

B. Torsion of a beam after deformation about the X-axis

Due to the small deflection hypothesis, we can assume

\[
d\theta_x = m_y(x)dx
\]

(B. 1a)

where \(m_y(x) = m_{pe} + f_y(y) - \delta - f_z(z)\), which is the torque acting at any \(x \) location on the beam about the X-axis in deformed configuration; \(\delta = 2G/E; m_{pe}, f, \) and \(f_y, f_z \) are, respectively, the torque about the X-axis, the transverse force along the Z-axis and the transverse force along the X-axis acting at the free-end of the beam; \(y, z \) are the transverse displacements of the free-end of the beam along the Y- and Z-axes, respectively; \(y(x) \) and \(z(x) \) are the transverse displacements of any \(x \) location on the beam along the Y- and Z-axes, respectively.

Equation (B. 1a) can be rewritten as

\[
d\theta_x = [m_{pe} + f_y(y - \delta) - f_z(z - \delta)] dx
\]

(B. 1b)

Based on Eq. (A. 8), \(y(x) \) and \(z(x) \) can be expressed respectively as

\[
y(x) = \frac{m_{pe} + f_y - k^2 y_c}{k^2} \sinh kx + \frac{f_y}{k^2} x - \frac{m_{pe} + f_y - k^2 y_c}{k^2}
\]

(B. 2)

\[
z(x) = \frac{-m_{pe} + f_z - k^2 z_c}{k^2} \cosh kx - \frac{f_z}{k^2} x + \frac{m_{pe} + f_z - k^2 z_c}{k^2}
\]

where \(k^2 = p, m_{pe}, \) and \(m_{pe} \) are, respectively, the axial force along the X-axis, the bending moment about the Y-axis and the bending moment about the Z-axis acting at the free-end of the beam.

The torsional angle of free-end can be obtained by integrating Eq. (B. 1b) as

\[
\theta_x = \int_0^1 [m_{pe} + f_y(y - \delta) - f_z(z - \delta)] dx
\]

Substituting Eq. (B. 2) into the above equation, we obtain

\[
\theta_x = m_{pe} + (f_z y_c - f_y z_c) / \delta - \int_0^1 f_y(y - \delta) - f_z(z - \delta) / \delta dx
\]

(B. 3)

We take the third term in Eq. (B. 3) for further simplification as follows:

\[
\int_0^1 [f_y(y - \delta) - f_z(z - \delta) / \delta dx
\]

(B. 4)

According to the Taylor series expansion, we have

\[
e^k = 1 + k^2/2 + \ldots + k^n/n!
\]

Thus

\[
sinh k/k = e^k - e^{-k} = (1 + k^2/2 + \ldots) - (1 - k^2/2 + \ldots) = 1
\]

(B. 5)

Substituting Eq. (B. 5) into (B. 4), and substituting the result into Eq. (B.3), we obtain

\[
\theta_x = m_{pe} + (f_z y_c - f_y z_c) / \delta - \frac{f_y}{k^2} \sinh kx + \frac{f_z}{k^2} x / \delta + \int_0^1 f_y(y - \delta) - f_z(z - \delta) / \delta dx
\]

Equation (B. 6) can also be explained qualitatively as follows. When we calculate the torsional angle \(\theta_x \), the beam can be assumed as a straight beam without bending deformations (Fig. B1). Therefore, the torsional moment \(m_{pe}(x) \), with respect to central axis of the undeformed beam, at any \(x \) location on the beam may be regarded as \(m_{pe} + (f_z y_c - f_y z_c) / \delta \), and therefore the torsional angle can be also obtained as

\[
\theta_x = \int_0^1 m_{pe} + (f_z y_c - f_y z_c) / \delta dx = m_{pe} + (f_z y_c - f_y z_c) / \delta
\]
Fig. B1 Equivalent transformation for the torsional angle calculation.

Based on the mentioned principle of superposition in section 2.1, we can substitute Eqs. (A. 12a) and (A. 13a) into Eq. (B. 6) to obtain

\[\theta_z = \Delta \theta_z + \frac{(f_z y_x - f_x y_z)}{\Delta} = \Delta \theta_z + \frac{(a z_x + p e z_x) y_x}{\Delta} - \frac{(a y_x + p e y_x) z_x}{\Delta} - c(\theta_z z_x + \theta_y y_x) / \Delta = \frac{m_x - c(\theta_z z_x + \theta_y y_x)}{\Delta} - \frac{p h(\theta_z z_x + \theta_y y_x)}{\Delta} \]

C. Prototype of a three-beam module

A fabricated three-beam module under the action of \(f_z \) and \(m_x \) is shown in Fig. C1. Under the above payloads, the three-beam module has two primary motions: \(z_s \) and \(\theta_s \) [Fig. C1(a)]. In addition, the parasitic rotational angle of the motion stage about the Z-axis is dominated by 1.2\(z_s \theta_s \) [see Eq. (29)], which can be verified by the experiment as shown in Fig. C1(b).

Fig. C1 Prototype of a three-beam module in deformation.