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A Nonlinear Analysis of Spatial Compliant Parallel Modules: 

Multi-beam Modules   

Guangbo Hao, Xianwen Kong
1
, Robert L. Reuben 

Department of Mechanical Engineering, Heriot-Watt University, Edinburgh, UK, EH14 4AS 

ABSTRACT: This paper presents normalized, nonlinear and analytical models of spatial compliant parallel modules—multi-beam 

modules with a large range of motion. The models address the non-linearity of load-equilibrium equations, applied in the deformed 

configuration, under small deflection hypothesis. First, spatial nonlinear load-displacement equations of the tip of a beam, conditions of 

geometry compatibility and load-equilibrium conditions for a spatial three-beam module are derived. The nonlinear and analytical load-

displacement equations for the three-beam module are then solved using three methods: approximate analytical method, improved 

analytical method and numerical method. The nonlinear-analytical solutions, linear solutions and large-deflection FEA solutions are further 

analyzed and compared. FEA verifies that the accuracy of the proposed nonlinear-analytical model is acceptable. Moreover, a class of 

multi-beam modules with four or more beams is proposed, and their general nonlinear load-displacement equations are obtained based on 

the approximate load-displacement equations of the three-beam module. The proposed multi-beam modules and their nonlinear models 

have potential applications in the compliant mechanism design. Especially, the multi-beam modules can be regarded as building blocks of 

novel compliant parallel mechanisms.  
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1. Introduction 

Compliant parallel mechanisms/modules (CPMs) transmit motions/forces by deflections of their compliant members and 

have the characteristics of both conventional parallel mechanisms [1-2] and fully compliant mechanisms [3-4]. It is well 

known that CPMs possess many potential advantages such as zero backlash, no need for lubrication, reduced wear, high 

precision and compact, monolithic configuration. They can be used in a variety of applications, especially where high-

precision movements are required, such as precision motion stages, precision robotics, and MEMS sensors and actuators [5-8]. 

Due to their merits, CPMs have received much attention over the past decade.   

    CPMs mainly fall into two categories: lumped compliance mechanisms and distributed compliance mechanisms. 

Compared to lumped compliant joints, distributed compliant joints can produce a large range of motion as well as a reduced 

stress concentration, and their elastic averaging can permit inexact constraint designs. There are three main approaches to 

design of compliant mechanisms: (a) Pseudo-Rigid-Body-Model synthesis methods [9-11], (b) Continuum Structure 

Optimization methods [12-14], and (c) innovative design methods such as the constraint-based design approach [15-16], the 

building block approach [17], the screw theory based approach and the freedom and constraint topology approach [18-20].   

Traditional linear analysis or Pseudo-Rigid-Body-Models [4] have limited application for compliant mechanisms usually 

only providing an initial estimate for displacements as a reference for nonlinear analysis. Non-linearities in force-

displacement characteristics of a basic cantilever beam (Euler-Bernoulli beam) have three sources: material non-linearity, 

geometric non-linearity and non-linearity of load-equilibrium equations. The material non-linearity can be neglected for most 

applications and the geometric non-linearity will also be ignored in this paper due to small deflection assumption. To capture 

the nonlinearities of force-displacement equations, the load-equilibrium conditions should be applied in the deformed 

configuration of compliant mechanisms [5, 21-22], which is different from the configuration before deformation as used in 

linear load-equilibrium. There are two main methods of solving force-displacement equations: a) differential equation based 

methods [5, 23], and b) energy methods, such as Castigliano's theorem [24, 25] and virtual work principle [4]. Awtar [5] has 

derived the analytical and nonlinear force-displacement equations of a basic cantilever beam of length L in matrix form under 

the small deflection assumption, which applies provided that the transverse displacement is less than 0.1L. These nonlinear 

equations can be directly used to define the buckling conditions and capture the effects of load-stiffening and elastokinematic 

nonlinearities, both resulting from axial forces in the beams [5, 26]. Zelenika et al [22] also proposed the nonlinear equations 

of a leaf spring in the cross-spring pivot in the deformed configuration. Nevertheless, these equations can not be generally 

used due to the limitation of derivation, and the complication of solution using numerical method. Awtar et al [27, 23] further 

studied the elastic averaging effect in multi-beam parallelogram flexure mechanisms, analyzed the characteristics of a double 

parallelogram flexure module and proposed simple and accurate approximations. This body of work revealed the fact that any 

difference in the axial forces acting on the beams will cause an unequal transverse stiffness change in the beams, and result in 

rotational yaw. Based on the contributions in [15], Hao and Kong [28] proposed a 3-DOF (degrees of freedom) CPM for 

translation. This CPM has good characteristics such as the kinematostatic-decoupling and large range of motion. 

This paper builds on the above advances, and investigates the nonlinear modeling of spatial CPMs with multiple Euler-

Bernoulli beams under small deflection and plane cross-section assumption. A multi-beam module is composed of a motion 

stage and a base connected using three or more slender beams [3, 5]. In addition to being an independent CPM in its own 

right, e.g. as a vibratory bowl feeder [29-30] and a compliant assembly system device [31], a multi-beam module can also be 

used as building blocks of new spatial compliant mechanisms [32-33]. This offers an alternative to spatial CPMs composed 

of a number of planar compliant modules with distributed compliance, which have been proposed elsewhere [23, 34-35]. Dai 

et al [29] have already analyzed the compliance of a three-legged rigidly connected compliant platform using screw theory 

using the linear compliance matrix for each leg. Ding et al [30] have also carried out a dynamic analysis of a vibratory bowl 

feeder with three spatial compliant legs based on a characteristic equation. Recently, a tilted three-beam spatial compliant 

module, producing three rotations, is analyzed to define layouts of actuators using screw theory [36]. However, as yet, there 

has been no analysis of a spatial module with three or more uniform non-tilted slender beams. 
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Accordingly, this paper focuses on multi-beam modules with uniform non-tilted beams (Fig. 1). The reasons for this choice 

are that the uniform beam is one of the most common flexure elements and the non-tilted arrangement is simple enough to 

allow for closed-form analysis in terms of constraint-based design. This paper is organized as follows. In Section 2, spatial 

nonlinear load-displacement equations of the tip of a beam, conditions of geometry compatibility and load-equilibrium 

conditions of the spatial three-beam module are derived. In Section 3, three approaches are proposed to solve the nonlinear 

load-displacement equations for the three-beam module, and the validity condition, extensible application, accuracy and 

advantages/limitations of each model are discussed, and the approximate model is compared with the linear model. In Section 

4, FEA is conducted to verify the proposed approximate analytical model for the three-beam module. In Section 5, a class of 

multi-beam spatial modules is proposed, and the general equations of load-displacement for these modules are summarized. 

Finally, conclusions are drawn. 

2. Spatial three-beam module analysis 

In order to simplify equations and make translational displacements and rotational angles (or forces and moments) 

comparable, all translational displacements and length parameters are normalized by the beam length L, forces by EI/L
2
, 

bending moments by EI/L, and torques by GIp/L. Here, E denotes the Young's modulus, I denotes the second moment of the 

area of a cross-section, G denotes the shear modulus, and Ip denotes the polar second moment of the area of the cross-section. 

Throughout the paper, non-dimensional quantities are represented by the corresponding lower-case letters, and all beams have 

round cross-sections with the same diameter D0 unless otherwise indicated.  

The three-beam module (Figs. 1 and 2) is composed of a base, three beams and a motion stage. The base and motion stage, 

which are both assumed to be rigid, are connected by the three compliant beams. Here, the three beams are uniformly spaced 

around a circle of radius r3 on the base and on the motion stage, and all external loads, p (axial force), fy, fz (transverse forces), 

mx (torque), my and mz (bending moments), are acting at the centre, O', of the motion stage and cause the motion stage to 

move by deformation of the three beams. p, fy and fz are the forces along the X-, Y- and Z-axes, respectively; mx, my and mz re 

the moments about the X-, Y- and Z-axes, respectively. For the purpose of simplification, the gravity of the motion stage 

(including the payloads on it) is integrated into the axial force, and the weights of the compliant beams, which are very small, 

are neglected.  

 
Fig. 1 Spatial three-beam module. 

 

Fig. 2 Free body diagram of the spatial CPM. 
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In the initial configuration, a mobile rigid body coordinate system O'-X'Y'Z' and a global fixed coordinate system O-XYZ 

are coincident and both origins are at the centre, O', of the motion stage (Fig. 2). All translational displacements of the new 

origin, O', along the X-, Y- and Z-axes are denoted by xs (axial displacement) ys and zs (transverse displacements), 

respectively; All rotational displacements (angles) of the motion stage about the X-, Y- and Z-axes are denoted by θsx 

(torsional angle), θsy and θsz (bending angles), respectively. All loads and displacements shown in all figures are represented 

by the nondimensional quantities in the coordinate system O-XYZ. The object is to investigate the translational 

displacements, xs, ys and zs,  and the rotational displacements, θsx, θsy and θsz, of the motion stage as a function of the applied 

loads: p, fy, fz, mx, my and mz. 

In terms of the constraint-based design [5], the three out-of-plane DOF of the three-beam spatial module are suppressed, 

and its motion stage is constrained to move within the YZ plane, which leaves ys, zs and θsx as the DOF. If the pitch radius r3 

of the beams (hence the motion stage) becomes relatively large, the rotation of the motion stage about the X-axis will be 

constrained as well.  

 

2.1. Nonlinear load-displacement equations of the tip of a cantilever beam 
 

The centre of the free-end of the cantilever beam is used as the point (tip) at which the loads and translational movements 

are defined. Here, the loads, ziyixiziyii mmmffp
000000

,,,,, (i0=1, 2, 3), denote internal loads acting at the tip, 
0

oi , of the i0-th 

beam, and are the corresponding reactions at the point i0 on the motion stage as shown in Fig. 2. ziyii ffp
000

,,  are the forces 

along the X-, Y- and Z-axes, respectively; ziyixi mmm
000

,,  are the moments about the X-, Y- and Z-axes, respectively. 

xi0
 , yi0

  and zi0
 (i0=1, 2, 3) are rotational displacements of the free-end of the i0-th beam about the X-, Y- and Z-axes, 

respectively. 
0i

x , 
0i

y and 
0i

z  (i0=1, 2, 3) are translational displacements of the tip of the i0-th beam along the X-, Y- and Z-

axes, respectively.  

Under the conditions of linear elasticity and small deflections, the principle of superposition [24] can be applied to 

straightforwardly deal with the spatial combined deformation of a beam. The combined deformation can be regarded as the 

combination of two bending deformations in the XY and XZ planes, respectively, and a torsional deformation about the X-

axis. The bending of a beam in a given plane can be analyzed using the nonlinear load-displacement equations derived by 

Awtar [5, 23]. An alternative derivation for the nonlinear analysis of planar deflection of a beam can also be found in 

Appendix A. 

 Equations (A. 12a) and (A. 13a) allow the nonlinear load-displacement equations for the i0-th beam (i0 = 1, 2, 3) for 

bending in the XY and XZ planes to be written as 
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where the second term on the right hand side of Eqs. (1) or (2) shows the load-stiffening effect, and the terms after the second 

can be neglected for most applications. Equations (1) and (2) are valid under the assumption that the moment about the Y(Z)-

axis acting at any location on the beam does not affect the bending in the XY (XZ) plane, i.e. that the two bending 

deformations are decoupled or are weakly coupled. 

The axial displacement of the i0-th tip can be obtained by adding Eqs. (A. 12b) and (A. 13b) (contributions from bending in 

the XY and XZ planes) and deducting one of the duplicated terms (purely elastic effect): 
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   (3) 

where the first term on the right hand side represents the purely elastic effect of the axial force alone, the second and the 

fourth terms show the purely kinematic effect, and the third and the fifth terms show the elastokinematic effect. For most 

practical situations the terms after the fifth can be ignored. 

The nonlinear load-displacement equation of the i0-th beam (i0=1, 2, 3) for the torsion about the X-axis after deformation 

can be obtained (see Appendix B for detailed derivation): 

 /)(/)(
00000000000 iyiiziiiyiizixixi yzhpyzcm                                                                                               (4) 

where δ=2G/E. The first term shows the purely elastic effect of the torque alone, the second term shows the purely kinematic 

effect, and the third term shows the elastokinematic effect. Due to the very small bending angles, compared with the 

transverse displacements and the torsional angle in the spatial three-beam module, we can also omit the purely kinematic and 

the elastokinematic effects in Eq. (4). 

    The coefficients a, b, c, d, e, g, h, i, j, k, q, r and s used above are all non-dimensional numbers and are the characteristic of 

the uniform round cross-section beam [5]: 

a= 12, b= 4, c= -6, d=16/(D0/L)
2
; 

e= 1.2, g= 2/15, h= -0.1; 
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i= -0.6, j= -1/15, k= 1/20; 

r= 1/700, s= 11/6300, q= -1/1400. 

    From Eqs. (1) - (4), it can be seen that yiziyii mffp
0000

,,,  and zim
0

are all approximately in the order of 1, and xim
0

is in the 

order of 0.1 since ziyixiiii zyx
000000

,,,,,   are all in the order of 0.1 under the small deflection assumption [5]. 

 
2.2. Conditions of geometric compatibility 
 

For small absolute values of rotational angles (in the order of 0.1), the rotation sequence of three Euler angles is 

insignificant [37] and its contribution can be neglected. Due to the rigidity of the motion stage, the geometric compatibility of 

the rotational angles can be described: 

xxxsx 321                                                                                                                                                          (5a)                                                                                                                                                   

yyysy 321                                                                                                                                                         (5b) 

zzzsz 321                                                                                                                                                          (5c) 

The translational displacement relationships between the tip of the i0-th beam and the centre of the motion stage can be 

expressed as 
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where "

0i
x , "

0i
y and "

0i
z  are the coordinates of the tip of the i0-th beam relative to the global fixed coordinate system after only 

the rotations of the motion stage (no movement at the point O'). '

0i
x , '

0i
y and '

0i
z  are the local coordinates of the tip of the i0-

th beam relative to the mobile rigid body coordinate system ( '
1x =0, '

1y =r3sin(π/3), '
1z =r3cos(π/3) for the tip 1, '

2x =0, '
2y =0, 

'
2z =-r3 for the tip 2, '

3x =0, '
3y =-r3sin(π/3), '

3z =r3cos(π/3) for the tip 3). 

The coordinates "

0i
x , "

0i
y and "

0i
z  can be further expressed in a rotation matrix form as 
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where RX, RY and RZ are the sequential rotation matrices [18] about the X-, Y- and Z-axes, respectively.  

For small rotation angles, high order terms of rotational angles in the product of three rotation matrices above can be 

neglected, so: 
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 RRR                                                 (8) 

    Combining Eqs. (6) - (8), and substituting the local coordinate values of the tips into the result, the displacements of the 

tips can be expressed as follows. 

2/2/3 331 syszs rrxx                                                                                                                                              (9) 

sys rxx 32                                                                                                                                                                    (10) 

2/2/3 333 syszs rrxx                                                                                                                                            (11) 

2/31 sxs ryy                                                                                                                                                               (12) 

sxs ryy 32                                                                                                                                                                   (13) 

2/33 sxs ryy                                                                                                                                                              (14) 

2/3 31 sxs rzz                                                                                                                                                          (15) 

szz 2                                                                                                                                                                             (16) 

2/3 33 sxs rzz                                                                                                                                                          (17) 

 

2.3. Load-equilibrium conditions 
 

From the free body diagram in Fig. 2, the equilibrium conditions of the motion stage in the deformed configuration can be 

described:  
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where "

0i
x , "

0i
y and "

0i
z can be obtained from the result of substituting Eq. (8) into Eq. (7).  

Neglecting the contribution of rotations in Eq. (18), this simplifies to: 

321 pppp                                                                                                                                                               (19) 

yyyy ffff 321                                                                                                                                                           (20) 

zzzz ffff 321                                                                                                                                                            (21) 

2/)2( 3231321 rpppmmmm yyyy                                                                                                                    (22) 

2/3)( 313321 rppmmmm zzzz                                                                                                                          (23) 

)2/()](2[)2/(3)( 3312331321  rfffrffmmmm yyyzzxxxx                                                                    (24) 

     

3. Solution to the nonlinear load-displacement analysis for the three-beam module 
 

The constitutive, compatibility and equilibrium conditions of Sections 2.1 to 2.3 now permit a solution of the nonlinear 

load-displacement equations in terms of the geometry of the three-beam module. Three methods of increasing accuracy and 

complexity are presented in this section: an approximate analytical method, an improved analytical method, and a numerical 

method. 

 
3.1 Approximate analytical solution 
 

An initial FEA showed that, when forces alone are acting, each of two bending angles is approximately two orders of 

magnitude smaller than its corresponding one of two transverse displacements (θsz to ys, θsy to zs), and the torsional angle is 

almost zero. Therefore, the rotational angles are dropped out wherever appropriate below. 

a) Solution for θsy and θsz 

Substituting Eq. (2) into Eq. (22) and again neglecting all the rotational displacements:  

1 3 2

3
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            (25) 

Similarly, the substitution of Eq. (1) into Eq. (23) yields 
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                                                                                                                                          (26) 

From Eqs. (9) to (11), one can obtain  

syrxxx sin32)( 3231                                                                                                                                                (27) 

Substituting Eqs. (3) and (12) - (17) into Eq. (27), and substituting Eq. (25) into the result gives the rotational displacement 

iyzphcmrzry
dr

ssxsysssy  2])3()[
1

(
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2 22

2
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                                                                                                    (28) 

Similarly, the rotational displacement θsz can also be obtained from Eqs. (9), (11), (3), (12), (14), (15), (17) and (26) as 
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                                                                                   (29) 

b) Solution for ys and zs 

Substituting Eq. (1) into Eq. (20) and combining Eqs. (12) - (14), we obtain 

1 2 3 1 1 1 2 2 2 3 3 3

2 1 3 3

( ) ( ) ( )

1
(3 ) (3 ) (2 ( ))

2

y y y y sz sz sz sz sz sz
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a pe y c ph p p p r e

     

 

              

      
                       (30) 

Rewriting Eq. (30) and replacing θsz with -2θsxzsi based on Eq. (29), we obtain the transverse translational displacement 

pea

erpppizphcf

y
sxssxy

s





3

2

1
]2)([)2)(3( 3231 

                                                                                         (31) 

The transverse translational displacements zs can be obtained by substituting Eq. (2) into Eq. (21), combining Eqs. (15) - 

(17) and replacing θsy with -2θsxysi based on Eq. (28): 
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    Finally, substituting Eqs. (25) and (26) into Eqs. (31) and (32), respectively, we obtain the two transverse displacement 

equations: 
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(34) 

c) Solution for θsx  

Combining Eqs. (1) and (2), and substituting the result along with Eq. (4) into Eq. (24), we have  

   /)](2[
2

1
/)(

2

3
//33 3123313

2
3

2
3 sssxsxsxx eyppprezpprperarm                                          (35) 

    Substituting Eqs. (25) and (26) into Eq. (35), and substituting Eqs. (33) and (34) into the result, we obtain the torsional 

angle (rotational displacement): 
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                                                                                                                           (36)  

    If the torque is normalized by EI/L (rather than by GIp/L), the torsional angle θsx becomes 
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                                                                                                                     (37) 

d) Solution for xs 
From Eqs. (9) to (11), we have 

3/)( 321 xxxxs                                                                                                                                                        
 
(38) 

Substituting Eqs. (3) and (12) - (17) into Eq. (38), substituting Eqs. (25) and (26) into the result and omitting some high 

order terms of rotational angles,  we obtain the axial translational displacement: 

rzmymkzyrr
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x sxszsysysszssxsxsssss  )(

3

2
)(2

3
)(

3
)(

3

22
3

22
3

2222                            (39) 

where the terms with r3
2
θsx

2
 are retained since θsx  is the DOF, and they are related to the radius r3. 

In summary, the approximate displacements of the motion stage for a given set of loads are obtained as follows:  

(1) Calculate the torsional angle θsx using Eq. (36) [or Eq. (37)];  

(2) Solve for ys and zs by substituting the torsional angle into Eqs. (33) and (34);  

(3) Calculate θsy and θsz by substituting θsx, ys and zs into Eqs. (28) and (29);  

(4) Obtain the axial displacement xs using Eq. (39). 

When myfy =-mzfz, which includes five special cases: my=mz=0; fz=fy=0; my=fz=0; fy =mz=0; mz=-0.5fy and my=0.5fz, Eq. (36) 

simplifies to θsx=mxδ/[3(δ+ar3
2
+per3

2
/3)]. This condition holds when the resultant transverse force is perpendicular to the 

resultant bending moment. In particular, in the case: my=mz=0, the three DOF equations [Eqs. (33), (34) and (36)] are 

independent, and in the case: mz=-0.5fy and my=0.5fz, the three rotational angles [Eqs. (28), (29) and (36)] are all equal to zero 

as long as the axial force p=0 and mx=0. Furthermore, according to Eqs. (28), (29), (33), (34), (36) and (39), when only a 

torsional moment is imposed on the motion stage, two of the translational displacements, ys and zs, and two of the rotational 

displacements, θsz and θsy, are zero while θsx=mxδ/[3(δ+ar3
2
)] and xs=r3

2
θsx

2
i (negative), and this reveals how torsion can 

reduce the axial displacement xs. If only the two transverse forces are imposed on the motion stage, the spatial three-beam 

module can be regarded as a good 2-D translation joint. 

It can also be observed from Eqs. (28), (29), (33), (34), (36) and (39) that:  

(a) The axial force p affects the transverse displacements (ys and zs), which reflects the load-stiffening effect. Either of the 

two transverse displacement equations shows that the buckling condition pcrit1=-3a/e=-30 occurs when the transverse stiffness 

becomes zero. The torsional angle θsx decreases with increasing (positive) p, which also shows the load-stiffening effect. The 

torsional angle equation shows a second buckling condition pcrit2=-3(δ+ar3
2
)/(er3

2
)=-[30+3δ/(er3

2
)] when the torsional 

stiffness becomes zero. Therefore, the buckling load for the spatial three-beam module is pcrit= max(pcrit1, pcrit2)=-30. 

(b) The axial displacement xs has three components: purely elastic effect from the axial force alone, purely kinematic effect 

such as kzyirizy sysszssxss )(2)( 22
3

22    and elastokinematic effect such as 3/)(23/3/)( 22
3

22 rzmymrprrzyp sxszsysxss   . 

Similarly, the bending angle, θsy (θsz), is also composed of three components. 

(c) The torsional angle has a dominant effect on the accuracy of the above equations in comparison with θsz and θsy. The 

smaller |θsx| is, the more accurate are the above force-displacement equations.  

(d) All the three rotational angles decrease as r3 increases. For a typical value 0.6 of r3 and θsx=0, θsz and θsy can be in the 

order of 1×10
-4 

if d=40000 (i.e. L/D0=50). This reveals the fact that the essence of constraint-based design is a combination of 

the effects of large values of d and small values of r. Furthermore, if θsx and ys (or zs) are all relatively large in absolute value, 

θsy (θsz) is affected by purely kinematic effect: -2θsxysi (or -2θsxzsi) dominantly.  

(e) The translational displacement, ys (or zs), is weakly dependent on mx, my, mz, p and fz (or fy) (Maxwell Reciprocity [5, 
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24]), and strongly dependent on fy (or fz). Here, fy (or fz) is a dominant load in determining ys (or zs), whereas mz, mx, my, p and 

fz (or fy) are non-dominant loads. Furthermore, torsional angle θsx is weakly dependent on my, mz, fy, fz and p, and strongly 

dependent on mx (mx is a dominant load in determining θsx).  

 

3.2 Improved analytical method 
 

For relatively large absolute values of θsx (even including θsy or θsz), the dependence of a transverse translational 

displacement on the relevant non-dominant loads becomes significant, particularly if the absolute values of the relevant 

dominant load are small relative to the non-dominant ones. Moreover, the purely kinematic effect and the elastokinematic 

effect in Eq. (4), the second-order terms in rotational angles neglected in the product of the three rotation matrices in Eq. (8), 

and the rotation contributions in Eq. (18) need also to be retained wherever appropriate. In addition, we may approximate θsy 

and θsz using Eqs. (28) and (29), respectively, in the appropriate derivation below. 

Using Eq. (18), Eqs (22) - (24) for the moment-equilibrium conditions after deformation can be rewritten as 

szzzsyzzzsxyyyy rffrfffrpp
r

pppmmmm  3313312331
3

231321
2

3
)(

2

1
)](2[

2

3
)(

2
)2(    (40a) 

 
syyyyszyysxzzzz rfffrff

r
ppprppmmmm  3231313

3
231313321

2

1
]2)[(

2

3
)(

2
]2)[(

2

3
)(  (40b) 

sxzzzsxyyyyyzzxxxx rfffrffrfffrffmmmm  33123133312331321
2

1
)](2[

2

3
)(

2

1
)](2[

2

3
)()(  (40c) 

From Eqs. (1), (2) and (12) - (17), one can obtain 

2/3)())((3 33131331 sxsyssxzz repphezpparff                                                                            (41a)

 2/)](4[))]((2[3)(2 33123123312 sxszssxyyy erpppheyppparfff                                            (41b)

 2/)())(( 3311313 sxszsyy erppheyppff                                                                                                   (41c) 

2/3)())]((2[)(2 313312312 sxsyszzz repphezpppfff                                                                    (41d) 

where p1+p3 and 4p2+(p1+p3) can also be represented by [2p+(p1+p3-2p2)]/3 and 2p-(p1+p3-2p2), respectively. 

Retaining the bending angles in Eqs. (31) and (32), the two transverse displacements are obtained as 

pea

erpppphcf

y
sxszy

s





3

2

1
]2)([)3( 3231 

                                                                                                        (42) 

pea

erppphcf

z
sxsyz

s





3

2

3
)()3( 313 

                                                                                                                 (43) 

where accurate solutions for (p1+p3)-2p2 and p3-p1 can be obtained by substituting Eq. (41) into Eqs. (40a) and (40b) and 

combining the results with Eqs. (1), (2) and (12)-(17): 

)2/(

)1(])3([])3()3[(

)1)1()(2/(

2/)3()1(]})3()3[({])3()3[(
2)(

3

22
3

2
3

231

r

hyphcmpgbzphcm

hr

rpeahpgbyphcmpgbzphcm
ppp

sxszsysy

sx

sxszsxszszsysy















 (44) 

)2/3(

)1(])3([])3()3[(

)1)1()(2/3(

2/)3()1(]})3()3[({])3()3[(

3

22
3

2
3

13

r

hzphcmpgbyphcm

hr

rpeahpgbzphcmpgbyphcm
pp

sxsyszsz

sx

sxsysxsysyszsz















 (45) 

For relatively large absolute values of θsx, Eq. (28) is re-written as 

rrppprzrppryrpppprzypppriyr
d

ppp

iqyzzyppp

rrppprzrppryrppprzypppkriyr
d

ppp

rqzyppprzpzpzp

rypypypzzzkyyykizzziyyy
d

ppp

rxxxr

sxssxssxssszsxssx

sxssss

sxssxssxssszsxssx

szsxsysszs

sysz

szsxsy

22
32313313231

22
23133

213

231

22
32313313231

22
23133

213

3231
2
22

2
33

2
11

2
22

2
33

2
11231231

2
2

2
3

2
1

2
2

2
3

2
1

213

32313

]2)[(3)(]2)2)[(()](2)[(36
2)(

)](2)[(4

]2)[(3)(]4)[()](2)[()5.0(66
2)(

3)](2)[(2]2)[(

]2)[()2(2)2(2]2)[(]2)[(
2)(

32)(3


































         (46) 

The substitution of Eqs. (29), (44) and (45) into Eq. (46) produces 

izr
p

iyhmmrzrzy
dr

hmzphcmrrzy
dr

ssxssxsxsxyzsss

sxzsysxsssy

2
3

22

2
3

22
3

22

2
3

2)
3

(2)]1(][)(
1

[
3

2

)]1()3(][)(
1

[
3

2









                                                                  (47) 
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Similarly, Eq. (29) is re-written as 

rrpprzr
pppp
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d

pp

iqyzzypprrpprzrppryrpprzyppkrizr
d

pp
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1333
13

313
2
11

2
33
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)(
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)(
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(48) 

Substituting Eqs. (28), (44) and (45) into Eq. (48), we have 

iyr
p

izhmmrzy
dr

hmyphcmryrrzy
dr

ssxssxsxsxzyss

sxyszssxsxsssz

222

2
3

3
22

3
22

2
3

2)
3

(2)]1(][)(
1

[
3

2

)]1()3(][)(
1

[
3

2









                                                             (49) 

Then, substituting Eqs. (44) and (45) into Eqs. (42) and (43), respectively, the two transverse displacements can be 

obtained as  

pea

ehyphcmpgbzphcmphcf
y

sxsxszsysyszy

s





3

)}1(])3([])3()3[({)3( 
                                 (50) 

pea

ehzphcmpgbyphcmphcf
z

sxsxsyszszsyz

s





3

)}1(])3([])3()3[({)3( 
                                 (51) 

Equations (50) and (51) can be further simplified as 

pea

ehmphc
y

pea

ehmezphcmizphcf
y sxzsz

s
sxzsxsyssxszy

s










3

)1()3(

3

)1(])3([)2)(3( 22


          (52) 
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z
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z

sxysy
s
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s











3

)1()3(

3

)1(])3([)2)(3( 22 
         (53) 

where ])3(][)(
1

[
3

2 22

2
3

szsssz yphcmrzy
dr

 , ])3(][)(
1

[
3

2 22

2
3

sysssy zphcmrzy
dr

 ,
pea

emf
y

sxyy
s






3


, 

pea

emf
z sxzz

s





3


. 

Substituting Eq. (41) into Eq. (40c) and combining with Eq. (4), we have 

])())][((2[
2

1
])())[((

2

3

3)()(33
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2
3

2
3
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             (54) 

We can further substitute Eqs. (44), (45), (47), (49), (52) and (53) into Eq. (54) and omit some high order terms of 

rotational angles. Then we simplify the torsional angle as follows: 

)]}ˆˆ(
3

2
)ˆˆ(2

3
[3/{)}ˆˆ)(3(

]ˆ)ˆ2ˆ)][(1(]ˆ)3([)ˆ2)(3(ˆ)3([
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22222
3

2
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  (55) 

where 
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y
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3

)3(
ˆ


, 
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z

sysxzz

s





3

)3(
ˆ


. Only one real solution is the desired solution for the 

equation with one unknown θsx. Equation (55) can be shown to reduce to Eq. (36) for relatively small |θsx|. 

In addition, substituting the torsional angle θsx obtained from Eq. (55) into Eqs. (52) and (53), the two transverse 

displacements, ys and zs, can be found. 

Once θsx, ys and zs have been obtained, the other two rotational angles, θsy and θsz, can be obtained using Eqs. (47) and (49), 

and the axial displacement xs can then be obtained using Eqs. (3) and (9) - (17) as  

s
p
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(56) 

Substituting Eqs. (44) and (45) into Eq. (56) and making further simplification, we have 

qyphcmzphcm
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                                    (57) 

Equations (47), (49), (52), (53), (55) and (57) are the improved analytical load-displacement equations for large |θsx|, which 

can capture more nonlinear effects. It can be shown that θsx≈0 for the five special loading cases: mx=my=mz=0; mx=fz =fy=0; 

mx=my=fz=0; mx=fy=mz=0; mx=0, mz=-0.5fy and my=0.5fz. 

If my or mz in Eqs. (52) and (53) and all of the dominant transverse forces are very small in absolute value, we can obtain 

more accurate solutions to the load-displacement equations. Starting from the θsx, θsy and θsz obtained above, the two accurate 

transverse displacements (ys and zs) can be obtained from Eqs. (50) and (51). Then, we can obtain more accurate values of θsx, 
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θsy, θsz and xs step-by-step by substituting the above ys and zs into Eqs. (55), (47), (49) and (57). 

 
3.3 Numerical method 
 

Exact solutions for the nonlinear load-displacement equations can be obtained numerically without the need for 

approximation, although this has the disadvantage that the qualitative behavior of the CPMs is more difficult to explore. 

The numerical scheme involves seven unknown terms: (p1+p3)-2p2, p3-p1, θsx, θsy, θsz, ys and zs that are obtained by solving 

the seven following equations, obtained from Eqs. (42)-(46), (48) and (54): 

)3/(}
2

1
]2)([)3({ 3231 peaerpppphcfy sxszys                                                                                        (58) 

)3/(}
2

3
)()3({ 313 peaerppphcfz sxsyzs                                                                                                  (59) 
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                (64) 

Once (p1+p3)-2p2, p3-p1, θsx, θsy, θsz, ys and zs have been obtained using Maple fsolve function, they can be substituted into 

Eq. (56) to obtain the axial displacement xs. We can also obtain p1 and p2 and p3 by combining Eqs. (60), (61) and (19), which 

is useful for further stress analysis. 

3.4. Discussion 

a) Validity condition of the proposed approaches 

The proposed models are valid only for small deflections (usually all normalized displacements less than 0.1 [5]) and large 

ratios of length to diameter, i.e. slenderness ratios (usually L/D0 more than 10 [38] for slender beams ignoring shear 

deformation). If the proposed nonlinear models are applied to the analysis of CPMs under the conditions of large deflections 

or small slenderness ratios (for Timoshenko beams), errors between the analytical results and real results will be unacceptable, 

but these models can still capture certain nonlinear constraint characteristics of the CPMs.  

Let us now discuss the range of r3 under given conditions. If we make a rotational angle (such as θsz) smaller than α times 

(usually ≥ 50) a corresponding transverse displacement (such as ys) in absolute value under only one transverse force acting 

(such as fy), we have the following relationship based on Eq. (29): 

        /)3)(/1(
3

2 2

2
3

sss ycyryd
r

  

  The above equation is simplified to determine the range of r3: 

         dr /122
3   

b) Extensible application of the proposed approaches to CPMs with regular polygon cross-section beams and varying-

thickness beams 

It should be noted that the above normalized and nonlinear models are also applicable for the CPMs with regular polygon 

cross-section beams (ignoring warping effect under torsion), but the non-dimensional coefficient d should be modified 

accordingly. For example, for the square cross-section multi-beam module, d=12/(T/L)
2 

(T is the thickness of the beam). 

Moreover, these models can be used to deal with generalized beam modules by modifying the coefficients a, b, c, d, e, g, h, i, 

j, k, q, r and s based on Ref. [23], and using δ=G/(Ea0) and then replacing mxδ with 2a0mxδ in Eqs. (36), (55) and (64). The 

generalized beam, with the same overall beam length L, is composed of two uniform compliant segments (each normalized 

length is a0) and one rigid segment.  

c) Characteristics of three approaches 

    In order to illustrate the applicability of the various solutions, an example three-beam CPM is analyzed below. The CPM is 

taken to be made from an aluminum alloy for which Young’s modulus, E, is 69,000 Nmm
−2

 and Poisson’s ratio, v, is 0.33. 

The dimensions are D0=4 mm (d=2500), R3=30 mm (r3=0.6) and L=50 mm. All the normalized external transverse forces 

need to be approximately over [-3.6, 3.6] yielding normalized transverse displacements over [-0.1, 0.1] as shown in Fig. 5. 
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The normalized external torque needs to be approximately in the order of 1.8 to limit the torsional angle to the order of 0.1. 

Other normalized external loads may be all of order of 1.8 or greater compared with the pre-determined loads. 

In practice, the simpler and more analytical the approach is, the more useful the analysis for design of CPMs is. If each of 

the dominate forces for transverse displacements, such as fy for ys, is relatively large (for example, 2 times larger than all the 

relevant non-dominant moments in absolute value) or two bending moments are both zero (my=mz=0), the approximate 

analytical solution should be acceptable for design purposes (the case under the latter condition is shown in Fig. 3). When the 

above condition does not hold, a balance needs to be made between accuracy and complexity.  

 
 Fig. 3 Comparison of results obtained using three approaches (case with no bending moments acting). 

    Table 1 shows the calculated displacements of the motion stage of the three-beam module for the approximate and 

improved analytical models and for the numerical model under loads: fz=2, mz=10 (mzfz =20) and p=mx=my=mz=0, i.e. where 

the torsional angle is relatively large.  

Table 1 

Comparison of the results obtained using the three nonlinear methods under the large torsion 

We can observe from Table 1 that, for relatively large θsx, the error (|(improved analytical result - approximated analytical 

result)/improved analytical result|×100%) is relatively large and is unacceptably high for ys since the dominant load fy for ys is 

zero. Table 1 also shows that the approximations for the improved analytical method are reasonable, leading to very small 

differences between the analytical and numerical solutions. If the loading is changed to fz=2, mz=5 (mzfz=10), and p=mx=my 

=mz =0, the error in the torsional angle reduces from the 28.08% in Tab. 1 to 6.40%.  

Figure 4 shows that the torsional angle error between the improved and approximate analytical (or numerical) methods 

increases at an accelerating rate as the ratio of fz to mz decreases starting at around 1.6, and also verifies the accuracy of the 

improved analytical method. It is concluded that the difference between the solutions obtained using these two methods 

decreases with the increase of the transverse loads. 

 
 Fig. 4 Comparison for fixed product of mzfz. 

 

d) Linear analytical approaches  

If the effects of load-stiffening and elastokinematic non-linearities in Eqs. (1) - (4) are all neglected, the linear load-

Displacements 

Method 
ys zs xs θsz θsy θsx 

Approximate analytical method 0.00 0.0702 -0.00390 0.0112 -9.518×10-4 0.0438 
Improved analytical method 0.00513 0.0755 -0.00424 0.0131 -1.106×10-3 0.0607 

Numerical method 0.00514 0.0764 -0.00436 0.0131 -1.111×10-3 0.0609 

Error between improved and 

approximate analytical methods 
100% 7.02 % 7.80% 14.50% 13.94% 28.08% 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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mx 
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displacement equations of the tip of the i0-th beam are: 
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                                                                               (65)

 

 

Using Eq. (65), and following the solution process in section 3.1, one can obtain the linear load-displacement equations of 

the motion stage as 
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                                      (66) 

where afy ys 3/ , afz zs 3/ . 

Figures 5-7 show a comparison of results using linear and nonlinear approximate analytical analysis for mx = my = mz = 0 

(in which case, θsx=0). Figure 7 also shows that Eq. (66) only captures the effects of dominant loads (such as mz, fy) upon the 

rotational displacements (like θsz) while the nonlinear equation [Eq. (29)] captures the effects of all loads upon the rotational 

displacements. Thus, the linear equations may be applicable under a very small range of deflection, such as that indicated by 

the rectangular area in Fig. 7 drawn for 1.65% error compared with the nonlinear analysis.  

If the purely kinematic component in Eq. (3) is also neglected, the single beam load-displacement equations are simplified 

and the approximate linear load-displacement equations of the motion stage, similar to the ones used in [29-30], can be 

derived (see Ref. [32] for details). 

 

 
Fig. 5 Primary stiffness in the Y direction. 

 
Fig. 6 Cross-axis error. 
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Fig. 7 Rotational angle about the Z-axis. 

 

4. FEA verification for the three-beam module 
 

The displacements obtained for the example CPM using FEA with Comsol large-deformation analysis are compared with 

the three nonlinear methods in Tab. 2. The FEA translational displacements were given directly by the software, and the 

rotational angles were calculated from the displacements of points o1, o2, and o3 using Eqs. (9), (10) and (13). The other 

nonlinear results were obtained by first normalizing the loads then substituting these into the analytical equations 

correspondingly to obtain the normalized translational displacements and the actual rotational angles (in radians). The actual 

translational displacements (in mm) were then obtained by multiplying the normalized translational displacements by L.  

Table 2 shows that the displacement errors (|(analytical result - FEA result)/analytical result|×100%) between FEA method 

and any of the three analytical nonlinear methods are within 3.5% and considerably less for θsx (|analytical result - FEA 

result|). Here, the bold data are the normalized translational displacements. As mentioned earlier, it can be observed from Tab. 

2 that the two bending angles, θsz and θsy, are approximately two orders smaller than the normalized transverse translational 

displacements, ys and zs, respectively, and the torsional angle, θsx, is 3.33×10
-6

 small. 

Figures 8-11 show more results obtained using both the FEA and the approximate analytical equations [Eqs. (28), (29), 

(33), (34), (36) and (39)] without moments acting. It can be seen from these figures that the average errors between the 

analytical results and FEA results for a given force are acceptable. This verifies the accuracy of the proposed nonlinear 

equations for the spatial three-beam module. 

Table 2 

Results contrast between FEA and analytical analysis for P=10N, Fz=10N, Fy=249.59N, Mx=My=Mz=0 

 
Fig. 8 Axial displacement verification: (a) for different P, (b) for different Fy. 

Displacements 

Method 

Ys (mm) ys Zs (mm) zs Xs (mm) xs θsz  (radian) θsy (radian) θsx (radian) 

FEA method 1.0050 0.02010 0.0403 8.0534×10
-4

 -0.0120 -2.3958×10
-4

 2.5980×10
-4

 -1.0802×10
-5
 3.3333×10

-6
 

Approximate  analytical method 0.9985 0.01998 0.0400 8.0000×10
-4

 -0.0120 -2.3958×10
-4

 2.6690×10
-4

 -1.0682×10
-5
 0 

Improved analytical method 1.0050 0.02012 0.0403 8.0534×10
-4

 -0.0121 -2.4279×10
-4

 2.6869×10
-4

 -1.0753×10
-5
 6.5715×10

-15 

Numerical method 1.0050 0.02012 0.0403 8.0533×10
-4

 -0.0121 -2.4280×10
-4

 2.6631×10
-4

 -1.0658×10
-5
 -2.8988×10

-15
 

Error between approximate 
analytical method and FEA 

0.65 %  0.74 %  0.00 %  2.66% 1.10 % 3.3333×10
-6 

Error between improved 

analytical method and FEA 
0.00%  0.00 %  0.82 %  3.30% 0.65 % 3.3333×10

-6
 

Error between numerical method 

and FEA 
0.00 %  0.00 %  0.82 %  2.44% 2.87 % 3.3333×10

-6
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Fig. 9 Y displacement verification: (a) cross-axis coupling from different P, (b) primary stiffness. 

 
Fig. 10 Bending angle about the Z-axis: (a) for different P, (b) for different Fy. 
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Fig. 11 Torsional angle for different Fy. 

If only the torsional moment, Mx=GIp/L=1.3069×10
4
 Nmm, is imposed on the motion stage, the analytical result using Eq. 

(36) and FEA result of the rotational angle θsx are respectively 0.0495 radians and 0.0494 radians, an error of about 0.2%. 

A prototype of a three-beam module, made of engineering plastic, have been fabricated using 3-D printer for initial 

qualitative analysis (see Appendix C for details). The preliminary test results with the prototype comply with the modeling 

presented in this paper.   

 

5. Multi-beam spatial module analysis 
 
    In this section, we will deal briefly with multi-beam modules with more than three beams only having three in-plane DOF, 

in particular five classes of multi-beam module with different layouts of beams. As in the case of the three-beam spatial 

module, the loads are taken to be acting at the center of motion stage, and the coordinate system, displacements and loads are 

defined in the same way. Figure 12 shows six-beam spatial modules with a variety of layouts.  
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Fig. 12 Six-beam spatial modules with round cross-section beams.  

    In the following, we limit ourselves to multi-beam spatial modules, which have an even number of beams, n, and in which 

all beams are uniformly distributed around a circle [Fig. 12(a)]. Apparently, the multi-beam module has good dynamic 

performance of high band-width and large buckling load with the increasing of the number of beams, but in turn results in 

large primary motion stiffness. 

The approximate analytical load-displacement equations for a motion stage in four-beam and six-beam spatial modules can 

be obtained in a similar way to the approximate analytical model for the three-beam module: 
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   The general load-displacement equations for spatial multi-beam modules can be summarized as follows: 

Motion 

stage 

Motion 

stage 

Motion 

stage 

(b) Module of five beams distributed 

around a regular pentagon with one 

beam connecting to center 

(a) Module of six beams distributed 

around a regular hexagon  

(c) Module with two three-beam 

modules in parallel (symmetrical)  

(d) Module of six beams distributed around two regular triangles 

 

Motion stage 

Inner 

motion 

stage 

Motion 

stage 

(e) Module with two three-beam modules in series 
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where,









int4/for1

int4/for0
0

n

n
j , the beam number n is even and 

LD

r
n n

/

2

0


 , rn denotes the nondimensional pitch circle 

radius of the beam tips. If the torque is normalized by EI/L, the torsional angle becomes  

)](/[)]/()([ 22
nnyyzzxsx er

n

p
arnpenaefmfmm   . 

The system shown in Fig. 12(c) is obtained by symmetrically arranging two three-beam modules as two building blocks. 

This system is kinematicly decoupled in two transverse translational directions, and has a large load-stiffening effect, 

resulting from the augmentation of transverse stiffness in the presence of gradually increased axial tension-force in the 

configuration of two symmetrical three-beam modules, as shown in the transverse displacement equations [Eqs. (33) and 

(34)]. The system shown in Fig. 12(e) is obtained by connecting two three-beam modules as two building blocks in series. 

This system has approximately half the primary stiffness and double the motion range of the single three-beam module, and 

can alleviate the load-stiffening effect.  

 
6. Conclusions 
 

The nonlinear and analytical load-displacement equations of the spatial multi-beam CPMs, with round or regular polygon 

cross-section beams have been formulated and analyzed by mathematical transformation and substitution. A method has also 

been presented to analyze the spatial combined deformation of compliant beams or mechanisms.  

For a set of given payloads exerted on the motion stage of the spatial three-beam module, one can obtain quickly the 

displacements using the proposed nonlinear models as compared with FEA or other numerical methods. The larger the pitch 

circle radius of beam tips, the smaller the absolute value of the torsional angle and therefore the more accurate the proposed 

approximate analytical model. It has been verified using the large-deflection FEA that the accuracy of the proposed analytical 

model is acceptable. In the case of our example CPM, the maximum transverse displacements for the proposed spatial 

modules are approximately 5.0 mm (0.1L) under small deflection’s condition. 

An analysis of the modules proposed in Figs. 12(b) – (e) and a comparison between experiment results at the macro- and 

micro-scale and analytical results will be areas for further investigation. 
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Appendices 
 
A. Nonlinear analysis of a beam for the bending only in the XY (XZ) plane 

Figure A1 shows a deformed beam for the bending only in XY plane. 

 

Fig. A1 Deformation of a beam.  

Based on the Euler’s formula and load equilibrium condition after deformation, we can obtain the differential equation of a 

beam under small deflection as 

)]([)1()( xyypxxfmxy eeyze     

where )]([)1( xyypxxfm eeyze   is the bending moment acting at any x location of the beam about the Z-axis; mze, fy 

and p are, respectively, the bending moment about the Z-axis, the transverse force along the Y-axis and the axial force along 

the X-axis acting at the free-end of the beam; ye and xe are, respectively, the transverse displacement along the Y-axis and 

axial displacement along the X-axis of the free-end of the beam; y(x) is the transverse displacement of any x location on the 

beam along the Y-axis. The subscript e denotes the free-end. 

The above equation can be rewritten as 

eeyze pyxxfmxpyxy  )1()()(                                                                                                                    (A. 1) 

The boundary conditions for Eq. (A. 1) are  

y=0 when x=0; 

y’=0 when x=0.                                                                                                                                                             (A. 2) 

Awtar [5] used a homogeneous 4th-order differential equation, obtained by differentiating Eq. (A. 1) with respect to x 

twice, to solve load-displacement equations. 

This appendix presents alternative solution to Eq. (A1) (non-homogeneous 2nd-order differential equation) directly by 

combining the general solution to the corresponding homogeneous differential equation and the particular solution to the non-

homogeneous differential equation. 

The general solution to the corresponding homogeneous differential equation ( 0 pyy ) is  

kxkx BAey                                                                                                                                                             (A. 3) 

where k
2
=p. 

The particular solution to the non-homogeneous differential equation is assumed as  

y=Cx+D                                                                                                                                                                       (A. 4) 

Substituting Eq. (A. 4) into the Eq. (A. 1), we can obtain 
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Combining Eqs. (A. 3), (A. 4) and (A. 5), we can obtain the general solution to the non-homogeneous 2-order differential 

equation as 
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Substituting the boundary condition, Eq. (A. 2), into Eq. (A. 6), we can obtain  

0
)1(

2

2





k

ykxfm
BA

eeyze  

0
2


k

f
BkAk

y  

Solving the above equations, we then obtain 
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Substituting Eqs. (A. 5) and (A. 7) into Eq. (A. 6), the general solution to Eq. (A. 1) is obtained as 
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    An analogous solution can also be obtained in terms of trigonometric functions rather than the above hyperbolic functions 

for negative values of p. 

When x=1, the transverse displacement ye and the rotational angle θz about the Z-axis of the free-end can be obtained using 

Eq. (A. 8) as 
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    Equations (A. 9) and (A. 10) are same as the results derived in [5, 23]. 

    As in [5], the axial displacement can be divided in two parts: a purely elastic component and a kinematic component as 
k
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e
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where dpe
x / , which is the purely elastic component, k

x  is the kinematic component. 

The kinematic component can be obtained as follows: 
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    Then above equation can be rewritten as 
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Substituting Eq. (A. 8) into Eq. (A. 11) and combining with the purely elastic component, we can obtain the axial 

displacement (see [5] for detailed expression).  

Then making approximations for all load-displacement equations of the free-end of the beam based on the Taylor series 

expansion, we obtain 
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Similarly, the load-displacement equations of the free-end of a beam for the bending only in the XZ plane can be obtained 

as 
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where mye, fz and p are, respectively, the bending moment about the Y-axis, the transverse force along the Z-axis and the axial 

force along the X-axis acting at the free-end of the beam; ze, xe and θy are, respectively, the transverse displacement along the 

Z-axis, the axial displacement along the X-axis and the rotational angle about the Y-axis of the free-end of the beam. 

     
B. Torsion of a beam after deformation about the X-axis 

Due to the small deflection hypothesis, we can assume 

xxmxx d)(d                                                                                                                                                             (B. 1a) 

where  /)]([/)]([)( xzzfxyyfmxm eyezxex  , which is the torque acting at any x location on the beam about the 

X-axis in deformed configuration; δ=2G/E; mxe, fz, and fy are, respectively, the torque about the X-axis, the transverse force 

along the Z-axis and the transverse force along the Y-axis acting at the free-end of the beam; ye and ze are the transverse 

displacements of the free-end of the beam along the Y- and Z-axes, respectively; y(x) and z(x) are the transverse 

displacements of any x location on the beam along the Y- and Z-axes, respectively.  

Equation (B. 1a) can be rewritten as 

xxzzfxyyfm eyezxex d}/)]([/)]([{d                                                                                                     (B. 1b) 

Based on Eq. (A. 8), y(x) and z(x) can be expressed respectively as 
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                                                                     (B. 2) 

where k
2
=p.  p, mye and mze are, respectively, the axial force along the X-axis,  the bending moment about the Y-axis and the 

bending moment about the Z-axis acting at the free-end of the beam. 

The torsional angle of free-end can be obtained by integrating Eq. (B. 1b) as 
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Substituting Eq. (B. 2) into the above equation, we obtain 

x
k

zkfm
x

k

f
kx

k

f
kx

k

zkfm
f

k

ykfm
x

k

f
kx

k

f
kx

k

ykfm
fzfyfm

ezyezzezye
y

eyzeyyeyze
zeyezxex

d}/]sinhcosh[

/]sinhcosh[{/)(

2

2

232

2

1

0 2

2

232

2















 

                  (B. 3) 

We take the third term in Eq. (B. 3) for further simplification as follows: 
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According to the Taylor series expansion, we have 
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Substituting Eq. (B. 5) into (B. 4), and substituting the result into Eq. (B.3), we obtain 
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      (B. 6) 

Equation (B. 6) can also be explained qualitatively as follows. When we calculate the torsional angle θx, the beam can be 

assumed as a straight beam without bending deformations (Fig. B1). Therefore, the torsional moment mx(x), with respect to 

central axis of the undeformed beam, at any x location on the beam may be regarded as /)( eyezxe zfyfm  , and therefore 

the torsional angle can be also obtained as  

 /)(d]/)([
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0
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Fig. B1 Equivalent transformation for the torsional angle calculation. 

Based on the mentioned principle of superposition in section 2.1, we can substitute Eqs. (A. 12a) and (A. 13a) into Eq. (B. 

6) to obtain 
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 (B. 7) 

C. Prototype of a three-beam module 

A fabricated three-beam module under the action of fz and mx is shown in Fig. C1. Under the above payloads, the three-

beam module has two primary motions: zs and θsx [Fig. C1(a)]. In addition, the parasitic rotational angle of the motion stage 

about the Z-axis is dominated by 1.2zsθsx [see Eq. (29)], which can be verified by the experiment as shown in Fig. C1(b). 

 

Fig. C1 Prototype of a three-beam module in deformation. 
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