<table>
<thead>
<tr>
<th>Title</th>
<th>NaV2O5 from sodium ion-exchanged vanadium oxide nanotubes and its efficient reversible lithiation as a Li-ion anode material.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>McNulty, David; Buckley, D. Noel; O'Dwyer, Colm</td>
</tr>
<tr>
<td>Publication date</td>
<td>2019-01-03</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
</tbody>
</table>
| Link to publisher's version | https://pubs.acs.org/doi/10.1021/acsaem.8b01895
http://dx.doi.org/10.1021/acsaem.8b01895
Access to the full text of the published version may require a subscription. |
| Rights | © 2019 American Chemical Society |
| Item downloaded from | http://hdl.handle.net/10468/7268 |

Downloaded on 2020-10-19T01:23:56Z
NaV$_2$O$_5$ from Sodium Ion-Exchanged Vanadium Oxide Nanotubes and Its Efficient Reversible Lithiation as a Li-Ion Anode Material

David McNulty,†,‡ D. Noel Buckley,†,§ and Colm O’Dwyer$^{†,∥,⊥}$

†School of Chemistry, University College Cork, Cork T12 YN60, Ireland
‡Department of Physics and §Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
$^{∥}$Micro-Nano Systems Centre, Tyndall National Institute, Lee Maltings, Cork T12 R5CP, Ireland
$^⊥$Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland

ABSTRACT: Efficient synthetic protocols for stable oxide materials as Li-ion battery electrodes are important not only for improving long-term battery performance but also for tackling potential material abundance issues and understanding the nature of ion intercalation for beyond lithium technologies. Oxide anodes are denser, typically, than graphite, leading to a doubling or more of the energy density. Using oxides as lower voltage battery anodes that efficiently and reversibly intercalate cations while avoiding dominating conversion-mode side reactions is much less common. We show that ion-exchanging the molecular templates used to form scrolled, layered vanadium oxide nanotubes (VONTs) with sodium ions allows us to form NaV$_2$O$_5$ crystals that behave as Li-ion battery anodes with efficient capacity retention over 1000 cycles. We also track and analyze the thermal recrystallization of intralayer Na$^+$ ion-exchange in vanadium oxide nanotubes (Na-VONTs) to NaV$_2$O$_5$ by thermogravimetric analysis, X-ray and electron diffraction, transmission and scanning electron microscopy, and infrared spectroscopy. The quantification and understanding of the electrochemical performance of ion-exchanged nanotubes before and after thermal treatment was determined by cyclic voltammetry and galvanostatic cycling. NaV$_2$O$_5$ in the form of micro- and nanoparticles demonstrates exceptional capacity retention during long cycle life galvanostatic cycling with Li$^+$, retaining 93% of its capacity from the 100th to the 1000th cycle, when cycled using an applied specific current of 200 mA/g in a conductive additive and binder-free formulation. Intercalation reactions dominate over much of the voltage range. Conversion mode processes are negligible and the material reversibly lithiates with charge compensation by cation (V) redox. This report offers valuable insight into the use of group I (Li, Na, etc.) elements to make vanadate bronzes as long cycle life and stable Li-ion battery anode materials with higher volumetric energy density.

KEYWORDS: Li-ion battery, anode, sodium vanadate, energy storage, oxide, nanotubes

INTRODUCTION

Vanadium oxide nanotubes (VONTs) were first reported in 1998 by Spahr et al.1 and since then has been a great deal of research into how to fully optimize their electrochemical performance as a cathode material for lithium ion (Li-ion) batteries and as an anode using vanadate bronzes and closely related compounds.2–6 Typically VONTs are prepared by hydrothermal treatment of a vanadium oxide precursor mixed with a primary amine.7–8 The amine molecules are crucial to the formation of the VONTs as they maintain the vanadium oxide layers which scroll to form the nanotube structure.5–10 While the amines are vital in the synthesis of the VONTs, they are unfortunately detrimental to their electrochemical performance.7–10 It has been proposed that the amine molecules occupy the majority of the possible lithium intercalation sites within the VONTs and hence are responsible for the poor cycling performance which has been reported for as-synthesized VONTs.11 While as-made VONTs exhibit poor electrochemical performance, they are quite useful as a starting structure to provide nanorod or nanowire-type structures with nanoscale features after various post-treatments.5–13

The motivating reason to utilize this ion-accessible nanotube structure was to create NaV$_2$O$_5$ that is both efficient and stable as a Li-ion battery anode at low voltages, using ion-exchange protocols. Oxides are essentially much denser than graphite and consequently could increase the volumetric energy density if the stable intercalation process is efficient and reversible at low voltages. Some open questions regarding the nature of Li-ion insertion remain and to some degree have been examined for lithium-rich Li$_x$V$_{1-x}$O$_2$.14 Avoiding and mitigating the conversion mode reaction with oxides in Li-containing electrolytes in a battery are also crucial, and vanadium oxides

Received: November 2, 2018
Accepted: January 3, 2019
Published: January 3, 2019

DOI: 10.1021/acs.aem.8b01895

© 2019 American Chemical Society
In this work we investigate in detail a selective metal cation-exchange reaction method to remove the amine molecules from as-synthesized VONTs, using the nanotube structure as a "backbone" or "starting structure" for other polymorphs, while retaining the nanoscale structure. We confirm the removal of amine molecules and ion-exchange by monitoring the inorganic and organic phase changes and decomposition, using IR spectroscopy, electron microscopy, and X-ray diffraction analyses. By recrystallizing a sodiated VONT (Na-VONT) into the ladder compound NaV2O5, a very efficient and stable low-voltage Li-ion battery anode is demonstrated.

Metal cation-exchanged VONTs have been examined before as higher voltage cathode materials for Li-ion batteries, including Ca-VONTs, Fe-VONTs, K-VONTs, and Li-VONTs.15,16 Na-VONTs have also been investigated as a cathode material; however, the initial capacities reported were quite low (>60 mAh/g).2,16 In recent times binary metal oxides containing vanadium such as FeV2O4, CoV2O4, and NiVO3 have been attracting attention as low voltage anode materials for Li-ion batteries. Here, we investigate the electrochemical performance of Na+ ion-exchanged VONTs as an anode material. As the Na-VONTs are heated to 600 °C in N2, a structural conversion occurs from V2O5 with Na+ undergoing cation redox behaviors as an intercalation mode charge storage material, with minimal conversion mode contribution at lower potentials (∼0.2 V vs Li/Li+). This is evidenced in detailed examination of differential capacity plots (DCPs) of charge curves which reveal a characteristic voltage profile signifying Li+NaV2O5 involving cation redox. The heated Na-VONTs demonstrate exceptional capacity retention over long cycle life testing delivering 174 and 162 mAh/g after the 100th and 1000th cycles respectively, when cycled with an applied specific current of 200 mA/g. This corresponds to an impressive capacity retention of >93% over the course of 900 cycles even when cast without conductive additives or F-containing binders within the cell. The capacity values achieved by the heated Na-VONTs are higher than previously reported values for other vanadium oxide-based anode materials including V2O5, Li1.1V0.9O2, and Li3VO4, thus further exemplifying their beneficial electrochemical behavior.

EXPERIMENTAL SECTION

Synthesis of Vanadium Oxide Nanotubes

Vanadium oxide nanotubes (VONTs) were synthesized by hydrothermal treatment of a mixture of vanadium oxide xerogel and a primary amine, following usual procedures.20,21 Initially, a V2O5 xerogel was prepared via a reflux and distillation process as we have previously reported.12,22,23 V2O5 xerogel was mixed with nonylamine in a molar ratio of xerogel to amine of 1:2, with 3 mL of ethanol added per gram of xerogel. The mixture was stirred at 500 rpm for 1 h, and then 5 mL of deionized water per gram of xerogel was added before being vigorously stirred again for a further 2 h. The xerogel/amine mixture was then allowed to age for 2 days. During this time, the mixture turned white and was then hydrothermally treated in a Teflon-lined autoclave at 180 °C for 7 days. The resulting dark black paste was washed with ethanol and dried using a Buchner funnel.

Preparation of Ion-Exchanged VONTs

Ion-exchanged VONTs were prepared using a modified version of a previously reported method.22 As-synthesized VONTs were mixed with NaCl in a molar ratio of 1:4 to prepare Na+-doped VONTs (Na-VONTs). The mixture of powders was stirred in a solution of ethanol and deionized water (4:1 v/v) with 0.2 mL of ethanol being added per mg of VONTs. The solution was stirred for 5 h and then dried on filter paper using a Buchner funnel. Na-VONTs were heated to 600 °C in N2 at a ramp rate of 5 °C/min and then held at this temperature for 1 h to determine the influence of heat treatment on the structural and electrochemical properties of the Na-VONTs.

Material Characterization

Transmission electron microscopy (TEM) analysis including bright field and electron diffraction was conducted using a JEOL JEM-2100F TEM operating at 200 kV. SEM analysis was performed using a Hitachi S-4800 at an accelerating voltage of 10 kV. Thermogravimetric analysis (TGA) was performed using a PerkinElmer TGA. Samples for TGA were placed in an...
alumina crucible and heated to 600 °C in a nitrogen atmosphere at a heating rate of 5 °C/min. Fourier transform infrared spectroscopy (FTIR) was conducted on a PerkinElmer series 2000 apparatus in the region of 4000−650 cm⁻¹. X-ray diffraction (XRD) analysis was performed using an X'pert MRD Pro Panalytical diffractometer with Cu Kα radiation (Cu Kα, λ = 1.5418 nm, operation voltage 40 kV, current 30 mA). X-ray photoelectron spectroscopy (XPS) spectra were acquired on an Oxford Applied Research Escabase XPS system equipped with a CLASS VM 100 mm mean radius hemispherical electron energy analyzer with multichannel detectors in an analysis chamber with a base pressure of 5.0 × 10⁻¹⁰ mbar. Survey scans were recorded between 0 and 1400 eV with a step size of 0.7 eV, dwell time of 0.5 s, and pass energy of 100 eV. Core level scans were acquired with a step size of 0.1 eV, dwell time of 0.5 s, and pass energy of 20 eV averaged over 10 scans. A nonmonochromated Al Kα X-ray source at 200 W power was used for all scans. All spectra were acquired at a takeoff angle of 90° with respect to the analyzer axis and were charge corrected with respect to the C 1s photoelectric line. Data were processed using CasaXPS software where a Shirley background fit was performed using a BioLogic VSP configuration against a pure Li counter electrode in a two-electrode, stainless steel split cell (a coin cell assembly that can be disassembled for post-mortem analysis). The electrolyte used was a 1.0 M LiClO₄ solution of LiPF₆ in a 1:1 (v/v) mixture of ethylene carbonate in dimethyl carbonate with 3 wt % vinylene carbonate. The separator used was a glass fiber separator (El-Cell ECC1-0012-A/L, 18 mm diameter, 0.65 mm thickness). The mass loading for all samples was ~0.5 mg; no additional conductive additives or binders were added. The current collecting substrates were 1 cm² pieces of Cu foil. Cyclic voltammetry was performed using a scan rate of 0.1 mV s⁻¹ in a potential window of 3.0−0.01 V (vs Li/Li⁺). Galvanostatic cycling was performed using a range of specific currents (50−200 mA/g) in a potential window of 3.0−0.01 V (vs Li/Li⁺).

RESULTS AND DISCUSSION

Structure of Na⁺-Exchanged and Thermally Treated VONTs

TEM images of Na-VONTs and Na-VONTs after heating to 600 °C are shown in Figures 1a and 1b, respectively. There are three main features present in the morphology of as-synthesized VONTs, as can be seen in Figure S1. These are (i) the hollow core running through the nanotube, (ii) the layered walls on either side of the hollow core, and (iii) the tube openings at both ends. After the ion-exchange reaction, Na-VONTs retain the three characteristic nanotube features as seen in Figure 1a. The nanotube structure collapses when Na-VONTs are heated to 600 °C, as shown in Figure 1b. It has previously been suggested that amine molecules act as a structure maintaining template for layers of vanadium oxide during the formation of scrolled VONTs. Partially removing the amine molecules via ion-exchange reactions maintains the overall tubular morphology; however, thermal treatment of Na-VONTs removes any remaining amine molecules, and the nanotube structure collapses. The resulting structures are still layered as can be seen in Figure 1b. Electron diffraction (ED) patterns for Na-VONTs and Na-VONTs heated to 600 °C are shown in Figures 1c and 1d, respectively. The d-spacing observed in the ED pattern for the as-prepared VONTs are consistent with previously reported XRD patterns for VONTs. The ED pattern for heated Na-VONTs was successfully indexed to pure orthorhombic Na₂V₂O₄ (JCPDS No. 98-000-0993).

Prior to hydrothermal treatment, during the aging of the mixture of V₂O₅, xerogel and amines, the amine molecules are hydrolyzed to form ammonium ions and hydroxide ions as follows:

\[
\text{C}_m\text{H}_{2n+1}\text{NH}_x + \text{H}_2\text{O} \rightarrow \text{C}_m\text{H}_{2(n+1)}\text{NH}_x^+ + \text{OH}^- \quad (1)
\]

The hydroxide ions formed reduce the V=O bond present in the layers of V₂O₅ to form V−O− and V−OH bonds. The attachment of the amine molecules is typically accepted to be an electrostatic bond between the reduced vanadyl (V−O−) bond and the oxidized amino headgroup (NH₃⁺). During the ion-exchange reaction the positively charged headgroup of the amine molecule is exchanged with a Na⁺ ion. However, it is likely to be a partial exchange as amines are structure maintaining templates, and as can be seen in Figure 1a, the product of the reaction maintains the tubelike structure. If all of the amine molecules were removed, the tubular structure would likely collapse. This can be seen for the case of Na-VONTs heated to 600 °C, as shown in Figure 1b. When Na-VONTs are thermally treated, irregular single crystal nanoparticles are formed, as shown in the SEM image in Figure 1f. TEM and SEM analyses indicate that VONTs and Na-VONTs have a tendency to group together in bundles. As Na-VONTs are annealed to 600 °C, the amines remaining after the ion-exchange reaction are removed, and the nanotube structure collapses. From the dimensions and shapes of the resulting nanostructures from high-resolution microscopy data (Figure 1f), it appears as though bundles of Na-VONTs agglomerate to form these larger nanoparticles.

The thermal stability of Na-VONTs was studied by thermogravimetric analysis (TGA) under a nitrogen atmosphere. The resulting mass loss curve is shown in Figure 1g. Less than 6.5% mass is lost when Na-VONTs are heated to 100 °C, which is associated with the removal of physisorbed and chemisorbed H₂O present within the Na-VONTs. During the ion-exchange reaction as-synthesized VONTs are stirred with NaCl in a mixture of ethanol and distilled water which may have resulted in the presence of physisorbed water on the surface of the Na-VONTs. The total mass loss for Na-VONTs heated to 600 °C was ~15%, which is considerably lower than the ~52% mass loss which we previously reported for as-prepared VONTs, heated under the same conditions. This mass loss indicates that a large proportion of amines are removed by the ion-exchange reaction. FTIR measurements were performed to verify the partial exchange of amine molecules with Na⁺ ions and to determine the effects of thermal treatment on Na-VONTs structure. The FTIR spectra for as-synthesized VONTs, Na-VONTs, and heated Na-VONTs are shown in Figure 1h. The characteristic vanadyl band (V=O) for crystalline V₂O₅ can be seen at 992 cm⁻¹ in the spectra for the as-synthesized VONTs and the Na-VONTs. When Na-VONTs are heated to 600 °C, the vanadyl band is shifted to a higher wavenumber (~1009 cm⁻¹). This modification is from the distortion of the vanadium oxide lattice when accommodating Na⁺ ions with a larger ionic radius, which after heat treatment have diatomic chemical bonds. The bond length is decreased by approximately 0.014 Å in the {001} plane and 0.009 Å in the {110} plane.

The absorption peak associated with V=O−V asymmetric stretching is observed at 790 cm⁻¹ for the as-synthesized VONTs. This shift to ~760 cm⁻¹ for both the Na-VONTs and the thermally treated Na-VONTs. This confirms a bonding relaxation and a reduction in bond energy...
of the host lattice as a result of ion-exchange reactions and heat treatment.

The nonylamine molecules present within the vanadium oxide layers of the as-synthesized VONTs are also responsible for peaks observed in the FTIR spectra. The peaks observed at 2850 and 2920 cm$^{-1}$ are due to symmetric and asymmetric stretching vibrations for CH$_2$ groups which make up the majority of the primary amine chain. The other peaks observed in this region are due to symmetric and asymmetric stretching vibrations for CH$_3$ groups, observed at 2870 and 2955 cm$^{-1}$, respectively. The majority of the amine chain consists of CH$_2$ groups, with a single CH$_3$ group at its tail; hence, it would be expected that absorption peaks for the CH$_2$ groups would have a higher intensity in the resulting FTIR spectrum. This has been verified and can be seen in Figure 1h.

The wide band observed from 3050–3250 cm$^{-1}$ is due to N–H vibrations present from the NH$_2$ headgroup of the amine chain. Weak peaks due to symmetric and asymmetric stretching vibrations for CH$_2$ and CH$_3$ groups are still present in the FTIR spectrum for Na-VONTs (Figure S2), indicating that there is still a low quantity of amine molecules present after the ion-exchange reaction. None of the peaks associated with the presence of amine molecules remain after their complete removal during thermal treatment. The bands observed for as-synthesized VONTs from 1550–1650 cm$^{-1}$ and 3300–3600 cm$^{-1}$ are assigned to O–H bending and stretching vibrations, respectively.

XRD patterns for VONTs, Na-VONTs, and heated Na-VONTs are shown in Figure 2a,b. After hydrothermal treatment, amines are intercalated between the vanadium oxide layers and VONTs are formed; the d-spacing for as-synthesized VONTs from the 2Θ position of the (001) Bragg reflection corresponds to \sim2.73 nm. After ion-exchange, the majority of the nonylamine molecules have been replaced with Na$^+$ ions. The length of a single nonylamine molecule is \sim1.33 nm, and the ionic radius of Na$^+$ is \sim0.12 nm. Hence, there is a decrease in the interlayer spacing for the ion-exchanged product, and this contraction perturbs the crystal structure associated with the van der Waals layering (low angle reflections) also identified by vibrational spectroscopy earlier. The resulting interlayer spacing for scrolled Na-VONTs is \sim1.09 nm. When recrystallized to NaV$_2$O$_5$, the layering is replaced with a single crystal ladder-structured compounds as NaV$_2$O$_5$ (Figure 2b).

Figure 2. XRD comparison (a) (00l) reflections and (b) (hkl) reflections from as synthesized VONTs, Na-VONTs, and heated Na-VONTs. XPS spectra of the V 2p regions for (c) Na-VONTs and (d) heated Na-VONTs, Na 1s regions for (e) Na-VONTs and (f) heated Na-VONTs, and O 1s regions for (g) Na-VONTs and (h) heated Na-VONTs. (i) Unit cells for orthorhombic V$_2$O$_5$ and orthorhombic NaV$_2$O$_5$. In this representation, the orthorhombic V$_2$O$_5$ structure represents the material that constitutes each of the layers in the VONTs.
The high angle XRD pattern observed for the as-prepared VONTs (Figure 2b) is in close agreement with previously reported XRD patterns for VONT samples prepared with primary amines of different chain lengths.5,43,44 The Na+ ions within the layers of vanadium oxide in the Na-VONTs are electrostatically bound, and their introduction does not induce any significant changes in the crystal structure of the vanadium oxide layers. Consequently, the XRD pattern for Na-VONTs is a close match to the pattern observed for the as-synthesized VONTs. A similar trend has been reported for other metal cation-exchanged VONT samples including Fe-VONTs, Co-VONTs, and Mn-VONTs.41,45,46 However, when Na-VONTs are heated to 600 °C in N2, the resulting XRD pattern is considerably different. This indicates that during thermal treatment a significant structural rearrangement occurs within the vanadium oxide crystal lattice. The reflections observed for the heated Na-VONTs is in close agreement with previous reports on the reduction of vanadium oxides via annealing under inert conditions.49,50

The high angle XRD pattern observed for the as-prepared VONTs (Figure 2b) is in close agreement with previously reported XRD patterns for VONT samples prepared with primary amines of different chain lengths.5,43,44 The Na+ ions within the layers of vanadium oxide in the Na-VONTs are electrostatically bound, and their introduction does not induce any significant changes in the crystal structure of the vanadium oxide layers. Consequently, the XRD pattern for Na-VONTs is a close match to the pattern observed for the as-synthesized VONTs. A similar trend has been reported for other metal cation-exchanged VONT samples including Fe-VONTs, Co-VONTs, and Mn-VONTs.41,45,46 However, when Na-VONTs are heated to 600 °C in N2, the resulting XRD pattern is considerably different. This indicates that during thermal treatment a significant structural rearrangement occurs within the vanadium oxide crystal lattice. The reflections observed for the heated Na-VONTs is in close agreement with previous reports on the reduction of vanadium oxides via annealing under inert conditions.49,50

The Na 1s spectra for Na-VONTs and heated Na-VONTs are shown in Figures 2e and 2f, respectively. The presence of this peak in the spectrum for Na-VONTs confirms that the conversion from V2O5 to NaV2O5 is in close agreement with observations from ED patterns shown in Figure 1.

X-ray photoelectron spectroscopy (XPS) spectra were acquired for each material to determine the surface chemical state of Na-VONTs and to investigate the nature of the NaV2O5 binary metal oxide. XPS spectra demonstrating the core level binding energies for V 2p3/2 and V 2p1/2 for Na-VONTs and heated Na-VONTs are shown in Figures 2c and 2d, respectively, and summarized in Table 1. The V 2p core levels for both samples were deconvoluted to determine the vanadium oxidation states after ion-exchange and annealing. The V 2p3/2 core level for Na-VONTs consists of two deconvoluted peaks at ∼517.1 and 515.8 eV, which correspond to the presence of V(V) and V(IV), respectively.47,48 After heating in an N2 atmosphere, the V present within the Na-VONTs was partially reduced, and photoemission corresponding to V(III) was observed in the V 2p3/2 core level for heated Na-VONTs in Figure 2d. Initially ∼70% of the V present in the Na-VONTs was in the V(V) oxidation state; this decreased to ∼47% and agrees with previous reports on the reduction of vanadium oxides via annealing under inert conditions.49,50

The Na 1s spectra for Na-VONTs and heated Na-VONTs are shown in Figures 2e and 2f, respectively. The presence of this peak in the spectrum for Na-VONTs confirms that the

<table>
<thead>
<tr>
<th>sample</th>
<th>V(V)</th>
<th>V(IV)</th>
<th>V(III)</th>
<th>O 1s</th>
<th>Na 1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na-VONTs</td>
<td>517.1</td>
<td>515.8</td>
<td>515.5</td>
<td>529.9</td>
<td>1071.2</td>
</tr>
<tr>
<td>heated Na-VONTs</td>
<td>517.5</td>
<td>516.3</td>
<td>515.5</td>
<td>530.1</td>
<td>1071.5</td>
</tr>
</tbody>
</table>

“The relative amounts of each vanadium oxidation state are shown in parentheses.
ion-exchange between Na⁺ ions and nonylamine molecules was successful and hence supports evidence from FTIR analysis. Both spectra contain a strong peak at \(\sim 1071.2 \) eV which is associated with the 1s core level for Na.⁵¹ The Na 1s spectra for the heated Na-VONTs contained a second, lower intensity peak at \(\sim 1072.3 \) eV and closely agrees with the reported Na 1s core level for Na₂O.⁵² This indicates that there may be low levels of Na₂O present on the surface of the heated Na-VONTs. However, no reflections associated with Na₂O were observed in the XRD pattern for heated Na-VONTs, suggesting a negligible Na₂O quantity or an amorphous phase. The % determined from XPS does not indicate a significant quantity of Na₂O. The high-resolution spectra for the O 1s region for both Na-VONTs and heated Na-VONTs contained two oxygen contributions, as shown in Figure 2g,h. The peak at \(\sim 531.4 \) eV may be associated with defects and a number of surface species including hydroxyls, chemisorbed oxygen, or undercoordinated lattice oxygen.⁵³,⁵⁴ The peak at \(\sim 530.2 \) eV is typical of metal—oxygen bonds.⁵⁵,⁵⁶ The structural changes that occur from as-synthesized VONTs to heated Na-VONTs are illustrated in Figure 2i. Amine molecules and Li⁺ are intercalated within layers of vanadium oxide along the c-axis; hence, the packing cells are viewed along the c-axis.

NaV₂O₅ from Na⁺-Exchanged VONTs as a Long-Life Li-Ion Anode. The Li⁺ charge storage mechanisms for Na-VONTs and heated Na-VONTs were initially investigated via analysis of cyclic voltammetry (CV) curves, as shown in Figures 3a and 3b, respectively. The initial as-prepared VONTs are V₂O₅, and after ion-exchange there are no significant phase changes, as shown from the XRD patterns in Figure 2b. Consequently, Na-VONTs exhibit electrochemical properties similar to previous reports for V₂O₅ cathode materials; however, our Na-VONT samples are examined as an anode material and are thus cycled to a lower potential limit. It is also worth noting that our Na-VONT samples were cycled on Cu substrates, which are commonly used for anode materials. Previously reported Na-VONTs that were examined as cathode materials were cycled on Al foil substrates.¹⁶ A series of reduction peaks were observed in the initial CV scan for Na-VONTs. The reduction peaks observed at \(\sim 2.50 \) and \(1.70 \) V during the initial cathodic scan are associated with the formation of the γ-Li₄V₂O₅ and ω-Li₂V₂O₅ phases, respectively.⁵⁷ The strong, wide reduction peak centered at \(\sim 0.75 \) V is due to the further reduction of vanadium to lower oxidation states. A similar peak was previously observed at this potential for V₂O₅ and VO₂ when cycled as an anode material.⁵⁸,⁵⁹ A strong peak was observed in the cathodic scan at \(\sim 1.24 \) V, corresponding to the promotion of V to higher oxidation states.

There are some significant differences in the initial anodic scan for the heated Na-VONTs compared to the untreated Na-VONTs, as shown in Figure 3b. Low intensity reduction peaks are observed at \(\sim 2.60 \) and \(1.75 \) V, corresponding to the initial reduction of V present within Na₂V₂O₅. A strong reduction peak was observed at \(0.70 \) V, followed by a sharp reduction peak from \(0.50 \) to \(0.01 \) V, which is characteristic of alloying type anode materials. Similar sharp reduction peaks have been observed for Ge- and Si-based anodes.⁶⁰,⁶¹ The reduction of V to lower oxidation states will be discussed in greater detail during analysis of galvanostatic cycling curves. The initial charge and discharge curves for Na-VONTs and heated Na-VONTs, cycled with an applied specific current of 50 mA/g, are shown in Figures 3c and 3d, respectively. The large initial charge capacity, which is observed for both ion-exchanged and Na₂V₂O₅ materials, may be attributed to the formation of an SEI layer on the surface of the nanostructured samples as well as the formation of quasi-reversible LiO₂, during the lithiation process down to the lower potential limit of 0.01 V (vs Li/Li⁺). A previous study by Swider-Lyons et al. on the influence of thermal treatment on the electrochemical performance of V₂O₅ as a cathode material suggested that annealing in an O₂/H₂O atmosphere can introduce defects, within the crystal lattice, such as cation vacancies, which may serve as additional charge-storage sites and electrochemically exchange Li ions.⁶² The thermal preparation of samples may have resulted in the formation of similar defect sites, and this has been reported as a contributory reason for initially higher capacities. For practical use in commercial cells, the ICE of the Na-VONT samples would need to be improved, and this is normally achieved by prelithiation. The low ICE over the first five cycles or so represents the stabilization of lithiation similar to a prelithiation step, and once achieved, the CE remains remarkably stable.⁶³,⁶⁴

The initial charge capacity for Na-VONTs, 1912 mAh/g, was greater than the initial value for the heated Na-VONTs, which achieved a capacity of 1481 mAh/g. Subtle differences can be observed in the voltage profiles of the charge and discharge curves for both samples. Differential capacity plots (DCPs) were determined to further investigate the charge storage mechanism for Na-VONTs and heated Na-VONTs. The DCP of the first charge for Na-VONTs contains a series of reduction peaks, as shown in Figure 3e. The wide band centered at 2.36 V and the sharp peak at 1.73 V, have previously been reported for V₂O₅ cathode materials and correspond to the formation of γ-Li₄V₂O₅ and ω-Li₂V₂O₅ phases, respectively.⁵⁷ Based on the number of moles of intercalated Li per V₂O₅ at different potentials (shown in Figure 3c), identification of Li₄V₂O₅ phases corresponding to the other reduction events are possible. The peak at 1.24 V can be attributed to the formation of a Li₄V₂O₅ phase and thus the reduction of V⁵⁺ to V⁴⁺. The wide peak centered at 0.82 V corresponds to the formation of a Li₂V₂O₅ phase and the reduction of V⁶⁺ to V⁵⁺ and V⁴⁺. At this potential (and V oxidation state), displacement reactions may possibly occur with Li₂O formation proximal to the O-deficient anode material. The sharp peak at 0.49 V may be assigned to a Li₄V₂O₅ phase and the reduction of V⁴⁺ to O⁺. The sharp peak from \(\sim 0.32 \) to 0.01 V may correspond to the reduction of V⁺⁺ to metallic V. Previous reports on V₂O₅ as an anode material suggest that when cycled below 0.01 V (vs Li/Li⁺), the oxide is reduced to vanadium metal and thus behaves as a conversion mode material.⁶⁵,⁶⁶ The DCP for the initial recharge curve for Na-VONTs (Figure 3g) can be deconvoluted to demonstrate contributions from five oxidation peaks, which may correspond to the progressive oxidation of V from V⁶⁺ to V⁴⁺, confirming efficient reoxidation of V in each cycle, deintercalation of Li, and presumably a reasonably fast oxygen mobility between the Li₂O and the suboxide, if this phase is present. The DCP of the first charge for the heated Na-VONTs (Figure 3f) contains a series of peaks at \(\sim 1.62, 1.15, 0.82, \) and 0.27 V, corresponding to the progressive reduction of V⁵⁺ to V⁴⁺. The sharp peak centered at 0.05 V may be attributed to the reduction of V⁺⁺ to metallic V. The DCP of the initial discharge for heated Na-VONTs (Figure 3h) consisted of a series of convoluted peaks.
The rate response at low specific current (C-rate) of Na-VONTs and heated Na-VONTs was compared by cycling samples at an applied specific current of 50 mA/g for 250 cycles. A selection of the resulting charge and discharge profiles from the second cycle onward is shown in Figure 4. After the second charge ~3.59 mol of Li was inserted into the Na-VONTs; this decreased to ~1.75 mol after the 50th charge and decreased further to ~0.97 mol after the 250th charge. The heated Na-VONTs demonstrated a higher intercalated Li mole fraction per NaV2O5 unit than the Na-VONTs per V2O5 unit, as shown in Figure 4c.d. After the second charge ~4.63 mol of Li was inserted into the heated Na-VONTs; this value decreased to ~2.26 mol after the 50th charge and to ~1.20 mol after the 250th charge. The increase in the amount of intercalated Li leads to slightly increased capacities observed for the heated Na-VONTs compared to the ion-exchanged Na-VONTs, as shown in Figure 4e.

Both materials demonstrated similar capacity retention when cycled using a low applied specific current of 50 mA/g. Both samples demonstrated an initial sudden decrease in capacity values over the first 50 cycles; however, capacity retention significantly improved from this point onward with the Coulombic efficiencies for both samples increasing to 95–98% and remaining above this value for the remainder of the 250 cycles. Detailed analysis of the DCPs of the charge and discharge curves for both samples suggests that at lower potentials the V present in the Na-VONTs and heated Na-VONTs (NaV2O5) is reduced. This indicates that both samples initially behave as intercalation mode anode materials. In the case where a sufficient mole fraction of Li is intercalated to reduce the V, we surmise that at those lower potentials (<0.2 V) conversion mode processes may occur. In that case, the overall process is presumed to follow NaV2O5 + zLi+ + ze− → y(NaLi)2O + LiV2O5+y−2. Where (NaLi)2 species form below 0.2 V following polarization effects noted in the rate of voltage drop in galvanostatic curves from 0.2 to 0.01 V. Capacity fading issues over initial cycles are well-known for conversion mode materials, and similar trends have been reported for materials including Co3O4, Fe2O3, and MnO2. The initial irreversible capacity loss for both samples is due to the significant change in the phase of the starting materials, from a complex compound in the form of V2O3 or Na2V2O5 to an unary metal. The heated Na-VONTs demonstrated slightly higher specific capacities than the Na-VONTs. After the 50th charge the specific capacity for the heated Na-VONTs was ~297 mAh/g compared to ~258 mAh/g for Na-VONTs. Similarly, the charge capacities after the 250th cycle were ~160 and 136 mAh/g for the heated Na-VONTs and Na-VONTs, respectively. Considering the stability of the cycled Li3Na2V2O5 phase toward reversible lithium intercalation and mitigation of continued capacity fading, we propose the following overall reaction suggested by Bouhedja et al.66 which is primarily an intercalation mode process involving lithiation of the Na2V2O5: Na2(V5+xV4−x)O5 + xLi+x+ + xe− → Li2Na(V5−2xV4+2x)O5 + V4+ + xV3+ + xV2+ + xV+ + xe−. This process accounts for the relative quantity of V in each oxidation state at particular voltages in the overall voltage window, in the lithium mole fraction range 0 ≤ x ≤ 4. From electroneutrality conditions and multiple redox of V confirmed by CV, differential capacity, and XPS, the cation redox of V charge compensates for the Li intercalation. Once stable cycling and capacity is obtained, the Li mole fraction in Li3Na2V2O5 reduces (Figure 5d,d,h) from just over x = 4 to lie between x = 0.8–1.3. In this context, the initial capacity fading could occur because the contribution of all four redox events (V4+−V2+, V2+−V3+, etc.) becomes limited in successive cycles, and full oxidation happens on successive recharging steps. In this type of scenario, the relative contributions of ~1 Li or 1 e− per V redox becomes predominantly the V4+−V3+ redox according to Na(V5+xV4−x)O5 + xLi+x+ + xe− → Li2Na(V4−2xV3+2x)O5. Heated Na-VONTs demonstrated slightly higher capacity values than the Na-VONTs when cycled at a low specific current of 50 mA/g. To determine the influence of charging rate on the charge storage properties of the samples, the applied specific current was increased by a factor of 4, from 50 to 200 mA/g. Na-VONTs and heated Na-VONTs were cycled 1000 times, and a selection of charge and discharge curves from the first to the 1000th are shown in Figure 5. The voltage profiles for both samples are similar to those observed when...
cycled using a lower applied specific current (Figure 4). It is clear from Figure 5 that a greater mole fraction of Li was intercalated into the Na-VONTs after heating. After the 50th cycle ∼0.74 mol of Li per V₂O₅ unit was intercalated into the Na-VONTs compared to ∼1.07 mol of Li per NaV₂O₅ unit for the heated Na-VONTs. After 1000 cycles ∼0.38 and ∼1.23 mol of Li were intercalated into the Na-VONTs and heated Na-VONTs, respectively.

The greater Li insertion mole fraction for the NaV₂O₅ compared to the ion-exchanged Na-VONTs was also reflected in the specific capacity values achieved for both samples over the course of 1000 cycles. When cycled with a low applied specific current of 50 mA/g the heated Na-VONTs demonstrated slightly higher capacities than the ion-exchanged Na-VONTs; however, when cycled with a higher specific current of 200 mA/g (Figure 5g), the heated Na-VONTs exhibited considerably higher capacity values. There is an observable decrease in the capacity values over the first 100 cycles consistent with lithiation to an eventual consistent phase, before capacity retention and associated coulombic efficiency stabilizes. This initial decrease in capacity values is common for conversion mode anode materials, but in this case the fading is eliminated in favor of overall reversibility in cycling processes. The charge capacity for the heated Na-VONTs (NaV₂O₅) after 100 cycles was ∼174 mAh/g, and this decreased marginally to 162 mAh/g after the 1000th cycle; this corresponds to an impressive capacity retention of ∼93% over the course of 900 cycles for NaV₂O₅ as a negative electrode. The specific energy density of the heated Na-VONTs (NaV₂O₅) was calculated to be 261 Wh/kg (847 Wh/L based on the density of NaV₂O₅) after the 100th charge and 244 Wh/kg after the 1000th charge, which is significantly higher than the values obtained for the untreated Na-VONTs; 138 and 86 Wh/kg after the 100th and 1000th charge, respectively.

Heated Na-VONTs as NaV₂O₅ demonstrated specific capacity values that are greater than previously reported values for other vanadium oxide-based anode materials including V₂O₅, Li₁₋ₓVₓO₂, and Li₃VO₄ and comparable to vanadium oxide/carbon composite anode materials such as carbon-encapsulated Li₃VO₄ and Li₃VO₄/C submicrometer ellipsoids supported on reduced graphene oxide and a Li₃VO₄.
nanoribbon/graphene composite. A comparison of the capacity values observed for the heated Na-VONTs with charge capacities obtained for various vanadium oxide anode materials from the literature is illustrated in Figure S4 and listed in Table S1. Pseudocapacitive contributions to NaV2O5 charge capacities obtained for various vanadium oxide anode capacity values observed for the heated Na-VONTs with lithiation is predominantly linked to the valence of the material is not believed to contribute to charge capacity, and material that avoids a dominant contribution to conversion-mode processes are present.

CONCLUSIONS

To prepare an oxide anode that undergoes intercalation reactions and stable cycling over 1000 cycles at a high rate, we developed a Na ion-exchange protocol for VONTs to replace the amine functionalization, in a manner that allows ~1 Na per V2O3 unit to form the NaV2O5 phase on heating. The thermal treatment of Na-VONTs recrystallizes this nanotubular structure into irregularly shaped NaV2O5 crystals. The superior capacities obtained with the heated Na-VONTs compared to the untreated Na-VONTs are due to significant differences in the phase and crystal structure of the materials. We propose that the heated Na-VONTs behave as an intercalation mode material that avoids a dominant contribution to conversion modes processes from a metal oxide. Anion redox in this material is not believed to contribute to charge capacity, and lithiation is predominantly linked to the valence of the vanadium atom in the NaV2O5 crystal structure according to voltammetric profiling, but unequivocal determination of the anionic O redox activity in a sodium vanadate bronze intercalated by lithium remains to be determined.

Galvanostatic testing demonstrated the exceptional capacity retention properties of the heated Na-VONTs, delivering reversible capacities of ~174 and 162 mA h/g after the 100th and 1000th cycles, respectively, at a specific current of 200 mA/g. This corresponds to an impressive capacity retention of ~93% between the 100th and 1000th cycles. The capacity values exhibited by the NaV2O5 exceed most vanadium oxide-based materials tested at low potentials as anodes, including V2O5, Li1V0.1O2, and Li3VO4. This shows that significantly high specific capacities can be obtained for NaV2O5 nanostructures over a large number of cycles with exceptional capacity retention once the stabilized cation redox and cyclized lithiated phase is formed. As a conductive additive and binder-free formulation, sufficient electrical conductivity is maintained in this anode material and can be assessed at low voltage without graphite content or binder. The electrochemical performance of the heated Na-VONTs indicates that they have potential as an anode material for long cycle life Li-ion batteries, and the detailed analysis offers more insight into the development of higher volumetric energy density oxides as anode materials that are electrochemically more stable when conversion-mode processes are present.

REFERENCES

(78) Li, Q.; Wei, Q.; Sheng, J.; Yan, M.; Zhou, L.; Luo, W.; Sun, R.; Mai, L. Mesoporous Li₃VO₄/C Submicron-Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High-Power Lithium-Ion Batteries. Adv. Sci. 2015, 2, 1500284.

DOI: 10.1021/acs.aem.8b01895