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Abstract   
 

Censusing and monitoring populations are key priorities in conservation. This is 

particularly challenging for seabirds, where several life history characteristics and 

the remote nature of breeding colonies of many species make them difficult to 

study. Burrow-nesting species are the most difficult of all seabird groups to census 

due to their cryptic breeding habits, nocturnal behaviours within breeding colonies, 

and coexistence with other burrowing species. Historically estimates of population 

size in these species were obtained subjectively from the activity within colonies 

on a given day/night, though the relatively recent development of methodologies 

such as tape-playbacks have made it possible to generate population estimates 

using quantitative data. Nevertheless, gaps remain in our knowledge, such as the 

appropriate sampling approaches to take, the efficacy of some recently established 

automated methods, and the use of predictive species distribution modelling that 

could guide these time consuming efforts.  

 

In my thesis, we address some of these issues for three key burrow-nesting species 

in the northern hemisphere: the Manx shearwater (Puffinus puffinus), the European 

storm petrel (Hydrobates pelagicus) and the Atlantic puffin (Fratercula arctica). 

In the first paper, we explore a range of sampling approaches to estimate and detect 

changes in population size, using data from Manx shearwater censuses as a case 

study. This demonstrated that a priori knowledge of the density and distribution 

in a colony allows multi-stage stratification that dramatically improves the 

accuracy of population estimates at low levels of sampling. Power analyses found 

that many existing monitoring efforts are likely to fail to detect population trends 

due to the enormous effect of high variation of densities between randomly 

selected plots. However, subjectively sampling within areas of highest density 

significantly increases the power to detect declines. My thesis also shows that 

these breeding distributions can be predicted a priori using ensemble species 

distribution models built on density data from censuses, habitat assessments, and 

digital elevation models. Another paper in my thesis examines the efficacy of 

emerging automated techniques, which is far from clear. Results here show, for 

the first time, that soundscapes obtained from passive acoustic monitoring in the 

Manx shearwater are driven by in-colony flight paths rather than local nest density, 

although a decline in density within the colony over two years coincided with a 
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decline in acoustic activity. The final empirical paper reports new population size 

estimates for several colonies and uses matrix population models to retrodict 

populations to explicate discrepancies between our estimates and those of the only 

previous census, Seabird 2000 (1998-2002). The findings here suggest that 

existing estimates for burrow-nesting Procellariiformes in Ireland are likely vast 

underestimates, however, the extent to which this is true for the national estimates 

cannot be quantified as factors that determine population size vary across a species 

range. Atlantic puffin populations appear to be in decline across the sites 

considered in this study. My thesis as a whole highlights the need for the revision 

and standardisation of the methods used to census and monitor burrow-nesting 

seabirds. For these breeding populations in the geographic region studied here, the 

Seabird Monitoring Handbook should be updated. Finally, the findings of this PhD 

research are synthesised in the form of an Irish Wildlife Manual, providing the 

National Parks and Wildlife service feasible options to fulfil their international 

obligations to report the conservation status of these populations.
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Chapter 1. General Introduction 

_________________________________________________________________ 
 
General Introduction   
 

The chapters in this thesis are written as individual, stand-alone research papers, 

aiming to improve censusing and monitoring practices of burrow-nesting seabirds, 

with a focus on three species that breed in Ireland. The conclusions of each chapter, 

with the exception of Chapter 5, are not just applicable to the species studied and 

the breeding range in the Britain/Ireland but can inform census efforts and 

sampling strategies across a wide range of species and locations. For ease of 

reading the thesis as a whole, I have cross-referenced chapters where appropriate, 

though the chapters are written so they can also be read in isolation.  

 

1. General Background 
 

A fundamental goal in ecology is to define the conservation status of any species 

population. This is of particular importance for species that are indicative of the 

health of an ecosystem (Grémillet and Charmantier, 2010; Coates et al., 2016; 

McKenzie et al., 2018). At the global scale, the International Union for the 

Conservation of Nature (IUCN) define the conservation status of species based on 

their abundance in relation to their risk of extinction. In the European Union, the 

Habitats Directive (Council Directive 92/43/EEC) requires each of the member 

states to maintain a species population at a ‘favourable conservation status’. 

Specifically, populations must remain at a viable level within natural habitat and 

a sufficient amount of suitable breeding habitat should exist to maintain its 

populations on a long-term basis. Wild bird populations are managed under the 

framework outlined in the Birds Directive (Directive 2009/147/EC) whereby 

member states are required to report on the conservation status of populations 

within their boundaries every six years. However, as these are directives and not 

regulations, the member states decide on how they adhere to these requirements. 

These approaches of defining a species conservation status have been criticised as 

the results are biased due to the lack of a common set of monitoring methods used 

across many species distributions (Lonergan, 2011; Maes et al., 2015), 
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highlighting the need for further research into standardised approaches in 

censusing and monitoring populations.  

 

Seabirds are key qualitative indicators of the world’s largest biome (Grémillet and 

Charmantier, 2010) and are subject to multiple threats including by-catch, habitat 

destruction, overfishing, marine litter and introduced mammalian predators (Jones 

et al., 2008; Croxall et al., 2012). Yet for many seabirds, their life-history traits, 

widespread distribution, migratory behaviours and remote breeding colonies mean 

that data on population size, reproductive parameters and health are limited both 

spatially and temporally. Major reviews of the available datasets such as Croxall 

et al. (2012) and Paleczny et al. (2015) have been produced and report a general 

declining trend in seabird populations. However, these conclusions are biased 

towards the seabird populations that have been subject to long-term study 

(Mitchell et al., 2004; Mavor et al., 2008; Horswill and Robinson, 2015), primarily 

cliff and ground nesting species that are relatively straightforward to census 

through observational counts from land and boat (Cotter and Rail, 2007).  

 

Burrow-nesting seabirds are particularly difficult to census due to their cryptic 

breeding habits, such as nesting in burrows, rock crevices and many species only 

return to breeding colonies at night. As a result, little demographic and monitoring 

data are available for their inclusion in meta-analyses (e.g. Paleczny et al. 2015). 

Advances in technology have furthered our understanding of these species’ at-sea 

distribution (Guilford et al., 2008; Grecian et al., 2012; Jessopp et al., 2013; Fayet 

et al., 2017; Critchley et al., 2018) and breeding distributions (Rayner et al., 2007; 

Krüger et al., 2017), yet for many species in this group accurate population sizes 

estimates are not available. This puts us in a difficult place to report on this group 

within the context of wider seabird declines, and more urgently it means that EU 

member states are not fulfilling their obligations to monitor populations of 

particular importance. Standardised approaches for monitoring burrow-nesting 

species are limited to the production of national seabird monitoring programmes 

developed by conservation bodies such as the Joint Nature Conservation 

Committee (Walsh et al., 1995), New Zealand’s Department of Conservation’s 

Conservation Services Programme (Parker and Rexer-Huber, 2016), the 

Norwegian SeaPOP programme (Anker-Nilssen et al., 2017) and seabird 

monitoring programs led by the U.S Fish and Wildlife services (Byrd, 2006). 
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However, the methods in obtaining population estimates to date have varied 

substantially both across sites (Silcocks, 1999; Smith et al., 2001; Murray et al., 

2003) and across censuses (Smith et al., 2001; Perrins et al., 2012).  

 

Across the British Isles (including Great Britain, the Isle of Man, Ireland and their 

surrounding smaller islands), three previous large-scale censuses on all seabird 

species have been carried out. Burrow-nesting Procellariiformes were omitted 

from Operation Seafarer (1969 – 1970; Cramp et al., 1974) and the Seabird Colony 

Register (1985 – 1988; Lloyd et al., 1991) censuses, which aimed to provide 

estimates of abundance and distribution of all seabirds that were visually 

conspicuous in the colony during daylight. The first attempt to census all burrow-

nesters at the national scale in Britain/Ireland was Seabird 2000 (1998 - 2002; 

Mitchell et al., 2004), though it is apparent that methods were not refined and 

many locations thought to hold breeding populations were omitted due to logistical 

constraints. Thus, baseline population estimates for these species are incomplete 

and the details on the methods used at the site level are vague, impeding our ability 

to carry out repeat surveys to determine changes abundance. Opportunity exists 

for standardised methods to be used in Seabird 4 (Seabirds count) which has begun 

with a census of cliff-nesting species in 2015-2017 (unpublished).  

 

The British Isles host internationally important numbers of three burrow-nesting 

species: the Manx shearwater (Puffinus puffinus), the European storm petrel 

(Hydrobates pelagicus) and the Atlantic puffin (Fratercula arctica). The Seabird 

2000 census estimated that approximately 90%, 3-11% and 10% of the global 

population of these species respectively breed across Britain and Ireland. The 

British Isles host a small portion of the global breeding population of Leach’s 

storm petrel (Hydrobates leucorhous) and over 80% of these are found to breed on 

four islands in St Kilda (Newson et al., 2008). Here I briefly outline census 

techniques that are currently used for burrow-nesting seabirds. I then introduce 

each of the three study species considered in this PhD and review the methods that 

have been used to estimate the size and monitor these populations across the 

British Isles. Specifically, for each species I review: (i) previous estimates of 

population sizes, (ii) the methods used to obtain these estimates and (iii) the 

existing monitoring techniques. Finally, I introduce the aim of each chapter within 

this thesis. 
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Census techniques for burrow-nesting species 

 

Historically, subjective population estimates were obtained from brief visits to 

colonies to estimate the activity on a given day, or in the case of many 

Procellariiformes, activity on a given night (Cramp et al., 1974; Taylor, 1988). 

These subjective approaches have since been replaced with more quantitative 

approaches (James and Robertson, 1985; Walsh et al., 1995; Ratcliffe et al., 1998; 

Smith et al., 2001). Early estimates of population size for most burrowing species 

were derived from counts of the number burrows present on an island or an 

extrapolated estimate from a sample of burrows (Gibbons and Vaughan, 1998; 

Mitchell et al., 2004). This method is still employed to estimate population size 

across some colonies whereby burrow surveys are conducted to determine the 

number of burrows that show signs of occupancy such as fresh digging or guano 

(Brun, 1966; Harris, 1984; Ankler-Nilson and Røstad, 1993; Rodway and Lemon, 

2011). The current use of the signs of occupancy method however is largely 

restricted to burrowing Auks (puffins, auklets) and burrowing penguins due to the 

development of the tape-playback method that has to date proved to be the most 

effective method of censusing many Procellariiformes species (James and 

Robertson, 1985; Walsh et al., 1995; Ratcliffe et al., 1998; Perrins et al., 2012). 

Tape-playbacks are now widely accepted as the standard method for censusing 

many burrow-nesting Procellariiformes and much of the literature surrounding this 

method aims to explain the variation in response rates by changing the origin 

(Ratcliffe et al., 1998), the quality (Brown et al., 2006) and the sex (Perkins et al., 

2017a) of the calls used.  

 

The application of these methods across numerous colonies to derive national 

population estimates can present a number of issues dependent on the (i) 

transferability of the method across colonies and (ii) the sampling effort that is 

logistically possible across colonies. To date, the sampling strategies and efforts 

used to obtain baseline estimates have differed across colonies, though the extent 

to which is unclear due to insufficient reporting of methods used and sampling 

effort (Mitchell et al., 2004). Generally, whole-island surveys are limited to well-

studied sites (Harris, 1984; Mitchell et al., 2004) and for most colonies population 

sizes are estimated using a sampling approach. Simple random sampling 
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approaches have been used across many colonies, where counts are carried out in 

sampling plots that are randomly placed across an island or colony (Smith et al., 

2001; Mitchell et al., 2004). Further complexity can be added to a study design 

when stratified approaches are used, though in censuses of burrow-nesting species 

to date in Britain and Ireland, these have not been reported (Mitchell et al., 2004). 

This is a major gap in our knowledge as stratified approaches have been 

successfully used in censusing other taxa to yield more accurate population size 

estimates (Wimmer et al., 2013; Metzger et al., 2013). In these censuses, strata are 

generally defined across geographical space in relation to habitat types, reducing 

the variation around density estimates, thus increasing our confidence in attained 

population estimates (Madders et al., 2003; Rosenberg et al., 2016). Further work 

to refine census efforts in a stratified approach for burrow-nesting species could 

potentially reduce the amount of sampling required to obtain accurate estimates.  

 

Tape-playback and signs of occupancy surveys are the most established methods 

used in censusing burrow-nesting species to date. Considerable research has gone 

into developing automated techniques aiming to reduce the time and cost 

associated with censusing these species. One such method is passive acoustic 

monitoring that has been used to estimate the size (Oppel et al., 2014), the recovery 

(Buxton and Jones, 2012) and trends (Borker et al., 2014) of seabird populations. 

A more recently established method involves the use of infrared cameras to survey 

Procellariiformes at night (Perkins et al., 2017b). The efficacy of these methods 

remains unclear and further testing is required to understand their applicability 

across species and across colonies.   
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2. Manx shearwater (Puffinus puffinus) 
 

 
Figure 1. The Manx shearwater Puffinus puffinus. © Gavin Arneill 

 

The Manx shearwater is a member of the family Procellariidae within the order 

Procellariiformes, also known as the ‘tube-noses’ and includes the albatrosses, 

storm petrels, petrels and fulmars (Brooke, 1990). Their breeding distribution is 

widespread across the North Atlantic, though an estimated 90% of the global 

population breed across the British Isles (Mitchell et al., 2004; Brooke, 2013). 

Manx shearwaters are predominantly site faithful, natal dispersal is low and 

breeding pairs show high burrow fidelity (Harris, 1972; Brooke, 1978a). As 

migratory species, breeding birds return to their breeding colonies in February or 

March after wintering in the South Atlantic off the coasts of South America and 

South Africa (Guilford et al., 2008). On return to their breeding colonies, breeding 

birds carry out burrow maintenance and build fat reserves before laying a single 

egg in May, and if successful, fledge a single chick in late August or early 

September (Harris, 1966; Brooke, 1978a). Due to their susceptibility to predation 

on land, Manx shearwaters only return to their breeding burrows at night and as a 

result have an increased dependence on vocalisations, and possibly olfactory cues, 

for navigation within the colony (James, 1985; Brooke et al., 2013).  

 

2.1. Previous estimates of Manx shearwaters in the British Isles. 

 

Population size estimates across most breeding colonies of Manx shearwaters are 

limited to the Seabird 2000 efforts reported in Mitchell et al. (2004). Seabird 2000 

incorporated most of the known breeding colonies across Britain, while in Ireland, 

many of the sites believed to host a breeding colony of this species were not 
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counted due to logistical constraints (Mitchell et al. 2004). Europe hosts >95% of 

the species breeding population (342,000-393,000 pairs) of which approximately 

320,000 breeding pairs are found across the British Isles (Mitchell et al., 2004; 

BirdLife International, 2015). Several colonies across Britain are thought to 

contain the majority of these breeding pairs, specifically the Pembrokeshire islands 

off the coast of Wales (approximately 168,000 breeding pairs) and Rum 

(approximately 120,000 breeding pairs) off the west coast of Scotland (Mitchell et 

al., 2004, see Figure 2). Prior to Seabird 2000, several sites had been subject to 

limited census effort that produced vague estimates of population size prior to the 

development of standardised tape-playback methods that now govern the census 

work of Manx shearwaters and many other Procellariiformes (Walsh et al., 1995; 

Ratcliffe et al., 1998; Silcocks, 1999; Perrins et al., 2012).  

 

 
Figure 2. The distribution and density of the most recent population estimates 

available for Manx shearwaters (Puffinus puffinus) breeding across the British 

Isles (Critchley et al., 2018).  
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2.2. Census methods for Manx shearwaters 

 

Before the development of tape-playbacks, population size estimates were based 

subjectively on the amount of vocal activity within an area on a given night (Cramp 

et al., 1974). The methodology progressed to surveys on signs of occupancy 

around burrows to estimate the number of apparently occupied burrows within a 

colony (Walsh et al., 1995; Silcocks, 1999). The first reported use of the now 

‘standard method’, tape-playbacks, is outlined in James and Robertson (1985). 

Several studies in the 90’s continued to use signs of occupancy, as the playback 

method James and Robertson (1985) put forward was thought to be flawed as 

females also responded to the playbacks (Gibbons and Vaughan, 1998; Silcocks, 

1999). This is now corrected for by measuring response rates on a sample of 

burrows that are known to be occupied and more recently female calls are also 

being used (see Perrins et al., 2012; Perkins et al., 2017a). The method has since 

been adapted and tested across multiple breeding populations (Smith et al., 2001; 

Perrins et al., 2012; Perkins et al., 2017a). Recent studies largely focus on refining 

the method by increasing the response rate (Brooke, 1978; Perkins et al., 2017a) 

aiming to reduce the large confidence intervals that surround population estimates 

(Perrins et al., 2012; Perkins et al., 2017a). These large confidence intervals 

highlight a major limitation of this method, which is that an extensive amount of 

field time is required to carry out tape-playbacks on often thousands of burrows 

(Perrins et al., 2012). Furthermore, tape-playbacks are only effective during a 

narrow time frame within the incubation and chick-guarding period when the 

response rate is high (Brooke, 2013).  

 

Little has been reported on the use of automated methods for censusing Manx 

shearwaters when compared to other Procellariiformes (Oppel et al., 2014, Perkins 

et al., 2017b). This is likely due to the effectiveness of the tape-playback method 

that is widely accepted as the standard approach and used across the species’ 

largest breeding colonies (Smith et al., 2001; Murray et al., 2003; Perrins et al., 

2012). The vocal activity of Manx shearwaters suggests that passive acoustic 

monitoring could be advantageous, yet the efficacy of this method for obtaining 

population size estimates and the use of acoustic indices in monitoring population 

trends remains unclear. 
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2.3. Monitoring Manx shearwaters 

 

Globally, long-term monitoring of Manx shearwaters (studies spanning more than 

a decade) is restricted to four colonies in Britain, namely the Pembrokeshire 

islands (Skomer and Skokholm), Rum and Copeland (Mavor et al., 2008). The 

methods used to monitor this species includes repeated tape-playbacks to establish 

density within permanent fixed plots, directly recording occupancy in accessible 

artificial burrows and inspection through burrow access tunnels (Perrins et al., 

2012; Stubbings et al., 2015). These permanent plots are used with the aim of 

detecting temporal trends in breeding populations and to measure demographic 

parameters such as breeding productivity and survival (Horswill and Robinson, 

2015; Stubbings et al., 2015). Yet, for approximately 95% of the known breeding 

colonies no permanent monitoring plots are established and conclusions on 

population change are drawn from national census efforts that occur every 10-15 

years (Mitchell et al., 2004; Mavor et al., 2008). To date, no regular monitoring 

programme has been established in the Republic of Ireland for Manx shearwaters. 

 

3. European storm petrel (Hydrobates pelagicus) 
 

 
Figure 3. The European storm petrel Hydrobates pelagicus. © Paul Whitelaw 

 

The European storm petrel is a member of the northern storm petrel family 

Hydrobatidae within the order Procellariiformes. This species is Europe’s smallest 

seabird, weighing on average approximately 23-28 grams (Flood, 2013). Their 

breeding distribution is widespread across the North East Atlantic, with the largest 

breeding populations found on the Faroe islands, the British Isles and across the 

Mediterranean (Snow and Perrins, 1998). European storm petrels migrate to the 
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South Atlantic to winter predominantly off the west coast of Africa, returning to 

their breeding colonies in March or April (BirdLife International, 2018). The 

breeding season for European storm petrels extends to late September or early 

October when they fledge a single chick. European storm petrels nest in excavated 

burrows, rock crevices, scree, stone walls and boulder beaches and only return to 

the nest under the cover of darkness due to their high susceptibility to predation 

on land (Bolton et al., 2010).  

 

3.1. Previous estimates of European storm petrels in the British Isles.  

 
European storm petrels were omitted from Operation Seafarer (Cramp et al., 1974) 

and the Seabird Colony register (Lloyd et al.,1991). Population estimates at the 

national level across the British Isles were first reported in Mitchell et al. (2004) 

from the Seabird 2000 census. An estimated 124,775 breeding pairs of European 

storm petrels were thought to be breeding in the British Isles, with approximately 

80% of these breeding in the Republic of Ireland (Mitchell et al., 2004; see Figure 

4). Tape-playback surveys were carried out across a total of 180 islands across the 

British Isles, of which 125 were found to have breeding European storm petrels 

(Mitchell et al., 2004). Detailed efforts have been carried out on several sites 

across Britain such as Mousa off the north east coast of Scotland, on which several 

studies that refine the tape-playback methodology have been carried out (Ratcliffe 

et al., 1998; Bolton et al., 2010).  
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Figure 4. The distribution and density of the most recent population estimates 

available for European storm petrels (Hydrobates pelagicus) breeding across the 

British Isles (Critchley et al., 2018).  

 

3.2. Methods currently used to census European storm petrels.  

 

Early studies of European storm petrels involved nocturnal work to estimate 

population size through mark-recapture methods. Mark-recapture methods have 

been discussed in detail on two islands off the coast of Scotland (Hounsome et al., 

2002, 2003, 2006; Insley et al., 2004), outlining the challenges associated with this 

method including the difficulty in discriminating between breeding and non-

breeding birds that are captured. European storm petrels respond to tape-playbacks 

though response rates are lower than those of other Procellariiformes (Ratcliffe et 

al., 1998; Bolton et al., 2010). The first published study utilising tape-playback 

methods for this species was Ratcliffe et al. (1998), and remains the most utilised 

method of censusing European storm petrels (Fowler, 2001; Mitchell et al., 2004, 

Bolton et al., 2010).  
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Subsequent publications on census methods for this species largely report 

refinements to improve the response rate to tape-playbacks including the use of 

calls from other colonies (Ratcliffe et al., 1998), variation in the quality of 

recordings (Brown et al., 2006) and digitally manipulated calls (Soanes et al., 

2012). European storm petrels are known to have a higher response rate at night 

(Ratcliffe et al., 1998), however nocturnal fieldwork on remote islands with steep 

cliffs is often too hazardous. The low diurnal response rate of European storm 

petrels to tape-playbacks encourages research into alternative census methods, 

particularly those that can be automated. For example, developments in infrared 

camera technology have advocated their use in estimating the abundance of this 

species (Perkins et al., 2017b). More research is required to refine these methods, 

test their ability across multiple colonies, and most importantly develop a 

computational method of analysing the huge amount of data these devices 

generate. 

 

3.3 Monitoring European storm petrels.   

 

Monitoring efforts are restricted to a few breeding colonies across the British Isles, 

namely Mousa (Bolton et al., 2010), Skokholm and several small islands across 

Britain (Hounsome et al., 2002). Artificial nest boxes were first constructed on 

Skokholm in 2016 to be used in monitoring this species. Similar nest boxes have 

since been constructed on several sites across Britain and Ireland. Prior to the 

establishment of these artificial nest boxes, no systematic effort to attain 

demographic data such as productivity or survival was in place for this species 

across the British Isles (Horswill and Robinson, 2015). Despite hosting 

internationally important numbers of European storm petrels, monitoring efforts 

are restricted to one colony in Ireland, Skellig Michael (Birdwatch Ireland, 2013). 

Thus, there is an urgent need to establish monitoring programmes across the 

British Isles to effectively report, and assess their efficiency in detecting, the 

demographic trends of this species.  
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4. Atlantic puffin (Fratercula arctica) 
 

 
Figure 5. The Atlantic puffin (Fratercula arctica). © Gavin Arneill 

 

The Atlantic puffin belongs to the order Charadriiformes within the family Alcidae 

that includes the guillemots, murrelets, puffins and razorbills (Linnaeus, 1758). 

Their breeding distribution is widespread across the North Atlantic from 

Newfoundland to Russia, with the largest breeding colonies found in Iceland, 

Norway and the British Isles (BirdLife International, 2015; IUCN, 2015). Atlantic 

puffins mainly breed on coastal cliffs on offshore islands, overwinter at sea and 

only return to breeding colonies in spring (Harris, 1984; Harris et al., 2010; 

Jessopp et al., 2013). This species shows high site fidelity, returning to the same 

colony each year (Calvert and Robertson, 2002) and typically breed in the same 

burrow (Anker-Nilssen and Røstad, 1993; Finney et al., 2003). Breeding birds lay 

a single-egg clutch and fledge a single chick in July or early August. The 

productivity rates for this species are particularly low compared to other burrow-

nesting seabirds (Harris et al., 2005; Miles et al., 2015; Horswill and Robinson, 

2015). Unlike Manx shearwaters and European storm petrels, Atlantic puffins are 

active in breeding colonies diurnally and consequently the methods in which they 

are censused and their inclusion in previous census efforts differ considerably.  

 

4.1. Previous estimates of Atlantic puffins in the British Isles. 

 

Atlantic puffins were censused in all national censuses to date, the most recent 

estimate was 600,751 breeding pairs across the British Isles (Mitchell et al., 2004). 

Mitchell et al. (2004) reported population increases of 33% and 19% since 
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Operation Seafarer (1969 – 1970) and the Seabird Colony Register (1985 – 1988) 

respectively. In recent years, Atlantic puffins have experienced rapid declines, and 

have been given the conservation status ‘Vulnerable’ on the IUCN’s red list of 

threatened species globally and ‘Endangered’ at the European scale (IUCN, 2015; 

Miles et al., 2015). The largest known breeding colonies are found off the north 

coasts of Scotland; where nan Eilean, Shetland and St. Kilda were identified as the 

most important areas containing the highest proportions of the breeding population 

in Britain and Ireland (Cramp et al., 1974; Lloyd et al., 1991; Mitchell et al., 2004; 

see Figure 6).  

 
Figure 6. The distribution and density of the most recent population estimates 

available for Atlantic puffins (Fratercula arctica) breeding across the British Isles 

(Critchley et al., 2018).  

 

4.2. Methods currently used to census Atlantic puffins 

 

Across the three previous national census efforts, the methods reported include a 

combination of (a) surveys of apparently occupied burrows and (b) observational 

counts of individuals of birds in flight, on cliffs and rafting in waters adjacent to 
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colonies (Cramp et al., 1974; Lloyd et al., 1991; Mitchell et al., 2004). These 

methods are typically carried out as whole-island censuses, however sampling 

approaches can be used when sub-colonies are discernible across an island 

(Brooke, 1972; Ashcroft, 1979; Walsh et al., 1995).  

 

The ‘standard method’ of censusing Atlantic puffins involves inspecting 

individual burrow entrances to determine signs of occupancy such as fresh 

digging, guano and feathers (Walsh et al., 1995; Anker-Nilsson and Røstad, 1993; 

Mitchell et al. 2004). The first reported use of this method to estimate colony size 

was in Brun (1966), and it has since been adopted across several sites (Brooke, 

1972; Harris,1980;1984). The method was refined by Anker-Nilsson and Røstad 

(1993), constructing the “star method” that permits whole-island sampling to be 

carried out to determine population size with greater accuracy. However this 

method is labour intensive and furthermore, in a heterogeneous colony, the burrow 

may be occupied by other burrow-nesting species (Rayner et al., 2007). Survey 

accuracy is therefore increased if burrow occupancy is examined by manual 

inspection or the use of a burrowscope (Rayner et al., 2007; Buxton et al., 2016). 

Grubbing of burrows (Calvert and Robertson, 2002), which involves reaching into 

the burrow to search for the presence of a breeding adult, an egg or nest material, 

is another method used across several breeding colonies in Britain (Walsh et al., 

1995; Mitchell et al., 2004). This method is invasive and should be limited to 

species that are tolerant of disturbance at the nest (Ambagis, 2004; Boland and 

Phillips, 2005), an issue that is addressed in the literature as Atlantic puffins are 

known to be sensitive to disturbance in some colonies (Kelly et al., 2015). This 

method is further restricted by the substrate on the colony as burrows may be too 

deep to inspect and multiple nest chambers may be found within a single burrow 

entrance.  

 

A major limitation of the methods discussed above is the necessity to access and 

inspect individual burrows, a feat that is not possible across many colonies where 

breeding burrows are located on coastal cliffs and steep inaccessible areas on 

remote islands. During Seabird 2000, observational counts were only carried out 

where access to individual burrows was limited (Mitchell et al., 2004). Yet 

observational counts have been used to estimate population size and trends across 

some of the largest colonies across the British Isles (Miles et al., 2015). Moreover, 
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observational counts of burrow-nesting species have previously been reported as 

the preferred census method as they cause less disturbance compared to other 

methods (Calvert and Robertson, 2002). The limitations of this method are 

equivalent to those seen in surveys on cliff and ground nesting species such as 

Common guillemots (Uria aalge), whereby the temporal variation of colony 

attendance reduces the accuracy of counts (Sims et al., 2006). To overcome this 

limitation, Miles et al., 2015 suggested the use of repeated counts, reporting the 

highest total count to reduce the effect of low colony attendance on a given day.  

 

4.3. Monitoring Atlantic puffins 

 

Long-term demographic data for Atlantic puffins is sparse, and the methods used 

across breeding colonies are inconsistent (Horswill and Robinson, 2015). The 

breeding population of Atlantic puffins on the Isle of May off the east coast of 

Scotland is the most intensively studied across the British Isles, and much of the 

work carried out here resembles that of the work carried out in other well-studied 

colonies such as Røst, Norway (Harris, 1984; Harris and Wanless, 1991; Anker-

Nilsson and Røstad, 1993). The methods used on these sites require individual 

apparently occupied burrows to be assessed for signs of occupancy. Several other 

sites across the British Isles, including the Farne Islands, use grubbing methods as 

discussed previously (Ashcroft, 1979; Walsh et al., 1995; Mitchell et al., 2004). 

Another approach uses focal samples across an area of apparently occupied 

burrows to make inference on productivity across years, whereby the number and 

frequency of prey loading adults returning to burrows is recorded (Breton et al., 

2006). The outputs of these monitoring methods have been used to link 

demographic parameters to variables such as prey availability across years (Harris 

and Wanless, 1991; Harris et al., 2007) and generally show declining population 

trends across Britain (Miles et al., 2015). In the Republic of Ireland however there 

has been no consistent effort to monitor any breeding population of Atlantic 

puffins.   
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5. Thesis aims and structure 
 

The overarching aims of this PhD study are: 

 

(i) To compare the ability and efficiency of a range of census methods and 

sampling strategies to determine population sizes and detect changes 

over time for burrow-nesting species. 

(ii) To critically assess the accuracy of historical population size estimates 

of these species by examining the historical estimates and modelling 

potential change. 

(iii) To propose standardised census and monitoring strategies for the study 

species in support of Ireland’s commitment to Articles 10 and 12 of the 

Birds Directive.  

 

In Chapter 2, I investigate the ability of different sampling strategies and efforts 

required to (a) obtain accurate abundance estimates and (b) detect population 

declines between national population census efforts, that are currently every 10-

15 years. This chapter uses census data across four breeding colonies of Manx 

shearwaters. The study provides insight into the uncertainty surrounding existing 

national census efforts, with the aim of informing conservation managers of the 

ability to draw conclusions on population status, and how census efforts can be 

refined to reduce uncertainty around population size estimates.  

 

One such refinement to census efforts is undertaking stratified sampling 

approaches, and Chapter 3 shows how ensemble species distribution models can 

inform this. I demonstrate the efficacy of ensemble species distribution models 

that utilise habitat and topographical data, with the aim of accurately predicting 

the distribution of these three species across breeding colonies. The models are 

built on distribution data collected for the three species across eight islands in 

Britain and Ireland. I discuss the scope of these models and how conservation 

efforts could benefit from their use.  

 

In Chapter 4, I investigate the role of passive acoustic monitoring in determining 

the local nest density of Manx shearwaters. This chapter combines data from tape-

playback methods, passive acoustic monitoring and GPS tracking of breeding 
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birds to determine the drivers of the soundscape within a seabird colony. This 

chapter is in review for publication in Ibis.  

 

In Chapter 5, I report revised population size estimates for all three species across 

several colonies in Ireland. I use Leslie matrix population models to carry out 

retrospective projections of population size to determine the extent of the 

discrepancies between recent estimates and those of Seabird 2000. I discuss the 

potential causal factors of these differences in population sizes and what these 

findings might suggest for the national estimates.  

 

In Chapter 6 and the Appendix, I synthesise the findings of this PhD research in 

the form of an Irish Wildlife Manual. This sets out feasible options for ongoing 

national census efforts to be carried out by the National Parks and Wildlife Service.   
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Abstract  

 

Sampling approaches used to census and monitor populations of flora and fauna 

are diverse. The intricacy of sampling designs typically range from simple random 

sampling through to complex hierarchal stratified designs, and the efficacy of the 

approach is determined by the spatial and temporal distribution of the population 

to be studied. Long-term monitoring programs used to assess seabird population 

trends are often hampered by large and difficult to access colonies, with spatially 

variable distribution patterns that require a large amount of time to survey. We 

aimed to determine the sampling effort required to (a) obtain abundance estimates 

with a high degree of confidence, and (b) detect population declines under 

different scenarios of a regionally important species in the Atlantic, the Manx 

shearwater (Puffinus puffinus). Analyses were carried out using data collected 

from tape-playback surveys on four islands in the North Atlantic. To explore how 

sampling effort influenced confidence around abundance estimates, we used the 

heuristic approach of imagining the areas sampled represent the total population, 

and bootstrapped varying proportions of subsamples. This revealed that abundance 

estimates from randomly subsampling less than 50% of all plots vary dramatically, 

leading to unacceptable lack of confidence in population estimates. Confidence is 
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dramatically improved using a stratified approach. Furthermore, power analyses 

suggested that the random selection of monitoring plots generally gives little 

confidence in the statistical power to detect overall population declines of 10%, 

and density-dependent declines as large as 50%, because variation in density 

between plots is so large. Thus, current monitoring programs have a high 

probability of failing to detect population level changes due to maladaptive 

sampling efforts and the random selection of monitoring plots. However, focusing 

sampling effort in areas of highest density dramatically increases the power to 

detect year to year population decline. We discuss what our findings suggest about 

how these challenging, yet vulnerable seabird populations might be censused and 

monitored most effectively.  

 

Keywords: Monitoring, Burrow-nesting seabird, Power analysis, Census, 

Bootstrapping, Population trends
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1. Introduction 
 

In recent years, the need for robust methods in which populations can be censused 

and monitored has become more pressing as anthropogenic impacts intensify 

(Bender et al., 1998; Oaks et al., 2004; Croxall et al., 2012). Recent publications 

aim to improve census and monitoring practices by modifying existing methods 

(Frey et al., 2014; Perkins et al., 2017) and utilising technological advances 

(Savage et al., 2010; Hodgson et al., 2016) with the aim of reducing the associated 

costs (Borker et al., 2014; Hartill et al., 2016). Despite ongoing efforts to improve 

existing methodologies, basic sampling approaches that underpin these efforts 

remain to be refined and standardised. This challenge is widespread across many 

species, in particular in avian groups such as seabirds where the accuracy of 

population size estimates and trends in some species are questionable due to 

inconsistencies and errors in the methods used.  

 

The methods used to sample populations of fauna and flora vary, both across taxa 

and often across breeding populations of a given species (Kindberg et al., 2011; 

Nalwanga et al., 2012; Macnaughton et al., 2015). Simple random sampling is 

often used in field studies to estimate densities and monitor populations, especially 

when species are highly mobile (Nalwanga et al., 2012; Carrara et al., 2015). 

However, these methods may be unsuitable, or indeed unnecessary, when 

sampling in logistically challenging areas and where individual organisms are 

static or show site fidelity. Moreover, many species distributions are highly 

clustered, and random sampling necessitates a uniform distribution for small 

samples to be truly representative. If spatial patterns of distribution are known a 

priori, this information can be used to obtain more accurate estimates by 

stratifying sampling approaches. In ecology, stratification is most typically carried 

out using defined strata across geographical space, predominantly distinctive 

habitat types to determine species abundance across a mixed landscape (Madders 

et al., 2003; Rosenberg et al., 2016). Abundance estimates for each strata are then 

combined to give an overall estimate for the area; this approach has been 

successful in censuses and monitoring efforts across many taxa (Wimmer et al., 

2013; Metzger et al., 2013). Further complexity can be added to stratified sampling 

in the form of multi-stage stratification, often used in pharmaceutical and 

educational research. This is a hierarchical design where samples are drawn and 



2. Sampling strategies 
 

 30 

then further subdivided based on another known variable (Thomas and Heck, 

2001; Tchoubi et al., 2015). Multi-stage stratification is not commonly used in 

ecological research, yet is applicable in certain instances such as repeat census 

efforts where baseline distribution data is available to reduce the effect of variation 

between strata. The estimate and the surrounding confidence interval attained from 

any effort will largely be determined by the sampling approach used.  

 

Generating baseline population estimates at a given time is a crucial aim in 

conservation, but monitoring these populations over time is equally important. In 

some groups, such as wading bird species or cliff and ground nesting seabirds, 

whole population counts of individuals are possible (Amano et al., 2010; Chardine 

et al., 2013). For many species, sampling is more appropriate (Sims et al., 2006; 

Meyer et al., 2010), which is typically done by regularly sampling population 

densities in a number of fixed sample plots over time (Corona et al., 2010; 

Woinarski et al., 2010; Harris et al., 2016; Dolrenry et al., 2016). These sampling 

approaches are likely to be suitable when distributions do not change rapidly over 

time (Jackson et al., 2008), and when species are patchily distributed for example 

within a specific habitat type, precluding the use of random sampling. One group 

where this is largely thought to be true is in seabirds, which show high site fidelity, 

are patchy in their distribution, and are migratory, thus only accessible during their 

breeding season when they return to land.  

 

As apex predators that feed on prey from a range of trophic levels, seabirds are not 

only key qualitative indicators of the world’s largest biome, they are also among 

the most threatened vertebrates in the world (Diamond and Delvin, 2003; 

Grémillet and Charmantier, 2010; Croxall et al., 2012). Global monitoring efforts 

suggest that many seabird populations are in decline (Paleczny et al., 2015). This 

is primarily because of their sensitivity to invasive mammals, overfishing, by-

catch, marine pollution, disturbance, habitat destruction, and climate change 

(Croxall et al., 2012). However there is considerable uncertainty over the status 

and trends across all seabird species because most studies are biased towards 

species that are easy to observe nesting on cliffs or on the ground where whole 

colony counts are often possible (Cotter and Rail, 2007; Wanless et al., 2007; 

Collas and Burgun, 2011; Meade et al., 2013). Burrow-nesting seabird species are 

amongst the most threatened of all seabirds, and yet detailed population 
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monitoring studies are rare. For example, in Paleczny et al.’s (2015) review, 

approximately 46% (n = 74) of the species not considered (n = 162) were burrow-

nesters. The main reason burrow-nesting species are poorly represented is that they 

are extremely difficult to census. Many Procellariiformes, for example, are 

remarkably difficult to census not just because they nest underground, but also 

because they coexist with other burrowing species and only return to breeding 

colonies at night (Smith et al., 2001). 

 

The Manx shearwater (Puffinus puffinus) breeds across the North Atlantic, with 

over 90% of the global population on offshore islands around Britain and Ireland 

(Mitchell et al., 2004). Thorough monitoring efforts for this species commenced 

with the development of the tape-playback method by James and Robertson 

(1985), since used in several censuses (Smith et al., 2001; Murray et al., 2003; 

Perrins et al., 2012). Nevertheless, there remains considerable uncertainty over 

population size and trends, notably because it remains unclear how to sample 

individual colonies effectively (Walsh et al., 1995; Mavor et al., 2008). Here, we 

assess the performance of different sampling strategies across multiple colonies, 

using data collected from tape-playback surveys, and a bootstrapping approach to 

determine the levels of variation associated with different subsampling efforts. 

Subsampling the sampled area allows inference to be made on real data, rather 

than from simulated or extrapolated abundance estimates. We test the efficiency 

of a cluster sampling and a multi-stage stratified sampling approach. Cluster 

sampling groups plots based on the presence or absence of breeding burrows from 

initial baseline surveys, and sampling is only carried out within areas containing 

at least one breeding burrow. In multi-stage stratification, the randomly selected 

plots are stratified by different densities, and sampling occurs within each strata. 

We then examine the statistical power to detect simulated population changes 

across two censuses by subsampling variable numbers of plots, which we did for 

three different simulated declines. In the first instance, our study aimed to inform 

the design of sampling strategies for obtaining abundance estimates and detecting 

population declines across national scales. However, it can also inform monitoring 

trends across any taxa, avian or otherwise, with similar life history and ecological 

characteristics. 
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2. Methods 
 

2.1 Tape-playback surveys 

 

Population estimates were obtained from Skomer Island, Wales (2011), and three 

islands in Ireland; Little Saltee, Co. Wexford (2013), High Island, Co. Galway 

(2015) and Inishvickillane, Co. Kerry (2016), using tape-playback methods 

(Figure 1). Surveys were carried out during incubation and early chick-rearing 

periods (May to June), because the likelihood of a breeding adult being present in 

the burrow drops sharply once the chick hatches. Playbacks were conducted during 

the day to minimise the inclusion of non-breeding birds in burrows (Mitchell et 

al., 2004). Male Manx shearwater calls were played at burrow entrances at a 

natural volume (ca. 55dB) for three to four call cycles (approximately 15 seconds) 

or less if an immediate response was received (Smith et al., 2001). Male recordings 

were used because they are known to elicit a higher number of responses compared 

to female only calls (Brooke, 1978, Perkins et al., 2017). The recordings used for 

playback surveys in Ireland were from birds recorded on the Pembrokeshire 

Islands off Wales, as foreign calls are also known to elicit a higher response rate 

in other Procellariiformes species (Ratcliffe et al., 1998). This differed on Skomer 

where the calls used were of birds from the neighbouring island, Skokholm. 

Response rate corrections were applied at the site level, thus any differences in the 

calls used during the respective survey efforts have no effect on the analyses here. 

Across all efforts, sample plots were delineated using ArcGIS (versions 10 - 

10.2.2) and visits were randomised in the order in which plots were sampled with 

tape-playbacks to reduce any temporal bias due to any changes in response rate. 

When wind conditions were greater than Beaufort force six, tape-playbacks were 

not carried out to limit the number of potentially missed responses.  
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Figure 1. Distribution of Manx shearwater breeding colonies across the British 

Isles (Critchley et al., 2018). Study sites indicated on the map: (A) High Island, 

Co. Galway, (B) Inishvickillane, Co. Kerry, (C) Little Saltee, Co. Wexford and 

(D) Skomer, Pembrokeshire, Wales. 

 

2.2 Abundance Estimates 

 

We used census data available from four study colonies where different sampling 

strategies had been used, and therefore the posthoc analyses were carried out on 

each island separately. Abundance estimates were generated using a combination 

of whole-island counts (Little Saltee; surveyor David Murphy), and sampling 

using either a random sampling approach (High Island, Skomer (Perrins et al., 

2012)), or a clustered approach (Inishvickillane) based on the presence or absence 

of at least one apparently occupied burrow (AOB). Sampling designs for Skomer 

and Little Saltee were conceived by the aforementioned surveyors, while the 

sampling designs for High Island and Skomer were designed throughout the PhD 

study and driven by the time available to census the islands. Time constraints 

associated with access to Inishvickillane warranted the clustered design, whereas 



2. Sampling strategies 
 

 34 

on High Island sampling across the entire island was possible. The whole island 

survey on Little Saltee covered 100% of the workable area, approximately 38%, 

16% and 3.5% of the total island workable area was sampled on High Island, 

Inishvickillane and Skomer respectively. To determine the total number and 

distribution of burrows across High Island and Inishvickillane, parallel transects 

50 metres apart were carried out in a north-south direction across the entire island. 

Sample plots on High Island were 30m x 30m within each 50m x 50m grid square, 

while on Inishvickillane sampling used circular plots with a radius of 5.7m within 

25m x 25m plots (Figure 2 (A & B)). Sampling across Little Saltee was carried out 

in rectangular plots of 50m x 10m. Specifically, plots that were inland were 

sampled using rectangular plots lying parallel to one another spanning the entire 

grid square. Plots next to the coast used belted transects to follow the coastline. 

The combination of the two allowed whole-island sampling which we are 

confident incorporated all of the breeding population (Figure 2 (C)). Methods used 

to calculate the population size on Skomer Island involved carrying out tape-

playbacks in circular sampling plots with a radius of 10m in the centre point, or as 

near as safely possible, of predefined 100m x 100m grid squares across the island 

(Figure 2 D; see Perrins et al. 2012).  

 

Previous studies that used sampling approaches to estimate population size 

multiply the total number of responses by a correction factor of 1.98 to correct for 

the fact that occupied burrows respond approximately 50% of the time (Brooke, 

1978). We calculated colony-specific response rates for High Island, 

Inishvickillane and Skomer by visiting burrows that were known to be occupied 

multiple times (30 AOBs on High Island, 4 times; 76 AOBs on Inishvickillane, 9 

times; 33 AOBs on Skomer, 8 times). No local response rate was calculated for 

Little Saltee, the average response rate from other Irish colonies recorded during 

Seabird 2000 were used in its place (Mitchell et al., 2004). Visits were separated 

by at least 24 hours to reduce playback habituation and we assumed that response 

rate did not change with time of day (see Perkins et al., 2017). 
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Figure 2. Schematic outlining the sampling strategies used during playback 

surveys of (A) High Island, Co. Galway, (B) Inishvickillane, Co. Kerry, (C) Little 

Saltee, Co. Wexford and (D) Skomer Island, Pembrokeshire, Wales. The black 

squares in B indicate the 50x50m plots that had at least one burrow present.   
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2.3 Sampling effort and population estimates 

 

We emphasise that, in this heuristic exercise, the total area sampled for each island 

is treated as a population; thus the abundance estimates reported here are for the 

area sampled on each island, not extrapolated estimates for the entire island. This 

is valid as the plots were sampled randomly. To illustrate the variation in 

subsampling efforts using random, clustered and multi-stage stratified (‘stratified’) 

approaches, bootstrap analyses were carried out using the statistical software ‘R’ 

version 3.3.2. Random sampling involved subsampling from all plots within a site. 

In the clustered approach, indicative of sampling when presence or absence is 

known in an area, subsamples were taken only from sampled plots in which at least 

one AOB was found. In the stratified approach, which is relevant where repeat 

census efforts are conducted with a known baseline breeding distribution a priori, 

the plots were stratified for four quantiles (0-25%, 25-50%, 50-75% and 75-100%) 

of plot density, and proportionately subsampled within each strata. Bootstrap 

resampling was carried out in 10% increments from 10% to 100% of all plots; thus 

for these approaches, 10% is 10% of the total sampled plots, not 10% of the entire 

island’s area. Resampling was repeated 10,000 times, the means of all 

bootstrapped subsamples approximate the actual abundance due to the large 

number of iterations. Levene’s test for equality in variances was used across all 

bootstrapped samples to compare across sampling approaches. It’s important to 

note that although a clustered design was used on Inishvickillane (discussed in 

section 2.2), random bootstrap sampling was still possible as not all plots within 

the larger 50x50m grid squares contained breeding burrows.  

 

2.4 Detecting population change 

 

Power analyses were used to assess how effective subsampling plots would be at 

detecting different simulated declines in population density across two census 

efforts. This was carried out using three different simulations of population 

decline: (1) where there was a decline across the entire colony, plot-specific 

declines were applied in a normal distribution centred around a 10, 20, 30, 40 and 

50% overall population decline and the monitoring plots are selected at random; 

(2) where there was a decline in high-density areas only and the monitoring plots 

are selected at random, simulating for example, the destruction of favourable 
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habitat or the introduction of a disease with density dependent transmission (e.g. 

Descamps et al., 2012). In simulation 2, the top 25% densest plots were subject to 

normally distributed simulated declines, producing overall population change in 

increments of 10% up to 50%. In simulation (3), declines were simulated in a 

normal distribution across all plots, and the selection of monitoring plots was 

restricted to the areas of highest density (top 25%) in a clustered approach. Many 

existing monitoring programmes of burrow-nesting species sample <50 plots 

(Rodway et al., 1996; Stubbings et al., 2015); thus, we calculated the statistical 

power associated with sampling 10-50 plots, in increments of 10. To show the 

statistical power associated with the different simulated declines and subsampling 

efforts, the packages “effsize” and “pwr” were used in the statistical software ‘R’ 

(version 3.3.2). The package “pwr” uses Cohen’s d effect size (Cohen, 1988) that 

was calculated for the simulated declines in “effsize”. The 95% confidence 

intervals of statistical power are reported here to demonstrate the precision of the 

power associated with each simulation.  

 

3. Results  
 

3.1 Abundance estimates and bootstrapping 

 

A total of 5,183 responses were elicited from playbacks on 21,756 burrows across 

all study sites over the four censuses. The number of responses and playbacks 

conducted on High Island, Inishvickillane, Little Saltee and Skomer were: 

176/1,599; 224/1,254; 308/5040 and 4,475/13,863 respectively. Local response 

rates were calculated at 0.55 ± SE 0.07, 0.49 ± SE 0.03 and 0.403 ± SE 0.025 on 

High Island, Inishvickillane and Skomer respectively. The actual abundance 

estimates (AOBs) for the area sampled on each island are represented by the 

broken red line in Figure 3.  

 

Abundance estimates obtained from the bootstrapping analyses across different 

sampling efforts for the different sampling approaches are shown in Figure 3. As 

expected, increasing sampling area led to narrower ranges in the bootstrapped 

abundance estimates for all study sites (Figure 3). Levene’s test for equality in 

variances showed a clear advantage of clustered and stratified sampling 

approaches over random sampling; results for each comparison are outlined in 
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Table 1. Comparing random and clustered sampling approaches, all comparisons 

for both Little Saltee and High Island produced statistically significant (p <0.001) 

differences, with less variation in the estimated abundances when using clustered 

approaches. A similar result was found for Inishvickillane apart from one 

comparison at 30% sampling. Skomer had fewer significant differences, with two 

sampling levels showing no statistically significant (p >0.05) difference in 

variance (see Figure 3 and Table 1(i)). Comparing random and stratified 

approaches showed that all comparisons across all sites revealed a significant (p 

<0.001) reduction in variance (see Table 1 (ii)). Thus, the stratified approach 

proved the most effective at reducing the variance in bootstrapped estimates.  

 

 
Figure 3. Bootstrapping tape-playback abundance estimates of the sampled area on four 
Manx shearwater colonies in Ireland and Wales. Boxplots show the range of bootstrapped 
abundance estimates associated with random sampling, clustered sampling, and multi-
stage stratified sampling in plots of different densities defined by the quartiles. The boxes 

contain the middle 50% of abundance estimates while the whiskers contain the upper and 
lower 25% of the abundance estimates. The broken red line represents the actual 
abundance of the entire area sampled (not equating to the entire colony).  

Multi-stage stratified
Cluster
Random

Sampling Approach
n =148

n =156 n =297

n =196
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Table 1. Levene’s test comparing the variance in the range of bootstrapped 

abundance estimates of Manx shearwaters breeding on four islands off of Ireland 

and Wales between (i) random and clustered sampling approaches and (ii) random 

and stratified sampling approaches. Both the F-statistic and p value are reported 

here, outlining the significance of the differences between the variances in the 

abundance estimates. The significant difference corresponds to lower variability 

in clustered and stratified approaches compared to random sampling.  

% Area 
Sampled 

 
High Island  

 
Inishvickillane  

 
Little Saltee  

 
Skomer 

(i) Random vs. Clustered 

  F p  F p  F p  F p 

10%  84.29 <0.001  47.6 <0.001  35.51 <0.001  3.92 0.047 
20%  42.86 <0.001  65.11 <0.001  106.67 <0.001  2.99 0.083 

30%  17.36 <0.001  7.58   0.001  132.95 <0.001  8.81 0.003 
40%  82.82 <0.001  63.73 <0.001  86.91 <0.001  5.99 0.01 
50%  65.88 <0.001  74.02 <0.001  157.39 <0.001  4.33 0.038 
60%  35.47 <0.001  35.57 <0.001  154.3 <0.001  1.07 0.3 
70%  85.9 <0.001  22.61 <0.001  127.23 <0.001  6.34 0.012 
80%  88.04 <0.001  63.1 <0.001  131.97 <0.001  5.68 0.017 
90%  90.59 <0.001  13.45 <0.001  125.24 <0.001  7.71 0.005 
 

(ii) Random vs. Stratified 
  F p  F p  F p  F p 
10%  5973.5 <0.001  1126.6 <0.001  3372.9 <0.001  1153.5 <0.001 

20%  5461.5 <0.001  1003 <0.001  4446.4 <0.001  1165.2 <0.001 
30%  4750.8 <0.001  1173.4 <0.001  4638.9 <0.001  1104.1 <0.001 
40%  6351.5 <0.001  1448.6 <0.001  3787.8 <0.001  1063.2 <0.001 
50%  5673.9 <0.001  1643.7 <0.001  4917.5 <0.001  1051.1 <0.001 
60%  5148.8 <0.001  1359.8 <0.001  4855.2 <0.001  1094 <0.001 
70%  6120.6 <0.001  1328.1 <0.001  4410.8 <0.001  968.4 <0.001 
80%  5775.6 <0.001  1771.6 <0.001  4977.8 <0.001  1106.4 <0.001 
90%  5491.8 <0.001  874.3 <0.001  4711 <0.001  1211 <0.001 
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3.2 Power to detect population decline  

 

In simulation 1, where the simulated declines were across all plots and monitoring 

plots were randomly selected, statistical power changed with sampling effort in a 

similar way across the four study sites (Figure 4). Ability to detect declines in 

population density was high (above 0.8) only when >20 plots were sampled and 

the decline was 30-50%. The statistical power to detect a 30% decline, for 

example, requires at least 30 plots to be sampled to ensure a high degree of 

confidence in the statistical power to detect the change. The confidence in these 

power estimates increased substantially with the number of plots sampled when 

declines of 20% or more were simulated. However, power to detect a 10% decline 

in the population requires considerably greater sampling effort as confidence 

intervals remain large at 50 plots, this was true across all sites.  

 

In simulation 2, where the simulated declines occurred in a density dependent 

manner and where monitoring plots potentially came from all plots, the ability to 

detect population declines with a high degree of confidence was lower across all 

sites than in simulation 1 (Figure 5). Similarly, we see a slight increase in statistical 

power with increased sampling effort, yet the 95% confidence intervals remain 

large across all sampling efforts.  

 

Simulation 3 shows the statistical power associated with subjectively placing 

monitoring plots within the most-densely burrowed areas and a simulated decline 

across all plots identical to that of simulation 1. The ability to detect a population 

decline was significantly improved compared to simulations 1 and 2, this was true 

across all sites (Figure 6). Here we demonstrate that fewer plots, located in the top 

25% of densely burrowed areas, are needed to attain high statistical power with a 

high degree of confidence. 
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Figure 4. The statistical power (95% confidence intervals) to detect simulated 

population declines of Manx shearwaters in all plots, not specific to any factor 

such as density or habitat, across different subsampling efforts on the areas 

actually sampled at four study sites.   
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Figure 5. The statistical power (95% confidence intervals) of different 

subsampling efforts to detect simulated population declines of Manx shearwaters 

varying from 10-50% of the total population. Declines were simulated in a density 

dependent manner, simulating for example catastrophic causes of failure within 

colonies (e.g. disease or habitat loss) across four different study sites.  
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Figure 6. The statistical power (95% confidence intervals) of different sampling 

efforts to detect simulated population declines of Manx shearwaters varying from 

10-50% of the total population. Simulated declines were not specific to any factor 

such as density or habitat, however monitoring plots were subjectively placed in 

the most densely-burrowed areas (upper 25%).  

 

4. Discussion 
 

We outline the uncertainty around extrapolated population estimates using three 

different sampling strategies on empirical data, demonstrating the clear advantage 

of the use of cluster and stratified sampling over random sampling approaches. 

Our findings illustrate that many current monitoring efforts are likely failing to 

detect changes in population densities as the random selection of monitoring plots 

reduces our ability to definitively detect declines. Finally, our findings suggest that 

monitoring efforts should be adapted to focus on areas of highest density to detect 

change.  
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4.1 Subsampling for abundance estimates 

 

We heuristically treated the samples in our analyses as if it were the entire island. 

Increased subsampling effort across all sampling strategies reduced variation in, 

and thus increased our confidence in, abundance estimates. This emphasises that 

relying on low sampling efforts increases uncertainty around population estimates. 

The clustering approach reduces this uncertainty, and can be applied where 

preliminary scoping work has been carried out to determine the presence or 

absence of breeding birds across all potential plots on the island. The effectiveness 

of this clustering approach, however, is determined by the distribution of the 

colony. Where many of the plots sampled on High Island contained no AOBs, 

clustering had a large impact, whereas most plots on Skomer contained at least one 

AOB and clustering had little effect. Thus, cluster sampling is most effective in 

colonies where the breeding birds are aggregated and patchily distributed.  

 

On the other hand, stratification dramatically increased confidence in the estimates 

for all colonies. Two points are relevant with respect to the approach we took and 

it’s general applicability. First, typically in ecology, stratified sampling is not 

multi-stage stratification, and sampling is typically carried out in defined strata 

across geographical space (e.g. habitat fragments, distance from the coast). 

However, the approach we took here is likely a reflection of habitat type, as the 

patchy distribution of burrow-nesting species is largely determined by the quality 

and availability of suitable breeding habitat (Rayner et al. 2007; Krüger et al., 

2017). Second, multi-stage stratification based on density is only possible where 

previous whole island efforts have been carried out to establish the distribution 

and density of breeding birds. We suggest this approach is valid for repeat census 

efforts in species, such as the Manx shearwaters, that show high nest site fidelity 

from year to year, and when habitat changes that could alter the nesting distribution 

are readily observed through habitat assessments. Although some of the most 

obvious examples of such species come from birds (seabirds, waterbirds), in 

principle this should apply across all animal taxa where site fidelity is the norm 

(Jackson et al., 2008; Cordes and Thompson, 2015), and across all perennial plants 

(Freckleton and Watkinson, 2002). 
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Much of the literature on seabird census methods outlines that the increased 

complexity of the study design required to obtain reliable population estimates is 

associated with higher costs. Our results show that low sampling efforts carried 

out in a random manner are unlikely to generate reliable abundance estimates. 

However, the difference between the random approach and the stratified approach 

clearly favours a stratified method. Further work is needed to understand the most 

efficient and realistic way of stratifying sample plots. This has been briefly 

discussed in Perrins et al., (2012), where they demonstrated that apportioning 

sampling plots into two groups, coastal and inland areas, was effective on Skomer. 

However the effectiveness of this simple clustering is likely to vary across sites 

and further work is required to identify the habitat and topographical features that 

determine the distribution of burrows. These have been explored in other burrow-

nesting seabird species (Scott et al., 2009; Krüger et al., 2017), but to date no study 

has looked at this for Manx shearwaters (but see Arneill et al., 2018 - Chapter 3). 

 

4.2 Power Analyses 

 

In much of the literature, statistical power is examined over a time series, reporting 

high power to detect low annual percentage declines (ca. 1% -10%) over periods 

of typically 5-50 years (e.g. Hatch, 2003; Sims et al., 2006). These studies are 

largely focused on cliff and ground nesting species, with the aim of estimating the 

duration of study required to detect specific annual rates of change, when island-

wide counts are attainable across years. However, national censuses, and for many 

burrow-nesting species, even colony censuses, typically occur much less 

frequently. In Britain and Ireland these occur every 10-15 years and few intensive 

monitoring programs are in place. Thus, conclusions on the trends breeding 

populations are drawn from very few data points separated by a long period of 

time (Mitchell et al., 2004; Mavor et al., 2008). Similarly, monitoring efforts after 

a specific event such as habitat loss or the introduction of invasive predators may 

necessitate comparing, and drawing conclusions from, two data points. These 

attempts to quantify population level change from randomly selected plots have 

previously failed to produce any meaningful conclusions on population level 

changes (Thompson and Thompson, 1980; Thompson, 1987). The power analyses 

reported here indicated, with random sampling, the ability to detect declines in 

density across two years is hindered by the variation in plot densities. This was 



2. Sampling strategies 
 

 46 

especially true in simulation 2, where the random selection of plots combined with 

the restriction of declines to areas of higher density, increased the 95% confidence 

intervals of statistical power. Worryingly, simulation 2 may be a more realistic 

representation of density declines within colonies (Ryan, 1993; Descamps et al., 

2012) and therefore is most illustrative of the problem associated with the random 

selection of monitoring plots.  

 

Simulation 1 and 2 show that randomly selected plots, that are not representative 

of the density and variation in the colony as a whole, limit our ability to detect 

population level change. Thus, when monitoring programs use a sampling design 

set out to determine the overall magnitude of population change, the program’s 

efficacy is determined by how representative those plots are of the population as a 

whole (Ankler Nilson and Røstad, 1993). Our analyses show that an enormous 

proportion of the colony would need to be resurveyed to account for spatial 

variation in density, a feat that is not logistically and economically feasible for 

many wildlife monitoring programmes limited in resources. To overcome this 

issue in burrow-nesting seabirds, we show that subjectively distributing 

monitoring plots in areas of high density increases statistical power to detect 

modest changes by removing the enormous, variance-inflating effect of low 

density plots. Additionally, the densest plots contained the majority of breeding 

birds due to the patchy distribution of breeding burrows, that is likely driven by 

favourable breeding habitats. For High island, Inishvickillane, Little Saltee and 

Skomer; the top 25% of plots contained approximately 58%, 60%, 42% and 46%  

of the population respectively. 

 

Our findings suggest that intense baseline survey efforts are needed to establish 

monitoring plots in areas of high density to increase the statistical power to detect 

population declines. By restricting monitoring to plots of higher density, the 

monitoring approach will sacrifice the ability to detect population expansion in 

newly established areas. This is noted in other taxa, such as marine turtles, where 

static monitoring programs have failed to detect expansion in breeding sites 

(Jackson et al., 2008). Furthermore, the restriction of sampling to areas of highest 

density could mean other density dependent processes that effect areas of low 

density could be missed as sampling is not representative. However, as 

demonstrated in our analyses, the effort required to detect population level changes 
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in distribution is beyond the scope of the resources of many conservation 

programmes. This restriction of sampling efforts to areas of highest density to 

detect declines is appropriate from a conservation perspective. This prioritisation 

of detecting decline is outlined in other seabird studies (Sims et al., 2006; Rodway 

and Lemon, 2011), with the recommendation that whole-island surveys are carried 

out at least every 5 years to ensure the monitoring plots are objectively placed 

according to the colony’s distribution. These conclusions are not solely pertinent 

to tape-playback efforts on burrow-nesting seabirds; the same conclusions apply 

to other species and methods where the variation in density of monitoring plots 

will largely determine the power to detect population changes. To adhere to the 

conclusions of the analyses carried out here, considerable effort is required to 

obtain baseline estimates of the population with a high level of confidence when 

surveying colonies such as Skomer. Moreover, the amount of effort required to 

obtain both a reliable abundance estimate and to optimally select monitoring plots 

of high density is dependent on the size of the colony. 

 

4.3 Conservation implications 

 

It has been suggested that for effective conservation, efforts should aim to 

conserve approximately 60-80% of a species baseline population, making accurate 

baseline population estimates of great importance (USFWS, 1992; Hatch, 2003). 

Furthermore, the variation around abundance estimates must be sufficiently small 

to detect an acceptable change in population density over time. This study suggests 

that random selection of monitoring plots, irrespective of colony size and 

distribution, will likely fail to detect modest population changes due to the 

enormous influence of plots that vary in density. Additionally, some standardised 

assumptions and methods should be made to correct for other sources of error 

involved in tape-playback surveys, such as the type of calls used during playback 

surveys, spatial variation in phenology, size of sampling plots and temporal 

variation in response rates. Thus a common set of methods should be established 

that (a) are simple in execution and (b) use sampling approaches with 

consideration of the key issues raised in this paper. At the global population level, 

seabird monitoring programs should have a set goal of creating standardised 

approaches that allow comparable datasets to assess the impact of future 
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perturbations, including resource patch use and climate scenarios on seabird 

populations at large scales.  
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Abstract 
 

Species distribution models (SDMs) can provide valuable insight into species’ 

relationships with environmental gradients, aiding conservation by identifying key 

habitats for vulnerable populations. Here, we use population distribution and 

habitat surveys in combination with digital elevation models to produce ensemble 

SDMs for three burrow-nesting seabirds; Manx shearwater (Puffinus puffinus), 

Atlantic puffin (Fratercula arctica) and European storm petrel (Hydrobates 

pelagicus). Ensemble models combined classification tree analysis (CTA), 

flexible discriminant analysis (FDA), generalised linear models (GLM) and 

multivariate adaptive regression splines (MARS) to identify important predictor 

variables for each species. The predictive accuracy of constructed models was 

determined using cross validation, data-split training, and Area Under Curve 

(AUC) evaluation metrics. Accuracy was high across all models, but ensemble 

models performed better than all single-algorithm models for each species. Habitat 

type was one of the most important predictor variables for all species. Predictive 

topographical variables varied slightly across species, with elevation, slope, flow 

drop and distance from the coast in general contributing the most across the 

ensemble models. The accuracy of the ensemble SDMs provides a robust 
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methodology for predicting the breeding distribution of difficult to census species, 

and will aid in the prioritisation of census efforts.  

 

Keywords: Burrow-nesting seabird, Census, Digital Elevation Models, Habitat, 

Seabirds, Species distribution models 

 

Introduction 
 

Understanding the relationship between an organism and its environment is one of 

the primary objectives in ecology, and is becoming increasingly important due to 

climate change, the continued expansion of invasive species, and the 

intensification of anthropogenic land use (Baxter and Possingham, 2011; Croxall 

et al., 2012; Russell et al., 2015). Gradients in biotic and abiotic factors that create 

microclimatic conditions have been shown to act as central driving factors in the 

spatial distribution of both plants and animals (Chen et al., 1999; Peterman and 

Semlitsch, 2013). In recent decades, the ability to explore these relationships and 

predict distributions of species across the environment has advanced significantly 

(Guisan et al., 2013; Espinoza et al., 2014; Golding and Purse, 2016) leading to 

the production of powerful species distribution models (SDMs) across a range of 

spatial scales (Oppel et al., 2012; Torres et al., 2015, Scales et al., 2015).  

 

The principal use of these SDMs is highlighted in studies that inform conservation 

measures for the protection (Lavers et al., 2014; Warwick-Evans et al., 2016) and 

monitoring of breeding populations (Peterman and Semlitsch, 2013; Mędrzycki et 

al., 2017). Such predictive modelling is based upon (a) datasets that contain at 

least presence data of species (sometimes both presence and absence) and (b) the 

assessment of the habitat conditions in which the species were most abundant 

(Phillips et al., 2006). The main aim is to use the relationship between fine-scale 

environmental gradients, species’ abundance, and population dynamics to project 

predicted abundance patterns across the geographical area to be studied (Grecian 

et al., 2012; Fithian et al., 2015). Recent work aims to further improve SDM 

methods, for example, the selection of any single-algorithm modelling approach 

has been shown to influence the resulting predictions (Oppel et al., 2012; Scales 

et al., 2015; Quillfeldt et al., 2017). In the last decade, model averaging techniques 
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have been adapted to create ensemble SDMs that overcome this problem (Thuiller 

et al., 2009; Grenouillet et al., 2011). 

 

SDMs have a role to play in reducing the amount of time and thus the cost 

associated with obtaining baseline information about populations, particularly 

when models can be created with reasonable accuracy for species that are cryptic, 

wide-ranging or inaccessible (Lavers et al., 2014; Krüger et al., 2017). Seabirds 

are amongst the highest profile species of conservation concern, are widely 

accepted to be key indicators of the largest biome, and have shown substantial 

declines in breeding populations (Grémillet and Charmantier, 2010; Croxall et al., 

2012; Paleczny et al., 2015). Many seabird species present a major challenge in 

census efforts due to their life-history characteristics, the inaccessibility of the 

breeding colonies and diurnal activity patterns.  

 

One seabird group that has proved to be the most difficult to census are the burrow-

nesting species (Walsh et al., 1995; Smith et al., 2001; Mitchell et al., 2004; Oppel 

et al., 2014). Censusing burrow-nesting species is challenging because of the 

amount of field time required to estimate burrow occupancy (Perrins et al., 2012), 

their co-existence with other burrowing seabird and mammalian species (Smith et 

al., 2001), inconsistency in the methods used across censuses due to technological 

advances (Mitchell et al., 2004), and because many species are nocturnal at the 

colony. Several factors are known to determine the quality of nesting habitat for 

some burrow-nesting species including pedological characteristics (Bancroft et al., 

2005; Whitehead et al., 2014) and the introduction of mammalian predators 

(Buxton et al. 2015). Thus, the creation of SDM’s that can utilise previous 

knowledge to best predict the distribution of these species in their remote breeding 

grounds would identify key habitats for these breeding populations. These 

predictions can aid future sampling efforts using stratified approaches that have 

been shown to greatly reduce the amount of sampling required to estimate 

abundance, while increasing the accuracy of results when compared to a random 

sampling approach (Wimmer et al., 2013; Arneill et al., 2018 – Chapter 2).  

 

Here we assess the efficacy of predictive species distribution modelling for three 

burrow-nesting seabirds: the Manx shearwater (Puffinus puffinus), the Atlantic 

puffin (Fratercula arctica) and the European storm petrel (Hydrobates pelagicus) 
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using data available from population surveys on several offshore islands around 

the British Isles. The aim of this study was to describe the fine-scale environmental 

features and gradients that drive the abundance patterns of these species, and to 

develop a model that can predict their distribution. This study represents the first 

comprehensive test of ensemble SDMs across multiple sites and species, and 

intends to highlight the utility of simple habitat assessment when designing 

sampling effort for difficult to census species.  

 

Methods 
 

Census efforts 

 

Tape-playback census methods (James and Robertson, 1985) were carried out 

across a total of seven offshore islands around the British Isles (Figure 1). Manx 

shearwaters were censused on six islands, and European storm petrels on three 

islands. Density estimates were generated using a combination of whole-island 

counts (Little Saltee, Beginish), and sampling using either random sampling 

approaches (High Island, Inishmurray, Great Saltee, Skomer), or a clustered 

approach (Inishvickillane) based on the presence or absence of at least one 

apparently occupied burrow (AOB) (see Table 1). Logistical constraints at each 

site necessitated different intensity and design of sampling efforts, so all resulting 

densities were standardised to estimates of the number of breeding pairs within 

50m x 50m grid squares. For some study sites this represents an extrapolated 

estimate because areas were subsampled. Where possible, local call response rates 

were applied to islands in order to increase accuracy. No local response rate was 

calculated for Little Saltee and Great Saltee, thus the mean response rate from Irish 

colonies calculated during Seabird 2000 surveys (Mitchell et al., 2004) was used 

in its place. The absence of breeding burrows on Beginish meant that no playbacks 

could be conducted to obtain a local response rate at this site. 

 

To obtain population size estimates for Atlantic puffins, observational counts 

across multiple visits were carried out at six island colonies (High Island, Beginish, 

Inishvickillane, Great Saltee, Little Saltee and Ireland’s Eye) following the 

protocol outlined in Walsh et al. (1995). Counts were carried out as early in the 

breeding season as logistically possible (April-June) because the number of non-
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breeding and prospecting birds is known to increase later in the breeding season 

(Mitchell et al., 2004). To reduce potential observer error in the density estimates, 

counts were carried out by two observers, with birds rafting on the water recorded 

as far as they could be accurately identified using binoculars (ca. 300m). To 

account for any potential time of day effects, where possible three counts were 

carried out per day between 06:00 – 09:00, 11:00-14:00 and 18:00-21:00. The 

density estimates used in the production of SDMs are the highest recorded counts 

of individuals observed on land during the surveys, as models were constructed 

using data that does not extend beyond the coastlines and using the highest count 

minimises the proportion of individuals that were missed during a single count 

(Walsh et al., 1995; Miles et al., 2015).   
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Figure 1. Location of colonies on which survey data was collected for Manx 

shearwater, Atlantic puffin and European storm petrels across the British Isles. For 

Manx shearwaters: High Island (HI), Beginish (BG), Inishvickillane (INV), Great 

Saltee (GS), Little Saltee (LS) and Skomer (SK). For Atlantic puffins: High Island 

(HI), Beginish (BG), Inishvickillane (INV), Great Saltee (GS), Little Saltee (LS) 

and Ireland’s Eye (IE). For European storm petrels: Inishmurray (INM), High 

Island (HI) and Beginish (BG).  
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Table 1. Census efforts used to determine density estimates used in the construction of ensemble species distribution models for Manx shearwaters (Puffinus 

puffinus) and European storm petrels (Hydrobates pelagicus) across all sites. 

Study Site: Skomer, 
Pembrokeshire 

Little Saltee, 
Co. Wexford 

Great Saltee, 
Co. Wexford 

High Island, 
Co. Galway 

Beginish, 
Co. Kerry 

Inishvickillane, 
Co. Kerry 

High Island, 
Co. Galway 

Beginish, 
Co. Kerry 

Inishmurray, 
Co. Sligo 

Species: Manx 
shearwater 

Manx 
shearwater 

Manx 
shearwater 

Manx 
shearwater 

Manx 
shearwater 

Manx 
shearwater 

European 
storm petrel 

European 
storm petrel 

European 
storm petrel 

Study Year 2011 2013 2014 2015 2016 2016 2016 2016 2017 

Study Period 4th June – 15th 
June 

20th May – 6th 
July 

4th June – 13th 
July 

25th May – 11th 
June 

23rd July – 27th 
July 

7th May – 15th 
June 

17th July – 11th 
August 

27th July – 30th 
July 

25th July – 30th 
July 

Sampling Approach Random Random Random Random Random Clustered Random Random Clustered 

Sampling method Circular plots 
(314m2) 

Transects  
(50m x 10m) 

Quadrats  
(50m x 50m) 

Quadrats  
(30m x 30m) 

Burrow survey 
Transects  

(50m x 4m) 

Circular plots 
(100m2) 

Transects  
(50m x 4m) 

Transects  
(50m x 4m) 

Transects  
(50m x 4m) 

Response Rate  0.403 (± 0.03) 0.44 (± 0.1)* 0.44( ± 0.09) 0.55 (± 0.068) N/A+ 0.49 (± 0.03) 0.56 (±0.154) 0.56 (±0.035) 0.58 (±0.02) 

n of AOB/AOS on 
which response rate was 
measured 

33 Not calculated Not calculated 30 Not calculated 76 30 30 92 

n of repeated measures 
of response rate 8 Not calculated Not calculated 4 Not calculated 9 21 3 3 

Area of whole island 
sampled (%) 3.5% 100% 7% 38% 100% 16% 11% 100% 14% 

Total area of island 
(Hectares) Approx. 334 Approx. 37 Approx. 89 Approx. 42 Approx. 14 Approx. 83 Approx. 42 Approx. 14 Approx. 90 

          

 *average response rate from Seabird 2000 (Mitchell et al., 2004) 
+ no burrows present, included in models as it represents true absence data.    
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Habitat and topographical data 

 
The densities and distributions of all Manx shearwater, Atlantic puffin and 
European storm petrel colonies were collated into a raster grid dataset of 50m x 
50m across each study site. Habitat surveys were carried out during census efforts 
using the DAFOR (Dominant, Abundant, Frequent, Occasional and Rare) scale as 
outlined in Fossitt (2000) on Great Saltee, Little Saltee, High Island, 
Inishvickillane, Ireland’s Eye, Beginish and Inishmurray. Here this was used to 
define the habitat within each grid square, allowing habitats with similar DAFOR 
characteristics to be grouped as categorical variables. Features such as stone walls, 
ruins and waterbodies within grid squares were noted in the form of binary 
covariates. Skomer’s habitat data was mapped using a combination of field data 
and aerial photographs on ArcGIS. Habitat data was projected in the form of a 
raster dataset of 50m x 50m grid squares comparable to that of the density and 
distribution of each species. Stone walls and rocky outcrops were mapped 
incorporating observations from aerial photographs, archived Ordinance Survey 
Ireland (OSI) maps, and field observations. High resolution Digital Elevation 
Models (DEMs) were produced for each island using elevation data (sampled at 1 
arc-second resolution, or approximately every 30 meters) from NASA’s freely 
available Shuttle Radar Topography Mission (SRTM). DEMs were used to 
calculate topographical parameters including slope, aspect, flow length and flow 
drop for each grid square using Spatial Analyst in ArcGIS (10.6 ESRI Inc, USA). 
In addition, the shortest distance from the center of each cell to the island coastline 
was calculated.  
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Table 2. Description of the habitat types, one of the highest scoring predictor 
variables in ensemble models across all species.  

Habitat index Habitat Description 

1 
Bluebell (Hyacinthoides non-scripta) and red campion (Silene dioica) dominated 
areas. 

2 Bog and waterlogged grassland 

3 Boulder Beach 

4 Open vegetation dominated (>50%) by bracken (Pteridium aquilinum). 

5 Dry heath tussock grassland 

6 Heather dominated upland habitat.  

7 Areas of exposed rock, no top soil.  

8 Dry calcareous and neutral grassland with rocky outcrops 

9 Scree 

10 Sea campion (Silene uniflora) dominated areas 

11 Sea pink (also known as sea thrift, Armeria maritima) dominated area 

12 
Both sea campion (Silene uniflora) and sea pink (Armeria maritima) present in 
approximately equal densities 

13 
Coastal cliff habitat: exposed rock (>50%) with ledges that may support salt-tolerant 
plants such as sea pink (Armeria maritima).  

 
Modelling methods  

 
Several species distribution models including classification tree analysis (CTA), 
flexible discriminant analysis (FDA), generalised linear models (GLM) and 
multivariate adaptive regression splines (MARS) were generated using the 
‘biomod2’ package in R (Thuiller et al., 2016). The use of biomod2 allows the 
construction and comparison of both single-algorithm and ensemble models. 
Model performance was assessed by the goodness of fit (explanatory power) and 
model accuracy (predictive power), as a default the package governs model 
selection by filtering models that have a true skill statistic (TSS) score lower than 
0.7. To further interpret the models’ predictive accuracy, data were split into 
training and test datasets (80:20) multiple times to allow quasi-independent 
sensitivity tests that assess the models performance to changes in initial conditions 
(Thullier et al., 2009). In biomod2 collinearity among covariates was removed by 
dropping correlated covariates that had the least contribution to both single-
algorithm and ensemble models. Spatial autocorrelation was assessed using 
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Mantel tests in the statistical software R and addressed using the block cross-
validation method outlined in Roberts et al., 2017.    
 
Model accuracy was determined by the average Area Under Curve (AUC) of the 
Receiver Operating Characteristic (ROC) of the cross validated models. The 
evaluation metrics reported are the mean of ROC scores of the five model runs 
cross validated five times. Variable importance for single-algorithm models was 
evaluated using biomod2’s randomisation function (Thuiller et al., 2016). The 
package uses a weighted average technique based on the single-algorithm models 
AUC values for ensemble forecasting. To calculate variable importance for the 
ensemble models, this weighting can be applied to the variable importance scores 
for single-algorithm models, which are summed for each variable and divided by 
the number of models used in the ensemble model (Fletcher et al., 2016). Model 
prediction outputs are the probability of presence as continuous values between 0 
and 1, ensemble model predictions were created using the weighted average across 
all single-algorithm models produced in ‘biomod2’. 
 

Results 

 
Model performance  

 
The accuracy of both single-algorithm models and ensemble models was high, 
with ROC scores ranging from 0.64 - 0.93 across all single-algorithm and 
ensemble models. The highest ROC scoring single-algorithm models were 0.89, 
0.85 and 0.88 for Manx shearwater, Atlantic puffin and European storm petrel 
respectively. Ensemble models built for each species incorporated 20, 7 and 5 
models and performed better with ROC scores of 0.92, 0.93 and 0.93 for Manx 
shearwater, Atlantic puffin and European storm petrel respectively (Table 3). 
Average sensitivity and specificity scores for all model types for each species are 
outlined in Table 2. Ensemble models performed particularly well, with sensitivity 
scores ranging from 82.14 – 95.29 across the three species. Specificity scores for 
both Manx shearwaters and European storm petrels were lower than sensitivity 
scores at 80.87 and 79.2 respectively. Conversely, the ensemble model for Atlantic 
puffins scored higher in specificity (92.58) than sensitivity (82.14). To illustrate 
the models predictive accuracy, figures 2-4 show examples of (i) the known 
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distribution from survey efforts and (ii) ensemble model predictions (probability 
of occurrence from 0 to 1) for two of the study sites for each species. Comparisons 
across all other study sites are outlined in the Supplementary Figures 1-3.  
 
Table 3. Model performance of single-algorithm and ensemble species distribution 
models built using the “biomod2” package in the statistical software R. Model 
performance is measured by the ROC values, the predictive power to determine 
presence = sensitivity (Sens.) and the predictive power to determine absence = 
specificity (Spec.) of each model that performed above the TSS threshold of 0.7 
as filtered by the R package.  

Model 

Species 

Manx shearwater Atlantic puffin 
European storm 

petrel 
Sens. Spec. ROC Sens. Spec. ROC Sens. Spec. ROC 

CTA 78.4 84.83 0.85 30.95 97.03 0.64 66.46 81.48 0.76 

FDA 86.88 76.89 0.88 85.72 82.37 0.85 71.88 83.78 0.82 

GLM 82.03 82.37 0.89 71.15 93.80 0.82 100 66.92 0.88 

MARS 85.47 79.3 0.88 68.18 96.12 0.82 91.73 73.46 0.88 

Ensemble 88.76 80.87 0.92 82.14 92.58 0.93 95.29 79.2 0.93 
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Figure 2. Comparison of (i) actual distributions attained from survey efforts (the 
number of apparently occupied burrows (50m x 50m)) and (ii) spatial predictions 
of ensemble models (probability of occurrence between 0 and 1) across two Manx 
shearwater colonies: (a) High Island, Co. Galway, (b) Inishvickillane, Co. Kerry.  
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Figure 3. Comparison of (i) actual distributions attained from survey efforts (the 
number of apparently occupied burrows (50m x 50m)) and (ii) spatial predictions 
of ensemble models (probability of occurrence between 0 and 1) across two 
Atlantic puffin colonies: (a) Little Saltee, Co. Wexford, (b) Great Saltee, Co. 
Wexford.  



3. Species distribution modelling 
 

 66 

 
Figure 4. Comparison of (i) actual distributions attained from survey efforts (the 
number of apparently occupied sites (50m x 50m)) and (ii) spatial predictions of 
ensemble models (probability of occurrence between 0 and 1) across two European 
storm petrel colonies: (a) High Island, Co. Galway and (b) Inishmurray, Co. Sligo. 
 
Predictor variable importance 

 
The ranking of variables with the highest contributions across models and species 
was broadly comparable; the highest contributors to the ensemble models for each 
species are highlighted in Table 4. Habitat type was one of the highest contributors 
across all single-algorithm and ensemble models for all three species, accounting 
for 29.23% – 37.19% of the sum of all importance values for the ensemble models. 
The boxplots for habitat type (Figure 5; index of habitat types in Table 2) suggest 
that the preferred habitat type varies across each species. The most important 
habitat types determined from the Manx shearwater ensemble model show this 
species preference to areas dominated by bluebell (Hyacinthoides non-scripta) and 
red campion (Silene dioica), sea campion (Silene uniflora), sea pink (Armeria 

maritima), and a mix of sea campion and sea pink. European storm petrels showed 
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similar variation to Manx shearwaters with highest predicted occurrence in areas 
with stone walls and dry-heath tufted grassland. Atlantic puffins showed greater 
restriction in breeding habitat compared to the Procellariiform species, with model 
predictions highest in sea campion dominated areas and coastal cliff habitat.  
 
The main topographical predictor variables differed across each species’ ensemble 
model. Elevation and distance from the coast were two of the main predictor 
variables for Manx shearwater, together accounting for 59.1% of the sum of all 
importance values (Table 4). The density plot curve suggests that Manx shearwater 
breeding is favoured in elevations between sea level and 100m, within 200 metres 
of the coastline (Figure 6 (i) & (ii)). Slope and flow drop were two of the main 
predictor variables for Atlantic puffin, accounting for 30.2% of the sum of all 
importance values (Table 4). The density plot curve for slope suggests that Atlantic 
puffin breeding is highest in areas with slopes between 0 and 20 (degrees), and 
flow drop of 0 and 35 (%) (Figure 6 (iii) & (iv)). Elevation and slope were two of 
the main predictor variables for European storm petrels, accounting for 36.88% of 
the sum of all importance values (Table 4). The density plot curve for elevation 
suggests that European storm petrels prefer elevations from sea level to 20m and 
areas with discrete slopes of 0 and 5 (degrees) (Figure 6 (v) & (vi)).  
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Table 4. Mean variable importance for single-algorithm (CTA, FDA, GLM, 
MARS) and ensemble (EM) models for each species. Variable importance scores 
are calculated by 1 minus the correlation score for each model. Scores were 
converted to % of the sum of all variable importance scores for each model here. 
The top three most important predictor variables for each species ensemble model 
are highlighted in bold.  
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Figure 5. Box-plots displaying the variation in ensemble model predictions of 
occurrence (probability scale from 0 to 1) across habitat types, one of the most 
important predictor variables for Manx shearwater, Atlantic puffin and European 
storm petrel. 
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Figure 6. Density plots of the top two non-habitat type predictor variables from 
final ensemble model (EM), in order of importance for each species.  
 
Discussion 

 
Predictive species distribution models informed by a set of predictor variables 
obtained from habitat assessments and digital elevation models accurately predict 
the breeding distribution of three burrow-nesting seabird species across eight 
islands. Across the species, model performance was high, with ensemble models 
more accurately predicting the distribution of breeding birds compared to single 
algorithm models. The model’s ability to determine presence (sensitivity), was 
high across the three species while the ability to determine absence (specificity), 
showed more variation across species. Habitat type was one of the most important 
predictor variables across all models, while the most important topographical 
variables for each species varied between elevation, slope, flow drop and distance 
from the coast.  
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The application and translation of model averaging techniques to ensemble SDMs 
has increased suddenly over the last decade as it is thought to provide better 
interpretation of predictor variable importance and generate more accurate 
predictions (Thuiller et al., 2009; Breiner et al., 2015; Fletcher et al., 2016). Our 
findings are consistent with these studies, where averaged models (ensemble 
models) performed better than single-algorithm modelling techniques across all 
species considered. While there is no consensus on which evaluation metric is 
preferable in ranking model performance, the AUC index has previously been 
criticised for over estimating the performance of models (Boyce et al., 2002; Lobo 
et al., 2008). This criticism is directed towards studies that utilise presence only 
data, a common limitation in SDMs for rare species (Breiner et al., 2015) or 
movement data (Scales et al., 2015), though here we used both presence and 
absence data. One key challenge faced when using SDMs is matching the spatial 
resolution of the response (burrows) and predictor (habitat, topography) variables. 
Here, the resolution of our models was limited by bird density plot-size as LiDAR 
data were available at a finer resolution (30m). Thus, potential exists to explore 
finer-scale relationships with habitat. However, these predictions are more 
affected by the sample size of the data used in model training, compared to the 
spatial scale of the plots (Araujo and Guisan, 2006; Hirzel et al., 2006; Guisan et 

al., 2007). 
 
The use of SDMs as a predictive tool has been questioned as the predictive power 
of the models is often tested within the same spatial and temporal range as the data 
on which the model is trained (Torres et al., 2015). Here, we model the distribution 
of three species that breed primarily in the North Atlantic, where constructed 
models should have high transferability across sites. This is particularly true for 
Manx shearwaters, where approximately 90% of the global population is thought 
to breed across the British Isles (Mitchell et al., 2004). There will be exceptions, 
however, because the second most important site for Manx shearwater is on the 
island of Rum where the entire colony is well above the maximum elevation 
sampled for our sites. Further extrapolative work could use these models to predict 
distributions across multiple sites that can then be ground-truthed using current 
census methods such as tape-playback surveys. This is particularly important 
across the range of both Atlantic puffins and European storm petrels as it would 
increase our confidence in the accuracy of these models. 
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Our ensemble models highlight the importance of habitat type as a good predictor 
of the breeding distributions in these burrow-nesting species. Across all three 
species, sea campion (Silene uniflora) dominated in areas with a high probability 
of occurrence. The importance of this plant species in predicting the distribution 
of seabirds is likely due to a shared preference for soil type, where softer soils 
facilitate burrowing, yet the sea campion’s woody root system provides structural 
support, reducing the risk of burrow collapse. The importance of this habitat type 
is well known; for example, on the Farne islands the removal of sea campion by 
Atlantic grey seals (Halichoerus grypus) reduced the available breeding ground 
for the island’s Atlantic puffin colony (Hirons and Hirons, 1972). The ensemble 
model for Manx shearwaters suggests that the probability of occurrence for this 
species is highest in areas dominated by bluebell and red campion. Bluebell and 
red campion dominated habitat is widely distributed across Skomer, the largest 
colony of breeding Manx shearwaters and this likely influences the model 
predictions. Similar to sea campion, red campion thrives in well-drained soils 
(Baker et al., 1947; Fossitt, 2000). Ensemble models for Atlantic puffins showed 
that the probability of occurrence for this species across habitat types is more 
restricted, where Atlantic puffins are only found in habitat dominated by sea 
campion and areas of coastal cliff habitat.  
 
The ensemble model for European storm petrels showed considerable variation 
across different habitat types compared to Manx shearwaters and Atlantic puffins. 
Highest probabilities of occurrence for this species were associated with areas 
containing stone walls and dry heath tussock grassland habitat. However, models 
performed relatively poorly at determining absence of breeding, likely due to the 
wide range of habitat types this species breeds in. This is highlighted in the poor 
fit seen in Figure 4(a)(i) where much of the island is predicted to be suitable for 
breeding European storm petrels. This may suggest that the population has not yet 
reached its carrying capacity i.e. not all suitable habitat is occupied or another key 
covariate is restricting the distribution of this breeding population on the island.  
One exception to this, highlighted in Figure 4(b), is where much of the island was 
dominated by unsuitable breeding habitat such as waterlogged soils and dense 
bracken (Inishmurray). Due to this lower accuracy in predicting areas of no 



3. Species distribution modelling 
 

 73 

breeding, designing a stratified sampling approach a priori for this species is more 
challenging compared to Manx shearwater and Atlantic puffins.  
 
The importance of topographical variables in the ensemble models differed across 
the three species. For the two Procellariiform species, elevation was one of the 
most important predictor variables, with peaks in probability of occurrence at 
elevations of less than 50m above sea level. These findings suggest that these two 
species do not show preference towards higher elevations like other 
Procellariiform species (Rayner et al., 2007; Pinet et al., 2009; Troy et al., 2017). 
Unlike these studies, the offshore islands we surveyed are largely free of the 
anthropogenic activities such as agricultural land use and infrastructure that limit 
the availability of breeding habitat to higher elevations on settled islands. In fact, 
we see the opposite, particularly with Manx shearwaters where the distance from 
the coast is an important predictor variable, with highest probabilities of 
occurrence within 200m of the coastline. This finding was also noted by Perrins et 

al. (2012) and remains true across all islands considered in this study. This may be 
explained by previous work that suggests the presence of mammalian predators 
may constrain breeding distributions to areas near cliff faces and crevices where 
predation risk is lower (Buxton et al., 2016).  
 
Another important topographical predictor variable in the ensemble models for 
two of the species, Atlantic puffin and European storm petrels, was slope. Peaks 
in probabilities of occurrence were found in areas where slope was between 0-10 
degrees. The values shown in the density plots suggest that gentle slopes are 
favoured by these species; however the extent of the gradient is likely influenced 
by two factors: (i) the averaging of DEM values to the grid square, as the ledges 
above the slopes would be incorporated, and (ii) birds are not breeding on sheer 
rocky cliffs, rather more gentle slopes where burrowing is still possible. Flow drop 
was one of the top predictor variables for Atlantic puffins, highlighting the 
importance of areas where the probability of precipitation movement into the grid 
square is low, thus indicating areas where the risk of burrow flooding is low.  
 
Our models generated predicted breeding distributions for three burrow-nesting 
species that accurately reflected the true distribution obtained from intensive 
surveys. Our modelling was possible because considerable effort was taken to 
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assess habitat in the field. Improved availability of further predictor variables 
would allow refinements to models. For example, accurate digital soil depth and 
soil moisture data (Tromp-van Meerveld and McDonnell, 2006) may be important 
predictor variables, as burrow-nesting seabirds have been reported to alter the 
habitat in which they breed, including soil characteristics (Bancroft et al., 2005). 
However, this data is not currently available for offshore islands around Ireland. 
We suggest that well-parameterised ensemble models can be used to inform survey 
efforts on islands with unknown distributions of burrow-nesting species. Much of 
this modelling approach can be carried out before visiting an island, for example 
the construction of the DEM and the mapping of distinct habitat types from 
satellite imagery or aerial photographs. Nonetheless accurate data of the 
distribution of habitat types across a single island is required from field surveys 
and dependent on the size of the island being studied, this can take several days to 
ascertain. Applying our models to poorly surveyed islands (particularly around the 
British Isles) will identify priority areas for census work and enable more efficient 
stratified sampling approaches to be used (Arneill et al., 2018 – Chapter 2). In an 
ideal study system, these predictions would then be ground-truthed to determine 
the accuracy of the models prediction (Peterman and Semlitsch, 2013; Krüger et 

al., 2017). Needless to say, the efficacy of models is dependent on good quality 
habitat data, highlighting the need for further research into methods of remotely 
mapping offshore island habitats. 
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Supplementary Material 

 
Supplementary Figure 1. Comparison of (i) actual distributions attained from 
survey efforts (the number of apparently occupied burrows (50m x 50m)) and (ii) 
spatial predictions of ensemble models (probability of occurrence between 0 and 
1) across three Manx shearwater colonies: (a) Great Saltee, Co. Wexford, (b) Little 
Saltee, Co. Wexford and (c) Skomer, Pembrokeshire, Wales.   
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Supplementary Figure 2. Comparison of (i) actual distributions attained from 
survey efforts (the number of apparently occupied burrows (50m x 50m)) and (ii) 
spatial predictions of ensemble models (probability of occurrence between 0 and 
1) of Atlantic puffins across three islands: (a) Inishvickillane, Co. Kerry, (b) High 
Island, Co. Galway and (c) Beginish, Co. Kerry.  
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Supplementary Figure 3. Comparison of (i) actual distributions attained from 
survey efforts (the number of apparently occupied sites (50m x 50m)) and (ii) 
spatial predictions of ensemble models (probability of occurrence between 0 and 
1) for the European storm petrel colony on Beginish, Co. Kerry.  
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Chapter 4. Flight paths rather than nest density shape soundscapes in a colonial seabird. 

______________________________________________________________________________ 

Flight paths rather than nest density shape soundscapes 
in a colonial seabird 
 
Arneill, G.1,2*, Critchley, E.J. 1,2, Wischnewski, S1., Jessopp, M.J.1,2† and Quinn, 
J.L.1†* 
 
1School of Biological, Earth and Environmental Sciences, Distillery Fields, University College Cork, Ireland. 
2 MaREI Centre, Environmental Research Institute, University College Cork, Beaufort Building, Ringaskiddy, 
Ireland. 

† co-senior author 
*Corresponding author. Email: gavin.arneill@ucc.ie 

 
Abstract 
  
Passive acoustic monitoring is increasingly being viewed as a cost-effective way 
to monitor wildlife populations, especially those that are difficult to census using 
conventional means. Burrow-nesting seabirds are amongst the most threatened 
birds globally but they are also one of the most challenging taxa to census, making 
them prime candidates for passive acoustic monitoring. Passive acoustic 
monitoring has the potential to determine presence/absence, or quantify burrow-
nesting populations, but its effectiveness remains unclear. We compared passive 
acoustic monitoring, tape-playbacks, and GPS tracking data to investigate the 
reliability of passive acoustics as a census method for the Manx shearwater 
(Puffinus puffinus). Variation in acoustic activity across 12 study plots on an island 
colony was examined in relation to burrow density and environmental factors 
across two years. As expected fewer calls were recorded when wind speed was 
high, and on moon-lit nights, but there was no correlation between acoustic activity 
within a plot and the density of breeding birds as determined by tape playback. 
However, there was a positive correlation between acoustic activity and the flight 
paths of breeding individuals around the colony detected by GPS. Contrary to 
previous studies, this suggests that the acoustic soundscape reflects in-colony 
flight patterns, not the local density of breeding birds. Nevertheless, these flight 
paths were consistent across three years, while a decline in acoustic activity across 
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all plots over two years coincided with a decline in breeding bird density. This 
suggests that in our population, acoustic monitoring could generate usable indices 
of population trends. 
 
Keywords: Passive acoustic monitoring, Population size estimation, Seabird, 
Telemetry, Burrow-nesting seabird, Procellariiformes, Monitoring
 
Introduction 

 
Time and cost-efficient methods for monitoring population trends are highly 
sought after in conservation (Wätzold and Schwerdtner, 2005; Nichols and 
Williams, 2006). Automated monitoring platforms are becoming increasingly 
important because they lower cost, whilst reducing observer bias and observer 
disturbance during monitoring (Carey, 2009). Passive acoustic monitoring has 
been widely used in both terrestrial and marine ecosystems, especially on 
cetaceans (Mellinger et al., 2007; VanParijs et al., 2009; Borker et al., 2014). The 
large distances that underwater vocalisations travel advocates the use of passive 
acoustics in the marine environment, allowing the measurement of patch usage 
and presumed habitat quality in vocalizing species (Verfuß et al., 2007; Pirotta et 

al., 2014). The general effectiveness of acoustic monitoring remains far from clear, 
however, for a wide variety of reasons. For example species differ in critically 
important factors, including call frequency, call volume, and call directionality, all 
of which influence detectability. Furthermore determining exactly what area is 
being sampled and how detectability changes with distance from the centre of the 
sample plot is extremely challenging (Robbins et al., 2015; Dufour et al., 2016). 
Thus there is a pressing need for further studies in a broader range of taxa before 
the full potential of passive acoustic monitoring can be realised. 
 
Despite the limited distances over which sound travels in air, many researchers 
have used passive acoustic methods to study a wide range of questions among 
avian species in terrestrial systems. These range from behavioural studies on vocal 
communication (Crane et al., 2016) and sexual selection (Taff et al., 2014), to the 
identification of new species (McKay et al., 2010). Several studies have reported 
on the use of passive acoustic monitoring to examine the efficacy of island-
population restoration efforts (Buxton and Jones, 2012; Croll et al., 2016), to 
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determine colony attendance (Mckown, 2008), and to assess breeding bird density 
(Oppel et al., 2014). The colonial nature of most seabird species potentially makes 
the use of acoustic monitoring a cost-effective tool, increasing efficiencies in 
collecting data across multiple colonies over a large geographical scale, 
determining species assemblages and numbers, and estimating breeding 
parameters such as phenology (Borker et al., 2015; Frommolt et al., 2017).  
 
Seabirds are amongst the most threatened taxa globally, with declining population 
trends observed across the majority of monitored species due to various 
anthropogenic pressures (Croxall et al., 2012; Paleczny et al., 2015). Yet, for many 
seabird species, primarily burrow-nesters, demographic data is not available to 
accurately define the conservation status of populations (Paleczny et al., 2015). 
Many burrow-nesting seabirds are difficult to monitor due to their low detection 
probability in breeding colonies by not being visually conspicuous while in their 
burrows, or only returning to the colony at night. Census methods are laborious, 
often requiring individual burrows to be assessed by visual inspection or tape-
playbacks to determine the number of occupied burrows within the narrow 
window of incubation and chick-guarding when birds respond to playbacks (James 
and Robertson, 1985; Mitchell et al., 2004). However, an increased use of 
vocalisations at night-time when many burrow-nesters return to the colony 
(Brooke, 1986) suggests acoustic monitoring could be effective. Previous work on 
another burrow-nesting seabird species demonstrated that automated recording 
devices have the potential to serve as a tool for linking call activity to local density 
of breeding birds (Oppel et al., 2014). Although the importance of controlling for 
factors that influence detectability has been well appreciated – for example moon 
illumination and wind speed (Buxton and Jones, 2012; Oppel et al., 2014) – to date 
no study has shown conclusively that acoustic recording can provide counts of 
individuals within a population.  
 
The effectiveness of passive acoustic monitoring to infer the density or occurrence 
of breeding birds is likely to depend on the behaviour of the birds being recorded. 
One reason for this is that much of the vocalization recorded may be caused by 
non-breeders (James et al., 1985). Another is that the acoustic soundscape may be 
affected by within-colony movement of breeding birds across a site, or by flight 
paths (‘flyways’) from breeding colonies to rafts or to foraging grounds at sea. 
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Although telemetry studies have been widely used to study behaviour and fine-
scale distribution of individuals at sea (Nesterova et al., 2015; Burger and Shaffer, 
2008; Lascelles et al., 2016), to our knowledge it has never been used to 
understand the acoustic soundscape within a colony.  
 
In this study we examine the soundscape of the Manx shearwater (Puffinus 

puffinus), a burrow-nesting Procellariiform. This species predominantly breeds in 
large colonies on remote offshore islands across the North Atlantic, only returns 
to the colony at night for incubating change-overs or chick provisioning, is highly 
vocal and rarely censused (Mitchell et al., 2004). We combine passive acoustic 
monitoring and plot census surveys using tape-playback methods to determine 
whether passive acoustic monitoring can estimate local seabird density within a 
breeding population. Furthermore, we predict that the vocalisations from birds 
flying within the colony may influence the soundscape and test this using data 
from GPS-tagged Manx shearwaters. We also controlled for the effects of 
environmental variables on the acoustic soundscape.  
 
Methods 

 
Density and distribution of Manx shearwaters 

 
The study site was High Island, Co. Galway, off the west coast of Ireland 
(53.54663N, -10.2573W). From the 23rd of May to the 11th of June 2015, tape-
playback sampling was carried out in the centre of twelve 50m x 50m grid squares 
that were randomly selected from plots known to vary in density from initial 
census work undertaken across the whole island in the same year. Tape-playbacks 
were carried out as used in previous studies (Smith et al., 2001; Perrins et al., 2012; 
chapters 2,3,5), following the method devised by James and Robertson (1985). 
Calls used for tape-playbacks were from a male Manx shearwater recorded on 
Skokholm; male calls were used because they elicit a higher response rate (but see 
Perkins et al., 2017), and survey efforts were carried out during this period because 
response rate drops dramatically post chick-guarding stage (Brooke, 1986). 
Following methods outlined by Smith et al. (2001) and Perrins et al. (2012), local 
response rate was calculated with repeated measures across 33 occupied burrows 
in 2015 and 48 occupied burrows in 2016. This method measured variation in 
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which burrows that are known to be occupied would respond to a series of four 
tape-playbacks trials separated by 24 hours to reduce the risk of habituation.  
 

Acoustic recording 
 

Several previous studies found that Wildlife Acoustic’s Song Meter units can 
record vocalisations up to 50 metres away (Buxton and Jones, 2012; Oppel et al., 
2014; Dufour et al., 2016). In 2015 and 2016, acoustic recorders (Wildlife 
Acoustic SongMeter 3 in 2015 and Wildlife Acoustic SongMeter 4 in 2016) were 
deployed across the same 12 study plots (Figure 1; Table 1). Recorders were 
placed on an 80cm wooden stake driven into the centre of the plots. Recorder 
height was approximately 50cm above the ground to ensure the recorder stood 
above the vegetation across all study plots. In 2015, two recorders were available 
and these were moved in a random order across the 12 study plots in cycles of six 
nights. These cycles were carried out non-consecutively across the breeding 
season from the 25th of May to the 23rd of August when fledging began. The 
addition of 10 extra acoustic recorders in 2016 enabled concurrent monitoring 
across all 12 study plots to collect comparable data between 8th of June and 24th of 
August non-consecutively. All recorders were programmed on identical cycles, 
where constant recordings were taken between 23:00 and 04:00 when birds are 
known to be most active in the colony (Brooke, 1978). The gain and sample rate 
of each recorder was +42.0 dB and 16kHz respectively as default settings.  
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Table 1. Density of apparently occupied burrows (AOB) across the 12 study plots 
determined through tape-playback and application of calculated response rate in 
2015 and 2016. 
 

Plot 2015 AOB 2016 AOB Mean Density 

1 10 7 8.5 ± 2.1 

2 36 24 30 ± 8.5 

3 16 11 12 ± 2.8 

4 2 0 1± 1.4 

5 6 2 4 ± 2.8 

6 16 11 13.5 ± 3.5 

7 10 6 8 ± 2.8 

8 2 2 2 

9 0 2 1 ± 1.4 

10 28 18 23 ± 7.1 

11 2 0 1 

12 8 8 8 

 
Telemetry 
 
GPS tags (i-gotU GT-120, Mobile Action Technology, Taiwan) were deployed on 
5 breeding Manx shearwaters in 2014, 36 in 2015, and 9 in 2016. Birds were 
tracked during chick rearing in 2014, 2015 and 2016, and additionally during 
incubation in 2015. GPS tags were attached using a temporary attachment method 
(Tesa tape) to the mantle feathers and removed on return of the bird to the colony. 
All telemetry work was conducted under approval of UCC animal ethics 
committee and under licence by the BTO and Irish National Parks and Wildlife 
Service. We analysed GPS data from 2015 and 2016 to explore in-colony flight 
and its relationship with the measured acoustic soundscape in the same years, and 
from 2014-2016 to assess consistency in use of flyways and space use in relation 
to the location of acoustic recorders. Sampling intervals of GPS tracks differed 
between incubation and chick rearing, incubation trips recorded fixes every 8 or 
12 minutes while chick rearing recorded fixes at 4 minute intervals. The number 
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of times individual tracks intersected the acoustic study plots (circular plot with 
radius of 50m) was calculated in ArcGIS (10.3.1) (see Figure 1). 
 
Acoustic analyses 
 
Manual segmentation was carried out to provide training vocalisations that were 
later used in the automated extraction of signals from all data using the Wildlife 
Acoustics Song Scope software (© 2017 Wildlife Acoustics, Inc.). Manual 
segmentation of data consisted of the visual inspection of time-frequency 
spectrograms of twenty randomly selected recordings across various acoustic 
backgrounds; these segments were inspected using the Audacity 2.1.2 software (© 
2018 Audacity Team). Manual segmentation was used to reduce the number of 
false positive detections and to limit false negatives where detections were missed 
(Dufour et al., 2016). Measured signals were combined with five high-quality pre-
recorded reference calls to enhance the accuracy of the call recognition model; 
these recordings were obtained from Skokholm (Xeno-Canto), and manually 
recorded calls from High Island and Great Blasket, Co. Kerry. Song Scope requires 
several optimal model parameters that were obtained from the various recordings 
manually segmented as above. These parameters include: frequency range; 
minimum frequency; maximum syllable duration; maximum song duration and 
sample rate (Hz); Fast Fourier Transform window size, dynamic range and 
maximum Hidden Markov Model (HMM) states based on the properties of the 
Manx shearwater call.  
 
Once created, recognition models ran through all data across both years. To reduce 
the number of false positives, identified calls were discarded where the quality 
score of recognized calls was <60. False negative calls, defined as calls that 
possessed all frequency characteristics but were missed by the recognition model, 
were identified as outlined by Buxton and Jones (2012), with a randomly selected 
15 minutes of recording visually scanned from each recording hour within each 
plot from each year. Visual scans were restricted to recordings where calls could 
be distinguished from background noise on spectrograms. The 15 minute samples 
were extracted from the 850 hours of recording, approximating 23% of data. 
Environmental conditions that affect the rate of false negatives have been 
discussed in depth in previous studies (Buxton and Jones, 2012); we report the 
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false negative rates across three different categories of wind speed (0-10 knots, 10-
20 knots, 20-30 knots) to show that the average number of false negatives 
increased with the wind speed (Supplementary Table 1).  
 
Data Analysis  

 
A total of 850 hours of recordings were obtained from the two years across the 12 
study plots, and a total of 24,502 calls were identified using the Song Scope 
recognizer. The Song Scope recognition model performed with an accuracy of 

75.4% ± 3.37% of calls across all training data. Detected calls (per hour or per 

night) is the number of vocalisations detected in the recordings by the recognition 
model. These scales were selected to correspond to the availability of 
environmental data on which the analyses could be carried out. The mean number 
of calls per hour ranged from 9.55 to 87.05 and from 6.3 to 66.93 across the 12 
study plots in 2015 and 2016 respectively. Analysis of the relationship of calls per 
hour with density and environmental data was carried out using a zero-inflated 
negative binomial mixed model in the R package “glmmADMB” (Bolker, 2006). 
This model was used to account for over-dispersion in the data due to large 
numbers of zero values and positive integers, where the dispersion statistic theta 

(q) was greater than 15 in all models. Plot, hour and date were included as a 

random effects to account for repeated measures at each of the plots. Hourly 
environmental data including wind speed, wind direction and cloud cover were 
sourced from weather stations within 100km of the study site (Met Éireann), while 
nightly moon illumination data was sourced from the US Naval website (US 
Navy). These environmental covariates were included as they are known to affect 
the quality of recordings (wind) and the attendance within the colony (moon 
illumination and cloud cover). Recording hour was included as a factor to compare 
the number of calls to determine any variation throughout the night. To remove 
zero-inflation, potential variability in the number of calls between hourly 
recordings, and lack of variability in some environmental factors such as moon 
illumination, data were also aggregated at the nightly scale and modelled using a 
negative binomial mixed model in the R package “glmmADMB”. Where 
environmental data was hourly, the nightly average was used.  
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To compare the acoustic activity and the telemetry data that were collected at 
different time periods throughout the season, the number of times individual tracks 
intersected the acoustic study plots was compared with the average calls per hour 
and the total calls per night at each plot using a Spearman’s Rank correlation test. 
To ensure the flight paths did not change temporally and allow comparison with 
the acoustic activity, Dutilleul's modified t-tests that account for spatially auto-
correlated data were carried out to test the consistency across the telemetry data 
(2014, 2015 and 2016). 
 
Results 
 
Temporal and Environmental variation 

 
More calls were recorded during the incubation period compared to the chick-
rearing stage (p = 0.04, z = 1.96, df = 1, Table 2), and significantly fewer calls 
occurred during 23:00-00:00 in both years compared to all other recording hours 
(00:00 – 04:00) (p = < 0.001, z = -3.42, df = 4). Fewer calls were recorded in 2016 
at hourly (p = < 0.001, z = - 9.11, df = 1, Table 2) and nightly (p = < 0.001, z = - 
4.5, df = 1, Table 2) scales. Calls per hour was largely driven by the environmental 
variables; decreasing with wind speed (p = < 0.001, z = -3.82, n = 850, Table 2), 
which is reflected in the significant increase in the rate of false negatives with wind 
speed from manual inspection of spectrograms (see Supplementary Table 1, p = < 
0.001, effect = 1.147 (± 0.24)), n = 840). Calls also decreased with moon 
illumination (p = < 0.001, z = - 11.59, n = 850). At the nightly scale, the number 
of calls also decreased with wind speed (p = 0.005, z = - 2.793, n = 170) and moon 
illumination (p = < 0.001, z = - 5.13, n = 170). Cloud cover, wind direction and an 
interaction between cloud cover and moon illumination all had no significant 
effect on the number of calls either per hour or per night (Table 2).  
 
Density and acoustic soundscapes.  

 

No relationship was found between the density of breeding birds around the 
recorders at either the hourly number of calls scale (p = 0.45, z = - 0.75, n=850, 
Table 2), or the nightly number of calls scale (p = 0.52, z = 0.65, n = 170, Table 
2). A visual representation of the mean density of breeding Manx shearwaters, the 
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average vocal activity at both temporal scales, and in-colony flight are shown in 
Figure 1 (a-d). There was a strong but marginally non-significant correlation 
between telemetry data (the number of tracks intersecting the acoustic monitoring 
plots) and vocal activity indices (hourly: rho = 0.4895, p = 0.1098, n = 12; nightly: 
rho = 0.49, p = 0.11, n = 12). One data point had high leverage (Di = 0.71) with a 
particularly low number of intersecting tracks and a relatively high vocalisation 
rate. This was from a plot close to the tagging location, with an underestimation 
of intersections likely due to a combination of (i) GPS fixes not being taken when 
birds are underground in the burrow and resulting track fixes occurring outside of 
the 50m radius of the plot, and (ii) tracks originating or terminating in the area 
intersect the plot area only once resulting in very few ‘transitions’ through the area. 
Removing this plot from the analyses reduced the p value further (hourly: rho = 
0.6, p = 0.056, n = 11; nightly: rho = 0.55, p = 0.08, n = 11, Figure 1 (e and f)). 
Dutilleul's modified t-tests showed that the number of track intersections occurring 
across plots was highly consistent across years, with correlation values varying 
from 0.9967 to 0.999 (p = <0.001).  
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Table 2. Model summaries of factors effecting acoustic activity at both the hourly 
scale and nightly scale as discussed above. Effect sizes reported in “log” format as 
per model output.  

 Hourly model Nightly model 

Effect z p Effect z p 

Density -0.02 (± 0.4) -0.75 0.45 0.01(± 0.02) 0.65 0.52 

Incubation 0.36 (± 0.18) 1.96 0.04 0.007(± 0.45) 0.01 0.9 

23:00-00:00 -0.6 (± 0.18) -3.42 < 0.001 N.A N.A N.A 

Year: 2016 -2.19 (± 0.2) -9.11 < 0.001 -2.13(± 0.46) -4.5 < 0.001 

Moon  -2.41 (± 0.2) -11.59 < 0.001 -2.1 (± 0.4) -5.13 < 0.001 

Wind speed -0.06(±0.06) -3.82 < 0.001 -0.08(± 0.02) -2.793  0.005 

Cloud Cover 

(CC) 
0.0336 0.2 0.838 0.473(± 0.3) 1.583 0.114 

CC:Moon 0.397 1.94 0.053 -0.553(± 0.4) -1.48 0.139 
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Figure 1. Visualisations of the distribution of (a) the number of intersections by GPS tracked Manx 
shearwaters, (b) the mean density of apparently occupied burrows, (c) the average calls per hour 
and (d) the average calls per night as recorded by Wildlife Acoustic recorders. The oval shaped 
broken line represents the location where breeding adults were GPS-tagged on High Island, Co. 
Galway, Ireland. Scatter plots show the correlation between the average number of calls at both the 
hourly and nightly scale to the mean density ((e),(f)) and number of GPS intersections ((g),(h)).   
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Discussion 

 

Monitoring wildlife populations is extremely labour intensive and considerable 
effort is being put into identifying efficient, automated methods for doing so 
inexpensively (Borker et al., 2014; Perkins et al., 2017; Hodgson et al., 2018). 
Passive acoustic monitoring is one of the most promising of such methods (Borker 
et al., 2014; Oppel et al., 2014). However, contrary to expectations, we did not 
find the relationship between acoustic activity and local burrow density reported 
by Oppel et al., (2014) in a closely related seabird species, the Cory’s shearwater 
(Calonectris borealis). This was true for both hourly and nightly temporal scales. 
Our study had similar densities of breeding birds around recording units (0-36 
AOB) to Oppel et al’s study (8-56 AOB), and accounted for the environmental 
and temporal variation that was removed in Oppel et al., (2014). Thus, the 
relationship between the acoustic activity and density estimates used in Oppel et 

al, (2014) to determine colony size is not directly transferable to this colony. All 
other studies, including ours, report findings that advocate the use of acoustic 
recording as a tool for monitoring seabird populations using indices (Buxton and 
Jones 2012; Borker et al., 2014). More generally, the use of passive acoustic 
monitoring is usually limited to determining species richness (Wimmer et al., 
2013) and presence or absence of species in an area (Mellinger et al., 2007; Pirotta 
et al., 2014).  
 
We suggest that the lack of a correlation between the local soundscape and local 
breeding density is robust because several typical environmental and biological 
drivers of acoustic soundscapes were detected in our data. The number of calls 
were higher during the incubation period, for example, when adults are 
continuously present before the chicks become thermally independent relatively 
early in life (Paiva et al., 2010). Additionally, the number of birds in the colony is 
likely to be highest during incubation before breeding birds fail and leave, and 
before prospecting males, who are highly vocal on the ground, leave the colony 
(James, 1985). The relationships between acoustic activity and environmental 
variables in our study are consistent with those reported previously (Granadeiro et 

al.,1998; Buxton and Jones, 2012; Borker et al., 2014). An example of this is the 
significantly reduced number of calls on moonlit nights, a well-known 
phenomenon thought to be a predator avoidance mechanism (Bretagnolle et al., 
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2000; Oppel et al., 2014). We found that the number of calls recorded declined 
with wind speed, which we interpret as a reduction in detectability due to 
associated background noise rather than reduced presence (Buxton and Jones, 
2012; Oppel et al., 2014). Furthermore the quality of acoustic recordings can be 
affected severely by anthropogenic sound (Barber et al., 2010; Hildebrand, 2009), 
though this was not a problem on our offshore study site away from human 
activities. Thus, these well-known patterns give confidence in our conclusion that 
local soundscapes do not reflect local density in our study site. 
 
Instead of reflecting local burrow density, however, GPS tracks of breeding adults 
intersecting monitoring plots may explain the soundscape because they were 
marginally correlated with acoustic activity within the sample plots. To our 
knowledge, this is the first such demonstration of movement patterns driving the 
acoustic soundscapes in an avian species. In other taxa such as cetaceans 
(Mikkelson et al., 2016), passive acoustic monitoring and telemetry work supports 
these findings but this is to be expected since cetaceans are not typical central 
placed foragers. Several behavioural factors are likely to explain the pattern we 
observed in our study species. First, it has been suggested that breeding Manx 
shearwaters are vocal in flight and quieter on the ground (Perrins et al., 1973; 
James, 1985), an effective way of social information transfer without revealing the 
location of burrows to predators. Immature prospecting birds are thought to be 
highly vocal in the colony (Perrins et al., 1973; James, 1985), thus many of the 
vocalisations we recorded at sample points were likely a combination of non-
breeding birds and breeding birds commuting from elsewhere in the colony. 

Similarly, within the burrow, unless responding territorially to a threat or tape-
playback, breeding birds remain quiet through the late incubation and chick-
rearing periods as the sexual function to calling early in the season is replaced by 
calls solely for mate recognition (James, 1985).  
 
Our finding that breeding birds do vocalize within the colony, albeit away from 
their own burrow site, is likely explained by social information exchange. 
Empirical information for social information exchange in seabirds is evident or 
has been proposed in many species to occur at the colonies or on rafts nearby 
(Birkhead, 1985; Burger, 1997; Weimerskirch et al., 2010; Wakefield et al., 2013). 
While our tracking data was too coarse (4-minute intervals between GPS locations 
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to preserve battery life) to identify fine-scale flight paths between the colony and 
these rafts, the highly consistent distribution of tracks across years suggests that 
persistent flyways occur. Obtaining finer temporal scale GPS data could help to 
separate the effects of social information exchange and local topographic features 
driving within-colony movement. The number of GPS intersections are likely to 
increase approaching breeding areas of central based foragers, therefore future 
work testing the strength of this relationship on larger islands with similar patchily 
distributed colonies would allow us to determine whether this relationship is found 
at greater distance from breeding colonies.  
 
The absence of a relationship between the density of birds breeding in the 
recording plots and acoustic activity suggests the method cannot be used to 
estimate population size. However it does not necessarily mean acoustic activity 
is independent of the number of birds breeding on the whole island for two reasons. 
First, breeding birds were being detected in flight, even if not breeding within the 
plots being monitored; furthermore this pattern was consistent across two years. 
Second, the decline in nest density over two years coincided with a drop in acoustic 
activity across the corresponding two years. Thus our results support the growing 
evidence for the idea that passive acoustic monitoring can be used to generate 
usable indices of population change. Given the difficulty and time consuming 
nature of monitoring burrow-nesting species, coupled with large time intervals 
between surveys at many sites (as long as 15 years, Mitchell et al., 2004), this 
would be of wide benefit to conservation managers. A longer time series, or more 
realistically, robust correlations between acoustic activity and population density 
across a representative sample of independent colonies are needed to determine 
this.  



4. Passive acoustic monitoring 
 

 98 

Acknowledgements 
 
The authors would like to acknowledge the National Parks and Wildlife service of 
the Department of Culture, Heritage and the Gaeltacht in Ireland for funding the 
PhD under the grant code R16331 that made this study possible, and specifically 
David Tierney for his invaluable support. We thank the BTO special methods 
committee for the advice on fitting GPS tags. Additionally, the authors would like 
to thank the owner and boatman of High Island, Feichin Mulkerrin, who 
accommodated shipping us and the gear across to the island. Thanks to the field 
staff that moved the acoustic recorders and changed batteries when we could not 
be on the island. Finally, we acknowledge that this study contains Met Éireann 
Data licensed under a Creative Commons Attribution-ShareAlike 4.0 International 
licence.  



4. Passive acoustic monitoring 
 

 99 

References 
 
Barber, J.R., Crooks, K.R., Fristrup, K.M., 2010. The costs of chronic noise exposure for terrestrial 
organisms. Trends in Ecology & Evolution, 25, 180–189. 
 
Birkhead, T.R. 1985. Coloniality and social behaviour in the Atlantic Alcidae. Pages 355-383, in 
The Atlantic Alcidae (D.N. Nettleship and T.R. Birkhead, Eds.). Academice Press, London. 
 
Borker A.L., Mckown, M.W., Ackerman, J.T., Eagles-Smith, C.A., Tershy, B.R., Croll, D.A., 
2014. Vocal activity as a low cost and scalable index of seabird colony size: automated acoustic 
seabird monitoring. Conservation Biology, 28, 1100–1108 
 
Borker, A. L., Halbert, P., Mckown, M. W., Tershy, B. R., Croll, D. A., 2015. A comparison of 
automated and traditional monitoring techniques for marbled murrelets using passive acoustic 
sensors. Wildlife Society Bulletin, 39, 813–818.  
 
Bretagnolle, V., Attié, C., Mougeot, F., 2000. Audubon’s shearwaters Puffinus lherminieri on 
Réunion Island, Indian Ocean: behaviour, census, distribution, biometrics and breeding biology. 
Ibis, 142, 399–412 
 
Brooke, M. de L., 1978. Sexual differences in the voice and individual recognition in the Manx 
Shearwater (Puffinus puffinus). Animal Behaviour, 26, 622–629. 
 
Brooke, M. de L., 1986. The vocal systems of two nocturnal burrowing petrels, the white-chinned 
Procellaria aequinoctialis and the grey P. cinerea, Wiley Online Library. 
 
Burger, A.E., 1997. Arrival and departure behavior of common murres at colonies: evidence of an 
information Halo? Colonial Waterbirds, 20, 55–65. 
 
Burger, A.E, Shaffer, S.A., 2008. Perspectives in Ornithology Application of Tracking and Data-
Logging Technology in Research and Conservation of Seabirds. Auk, 125(2), 253-264.  
 
Buxton, R.T., Jones, I.L., 2012. Measuring nocturnal seabird activity and status using acoustic 
recording devices: applications for island restoration. Journal of Field Ornithology, 83, 47-60.  
 
Carey, M., 2009. The effects of investigator disturbance on procellariform seabirds: a review. NZ 
Journal of Zoology, 36, 367–377. 
 
Crane, J. M. S., Savage, J. L., Russell, A. F., 2016. Diversity and function of vocalisations in the 
cooperatively breeding Chestnut-crowned Babbler. Emu, 116, 241-253. 
 
Croll, D.A., Newton, K.M., Mckown, M., Holmes, N., Williams, J.C., Young, H.S., Buckelew, S., 
Wolf, C.A., Howald, G., Bock, M.F., Curl, J.A., Tershy, B.R., 2016. Passive recovery of an island 
bird community after rodent eradication. Biological Invasions, 18(3), 703-715 
 
Croxall, J.P., Butchart, S.H., Lascelles, B., Stattersfield, A.J., Sullivan, B., Symes, A., Taylor, P., 
2012. Seabird conservation status, threats and priority actions: A global assessment. Bird 
Conservation International, 22(01), 1-34. 
 
Dufour, O., Gineste, B., Bas, Y., Le Corre, M., Thierry, A., 2016. First automatic passive acoustic 
tool for monitoring two species of procellarides (Pterodroma baraui and Puffinus bailloni) on 
Reunion Island, Indian ocean. Ecological Informatics, 35, 55-60. 
 



4. Passive acoustic monitoring 
 

 100 

Frommolt, K.H., 2017. Information obtained from long-term acoustic recordings: applying 
bioacoustic techniques for monitoring wetland birds during breeding season. Journal of 
Ornithology, 158, 659-668.  
 
Gaston, A. J., Jones, I.L., Noble, D.G., 1988. Monitoring Ancient Murrelet breeding populations. 
Colonial Waterbirds, 11, 58–66. 
 
Gineste, B., Souquet, M., Couzi, F.X., Giloux, Y., Philippe, J.S, Hoarau, C., Tourmetz, J., Potin, 
G., Le Corre, M., 2017. Tropical Shearwater population stability at Reunion Island, despite light 
pollution. Journal of Ornithology, 158, 385-394.  
 
Granadeiro, J.P., Alonso, H., Almada, V., Menezes, D., Phillips, R.A., Catry, P., 2009. Mysterious 
attendance cycles in Cory’s shearwater, Calonectris diomedea: an exploration of patterns and 
hypotheses. Animal Behaviour, 78, 1455–1462.  
 
Hildebrand, J.A., 2009. Anthropogenic and natural sources of ambient noise in the ocean. Marine 
Ecology Progress Series, 395, 5–20. 
 
Hodgson JC, Mott R, Baylis SM, Pham, T.T., Wotherspoon, S., Kilpatrick, A.D., Segaran, R.R., 
Reid, I., Terauds, A., Koh, L.P., 2018. Drones count wildlife more accurately and precisely than 
humans. Methods in Ecology and Evolution, 9, 1160–1167.  
 
James, P.C., 1985. The vocal and homing behavior of the Manx Shearwater (Puffinus puffinus) 
with additional studies on other Procellariiformes. PhD thesis submitted to Oxford University.  
 
James, P.C., Robertson, H.A., 1985. The calls of Bulwers petrel (Bulweria bulwerii), and the 
relationship between intersexual call divergence and aerial calling in Procellariiformes. Auk, 102, 
878-882. 
 
Lascelles, B. G., Taylor, P. R., Miller, M. G. R., Dias, M. P., Oppel, S., Torres, L., Hedd, A., Le 
Corre, M., Phillips, R. A., Shaffer, S. A., Weimerskirch, H., Small, C., 2016. Applying global 
criteria to tracking data to define important areas for marine conservation. Diversity and 
Distributions, 22, 422–431.  
 
McKay, B.D., Reynolds, M.B.J., Hayes, W.K., Lee, D.S., 2010. Evidence for the species status of 
the Bahama Yellow-throated Warbler (Dendroica “dominica” flavescens). Auk, 127(4), 932-939. 
 
Mckown, M. W., 2008. Acoustic communication in colonial seabirds: individual, sexual, and 
species-specific variation in acoustic signals of Pterodroma petrels. University of North Carolina. 
 
Mellinger, D.K., Stafford, K.M., Moore, S.E., Dziak, R.P., Matsumoto, H., 2007. An overview of 
fixed passive acoustic observation methods for cetaceans. Oceanography, 20, 36–45 
 
Mikkelsen, L., Rigét, F., Kyhn, L., Sveegaard, S., Dietz, R., Tougaard, J., Carlström, J., Carlén, I., 
Koblitz, J., Teilmann, J., 2016. Comparing Distribution of Harbour Porpoises (Phocoena 
phocoena) Derived from Satellite Telemetry and Passive Acoustic Monitoring. PLOS ONE, 11(7), 
doi: e0158788.  
 
Mitchell, P.I., Newton, S.F., Ratcliffe, N., Dunn, T.E., 2004. Seabird populations of Britain and 
Ireland. London, United Kingdom: T. and A.D. Poyser. 
 
Nichols, J.D., Williams, B.K., 2006. Monitoring for conservation. Trends in Ecology & Evolution, 
21 (12), 668-673. 
 



4. Passive acoustic monitoring 
 

 101 

Nesterova, A.P., Flack, A., van Loon, E.E., Bonadonna, F., Biro, D., 2015. The effect of 
experienced individuals on navigation by king penguin chick pairs. Animal Behaviour, 104, 69-78. 
 
Oppel, S., Hervias, S., Oliveira, N., Pipa, T., Silva, C., Geraldes, P., Goh, M., Immler, E., McKown, 
M., 2014. Estimating population size of a nocturnal burrow-nesting seabird using acoustic 
monitoring and habitat mapping. Nature Conservation, 7, 1-13. 
 
Paiva, V.H., Geraldes, P., Ramírez, I., Meirinho, A., Garthe, S., Ramos, J.A., 2010. Foraging 
plasticity in a pelagic seabird species along a marine productivity gradient. Marine Ecology 
Progress Series, 398, 259–274. 
 
Paleczny, M., Hammill, E., Karpouzi, V., Pauly, D., 2015. Population trend of the world’s 
monitored seabirds, 1950-2010. PLOS ONE, 10(6), p.e0129342. 
 
Pirotta, E., Thompson, P.M., Miller, P.I., Brookes, K.L., Cheney, B., Barton, T.R., Graham, I.M., 
Lusseau, D., 2014. Scale-dependent foraging ecology of a marine top predator modelled using 
passive acoustic data. Functional Ecology, 28, 206–217.  
 
Perrins, C.M., Harris, M.P., Britton, C.K., 1973. Survival of Manx Shearwaters. Ibis, 115, 535-
548.  
 
Perrins, C.M., Wood, M.J., Garroway, C.J., Boyle, D., Oakes, N., Revera, R., Collins, P., Taylor, 
C., 2012. A whole-island census of the Manx Shearwaters Puffinus puffinus breeding on Skomer 
Island in 2011. Seabird, 25, 1-13. 
 
Robbins, J.R., Brandecker, A., Cronin, M., Jessopp, M., McAllen, R., Culloch, R., 2015. Handling 
dolphin detections from C-PODs, with the development of acoustic parameters for verification and 
the exploration of species identification possibilities. Bioacoustics, 25(2), 99-110.  
 
Smith, S., Thompson, G., Perrins, C. M., 2001. A census of the Manx Shearwater Puffinus puffinus 
on Skomer, Skokholm and Middleholm, West Wales. Bird Study, 48(3), 330-340. 
 
Taff, C.C., Patricelli, G.L., Freeman-Gallant, C.R., 2014. Fluctuations in neighbourhood fertility 
generate variable signalling effort. Proceedings of the Royal Society B, 281(1974), p.20141974. 
 
US Navy. http://aa.usno.navy.mil/data/docs/MoonFraction. (Accessed 17th of Septermber 2016) 
 
Van Parijs, S., Clark, C., Sousa-Lima, R., Parks, S., Rankin, S., Risch, D., Van Opzeeland, I., 2009. 
Management and research applications of real-time and archival passive acoustic sensors over 
varying temporal and spatial scales. Marine Ecology Progress Series, 395, 21–36.  
 
Verfuß, U.K., Honnef, C.G., Meding, A., Dahne, M., Mundry, R.,Benke, H., 2007. Geographical 
and seasonal variation of harbour porpoise (Phocoena phocoena) presence in the German Baltic 
Sea revealed by passive acoustic monitoring. Journal of the Marine Biological Association of the 
United Kingdom, 8, 165–176 
 
Wätzold, F., Schwerdtner, K.,2005. Why be wasteful when preserving a valuable resource? A 
review article on the cost-effectiveness of European biodiversity conservation policy. Biological 
Conservation, 123(3), 327-338. 
 
Wimmer, J., Towsey, M., Roe, P., Williamson, I., 2013. Sampling environmental acoustic 
recordings to determine bird species richness. Ecological Applications, 23, 1419-1428. 
 
Weimerskirch, H., Bertrand, S., Silva, J., Marques, J.C., Goya, E., 2010. Use of social information 
in seabirds: compass rafts indicate the heading of food patches. PLOS ONE, 5, e9928.  



4. Passive acoustic monitoring 
 

 102 

Supplementary Material 

 

Supplementary Table 1. False negative rate defined as the calls skipped by the 
recognizer from manual visual inspection of randomly selected 15 minute 
recordings from each hour recorded across all study plots. False negative rates for 
1. Each plot and 2. Different categories of wind speed in knots reported below to 
demonstrate the effect of increased wind on the recording quality thus detection 
rate of recognition model.  
 
1. Plot Mean false negative rate ± SE 

1 0.64 (± 0.1) 

2 1.41 (± 0.28) 

3 2.72 (± 0.3) 

4 1.57 (± 0.27) 

5 1.33 (± 0.28) 

6 0.86 (± 0.14) 

7 0.34 (± 0.11) 

8 1.63 (± 0.36) 

9 1.48 (± 0.32) 

10 2.54 (± 0.47) 

11 1.50 (± 0.41) 

12 0.99 (± 0.24) 

  
Average 1.42 (± 0.2) 

 

2. Wind Speed (knots)  
  
0-10 1.2 (± 0.1) 

10-20 1.5 (± 0.17) 

20-30 3.1 (± 0.7) 

30+ N/A 
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Chapter 5. Critical assessment of population size estimates for three burrow-nesting seabirds using matrix population models. 

______________________________________________________________________________ 

Critical assessment of population size estimates for 
three burrow-nesting seabirds using matrix population 
models 
 
Arneill, G.1,2*, Kane, A.1, Jessopp, M.J.1,2† & Quinn, J.L.1†* 
 

1School of Biological, Earth and Environmental Sciences, Distillery Fields, University College 
Cork, Ireland. 
2 MaREI Centre, Environmental Research Institute, University College Cork, Ireland. 

 
Abstract 
 
Our ability to obtain accurate population size estimates for most species is 
hampered by the high cost associated with carrying out censuses, particularly when 
resources are limited. Further difficulty arises when comparisons are to be made 
across censuses, this is especially true for historical estimates where data storage 
is generally poor. Population modelling approaches can be useful to interpret 
realistic level of population change across years using certain demographic 
parameters. National censuses of seabird populations in Britain and Ireland are 
generally carried out every 10-15 years. However, estimates of the population size 
of burrow-nesting species have only been reported in the most recent census, 
Seabird 2000 (1998-2002), and the accuracy of these are unclear due to known 
difficulties associated with censusing these species. Here, we report new colony 
estimates for Manx shearwater (Puffinus puffinus), European storm petrel 
(Hydrobates pelagicus) and Atlantic puffin (Fratercula arctica) across seven 
islands in Ireland. We used Leslie matrix population models to (i) retrodict 
population sizes across 1998-2016 and (ii) discuss the potential changes in 
demographic parameters that might explain the discrepancies in new estimates and 
those of Seabird 2000. We show that the population sizes of Manx shearwater and 
European storm petrels across most colonies were significantly underestimated as 
retrospective estimates were much higher than those reported in Seabird 2000. 
Atlantic puffin populations appear to be declining due to low productivity rates, 
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particularly on Great Saltee where the population appears to be declining at an 
alarming rate. This study demonstrates how matrix population models can be used 
to explain the discrepancies between estimates and explore the demographic 
parameters that drive observed population trends.  
 

Keywords: Census, Matrix population models, Leslie matrix, Burrow-nesting 
seabirds, Demography, Seabird 
 

Introduction 

 
Seabirds are key qualitative indicators of the marine ecosystem playing important 
roles as apex predators (Block et al., 2011), scavengers (Votier et al., 2004) and 
nutrient distributers (Bancroft et al., 2005). Global assessments of their population 
status are limited to the IUCN Red list of Threatened Species and two major 
reviews (Croxall et al., 2012; Paleczny et al., 2015). These publications present 
data since 1950-2010 suggesting that at least one third of seabird populations are 
threatened with extinction, over half are thought to be in decline, and three species 
are now extinct. However, for many species, data is either unavailable or limited 
spatially and/or temporally. The life-history characteristics of many seabirds 
increases the difficulty in obtaining demographic data as they often breed in large 
widely distributed colonies, often on remote islands, are migratory, and nest on 
steep cliff faces, in discrete rock crevices or in burrows.  
 
Seabirds that nest in burrows are the most challenging to census and monitor 
(Mitchell et al., 2004; Oppel et al., 2014; Buxton et al., 2016). Baseline abundance 
estimates are essential for the conservation of these seabirds as they are amongst 
the most vulnerable to threats such as habitat destruction and predation from 
introduced mammalian predators (Major et al., 2006; Jones et al., 2008). In the 
last decade, the majority of research on monitoring burrow-nesting species has 
aimed to refine existing census methods to provide more accurate population 
estimates (Perkins et al., 2017a), whilst novel methods have been tested to utilise 
technological advances that reduce the time and cost associated with censusing 
(Oppel et al., 2014; Dufour et al., 2016; Perkins et al., 2017b). Although the 
efficacy of novel methods remains unclear, the adoption and development of 
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methods such as tape-playbacks has dramatically improved our understanding of 
the population size of these species (Perrins et al., 2012; Perkins et al., 2017a). 
 
Ireland hosts breeding populations of four burrow-nesting seabirds; Manx 
shearwater (Puffinus puffinus), European storm petrel (Hydrobates pelagicus), 
Atlantic puffin (Fratercula arctica) and Leach’s storm petrel (Hydrobates 

leucorhous). Despite three national seabird census efforts; Operation Seafarer 
(1969 – 1970, Cramp et al., 1974), Seabird Colony Register (1985 – 1988, Lloyd 
et al., 1991) and Seabird 2000 (1998-2002, Mitchell et al., 2004), population 
estimates for all burrow-nesting species are limited to Seabird 2000. The Seabird 
2000 census was the first national census to utilise tape-playback methods (James 
and Robertson, 1985) for burrow-nesting Procellariiformes in Ireland. Mitchell et 

al. (2004) reported that internationally important numbers of European storm 
petrels breed on islands off the south west coast of Ireland, representing 3-11% of 
the global population (ca. 100,000 breeding pairs). Estimates of Manx shearwaters, 
Atlantic puffins and Leach’s storm petrels were approximately 10% (37,178 pairs), 
<1% (21,000 pairs) and <1% (310 pairs) of the global breeding populations 
respectively (Mitchell et al., 2004). The accuracy of these national estimates 
however is far from clear, as many sites were not surveyed due to logistical 
constraints, and reports of the methods used are vague.  
 
One approach that has been used to explain trends in populations over time is 
matrix population modelling (Caswell, 2001). These model allow for the 
simulation of population trajectories over time and have been used to relate trends 
to increased predator abundance (Cuthbert et al., 2001; Soanes et al., 2010; Miles 
et al., 2015), by-catch (Cuthbert et al., 2001) and changes in climatic factors such 
as sea surface temperature (Soldanitini et al., 2016). These models are sometimes 
used to design or determine the efficacy of conservation efforts for vulnerable 
species (Ezard et al., 2010). Typically, matrix population models are used to 
project population trends forward in time (Soldatini et al., 2016; Monadjem et al., 
2018), however matrix population models can be constructed to determine the 
historic trajectories of populations. For example, Beissinger and Peery (2007) used 
these models to identify the causes of decline in the endangered Marbled Murrelet 
(Brachyramphus marmoratus).  
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The initial aim of this study set out to obtain new, accurate estimates of Manx 
shearwaters, European storm petrels and Atlantic puffins breeding and assess 
population trends since the previous censuses on several offshore islands in 
Ireland. We used Leslie matrix population models to carry out retrospective 
projections of these recent estimates to retrodict population sizes across 1998-
2016. We examine the causal factors that may explain discrepancies between our 
estimates and those reported in Seabird 2000.  
 

Methods 

 

 Population size 

 
The methodologies used to attain the population size estimates reported in Mitchell 
et al. (2004) followed those outlined in the Seabird Monitoring Handbook (Walsh 
et al., 1995). At the site level, the methods are reported using a numbered system 
representative of various approaches ranging from “Best Guess” to “Complete 
count”, yet no details are reported on the exact timing and the spatial extent of any 
sampling efforts. For Manx shearwaters and European storm petrels, a total of 40 
and 125 colonies respectively were ‘sampled’ using tape-playback surveys (James 
and Robertson, 1985; Mitchell et al., 2004), while no island was subject to a 
‘complete count’. Atlantic puffin colonies in Ireland were surveyed using 
observational counts of individuals on land and on the water adjacent to breeding 
colonies, though no details are reported on the number of counts that were carried 
out at each site (Mitchell et al., 2004). 
 
Here, tape-playback surveys (James and Robertson, 1985) were carried out across 
six islands to census both Manx shearwaters and European storm petrels. Manx 
shearwaters were censused on Little Saltee, Co. Wexford (2013); High Island, Co. 
Galway (2015) and Inishvickillane, Co. Kerry (2016). European storm petrels 
were surveyed on High Island, Co. Galway (2016); Beginish, Co. Kerry (2016) 
and Inishmurray, Co. Sligo (2017) (Figure 1). Logistical constraints necessitated 
differing sampling approaches and sampling effort across sites; detailed methods 
used to derive population size estimates for each species/island are outlined in 
Table 1. The response rate, defined as the frequency in which an apparently 
occupied burrow (AOB) or site (AOS) responds to tape-playback was calculated 
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during each survey with the exception of Little Saltee. To overcome this the 
average response rate measured during the Seabird 2000 census (Mitchell et al., 
2004) was used in its place. The samples sizes, number of repeated measures and 
calculated response rates for all other sites are reported in Table 1.  
 
Total population sizes of Atlantic puffin were estimated using the standard 
protocol of repeated island-wide counts across four islands; Great Saltee, Co. 
Wexford; Little Saltee, Co. Wexford; Inishvickillane, Co. Kerry and Ireland’s Eye, 
Co. Dublin (Figure 1). Population size was estimated on Great Saltee in 2015 and 
on all other islands in 2016. Observational counts followed the protocol outlined 
in the Seabird Monitoring Handbook (Walsh et al., 1995). Initial scoping visits 
were carried out in April of each study year to establish the distribution of the sub-
colonies and counts were carried out as early as logistically feasible (April-Early 
June) to limit the inclusion of prospecting birds (Walsh et al., 1995; Mitchell et 

al., 2004). The highest recorded total count of Atlantic puffins was used to 
minimise the proportion of individuals that were missed during any one count 
(Miles et al., 2015). The alternative method of sampling for signs of occupancy 
(Walsh et al., 1995) was not used, as the majority of breeding burrows were located 
on difficult to access coastal cliffs or steep slopes.   
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Figure 1. Map of Ireland outlining the location of colonies where censuses were 
carried out. For Manx shearwaters: High Island (HI), Inishvickillane (INV) and 
Little Saltee (LS). For European storm petrels: High Island (HI), Beginish (BG) 
and Inishmurray (INM). For Atlantic puffins: Inishvickillane (INV), Great Saltee 
(GS), Little Saltee (LS) and Ireland’s Eye (IE).
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Table 1. Census efforts used to determine population size estimates for Manx shearwaters (Puffinus puffinus) and European storm petrels 
(Hydrobates pelagicus) across all sites. 

Study Site: 
Little Saltee, 
Co. Wexford 

High Island, 
Co. Galway 

Inishvickillane, 
Co. Kerry 

High Island, 
Co. Galway 

Beginish, 
Co. Kerry 

Inishmurray, 
Co. Sligo 

Species: Manx shearwater Manx shearwater Manx shearwater 
European storm 

petrel 
European storm 

petrel 
European storm 

petrel 

Study Year 2013 2015 2016 2016 2016 2017 

Study Period 20th May – 6th July 25th May – 11th June 7th May – 15th June 
17th July – 11th 

August 
27th July – 30th July 25th July – 30th July 

Sampling Approach Random Random Clustered Random Random Clustered 

Sampling method 
Transects 

(50m x 10m) 
Quadrats 

(30m x 30m) 
Circular plots 

(100m2) 
Transects 

(50m x 4m) 
Transects 

(50m x 4m) 
Transects 

(50m x 4m) 

n burrows subject to playback 5040 1640 1254 - - - 

n responses received 308 178 224 - - - 

Response Rate  0.44 (± 0.1)* 0.55 (± 0.068) 0.49 (± 0.03) 0.56 (±0.154) 0.56 (±0.035) 0.58 (±0.02) 

n of AOB/AOS on which 
response rate was measured 

Not calculated 30 76 30 30 92 

n of repeated measures of 
response rate 

Not calculated 4 9 21 3 3 

Area of whole island sampled 
(%) 

100% 38% 16% 11% 100% 14% 

Total area of island (Hectares) Approx. 37 Approx. 42 Approx. 83 Approx. 42 Approx. 14 Approx. 90 

*average response rate from Seabird 2000 (Mitchell et al., 2004) 
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Population models 
 

To draw comparisons between the estimates reported here and those reported in 

Mitchell et al. (2004), demographic parameters reported in the literature were used 

to construct Leslie matrix population models for each species (Leslie, 1945; 

Caswell, 2001). These models operate by multiplying a vector of population sizes 

at time t by a matrix of stage-specific demographic parameters, producing a new 

vector of population sizes at t+1. Additionally, matrix models use the number of 

breeding females in the population which is assumed to be half of the pre-breeding 

population (Caswell, 2001). Iterations of this process allow the calculation of 

population growth rates (λ). Because data were not available for our sites, we used 

weighted averages from other colonies for the following parameters: survival 

probabilities, productivity, rate of juvenile dispersal, age at first breeding and the 

rate of skipped breeding events obtained from the literature (Supplementary Tables 

1-3). Variation in the demographic parameter estimates across colonies is small, 

thus the application of these to populations that are distributed in a similar 

geographical area is thought to be appropriate. Leslie matrices for each species 

were founded on the life cycle: 

 

where (‘T1’) is the transition from juvenile to immature(1) (calculated by: the 

number of juveniles ´ juvenile survival rate ´ natal dispersal rate). Across species 

the number of immature stages differed, thus in some cases ‘(i)’ denotes multiple 

immature years; thus (P(i)) is the probability of survival at the immature stage(i); 

(‘T(i)’) is the transition rate between the final immature stage (i) to breeding adult 

(calculated by: number of immatures(i) ´ probability of survival for immatures(i)). 

Adult survival probabilities are denoted with (P(Ad.)), productivity (B) and the 

probability of skipped breeding/sabbatical year (M). For many seabird 

B

T1 T(i) AdultImmature
(i)

Juvenile

P(i) P(Ad.)

M
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populations, no data is available for the rate of immigration in these breeding 

population, thus limiting any inference on the net exchange across these breeding 

populations and how this effects population growth rates.   

 

In order to estimate the proportions of the population within each age class, we 

projected the pre-breeding population size estimates across 40 years to determine 

the stable age structure using matrices built upon the weighted means of all 

demographic parameters for each species (Table 2). This is necessary as the 

population estimates obtained from tape-playback surveys/observational counts 

are those of the breeding adults, not juveniles or immatures. To ensure the life 

stages had indeed stabilised by 40 years, we visually inspected the graph of 

proportions as a function of year (Figure 2). These proportions were then used to 

calculate the number of birds within each age class at time t using the known pre-

breeding population size estimates. With these stable age structures, we used an 

inverse approach to the Leslie matrices to retrodict population size across 1998 – 

2016. The inverse approach uses the ‘solve’ in R to run a reverse loop of the 

constructed Leslie Matrix, thus projecting the known population size backwards 

in time. The weighted mean of each demographic parameters (Supplementary 

Tables 1-3) were used to calculate growth rate (λ) values across typical years.  

 

We tested the sensitivity of the population growth rates to stochastic events and 

anomalies in sea surface temperature (SST) that occur on average every 5 years 

(Reed et al., 2015; Soldatini et al., 2016). We implemented irregularities in 

fecundity (productivity (-60%) and incidences of skipped breeding (+7%)) using 

a Bernoulli distribution (following Soldatini et al., 2016; Monadjem et al., 2018). 

The changes in these two parameters are representative of the responses observed 

in other seabird populations (Reed et al., 2015; Soldatini et al., 2016) as long-lived 

seabirds prioritise adult survival (Miles et al., 2015; Soldatini et al., 2016). λ 

values were calculated for years where stochastic change was simulated. To further 

test the sensitivity of the annual growth rates of these populations to the deviations 

in the demographic parameters, sensitivity coefficients were calculated as outlined 

in Cuthbert et al. (2001). Individually, each parameter was multiplied by 0.95 to 

simulate a small proportional change of 5%, representing a realistic level of 

uncertainty (White, 2000). Sensitivity coefficients are reported as the percentage 

change in population growth rates due to the 5% change.  
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All models were constructed using the package ‘popbio’ (Stubben et al. 2012) in 

the statistical software ‘R’ (version 3.3.1). Retrospective population estimates and 

surrounding 95% confidence intervals were estimated using the uncertainties 

around the initial population estimate at time t and the demographic parameters 

(Supplementary Tables 1-3). Retrospective projections modelled three incidences 

of stochastic change/SST anomalies across 1998-2016.  

 

Results 

 

Population size 
 

Breeding population estimates attained from tape-playbacks surveys of Manx 

shearwaters were 719 (95% CI: 591-847), 818 (95% CI: 660-976) and 2,743 (95% 
CI: 2296-3190) apparently occupied burrows on Little Saltee, High Island and 

Inishvickillane respectively. Estimates of the total number of apparently occupied 

sites of European storm petrels were 3,821 (95% CI: 2980-4663), 75 (95% CI: 70-

79) and 280 (95% CI: 88-472) for High Island, Beginish and Inishmurray 

respectively. The highest whole island total count of individual puffins early in the 

breeding season were 120, 270, 43 and 6 for Great Saltee, Little Saltee, 

Inishvickillane and Ireland’s Eye respectively. Estimated population size and the 

corresponding Seabird 2000 estimates for each colony are outlined in Table 3.  

 

Demographic modelling 
 

Matrix population models were constructed using the weighted averages of 

demographic parameters reported across several breeding populations of Manx 

shearwater, European storm petrel and Atlantic puffin. We obtained λ values of 

1.016, 1.033 and 1.012 for Manx shearwater, European storm petrel and Atlantic 

puffin respectively, from the models, indicating an increasing trend in these 

populations over time. To attain retrodicted population estimates with a high 

degree of accuracy, we simulated anomalies in fecundity (decreased productivity 

and increased skipping of breeding) that are thought to occur on average every five 

years, yielding population growth rates in those years of 0.997, 1.016 and 0.993 

for Manx shearwaters, European storm petrels and Atlantic puffins respectively. 
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These models were used to produce retrospective population estimates for each 

breeding population (Table 3; Figure 3). Sensitivity analyses indicated that adult 

survival was the most important parameter in the matrix population models for all 

species, producing larger declines in population growth rates compared to all other 

parameters (Table 4).   
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Figure 2. Graph showing the stable age structure of each species determined by the projection 

of Leslie Matrix population models over 40 years. Models used the pre-breeding estimates of 

adult population size reported in this study.   
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Table 2. Proportions used for the stable age distribution as determined by each 

matrix population model built on demographic parameters in the literature 

(Supplementary Tables 1-3).  

Stage Manx shearwater 
European storm 

petrel 
Atlantic puffin 

Juveniles 0.213 0.284 0.210 

Immature stage 1  0.113 0.061 0.147 

Immature stage 2 0.097 - 0.103 

Immature stage 3 0.083 - 0.072 

Immature stage 4 0.071 - 0.054 

Breeding Adult 0.423 0.655 0.413 

 

Table 3. Seabird 2000 estimates, recent population size estimates and retrospective 

projection of population estimates of breeding Manx shearwaters, European storm 

petrels and Atlantic puffins on several offshore islands in Ireland.  

Species Island 
Seabird 2000 

estimate1(1998-
2002) 

Recent estimate 
(2015-2017) 

Retrospective 
estimate (1998-

2002) 

Manx shearwater 
(AOB (95% C.I.)) 

Little Saltee 100 
719 

(591- 847) 

557 

(406-757) 

High Island 22 
818 

(660-976) 

634 

(503- 744) 

Inishvickillane 643 
2,743 

(2296-3190) 

2126 

(1477-2670) 

European storm 
petrel 

(AOS (95% C.I.)) 

Beginish 450 
75 

(70-79) 

45  

 (41-49) 

High Island 60 
3,821 

(2980-4663) 

2279  

(1403-3156) 

Inishmurray n.c 
280 

(88-472) 

169  

(32-302) 

Atlantic puffin 

(Individuals  
(95% C.I.)) 

Great Saltee 1522 120 
106  

(78-141) 

Little Saltee 300 270 
235  

(175-319) 

Inishvickillane 56 43 
37  

(27-51) 

Irelands Eye n.c 6 
5  

(3-7) 
1Mitchell et al. (2004); n.c = not counted 
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Figure 3. Retrospective population estimates of breeding (a) Manx shearwaters (AOB), (b) 
European storm petrel (AOS) and (c) Atlantic puffin (individuals) on several Irish colonies 
determined by population growth rates (λ) from Leslie matrices. Shaded area represents the 
95% confidence interval from variation in demographic parameters and initial population 
estimate.   
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Table 4. Sensitivity analyses of population growth rates (% change in λ values) 

when subjected to 5% decline in the weighted mean of demographic parameters 

used to construct Leslie matrices for three burrow-nesting seabirds in Ireland. 

Parameter 
Manx 

shearwater 

European storm 
petrel 

Atlantic puffin 

Adult survival -2.9 -4.5 -3.4 

Fecundity -0.4 -0.3 -0.3 

Immature survival  -1.6 -1 -1.2 

Skipped breeding (M) -0.4 -0.3 -0.3 

 

 

Discussion 

 

This study aimed to attain accurate breeding population estimates of several Manx 

shearwater, European storm petrel and Atlantic puffin colonies in Ireland. These 

estimates were notably different to previous estimates reported in Mitchell et al. 

(2004) across all colonies. New Manx shearwater estimates were larger than 

previous surveys, whilst lower numbers of puffins were recorded. A combination 

of higher and lower estimates between new and previous census efforts was seen 

across European storm petrel colonies. We discuss the differences in the two 

censuses considering the retrodicted population size estimates from Leslie matrix 

models, and the variation in demographic parameters that could explain our 

findings.  

 

Across all Manx shearwater colonies and one European storm petrel colony 

censused here, population sizes were previously vastly underestimated in Mitchell 

et al. (2004). Assuming accurate estimates were produced in both censuses, 

population growth rates of Manx shearwaters would need to range from 1.23 - 

2.18, and the European storm petrel colony on High Island would have required 

an annual growth rate of 3.88. Such population growth rates are unrealistic for 

seabirds, as they produce few offspring (Brooke, 1990), demonstrate delayed 

maturation (Harris, 1983) and show little breeding dispersal (Cadiou et al., 2010). 

Population growth rates in seabirds are not expected to exceed 1.1 (Hatch, 2003; 

Wanless et al., 2005; Horswill and Robinson, 2015). The discrepancies in 

population size estimates for colonies with seemingly enormous population 
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growth are likely a result of differences in census methods, as population size 

estimates can differ significantly across two censuses when the sampling 

approaches are inconsistent (Smith et al., 2001; Perrins et al., 2012; Arneill et al., 
2018 – Chapter 2). Due to a lack of detail reported in the methods used during 

Seabird 2000, exact comparison of the sampling approaches is not possible. 

Though the difference in field effort (< 3 days per island in Seabird 2000 and 11-

42 days in those reported here) suggests that more area was sampled during recent 

surveys, yielding more accurate estimates (Mitchell et al., 2004; Arneill et al., 
2018 – Chapter 2).  

 

The difference in population size estimates of European storm petrels on High 

Island is likely due to a sampling bias during Seabird 2000 where tape-playback 

efforts were restricted to the island’s stone walls and ruins (Mitchell et al., 2004; 

Steve Newton, pers.comm.). The expansion of the tape-playback sampling across 

the island showed that European storm petrels predominantly breed in the dense 

dry-heath grassland that is widespread across the island (Arneill et al. 2018 – 

Chapter 3). The smaller population estimate on Beginish is likely due to one, or a 

combination, of two factors: (i) the sampling approach and (ii) the recent 

introduction of grazing livestock to the island. Differences in sampling approaches 

and efforts between two censuses have been shown to produce large discrepancies 

in the population estimates attained (Perrins et al., 2012; Arneill et al., 2018 – 

Chapter 2). However, the latter is more likely the causal factor, as the introduction 

of livestock to burrow-nesting seabird colonies significantly reduces the 

availability of suitable breeding habitat (Rayner et al., 2007; Pinet et al., 2009). 

Furthermore, Beginish is a small island (approximately 14 hectares) and little 

effort is required to obtain an accurate estimate of population size. Inishmurray 

was not surveyed during Seabird 2000, therefore no comparisons could be made 

to any previous census.  

 

The retrospective projection of Atlantic puffin populations suggests there should 

have been an increasing trend in these populations from 1998-2016. Yet a lower 

number of Atlantic puffins were recorded on all sites compared to those reported 

in Mitchell et al. (2004). The confidence interval surrounding the retrospective 

projections on Little Saltee and Inishvickillane show that known variation in 

demographic parameters may explain the observed population decline in these 
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colonies. The variation in population growth rates is primarily due to the variable 

productivity rates in this species that are particularly sensitive to changes in the 

quantity and quality of available prey to provision young (Wanless et al., 2005; 

Breton and Diamond, 2014). These changes in population size estimates are 

consistent with the declining trends observed in other colonies (Harris et al., 1998; 

Mavor et al., 2008; Miles et al., 2015) and support the species recent classification 

as “Endangered” at the European scale on the IUCN red list of threatened species 

(IUCN, 2015).  

 

The decline observed on Great Saltee however is much larger than that of the 

retrodicted population size estimates and their surrounding 95% confidence 

intervals. Here both estimates are expected to approximate the true population size 

as whole-island observational counts are less susceptible to sampling error than 

other methods (Walsh et al., 1995). This finding is similar to trends reported on 

Fair Isle across a comparable time frame (1986-2012), whereby observational 

counts indicated a population decline of approximately 50% while demographic 

models predicted a growth in the population (Miles et al., 2015). The authors 

concluded that low recruitment of immatures into the breeding population was the 

most probable mechanism of change, and demonstrated this by modelling low 

immature survival and high immature dispersal rates. Modelling the changes 

outlined by Miles et al. (2015) on the Atlantic puffin population on Great Saltee 

does not explain the change in population size observed here. To simulate the 

decline on Great Saltee, the changes in these immature parameters need to be 

accompanied by significantly reduced productivity (approximately -90%) or a 

reduction in adult survival (approximately -10%) (see Figure 4).  
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Figure 4. Simulations of the possible changes in demographic parameter driving 

the decline in the Atlantic puffin population on Great Saltee, Co. Wexford. 

Simulation A demonstrates reduced immature survival and increased immature 

dispersal as per Miles et al. (2015). Simulation B builds on simulation (A) with a 

10% reduction in adult survival and simulation (C) combines simulation (A) and 

a 90% reduction in productivity rates.  

 

Reduced productivity or adult survival rates within the breeding population on 

Great Saltee is plausible due to the population of Brown rats (Rattus norvegicus) 

on the island (Kelly et al., 2008). Expanding populations of avian and mammalian 

predators alter the demographic parameters of these populations, whereby 

increased predation events result in reduced adult survival, productivity and 

recruitment rates (Jones et al., 2008; Finney et al., 2003; Miles et al., 2015). For 

example, in another Auk species (Aethia pusilla) the lowest productivity rates ever 

recorded for this species (0.09–0.16 chicks fledged) were linked to the disruption 

of adults attempting to brood or provision young chicks by rats (Major et al., 
2006). The impact of rats on the breeding populations of seabirds has been widely 

reported (McChesney and Tershy, 1998; Martin et al., 2000; Fukami et al., 2006; 

Mulder et al., 2009) and successful eradication programmes have prevented island 

extinctions (Taylor et al., 2000; Pascal et al., 2008). Further study is required to 
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determine the exact cause of the decline on Great Saltee and the conservation 

efforts required to prevent further declines.  

 

This study demonstrates the use of retrospective population modelling to infer the 

historic population size of these colonies. Our models are thought to be accurate 

as they produced population growth rates similar to those of other long-lived 

species and the sensitivity analyses demonstrated that adult survival was the most 

important demographic parameter (Brault and Caswell, 1993; Gaillard et al., 1998; 

Monadjem et al., 2012; Soldatini et al., 2016; Monadjem et al., 2018). Several 

factors limit our ability to draw solid conclusions from these modelling efforts. 

Firstly, the availability of population size estimates meant that an estimate 

obtained from a single breeding season had to be used. One might suggest that the 

year of the original census in Seabird 2000 or more recent censuses may have been 

conducted in an atypical year, though long-term datasets such as that reported in 

Miles et al. (2015) and the low incidences of skipped breeding (Supplementary 

Tables 1-3) suggest that the difference in population sizes from year to year are 

not sufficient to explain the differences in population sizes estimates reported here. 

Furthermore, the underlying assumption that the colonies in which demographic 

parameters were available are representative of these breeding populations 

produces considerable uncertainty, despite the low variation around the values 

reported in the literature. Further work to adapt these models to site specific 

parameters would increase the accuracy of these projections, highlighting the 

importance of constant monitoring plots at key sites.  

 

We present compelling evidence that the population size estimates of burrow-

nesting Procellariiformes in Ireland were vastly underestimated in Seabird 2000. 

The extent to which the national estimates of these populations are underestimated 

cannot be quantified because factors that determine colony size often vary 

temporally and spatially across a species range. However, our findings are 

strengthened by recent national abundance estimates of Manx shearwaters of 

88,491 (95% CI: 60,155 - 116,942) individuals reported from offshore aerial 

surveys (Rogan et al., 2018). These numbers are likely to be even higher as these 

surveys omitted some coastal areas off the south west coast where huge numbers 

of Manx shearwaters are known to breed (Mitchell et al., 2004). Estimates of 

Atlantic puffin population sizes reported here support growing evidence of the 
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decline in the breeding populations of this species (IUCN, 2015; Miles et al., 
2015). This is particularly true for Great Saltee, where we show that the observed 

population change is likely due to significantly reduced productivity or lowered 

adult survival. The omission of site level data on the spatial distribution of 

sampling prevented direct comparison and replication of censusing, highlighting 

the necessity of the standardisation and reporting of detailed census methods. 

Thus, it is essential that considerable effort is put into the next census of these 

species to establish reliable baseline estimates.  
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Supplementary Material 

 

Supplementary Table 1. Parameter values used to construct Leslie matrix 

population models for retrospective projection of populations of breeding Manx 

shearwater (Puffinus puffinus).  

 

Demographic Parameter Weighted Mean Standard Dev. Sources 

Age-specific survival:    

Juvenile (0-1 years) 0.61 0.07 1,2 

Immature (1-2 years) 0.87 0.08 3 

Immature (2-3 years) 0.87 0.08 3 

Immature (3-4 years) 0.87 0.08 3 

Immature (4-5 years) 0.87 0.08 3 

Adult (5 +) 0.87 0.08 3 

Productivity  

(Average across British Isles) 
0.697 0.04 3,5 

Recruitment age 5  6 

Skipped breeding 0.157  7 

Dispersal    

Natal 0.25 (females)  4,6 

Adult Low   

1. Cuthbert et al., 2001; 2. Brooke, 1990; 3. Büche et al., 2013; 4. Brooke,1978; 

5. Mavor et al., 2008; 6. Harris, 1966; 7. Perrins et al., 1973 (Horswill and 

Robinson, 2015) 

 

For a list of all individual values and sources see the supplementary material of 

the JNCC report: Horswill, C. & Robinson, R.A., (2015), Review of Seabird 

Demographic Rates and Density Dependence, JNCC Report 552, ISSN 0963-

8901 
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Supplementary Table 2. Parameter values used to construct Leslie matrix 

population models for retrospective projection of populations of breeding 

European storm petrel (Hydrobates pelagicus). 

 

Demographic Parameter Weighted Mean Standard Dev. Sources 

Age-specific survival:    

Juvenile (0-1 years) 0.222  1 

Immature (1-2 years) 0.90  1 

Adult (3 +) 0.949  1 

Productivity  0.448 0.05 2 

Recruitment age 3  1 

Skipped breeding 
0.04  1 

Dispersal    

Natal 0.06  3 

Adult Unknown   

1.Soldatini et al., 2016; 2. de León and Minguez, 2003; 3. Cadiou et al., 2010 
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Supplementary Table 3. Parameter values used to construct Leslie matrix 

population models for retrospective projection of populations of breeding Atlantic 

puffin (Fratercula arctica). 

 

Demographic Parameter Weighted Mean Standard Dev. Sources 

Age-specific survival:    

Juvenile (0-1 years) 0.709 0.022 1 

Immature (1-2 years) 0.709 0.022 1 

Immature (2-3 years) 0.709 0.022 1 

Immature (3-4 years) 0.76 0.019 1 

Immature (4-5 years) 0.805 0.017 1 

Adult (5 +) 0.906 0.02 2-4 

Productivity  

(Average across British Isles) 
0.61 0.15 4-9 

Recruitment age 5  8,10 

Skipped breeding 
0.078  8 

Dispersal    

Natal 0.23  10 

Adult 0.04 0.04 1,8,11 

1.Breton et al., 2006; 2.Harris et al., 2005; 3.Lahoz-Monfort et al., 2011; 4.Baer et 

al., 2010; 5.Shaw et al., 2010; 6.Mavor et al., 2008; 7.Newell et al., 2010; 8.Ashcroft, 

1979; 9.Harris, 1980; 10.Harris, 1983; 11.Kress and Nettleship 1988. (Horswill and 

Robinson, 2015) 

 

For a list of all individual values and sources see the supplementary material of the 

JNCC report: Horswill, C. & Robinson, R.A., (2015), Review of Seabird 

Demographic Rates and Density Dependence, JNCC Report 552, ISSN 0963-8901 
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Chapter 6. General Discussion 

______________________________________________________________________________ 

General Discussion 
 

For many seabird populations, we lack baseline population size estimates as 

several of their life history characteristics and their widely distributed colonies 

make them difficult to census (Croxall et al., 2012; Paleczny et al., 2015; IUCN, 

2015). This is particularly true for burrow-nesting species that have proved to be 

the most difficult seabirds to census as they are inconspicuous in their burrows, 

often coexist with multiple burrowing species, and many are only active within the 

colony at night (Smith et al., 2001; Perrins et al., 2012; Oppel et al., 2014). Our 

lack of knowledge in the size and status of these populations is a major limitation 

in their conservation as these species are particularly vulnerable to threats such as 

introduced mammalian predators and habitat destruction (Major et al., 2006; 

Rayner et al., 2007; Jones et al., 2008). Accurate data on the size and status of 

these populations allows us to make links to such threats and therefore allows 

appropriate conservation action to be taken in a timely manner (Capizzi et al., 
2010; Watson et al., 2014).  

 

Ireland is obligated under Articles 10 and 12 of the EU Birds Directive (Directive 

2009/147/EC) to protect its seabird populations and yet does not have reliable 

population estimates, let alone trends, for burrow-nesting seabird species. This is 

true for many countries whereby the population sizes of many burrow-nesting 

seabirds remains unknown. To gain a better understanding of Ireland’s burrow-

nesting seabird populations, this research aimed to further our knowledge of how 

to accurately census and monitor three burrow-nesting species in Ireland: the 

Manx shearwater (Puffinus puffinus), the Atlantic puffin (Fratercula arctica) and 

the European storm petrel (Hydrobates pelagicus). We found that extensive 

sampling efforts are required to obtain accurate population estimates of these 

species when sampling is carried out in a random manner, but the accuracy of 

estimates can be dramatically improved using prior knowledge of the distribution 

of breeding burrows (chapter 2). Furthermore, understanding these species habitat 

and topographical preferences can accurately predict their breeding distributions 
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and guide these censuses using species distribution modelling (chapter 3). 

Although the use of traditional methods requires considerable field effort (chapter 

2,3,5), they are necessary to determine the efficacy and scope of emerging 

automated approaches (chapter 4). The work as a whole improves our 

understanding of how best to census and monitor burrow-nesting species 

(chapters 2,3,4). Specifically in the Irish context, current knowledge of the size 

and status of these species populations is unreliable (chapter 5), combining the 

findings of the work carried out here with existing knowledge, aids in the revision 

and standardisation of the methods to census and monitor these species in the 

future (Appendix Section 1).  

 

In this chapter, I discuss the findings of the previous chapters in the context of (1) 

censusing and (2) monitoring these three burrow-nesting seabirds. I highlight some 

of the issues faced while undertaking this research, discuss the broader scope of 

these findings and present some direction for future work in this field.  

 

6.1 Census methods 
 

In general, this thesis demonstrates that at the site level a considerable amount of 

fieldwork is required to determine the baseline distribution and population size 

data of burrow-nesting species with a high degree of accuracy. The approach used 

to obtain this baseline data is dependent on the species and the site being surveyed. 

Here I outline how the work presented in my thesis furthers our understanding of 

various methodologies and the sampling approaches used across these species.  

 

6.1.1 Manx shearwaters and European storm petrels  
 

The tape-playback method developed by James and Robertson (1985) has been 

widely adopted as the standard methodology across many breeding colonies of 

Manx shearwaters and European storm petrels (Ratcliffe et al., 1998; Smith et al., 
2001; Murray et al., 2003; Bolton et al., 2010; Perrins et al., 2012; Perkins et al., 
2017a). The method has since been adapted to increase the response rate by 

changing the origin, sex, quality and duration of the recorded calls used (Ratcliffe 

et al., 1998, Brown et al., 2006; Perkins et al., 2017a). These changes to the method 

improve our confidence in receiving a response from an occupied burrow and 
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therefore somewhat reduce the confidence intervals surrounding populations 

estimates. However, our findings in chapter 2 suggest that a more immediate 

priority is the revision of the fundamental sampling strategies that underpin these 

censuses. Explicitly, the marginal reduction in confidence intervals due to an 

increased response rate is meaningless if low levels of random sampling are used 

that produce huge uncertainty around estimates. This is particularly true if it is 

necessary to spend more time at each burrow to increase the response rate, 

necessitating more time in the field to sample the same area (Perkins et al., 2017a). 

Thus future censuses should focus on the size of area that is logistically feasible to 

sample on the site before carrying out the survey and refining methodologies for a 

marginal increase in the response rate.  

 

The work in chapter 2 built on a discussion point of Perrins et al. (2012) who 

briefly deliberated the potential causes of the large differences in population size 

estimates across two censuses of Manx shearwaters on Skomer, the largest known 

breeding colony of this species (Smith et al., 2001). Moreover, the need for this 

work to be carried out was strengthened by the discrepancies between population 

size estimates reported here and those of Seabird 2000 (chapter 5). We 

demonstrated that a priori knowledge of the distribution and density of breeding 

birds can be used to design stratified approaches to tape-playback surveys that 

dramatically improve our confidence in abundance estimates (chapter 2). These 

findings are not solely pertinent to Manx shearwaters, but also applicable across 

species with similar patchily distributed breeding sites with high site fidelity, 

including the European storm petrel. To determine what drives these distributions, 

in chapter 3, we explored several environmental gradients using ensemble species 

distribution models and showed that habitat assessments and digital elevation 

models can be used to predict the distribution of these species. The accuracy of 

these model predictions suggest that this method can be used to define priority 

areas for censusing. Moreover, model predictions highlight areas where breeding 

is unlikely to occur, further reducing the area to be sampled. The scope and 

limitations of this research are discussed in detail in chapter 3, where we suggest 

that further training data from different islands would introduce more habitat types 

and topographical variables, increasing confidence in the transferability of these 

models across a wider range of islands. 
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The timing of effective tape-playback surveys has been discussed in the literature 

and is directly linked to the phenology, whereby response rates are highest during 

the incubation and chick-guarding stages (James and Robertson, 1985; Ratcliffe et 
al., 1998). Here, all Manx shearwater surveys were carried out from mid-May until 

mid-June and the measured response rates were comparable to those of other 

censuses (Murray et al., 2003; Mitchell et al., 2004; Perrins et al., 2012; chapters 

2,3,5). Across the European storm petrel surveys, ambiguity around the 

appropriate timing of tape-playbacks necessitated some exploratory work during 

the initial census on High Island in 2016. To determine when response rates were 

highest, tape-playbacks were repeated three times every second day on 30 

apparently occupied sites during the survey period (19th of July to the 31st of July) 

when response rates were thought to be highest (Steve Newton, pers. comm.). We 

found the response rate peaked in the last week of July (Figure 1), was higher than 

those reported in previous studies (Ratcliffe et al., 1998; Bolton et al., 2010) and 

similar across the censuses (chapter 3,5). This trial advocates future research in 

determining the variation in response rates both temporally and across multiple 

colonies to inform future censuses. For example, a study could be done across this 

species range to determine if these peaks in response rate vary across latitudes with 

phenology (Parmesan, 2007).  

 

 

Figure 1. Variation in European storm petrel response rates over on High Island in 

2016.  
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Publications on the use of alternative methods to estimate population size of 

burrow-nesting Procellariiformes are generally limited since the widespread 

uptake of the tape-playback method. In chapter 4 we examined the efficiency of 

passive acoustic monitoring in determining local breeding density of Manx 

shearwaters. Our work, based on that of Oppel et al.’s (2014) study on Cory’s 

shearwater (Calonectris borealis), did not find the expected relationship between 

acoustic activity and local breeding density across the Manx shearwater colony on 

High Island, Co. Galway. Our results suggests that consistent flyways across the 

colony drive the soundscape, rather than the density of birds breeding within areas. 

Further work should explore the transferability of passive acoustic monitoring as 

a census method across Procellariiformes. While current restrictions on the battery 

capacity in GPS technology limits the scope of tracking the fine scale movements 

of seabirds within colonies, we present a novel application of telemetry data on 

which further work should be built to examine the movement within colonies.  

 

6.1.2 Atlantic puffins  
 

The Seabird Monitoring Handbook (Walsh et al., 1995) recommends the use of 

signs of occupancy as the standard methodology for Atlantic puffins, advising that 

observational counts should only be used when burrows are inaccessible for 

inspection. These methods reported in Walsh et al. (1995) are informed by work 

on well-studied islands such as the Isle of May, Scotland (Harris, 1980;1984) and 

Røst, Norway (Ankler-Nilsson and Røstad, 1993). Two points should be 

considered in respect to carrying out surveys for signs of occupancy, (i) the 

accessibility of burrows across the island(s) to be censused and (ii) the number of 

burrow-nesting species breeding on the island(s). For example, on three of the four 

colonies censused here, breeding burrows were located on inaccessible steep 

slopes or coastal cliffs. Furthermore, three of the four colonies host breeding 

populations of Manx shearwaters (chapter 5). Therefore to ensure comparable 

results across sites, the density and distribution data reported in my thesis were 

obtained from whole-island observational counts (chapter 3 and chapter 5).  

 

Access to some of the breeding burrows on Great Saltee, Co. Wexford allowed for 

some experimental work on the signs of occupancy method, albeit an insufficient 

amount to include as a stand-alone chapter in my thesis. We used a burrowscope 
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(Sextant Technology Ltd., New Zealand) to sample 108 and 137 accessible 

burrows within breeding areas of Atlantic puffins in 2016 and 2017 respectively. 

We found that the majority of burrows that had signs of occupancy were empty, 

while those that were occupied contained either Atlantic puffins or Manx 

shearwaters (Figure 2). Although these data may have been influenced by some 

unusual factor, for example, especially high failure early in those seasons, these 

findings suggest that in heterogenous colonies, signs of occupancy may not be an 

appropriate counting method due to the inability to differentiate species (Rayner 

et al., 2007). Future work on islands where large numbers of breeding burrows are 

accessible is required to draw definitive conclusions. Furthermore, burrowscoping 

should be carried out early in the season to include those birds that potentially fail 

in their breeding attempt as the season progresses.  

 

 

Figure 2. Graph showing the number of burrows (with and without traditional 

signs of occupancy) examined using a burrowscope (Sextant Technology, Ltd) on 

Great Saltee, Co. Wexford that were occupied by Atlantic puffins, occupied by 

Manx shearwaters or empty.  

 

Further work is essential to establish the extent of the issue with the signs of 

occupancy method highlighted here and should be carried out on sites where this 

method is regularly employed (e.g the Isle of May). Moreover, counts of 
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apparently occupied burrows through the signs of occupancy method requires 

access to colonies early in the breeding season (March) to produce accurate 

population size estimates (Harris, 1984). Access this early in the year is often 

restricted on many sites due to weather conditions. Based on the fact that this 

preliminary work found high rates of unoccupied burrows, and the possibility of 

erroneously counting different species using the signs of occupancy method, we 

suggest that it is appropriate that observational counts are used in national census 

efforts as a transferable and therefore standardised method of obtaining population 

size estimates for this species (Appendix Section 1).  

 

Burrow-nesting seabirds are globally distributed and the findings outlined in my 

thesis, with the exception of chapter 5, are applicable to the burrow-nesting species 

that are distributed and studied in many countries including New Zealand, Iceland, 

Norway and the United States (Ankelr-Nillsen and Røst, 1993; Major et al., 2006; 

Buxton and Jones, 2012; Croxall et al., 2012; Borker et al., 2014; Paleczny et al., 
2015). Specifically, the conclusions drawn on censusing these species from the 

analyses in chapter 2, and the modelling approach in chapter 3, are directly 

transferable to the majority of burrow-nesting species that are patchily distributed 

and show high site fidelity. The drivers of the distribution of breeding burrows will 

vary across species (chapter 3) and therefore models should adapted for each 

species within their respective breeding ranges to ensure accurate predictions can 

be made. These predictions can inform censuses to establish the baseline 

distribution and density across breeding colonies, on which repeat censuses can be 

designed in a multi-stage stratified approach (chapter 2). While it is clear from 

chapter 4 that passive acoustics cannot quantify the population size of all 

Procellariiformes, further work should explore this relationship and that of the 

flight paths first reported here.  

 

6.2 Monitoring methods 

 

Current monitoring programmes for Manx shearwater, European storm petrel and 

Atlantic puffin across the British Isles are restricted to several colonies in Britain 

(Mavor et al., 2008). In the Republic of Ireland, reports on population changes are 

limited to the difference in estimated population sizes across the national censuses 

of Atlantic puffin (Mitchell et al., 2004). The extent to which conclusions can be 
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drawn from changes observed between these censuses is dependent on the 

consistency of sampling used at the site level (chapter 2,5). Furthermore, 

conclusions with regards to the changes in the national population size should not 

be made, as population trajectories differ at the site level (chapter 5). One of the 

aims in chapter 2 was to determine what sampling is required to establish an 

effective monitoring strategy for these species in Ireland. The findings suggest that 

the placement of monitoring plots within areas of highest density is necessary to 

detect population declines and ensure conservation action can be taken in a timely 

manner. Thus, accurate baseline information on the distribution and density of 

these birds across sites to be monitored is necessary to ensure monitoring plots are 

appropriately placed.  

 

Existing monitoring practices for these species are likely failing to detect 

population level changes due to the random selection of monitoring plots. For 

example, on Skomer, Manx shearwaters are monitored within twenty fixed plots 

every year. Density of breeding birds varies substantially across these monitoring 

plots, ranging from 2 AOB to 218 AOBs in 2017 (Büche et al., 2013). The analyses 

reported in chapter 2 shows that this approach has less than 50% chance of 

detecting a population decline of 10% between years. Furthermore, this approach 

only has sufficient power (> 0.8) when the population level declines are as high as 

50%. Similarly, attempts to quantify population level change on Rum showed that 

the random selection of over 50 plots failed to produce any meaningful conclusions 

on population level changes (Thompson and Thompson, 1980; Thompson, 1987). 

The findings in chapter 2 give direction for the establishment of monitoring plots 

in Ireland, but also highlight how existing monitoring programmes globally can be 

revised to ensure effective monitoring of burrow-nesting species with similar 

breeding characteristics.  

 

In chapter 4 we show that automated monitoring techniques may provide an 

alternative strategy of monitoring populations through acoustic indices. These 

findings supported that of previous work (Buxton and Jones, 2012; Borker et al., 
2014; Dufour et al., 2016), though the extent to which this recently established 

method can accurately describe changes necessitates long-term study. In chapter 

5 we demonstrated how demographic parameters such as productivity and survival 

rates can be used, highlighting that monitoring programmes should not solely 
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focus on changes in the density of breeding birds. Measuring these demographic 

parameters in Ireland would allow more confident inference to be made from 

future modelling of population trajectories (chapter 5). These models can then be 

built and used to determine how management approaches in Ireland can be adapted 

to conserve these species. For example, across several threatened species these 

models have been used to determine the best approach to mitigate population 

declines due to threats such as by-catch (Meyer et al., 2015), habitat loss 

(Flockhart et al., 2015) and disease (Rhodes et al., 2011).  

 

6.3 Summary of future work 

 

These findings suggest that a review of the existing methodologies in place for 

censusing and monitoring species that are patchily distributed with high site 

fidelity at a global scale is a logical next step. Reviewing these efforts would 

highlight areas that require revision to ensure standardised, and therefore 

comparable, approaches are used across these populations (chapter 2 and chapter 

5). Further work is necessary to acquire habitat data and expand LiDAR data to 

offshore islands, this would permit the construction of species distribution models 

at such fine-scales as outlined in chapter 3. The expansion and collation of this 

data across multiple species and multiple colonies could inform a model for 

predicting the distribution of suitable burrowing areas, not specific to a single 

species. Such a model could guide future censuses on islands where presence or 

absence of breeding burrow-nesting seabirds is unknown. Future work in passive 

acoustic monitoring (chapter 4) across multiple colonies and species should 

explore two factors: (i) the number of acoustic monitoring stations and (ii) the 

number of recording nights required to understand the variation across years and 

across sites, the former is likely to vary with the size of the site to be monitored.  

 

More immediately, accurate population size estimates should be obtained across 

breeding colonies using a standardised framework that considers the findings 

reported in my thesis (Appendix Section 1). The Republic of Ireland is in a 

position where the priority should be to establish and report more accurate 

populations size estimates of these species across all known colonies. A logical 

first step would be to target key breeding sites for these species (Appendix Section 

2 Table 1) outlined as important colonies in Mitchell et al. (2004). In order to 
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establish accurate estimates, realistic targets should be outlined that fall within the 

resources available for survey efforts. As an example, Table 2 in Section 2 of the 

Appendix highlights the cost associated with surveying Manx shearwaters on High 

Island in 2015 (chapters 2,3,5). Estimated costs can be adapted to the number of 

available observers and the survey duration. At the national scale, multiple teams 

of multiple observers should be deployed to carry out surveys within the three 

distinct areas around Ireland; the Irish sea and the east Celtic sea, the south west 

and the west Celtic sea, and the west coast. Once accurate baseline data on the 

distribution and density of breeding burrows are obtained, effective regular 

monitoring plots can be established. 

 

6.4 Conclusions 

 

In conclusion, it is essential that the brief census methods reported in the Seabird 

Monitoring Handbook (Walsh et al., 1995) for Manx shearwater, European storm 

petrel and Atlantic puffin, and potentially other burrow-nesting species such as 

Leach’s storm petrel are revised. As highlighted in this thesis, standardisation of 

the approaches used across breeding populations and across censuses is essential 

to produce comparative datasets from which conclusions can be drawn. We 

demonstrated how existing methods such as tape-playbacks can be used in 

different sampling approaches that significantly reduce the amount of fieldwork 

required to obtain accurate abundance estimates. Furthermore, strata in relation to 

the density of breeding birds can be defined by areas of favourable habitat, and 

predicted distributions can be obtained through species distribution modelling. 

More research will be required to determine the scope of automated techniques 

that aim to reduce these labour intensive surveys. Finally, we present a draft Irish 

Wildlife Manual (Appendix Section 1) outlining suggested census methods to 

obtain accurate estimates of these breeding populations. Ideally the approaches 

outlined in this manual would be adopted across each species’ breeding range to 

produce comparative data on which definitive conclusions can be drawn on the 

size and status of their breeding populations.    
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7. Appendix 

______________________________________________________________________________ 
 

Section 1 

 

The following Irish Wildlife Manual (in prep) was drafted for the National Parks and 

Wildlife Service to provide logistically feasible options to carry out the national 

censusing of burrow-nesting seabirds for the Seabird 4 (Seabirds count) census.  

 

This document is formatted as per the guidelines outlined for Irish Wildlife Manuals, 

thus is not identical to the other chapters presented in this thesis.  
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1 Introduction 
 
1.1 Overview of previous seabird censusing in Ireland:  
 
As apex predators in the marine environment, seabirds are likely to respond to changes 
in lower trophic levels, making their populations suitable as key ecosystem indicators’ 
(Diamond and Delvin, 2003; Parsons et al., 2008; Grémillet and Charmantier, 2010). 
Understanding and monitoring seabird populations informs their conservation status, 
aids in the creation of management plans, and identifies the direction of future 
scientific studies. Monitoring efforts across the globe have shown a significant 
declining trend in many seabird populations (Paleczny et al., 2015), linking these to 
various anthropogenic pressures such as habitat destruction and disturbance, the 
introduction of alien species, overfishing of prey species, fisheries bycatch, and 
climate change (Croxall et al. 2012).  
 
Census methods for seabirds are dependent on the lifestyle and the habitat in which 
they breed. Consequently, the level of difficulty in censusing different species varies 
primarily due to these two factors. Inferences on the trends in seabird distribution and 
population health are largely derived from cliff nesting seabirds, where the number of 
breeding birds are estimated based on apparently occupied sites (AOS). Difficultly 
arises when seabird species nest in inaccessible areas such as small remote islands and 
areas of cliff not visible for land counts. Several studies have used a combination of 
boat and land-based techniques to overcome this problem (e.g. Cotter and Rail, 2007). 
Additionally, remote sensing techniques such as aerial photography can be used for 
species such as the Northern Gannet (Morus bassanus) that are easily distinguished 
from an aerial view (Murray et al., 2015). 
 
Seabird species that nest in burrows, rock crevices and areas of scree are particularly 
challenging to census. Thus, the size and demographic trends for many breeding 
populations of this group are not known. The first estimates of seabird populations at 
the national level in Ireland were the product of Operation Seafarer and the Seabird 
Colony Register (SCR) Census; two large-scale projects conducted between 1969 – 
1970 and 1985 – 1988 respectively. These efforts were designed to provide a 
comprehensive account of the distribution and abundance of the seabirds breeding 
along the coasts of Britain and Ireland (Cramp et al., 1974; Lloyd et al., 1991). The 
third project of this type known as Seabird 2000, conducted largely from 1998 – 2002, 
aimed to greatly improve on the coverage and survey methods of prior efforts 
(Mitchell et al., 2004). Seabird 2000 was the first effort to report population estimates 
for all of Ireland’s burrow-nesting species; however, no detailed methodologies were 
published in the summary of this project and thus detailed replication at the site level 
cannot be carried out. The aim of this manual is to standardize the methodological 
techniques, recording procedures and post survey data archiving that will be used in 
future surveys, taking into account i) the enormous logistical constraints associated 
with working on islands, and ii) the likelihood that resources will be limited. 
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2 Censusing burrow-nesting seabirds in Ireland 
 
Ireland hosts large breeding populations of three burrow-nesting seabird species; the 
Manx shearwater (Puffinus puffinus), the European storm petrel (Hydrobates 
pelagicus) and the Atlantic puffin (Fratercula arctica). Recently, the Leach’s storm 
petrel (Hydrobates leucorhous) is thought to have recently established breeding 
populations on offshore islands in the north west of the country. The first national 
census of all seabirds was first undertaken during Seabird 2000; petrel and shearwater 
species were omitted from earlier surveys for logistical reasons. Based on Seabird 
2000, Ireland probably holds at least 10% of the global population of Manx 
shearwaters, 3-11% of European storm petrels, <1% of Atlantic puffins and <1% of 
Leach’s storm petrels (Mitchell et al., 2004). All three species are currently red- or 
amber-listed species of conservation concern due to suspected population declines. 
The accuracy of these population trends and estimates are far from clear, however, and 
thus there is a need to gain better breeding population estimates and to initiate a 
carefully planned monitoring programme. 
 
This document outlines two census methodologies for the petrel and shearwater 
species breeding in Ireland and one method for the Atlantic puffin, designed to account 
for the fact that resources will likely limit the number of islands that can be censused 
in detail, whilst nevertheless realizing that important presence/absence and 
distribution data can also be generated with less intensive visits over a larger number 
of sites. Valuable data can be collected using the “Distribution and Habitat Mapping” 
methodology. This approach can be done during relatively brief visits to islands, and 
can be easily employed by volunteers and staff with limited time. The second 
“Detailed Survey”, which utilizes the map generated by the Distribution and Habitat 
methodology, is for detailed censusing that is likely to require multiple days, 
depending on the size of the island, or more specifically, the size of the area over 
which the target species breeds on the island and the number of response rate 
measures. These methodologies have been informed by a review of the literature and 
analyses of data collected by G. Arneill (PhD thesis) carried out from 2015 – 2018, 
and after a workshop held in Edinburgh and attended by members of University 
College Cork (UCC), National Parks and Wildlife Service (NPWS), British Trust for 
Ornithology (BTO), Royal Society for the Protection of Birds (RSPB), Joint Nature 
Conservation Commission (JNCC), Scottish Natural Heritage (SNH), Centre for 
Ecology and Hydrology (CEH) and Marine Scotland (MS). 
 
Disclaimer: this manual can be used to aid the design of a census effort that aims to 
obtain a colony size estimate. It is not possible to give exact details of the level of 
sampling effort as the amount of sampling that is necessary to obtain colony size 
estimates with a high degree of confidence is site specific, and largely determined by 
the resources available to carry out this logistically challenging work. Therefore, the 
information regarding the amount of tape-playback sampling for the Procellariiform 
species within this manual should be used as a guide and be tailored to each individual 
colony. 
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2.1 Manx shearwater (Puffinus puffinus) 
 

 
 

Figure 1. The Manx shearwater Puffinus puffinus (Procellariiformes: Procellariidae), Blasket Islands, Co Kerry. 

Photograph © Gavin Arneill. 

2.1.1 Overview of Breeding Ecology:  
 
The Manx shearwater is a pelagic seabird of the tubenose family Procellariidae, which 
also includes albatrosses, fulmars, petrels, and storm petrels (Brooke, 2013). The 
species spends most of the time at sea, carrying out large foraging trips (Shoji et al., 
2015) and trans-Atlantic migration to winter off the coasts of South America and South 
Africa, before returning to reproduce on land in the Northern Hemisphere (Harris, 
1966; Guilford et al., 2008). Manx shearwaters usually return to breed in their natal 
colonies concentrated in north-western Europe (Harris, 1972). Seabird 2000 census 
work suggests that Britain and Ireland together host approximately 90% of the total 
global population (Mitchell et al. 2004). Elsewhere, Manx shearwaters are also known 
to breed in France, Iceland, the Faroe Islands, Madeira, and the Azores, and more 
recently established colonies have been found along the eastern coasts of North 
America and Newfoundland (Lien and Grimmer, 1978; Thompson, 1987; Brooke, 
2013).  
 
Manx shearwaters return to breeding sites under the cover of darkness and thus visual 
detection at the colony throughout the day is not possible. Reports before the 
development of tape-playback surveys (James and Robertson, 1985) recorded 
estimates from the activity around the colony on any given night (Cramp et al., 1974; 
Lloyd et al., 1991; Mitchell et al., 2004). Diurnal tape-playback methods have since 
been adopted internationally and are the recommended method for surveying this 
species (Walsh et al., 1995; Smith et al., 2001; Mitchell et al., 2004; Perrins et al., 
2012; Perkins et al., 2017a). This method works by playing a vocal recording of 
shearwaters down individual burrows in order to elicit a vocal response from the 
burrow’s occupant. This is carried out on a number of sample plots throughout the 
colony, and after applying a correction factor that takes into account that a predictable 
proportion of birds present tend to respond, an estimate of the breeding population can 
be generated.  
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2.1.2 Census unit:  
 
Apparently Occupied Burrows (AOB): an apparently occupied burrow here is a 
burrow where a response was evoked when a tape-playback was carried out.  
 
2.1.3 Distribution and Habitat Mapping – accompanying Form 2.1.3  
 
The Distribution and Habitat Mapping approach is recommended when survey effort 
is limited to a one or two day visit. Although a robust population estimate cannot 
usually be made from these short visits, very useful data can be collected. The main 
aim of this method is to map i) the presence and absence of burrows, occupied or 
otherwise, over the entire island using a tape playback method, and ii) at the same 
time, to map the broad habitat categories and other features of note on the island. 
These data will not only provide an invaluable “atlas” of the island’s distribution, they 
will also guide future intensive monitoring efforts.  
 
There are two ways to do the Distribution and Habitat Mapping. We strongly 
recommend you use the first approach (a), but if there is no capacity to do this, the 
second approach can be useful if done thoroughly and carefully. You need to prepare 
a detailed map before visiting the island. 
 
a) Detailed Mapping (preferred; requires some GIS expertise and GPS). 
 

i) Grid overlay: Create a grid overlay of the entire island so that you can ensure you 
visit all parts of the island to within a set distance using a GPS device. For smaller 
islands (< 30-40 ha) or when time is not too restricted the grid is recommended to 
consist of 50m x 50m squares. For larger sites, such as Great Blasket, grid squares 
of 100m x 100m are more realistic. Save the GPS coordinates and label centroids 
of grid squares to inform sampling efforts.  

 
Tutorial on how to create sampling grid: 
http://gis.mtu.edu/wp-content/uploads/2012/06/Regular_Sampling_Tutorial.pdf 
 

ii) It may be useful to use aerial photographs to outline areas on your map that are 
noticeably different in their broad habitat type, though these areas will be defined 
in more detail in the field using line transects as described below.  

 

iii) Fieldwork 
 

§ For larger islands, walk along a transect line through the centre (or as close as 
possible to the centre) of every 100m x 100m grid square on the island.  

§ For smaller islands, do this through the centre points of the 50m x 50m grid 
squares. 

§ During these line transects, map very roughly the main habitat types in the square 
and define the main/dominant habitat type in the recording form for that transect, 
paying particular attention to identifying habitat that is likely suitable for Manx 
shearwaters; this is generally penetrable soil that includes short-medium height 
vegetation, commonly including species such as Sea Pink (Armeria maritima) and 



 

2.1 Manx shearwater 152 

Sea Campion (Silene uniflora). Also map habitat where you suspect birds are very 
unlikely to breed, such as waterlogged grassland and areas of dense impenetrable 
vegetation. Also map areas that you could not walk through (e.g. bramble, steep 
cliffs, rocky areas without any soil). Note the inaccessible areas such as steep 
cliffs/slopes that had habitat that is suitable for breeding birds, also give some 
indication of the steepness of the slope.  

 

 
Figure 2. Suitable habitats for breeding Manx shearwaters Puffinus puffinus (Procellariiformes: Procellariidae), 

as outlined in section 2.1.3(iii). Photograph © Gavin Arneill. 

 

§ Note in the “Additional Notes” column on Form 2.1.3 any signs of suspected 
predation from species such as rats, peregrine falcon, gulls, cats, mink. 

§ Estimate very approximately the abundance of burrows in the individual grid 
square (0, <10, <50, <100, <500, >500) and enter into the “Estimated Number of 
burrows” column on Form 2.1. If you think there really are no burrows in the 
square, please wander away from the centre of the transect to ensure you have a 
reasonable view of the entire square, before continuing on the original route into 
the next grid square. 

§ If you do see burrows anywhere in the grid square within sight of these transects, 
carry out tape-playbacks at the individual burrow entrances of a randomly selected 
sample of burrows until you get one definite response that confirms the presence 
of breeding shearwaters in that grid square. Do this for a maximum of 20-40 
burrows but stop as soon as you have established the birds are present. These 
presence/absence efforts should be carried out in May, before any detailed efforts 
that should commence from mid-May until early June when the response rate is 
highest.  
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To undertake the tape playback method to survey breeding shearwaters and petrels 
one needs a Section 22 9 (D) licence under the Wildlife Acts and an appropriate 
recording. For more information on both these aspects please 
consult david.tierney@chg.gov.ie 
 

§ Playback is carried out by playing the recorded call for three-four call cycles 
(approximately 15 seconds) at a single burrow entrance, waiting for 10 seconds 
for a response, and then moving immediately on to the next burrow. Be consistent 
in how long you play the calls for (i.e. don’t play for longer than 15 seconds). 
Note the number of burrows played to and whether any responses were received 
on Form 2.1.3, as well as note the GPS coordinates of the area of burrows played 
to.  

§ Note in the “Additional Notes” column on Form 2.1.3 what proportion of burrows 
had signs of rabbit occupancy (droppings at entrance or nearby). 

 
 

 
Figure 3 Mapping habitat for surveying breeding Manx shearwaters as outlined in section 2.1.3(a)(iii). Sourcing 

satellite imagery (a), creating fishnet grid in which to transect (b), defining presence or absence burrows and 

responses from tape-playbacks (c) and defining habitat types across the island (d).   

 
b) Rough mapping approach (less-preferred, hand drawn mapping approach) 

i) Print off a map of the island from whatever online source that gives the best 
satellite imagery of the site. 

ii) Using this map, note areas that obviously differ in habitat type from the satellite 
imagery, for example stone walls, water bodies, dense vegetation, rocky outcrops. 
Include a scale bar that will be given on the satellite imagery, the scale will depend 
on the size of the island. 



 

2.1 Manx shearwater 154 

iii) In the field, visit within 50-100m all accessible areas on the island and map in 
further detail habitats that are suitable for breeding birds, ideally using the 
DAFOR scale (outlined in Fossitt 2000) – on Form 2.1.3.  

iv) Note the presence and absences of burrows in these areas. Where burrows are 
found, label these areas with a number on the map and give an estimate of the 
number of burrows in the labelled area (<10, <50, <100, <500, >500) in the 
“Estimated number of burrows” column of Form 2.1.3. 

v) If you do see burrows on these visits, carry out tape-playbacks at the individual 
burrow entrances of a randomly selected sample of 20-40 burrows. This is done 
by playing the call for three-four call cycles (approximately 15 seconds) and 
waiting 10 seconds for a response. Label on the map where you carried out 
playbacks, and on the form note the number of burrows played to and of any 
responded in the labelled area.  

 

 
Figure 4 Example of rough mapping approach, noting: habitats, presence of burrows and any playback efforts for 

breeding Manx shearwaters Puffinus puffinus (Procellariiformes: Procellariidae), as outlined in section 2.1.3(b). 

For clarity these were drawn digitally to represent what can be hand drawn.  

 
2.1.4 Detailed Survey – accompanying Form 2.1.4. 
 
This method involves a two-step approach: first generate a habitat map and an atlas of 
the distribution as outlined in 2.1.3, and second estimate the number of occupied 
burrows (by playing calls of shearwaters down burrows and listening for responses) 
in a number of circular plots distributed through areas occupied. 
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2.1.4 (a) Preliminary work 

 

i) Produce site level GIS map as described in 2.1.3 a above, with either a 50 x 50m 
grid or a 100m x 100m grid. Save GPS coordinates and label the centre of the 
grid squares (centroids) where sample plots will be located. The tutorial linked 
in 2.1.3 above demonstrates how to do this.  
 

ii) Using the map produced from the “Distribution and Habitat mapping” effort 
described in section 2.1.3, group each of the individual grid squares into strata 
that differ by estimated density (number of burrows). The number of strata will 
be determined by the level of detail recorded during the mapping effort and the 
homogeneity of the distribution of burrows across the island to be censused. A 
very simplistic approach would be to use three strata (‘low density’, ‘medium 
density’ and ‘high density’), however the more strata used the more accurate the 
attained population estimate. By increasing the number of strata the variation in 
plot density within each strata is reduced, thus reducing the confidence interval 
surrounding the extrapolated population estimate. There is no need to do sampling 
plots within grid squares where there are no burrows. 

Mapping the sampling effort before going into the field allows you to visualise 
the approach, to ensure that a broad coverage of the island’s suitable potential 
breeding areas are sampled.  

One circular plot is to be carried out in the centre of each grid square (100 x 100 
or 50 x 50 depending on the resolution). 

iii) How many plots to do depends on how much time you have. But as a rule of 
thumb, it is recommended that at least 10-15 plots are sampled in each of the 
strata, though the more area sampled the better the population estimate that can 
be derived. Note that estimates from low sampling effort should be used with 
caution and confidence intervals should always be reported. For islands that are 
thought to host a large breeding colony, such as Rum and Skomer, much more 
effort should be invested into obtaining colony size estimates 
 

iv) Logistically, it is not feasible to sample plots in a truly random way as transit 
times between plots can be excessive on large islands, thus we recommend 
grouping plots to be sampled within close proximity of each other and then 
randomising the order in which these groups are visited. This can be done in excel 
by creating a random number beside each group of plots, and then sorting the list 
of grouped plots using the random number column. See http://www.excel-
easy.com/examples/randomize-list.html for tutorial on how to randomise lists in 
excel.  
 

v) Ensure the following is sourced before field visits: high quality calls (call should 
remain clear at > 55dB) of duetting male and female Manx shearwaters, battery 
operated mp3/dictaphones, battery operated waterproof speakers (if 
mp3/dictaphone speaker not capable of 55dB), handheld GPS units, multiple 
measuring tapes (50 metres in length, brightly coloured (white) and non-metallic 
tape), recording sheets. 
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To undertake the tape playback method to survey breeding shearwaters and petrels 
one needs a Section 22 9 (D) licence under the Wildlife Acts and an appropriate 
recording. For more information on both these aspects please 
consult david.tierney@chg.gov.ie 
 

 
 
Figure 5  Some necessary equipment to carry out tape-playback surveys of breeding Manx shearwaters Puffinus 

puffinus (Procellariiformes: Procellariidae), as outlined in section 2.1.4(a)(v). 

 

vi) Tape playbacks should be carried out during the incubation and chick-guarding 
stage (approximately mid-May to early June). Seek advice from NPWS. 
 

 
2.1.4 (b) Fieldwork 

i) Tape-playbacks consist of playing the call of the duetting call of male and 
female Manx shearwaters for three-four natural cycles or approximately 14-15 
seconds in the entrance of a burrow. The call should be played at a natural 
volume (ca. 55dB) and not be distorted. After the three to four call cycles, or 
14-15 seconds, the observer should listen for approximately 10 seconds to 
detect any response. Tape-playbacks should be carried out in wind conditions 
of Beaufort 4 or lower to avoid false negatives (observer not hearing a 
response).  

 

ii) The radius of the circular sampling plots to be used differs depending on the 
grid size: 

 
 

§ The radius should be 10m for 100m x 100m grid squares. Typically one 
such plot would require approximately 30 – 90 minutes to survey, 
including transit between plots, varying depending on the density of 
burrows in the plot.  
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§ The radius should be 5.7m for 50m x 50m grid squares. Typically one 
such plot would require approximately 15 – 45 minutes per plot, 
including transit between plots.  

 
 

iii) Please go to the exact centre of these squares using the GPS coordinates of 
centroids from the GIS map. It is important not to move the position of the 
plot (for example if there are no burrows in the centre of the grid square even 
though you know there are some elsewhere in the square). This is important 
because i) this is an essential part of the sampling procedure and ii) these 
are the precise plots that will be revisited in future years. This approach 
greatly improves our ability to detect any population change. 

 

iv) Use two 5.7m lengths of tape measures to create a manageable slice of the 
circular plot, and systematically play the calls down every burrow in that slice. 
Then move one of the tape measures to create a new slice and repeat the calls 
(see Figure 7).  

 
 

 
Figure 6 Visual representation of where to position circular plots within grid squares for the Manx shearwater 

tape-playback sampling methods, as described in detail in section 2.1.4(b) of this text. Note the plot radii differ 

for 100 x 100m grid squares (10m) and for 50 x 50m grid squares (5.7m). 

 

 

 

 

  



 

2.1 Manx shearwater 158 

 

 
Figure 7 Visual representation of how to sample “slices” of circular plots to be used for the Manx shearwater 

tape-playback sampling method, described in detail in section 2.1.4(b) of this text. Note that the length of the tape 

(radius of the circle) is either 10 m in larger 100m x 100m grid squares or 5.7m in smaller 50m x 50m squares. 

 
(c) Non-essential additional effort: 
i) Response rates: It is helpful to work out what proportion of birds respond: Establish 
AOB’s (³ 30 active nests) where repeated measures of response rate can be taken 
throughout the survey effort. Response rate measures should be taken at least three 
times with 24 hour rest periods between measures to reduce habituation. Detailed 
guidelines can be found in the appendices of this report (section 5.1.1), response rates 
will be measured in detail at several sites and standard corrections can be applied to 
colonies where measures of response rate are not possible. 
 
ii) Marking permanent plot locations: If counts are going to be repeated in the future 
to monitor changes in the population, GPS points do not permit sufficient accuracy to 
visit the exact area in the future. Thus, assuming permission is given from the land 
owner, permanent stakes should be installed to the centre point of the sample plots to 
be visited again. We recommend doing this in both areas of high density and in areas 
where density is low but habitat is suitable for the possible expansion of breeding 
burrows. 
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2.2 European storm petrel and Leach’s storm petrel   
 
The methods for surveying both European- and Leach’s storm petrels are identical 
with the exception of (a) the tape-playback recording used (a call for each species) and 
(b) recording the possible apparent burrow entrances from Leach’s breeding in 
excavated burrows.  
 
Additionally, on sites where survey efforts focus on Leach’s storm petrel surveys, note 
that European storm petrels are known to respond to the tape-playback of Leach’s 
storm petrels so observers should be capable of distinguishing the species calls.  
 
2.2.1 Overview of Breeding Ecology:  
 
European storm petrel 
 

 
Figure 8 The European storm petrel Hydrobates pelagicus (Procellariiformes: Hydrobatidae), High Island, Co 

Galway. Photograph © Paul Whitelaw. 

The European storm petrel, Hydrobates pelagicus, is Europe’s smallest seabird with a 
population size of an estimated 438,000-514,000 breeding pairs in Europe, of which 
10.6% - 43.1% are believed to breed in Ireland (Mitchell et al., 2004). Despite their 
conservation status of “Least Concern” on the IUCN Red List of Threatened Species, 
European Storm petrels are listed on Annex 1 of the EC Birds Directive due to the lack 
of knowledge of the size and trends of the breeding populations. Ireland’s only 
population estimates come from Seabird 2000 (Mitchell et al., 2004), which identified 
the south west coast of the country, most notably the Blasket Islands and the Skelligs, 
as hotspots for the species, with other important colonies on islands along the west 
coast (Mitchell et al., 2004).  
 
Like Manx shearwaters, this species returns to breeding colonies only at night to 
reduce the risk of predation at the colony, and therefore censusing this species is 
logistically challenging. The majority of census work carried out to date has used the 
tape-playback method, first developed by James and Robertson (1985) and later 
adopted by Ratcliffe et al. (1998) for European storm petrels. Although breeding birds 
respond to tape-playbacks, the response rate of this species has been noted as 
considerably lower than other burrow-nesting seabird species (Ratcliffe et al., 1998; 
Mitchell et al., 2004). Alternative methods include the use of mark-recapture studies 
(mist-netting and ringing) to determine colony size, but these cannot discriminate 
between breeders and non-breeder, and do not record the distribution of breeding birds 
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within a colony (Insley et al., 2002). European storm petrels nest in crevices, scree 
slopes, stone walls, and in areas of dense vegetation where their nests often have no 
clear nest entrance. Many recent studies aim to utilise advances in remote sensing 
techniques such as infrared video recording (Perkins et al., 2017b) to census petrel 
species as an alternative to tape-playbacks. However to date the only practical way to 
census them accurately remains the tape playback method. 
 
Leach’s storm petrel Breeding Ecology  
 

 
Figure 9 The Leach’s storm petrel Hydrobates leucorhous (Procellariiformes: Hydrobatidae), Shetland.  

Photograph © Brydon Thomason. 

 
Ireland’s population of Leach’s storm petrels is limited to only a few small colonies 
located in the north west of the country, during Seabird 2000 the national population 
estimate was thought to be 310 breeding pairs (Mitchell et al., 2004). This accounts 
for roughly <0.005% of the estimated global breeding population, the distribution of 
breeding colonies ranges across the Atlantic and Pacific basins, with higher numbers 
recorded in Pacific areas (Brooke, 2004). Akin to European storm petrels and Manx 
shearwaters, Leach’s storm petrels only return to their breeding burrows under the 
cover of darkness thus are difficult to census. Leach’s storm petrels primarily breed in 
burrows (both excavated and natural holes) and rock crevices. Burrow entrances are 
not as detectable as Manx shearwaters burrows, often concealed with vegetation and 
spanning a length of 1-4 foot in depth, thus approaches outlined here are similar to that 
of European storm petrels with the exception of the call used for tape-playbacks and 
the additional recording of detail of burrowed areas on mapping efforts.  
 
2.2.2 Census unit:  
Apparently Occupied Sites (AOS): where a response was evoked when a tape-
playback was carried out during survey effort. 
 
2.2.3 Distribution and Habitat Mapping – Form 2.2.3 (Leach’s 2.4.3) 
 
The Distribution and Habitat Mapping approach is recommended when survey effort 
is limited to a one or two-day visit per site. Although a robust population estimate 
cannot usually be made from these short visits, extremely useful data can be collected. 
The main aim is to map i) the presence and absence of suitable breeding sites, 
occupied or otherwise, over the entire island using a tape playback method, and 
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ii) at the same time, to map the broad habitat categories and other features of note 
on the island. These data will not only provide an invaluable “atlas” of the island’s 
distribution, they will also guide future intensive monitoring efforts.  
 

(a) Detailed Mapping (preferred; requires GIS and GPS). 
 

§ Grid overlay: Create a grid overlay of the entire island so that you can ensure 
you visit all parts of the island to within a set distance using a GPS device. For 
smaller islands (< 30-40 ha) or when time is not too restricted the grid is 
recommended to consist of 50m x 50m squares as per Manx shearwater 
surveys. For larger sites, such as Great Blasket, grid squares of 100m x 100m 
may be more realistic. Save the GPS coordinates and label centroids of grid 
squares to inform sampling efforts.   

 
Tutorial on how to create sampling grid: 
http://gis.mtu.edu/wp-content/uploads/2012/06/Regular_Sampling_Tutorial.pdf 

 

§ It may be useful to use aerial photographs to outline areas on your map that are 
noticeably different in their broad habitat type, though these areas will be 
defined in more detail in the field using line transects as described below. 

§ For larger islands, carry out line transects/walkovers (100m length per square) 
through the centre points of the 100m x 100m grid squares.  

§ For smaller islands, carry out line transects/walkovers (50m length per square) 
through the centre points of the 50m x 50m grid squares.  

§ For each transect and thus each grid square, and with the aid of satellite images 
or aerial photographs of the island, note in the form for each transect the 
suitable habitats that storm petrels are most commonly found to breed. This 
includes: (a) stone walls and buildings that have suitable walls in which storm 
petrels can nest, (b) open ground primarily dry-humid, tussocky acid grassland 
(Fossitt’s GS3) and (c) boulder beach area that is above the tide line in Form 
2.2.3 (Leach’s Form 2.4.3).  

§ Map waterlogged areas where birds could not breed and areas of dense 
vegetation that could restrict access for surveys including, for example, dense 
bramble or steep slopes. Record if the areas that are inaccessible have habitat 
that is suitable for breeding petrels.  

§ Note in “Additional Notes” column of Form 2.2.3 (Leach’s Form 2.4.3) any 
signs indicating the presence of species such as rats or other predators. 

§ Establish whether storm petrels are present in the square. This can be 
determined by carrying out tape-playbacks along line transects, stopping every 
5 metres along the transect and play the call at >80dB at waist height for 
approximately 10 seconds. Repeat this 5 times along the transect per grid 
square, or until you hear a response to confirm presence in the square. Details 
on the logistics and the method of carrying out tape-playbacks across different 
habitats (Stone walls/Open ground/Boulder Beach) to determine apparently 
occupied sites (AOS’s) are outlined in section 2.2.4 of this manual. Note the 
number of times tape-playbacks were carried out along the transect in the 
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“Total Number of playbacks” column and whether a response was heard 
“Responses (Yes/No)” columns on Form 2.2.3 (Leach’s Form 2.4.3). 

 
To undertake the tape playback method to survey breeding shearwaters and petrels 
one needs a Section 22 9 (D) licence under the Wildlife Acts and an appropriate 
recording. For more information on both these aspects please 
consult david.tierney@chg.gov.ie 
 
Although this approach will not be sufficient to estimate total numbers of storm 
petrels in the square, it should be a robust measure of presence/absence and allow us 
determine where storm petrels breed on the island.  

 

 
Figure 10 Example of habitat mapped on Great Saltee, Co. Wexford (right). This mapping of habitat allows the 

definition of potential breeding sites for European- and Leach’s storm petrel as outlined in section 2.2.3. This can 

be created by: (1) Sourcing satellite imagery; (2) creating a fishnet grid in which to transect; (3) defining 

presence or absence from tape-playbacks; and then (4) defining habitat types across the island. Note the detail 
marking out buildings & stone walls (yellow), separating the open ground habitat into types that are 

suitable (rocky grasslands) and boulder beach areas should be mapped when present. 

 
(b) Rough mapping approach (less-preferred, hand drawn mapping approach) 

§ Print off a map of the island from whatever source gives best imagery of the 
site  

§ Draw on the map itself, or on a traced version of the map, the three main habitat 
types that could be used by storm petrels: stone walls & buildings; open 
ground; and boulder beach areas. Also note water bodies, dense vegetation, 
rock outcrops where (a) birds are not likely to breed and (b) access to survey 
is restricted. 

§ In the field, visit within 50-100m of all accessible areas on the island and map 
habitats that are suitable for breeding birds, noting in detail the different 
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habitats (Stone walls/Open ground/Boulder Beach) and detail the vegetation in 
‘open ground’ habitats using the DAFOR scale (Fossitts 2000) – on Form 2.2.3 
or Leach’s 2.4.3.  

§ Use tape-playbacks to determine presence or absence of breeding birds and to 
get a crude feel for the extent of their distribution in areas of suitable habitat: 
this can be done by playing the tape-playback call (>80dB) for approximately 
10 seconds and listening for responses for 30 seconds. Repeat this throughout 
the area of suspected suitable habitat; how frequently will be determined by 
the size of the area and the time available to cover the whole island. Details on 
the logistics and the method of carrying out tape-playbacks across different 
habitats (Stone walls/Open ground/Boulder Beach) to determine AOS’s are 
outlined in section 2.2.4 of this manual. If carried out, note the number of 
playbacks carried out and if any responses were received. Record these on 
Form 2.2.3 or Leach’s 2.4.3 and mark on the map mark those points within 
areas of suitable habitat where i) playback surveys undertaken and ii) where 
birds responded with as much accuracy as possible given the time available. 

 
2.2.4 Detailed Survey – accompanying Form 2.2.4 (Leach’s 2.4.4) 
 
The detailed map generated in the Distribution and Habitat Mapping approach (section 
2.2.3(a)) is required to identify where to use tape playback along transects, not the 
circular plots used for shearwaters. As storm petrels breed in a range of habitats, this 
next stage utilises three different approaches to be used at the three main habitat types 
that storm petrels are known to breed in: stone walls & buildings, open ground and 
boulder beach. The preparation required is outlined in 2.2.4 (a) and each method is 
outlined in detail below in 2.2.4 (b).  
 

a) Preparation 

i) Produce site level GIS map  
 

ii) Grid overlay: Use the map generated above in section 2.2.3 to select areas for 
sampling storm petrels using playback. For smaller islands or when time is not 
too restricted the grid is recommended to consist of 50m x 50m squares. For 
larger sites, such as Great Blasket, grid squares of 100m x 100m are more 
realistic. Save the GPS coordinates and label centroids of grid squares to 
inform sampling efforts. 

 

iii) Define areas to be sampled as areas of (A) Stone wall, (B) Open ground and 
(C) Boulder beach, separate approaches should be taken for each, see 2.2.4(b) 
for details.  

 

iv) Logistically, it is not feasible to sample transects in a truly random way as 
transit times between transects can be excessive on large islands, thus we 
recommend grouping transects to be sampled within close proximity of each 
other and then randomising the order in which these groups are visited. This 
can be done in excel by creating a random number beside each group of plots, 
and then sorting the list of grouped plots using the random number column. 
See http://www.excel-easy.com/examples/randomize-list.html for tutorial on 
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how to randomise lists in excel. If more than one of the habitats is  present 
on the island, randomise in a stratified manner.  

 

v) Map (ideally with GPS coordinates) all areas to be sampled on the island. This 
should be done before fieldwork, allowing the visualisation of what is going 
to be sampled and informed by the Distribution and Habitat Map to ensure a 
broad coverage of the islands breeding areas.  

 

vi) How many transects to do depends on how much time you have. Ensure 
transects are carried out in a random manner. Generally, the more area sampled 
the more accurate the population estimate that can be derived. Detailed report 
of the number and location of transects (GPS points) is essential to allow repeat 
counts to be carried out in the future. Confidence intervals should be reported.   
 

vii) Ensure the following is sourced before field visits: high quality call (call should 
remain clear at > 80dB) of male European storm petrel (Leach’s efforts should 
use the male call of the Leach’s storm petrel), battery operated 
mp3/dictaphones, battery operated waterproof speakers, handheld GPS units, 
measuring tapes (50 metres in length), recording sheets.  

 
To undertake the tape playback method to survey breeding shearwaters and 
petrels one needs a Section 22 9 (D) licence under the Wildlife Acts and an 
appropriate recording. For more information on both these aspects please 
consult david.tierney@chg.gov.ie 

 

Tape playbacks should be only carried out during the late incubation and chick-
guarding stage when response rates from adults are highest. Work carried out 
by UCC showed that on High Island in Galway, highest response rates were 
recorded during the period 20th of July – 8th of August, in both 2016 & 2017. 
However this is likely to change to some extent from year to year and to differ 
between colonies. If access to nests is possible, ideally one should check the 
timing of breeding for your population. If this is not possible, ideally restrict 
survey visits to the period 20 July – 8 August, or as close as possible to this 
period.  

 
 
 

b) Fieldwork 
 

i) General notes 
 
In the “Habitat type” column of Form 2.2.4, define the type of habitat being surveyed 
A) Stone wall, (B) Open ground and (C) Boulder beach. 
 
The way tape-playback is used differs slightly between the three main habitat types 
(stone wall, open ground and boulder beach) in which storm petrels primarily breed, 
and hence, the following methods section is split into three parts. On some islands, it 
may be necessary to use all three methods. 
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Tape-playbacks should be carried out in conditions of Beaufort 4 or lower to avoid 
false negative results i.e observer not hearing a response when one was elicited.  
 
For safety reasons, these methods should be carried out during the day. Response rates 
at night have been noted to be considerably higher (Ratcliffe et al., 1998); however 
surveys at night are dangerous, logistically extremely difficult, and not recommended.  
 

ii) Survey method for Stone walls & buildings  

 
In the “Additional notes” area on recording forms, define the condition of the site’s 
stone walls, identify areas where maintenance such as cement rendering and mortar 
has occurred as this is not suitable breeding habitat.  
 

1. Where possible, the surveyor should remain on the sheltered side of the wall 
to aid detection of responses, in some monastic ruins where the wall’s widths 
are greater than approximately 2 metres, in this case the method should be 
repeated on both sides. 

 

2. Playbacks are recorded along areas of known length (with tape measure) along 
the walls. Ideally transects should be conducted along a part (a sample length) 
of all individual walls and buildings on the island. If not possible, try do as 
many as possible and make sure you sample them randomly.  

 

3. If the wall is longer than 50 metres and time is limited, sample a 50m transect 
along the wall. Make sure you map the start and end points of all sampled walls 
on your map and GPS coordinates of all areas surveyed.  

 

4. Standing at the starting point along the wall to be sampled, facing and within 
1 metre of the wall, play the call at >80dB from the speaker at roughly waist 
height for approximately 10 seconds, followed by approximately 30 seconds 
of listening to detect any responses.  

 

5. Repeat step 5 every two metres along the wall, noting the number of responses 
in the “Total Number of responses” column on Form 2.2.4. 

 

6. When carrying out these playbacks, often birds responding from playback can 
be heard responding at the next point (2 metres on); ensure not to double count 
from AOS that are noticeably the same AOS recorded in the previous playback.     

 
 

iii) Survey Method for Open ground  
 
The term ‘open ground’ is used here to cover European storm petrels and Leach’s 
storm petrels that are breeding in burrows or short accessible dense vegetation areas 
such as dry-humid grassland (e.g Fossitt’s GS3).  
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Within the predefined grid squares (50m x 50m on small islands/100m x 100m on 
larger islands), a sampling approach using line transects and systematic tape-
playbacks can be used to survey for AOSs where no well-defined nest entrances are 
observable.  

1. Transects of 50 metres in length and 4 metres in width (2 metres either 
side of the line) should be laid out from a randomised starting point 
within the grid squares, 100m x 100m grid for larger islands and 50m 
x 50m grids for smaller islands. Map the location of the transect, note 
the coordinates of the start and end of transects on Form 2.2.4, and the 
bearing direction in which the transect was walked. It is essential to do 
this so that surveys can be repeated at the identical site in future years. 
 

 
Figure 11 Visual representation of tape-playback sampling methods for European storm petrels and Leach’s 

storm petrel as described in detail in section 2.2.4(b)(iii) of this text. Transects (dotted lines) starting from a 

random point within grid cells to be sampled.  

 

2. Every 5 metres along the transect line, the tape-playback call should be 
played at a high volume (>80dB) but remain clear, and not distorted for 
approximately 10 seconds, followed by a listening period of approximately 
30 seconds. Hold the speaker at approximately waist height to stay constant 
across transects and note the number of responses heard, also note where 
no responses were observed. Note the number of responses in the “Total 
Number of responses” column on Form 2.2.4 

 

3. The number of transects per grid square is determined by the length of the 
visit and the number of observers. A minimum of two transects should be 
carried out per grid square, where habitat is favourable for breeding birds 
to obtain a more accurate estimate of colony size.  

 

4. Along these transects, do not stand on tufts of vegetation (as seen in 
Figure 12 below) within which the storm petrels may be breeding.  
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Figure 12 Example of dry grassland habitat that European storm petrel (Procellariiformes: Hydrobatidae) are 

found to breed in on High Island, Co Galway. Photograph © Gavin Arneill. 

 

iv) Survey method for Boulder Beach 
 
This method is also applicable to areas of rocky outcrop/scree inland. Caution should 
be taken with loose substrate for safety reasons and because of the potential for 
destroying nests just under boulders. Note in Form 2.2.4 the habitat type as boulder 
beach when this is carried out.  
 

1. Divide the suitable boulder beach habitat outlined on the map produced in the 
“Distribution and Habitat mapping” effort into workable areas where transects 
of 50m length and 4 metres width are possible. If no boulder beach habitat on 
the island spans 50 metres in length, carry out smaller transects in areas and 
note the length of the transects to ensure some sampling was carried out. 
Transects should be at least 5 metres apart. Randomise the order in which areas 
will be sampled around the coast. 

 

2. Note the size of the workable area that was sampled and ideally randomly 
select starting points for transects both along the coast and also across 
(different shore heights) to ensure all suitable breeding habitat is sampled and 
not biased to a certain shore height. Do not carry out transects below the tide 
line as birds are not likely to be breeding there.  

 

3. Every 5 metres along the transect line, the tape-playback call should be played 
at a high volume (>80dB) but remain clear, and not distorted for approximately 
10 seconds, followed by a listening period of approximately 30 seconds. Hold 
the speaker at approximately waist height to stay constant across transects and 
note the number of responses heard, also note where no responses were 
observed. Note the number of responses in the “Total Number of responses” 
column on Form 2.2.4. 
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(c) Non-essential additional effort: 
 
Response rates: It is helpful to work out what proportion of birds respond: Establish 
AOS (³ 30 active nests) where repeated measures of response rate can be taken 
throughout the survey effort. Response rate measures should be taken at least three 
times with 24 hour rest periods between measures to reduce habituation. Detailed 
guidelines can be found in the appendices of this report (section 5.1.2), response rates 
will be measured in detail at several sites and standard corrections can be applied to 
colonies where measures of response rate are not possible. 
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2.3 Atlantic puffin (Fratercula arctica) 
 

 
Figure 13 The Atlantic puffin Fratercula arctica (Charadriiformes: Alcidae), Saltee Islands, Co Wexford.  

Photograph © Gavin Arneill. 

 
2.3.1 Overview of Breeding Ecology:  
 
The Atlantic puffin (Fratercula arctica; Charadriiformes; Alcidae), is the only 
burrow-nesting species breeding in Ireland that are observable around breeding 
burrows in daylight. Most Atlantic puffins breed annually with the same mate and lay 
a single-egg clutch (Harris et al., 2005; Miles et al., 2015). Atlantic puffins overwinter 
at sea, returning in the spring to breed and form colonies on coastal cliffs and offshore 
islands (Jessopp et al., 2013). Difficulties censusing Atlantic puffins arise due to the 
large size of the breeding colonies that are often heterogeneous with other auk and 
burrowing species and have variable numbers of juvenile and prospecting birds 
present. 
 
The favoured counting unit for Atlantic puffins is the apparently occupied burrow 
(AOB) (Anker-Nilssen and Røstad, 1993) and this is the method recommended by 
Walsh et al. (1995) in the Seabird monitoring handbook for Britain and Ireland. These 
are characterised by signs of regular use such as feathers, guano or freshly excavated 
earth at the burrow entrance (Harris and Murray, 1981; Harris and Rothery, 1988). 
Yet, this method is laborious and requires access to breeding colonies to visually 
inspect each burrow entrance. As many puffins breed on steep slopes and sea cliff 
habitat, access is limited for inspection. Furthermore signs of occupancy can be 
difficult to discriminate when other burrow-nesting species and rabbits are present. 
Previous estimates of Atlantic puffins in Ireland at the national scale are limited to the 
Seabird 2000 estimate (Mitchell et al., 2004) and used primarily observer counts of 
individual adults. In Ireland, counts of apparently occupied burrows were limited to 
just a few sites (Mitchell et al., 2004). 
 
The use of signs of occupancy at burrow entrances is a standard method that has been 
used to estimate the size of Atlantic puffin populations in previous census efforts 
(Walsh et al., 1995; Mitchell et al., 2004). However, recent research carried out found 
that in Ireland (Arneill, in prep), sites where burrows are accessible for inspection and 
where Atlantic puffins are the only burrow-nesting species breeding are very limited, 
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thus the use of observational counts is the only logistically feasible standardised 
method at the national scale. If a site shows the characteristics of single species 
burrow-nesting (Atlantic puffin) and accessible burrows in breeding areas, refer to 
Walsh et al. (1995) for this censusing methodology.  
 
Therefore an alternative method of observational counts is outlined in Walsh et al. 
(1995) to count the individuals around breeding colonies. It is essential that 
observational counts of birds on both rafts and cliffs is carried out early in the breeding 
season, in order to minimise the inclusion of non-breeding prospecting birds that arrive 
on breeding colonies later in the season. Counts should be carried out as early as 
possible, ideally in April, if logistically feasible.   
 
2.3.2 Census unit:  
 
Individuals (INDV)  
 

2.3.3 Distribution and Habitat Mapping – accompanying Form 2.3 
 

Preparation 

i) Produce site level GIS map  

ii) Ensure the following is gathered before fieldwork: 8x42 binoculars, 
telescopes, tripods, recording forms, handheld GPS unit, surveys should be 
carried out in no higher than Beaufort 4.  

 
Fieldwork 

§ Visits should ideally be undertaken during the early breeding season in April. 
This is to minimise the inclusion of prospecting non-breeding birds that arrive 
at breeding colonies later in the season.  

§ On arrival at the study site, a scoping exercise should define breeding areas 
across the study site. Often multiple distinct breeding areas can be identified 
around the island by observing puffins loitering near burrows. Map the 
distribution of these areas with as much accuracy as possible.  

§ Split the breeding areas into manageable and distinct counting sections. So for 
example, one breeding area may be best split into two count sections because 
the entire colony cannot be viewed easily from the one vantage point. 

§ Note the GPS coordinates of vantage points that permit the best possible field 
of view over sub-colonies, this can also be mapped. Vantage points should be 
at a distance (>50m) that does not disturb the loitering birds on the cliff. From 
this point, count the number of individuals visible on the ‘cliffs’ and the 
number of puffins rafting on the water adjacent to breeding areas.  

§ Previous work has shown that colony attendance peaks in the evening (18:00-
21:00) – (Arneill, in prep). It is essential to time your counts to take place at 
this time. If this is not logistically possible, do carry out counts when it is 
possible but highlight that the survey took place outside of these times.  
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§ To get an estimate of variation in count numbers associated with this approach, 
two observers should do the counts completely independently of one another, 
starting at different locations to ensure independence.  

§ Before doing the official count, try to calibrate your count accuracy. Spend 
time at one location ensuring your counts on the water and on the land agree 
when done at identical times. Keep on doing this until they match within 10%.   

§ Then begin the survey properly, being careful to ensure that each observer 
starts in different locations and records numbers completely independently. Do 
not be tempted to adjust numbers to ensure they agree.   

§ Ideally these counts should be repeated over multiple evenings to improve the 
accuracy of the counts. Again, do not adjust numbers to ensure they agree with 
previous evenings numbers.  

§ Counts of rafting puffins should be carried out with as much accuracy as 
possible, auks rafting at a distance where they cannot be accurately identified 
as Atlantic puffin using a telescope and are possibly Razorbill or Guillemots 
should be noted as ‘Auk sp.’  
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5 Appendices 
 
5.1 Measuring response rate for tape-playback surveys 
 
5.1.1 Manx shearwater (Puffinus puffinus) response rates 
 
Method 
 

i) During the Distribution and Habitat Mapping, areas of high burrow density 
and presence of Manx shearwaters will be located. These areas can then be 
visited at the start of the Detailed survey effort to establish Apparently 
Occupied Burrows (AOB) to measure response rate during the survey 
effort.  

ii) On the first day of fieldwork, mark out 30-50 burrows that respond to tape-
playbacks during the day. These AOBs should be marked and numbered, 
this can be done using bamboo canes with a numbered flag that made from 
fluorescent tape.  

iii) On the second day of fieldwork, after a 24 hour period of rest to reduce any 
possible habituation to tape-playbacks, these marked AOBs can be visited 
and subjected to tape-playbacks as outlined in section 2.1.4 of this manual. 
On Form 3, note the burrow number and whether a response was received 
or not. Note the weather conditions, like the playback surveys, this should 
not be carried out in conditions higher then Beaufort 4 to reduce the risk of 
not hearing a response.  

iv) This should be repeated at least three times to give at least three measures, 
leaving a 24 hour rest period between each visit.  

v) Response rates for each day can be calculated by dividing the number of 
responses by the number of AOB’s marked. E.g on the first day you 
marked 40 AOBs, on the third day 20 of those responded. Response rate 
for the third day is 20/40 = 0.5. Do this for each of the days. Report all raw 
data to NPWS for these daily measures.  

vi) Overall response rate for the survey period is the average of the measured 
response rates and the variation around the overall response rate is the 
variation seen in the repeated measures.  

 
5.1.2 Storm petrel (European and Leach’s) response rates 
 
Method 

i) During the Distribution and Habitat Mapping, areas of suitable breeding 
habitat and presence of storm petrels will be located. These areas can then 
be visited at the start of the Detailed survey effort to establish Apparently 
Occupied Sites (AOS) to measure response rate during the survey effort.  

ii) On the first night of fieldwork, mark out 30-50 AOS that respond to tape-
playbacks. This is carried out in areas that are safe to visit at night as the 
response rate of storm petrels has been shown to be significantly higher 
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than diurnal measures. These AOS’s should be marked and numbered, this 
can be done using bamboo canes with a numbered flag that made from 
fluorescent tape.  

iii) On the third day of fieldwork, to measure the diurnal response rate and 
after at least a 24 hour period of rest to reduce any possible habituation to 
tape-playbacks, these marked AOS’s can be visited and subjected to tape-
playbacks as outlined in section 2.2.4 of this manual. These measures of 
diurnal response rate are important to correspond to the survey efforts that 
are carried out diurnally, the only night-time work is to identify as many 
AOS as possible and not bias measures to those that respond diurnally. On 
Form 3, note the number of the marked AOS and whether a response was 
received or not. Note the weather conditions, like the playback surveys, 
this should not be carried out in conditions higher then Beaufort 4 to reduce 
the risk of not hearing a response.  

iv) This should be repeated at least three times to give at least three measures, 
leaving a 24 hour rest period between each visit.  

v) Response rates for each day can be calculated by dividing the number of 
responses by the number of AOS’s marked. E.g on the first day you marked 
40 AOS’s, on the third day 20 of those responded. Response rate for the 
third day is 20/40 = 0.5. Do this for each of the days and report all raw data 
to NPWS for these daily measures.  

vi) Overall response rate for the survey period is the average of the measured 
response rates and the variation around the overall response rate is the 
variation seen in the repeated measures. 
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Section 2 

 

Appendix Section 2 Table 1. Priority areas for each species outlining the top 5 most 

densely populated islands that were surveyed in Seabird 2000 according to Mitchell 

et al. (2004). Table outlines the percentage of both the estimated Irish breeding 

population and global breeding population of each species on each site.   

  

Species Island Area 

Seabird 2000 
estimate1 

(1998-2002) 

Percentage of 
Irish 

population 

Percentage 
of global 

population 

Manx 

shearwater 
 

Inishtooskert 2 9,696 26 2.8 

Puffin Island 2 6,329 17 1.9 

Inishnabro 2 5,611 15 1.6 

Great Blasket 2 3,584 9.6 1.05 

Cruagh 3 3,286 8.8 0.96 

European 
storm petrel 

 

Inishtooskert 2 27,297 27.3 5.7 

Great Skellig 2 9,994 10 2.1 

Inishvickillane 2 6,394 6.4 1.3 

Puffin Island 2 5,117 5.1 1.08 

Stags of 

Broadhaven 
3 1,912 2 0.4 

Atlantic 

puffin 

Puffin Island 2 5,125 24.4 0.1 

Great Skellig 2 4,000 19 0.08 

Great Saltee 1 1,522 7.2 0.03 

Tory Island 3 1,402 6.7 0.03 

Illanmaster 3 1,367 6.5 0.03 

Area: 1 = Irish sea and east Celtic sea; 2 = South west and West Celtic sea; 3 = West coast 

Global populations obtained from IUCN, 2018. 
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Appendix Section 2 Table 2. Table illustrating the approximate cost of the census of 

Manx shearwaters on High Island, Co. Galway in 2015. Figures are outlined in a way 

that the number of observers and the duration of the survey efforts can be adjusted. 

Figures should be adjusted according to salary scales, cost of fuel, cost of boat hire for 

the survey year. This example uses the Research Assistant salary (scale 1) and costs 

of fuel in Ireland in 2015.  

 

Cost item Additional details Approximate cost 

Staff   

 For two field staff for one month.  

€3410 Field staff 

 

Travel    

Fuel  2 return trips at €60 €120 

Boat to High Island 2 return trips at €150 €300 

   

Equipment   

Tape-playbacks 3 Dictaphones at €38 each €114 

Tape measures 2 x 50m tapes at €41 each €82 

Printing 50 sheets at €0.06 per page €3 

Batteries 20 x AA €20 

Accommodation   

Tents 3 Tents at €220 each €660 

B&B 2 nights at €40 per person €80 

   

Consumables   

Groceries 2 trips (ca. 8 days) at €100 €200 

Gas cooker and canisters 2 x cookers, 20 x canisters €64 

Water 30 x 5L €53.70 

   

Contingency  €500 

Approximate Total:  
 

€5606.70 

 

 


