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Fermentation has been practised worldwide for millennia as a method to preserve or 

enhance foods, and, today, fermented foods remain a significant component in the 

human diet. Additionally, these foods are becoming increasingly popular since 

numerous health benefits have been ascribed to them, and thus it is necessary to (1) 

optimise their production, (2) assess their safety, and (3) determine the mechanisms 

by which they confer these effects. In this thesis, we examine if high-throughput 

sequencing technologies, particularly shotgun metagenomics, can address these 

needs. In Chapters 3 and 4, we show that shotgun metagenomics, when used 

alongside metabolomics, can be applied to understand the ways in which the 

microbiota influences flavour development in fermented foods. In Chapter 5, we 

report that shotgun metagenomics can accurately, and rapidly, detect pathogenic 

strains in fermented foods. In Chapter 6, we demonstrate that the choice of 

bioinformatics tools has a significant impact on shotgun metagenomic analysis of 

fermented foods. Finally, in Chapter 7, we provide evidence that a traditional 

fermented food modulates the gut microbiota in mice, while simultaneously reducing 

anxious-like behaviours in the animals. Overall, this thesis highlights that high-

throughput sequencing is an invaluable tool for studying fermented foods. We 

illustrate that the technology not only expands our knowledge on the roles played by 

microorganisms during food fermentations, but it can also be used to ensure food 

safety or even investigate the ways in which these foods affect the host. Thus, high-

throughput sequencing can bridge the gap between traditional food microbiology and 

health. 
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Figure S1 The effect of normalising predicted relative abundances by 
reference genome size. The histogram shows the 
distribution of the relative abundances of the mock 
community species, before and after normalisation. The 
results are averaged across sequencers and metagenome 
binning tools (i.e. CLARK, Kaiju, Kraken, and SLIMM). 
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Figure S8 SUPER-FOCUS level 2 subsystems which were 
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subsampled replicates from the same samples. (A) MDS 
plot (facetted by number of reads) where replicates 
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Figure 1 Figure 1: Experimental design. After one week of 
treatment lead-in, animals were assessed for their 
behavioural phenotype. Treatment groups consisted of: 1) 
No gavage control, 2) Milk gavage control, 3) Kefir gavage 
– Fr1, and 4) Kefir gavage – UK4 (n = 12/group). The 
order of behavioural tests was as following; Week 4: 
Marble burying test (MB), 3-Chamber social interaction 
test (3CT) and Elevate plus maze (EPM); Week 5: Open 
field test (OF) and Tail suspension test (TST); Week 6: 
Saccharin preference test (SPT); Week 7: Female urine 
sniffing test (FUST); Week 8: Stress-induced hyperthermia 
test (SIH); Week 9: Intestinal motility test (IM) and Faecal 
water content assessment (FWC): Week 9-12: Appetitive 
Y-maze; Week 13: Fear conditioning; Week 14: Forced 
swim test; Week 15: Euthanasia. Postmortem, the immune 
system was assessed by flow cytometry, Ileal, caecal and 
faecal microbiota composition and function was 
investigated by shotgun sequencing, and ileum and colonic 
serotonergic levels were quantified by high-performance 
liquid chromatography (HPLC). 
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Figure 2 Figure 2: Kefir differentially affects repetitive/anxiety-like, 
depressive-like and reward-seeking behaviours. 
Repetitive/anxiety-like behaviour was assessed using the 
marble burying test (A). Depressive-like behaviour was 
determined using the forced swim test (B). Anhedonia and 
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reward-seeking behaviours were investigated using the 
female urine sniffing test (C) and saccharin preference test 
(D, E). The marble burying test and forced swim test were 
normally distributed and analysed using a one-way 
ANOVA, followed by a Dunnett's post hoc test. The 
female urine sniffing test and saccharin preference test 
were non-normally distributed and analysed using the 
Kruskal-Wallis test, followed by the Mann-Whitney test. 
Significant differences are depicted as: *p < 0.05, **p < 
0.01 and ***p < 0.001; Milk gavage compared to Kefir 
supplementation, $p < 0.05; No gavage compared to Milk 
gavage. All data are expressed as mean ± SEM (n = 11-12). 
Dots on each graph represent individual animals. 
 

Figure 3 Figure 3: UK4 enhances fear-dependent contextual 
memory yet decreases long-term spatial learning. Fear-
dependent memory and learning were assessed using fear 
conditioning. At phase 1 – Acquisition, mice were 
presented with a tone, followed by a foot shock. Cue-
associative learning was assessed by measuring freezing 
behaviour during the presentation of the tone (A), whereas 
context-associative learning was determined in-between 
tones (B). At phase 2 – Cued memory, mice received 40 
presentations of the same cue (the first 10 are shown), 
without foot shock, in a different context, in which fear-
dependent cued memory was assessed (C). At phase 3 – 
Contextual memory, mice were exposed to the same 
context as day one for 5 minutes and contextual memory 
was assessed (D). Long-term spatial learning was assessed 
in the appetitive Y-maze, as determined by the percentage 
of times the mice made the correct choice as the first 
choice for reaching the goal (food reward) (E), as well as 
the number of average entries it took the mice to reach the 
goal (F). All data were normally distributed and analysed 
using a repeated measures ANOVA or one-way ANOVA, 
followed by a Dunnett's post hoc test. Significant 
differences are depicted as: *p < 0.05; Milk gavage 
compared to Kefir supplementation, $p < 0.05; No gavage 
compared to Milk gavage. All data are expressed as mean ± 
SEM (n = 10-12). Dots on each graph represent individual 
animals. 
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Figure 4 Figure 4: Fr1 modulates serotonergic signalling in the 
colon, but not ileum. Ileal (A-C) and colonic (D-F) tissues 
were quantified for 5HIAA and serotonin (5-HT) levels 
using HPLC. The 5HIAA/5-HT ratio was subsequently 
calculated. All data was normally distributed and analysed 
using a one-way ANOVA, followed by a Dunnett's post 
hoc test. Significant differences are depicted as: **p < 
0.01; Milk gavage compared to Kefir supplementation, $p < 
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0.05, $$p < 0.01 and $$$p < 0.001; No gavage compared to 
Milk gavage. All data are expressed as mean ± SEM (n = 
11-12). Dots on each graph represent individual animals. 
 

Figure 5 Figure 5: UK4 increases Treg cells levels, while Fr1 
decreases neutrophil levels. Using flow cytometry, T 
regulatory cells (CD4+, CD25+, FoxP3+) were assessed in 
mesenteric lymph nodes (MLNs) and blood (A, C). Cells 
were subsequently assessed for Helios expression (B), as a 
measure of their origin (i.e. periphery (pTreg) or thymus). 
In addition, inflammatory monocytes (CD11b+, 
LY6C(high)) (D) and neutrophils (CD11b+, LY6C(mid), 
SSC(high)) (E) were assessed in the blood. All data were 
normally distributed and analysed using a one-way 
ANOVA, followed by a Dunnett's post hoc test. Significant 
differences are depicted as: *p < 0.05, **p < 0.01; Milk 
gavage compared to Kefir supplementation, $p < 0.05 and 
$$p < 0.01; No gavage compared to Milk gavage. All data 
are expressed as mean ± SEM (n = 11-12). Dots on each 
graph represent individual animals. 
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Figure 6 Figure 6: (A) Violin plots showing the alpha diversity of 
Fr1 versus Milk-fed mice. (B) MDS plots showing the 
dissimilarity in the microbial composition between Fr1 
versus Milk-fed mice. 
 

341 
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versus Milk-fed mice. 
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Figure 8 Figure 8: Strain-level analysis of bacteria which were 
significantly increased following kefir consumption. (A) 
PCA plot based on gene families presence/absence 
matrices from PanPhlAn. The reference strains which 
shared the most gene families with that detected in the 
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trees generated from StrainPhlAn outputs. Note that 
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Figure 9 Figure 9: Correlations between species and immuno-
physiological parameters. The heatmap shows the 
Spearman rank correlation coefficient for each combination 
of variables. Significant associations, as determined by 
HAllA, are highlighted with asterisks.   
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Figure 10 Figure 10: Functional analysis of the gut microbiome in 
mice fed kefir or unfermented milk. The MDS plots show 
the functional dissimilarity in the gut microbiome between 
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(A) Fr1 versus Milk-fed mice and (B) UK4 versus Milk-
fed mice. The violin plots (C) show differentially abundant 
EC level 4 categories of interest. 
 

Figure S1 Figure S1: Room layout with cues for the appetitive Y-
maze and food restriction. The room layout with the 
various cues used in the appetitive Y-maze is depicted (A). 
In addition, mice were kept on food restriction of 90-95% 
of the free-feeding body weight. All data are expressed as 
mean ± SEM (n = 12). 
 

373 

Figure S2 Figure S2: Kefir was well-tolerated.  Body weight as 
measured throughout the study (A). The gap in-between 
day 64 and 92 represents the appetitive Y-maze, in which 
animals were food restricted. Food intake and drinking 
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lean, fat and fluid mass) were quantified at the end of the 
study (D-F). Basal body temperature was taken during the 
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was assessed in the open field test. All data are expressed 
as mean ± SEM (n = 11-12). Dots on each graph represent 
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Abstract 

This review examines the applications of omics technologies in food microbiology, 

with a primary focus on high-throughput sequencing (HTS) technologies. We 

discuss the different sequencing approaches applicable to the study of food-related 

microbial isolates and mixed microbial communities in foods, and we provide an 

overview of the sequencing platforms suitable for each approach. We highlight the 

potential for genomics, metagenomics, and metatranscriptomics to guide efforts to 

optimise food fermentations. Additionally, we explore the use of comparative and 

functional genomics to further our understanding of the mechanisms of probiotic 

action and we describe the applicability of HTS as a food safety measure. Finally, we 

consider the use of HTS to investigate the effects that ingested microbes have on the 

human gut microbiota.  
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INTRODUCTION 

Over the past two decades, omics technologies have revolutionised biological 

research, and advances in DNA sequencing methods have been at the centre of this 

revolution (1). Since the first human genome sequence was published in 2001 (2), at 

an estimated cost of $3 billion, advances relating to high-throughput sequencing 

(HTS) platforms have resulted in an enormous decrease in sequencing costs and a 

corresponding increase in the number of published genomes (3). High-throughput 

sequencing has had a profound impact in microbiology, in particular, where it is used 

to determine the genome sequences of microbial isolates and overcome the 

limitations of culture-dependent analysis of microorganisms (4). In recent years, 

HTS has also yielded unprecedented insights into broader microbial populations 

within different environments (5-7), including many foods and food production 

facilities (8, 9). In this review, we describe how different HTS approaches are 

applied in food microbiology. Specifically, we explore how these methods can be 

used to study starter cultures and probiotics, understand the microbial dynamics of 

food fermentations and product spoilage, and to detect and trace outbreaks of 

foodborne pathogens. Through this process, the ways in which this knowledge has 

and will be used to improve the quality and safety of foods is highlighted. 

 

OMICS APPROACHES APPLICABLE TO FOOD MICROBIOLOGY   

Omics is an umbrella term that encompasses the HTS approaches (meta)genomics 

and (meta)transcriptomics, as well as metabolomics and (meta)proteomics (among 

others). Genomics can be defined as the generation and analysis of whole-genome 

sequences of DNA extracted from an organism (10).  In comparative genomics, 
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bioinformatic analysis is used to evaluate differences between the whole-genome 

sequences of different organisms (11). In functional genomics, gene expression 

analysis or mutational analysis are used to predict the function of genes detected in 

an organism by whole-genome sequencing (12).  

Metagenomics is a term that is often used to describe two different HTS approaches: 

amplicon sequencing and whole metagenome shotgun sequencing (WMS). In 

amplicon sequencing, marker-genes are PCR-amplified from DNA extracted from a 

mixed microbial community, sequenced and aligned against a reference database to 

determine the taxonomic composition of a sample. The most commonly used 

amplicon sequencing methods are 16S rRNA gene sequencing and ITS gene 

sequencing (hereafter referred to as 16S and ITS), which are used to profile bacterial 

and fungal communities, respectively (13, 14). Typically, amplicon sequencing is 

limited to genus-level identification, although some studies have achieved species-

level assignments thanks to dedicated species classifiers and the use of longer read 

technologies (15-17). In contrast, in WMS, total genomic DNA extracted from a 

mixed microbial community is fragmented and sequenced to determine in a non-

specific manner the entire (bacterial, eukaryotic and viral) gene content of a sample 

(18). WMS offers insights into the metabolic potential of a microbial community, 

and additionally, binning of metagenome sequences, using tools like CLARK, 

MetaPhlan2 and Kraken (19), can give species-level identification. Whole 

metagenome shotgun sequencing requires a higher sequencing depth than amplicon 

sequencing and, as a consequence, is more expensive (20). 

Metatranscriptomics involves sequencing cDNA generated from mRNA transcripts 

extracted from a mixed microbial community to measure global gene expression in a 
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sample (18). Metatranscriptomics is technically challenging due to the unstable 

nature of mRNA and its underrepresentation relative to rRNA (21). In addition, it 

requires high-depth sequencing to detect differentially expressed transcripts present 

in low abundances (22). Consequently, metatranscriptomics is the most expensive of 

the HTS approaches (23). 

In food microbiology, metabolomics and metaproteomics are employed for the 

identification and quantification of microbial metabolites and microbial proteins, 

respectively, within a food matrix (24, 25). In this review, we primarily focus on 

how HTS approaches can be used in food microbiology, but we do highlight 

instances where it is useful to integrate HTS approaches with metabolomics or 

metaproteomics. 

 

OVERVIEW OF CURRENT SEQUENCING PLATFORMS 

The first commercial HTS platform, the 454 Genome Sequencer, was released in 

2005 (26). Since then, several other sequencers have been commercialised, including 

the HeliScope from Helicos and the SOLiD from ABI (27). At present, Illumina’s 

range of sequencers (MiSeq, NextSeq 500, and the HiSeq series) and the Ion Torrent 

Personal Genome Machine (PGM) are the most commonly used sequencing 

platforms (28). The Illumina and Ion sequencers use different sequencing 

chemistries, but follow similar principles. Briefly, in Illumina sequencing, adaptor-

ligated DNA fragments on the surface of a glass slide are amplified by bridge PCR 

to generate clusters. Subsequently, these clusters are sequenced using a sequencing-

by-synthesis approach that involves cyclic rounds of single-base extension using a 

mixture of fluorescently labelled dNTPs and imaging to identify the incorporated 
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base (29).  In contrast, in Ion sequencing, adaptor-ligated DNA fragments on the 

surface of beads are amplified by emulsion-PCR. Afterwards, the beads are 

deposited into micro-wells on a semiconductor sequencing chip, where a similar 

sequencing-by-synthesis reaction occurs. The incorporation of bases is detected by 

measuring pH changes caused by the release of hydrogen ions during DNA 

extension (30).  

The Illumina and Ion sequencers each have their own pros and cons, and the choice 

of which sequencer to use in a study depends on the aims of the research (Figure 1) 

(27). The Illumina MiSeq and the Ion Torrent PGM are both suitable for amplicon 

sequencing, although the latter has a higher error rate (31).  The Illumina NextSeq 

500 and  the Illumina HiSeq 2500 generate dramatically more data, 120 GB and 1 

TB, respectively, than the Illumina MiSeq and the Ion Torrent PGM, 15 GB and 1 

GB, respectively, and thus they are more suited to high-throughput applications, 

such as whole metagenome shotgun sequencing and metatranscriptomics (28). On 

the other hand, the Ion Torrent PGM has a considerably shorter run time than 

Illumina sequencers, which is useful in epidemiological investigations, for example 

(28, 32).  

In addition, the PacBio RS II and the Oxford Nanopore MinION are important 

sequencing platforms. The PacBio uses single-molecule real-time (SMRT) 

sequencing technology (33), whereas the MinION uses nanopore sequencing 

technology (34). The PacBio and the MinION can generate 1 GB and 90 MB of data, 

with average sequencing read lengths of 14 kb and 6 kb, respectively (28). 

Importantly, the reads generated by the PacBio and the MinION are significantly 

longer than those generated by the Illumina and Ion sequencers (Table 1). Thus, the 
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Figure 1: Schematic overview of the different high-throughput sequencing approaches applicable to food 
microbiology and suggestions for the sequencing platforms most suitable for each approach. 
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Table 1: Manufacturers’ online specifications for the most commonly used sequencing platforms, as of June 2016. 

  

Platform Sequencing chemistry Max output Read length Max no. of reads Approximate run-time 

Illumina MiSeq Sequencing-by-synthesis (SBS) 15 GB 2 x 300 bp 25 million 4–55 hours

Illumina NextSeq Sequencing-by-synthesis (SBS) 120 GB 2 × 150 bp 400 million 12–30 hours

Illumina HiSeq Sequencing-by-synthesis (SBS) 1500 GB 2 × 150 bp 5 billion 1–3.5 days

Ion Torrent PGM Semiconductor sequencing 2 GB 400 bp 5.5 million 2–7 hours

PacBio RS II Single-molecule real-time (SMRT) sequencing 1 GB 14,000 bp 50 thousand 4 hours

MinION Mk I Nanopore sequencing 90 MB 6,000 bp 16 thousand 18 hours
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PacBio and MinION are ideal for de novo genome sequencing and complete 

assembly of microbial cultures (Figure 1) (35).  

 

GENOMIC INSIGHTS INTO FOOD-RELATED MICROORGANISMS 

Genomics of starter cultures 

Fermentation has been practised worldwide for thousands of years to preserve foods 

and improve their nutritional and organoleptic properties (36). Since the end of the 

19th century, preparations of one or more microorganisms called starter cultures 

have been used for the large-scale production of fermented foods with consistent 

qualities (37). Lactic acid bacteria (LAB), including Lactobacillus, Lactococcus, and 

Streptococcus, and yeasts, like Saccharomyces cerevisiae, are among the most 

important starter cultures (38), and to date, many different starters have had their 

genomes sequenced (39, 40).  

Interestingly, the genome sequences of starter cultures have shed light on the history 

of their domestication (41). Comparative genomics has revealed that the adaptation 

of microorganisms to food coincided with gene-loss and gene-gain events (42). This 

was recently demonstrated by Zheng et al., who compared the genomes of gut and 

sourdough isolates of Lactobacillus reuteri to investigate how a microbe that was 

originally an intestinal symbiont adapted to a food environment (43).  There was 

evidence for horizontal gene transfer and gene-loss events in sourdough isolates, and 

it was discovered that genes involved in energy metabolism and carbohydrate 

metabolism were more prevalent in these strains. The authors concluded that such 

genes might give sourdough isolates a competitive advantage during fermentation 
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(43). Such studies illustrate how an understanding of the evolution of starter cultures 

can highlight the genes that underpin the successes of microorganisms in fermented 

foods. 

Traditionally, starter cultures were identified by screening natural isolates of 

microorganisms for desired traits (44). Bacteriophage immunity, exopolysaccharide 

(EPS) biosynthesis, and flavour formation are among the most important traits in 

starter cultures, and some of the genetic elements responsible for these traits are 

CRISPR/Cas loci, eps genes, and amino acid biosynthesis genes, respectively (45). 

Bioinformatics can be used to assist in the selection of starter cultures by screening 

the genomes of microorganisms for the presence of such genes (Betteridge, et al. 

2015). Recently, the genomes of 213 industrial and natural Lactobacillus strains 

were sequenced (46).  Bioinformatic analysis identified 48 glycoside hydrolase 

genes, important for sugar metabolism, and 60 cell envelope protein genes, important 

for flavour production, in the 213 genomes. Additionally, CRISPR/Cas loci were 

widespread in Lactobacillus isolates. Data generated by such large-scale sequencing 

projects can potentially be mined to identify candidate starter cultures.  

Evolutionary engineering is another means of developing improved bacterial and 

fungal starter cultures (47). This technique involves continual propagation of 

microorganisms in vitro under a selective pressure to isolate mutants with desirable 

traits (48) and, for example, has been used to improve substrate utilisation and stress 

resistance in Saccharomyces cerevisiae (49). Similarly, 1,000 generations of 

continual propagation of a Lactococcus lactis strain in milk doubled its acidification 

rate (50).  WGS can be used to identify the mutations responsible for the improved 

phenotypes achieved via evolutionary engineering (51). 
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Yeasts are central to the production of numerous foods, including bread, beer and 

wine (52). Unlike bacteria, yeasts are capable of sexual reproduction and can be 

crossed to breed new strains with enhanced characteristics (53). Many traits that are 

important in yeasts, like ethanol-tolerance or the production of aroma compounds, 

are under the control of multiple genes, known as quantitative trait loci (QTLs), 

which each contribute to the overall phenotype (54, 55). Genetic engineering is 

limited in its capacity to improve such complex traits and breeding is a more 

effective strategy (56). WGS can potentially be used to determine the presence of 

QTLs in yeasts to predict their breeding value (39). To date, this approach, known as 

genomic selection, has been under-utilised in yeasts, although it has shown 

considerable promise in cattle (57). 

In addition to strain development, genome sequencing can be used to predict the 

metabolic requirements of starter cultures, and subsequently, this information can be 

used for fermentation optimisation (58). Indeed, this approach, known as metabolic 

modelling (59), has been used, for example, to develop minimal growth media for 

starters, identify alternative fermentable substrates, and improve amino acid 

production (60).  

 

Genomics of probiotics 

Probiotics are defined as microorganisms that confer health benefits when they are 

consumed in adequate amounts (61). Probiotics must reach the lower gastrointestinal 

(GI) tract alive to confer health benefits, and thus need to survive gastric transit and 

bile exposure. In addition, probiotics must adhere to the intestinal epithelia and 

mucosa to transiently colonise the gut (62). Several possible mechanisms have been 
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proposed to explain how probiotics confer health benefits, including the inhibition of 

pathogens via the production of antimicrobial proteins called bacteriocins or 

competitive exclusion of pathogens from the intestinal epithelia and mucosa, and by 

immunomodulation (63). Many probiotic strains have had their genomes sequenced 

(64) and this has given rise to the field of probiogenomics, wherein genomic 

approaches are used to understand how probiotics adapt to the gut and to explain 

how they exert health benefits (65).  

Functional genomics has been used to determine the importance of individual genes 

to the mechanisms of probiotic action (62). For example, genome sequencing of the 

probiotic strain Bifidobacterium breve UCC2003 revealed that it had a gene-cluster 

encoding type IV Tad-pili, which had previously been shown to be involved in the 

adhesion of pathogens to the host (66). Disruption of the locus by insertional 

mutagenesis prevented mutants from colonising the murine gut, demonstrating that 

the pili are essential for host colonisation. Subsequent comparative genomics showed 

that the locus was conserved among Bifidobacterium genomes, suggesting that pili-

mediated host colonisation is common to members of this genus (66). More recently, 

transposon mutagenesis was used to generate 1,110 Lactobacillus casei mutants, 

each with a mutation in a different gene, to identify those necessary for colonisation 

of the gut (67). In total, 47 genes that were essential for L. casei to colonise the ileal 

loop of rabbits were identified. These genes included some involved in housekeeping 

functions, cell wall synthesis, carbohydrate metabolism, amino acid metabolism, and 

environmental adaptation. Functional genomics has also been used to identify genes 

responsible for immunomodulation by probiotics. For instance, it was found that L. 

casei ATCC 27139 with a mutation in the gene asnH did not improve immunity in 

mice infected with Listeria monocytogenes, whereas the wild-type strain did (68). 
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The gene asnH encodes peptides that form part of the peptidoglycan layer, thereby 

suggesting that cell wall components of L. casei have a role in immunomodulation. 

Going beyond the study of individual genomes, comparative genomics can explain 

why different probiotic strains have distinct effects. For example, comparative 

genomics was used to elucidate why some probiotic Lactobacillus species are 

associated with weight gain while others are associated with weight protection (69). 

Notably, the genomes of weight gain species did not encode enzymes necessary for 

fructose degradation, yet did encode enzymes which convert sucrose to fructose and 

glucose. In contrast, the genomes of weight protection species did encode enzymes 

necessary for fructose degradation and additionally encoded proteins involved in the 

synthesis of the anti-obesity compounds acetate, dextrin and L-rhamnose. 

Furthermore, the genomes of weight protection species contained glucose permease 

determinants. The authors suggest that the superior ability of weight protection 

species to degrade sugars reduces storage in the body, thus preventing weight gain. 

In addition, the genomes of weight gain species encoded thiolases, suggesting that 

these species may enhance fat digestion and fatty acid absorption/degradation, thus 

causing weight gain. Finally, the authors observed that weight protection species had 

more genes encoding bacteriocins than weight gain species (69). Comparative 

genomics has also been used to investigate the relationships between commercial 

probiotic strains. Comparison of the genomes of 34 Lactobacillus acidophilus 

strains, including multiple commercial strains, isolated over a 92 year period 

revealed that there was minimal genetic diversity in the species and strains shared 

almost identical genomes (70). This indicates that different L. acidophilus strains are 

likely to exert the same health benefits via the same mechanism. 
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As noted in the case of starter cultures above, genome sequencing has also been 

suggested as a method of identifying probiotic candidates, for example, by screening 

strains for genes encoding bile salt hydrolases or transporters, cell adhesins, and 

bacteriocins (71). Similarly, genome sequencing can be used to confirm the safety of 

probiotic candidates by screening for virulence genes or antibiotic resistance genes 

(72).  

 

Meta-omics for the identification of probiotics 

Many traditional fermented foods, like kefir and kimchi have been reported to have 

health benefits (73, 74), and an increasing number of metagenomes of the microbial 

populations of these foods have been sequenced, as discussed below. There is an 

opportunity to mine these metagenomes for strains with probiotic traits. For 

example, WMS analysis of kefir revealed that Lactobacillus kefiranofaciens had 

genes which encode proteins important for probiotic action, such as bile salt 

transporters, cell adhesins and bacteriocins (Walsh, et al. submitted).  

Similarly, HTS analysis of the gut microbiota can be used to identify potential 

probiotics by highlighting correlations between the presence of particular 

microorganisms and the occurrence of diseases, like obesity and IBD, and such 

probiotics might be used in functional foods. The validity of this approach was 

recently demonstrated by Buffie et al., who administered antibiotics to mice to 

induce Clostridium difficile infection, and subsequently used 16S to examine the gut 

microbiota of mice that were resistant and susceptible to C. difficile (75). Correlation 

analysis indicated that 11 OTUs were associated with resistance in mice, including 

Clostridium scindens. Subsequent analysis of the gut microbiota of humans resistant 
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to C. difficile infection revealed that C. scindens was again associated with 

resistance. Thus, it was postulated that C. scindens protects the host against C. 

difficile. To confirm this, C. scindens was transferred to C. difficile infected mice, 

and the authors observed an amelioration of symptoms. Similar approaches can be 

adopted to discover probiotics to treat other diseases, as reviewed elsewhere (76).  

 

Genomics of foodborne pathogens 

Foodborne pathogens present a major public health concern. Annually, it is 

estimated that there are 9.4 million incidents of foodborne diseases in the United 

States alone, causing 56,961 hospitalisations and 1,351 deaths (77). 

Whole genome sequencing (WGS) has revolutionised the field of epidemiology (78), 

and is particularly useful for investigating outbreaks of foodborne diseases.  WGS 

allows epidemiologists to distinguish between outbreak and non-outbreak strains of 

foodborne pathogens by comparing the occurrence of single nucleotide 

polymorphisms (SNPs) in their genomes (79).  It has been established that subtyping 

foodborne pathogens by WGS gives superior resolution to existing subtyping 

methods such as pulse-field gel electrophoresis (PFGE) and multiple-locus variable 

number tandem repeat analysis (MLVA) (80). Additionally, WGS of foodborne 

pathogens can be completed in a time-frame that is short enough for routine use in 

outbreak surveillance. In 2011, the Ion Torrent PGM was used to sequence the 

genome of the enterohemorrhagic Escherichia coli O104:H4 strain during an 

outbreak in Germany (32). It was reported that genome sequencing and assembly 

took just 62 hours. Since then, proof-of-concept studies have demonstrated that 

WGS can be used to detect outbreaks of Shiga toxin-producing E. coli O157 and 
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Salmonella enterica serovar Enteritidis (81, 82). Similarly, WGS was used to detect 

outbreaks of Listeria monocytogenes in a public health laboratory over a twelve-

month period and the authors of the associated paper noted that this WGS-based 

approach  was more effective than existing methods (83). This approach is being 

made ever more feasible by constantly improving technologies. For example, it has 

been demonstrated that a shorter, 6 hour, Illumina MiSeq run can be used to subtype 

Salmonella at the same resolution as a standard MiSeq run, and it was shown that a 2 

hour Oxford Nanopore MinION run was sufficient to assign strains to an outbreak 

(84). In addition, bioinformatics tools have been developed to streamline the analysis 

of WGS data and allow faster subtyping of foodborne pathogens. The web-based 

tool SeqSero was recently developed to determine Salmonella serotypes from raw 

sequencing reads or assembled genomes (85). Furthermore, the FDA have 

established a database for the genomes of foodborne pathogens called GenomeTrakr 

with the aim of helping researchers to trace the food source of outbreaks (86).  

Aside from disease surveillance, WGS can be employed to trace the sources and 

transmission routes of pathogens through the food-chain. In just one interesting 

example, WGS of Escherichia coli O157 isolates from cattle and sheep revealed that 

the same serotype infects both animals, suggesting that on-farm practices, like 

separating cattle and sheep, might help to prevent disease outbreaks (87). 

 

Genomics of bacteriophage 

Bacteriophage therapy has emerged as a novel strategy to prevent the contamination 

of foods by foodborne pathogens (88). Bioinformatic screening for virulence genes 

and antibiotic resistance genes in the genome sequences of viral candidates for 
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bacteriophage therapy can confirm that they are safe to use in foods (89). Indeed, 

analysis of the genome sequence of P100, a bacteriophage used to control Listeria 

monocytogenes in foods, helped regulators to grant it Generally Regarded as Safe 

(GRAS) status (90).   

In contrast, in the dairy industry, bacteriophage infection of starter cultures is 

detrimental to food quality and often results in fermentation failure (91). 

Siphoviridae are the most common bacteriophage to infect dairy starters, and an 

increasing number of their genome sequences have been published (92). 

Bacteriophage genomics has provided novel insights into the mechanisms of 

interaction between bacteriophage and their hosts and, ultimately, this knowledge 

might enable the rational development of anti-phage measures (93). 

 

META-OMICS INSIGHTS INTO MICROBIAL COMMUNITIES IN FOOD  

In addition to sequencing the genomes of individual food-related microorganisms, 

HTS can be used to study mixed microbial communities in foods.  

Amplicon sequencing 

To date, the vast majority of HTS investigations of food microbiota have used 

amplicon sequencing, and a number of comprehensive reviews have summarised the 

findings of these studies (94-97). As discussed above, amplicon sequencing is used 

to determine the microbial composition of foods. Here, we will discuss a selection of 

studies that highlight how the insights yielded by amplicon sequencing can be 

practically applied to improve food quality. 
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Differences in the microbial communities of the same kinds of traditional fermented 

foods can cause significant variations in their organoleptic properties. 16S-based 

analysis of artisanal and commercial doenjang, a fermented soybean paste, identified 

variability in the bacterial populations of samples from different producers and 

revealed that the populations of commercial samples were simpler than those of 

artisanal samples (98). Such findings can inform the development of starter cultures 

for large-scale production of particular fermented foods with consistent qualities 

(97).  In addition to starter culture selection, production practices greatly influence 

the microbial composition and flavour characteristics of fermented foods. 16S-based 

analysis of 62 Irish artisanal cheeses revealed that the bacterial composition of 

cheeses differed according to the type of milk and ingredients used in their 

production (99).  More recently, 16S- and ITS-based analysis of the rinds of 137 

cheeses from 10 different countries showed that the microbial composition varied 

between bloomy, natural and washed rind cheeses (100). It was discovered that 

geographic origin of the cheese did not affect the microbial composition of the rinds. 

Instead, it was observed that environmental conditions, especially moisture, 

correlated with differences in the microbial composition of the rinds (100). Such 

studies demonstrate that production practices can be manipulated to drive the 

formation of microbial communities to produce fermented foods with desired 

qualities. However, although it is possible to control fermentations to a certain 

extent, environmental microorganisms have an essential role in the production of 

fermented foods. 16S- and ITS-based analysis of cheese production facilities showed 

that Debaryomyces and Lactococcus species involved in fermentation dominated the 

surfaces of the facilities, indicating that microorganisms from the environment might 

contribute to the formation of the microbial communities in cheeses, thus affecting 
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their characteristics (101). Similarly, 16S- and ITS-based analysis demonstrated that 

the bacteria and yeasts present in sourdough bread were also prevalent on the 

surfaces of the bakery (102). Interestingly, 16S has shown that the bacteria on 

grapevines originate in soil, suggesting that differences in the soil microbiota of 

vineyards result in the distinct flavours of wines produced in different regions (103). 

Food fermentation is a dynamic process involving continuous changes in microbial 

communities, and amplicon sequencing has been used to characterise these changes 

in numerous foods, including cheeses and meats (104, 105). Ultimately, such 

information can be used to identify biomarkers for the ripeness and quality of 

fermented foods. For example, Bokulich et al. were able to determine the standard of 

batches of American coolship ale based on 16S data (106). 

As mentioned, fermentation can enhance the quality and shelf-life of foods. In 

contrast, food spoilage, caused by the production of undesirable microbial 

metabolites, is detrimental to the organoleptic properties of products (107). Several 

investigations have employed 16S to identify the bacteria responsible for spoilage in 

different foods. For example, 16S-based analysis of a range of spoiled foods, 

including meat, dairy, vegetable and egg products, revealed that psychrotrophic 

members of the genera Lactobacillus, Lactococcus, Leuconostoc and Weissella 

caused spoilage in all of those foods (108). Similarly, 16S revealed that 

psychrotrophic bacteria, probably originating from water reservoirs, were primarily 

responsible for spoilage in meats and seafood (109). The results of both studies 

indicate that refrigeration of foods selected for spoilage bacteria. 

Spoilage can be minimised by improving hygiene practises in food production 

facilities. To date, several studies have used 16S to determine the sources of food 
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spoilage bacteria in food. For example, 16S was used to determine the origin of 

spoilage bacteria in beefsteaks (110). It was observed that all of the bacteria 

associated with spoiled beefsteaks were present in cattle carcasses, indicating that 

they were the main source of spoilers. Additionally, it was discovered that bacteria 

from the carcasses were able to establish on the surfaces of the abattoir, suggesting 

that the environment contributes to spoilage (110). Recently, 16S was used to 

characterise the bacterial composition of a sausage production facility and in sausage 

meat at different processing stages (111). Although spoilage-associated Leuconostoc 

species were present at low levels in raw meat, emulsion and plant surfaces, they 

were the most abundant species in spoiled sausages. The authors suggested that 

packaging and refrigeration selected for Leuconostoc. Interestingly, high levels of 

Yersinia species were detected on plant surfaces, although they accounted for less 

than 1% of the bacteria in spoiled sausages (111). In a similar study, 16S revealed 

that Leuconostoc species were the most abundant bacteria in ready-to-eat meals, and 

were a minor constituent of the microbiota of raw materials and processing plant 

surfaces (112). Finally, Bokulich et al. employed 16S and the Bayesian technique 

SourceTracker (113) to illustrate that raw materials were the most likely source of 

spoilage bacteria in a beer brewery (114). Thus, amplicon sequencing can be used to 

highlight stages in the production chain or areas in the production facility where 

improvements in hygiene practices are necessary. 

In addition, 16S can be used to assess the impact of food-preservation measures on 

the growth of spoilage bacteria. For example, 16S was recently used to investigate 

the effect of nisin-packaging on the microbiota of beef burgers (115). The tool 

PICRUSt (116), which predicts the bacterial genetic content of a sample based on its 

compositional profile, indicated that nisin-packaging reduced the frequency of 
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metabolic pathways associated with spoilage, such as fatty acid biosynthesis 

pathways. Similarly, 16S was used to assess the effects that high oxygen modified-

atmosphere packaging (MAP) and vacuum-packaging (VP) had on the microbiota of 

beef. It was observed that MAP spoiled ten days sooner than VP and 16S data 

revealed that there was a higher level of spoilage-associated Leuconostoc species in 

MAP than VP (117). Amplicon sequencing, therefore, can assist the selection of 

optimal food-preservation measures. 

 

Beyond compositional analysis 

The examples discussed above illustrate the usefulness of amplicon sequencing to 

study the microbiology of foods, and many published papers describe the use of this 

technique. However, there is a need to move beyond simply cataloguing the 

microorganisms that are present and instead focus on elucidating their roles (118). 

This can be achieved through whole metagenome shotgun sequencing (WMS; rather 

than the use of PICRUSt as a proxy), metatranscriptomics (RNA-Seq), and 

integrated omics approaches, which combine high-throughput sequencing with 

metabolomics or metaproteomics (18).  

A number of studies have demonstrated that WMS can identify the microorganisms 

that are most important during fermentation. For example, WMS-based analysis of 

kimchi revealed that genes homologous with those in Leuconostoc mesenteroides 

subsp. mesenteroides ATCC 8293 and Lactobacillus sakei subsp. sakei 23K that are 

associated with the fermentation of carbohydrates, like mono- and oligosaccharides, 

were enriched in the kimchi microbiome, indicating an important role for those 

strains during kimchi fermentation (119). Interestingly, a high number of phage 
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DNA sequences were detected in kimchi, suggesting that bacteriophage infection 

might affect the microbial community dynamics during kimchi fermentation. 

Similarly, WMS-based analysis of a cocoa bean fermentation sample showed that 

genes associated with carbohydrate catabolism, especially heterolactic fermentation 

and pyruvate metabolism, were enriched in Lactobacillaceae (120). In addition, 

genes associated with pectinolysis and citrate metabolism were detected in 

Enterobacteriaceae, indicating that these bacteria might contribute to degradation of 

cocoa pulp and flavour formation, although this genus had not been considered to be 

important during cocoa pulp fermentation, previously (120).  Furthermore, WMS can 

provide insights into the role of specific microorganisms in flavour production 

during fermentation. In the aforementioned ‘cheese rind’ study (100), WMS-based 

analysis of bloomy, natural, and washed cheese-rind microbial communities was also 

carried out and revealed that washed rind cheeses, noted for their pungent aromas, 

were enriched in a number of pathways involved in the production of flavour 

compounds. These included cysteine and methionine metabolism pathways, which 

are associated with the production of volatile sulphur compounds, and valine, leucine 

and isoleucine degradation pathways, which are associated with putrid and sweaty 

aromas (100). Furthermore, genes encoding lipases, proteases, and methionine-

gamma-lyase, an important enzyme in the production of sulphur compounds which 

had only been found previously in Brevibacterium linens, were identified in 

Pseudoalteromonas, suggesting that this genus is involved in flavour production in 

cheese (100). Ultimately, such studies might guide the development of multi-strain 

starter cultures to produce foods with enhanced sensory qualities.  

While WMS can be applied to guide approaches to enhance the qualities of 

fermented foods, it can also be employed to identify, and ultimately address, 
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microbes associated with defects. For example, WMS analysis of Chinese rice wine 

revealed that Lactobacillus brevis encodes genes that are potentially involved in 

spoilage, including genes associated with biotin synthesis, malolactic fermentation, 

and short-chain fatty acid production. Thus, the authors suggested that L. brevis 

might negatively impact the quality of CRW, and indeed, compositional analysis 

revealed that L. brevis was most prevalent in spoiled wine (121). Similarly, WMS 

was recently used to determine the causal agent of a pinking defect in cheeses (122). 

It was found that the thermophile, Thermus thermophilus, which had not previously 

been associated with the cheese microbiota, was enriched in defect cheeses and that 

associated genes involved in carotenoid production were enriched in these samples. 

Using this knowledge, the researchers proceeded to isolate T. thermophilus from 

defect cheeses. To confirm that this microbe caused pinking, the defect was recreated 

in a normal cheese by inoculating it with T. thermophilus, thus confirming that this 

species is responsible for the discoloration phenomenon. While this finding was 

important in its own right, it also highlights that this approach could be employed to 

identify the causes of other defects in cheeses, like flavour defects or late blowing 

(123), and eventually inform control-measures to prevent such defects. 

WMS can be also be employed to detect pathogens in food, as demonstrated by 

Leonard et al., who employed this approach to detect E. coli in fresh spinach (124). 

However, it is not suitable for use in clinical laboratories because the error rates 

inherent to current sequencing platforms might lead to the misidentification of 

microbes, particularly at strain-level (125) but it is useful for investigating the 

transmission of pathogens through food production chains. In one instance, WMS 

was used to investigate how food processing affected the microbial composition of 

beef Although processing reduced the total number of bacteria in the meat, it was 
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noted that it resulted in an increase in the relative abundance of Salmonella enterica, 

Escherichia coli and Clostridium botulinum, potentially because of their ability to 

survive antimicrobial interventions (126). Thus, WMS can be used to identify the 

control points in the food production chain that best reduce contamination by 

foodborne pathogens.  

WMS-based approaches are useful in many situations but are still limited in that they 

can only predict the metabolic capabilities of microorganisms. In contrast, RNA-Seq 

measures the extent to which different genes are transcribed, and thus it is a more 

informative method of elucidating their importance/roles in fermentations, as 

demonstrated in several recent studies. RNA-Seq-based analysis of kimchi revealed 

that genes associated with flavour production were expressed by Leuconostoc 

mesenteroides at the beginning of fermentation,  suggesting that this species 

contributes to the organoleptic properties of kimchi (127). Similarly, a combined 

16S/RNA-Seq-based analysis of the ripening of a traditional Italian Caciocavallo 

Silano cheese revealed strong correlations between the abundance of non-starter 

LAB (NSLAB) and the levels of expression of genes involved in amino acid and 

fatty acid catabolism, suggesting that these bacteria are important for cheese 

maturation (128). Likewise, RNA-Seq-based analysis of a surface-ripened cheese 

revealed that genes associated with proteolysis/lipolysis were highly expressed by 

Geotrichum candidum, indicating that this species is important for flavour 

production in the cheese (129). Furthermore, the authors identified a subset of genes 

that were differentially expressed across ripening stages, and they suggested that the 

ripeness of the cheese could be assessed by measuring the expression level of those 

genes. Similar studies have been conducted in Camembert and Reblochon cheeses 

(Lessard, et al. 2014, Monnet, et al. 2016). 
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To our knowledge, only one published paper has described combining HTS with 

metaproteomics to investigate the microbiology of a fermented food (130). In that 

study, 16S and ITS were used to characterise the bacterial and fungal composition of 

Pu-erh tea. In addition, liquid chromatography and mass spectrometry were used to 

identify the microbial proteins in the tea. It was observed that the bacterial 

community was dominated by Proteobacteria and the fungal community was 

dominated by the genus Aspergillus. 40 bacterial proteins and 295 fungal proteins 

were detected: 75% of the bacterial proteins were from Proteobacteria and 58.68% of 

the fungal proteins were from Aspergillus. 42 of the proteins detected were secreted 

or extracellular proteins, some of which (e.g. pectin lyase and cellobiohydrolase) 

could be involved in the degradation of tea leaves. These results provide direct 

evidence relating to the identity of the microorganisms, and associated proteins, that 

are involved in the fermentation of Pu-erh tea, and indicate that fungi are especially 

important in this process (130).  

Another approach to combining multiple –omics technologies has involved 

combining HTS and metabolomics to reveal the microorganisms that are responsible 

for the production of metabolites, such as flavour compounds, in fermented foods. A 

number of investigations have used 16S and metabolomics to study microbial 

succession and the production of metabolites during the fermentation of several 

types of traditional Korean seafood. These studies identified correlations between 

Halanaerobium and acetate, butyrate and methylamines, thus suggesting that 

members of this genus are important for the production of those metabolites (131-

133). Similarly, ITS and metabolomics were combined to demonstrate that changes 

in the fungal population of kombucha tea corresponded with increases in the levels 

of antioxidants over the course of 21-day fermentations, suggesting that fungi 
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contribute to the healthy characteristics of this beverage (134). Recently, an 

integrated amplicon sequencing and metabolomics approach was employed to 

investigate changes in the microbial composition and volatile profile of Zhenjiang 

aromatic vinegar during fermentation (135). The authors identified strong 

correlations between bacteria and volatiles but weaker correlations between fungi 

and volatiles, and thus they concluded that bacteria are more important for flavour 

production. Subsequent addition of Acetobacter pasteurianus, isolated from the 

vinegar, to the fermentation and caused increases in the levels of flavour compounds, 

including acetic acid and 2,3-butanediol, thus partially validating the correlations 

between bacteria and volatiles. (135). A major limitation of using this approach is 

that amplicon sequencing typically only gives genus-level resolution and so it is 

unable to detect species-level variations in the microbial composition of fermented 

foods, which can impact their quality (80). In contrast, WMS has been shown to give 

species-level resolution in a number of fermented foods, such as Mexican Cojita 

cheese and kefir grains (136, 137). We recently used WMS and metabolomics to 

identify associations between different species and flavour compounds in kefir milk 

(Walsh, et al. 2016, submitted), a traditional fermented beverage with reported health 

benefits (74). We identified strong positive correlations between Acetobacter 

pasteurianus and acetic acid, which is associated with vinegary flavours; 

Lactobacillus kefiranofaciens and carboxylic acids associated with cheesy flavours; 

Leuconostoc mesenteroides and diones associated with buttery flavours; and 

Saccharomyces cerevisiae and esters associated with fruity flavours. Our results 

suggest that integrating WMS and metabolomics has the potential to lead to the 

identification of the strains that merit inclusion as part of multi-strain starter cultures 

to produce traditional fermented foods with improved sensory qualities. 



27 
 

Integrated HTS and metabolomic approaches have also been used to enhance the 

safety of fermented foods by identifying the microorganisms responsible for the 

production of harmful metabolites. For example, 16S and metabolomics were used to 

identify the microbes responsible for the production of biogenic amines in Chinese 

rice wine (138). Strong correlations were found between the relative abundances of 

several genera and the levels of biogenic amines, but not between the Lactobacillus 

species present and biogenic amines. As a consequence, 30 Lactobacillus isolates 

were screened and L. plantarum JN01 was identified as one that did not produce 

biogenic amines and which was ethanol-tolerant and produced a low amount of 

acetic acid, indicating that it could be added to the rice wine without spoiling its 

flavour. Addition of this strain to the fermentation reduced the levels of biogenic 

amines in the wine by inhibiting the growth of other bacteria through the production 

of organic acids. Similar strategies can be adopted to increase the safety of other 

fermented foods. 

 

META-OMIC INSIGHTS INTO THE EFFECTS OF INGESTED MICROBES 

ON THE GUT MICROBIOTA 

An increasing number studies are using HTS to determine the effects that ingested 

microbes, either from fermented foods or probiotic products, have on the gut 

microbiota (Figure 2). The majority of these studies have employed 16S rRNA 

sequencing (139). For example, this approach was used to investigate the effects that 

three probiotic strains had on the gut microbiota of mice fed a high fat diet (140). It 

was found that administration of probiotics caused the gut microbiota to become 

more similar to that of mice fed a normal diet. Importantly, there was a reduction in 
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Figure 2: (a) Schematic overview of the flow of microorganisms through the food chain and (b) their 
impact on the human gut microbiota. 
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the levels of bacteria that were positively correlated with metabolic syndrome and an 

increase in the levels of bacteria that were negatively correlated with metabolic 

syndrome. In contrast, several studies have reported that ingestion of particular 

probiotics has no significant effects on the gut microbiota, based solely on 16S data 

(141-143). While this may be attributable to strain-specific effects, it is important to 

remember, as discussed above, that a major limitation of 16S is that it usually gives 

genus-level identification at best, and therefore it is not sensitive enough to detect 

potentially important changes at the species-level, or changes in gene expression. 

Thus, WMS or ideally RNA-Seq should be used for such investigations. McNulty et 

al. illustrated this when 16S rRNA showed that there was no change in the microbial 

composition of the gut microbiota of mice fed a fermented milk product (FMP), but 

RNA-Seq revealed that there was a significant increase in the expression of genes 

related to carbohydrate processing (144). Similarly, 16S rRNA sequencing showed 

that consumption of Lactobacillus rhamnosus LGG did not significantly alter the gut 

microbiota of elderly people, but RNA-Seq revealed there was an increase in the 

expression of anti-inflammatory pathways (145). 

Although WMS is not as powerful as RNA-Seq, it has provided some invaluable 

insight into the reasons why fermented foods and probiotics may exert health 

benefits. For example, WMS was used to characterise changes at the species level in 

the microbiota of IBS patients fed an FMP (146). It was reported that FMP 

consumption induced an increase in the levels of anti-inflammatory butyrate-

producing species, and a decrease in the levels of the pro-inflammatory species 

Bilophila wadsworthia and Clostridium sp HGF_2, which correlated with the 

alleviation of IBS symptoms (146). More recently, WMS was used to investigate 

how the probiotic mixture Prohep affects the microbial composition and gene 
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content of the gut microbiota of mice with hepatocellular carcinoma (147). It was 

observed that Prohep administration reduced tumour size by 40% and caused an 

increase in the abundance of bacteria and pathways that had anti-inflammatory 

effects, and a decrease in those with pro-inflammatory effects (147). In addition, 

HTS can be used to determine the fate of ingested microbes in the GI tract. This was 

recently demonstrated by David et al., who used 16S to show that there was a 

significant increase in the abundances of microbes originating from food in human 

subjects fed animal and plant based diets. Furthermore, RNA-Seq revealed that there 

was a significant increase in the gene expression of those microorganisms, indicating 

that they survive gastrointestinal transit and transiently colonise the gut (148). 

Finally, HTS can be used to predict the effect that ingested microbes will have on the 

gut microbiota, as shown by Zhang et al., who discovered that an FMP induced less 

changes in the gut microbiota of ‘resistant’ rats, which had a high abundance of 

indigenous Lachnospiraceae, than in ‘permissive’ rats, which had a low number of 

indigenous Lachnospiraceae, and they observed similar patterns in humans (149). 

They demonstrated that the ‘resistant’ and ‘permissive’ phenotypes could be 

replicated by faecal transplantation in gnotobiotic rats, confirming that the 

phenotypes were gut microbiota dependent. Their findings suggest that probiotic 

interventions should be tailored for individual patients, depending on their 

indigenous gut microbiota, and might explain why probiotic interventions are 

successful for some patients but not others. 

 

OUTLOOK 
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High-throughput sequencing has transformed the field of food microbiology, 

enabling in-depth genomic characterisation of starter cultures, probiotics and 

foodborne pathogens, and additionally, culture-independent analysis of mixed 

microbial communities in foods and food production facilities. Indeed, whole 

genome sequencing of food-related microbial isolates has advanced to the point that 

it is routinely used to verify the safety of probiotic candidates and detect outbreaks of 

foodborne disease. While sequencing-based culture-independent analysis has also 

provided valuable insights, its use, and that of amplicon/compositional analysis in 

particular, is more limited. Typically, the short sequence reads generated by current 

sequencers provide limited resolution. However, strain-level variations between 

microorganisms can influence the organoleptic properties of foods, and thus strain-

level resolution is more desirable. Although it has not been achieved to date, we 

expect that improvements in the throughput of long-read sequencers like the PacBio 

and MinION, in addition to Illumina synthetic long-read sequencing technology 

(150), or in combination with short read/high output sequencers, might allow strain-

level resolution. Ultimately, we anticipate a time in the near future when it will be 

possible to use metagenomics to inform efforts to fine-tune fermentation processes 

and reliably test for the presence of foodborne pathogens.  
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Abstract 

The advent of high-throughput sequencing has enabled the study of the microbiota of 

fermented foods to an unprecedented degree. The technology allows the 

identification of microbes present within these foods, but it can also be used to 

predict or measure their activities during fermentation. Indeed, this ability to study 

microbial dynamics in situ has yielded invaluable insights into the ways in which 

microorganisms may contribute to qualities, especially flavour, in these foods. Here, 

current knowledge with respect to the fermented food microbiota, as gleaned from 

high-throughput sequencing-based analyses, is reviewed. Additionally, we highlight 

the many examples that demonstrate the potential for these technologies to reveal the 

ways in which microbes influence flavour development in these foods and, 

ultimately, guide efforts to modulate and improve food fermentations. 
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Introduction 

Fermentation has been practiced for millennia as a means of food preservation or 

food quality enhancement (1). Today, fermented foods are also being increasingly 

consumed due to a greater appreciation of associated health benefits (2).  

Food fermentation is the result of the biological activity of microbes present within 

food matrices (3). It is thus notable that the advent of high throughput DNA 

sequencing (HTS) has revolutionised food microbiology over the past decade by 

enabling high-quality culture-independent characterisation of microbial 

communities, including those present in fermented foods (4). A major motivation for 

such analyses is that an improved understanding on the microbiota within fermented 

foods might ultimately lead to enhanced food qualities, including sensory properties 

such as flavour. 

Three different HTS approaches can be used to characterise the microbiota of 

fermented foods. These are: amplicon sequencing, whole metagenome shotgun 

sequencing, and metatranscriptomics (also known as RNA Seq). For amplicon 

sequencing, microbial DNA that has been extracted from a sample is PCR amplified 

using primers which facilitate the sequencing of hyper-variable regions within 

conserved marker genes. Next, the PCR products, or amplicons, are mapped against 

a marker gene database containing sequences representative of difference taxa. Such 

mapping ultimately allows one to estimate the proportions of the different taxa 

present within a sample. The most commonly used amplicon sequencing approach is 

16S rRNA gene sequencing (5), which is used to profile the bacterial composition of 
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samples, while ITS gene sequencing (6) is commonly used to profile the fungal 

composition of samples.  

Amplicon sequencing has been the most frequently used HTS approach for the 

characterisation of the microbiota of fermented foods (7, 8) (Figure 1). Although it 

has yielded many novel insights into the microbial diversity in these foods (9), 

amplicon sequencing has some inherent limitations. Firstly, it is typically limited to 

genus-level classification (10) and thus, importantly, it cannot account for variation 

in the microbiota at the species-level or strain-level. Secondly, it cannot provide a 

direct insight into the functions encoded by the microbes present in the sample. 

Therefore, amplicon sequencing offers limited insights into the roles played by 

different microbes in fermentations. 

Shotgun metagenomics yields considerably more information than amplicon 

sequencing. For shotgun metagenomics, microbial DNA that has been extracted from 

a sample is randomly fragmented, and these DNA fragments are then sequenced. 

Shotgun metagenomic reads can be mapped against a functional database to reveal 

the genes or functions encoded by the microbiome, and they can also be mapped 

against a taxonomic database to profile the microbial composition of samples at high 

taxonomic resolutions, even at the strain-level (11). Shotgun metagenomics is more 

expensive than amplicon sequencing, since it necessitates a higher sequencing depth, 

in addition to greater computational costs (11). Consequently, shotgun 

metagenomics has been comparatively underutilised (7, 8) (Figure 1), but several 

recent studies have demonstrated the potential for this method to pinpoint ways to 

enhance food quality. 
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Figure 1: An overview on the usage of high-throughput sequencing (HTS) approaches for the analysis of 
fermented foods. (A) The Venn diagram shows the number of studies to adopt a given approach or combination 
thereof. (B) The stacked area chart shows the relative usage of approaches over time. (C) The stacked bar usage 
of HTS for different types of fermented foods.  Note that this data was collected in January 2018. 
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Similarly, relatively few studies have used metatranscriptomics to study fermented 

food microbiota (7, 8) (Figure 1). For metatranscriptomics, cDNA synthesised from 

mRNA extracted from a sample is randomly fragmented, and these cDNA fragments 

are then sequenced. Metatranscriptomic reads are mapped against a functional 

database, and gene expression is measured by counting the number of reads which 

map to each gene. A considerable hurdle to metatranscriptomics is posed by the 

difficulty in isolating high quality mRNA from fermented foods, since mRNA is 

unstable, and thus it can degrade rapidly (12). Additionally, metatranscriptomics is 

significantly more expensive than either amplicon sequencing or shotgun 

metagenomics (13) as it requires very high sequencing depth. This issue is even 

more pronounced in instances where it is necessary to detect transcripts of genes that 

are expressed in low amounts. Regardless, metatranscriptomics is, potentially, an 

enormously useful sequencing approach for studying fermented foods, since it can 

determine levels of gene expression, and thus reflect the function of species, or even 

strains, during fermentation. 

Each sequencing approach mentioned above can be used in conjunction with other 

omics methods, such as metabolomics or proteomics, to achieve multi-omics (14) 

analyses of fermented foods. Such analyses try to link changes in the proportions, 

functional potential or gene expression of microbes with biochemical changes that 

occur during food fermentations. Thus, multi-omics may help us to elucidate which 

microbes are important for particular organoleptic characteristics in fermented foods. 

Here, we review studies that have used high-throughput sequencing, with an 

emphasis on shotgun metagenomics and metatranscriptomics, or multi-omic 

approaches to analyse common fermented foods. We discuss the ways in which the 
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information gained from such analyses might be applied to enhance food qualities 

like flavour. Additionally, we explore the potential for novel bioinformatics or 

computational biology methods to further our understanding of food fermentations. 

Dairy 

Fermented milk products (FMPs) 

1. Kefir 

Kefir is a traditional fermented milk beverage which originated in the Caucus region. 

It is produced by inoculating milk with a kefir grain. Afterwards, the milk is 

typically incubated at room temperature for around 24 hours. The kefir grains are 

cauliflower-like polysaccharide matrices harbouring a symbiotic community of 

bacteria and yeasts which are responsible for fermentation. Kefir is becoming 

increasingly popular due to reports of associated health benefits (15). HTS or multi-

omic approaches can provide information that can be used to optimise the sensory 

properties of kefir, thus making it even more appealing to consumers.  

Numerous studies have used amplicon sequencing to characterise the kefir 

microbiota. Early 16S rRNA gene sequencing studies revealed that kefir grains were 

dominated by Lactobacillaceae (16-18). Subsequent investigations have combined 

16S rRNA gene sequencing with ITS gene sequencing to better characterise kefir. In 

one such instance, this approach was used to analyse 25 kefir grains, and their 

associated milks, which were sourced from 8 different countries (19). Within this 

study, 16S rRNA gene sequencing showed that the bacterial populations in the kefir 
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grains were dominated by Lactobacillus, but this genus was present at lower 

abundances in the milks, which were dominated by Lactococcus. Other subdominant 

bacterial genera detected included Acetobacter and Leuconostoc. Additionally, ITS 

gene sequencing established that the fungal populations in kefir were dominated by 

Kazachstania, Kluyveromyces and Naumovozyma (19). Other amplicon sequencing-

based studies have since offered similar insights into the kefir microbiota, and they 

have consistently reported that Lactobacillus kefiranofaciens is the dominant 

bacterial species in kefir grains (20, 21). 

Shotgun metagenomics and/or multi-omics have also been used to study kefir. 

Shotgun metagenomic analysis was first used to examine 2 kefir grains from Turkey 

(22). The authors found that the kefir grains were dominated by Lactobacillus 

species, specifically Lactobacillus kefiranofaciens, Lactobacillus buchneri and 

Lactobacillus helveticus. Additionally, they reported that the most abundant 

microbial pathways in the kefir grains were associated with the metabolism of 

carbohydrates, proteins, amino acids, and DNA or RNA (22). More recently, a multi-

omics approach combining shotgun metagenomics with metabolomics was used to 

characterise changes in kefir milks from 3 countries over the course of 24 hour 

fermentations (23). Shotgun metagenomics revealed a consistent pattern of microbial 

succession across the 3 kefir milks. Specifically, L. kefiranofaciens was most 

abundant in the earlier stages but it decreased in later stages, when Leuconostoc 

mesenteroides increased. The observed changes in the microbial population 

corresponded with changes in the volatile profile of the kefir milks, and strong 

correlations were identified between the abundances of particular species and the 

levels of flavour compounds.  Notably, L. kefiranofaciens correlated with carboxylic 
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acids and ketones, which are both associated with cheesy flavours, and esters, which 

are associated with fruity flavours. In contrast, L. mesenteroides correlated with 2,3-

butanedione, which is associated with buttery flavours, and acetic acid, which is 

associated with vinegary flavours. The correlations indicated a causal relationship 

between the microbiota and the flavour of kefir, which was supported by evidence 

that spiking kefir with a L. kefiranofaciens isolate produced increases in ketones and 

esters, whereas spiking with a L. mesenteroides isolate produced increases in 2,3-

butanedione and acetic acid. Additionally, sensory analysis showed that a kefir high 

in L. mesenteroides had a likeable buttery flavour, whereas another kefir high in L. 

kefiranofaciens had a less likeable but fruitier flavour. Interestingly, metagenome 

analysis also showed that L. kefiranofaciens lacked some pathways associated with 

aromatic amino acid biosynthesis, whereas L. mesenteroides contained these 

pathways. This is potentially important because there was a significant decrease in 

tyrosine during the fermentations. Thus, it is plausible that L. mesenteroides 

increased relative to L. kefiranofaciens due to its ability to synthesise tyrosine. The 

knowledge gained from this study might be used to manipulate the microbiota and, 

by extension, flavour of kefir, for example, by spiking kefir with isolates or 

modifying its nutrient content to favour the growth of particular microbes (23). A 

similar multi-omics approach, which instead combined amplicon sequencing with 

metabolomics, was used to study 4 kefir grains from different Turkish regions (24). 

Again, L. kefiranofaciens was linked to particular flavour compounds, like the 

ketone 2-butanone, which is associated with a yoghurt-like aroma. Furthermore, the 

kefir grains had similar but distinct microbial compositions, and the kefir milks had 

diverse aromatic profiles, and, thus, this provides further evidence that the kefir 

microbiota is important for its flavour. 
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2. Other traditional FMPs 

Although kefir is perhaps the best studied traditional FMP, others have also been 

analysed using high-throughput sequencing methods. Several traditional FMPs 

produced by Mongolian peoples have been analysed using amplicon sequencing, 

including airag or koumiss (fermented mare’s milk), khoormag (fermented camel’s 

milk), and tarag (fermented cow’s/goat’s/yak’s milk). Several studies using 16S 

rRNA gene sequencing have reported that Lactobacillus is the dominant bacteria 

across these milks (25-29). Additionally, ITS gene sequencing has indicated that 

Galactomyces is the dominant yeast in tarag (26), while Pichia was dominant in 

several naturally fermented cow milks produced by Mongolian people living in 

Russia (30).  

Presently, only one published study describes the use of shotgun metagenomics to 

characterise a Mongolian FMP (29). Specifically, it was used to analyse 30 koumiss 

samples. The researchers reported that Lactobacillus helveticus was the dominant 

species, while Lactococcus lactis, Lactobacillus buchneri, Lactobacillus 

kefiranofaciens and Acetobacter pasteurianus were also prevalent species. The 

authors identified genes within the koumiss microbiome that are potentially 

important for flavour, including those associated with proteolysis. Additionally, a 

gene putatively encoding an aminotransferase, an enzyme involved in the 

transaminase pathway, was detected in koumiss. The transaminase pathway initiates 

the formation of many key flavour compounds, including aldehydes, organic acids, 

alcohols and esters. Furthermore sequences associated with amino lyases, which are 

involved in the production of sulphur compounds, were also observed in koumiss. 
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FMPs from other countries have also been analysed by high-throughput sequencing. 

The Colombian soured cream Suero Costeño was found to be dominated by either 

Lactobacillus or Streptococcus (31). A fermented goat’s milk from China, called 

yond bap, was analysed by 16S rRNA gene sequencing, which revealed that most 

samples were dominated by Pseudomonas or Lactococcus (32). Furthermore, 16S 

rRNA gene sequencing revealed that a naturally fermented yak’s milk from Tibet 

was dominated by the bacterial genus Lactobacillus, while ITS gene sequencing 

revealed that it was dominated the fungal genus Saccharomyces (33).  

Matsoni, a popular FMP from the Caucuses, was also analysed by a combined 

amplicon sequencing approach (34). Overall, the most prevalent bacterial genera 

were Lactobacillus and Streptococcus, while the most prevalent fungal genera were 

Kluyveromyces and Saccharomyces. The authors reported significant variation, 

especially in the fungi, between matsonis produced using different milks or those 

from different regions, which indicated that production practices had a considerable 

influence on the matsoni microbiota. Additionally, they suggested that the unique 

flavours associated with regional matsonis may be attributable to their distinct 

regional microbiota. 

Recently, a spontaneously fermented camel’s milk from Ethiopia was analysed with 

16S rRNA gene sequencing (35). Streptococcus was dominant but numerous 

potentially pathogenic genera were also prevalent, including Escherichia and 

Klebsiella (35). Similarly, shotgun metagenomics revealed that nunu, a 

spontaneously fermented cow’s milk from Ghana, contained several potential 

pathogens (36). Notably, strain-level analysis of these samples detected an 

enterotoxin-producing Escherichia coli strain that was closely related to E. coli 



64 
 

O139:H28 E24377A, which had previously linked to a waterborne outbreak in India. 

Additionally, strain-level analysis detected an antibiotic resistant Klebsiella 

pneumoniae strain that was closely related to K. pneumoniae KpQ3, which had 

previously been linked a nosocomial outbreak among burn unit patients. Moreover, 

several undesirable functions were detected in the nunu metagenome, including 

histidine decarboxylases, which may produce biogenic amines, in addition to 

putrescine biosynthesis pathways, which may produce foul flavours. 

Cheese 

Cheese is the most widely consumed, and best studied, fermented dairy food. Many 

studies have used high-throughput sequencing, especially amplicon sequencing, to 

characterise microbial dynamics during curd fermentation or ripening, or microbial 

spatial distribution in cheeses, as reviewed elsewhere (7, 37). Here, we will focus on 

studies that have used shotgun metagenomics, metatranscriptomics, or multi-omics 

to study to study the microbial communities in cheese. 

A seminal 2014 study used high-throughput sequencing to analyse rinds from 137 

cheeses produced in 10 different countries (38).  Amplicon sequencing revealed that 

the microbiota varied between bloomy, natural, and washed cheeses. Interestingly, 

the authors discovered that environmental conditions, especially moisture, had a 

significant influence on the cheese rind microbiota. Subsequent shotgun 

metagenomic analysis revealed that several pathways involved in flavour were 

enriched in washed rind cheeses, which are known for their particularly pungent 

aromas. Specifically, cysteine and methionine metabolism, which is associated with 

the production of sulphur compounds, was enriched in washed rind cheeses. 
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Additionally, isoleucine, leucine and valine degradation, which is associated with 

putrid or sweaty odours, was also enriched in these cheeses. Intriguingly, genes 

encoding enzymes important for flavour were identified in Pseudoalteromonas, 

including lipases, proteases, and methionine-gamma-lyase (mgl). Notably, mgl, 

which is involved in producing sulphur compounds, had only been found previously 

in Brevibacterium linens. Thus, Pseudoalteromonas might play a role in flavour 

development in cheese. 

More recently, shotgun metagenomics was used to analyse Cotija, a cheese from 

Mexico (39). Here, it was shown that the Cotija metagenome contained genes 

associated with the production of many flavour compounds. The authors identified 

several transaminase genes that may transform free amino acids to alpha-keto acids, 

in addition to decarboxylases which may degrade these alpha-keto acids to 

aldehydes. Interestingly, no tryptophan or tyrosine transaminases were detected, 

which is important since their products, such as skatole, are associated with 

unappealing aromas. Additionally, complete fatty acid catabolism pathways, which 

produce methyl-ketones, were detected. Furthermore, genes encoding enzymes that 

convert methyl-ketones into their secondary alcohols were identified in the Cojita 

metagenome. Numerous genes encoding alcohol/aldehyde dehydrogenases, which 

are involved in aldehyde, carboxylate and ketone formation, were also found. 

Finally, the authors identified genes encoding enzymes which may enable microbes 

to synthesise alcohols from xylene in the cheese (39). Similarly, pathways which are 

potentially important for flavour formation, including those involved in proteolysis 

and amino acid catabolism, were detected in a washed-curd, brine-salted cheese 

using shotgun metagenomics (40).  
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Shotgun metagenomics can also been used to pinpoint the microbes responsible for 

defects in cheese quality. Indeed, shotgun metagenomics revealed that Thermus 

thermophilus, a thermophile which is not typically associated with the cheese 

microbiota, was enriched in cheeses with pink discoloration defect (41). 

Additionally, carotenoid biosynthesis genes were also enriched in those cheeses. 

Subsequently, the authors demonstrated that the pinking defect could be induced by 

adding T. thermophilus isolated from defected cheeses to normal cheeses, and thus 

they verified that this microbe caused the discoloration. Such studies illustrate that 

shotgun metagenomics may be utilised to identify the microbes responsible for other 

defects in cheeses, including flavour defects or late blowing (42), to ultimately 

inform control-measures to prevent their occurrence. 

Metatranscriptomics was first used to study gene expression in an industrial 

Camembert-type cheese over a 77 day ripening period (43). It was observed that 

protease or peptidase genes were most highly expressed within the initial 21 days. 

The authors noted that genes associated with producing sulphur compounds were 

more highly expressed by the yeast Geotrichum candidum than the mould 

Penicillium camemberti. Conversely, genes associated with lipolysis were more 

highly expressed by P. camemberti than G. candidum. Overall, these findings 

suggest that the two fungi may contribute to distinct flavour characteristics in this 

cheese. Similarly, metatranscriptomics was used to study gene expression in a 

surface-ripened cheese over a 31 day ripening period (44). It was observed that 

Lactococcus lactis and Kluyveromyces lactis were the most active species on day 1. 

Subsequently, Debaryomyces hansenii and Geotrichum candidum became the most 

active species within the initial 14 days, and they remained dominant throughout 
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cheese maturation. Finally, acid-sensitive bacteria were active during the latter stages 

of cheese ripening. Genes associated with proteolysis in addition to lipolysis were 

mostly expressed by G. candidum, which suggests that this species might be central 

to flavour in this cheese.  Interestingly, the authors detected genes which were 

differentially expressed at different maturation stages, and they proposed that these 

genes might be used as biomarkers to assess cheese ripeness (44). Another similar 

study used metatranscriptomics to study a Reblochon-style cheese during a 35 day 

ripening period (45). Again, G. candidum was reported to be the most metabolically 

active species during cheese maturation. Few changes were observed in bacterial 

gene expression, whereas there were changes in fungal gene expression. Notably, it 

was found that amino acid catabolism expression, including transaminase gene 

expression, increased by day 35, and these transcripts were attributed to G. candidum 

and D. hansenii.  

Recently, metatranscriptomics was used to study microbial gene expression during 

ripening in a traditional Italian Caciocavallo Silano cheese (46). It was observed that 

transcripts related to amino acid metabolism and lipid metabolism, which are 

important for ripening, were enriched in the core whereas those related to 

carbohydrate metabolism were elevated on the crust. Additionally, it was 

investigated if ripening conditions influenced gene expression in the cheese. The 

authors reported that 651 genes were differentially expressed in the cores of cheeses 

ripened under higher temperatures compared to those ripened under standard 

temperatures. Indeed, numerous genes, including peptidases and lipases, and 

functions, including amino acid catabolism, fatty acid biosynthesis, and fatty acid 

beta-oxidation, that are associated with flavour were increased in the cores of the 
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cheeses ripened under higher temperatures. It was also found that genes involved in 

acetoin and diacetyl production were enriched in the crusts of these cheeses. The 

elevated amino acid metabolism expression seen in the cheeses ripened under higher 

temperatures was primarily attributed to Firmicutes. Interestingly, correlation 

analysis indicated that non-starter lactic acid bacteria (NSLAB), especially 

Lactobacillus casei, contributed significantly to the observed increase in amino acid 

metabolism expression, which suggested that NSLAB were important during cheese 

ripening. Moreover, the observed changes in gene expression within cheeses ripened 

under higher temperature coincided with increases in flavour compounds, as 

revealed by metabolomics, in addition to greater lipolysis and proteolysis indices 

(46). 

A multi-omics approach, that combined shotgun metagenomics with metabolomics, 

was recently used to study surface-ripened cheeses, which were produced by 

smearing cheddar curd with commercial starter mixes, during a 30 day ripening 

period (47). Here, the authors observed consistent patterns in microbial succession 

within these cheeses, wherein yeast species like D. hansenii and G. candidum 

dominated during the initial stages, whereas bacterial species like B. linens and 

Glutamicibacter arilaitensis were more prevalent during the latter stages. Surface-

ripened cheeses are noted for their intense flavours, and it was found that several 

pathways which are associated with flavour development, including lipolytic and 

proteolytic pathways, were significantly higher in the smeared cheeses than in an 

unsmeared cheese ripened under vacuum. Additionally, several strong correlations 

were identified between the relative abundances of individual species and the levels 

of particular flavour compounds in the cheeses. Specifically, D. hansenii correlated 
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with alcohols and carboxylic acids; G. arilaitensis correlated with alcohols, 

carboxylic acids and ketones; while B. linens and G. candidum correlated with 

sulphur compounds. Importantly, these correlations were supported by evidence 

from prior studies which had shown that these species can produce such compounds. 

Interestingly, Staphylococcus xylosus, which had only previously been associated 

with sulphur compounds in meats, was also found to correlate with sulphur 

compounds in the surface-ripened cheeses. 

Plant-based fermented foods 

Many plant-based fermented foods have been analysed by HTS. Here, we will focus 

on kimchi and soy, since HTS analyses have provided particularly valuable insights 

into the potential contributions of microbes to flavour in these foods. 

Kimchi 

Kimchi is a traditional fermented vegetable food from Korea. It is usually produced 

from cabbage or radish, while other ingredients, including spices, are often added for 

seasoning. Kimchi has been linked to numerous health benefits (48), and it is 

becoming increasingly consumed worldwide. 

16S rRNA gene sequencing studies have established that kimchi is typically 

dominated by the genera Lactobacillus, Leuconostoc, and Weissella (49, 50). 

Generally, pH-sensitive Leuconostoc species are the most prevalent bacteria during 

the initial stages of kimchi fermentation, whereas the more pH-tolerant Lactobacillus 

and Weissella species become dominant as acidity increases in the latter stages. A 
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recent large-scale analysis of 88 kimchi revealed that there was some variability in 

the kimchi microbiota, which was attributed to factors like acidity, ingredients, and 

salinity (51). Several studies have demonstrated that changes in the kimchi 

microbiota correspond to changes in its metabolite profile, which indicates that 

bacteria are important for flavour development in kimchi (52-55). This was 

supported by a recent multi-omics analysis thatrevealed that lactic acid bacteria in 

kimchi produced 2-hydroxyisocaproic acid, a compound which has been associated 

with several benefits (56). 

Shotgun metagenomic analysis of kimchi has also been carried out, focusing on a 29-

day-fermentation (57). Genes associated with carbohydrate fermentation, especially 

saccharide fermentation, were found to be enriched in the kimchi metagenome. Most 

reads mapped to either Lactobacillus sakei subsp. sakei 23K or L. mesenteroides 

subsp. mesenteroides ATCC 8293, which suggests that these species drive kimchi 

fermentation. Indeed, changes in these species corresponded to changes in 

fermentation products, including mannitol, which is associated with a refreshing 

taste. Interestingly, it was also found that many reads mapped to phage genomes, 

which indicated that phage may influence the kimchi microbiota (57). Subsequently, 

the same authors used metatranscriptomics to analyse a subset of these kimchi 

samples (58). Here, it was confirmed that genes associated with heterolactic 

fermentation are central to kimchi fermentation. It was also observed that 

Leuconostoc species were the only ones to express mannitol dehydrogenase genes 

during kimchi fermentation, which indicated that Leuconostoc species were 

responsible mannitol production in kimchi. Additionally, metatranscriptomics 

yielded evidence that bacteria in kimchi may produce vitamins. Specifically, genes 
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associated with folate biosynthesis were expressed by L. sakei, while genes 

associated with riboflavin biosynthesis were expressed by L. mesenteroides (58). 

More recently, this data was reanalysed but with a specific focus on L. mesenteroides 

gene expression (59). Here, it was found that genes involved in the production of the 

flavour compounds acetoin, diacetyl and 2,3-butanediol were highly expressed in L. 

mesenteroides, thus providing further evidence that this species is important for 

flavour development in kimchi.  

Soybean 

Fermented soybean products are essential constituents of the Southeast Asian diet 

(60). Numerous studies have used HTS to study the microbiota of these foods.   

Meju is an ingredient used to produce several traditional fermented soybean products 

from Korea.  It is typically prepared by steaming soybeans that are then crushed to 

be moulded into blocks, which are fermented for one to two months under ambient 

conditions (60). 16S rRNA gene sequencing revealed that meju was dominated by 

the bacterial genus Bacillus throughout fermentation, but lactic acid bacteria were 

also prevalent (61), especially in the interior regions.  Additionally, ITS gene 

sequencing revealed that meju is dominated by the fungal genus Mucor during the 

initial stages of fermentation, but it was dominated by Aspergillus during the latter 

stages (62). 

Doenjang is a soybean paste that is produced by adding brine to meju, after which 

the mixture is fermented for up to 60 days (60).  Doenjang has been associated with 

numerous health benefits, including anti-carcinogenic, anti-inflammatory, anti-
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obesity, and anti-oxidant activities (63). 16S rRNA gene sequencing has revealed 

that doenjang contains the bacterial genera Bacillus, Enterococcus, Lactobacillus, 

Leuconostoc, Staphylococcus and Tetragenococcus, but their relative abundances 

vary between producers (64).  A similar bacterial profile was detected in kochujang, 

which is a traditional Korean soybean paste that is made using meju powder (65), red 

pepper, and rice or glutinous rice flour (66). 

Interestingly, 16S rRNA gene sequencing has been used in parallel with sensory 

analysis to associate the bacteria in doenjang with its sensory properties (67). 

Correlation analysis revealed that Luteimonas, Ochrobactrum, Proteus, 

Rhodobacteraceae, and Stenotrophomonas were found in doenjang with fermented 

fish sauce-like characteristics.  In contrast, Carnobacterium, Enterococcus, 

Pediococcus, Tetragenococcus, and Weissella were associated with sourness. 

Finally, Enterobacter and Enterococcus were present in doenjang with a soft mouth-

feel and a matured flavour, respectively (67). A recent multi-omics study combining 

16S rRNA gene sequencing with metabolomics revealed that Tetragenococcus 

correlated with organic acids in doenjang, which indicated that this genus was 

driving the fermentation (68).  It was also observed that Lactobacillus correlated 

with the bioactive compound gamma-aminobutyric acid in doenjang. Additionally, 

another multi-omics study indicated that Lactobacillus species in doenjang were 

associated with increased antioxidant activity, in addition to reduced cancer cell 

proliferation in vitro (69). Thus, Lactobacillus species may exert some of the health 

benefits associated with doenjang. 

HTS has been used to study Chinese fermented soybean products, including Douchi 

(70) and soybean pastes (71). Notably, shotgun metagenomics was used to study 
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Chinese soy sauce over a 6-month-fermentation (72). It was found that the bacterial 

genus Weisella dominated during at the beginning of fermentation, whereas the 

fungal genus Candida dominated at the end. Interestingly, the increase in yeast 

coincided with increased ethanol production in Chinese soy sauce, in addition to a 

rise in genes associated with branched-chain amino acid metabolism, which suggests 

that yeasts were important for flavour development in this food. 

Fermented tea 

Kombucha 

Kombucha is a fermented tea that is produced by adding a cellulosic pessicle, which 

is a mat containing a symbiotic microbial community, to sweetened tea, where it 

floats above the liquid (73). A new mat is formed following successful fermentation. 

Numerous health benefits have been attributed to kombucha (74), and consequently 

it is becoming increasingly popular in Western countries. 

Several studies have combined 16S rRNA gene sequencing with ITS gene 

sequencing to characterise the kombucha microbiota. Notably, the first such study 

analysed five black tea kombuchas, which were produced using mats from four 

countries, over 10-day-fermentations (75). It was established that the dominant 

bacterial genus in the kombucha was Gluconacetobacter. The authors also observed 

that lactic acid bacteria, including Lactobacillus, were subdominant in kombucha, 

and their abundances increased during the fermentations. Additionally, it was found 

that the dominant fungal genus in the kombucha was Zygosaccharomyces, although 

Dekkera and Kazachstania were also detected. 
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Recently, amplicon sequencing was used to analyse kombucha that was produced by 

industrial-scale fermentations using either black tea or green tea (76). Here, the 

authors observed that black tea kombucha was dominated by the acetic acid bacteria 

Gluconacetobacter, whereas green tea kombucha was dominated the lactic acid 

bacteria Oenococcus. Correspondingly, acetic acid levels were highest in black teas, 

whereas lactic acid levels were highest in green teas. The tea type did not affect the 

yeast population, which was dominated by Dekkera and Hanseniaspora (76). 

However, another study revealed notable differences in the mycobiota of kombuchas 

that were produced using sterile tea, non-sterile tea, or honey tea (77). 

16S rRNA gene sequencing has revealed that temperature also affects the bacterial 

composition of kombucha (78). It was found that the bacterial diversity of kombucha 

fermented at 30°C was greater than that of kombucha fermented at 20°C. Higher 

temperatures promoted the growth of lactic acid bacteria, including Lactobacillus, 

Lactococcus, and Streptococcus. The dominant genus in both kombuchas was 

Gluconacetobacter, but oligotyping (79) showed that different species were present 

at either temperature. Specifically, Gluconacetobacter xylinus was dominant at 

20°C, whereas Gluconacetobacter saccharivorans was dominant at 30°C. The 

authors also reported that gluconic and glucuronic acids were higher at 30°C, and 

both acids were significantly correlated with G. saccharivorans (78). 

Chakravorty et al. demonstrated that shifts in the kombucha microbiota during a 21-

day-fermentation corresponded to increases in metabolites which are linked to health 

benefits (80). ITS gene sequencing revealed that Candida was dominant in the initial 

stages, but Lachancea became dominant at day 7. Meanwhile, biochemical analysis 

showed that flavonoids and polyphenols progressively increased during kombucha 
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fermentation. Additionally, fermentation augmented the anti-oxidant and anti-

glycation activities of kombucha. Thus, the authors provided evidence that the 

kombucha microbiota may contribute to its health-promoting properties. To date, 

neither shotgun metagenomics nor metatranscriptomics have been applied to the 

study of the microbiota of kombucha. 

Post-fermented teas 

Post-fermented teas are produced via the solid-state fermentation of tea leaves by 

their endogenous microbes, and, as with kombucha, various health benefits have 

been linked to these teas (81). A number of post-fermented teas have been analysed 

with HTS methods, such as Fu-brick tea (82) or Liupao tea (83). However, to date, 

Pu-erh tea, which is produced in Yunnan in China (84), is the best characterised 

post-fermented tea. Several studies have established that Pu-erh tea is dominated by 

the bacterial phyla Actinobacteria, Firmicutes and Proteobacteria, and the fungal 

phylum Ascomycota (85, 86).  Zhao et al. combined amplicon sequencing with 

metaproteomics for in-depth characterisation of Pu-erh tea (87). It was observed that 

the bacterial community was dominated by the phylum Proteobacteria, while the 

fungal community was dominated by the genus Aspergillus.  Metaproteomic analysis 

of the tea identified 40 bacterial proteins, 75% of which were from Proteobacteria, 

and 295 fungal proteins, 58.68% of which were from Aspergillus. Additionally, 42 

of the detected proteins were extracellular or secreted proteins, including some 

which may be important for the degradation of the tea leaves, such as 

cellobiohydrolase or pectin lyase. Thus, the authors provided evidence which 

suggested that microbes, and especially fungi, are central to Pu-erh tea fermentation 

(87). More recently, a study combining amplicon sequencing with metabolomics 



76 
 

revealed that changes in the microbiota correlated with changes in metabolites in the 

Pu-erh tea, which further emphasised the importance of the microbiota in this 

fermentation (88).  

Sourdough 

Sourdough bread is made from a flour-water mixture which is fermented by lactic 

acid bacteria and yeasts. These microbes produce organic acids which cause the 

pleasantly sour taste associated with this bread (89). 

To date, amplicon sequencing is the only HTS approach that has been applied to 

study sourdoughs. Numerous 16S rRNA gene sequencing studies have reported that 

Lactobacillus sanfranciensis is the dominant species associated with sourdoughs, but 

other bacteria, such as Enterococcus, Lactococcus, Leuconostoc, Pediococcus and 

Weissella, are often found in these breads (90-92). Intriguingly, although L. 

sanfransciensis was dominant in sourdoughs from different French bakeries, it was 

found that these breads had distinct physiochemical characteristics, which led the 

authors to hypothesis that strain-level variation in L. sanfransciensis has a 

considerable impact on the sourdough qualities (93). 

16S rRNA gene sequencing has also been used to assess the effects of ingredients on 

the sourdough microbiota. It has been reported that lactic acid bacteria were present 

at low abundances in flours used to produce sourdoughs (94), but they quickly 

became dominant after 1 day of sourdough fermentation (95, 96). Interestingly, it 

was observed that sourdoughs produced with rye flour were dominated by Weissella, 

whereas those produced with wheat flour were dominated by Lactobacillus (95). 
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Additionally, it was demonstrated that sourdoughs produced with organically farmed 

flour had a higher bacterial diversity than those produced by conventionally farmed 

flour (97). Conversely, sourdoughs produced with additional ingredients, like fruits 

or honey, had lower alpha diversity than those produced using normal ingredients 

(98). 

Other studies have aimed to investigate the impact of fermentation conditions on the 

sourdough microbiota. Notably, amplicon sequencing was used to characterise the 

microbiota of 4 artisan sourdough bakeries in Italy (99). Here, the authors sampled 

sourdoughs, in addition to air, dough mixers, flours, storage boxes, and walls. It was 

observed that the same microbes which dominated the sourdoughs also dominated in 

the bakery. Indeed, 9 of the 11 detected bacterial OTUs and all of the detected fungal 

OTUs from the sourdoughs were shared with bakery equipment (99). Another study 

which used 16S rRNA gene sequencing revealed that the temperatures within 

sourdough bakeries impacted the breads’ microbiota. Specifically, it was observed 

that sourdoughs fermented under controlled temperatures had a highly stable 

microbiota, whereas those fermented under ambient temperatures had a seasonally 

fluctuating microbiota (100). 

Fermented seafood and meats 

Fermented seafood is a staple in the Southeast Asian diet (101), and 16S rRNA 

sequencing studies have provided useful insights into the microbiota present in these 

foods. The first such study reported that 7 types of Korean fermented seafood were 

dominated by the bacterial genera Lactobacillus and/or Weissalla, and the archaeal 

family Halobacteriaceae (102). Similarly, 16S rRNA gene sequencing has revealed 
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that Lactobacillus is also prevalent in other fermented seafood products, such as 

Chinese Yucha (103), Japanese fermented sushi (104-106), and Korean gajami-

sikhae (107). Unsurprisingly, it has been shown that salted-fermented seafood 

products, such as the shrimp paste saeu-jeot or the anchovy paste myeolchi-aekjeot, 

are dominated by halophilic bacteria. Interestingly, several studies have observed 

that Halanaerobium in these foods corresponded with increases in spoilage 

metabolites, including methylamines, which indicated that this genus may be 

detrimental to flavour. Recently, metatranscriptomics was used to characterise gene 

expression during salted-shrimp sauce fermentation (108). It was found that the 

halophile Tetragenococcus halophilus was the most metabolically active species at 

the studied time-point. Notably, transcripts associated with amino acid metabolism, 

peptidases and alpha-amylase were all assigned to T. halophilus, which led the 

authors to suggest that this species contributed to flavour in this food. 

Fermentation has been practiced as a measure to preserve meat products since 

approximately 1500 BCE (109). The most popular fermented meat products, which 

mostly originated from Southern Europe, include fermented sausages, like chorizo 

from Spain or salami from Italy (110). HTS has been utilised to study the microbiota 

associated with fermented sausages, and amplicon sequencing has consistently 

indicated that Lactobacillus and Staphylococcus are generally the dominant bacteria 

in these foods (111-116). Recently, a multi-omics approach, which used shotgun 

metagenomics together with metabolomics, was employed to study Italian Felino 

salami that was fermented with or without starter cultures (117). Taxonomic analysis 

revealed that salami produced by inoculating meat with starter cultures had lower 

microbial diversity than salami produced by spontaneous fermentation, while 
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functional analysis identified 340 genes that were differentially abundant between 

the salami. Notably, genes encoding putative aldehyde reductases, acetate kinases, 

and 2,3-butanediol dehydrogenases, which are enzymes potentially involved in 

producing acetic acid, acetates, and acetoin, respectively, were higher in inoculated 

salami. Importantly, the metabolome reflected these differences in the metagenome, 

and it was observed that acetic acid, ethyl acetate and acetoin were indeed higher in 

inoculated salami. In contrast, genes associated with fatty acid biosynthesis were 

highest in spontaneously fermented salami, and, again, the metabolome reflected 

differences in the metagenome. Specifically, it was observed that long-chain esters, 

which can be derived from fatty acids, were higher in spontaneously fermented 

salami. Correlation analysis provided further evidence that the salami microbiota is 

pivotal to its flavour. Notably, it was demonstrated that different lactic acid bacteria 

correlated strongly with different esters: Lactobacillus sakei correlated with ethyl 2-

methylbutanoate; Lactococcus lactis correlated with ethyl-alpha-hydroxybutyrate; 

Lactobacillus brevis correlated with ethyl esters; while Leuconostoc citreum 

correlated with ethyl isovalerate. Finally, sensory analysis revealed that inoculated 

salami was less likeable than spontaneously fermented salami, and the multi-omics 

data offered insights into the underlying reasons for this observation. The authors 

suggested that the genes which were enriched in the inoculated salami accelerated 

fermentation in those samples, and this caused acetic acid to be overproduced, and 

this, ultimately, negatively impacted flavour (117).  

Alcoholic beverages 

Alcoholic drinks, including beers, wines, and liquors, are the most widely consumed 

fermented beverages worldwide, and it has been understood since the 19th century 
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that microorganisms are essential in the production of these foods (118). Recently, 

integrated multi-omics approaches, utilising high-throughput sequencing in 

conjunction with metabolomics, have furthered our understanding of the role of the 

microbiota in flavour development in alcoholic beverages (119, 120). 

Bokulich et al. used amplicon sequencing to characterise 200 commercial 

Californian wine fermentations (121). Interestingly, it was found that wine-

producing areas, in addition to individual vineyards, could be distinguished by the 

microbial profile of their respective wines. Additionally, the regional differences in 

wine microbiota were closely correlated with differences in wine chemistry, which 

indicated that the microbiota had a significant influence on wine aroma. Indeed, a 

machine learning approach demonstrated that the microbiota could accurately predict 

the metabolome. Thus, the authors concluded that the microbiota may be used as a 

biomarker to assess wine quality (121).  

Other studies have focussed on individual wines. Stefanini et al. used ITS gene 

sequencing to characterise the mycobiota in grape musts which are used to produce 

Amarone, a dry white wine from Italy, and it was found that the genus Diplodia 

positively correlated with flavour compounds (122). Elsewhere, a multi-omics 

approach was employed to analyse low-alcohol Merlot wines fermented with 

alternatives to the brewers’ yeast Saccharomyces cerevisiae (123). Here, ITS gene 

sequencing indicated that these yeasts successfully propagated in the wine. Notably, 

wines fermented with Metschnikowia pulcherrima showed distinct metabolite 

profiles to those fermented with S. cerevisiae. Specifically, it was found that these 

wines contained high levels of esters along with sulphur compounds. Importantly, 

these wines also performed well in sensory evaluations. 
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Several studies have utilised HTS to link microorganisms to particular qualities in 

Chinese liquors.  For example, shotgun metagenomics provided strong evidence that 

Lactobacillus brevis caused spoilage in a Chinese rice wine (124). Taxonomic 

analysis had revealed that this species was prevalent in spoiled rice wine, while 

functional analysis confirmed that it encoded genes, such as those associated with 

biotin biosynthesis or short-chain fatty acid production, which contribute to off-

flavours (124).  Another study, which utilised amplicon sequencing, discovered that 

the production facility environment was a major source of microbes during Chinese 

liquor fermentation (125). Interestingly, correlation analysis indicated that 

environmental microbes strongly influenced the metabolite profile of the liquor 

(125). Recently, Song et al. used a multi-omics approach to study Chinese Maotai-

flavour liquor fermentation (126). Here, metabolomics revealed that the early stages 

were characterised by ethanol production, whereas the later stages were 

characterised by lactic acid production. Additionally, the microbial composition of 

the liquor was determined by amplicon sequencing. It was found that 

Schizosaccharomyces correlated with ethanol, while Lactobacillus correlated with 

lactic acid. Subsequently, metatranscriptomics confirmed the validity of these 

correlations. Briefly, it was demonstrated that Schizosaccharomyces expressed genes 

associated with ethanol production in the early stages. Specifically, the data 

indicated that Schizosaccharomyces converted pyruvate to acetaldehyde which it in 

turn converted to ethanol. It was also demonstrated that Lactobacillus expressed 

genes associated with lactic acid production in the later stages. Specifically, the data 

indicated that Lactobacillus converted pyruvate to lactic acid (126).  

Metatranscriptomics has also been used to measure the expression of genes 

associated with the production of two sulphur compounds, 3-(methylthio)-1-
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propanol and dimethyl sulphide, which are important flavour compounds, in Chinese 

liquor (127). The authors reported that Lactobacillus and Saccharomyces were the 

most transcriptionally active microbes in the liquor. Importantly, it was observed that 

Saccharomyces was the only species to express every gene necessary to produce 

both compounds. However, it was noted that Lactobacillus expressed genes involved 

in recycling methionine, which is a precursor to both 3-(methylthio)-1-propanol and 

dimethyl sulphide. Thus, it was hypothesised that Saccharomyces and Lactobacillus 

may work synergistically to increase the production of these compounds. 

Subsequently, this was investigated in vitro by culturing S. cerevisiae and L. 

buchnerii, which were isolated from the liquor, in mono-culture or co-culture. It was 

found that L. buchnerii mono-cultures produced neither compound. Interestingly, 

though, it was demonstrated that co-cultures produced significantly more of the 

sulphur compounds than S. cerevisiae mono-cultures, thus confirming a synergistic 

relationship between these species.  

Vinegar 

Vinegar is a dilute solution of acetic acid which is used worldwide as a condiment or 

a pickling agent. It can be produced via the double fermentation of various sugary 

substrates, such as cereals or fruits, wherein ethanol is produced then subsequently 

converted to acetic acid (128). 16S rRNA gene sequencing has revealed that Chinese 

vinegars are dominated by Lactobacillus during the early stages, but Acetobacter 

increases over the course of fermentation (129, 130). The shift in the microbial 

community coincides with a decrease in ethanol, while there is a corresponding 

increase in acetic acid, and several studies have linked the vinegar microbiota to its 

flavour (131, 132). Notably, Wang et al. observed that Acetobacter correlated with 
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acetic acid, glutamic acid and 2,3-butanediol, and subsequent  addition of 

Acetobacter pasteurianus, isolated from the vinegar, to the fermentation caused 

increases in these flavour compounds (132). More recently, shotgun metagenomics 

was used to identify the microbes responsible for acetoin production in Zhenjiang 

vinegar (133). The genetic pathway for diacetyl/acetoin production was 

reconstructed, and it was determined that A. pasteurianus, as well as four 

Lactobacillus species, potentially had the ability to synthesise acetoin from 2-

acetolactate in the vinegar. The authors proceeded to isolate A. pasteurianus and 

three of the Lactobacillus species (L. brevis, L. buchnerii, and L. fermentum) from 

the vinegar. The isolates were then grown in vitro as co-cultures or mono-cultures. It 

was found that two co-cultures (A. pasteurianus plus L. brevis and A. pasteurianus 

plus L. fermentum) produced considerably more acetoin in vitro than mono-cultures 

did. Next, these two co-cultures were inoculated in vinegar, and it was observed that 

both caused a significant increase in acetoin in situ (133).  

PART 3: Future directions and conclusions 

This review highlights that integrated omics approaches, especially those utilising 

shotgun metagenomics or metatranscriptomics, have provided invaluable insights 

into the intricacies of microbial contributions to flavour development in fermented 

foods. Recently, exciting bioinformatics methods have been developed which have 

enormous potential to further extend our knowledge on these processes. Several tools 

have been released which enable strain-level analysis of microbiota (134) and, 

among these, PanPhlAn (135) and/or StrainEst (136) might be particularly useful to 

study fermented food microbiota. PanPhlAn aligns reads against a species-specific 

pangenome database to identify the gene families encoded by the strains in samples, 
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while StrainEst aligns reads against representative genomes to determine the single 

nucleotide variant profiles for the strains in samples. PanPhlAn can only detect the 

dominant strain from a species within samples, whereas StrainEst can detect multiple 

strains from the same species within samples. Both tools might be used to assess the 

effects of strain-level variation in fermented food microbiota on flavour 

development. Additionally, PanPhlAn, but not StrainEst, might also be used to 

examine changes in gene expression within strains over food fermentations to 

characterise their precise activities. Another potentially useful computational biology 

approach, aside from strain-level analysis, is metagenome-scale metabolic 

modelling, a method which uses the metagenome to predict which enzymes, and 

ultimately metabolites, may be produced by the microbiota (137). It has already been 

demonstrated that such an approach accurately predicted the metabolites produced 

by the gut microbiota in obese humans (138). Given the relative simplicity of 

fermented food microbiota, it is plausible that metagenome-scale metabolic 

modelling may be applied to these communities to predict the production of flavour 

compounds.  Ultimately, the bioinformatics methods discussed here can improve our 

comprehension on the influence that strains exert on flavour development in 

fermented foods may guide starter culture optimisation. In conclusion, we expect 

that omics technologies enable an informed means to improve the flavour of 

fermented foods. 
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ABSTRACT  

Kefir is a putatively health-promoting dairy beverage that is produced when a kefir 

grain, consisting of a consortium of microorganisms, is added to milk to initiate a 

natural fermentation. Here, a detailed analysis was carried out to determine how the 

microbial population, gene content and flavour of three kefirs from distinct 

geographical locations change over the course of 24-hour-fermentations. 

Metagenomic sequencing revealed that Lactobacillus kefiranofaciens was the 

dominant bacterial species in kefir during early stages of fermentations, but that 

Leuconostoc mesenteroides became more prevalent in later stages. This pattern is 

consistent with an observation that genes involved in aromatic amino acid 

biosynthesis were absent from Lb. kefiranofaciens, but were present in L. 

mesenteroides. Additionally, these shifts in the microbial community structure, and 

associated pathways, corresponded to changes in the levels of volatile compounds. 

Specifically,  Acetobacter spp. correlated with acetic acid, Lactobacillus spp. 

correlated with carboxylic acids, esters and ketones, Leuconostoc spp. correlated 

with acetic acid and 2,3-butanedione, and Saccharomyces spp. correlated with esters. 

The correlation data suggest a causal relationship between microbial taxa and flavour 

which is supported by observations that addition of Lb. kefiranofaciens NCFB 2797 

increased the levels of esters and ketones, whereas addition of L. mesenteroides DPC 

7047 increased acetic acid and 2,3-butanedione. Finally, we detected genes that were 

potentially associated with probiotic traits, such as bile tolerance or bacteriocin 

production, in the kefir microbiome. Our results illustrate the dynamic nature of kefir 

fermentations and microbial succession patterns therein, and can be applied to 

optimise fermentation processes, flavours and health-related attributes of this and 

other fermented foods.  



107 
 

INTRODUCTION 

Our knowledge of the composition of complex microbial communities from different 

environments has increased dramatically in recent years (1-3). However, 

considerably less is known about the biological interactions and other processes 

which drive microbial succession, or changes in the microbial population structure 

over time, in these environments (4). It has been proposed that microbial 

communities from fermented foods could provide a useful model for elucidating the 

determinants of microbial succession, given that they are considerably less complex 

than, for example, those from the gut or soil (5). Indeed, cheese rind communities 

have previously been used to great effect for this purpose (6).  

Here, we show that kefir provides an alternative model microbial community that is 

less complex and provides results even more quickly. Kefir is a traditional fermented 

milk beverage that is typically produced by inoculating a kefir grain, a cauliflower-

like exopolysaccharide matrix containing a symbiotic community of bacteria and 

yeast (7),  into milk and incubating it at room temperature for approximately 24 

hours resulting in a beverage that has been described as having a pleasantly sour or 

yoghurt-like taste (8). This flavour can vary depending on the microbial composition 

of the grain that is used (9). High-throughput sequencing investigations have 

demonstrated that kefir grains are typically dominated by the bacterial genus 

Lactobacillus and the fungal phylum Ascomycota (9, 10). In contrast, kefir milk is 

dominated by the bacterial genera Lactobacillus, Lactococcus, Acetobacter, and 

Leuconostoc, and the fungal genera Kazachstania, Kluyveromyces, Naumovozyma, 

and Saccharomyces (9, 11, 12). 
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The consumption of kefir has been associated with numerous health benefits, 

including anti-carcinogenic, anti-inflammatory and anti-pathogenic effects (13-15), 

as well as the alleviation of the symptoms of lactose intolerance and the reduction of 

cholesterol (16, 17). There is mounting evidence to suggest that the microorganisms 

present in kefir exert at least some of these health benefits (18-22) but there is a lack 

of understanding of the mechanisms by which they do so. 

In this work, amplicon sequencing and whole metagenome shotgun sequencing are 

combined with metabolomics and flavour analysis to highlight how microbial 

composition, gene content and flavour of kefir change over the course of 24-hour 

fermentations. We demonstrate that the integration of multi-omics data can predict 

the contribution of individual microorganisms to metabolite production in a 

microbial environment, using flavour formation as an example, and we validate these 

findings through supplementation with specific microbes. To our knowledge, this is 

the first study to combine metagenome binning and metabolic reconstruction to 

determine the microbial composition, at both species-level and strain-level, and the 

functional potential of a fermented food, respectively, at different stages of 

fermentation. In addition, this is the first study to combine whole metagenome 

shotgun sequencing with metabolomics to link microbial species with volatile 

production in kefir. Our findings reveal a dynamic flux from Lactobacillus 

kefiranofaciens domination during the early stages of fermentations to Leuconostoc 

mesenteroides domination during the latter stages, establish a causal relationship 

between microbial taxa and flavour, and highlight genes that likely contribute to 

kefir’s purported health-associated attributes. 
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MATERIALS AND METHODS 

Kefir fermentations 

Three kefir grains, Fr1, Ick, and UK3, from distinct geographical locations, France, 

Ireland and the UK, respectively, were used for kefir fermentations. The grains were 

weighed and inoculated in full-fat pasteurised milk at a concentration of 2% (w/v) in 

separate fermentation vessels. The milk was incubated at 25°C for 24 hours. 20 ml of 

milk was collected after 0, 8 or 24 hours. In total, there were 15 2% (w/v) kefir milk 

samples: three 0 hour samples that were collected immediately before the addition of 

Fr1, Ick or UK3, three 8 hour samples (one each from Fr1, Ick and UK3) and nine 24 

hour samples (one from each of the three replicate fermentations with Fr1, Ick or 

UK3). The samples were stored at -20°C until DNA extraction and volatile analysis. 

Kefir grains were washed with sterile deionised water between fermentations.  

Additional fermentations were performed in which milk inoculated with specific 

kefir grains was supplemented with kefir isolates to assess the consequences of 

increased levels of these taxa on volatile levels and flavour. Specifically, Lb. 

kefiranofaciens NCFB 2797 and L. mesenteroides DPC 7047 were grown overnight 

in 10 ml of MRS broth, were pelleted at 5,444 x g and resuspended in 5 ml 

pasteurised milk. Lb. kefiranofaciens NCFB 2797 cells were added to Fr1 milk and 

L. mesenteroides DPC 7047 cells were added to Ick milk. Non-spiked Fr1 and Ick 

served as negative controls. As above, milk was incubated at 25°C for 24 hours and 

the fermentations were carried out in triplicate. 5 ml of milk was collected for 

volatile analysis and the samples were stored at -20°C. 400 ml of milk was collected 

for sensory evaluation and the samples were stored at -80°C. 
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Volatile profiling of kefir by GCMS 

For volatile analysis of kefir, 1 g of the sample was added to 20 ml screw capped 

SPME vial with a silicone/PTFE septum (Apex Scienfific, Maynooth, Ireland) and 

equilibrated to 75°C for 5 mins with pulsed agitation of 5 seconds at 400 rpm using a 

GC Sampler 80 (Agilent Technologies Ltd, Little Island, Cork, Ireland).  A single 

50/30 µm CarboxenTM/divinylbenzene/polydimethylsiloxane (DVB/CAR/PDMS)  

SPME fiber (Agilent Technologies Ltd, Ireland) was used and was exposed to the 

headspace above the samples for 20 min at depth of 1 cm at 75°C.  The fibre was 

retracted and injected into the GC inlet and desorbed for 2 min at 250°C.  After 

injection the fibre was heated in a bakeout station for 3 min at 270°C to cleanse the 

fibre.  The samples were analysed in triplicate.  Injections were made on an Agilent 

7890A GC with an Agilent DB-5 (60 m x 0.25 mm x 0.25 μm) column using a 

multipurpose injector with a merlin microseal (Agilent Technologies Ltd, Ireland).  

The temperature of the column oven was set at 35°C, held for 0.5 min, increased at 

6.5°C min-1 to 230°C then increased at 15°C min-1 to 325°C, yielding at total run 

time of 36.8 min.  The carrier gas was helium held at a constant pressure of 23 psi.  

The detector was an Agilent 5975C MSD single quadrupole mass spectrometer 

detector (Agilent Technologies Ltd, Ireland).  The ion source temperature was 230°C 

and the interface temperature were set at 280°C and the MS mode was electronic 

ionization (-70v) with the mass range scanned between 35 and 250 amu.  

Compounds were identified using mass spectra comparisons to the National Institute 

of Standards and Technology (NIST) 2011 mass spectral library, Automated Mass 

Spectral Deconvolution and Identification System (AMDIS) and in-house library 

created in TargetView software (Markes International, Llantrisant, UK) with target 

and qualifier ions and linear retention indices for each compound. An auto-tune of 
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the GCMS was carried out prior to the analysis to ensure optimal GCMS 

performance.  A set of external standards was also run at the start and end of the 

sample set and abundances were compared to known amounts to ensure that both the 

SPME extraction and MS detection was performing within specification. 

Volatile profiling of spiked and non-spiked kefir samples was done using a slightly 

modified GCMS protocol, as detailed in Supplemental Materials and Methods. 

 

Sensory analysis of spiked and non-spiked kefir 

25 naïve assessors were recruited for sensory acceptance evaluation and 10 trained 

assessors were recruited for ranking descriptive analysis (RDA). ANOVA-Partial 

Least Squares regression (APLSR) was used to process the results of the sensory 

acceptance evaluation test and RDA, using Unscrambler software version10.3. See 

Supplemental Materials and Methods for a more in depth description of the sensory 

analysis methods. 

 

Total DNA extraction from kefir (milks and grains) 

DNA was extracted from 15 ml of kefir milk as follows: milk was centrifuged at 

5,444 xg for 30 minutes at 4°C to pellet the microbial cells in the liquid.  The cell 

pellet was resuspended in 200 μl of PowerBead solution from the PowerSoil DNA 

Isolation Kit (Cambio, Cambridge, UK).  The resuspended cells were transferred to a 

PowerBead tube (Cambio, Cambridge, UK).  90 μl of 50 mg/ml lysozyme (Sigma-

Aldrich, Dublin, Ireland) and 50 μl of 100 U/ml mutanolysin (Sigma-Aldrich, 

Dublin, Ireland) were added and the sample was incubated at 60°C for 15 minutes.  
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28 μl of Proteinase K (Sigma-Aldrich, Dublin, Ireland) was added and the sample 

was incubated at 60°C for a further 15 minutes.  DNA was then purified from the 

sample using the standard PowerSoil DNA Isolation Kit protocol (Cambio, 

Cambridge, UK). Total DNA was also extracted from each of the three grains. 50 mg 

fragments were removed from different sites on each of the grains and added to 

separate PowerBead tubes (Cambio, Cambridge, UK).  The grain fragments were 

homogenised by shaking the PowerBead tube on the TissueLyser II (Qiagen, West 

Sussex, UK) at 20 Hz for 10 minutes.  Following homogenisation, DNA was 

purified from the sample using the method outlined above. Total DNA was initially 

quantified and qualified using gel electrophoresis and the Nanodrop 1000 

(BioSciences, Dublin, Ireland), before more accurate quantification using the Qubit 

High Sensitivity DNA assay (BioSciences, Dublin, Ireland). Bacterial and fungal 

abundances were determined by qPCR using the protocol described by Fouhy et al. 

(23) and the Femto Fungal DNA Quantification Kit (Cambridge Biosciences, UK), 

respectively. 

 

Amplicon sequencing  

16S rRNA gene libraries were prepared from extracted DNA using the 16S 

Metagenomic Sequencing Library Preparation protocol from Illumina (24). ITS gene 

libraries were prepared for the samples using a modified version of the 16S rRNA 

gene extraction protocol; briefly, the initial gDNA amplification was performed with 

primers specific to the ITS1-ITS2 region of the ITS gene (25), but which were 

modified to incorporate the Illumina overhang adaptor (i.e. ITSF1 primer 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGGTCATTTAGAGG
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AAGTAA-3'; ITS2 primer 5'-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGCGTTCTTCATCG

ATGC-3'). After amplification of the ITS1-ITS2 region, PCR products were treated 

as described in the Illumina protocol. Samples were sequenced on the Illumina 

MiSeq in the Teagasc sequencing facility, using a 2 x 250 cycle V2 kit, following 

standard Illumina sequencing protocols.  

 

Whole metagenome shotgun sequencing 

Whole metagenome shotgun libraries were prepared as per the Nextera XT DNA 

Library Preparation Guide from Illumina (24). Samples were sequenced on the 

Illumina MiSeq sequencing platform in the Teagasc sequencing facility, using a 2 x 

300 cycle V3 kit, following standard Illumina sequencing protocols. 

 

Bioinformatic analysis 

16S rRNA gene sequencing data was processed using the pipeline described by 

Fouhy et al. (26); briefly sequences were quality checked, clustered into operational 

taxonimcal units (OTUs), aligned and diversity calculated (both alpha and beta) 

using a combination of the Qiime (1.8.0) (27) and USearch (v7-64bit) (28) pipelines. 

Taxonomy was assigned using a BLAST (29) against the SILVA SSURef database 

release 1 (30).  ITS gene sequencing data was processed using a slightly modified 

pipeline: taxonomy was assigned using BLAST against the ITSoneDB database (31). 

Raw reads from whole metagenome shotgun sequencing were filtered based on 

quality and quantity and were trimmed to 200 bp with a combination of Picardtools 
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(http://broadinstitute.github.io/picard/) and SAMtools (32). Subsequently function 

was assigned to reads using the HUMAnN2 suite of tools (33), which assigned 

function based on the ChocoPhlan databases and genes based on UniRef (34). The 

HUMAnN 2 gene abundance table was regrouped using a mapping of MetaCyc 

pathways and a mapping of Gene Ontology (GO) terms for amino acid, carbohydrate 

and lipid metabolism. MetaPhlAn2 and Kraken were used to profile changes in the 

microbial composition of kefir milk at the species level (35, 36). 

 

Statistical analysis of metagenomic and metabolomic data 

Statistical analysis was done using R-3.2.2 (37) and LEfSe (38). The R packages 

ggplot2 and gplots, and the cladogram generator Graphlan (39) were used for data 

visualisation. 

 

RESULTS 

Microbial composition of kefir 

16S rRNA and ITS gene sequencing were used to determine the changes in the 

microbial population of kefirs over the course of 24-hour fermentations initiated with 

three separate grains, designated Fr1, Ick and UK3, from distinct geographic 

locations, namely France, Ireland and the United Kingdom. 

Analysis of the grains showed that Lactobacillus was the dominant bacterial genus 

and constituted >92% of the population of all three grains (Figure S1). Acetobacter 

was subdominant, and accounted for between 1 to 2% of the population of each 

http://broadinstitute.github.io/picard/


115 
 

grain. In addition, Leuconostoc was present in all three grains, although its 

abundance varied from 0.2 to 1.5%. Other genera that were detected at a relative 

abundance >1% were Propionibacterium, in Fr1 (4.6%) only, and Bifidobacterium, 

in UK3 (3.4%) only. A fungal population was detected in the grains Fr1 and Ick, but 

not in UK3. Saccharomyces and Kazachstania were the only fungal genera present 

(Figure S1). 

Analysis of milk samples revealed that an initially relatively high bacterial diversity 

decreased over time, with a small number of genera becoming dominant by 8 and 24 

hours (Figure S2). On average, at 0 hours, or immediately before the grains were 

added to the milk, the bacterial genera present at a relative abundance ≥1% were 

Pseudomonas (16.9%), Anoxybacillus (7.1%), Thermus (6.5%), Acinetobacter (5%), 

Streptococcus (4.5%), Geobacillus (3.2%), Clostridium (2.4%), Butyrivibrio (2.2%), 

Serratia (2.1%), Enterobacter (1.3%), Turicibacter (1.3%), and Lactococcus (1%). 

A further 46.5% of bacterial genera had a relative abundance <1% (Figure 1.A). This 

microbial profile is consistent with that of pasteurised milk as reported previously by 

Quigley et al. (40). We were unable to generate an ITS amplicon for the three 

samples collected at 0 hours, and quantitative PCR (qPCR) indicated fungal DNA 

was present at less than 2 pg/μl.  

qPCR measurements revealed that total bacterial and fungal levels increased after 

kefir grains were added to milk (Table S1). At 8 and 24 hours in Fr1, Ick and UK3, 

Lactobacillus, Leuconostoc and Acetobacter accounted for >98% of the total 

bacterial population, while Saccharomyces and Kazachstania accounted for over 

99% of the fungal population. No other bacterial or fungal genera were present at a 

relative abundance >1%. 
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Although there were some differences in their composition at each time-point, the 

bacterial communities of the three kefirs all followed the same pattern of succession 

(Figure 1.A). Between 0 and 8 hours, there was an increase in the relative 

abundances of Lactobacillus, Leuconostoc and Acetobacter. Lactobacillus was the 

dominant genus at 8 hours. However, between 8 and 24 hours, the relative 

abundance of Lactobacillus decreased. Concurrently, the relative abundances of 

Leuconostoc and Acetobacter increased. On average, Leuconostoc accounted for 

approximately one-third of the bacterial population at 24 hours. In contrast to the 

bacterial communities of the three kefirs, the respective fungal communities 

displayed varying patterns of succession (Figure S3.A). 

16S rRNA and ITS compositional data were supplemented by composition-based 

analysis of shotgun metagenomics data. Kraken (36) was used to determine the 

bacterial composition of kefir after 0, 8 and 24 hours of fermentation and yielded 

results that corresponded well with amplicon sequencing results at the genus level, 

but which could be further assigned to the species level. It was established that the 

kefir milk was dominated by Lb. kefiranofaciens at 8 hours (Figure 1.B). However, 

between 8 and 24 hours, the relative abundance of Lb. kefiranofaciens decreased, 

whereas the relative abundance of Leuconostoc mesenteroides increased. During the 

same period there were also increases in the relative abundances of Acetobacter 

pasteurianus, Lactobacillus helveticus, Leuconostoc citreum, Leuconostoc gelidum, 

and Leuconostoc kimchii. These results were generally consistent with those 

generated by MetaPhlan2 (35) (Figure S3.B), except that MetaPhlan2 did not detect 

some of the species present in lower abundance (i.e. A. pasteurianus, L. citreum, L. 

gelidum or L. kimchii). MetaPhlan2 predicted that Saccharomyces cerevisiae was the 

dominant fungal species, and that it accounted for 0.9% and 0.2% of the microbiota 
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Figure 1: Stacked bar charts presenting the bacterial composition of kefir samples after 0, 8 and 24 hours 
of fermentation, as determined by (a) 16S rRNA gene sequencing, and (b) binning of metagenome 
sequences using Kraken. 
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in kefir at 8 and 24 hours of fermentation, respectively. However, it did not detect 

Kazachstania species.  

In addition, PanPhlAn (41) was used to provide strain level characterisation of the 

most dominant bacterial species identified by Kraken and MetaPhlan2. The results 

indicated that, across all kefirs, the strains present were most closely related to Lb. 

kefiranofaciens DSM 10550, L. mesenteroides ATCC 8293 and L. helveticus MTCC 

5463 (Figure S5). Despite this relative homogeneity, it was still apparent that the 

strains in a particular kefir were more closely related to each other than they were to 

strains from other kefirs (Figure S4). 

 

Gene content of kefir 

Whole metagenome shotgun sequencing was used to characterise the functional 

potential of the kefir microbiome at different stages of fermentation and the 

HUMAnN2 pipeline (https://bitbucket.org/biobakery/humann2) was used for 

metagenomic metabolic reconstruction. The default HUMAnN2 pathway abundance 

table was regrouped using a custom mapping file to assign individual MetaCyc 

pathways (42) to a hierarchy of 534 gene product categories to achieve an overview 

of the kefir microbiome (Figure 2). The statistical tool LEfSe (38) was used to 

identify changes in the abundances of genetic pathways over the course of 

fermentation. Notably, we observed that pathways involved in carbohydrate 

metabolism, carboxylate degradation and unsaturated fatty acid biosynthesis were 

most prevalent at 8 hours, whereas those involved in amino acid metabolism and 2,3-

butanediol degradation were most prevalent at 24 hours (Figure 2). Inspection of the 

default pathway abundance table revealed that pathways involved in fatty acid beta- 

https://bitbucket.org/biobakery/humann2
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Figure 2: Cladogram presenting a hierarchical overview of the MetaCyc pathways detected in the kefir 
microbiome using HUMAnN2. Central nodes represent general pathway category functions, like 
carbohydrate catabolism, and their descendant nodes represent more specific pathway category functions, 
like sucrose degradation. The colours of the clades indicate the time at which pathways of particular 
interest were most prevalent, as determined by LEfSe. The outer rings indicate the presence/absence of 
pathways in Lb. kefiranofaciens (blue), L. mesenteroides (orange), L. helveticus (red), and S. cerevisiae 
(maroon). 
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oxidation were present in kefirs. The pathways mentioned here are of particular 

interest because they are potentially involved in the production of volatile 

compounds (Table 1). 

In addition, the default HUMAnN2 gene families table was regrouped to Gene 

Ontology (GO) terms (gene product categories (43)) and, in total, we detected 1,288, 

1,006 and 947 GO terms associated with carbohydrate, amino acid and lipid 

metabolism in the kefir microbiome. Interestingly, pathways involved in aromatic 

amino acids and proline biosynthesis were assigned to L. mesenteroides, but not Lb. 

kefiranofaciens. Similarly, pathways involved in arabinose, maltose, pentose, 

sucrose, xylose and xylulose metabolism were present in L. mesenteroides but not in 

Lb. kefiranofaciens. 

Finally, the HUMANnN2 gene families table was inspected for genes associated 

with probiotic functionalities to better understand the basis of the health benefits of 

kefir. We observed that Lb. kefiranofaciens in Fr1, Ick and UK3 contained genes 

encoding exopolysaccharide (EPS) synthesis proteins (UniRef50_W5XGS2, 

UniRef50_F6CC46 and UniRef50_F0TGY1), bile salt transporter proteins 

(UniRef50_Q74LX5 and UniRef50_F6CE74), adhesion proteins 

(UniRef50_F6CFB4 and UniRef50_Q040W2), mucus binding proteins 

(UniRef50_F6CE70, UniRef50_F6CE69, UniRef50_F6CDG7 and 

UniRef50_F6CBX6), and the type III bacteriocins/bacteriolysins helveticin J 

(UniRef50_D5GYX2) and enterolysin A (UniRef50_D5GXY3 and 

UniRef50_F6CAP6). On the basis of these findings, we downloaded publicly 

available metagenome sequences from cheeses and kimchi (Table 2) to determine 

the prevalence of similar genes in other fermented foods. HUMAnN2 indicated that 

genes encoding EPS synthesis proteins, adhesion proteins, 
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Table 1: Volatile compounds detected in kefir using GC-MS. 

  

Compound LRIa Ref LRIb Odour descriptor Source

Carboxylic acids:

        Acetic acid 692 629 Vinegar, peppers, green, fruity floral, sour Carbohydrate metabolism

        Hexanoic acid 968 983 Sweaty, cheesey, sharp, goaty, bad breath, acidic Lipid metabolism

        Octanoic acid 1163 1160 Cheesey, rancid, pungent, sweat, soapy, goaty Lipid metabolism

        Nonanoic acid 1254 1276 Fatty, soapy, waxy, green, goat Lipid metabolism

        n-Decanoic acid 1355 1379 Soapy, waxy, stale, buttery, fruity, grassy, cheesey, milky Lipid metabolism

Alcohols:

        2-Methyl-1-butanol 733 755 Penetrating, alcohol, wine-like, plastic Amino acid metabolism

        2-Ethyl-1-hexanol 1025 1031 Animal, cardboard Lipid metabolism

        Ethanol 468 426 Dry, dust Carbohydrate metabolism

        2-Butanol 601 596 Fruity Carbohydrate metabolism

        2-Methyl-1-propanol 621 647 Malty Amino acid metabolism

        3-Methyl-Butanol 730 768 Fresh cheese, breathtaking, alcoholic, fruity, grainy, solvent-like, floral, malty Amino acid metabolism

        Phenylethyl alcohol 1119 1112 Unclean, rose, violet-like, honey, floral, spicy Amino acid metabolism

        1-Pentanol 730 768 Fruity, alcoholic, green, balsamic, fusel oil, woody Lipid metabolism

Aldehydes:

        3-Methyl-butanal 649 654  Malty, cheesey, green, dark chocolate, cocoa Amino acid metabolism

        2-Methyl-butanal 658 662  Malty, dark chocolate, almond, cocoa, coffee Amino acid metabolism

        Octanal 1002 1004 Green, fatty, soapy, fruity, orange peel Lipid metabolism

        Nonanal 1103 1106 Green, citrus, fatty, floral Lipid metabolism

        Pentanal 694 697 Pungent, almond-like, chemical, malty, apple, green Lipid metabolism

        Hexanal 798 801 Green, slightly fruity, lemon, herbal, grassy, tallow Lipid metabolism

        Heptanal 900 901 Slightly fruity (Balsam), fatty, oily, green, woody Lipid metabolism

Esters:

        Ethyl acetate 609 614 Solvent, pineapple, fruity, apples Carbohydrate metabolism

        Ethyl butanoate 802 800 Ripe fruit, buttery, green, apple, pineapple, banana, sweet Carbohydrate metabolism

        Ethyl hexanoate 995 1002 Fruity, malty, young cheese, mouldy, apple, green, orange, pineapple, banana Carbohydrate metabolism

        Ethyl octanoate 1190 1198 Fruity, apple, green, fatty, orange, winey, pineapple, apricot Carbohydrate metabolism

        Ethyl decanoate 1388 1396 Fruity, grape, cognac Carbohydrate metabolism

        3-Methyl-1-butanol, acetate 874 879 Fruity, bannana, candy, sweet; apple peel Unknown

Ketones:

        2,3-Butanedione 589 596 Buttery, strong Carbohydrate metabolism

        2,3-Pentanedione 694 693 Creamy, cheesey, oily, sweet buttery, carmellic Carbohydrate metabolism

        2,3-Hexanedione 781 788 Sweet, creamy, caramellic, buttery Carbohydrate metabolism

        2-Heptanone 887 891 Blue cheese, spicy, roquefort Lipid metabolism

        2-Undecanone 1288 1294 Floral, fruity, green, musty, tallow Lipid metabolism

        2-Pentanone 679 687 Orange peel, sweet, fruity Lipid metabolism

        2-Nonanone 1088 1094 Malty, fruity, hot milk, smoked cheese Lipid metabolism

        Acetone 494 496 Earthy, fruity, wood pulp, hay Lipid metabolism

        2-Butanone 598 593 Buttery, sour milk, etheric Carbohydrate metabolism

Sulphur compounds:

        Dimethyl sulfone 920 926 Sulphurous, hot milk, burnt Amino acid metabolism

        Carbon disulfide 537 568 Sweet, ethereal Amino acid metabolism
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Table 2: Accession numbers of the cheese and kimhci metagenomes analysed in this study. 

  

Origin Repository Accession number Sample description Reference

4524483.3 Washed unpasteurised cow's cheese

4524484.3 Bloomy unpasteurised goat's cheese

4524488.3 Natural unpasteurised cow's cheese

4524489.3 Bloomy unpasteurised goat's cheese

4524490.3 Natural unpasteurised cow's cheese

4524493.3 Natural unpasteurised cow's cheese

4524494.3 Washed pasteurised cow's cheese

4524495.3 Washed unpasteurised cow's cheese

4524496.3 Washed unpasteurised cow's cheese

4524497.3 Natural pasteurised cow's cheese

4524499.3 Washed unpasteurised cow's cheese

4524500.3 Washed pasteurised cow's cheese

4524505.3 Washed unpasteurised cow's cheese

SAMEA3232870

SAMEA3232871

SAMEA3232872

SAMEA3232873

SAMEA3232874

SAMEA3232875

SAMEA3232876

SAMEA3232877

SAMEA3232878

SAMEA3232879

SRX072929 Kimchi fermentation: Day 1

SRX072930 Kimchi fermentation: Day 7

SRX072931 Kimchi fermentation: Day 13

SRX072932 Kimchi fermentation: Day 16

SRX072933 Kimchi fermentation: Day 18

SRX072934 Kimchi fermentation: Day 21

SRX072935 Kimchi fermentation: Day 23

SRX072936 Kimchi fermentation: Day 25

SRX072937 Kimchi fermentation: Day 27

SRX072938 Kimchi fermentation: Day 29

Jung et al., 2011

Quigley et al., 2016

Wolfe et al., 2014

Continental-type cheese

Cheese

Short Read Archive

European Nucleotide archive

MG-RAST

Kimchi
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Figure 3: Binary heatmap showing the presence/absence of genes associated with probiotic action in cheese 
and kimchi metagenomes, as determined by HUMAnN2. 
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mucus binding proteins, bile salt hydrolases, bile salt symporters, and 

bacteriocins/prebacteriocins were widespread in the 14 cheese varieties investigated 

(Figure 3). In addition, we observed several instances where multiple genes were 

assigned to individual species (Table S2). We identified similar genes in kimchi 

(Figure 3), although HUMAnN2 was unable to assign them to individual species 

because of the lower sequencing depth of those samples. 

 

Volatile profiling and sensory analysis of kefir milk 

GCMS was used to determine the volatile profile of kefir milk after 0, 8 and 24 

hours of fermentation. 39 volatile compounds that could contribute to flavour were 

identified and semi-quantified in kefir milks produced with each of the three kefir 

grains. These consisted of 9 ketones, 7 aldehydes, 6 esters, 8 alcohols, 5 carboxylic 

acids and 2 sulphur compounds (Table 1). The results of the volatile analysis are 

presented in Figure 4. The levels of all of the detected compounds increased after 0 

hours, apart from 1-pentanol, pentanal, hexanal, heptanal, heptanol, acetone and 2-

butanone (Figure 4).  

Sensory acceptance evaluation and ranking descriptive analysis (RDA) were 

performed on the Fr1 and Ick kefir milks after 24 hour fermentations. These revealed 

perceptible differences between the milks. Specifically, Fr1 samples had a more 

likeable, buttery flavour whereas Ick samples had a less likeable but fruity flavour 

(Figure S5). These results confirm that the volatile profile data is consistent with 

subsequent flavour. 
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Figure 4: Facetted heatmap showing the volatile profiles of the kefirs Fr1, Ick and UK3 at 0 h, 8 h and 24 h 
of fermentation. 
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Correlations between microbial taxa and volatile compounds 

The Spearman rank correlation test was used to identify correlations between the 

levels of individual taxa and flavour compounds. At the genus level, based on 

amplicon sequencing results, there were strong correlations between Lactobacillus 

and carboxylic acids, esters and 3-methyl-1-butanol; between Saccharomyces and 

carboxylic acids, and esters; between Acetobacter and acetic acid, 2-methyl-1-

butanol, and 2,3-butanedione; between Leuconostoc and 2,3-butanedione; and 

between Kazachstania and acetic acid, 2-methyl-1-butanol, 2,3-butanedione, 2,3-

pentanedione, and 2,3-hexanedione (Table S3). At the bacterial species level, based 

on results from Kraken, there were strong correlations between Lb. kefiranofaciens 

and carboxylic acids and esters; between A. pasteurianus and carboxylic acids, and 

2,3-butanedione; and between L. mesenteroides and 2,3-butanedione. At the fungal 

species level, based on results from MetaPhlan2, there were strong correlations 

between S. cerevisiae and alcohols and esters (Table 3, Figure 5). In summary, 

correlations were found between compounds associated with vinegary-flavours and 

A. pasteurianus, cheesy-flavours and Lb. kefiranofaciens, buttery-flavours and L. 

mesenteroides, and fruity-flavours with Lb. kefiranofaciens and S. cerevisiae. 

 

Impact of supplementing kefir with kefir isolates 

The consequences of adding Lb. kefiranofaciens NCFB 2797 to Fr1 was 

investigated, since this kefir had a low indigenous Lb. kefiranofaciens population. 

GCMS revealed that this addition caused increases in the levels of the esters ethenyl 

acetate (by 59.15%), ethyl acetate (100%), methyl-3-butyrate (26.83%), and 2-

methylbutyl-acetate (11.44%), and the ketone 2-heptanone (65.86%). In contrast, the  
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Table 3: Summary of strong positive correlations (R>0.5) identified between the relative abundance of 
species and the level of metabolites in kefir. 

  

Species Compound(s) R values Unadjusted p-value FDR adjusted p-value

Leuconostoc mesenteroides 2,3-Butanedione 0.79 0.0005 0.011

Lactobacillus kefiranofaciens 2-Nonanone 0.79 0.0005 0.011

Lactobacillus helveticus Acetic acid 0.75 0.0013 0.017

Leuconostoc mesenteroides 2-Methyl-1-butanol 0.74 0.0015 0.017

Lactobacillus kefiranofaciens Hexanoic acid 0.71 0.0033 0.024

Lactobacillus kefiranofaciens 2-Heptanone 0.71 0.0033 0.024

Lactobacillus kefiranofaciens Octanoic acid 0.7 0.004 0.024

Lactobacillus kefiranofaciens Acids 0.68 0.0049 0.024

Lactobacillus.kefiranofaciens n-Decanoic acid 0.68 0.0049 0.024

Saccharomyces cerevisiae Nonanal 0.66 0.008 0.035

Lactobacillus kefiranofaciens Ethyl decanoate 0.65 0.0089 0.035

Lactobacillus kefiranofaciens Esters 0.64 0.0099 0.035

Saccharomyces cerevisiae Ethyl acetate 0.63 0.011 0.035

Saccharomyces cerevisiae 3-Methyl-Butanol 0.63 0.0118 0.035

Acetobacter pasteurianus 2-Methyl-1-butanol 0.63 0.0126 0.035

Saccharomyces cerevisiae Phenylethyl alcohol 0.62 0.0134 0.035

Saccharomyces cerevisiae Octanal 0.62 0.0141 0.035

Acetobacter pasteurianus Nonanoic acid 0.6 0.0169 0.04

Lactobacillus kefiranofaciens Phenylethyl alcohol 0.6 0.0179 0.04

Saccharomyces cerevisiae Alcohols 0.59 0.0203 0.04

Acetobacter pasteurianus Acetic acid 0.59 0.0206 0.04

Lactobacillus helveticus 2,3-Butanedione 0.57 0.0255 0.04

Acetobacter pasteurianus Ethyl butanoate 0.57 0.0268 0.04

Lactobacillus kefiranofaciens Ethyl hexanoate 0.57 0.0279 0.04

Lactobacillus.helveticus 3-Methyl-Butanol 0.56 0.0283 0.04

Saccharomyces cerevisiae Ethyl decanoate 0.56 0.0283 0.04

Lactobacillus kefiranofaciens Ethyl butanoate 0.56 0.0292 0.04

Acetobacter pasteurianus Ethyl hexanoate 0.56 0.0314 0.04

Lactobacillus kefiranofaciens Nonanoic acid 0.56 0.0315 0.04

Lactobacillus kefiranofaciens 2-Undecanone 0.56 0.0315 0.04

Lactobacillus kefiranofaciens Ethyl octanoate 0.55 0.0321 0.04

Lactobacillus kefiranofaciens 3-Methyl-Butanol 0.55 0.0321 0.04

Acetobacter pasteurianus Acids 0.55 0.0324 0.04

Acetobacter pasteurianus Hexanoic acid 0.54 0.0368 0.044

Acetobacter pasteurianus 2,3-Butanedione 0.54 0.0375 0.044

Acetobacter pasteurianus Ethyl acetate 0.54 0.0381 0.044

Saccharomyces cerevisiae Esters 0.53 0.0413 0.046

Leuconostoc mesenteroides Acetic acid 0.53 0.0419 0.046

Lactobacillus helveticus 2-Methyl-1-butanol 0.53 0.0433 0.046

Saccharomyces cerevisiae 2-Undecanone 0.53 0.0435 0.046

Lactobacillus kefiranofaciens Ethyl acetate 0.52 0.0478 0.048

Acetobacter pasteurianus Octanoic acid 0.52 0.0478 0.048
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Figure 5: Hierarchically clustered heatmap showing correlations between the relative abundances of 
microbial species and the levels of volatile compounds in kefir samples. The colour of each tile of the 
heatmap indicates the type/strength of the correlation for a given species/compound combination, as 
indicated by the colour key. 
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addition of L. mesenteroides DPC 7047 to Ick, a kefir with a low 

indigenous L. mesenteroides population, resulted in increases in the 

levels of  acetic acid (168.28%) and 2,3-butanediol (14.91%), a 

precursor to 2,3-butanedione (Table S4). Despite changes in volatile 

profile, there were no perceptible changes in flavour (Figure S5).  

 

DISCUSSION  

Many traditional fermented foods have been reported to have health 

benefits (44, 45). These foods are often produced on a small-scale, 

artisanal basis. However, the increased demand for health-promoting 

foods among the public presents an opportunity to bring traditional 

fermented foods to a wider audience and serves as an incentive to 

optimise starter cultures for the mass production of fermented foods with 

enhanced sensory qualities (46). In recent years, genetic characterisation 

has been increasingly employed to guide starter culture development for 

numerous fermented foods, including wines, beers, cocoa, and meats 

(47-50). Similarly, integrated molecular ‘omics’ approaches (51) have 

emerged as powerful methods of investigating the microbial dynamics of 

food fermentations with the aim of optimising processes like flavour 

production (52). In this study, we combined compositional and shotgun 
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DNA sequencing with GCMS and flavour analysis to predict microbes 

involved in the production of different flavour compounds in kefir.  

We identified significant correlations between the abundances of 

particular microbial genera and species and the levels of different 

volatile compounds, and showed that the microbes in kefir had genes 

necessary for the production of these compounds. Specifically, 

Acetobacter pasteurianus correlated with acetic acid which is associated 

with vinegary-flavours; Lb. kefiranofaciens correlated with carboxylic 

acids and ketones associated with cheesy-flavours, and esters associated 

with fruity-flavours; L. mesenteroides correlated with 2,3-butanedione, 

which is associated with buttery-flavours, and acetic acid; and S. 

cerevisiae correlated with esters. Sensory analysis revealed that Fr1, a 

kefir high in L. mesenteroides, had a likeable buttery flavour, whereas 

Ick, a kefir high in Lb. kefiranofaciens, had a less likeable but fruity 

flavour. Thus, our data suggested a causal relationship between specific 

taxa and flavour characteristics, which was subsequently supported by 

experimentally manipulating the kefir community. In line with 

predictions, adding Lb. kefiranofaciens NCFB 2797 to Fr1 resulted in 

increases in the levels of 2-heptanone and esters, whereas the addition of 

L. mesenteroides DPC 7047 to Ick resulted in increases in the levels of 

acetic acid and 2,3-butanediol, a precursor to 2,3-butanedione. However, 
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sensory analysis indicated that these changes were imperceptible, and 

therefore higher inoculum levels might be necessary to change flavour. 

Based on these results, we predict that the final flavour of kefir can be 

manipulated by altering the ratio of microbes in the grain. Unfortunately, 

to date, it has not been possible to artificially reconstruct kefir grains in 

the laboratory and this might hamper the practical application of our 

findings. However, we propose that the approach outlined here can be 

used to accelerate the development of superior multi-strain starter 

cultures to improve the flavour of a variety of fermented foods. 

From a systems biology perspective, our work confirms that kefir is 

suitable as a model microbial community. There are two advantages to 

using the kefir model, rather than other fermented foods, in this way. 

Firstly, kefir contains fewer species, and so is a simpler environment in 

which to investigate how microbial communities are formed. Secondly, 

kefir is quick and easy to produce; with the fermentation taking just 24 

hours when incubated at room temperature. In addition, others have 

demonstrated that kefir is a highly culturable system and, indeed, all of 

the species that were detected at a relative abundance >1% at 8 and 24 

hours across the examined kefirs have been isolated previously (53).  

Ultimately, Kraken and MetaPhlAn2 showed that the microbial 

population of kefir was dominated by Lb. kefiranofaciens at 8 hours of 
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fermentation. However, between 8 and 24 hours, there was a fall in the 

relative abundance of Lb. kefiranofaciens and L. mesenteroides 

superseded it as the dominant species. The shift from Lb. kefiranofaciens 

to L. mesenteroides is similar to patterns of microbial succession seen in 

other fermented foods (54, 55). We propose that kefir could be a 

particularly appropriate model community in which to determine the 

driving-forces behind microbial succession. Early colonising bacteria in 

other fermentations have been reported to modify the environment in 

such a way as to make it more suitable for the growth of other bacteria, 

thus driving succession (5), and this could explain the observed shift that 

occurs during kefir fermentation. Our HUMAnN2 results revealed that 

genes involved in aromatic amino acid biosynthesis were assigned to L. 

mesenteroides but not Lb. kefiranofaciens. This may be significant 

because free amino acid analysis showed that there was a significant 

decrease in the levels of tyrosine in kefir between 8 and 24 hours 

(Supplemental Results). It is possible that its ability to synthesise 

tyrosine underlies the increased prevalence of L. mesenteroides, relative 

to Lb. kefiranofaciens, in the latter stages of fermentation. Future work 

will focus on investigating the effect of modifying the levels of tyrosine 

on the microbiota and volatile profile of kefir. Thus, a ‘kefir model’ has 

the potential to yield insights into the effects of nutrient availability on 
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microbial succession and metabolite production in other, more 

complicated, environments.  

Finally, we showed that Lb. kefiranofaciens has genes which encode 

proteins that are considered to be important for probiotic action, 

including exopolysaccharide synthesis proteins, bile salt transporters, 

mucus binding proteins and bacteriolysins (56, 57). The presence of 

these genes suggests that the Lb. kefiranofaciens strains present in these 

kefirs have the potential to survive gastric transit, colonise the gut and 

inhibit the growth of pathogens. Indeed, previous studies using mice 

have shown that Lb. kefiranofaciens protects against 

enterohemorrhagic Escherichia coli infection (58). Further analysis of 

shotgun metagenomic data from cheese and kimchi indicated that similar 

genes are present in other fermented foods. Our findings are consistent 

with previous observations that fermented food-borne microbes can 

colonise the gut (59), and support designating some fermented foods, 

like kimchi, as ‘probiotic foods’ (45).   

In summary, in this study it has been demonstrated that a combined 

metagenomics and metabolomics approach can potentially be used to 

identify the microbes from a particular environment that are responsible 

for the production of certain metabolites, using the production of flavour 

compounds during kefir fermentation as a model. Furthermore, we have 
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provided additional evidence of the use of microbial fermentations to 

provide valuable insights into the dynamics of microbial succession and, 

in the process, identified genes in Lb. kefiranofaciens that potentially 

confer important probiotic traits. To conclude, our analyses confirm the 

value of using kefir as a model microbial community, while also 

providing a valuable insight into the microbiology of this natural health 

promoting beverage. 
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SUPPLEMENTAL MATERIAL 

Supplemental materials and methods 

Volatile profiling of spiked kefir by GCMS 

2 g of sample was added to 20 ml screw capped SPME vial and equilibrated to 40 °C 

for 10 mins with pulsed agitation of 5 sec at 500 rpm.  The samples were analysed in 

triplicate.  Sample introduction was accomplished using a CTC Analytics 

CombiPalAutosampler. 

A single 50/30 µm CarboxenTM/divinylbenzene/polydimethylsiloxane 

(DVB/CAR/PDMS) fiber was used.  The SPME fiber was exposed to the headspace 

above the samples for 20 min at depth of 1 cm at 40°C.  The fiber was retracted and 

injected into the GC inlet and desorbed for 2 min at 250°C.  Injections were made on 

an Shimadzu 2010 Plus GC with an Agilent DB-5 (60 m x 0.25 mm x 0.25 μm) 

column using a split/splitless injector in splitless mode with a merlin microseal.  The 

temperature of the column oven was set at 35°C, held for 0.5 min, increased at 

6.5°C/min to 230°C then increased at 15°C/min to 320°C, yielding at total GC run 

time of 41.5 min.  The carrier gas was helium held at a constant pressure of 23 

psi.  The detector was a Shimadzu TQ8030 mass spectrometer detector, ran in single 

quad mode.  The ion source temperature was 220°C and the interface temperature 

were set at 280°C and the MS mode was electronic ionization (-70 v) with the mass 

range scanned between 35 and 250 amu.  Compounds were identified using mass 

spectra comparisons to the NIST 2014 mass spectral library and in-house library 

created in Chem Solutions software (Shimadzu, Japan) with target and qualifier ions 

and linear retention indices for each compound.  Final data processing was 

undertaken using TargetView deconvolution software (Markes International Ltd, 
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UK).  An auto-tune of the GCMS was carried out prior to the analysis to ensure 

optimal GCMS performance.  A set of external standards was ran at the start and end 

of the sample set and abundances were compared to known amounts to ensure that 

both the SPME extraction and MS detection was performing within specification. 

Sensory acceptance evaluation of spiked and non-spiked kefir milks 

Twenty five naïve assessors were recruited in University College Cork, Ireland for 

sensory acceptance evaluation of spiked and non-spiked kefir milks. Age range of 

assessors was 21-48 years old. The selection criteria for assessors were availability 

and motivation to participate on all days of the experiment. Assessors used sensory 

Hedonic descriptors (Table S5) on 11 different kefir samples. Sensory analysis was 

carried out in panel booths conforming to international standards (ISO 8589:2007). 

All samples were stored at -20˚C until required. Samples were then held at 

refrigeration temperatures overnight (4ºC), before monadic presentation to the 

consumer panel at ambient temperatures (21°C) and coded with a randomly selected 

3 digit code. A maximum of six samples were presented at each session. Each 

assessor was provided with deionised water and instructed to cleanse their palates 

between tastings asked to assess the attributes, according to a ten-point scale. The 

order of the presentation of all test samples was randomized to prevent first order 

and carryover effects.  

Ranking descriptive analysis (RDA) of spiked and non-spiked kefir milks 

Ten panellists were recruited in University College Cork, Ireland. Age range of 

assessors was 25-45 years old. Selection criteria for panellists were availability and 

motivation to participate on all days of the experiment and that they were familiar 

with kefir as a product. All panellists had participated in dairy descriptive profiles in 
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the past and were well versed in the sensory experimental protocol. Panellists were 

trained using the sensory Intensity descriptors (Table S5). Ranking Descriptive 

analysis (RDA) [60, 61] was carried out in panel booths conforming to international 

standards (ISO 8589:2007) on the 11 Kefir samples to be tested. All samples were 

stored at -20˚C until required. Samples were then held at refrigeration temperatures 

overnight (4ºC), before presentation to the panel at ambient temperatures (21°C) and 

coded with a randomly selected 3 digit code. The Kefir samples were immediately 

served to panellists simultaneously in separate sessions for Fr1 and Ick variants. 

Each assessor was provided with deionised water and instructed to cleanse their 

palates between tastings. Additionally, each assessor was presented with samples and 

asked to rank the intensity of the attributes, according a 10 cm line scale ranging 

from 0 (none) at the left to 10 (extreme) at the right and rating subsequently scored 

in cm from left (Table S5). The order of the presentation of all test samples was 

randomized to prevent first order and carryover effects. 

Statistical analysis of sensory analysis data 

For evaluating the results of the RDA and the sensory acceptance test, ANOVA-

Partial Least Squares regression (APLSR) was used to process the data accumulated 

using Unscrambler software version10.3. The X-matrix was designed as 0/1 

variables for sample and the Y-matrix sensory variables. 

Free amino acid analysis 

The aromatic amino acids phenylalanine and tyrosine were quantified in the milk 

samples using the method described by McDermott et al. [62]. 
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Supplemental results 

Sequencing results  

16S rRNA gene sequencing generated 5,545,825 reads in total and an average of 

210,136 reads per sample, while ITS gene sequencing generated 3,498,902 reads in 

total and an average of 291,567 reads per sample. Whole metagenome sequencing 

generated a total of 22,983,010 reads and an average of 1,209,632 reads per sample.   

Free amino acid analysis results 

Free amino acid analysis showed that the levels of phenylalanine increased from 

0.63 to 0.98 nmol/ml between 8 and 24 hours, but the Wilcoxon signed rank test 

indicated that this increase was not statistically significant (p=0.064). In contrast, the 

levels of tyrosine decreased from 4.18 to 1.42 nmol/ml between 8 and 24 hours, and 

the Wilcoxon signed rank test indicated that this decrease was statistically significant 

(p=0.018).  



148 
 

 

 

Figure S1: The (a) bacterial and (b) fungal composition of kefir grains, as determined by amplicon 
sequencing. Note that we were unable to generate an ITS amplicon for the UK3 sample. 
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Figure S2: Stacked bar charts presenting (a) the fungal composition of kefir samples after 0, 8 and 24 
hours of fermentation, as determined by ITS gene sequencing, and (b) the microbial composition of kefir 
samples after 0, 8 and 24 hours of fermentation, as determined by MetaPhlAn2. 
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Figure S3: PanPhlAn analysis of the dominant bacterial species detected in kefir. (A) Bar plots displaying the 
percentage of pangenome gene families shared between the detected strains and their respective reference 
genomes. (B) Principal-component analysis (PCA) plot based on the presence/absence of pangenome gene 
families in detected strains.  
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Figure S4: ANOVA-Partial Least Squares Regression (ASLPR, PCs 1-2) plot for spiked and non-spiked 
kefir samples presenting Sensory Acceptance and Ranking Descriptive Analysis data.  
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Table S1: Absolute abundances of bacteria and fungi in kefir samples after 0, 8 and 24 hours of 
fermentation, as determined by quantitative PCR (qPCR) measurements. 

 

  

Sample Total fungi (ng of fungal DNA) Total bacteria (copies of 16S rRNA gene)
Milk 0 h 0.0016 1.78E+05
Fr1 08 h 0.1386 7.64E+07
Fr1 24 h 0.2179 2.49E+08
Ick 08 h 0.0542 2.62E+08
Ick 24 h 0.0972 1.63E+08
UK3 08 h 0.0896 7.86E+07
Uk3 24 h 0.3933 4.22E+08



153 
 

Table S2: Microbial species from cheese samples that contain two or more genes associated with probiotic 
action, as determined by HUMAnN2. 

 

  

Species UniRef50 genes
Lactobacillus casei paracasei UniRef50_K0N6Y4: Exopolysaccharide biosynthesis protein

UniRef50_B3WA97: Prebacteriocin
UniRef50_D4MCD9: Exopolysaccharide biosynthesis polyprenyl glycosylphosphotransferase
UniRef50_S6CA35: Truncated bacteriocin ABC transporter ATP-binding and permease components
UniRef50_F0TGY1: Exopolysaccharide biosynthesis protein
UniRef50_K6PVY4: Prebacteriocin
UniRef50_S6BTB5: Exopolysaccharide synthesis protein
UniRef50_S2U8B2: Exopolysaccharide phosphogalactosyltransferase

Streptococcus thermophilus UniRef50_S6C1D3: Truncated bacteriocin ABC transporter ATP-binding and permease components
UniRef50_T0T7J2: Pleiotropic regulator of exopolysaccharide synthesis, competence and biofilm formation Ftr, nREfamily
UniRef50_F8DFF3: Exopolysaccharide biosynthesis polyprenyl glycosylphosphotransferase
UniRef50_Q03K73: Exopolysaccharide biosynthesis protein related to N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase
UniRef50_W4KQU9: Pore-forming peptide bacteriocin
UniRef50_W7VD14: Exopolysaccharide biosynthesis protein
UniRef50_UPI000046DD7F: exopolysaccharide biosynthesis protein, truncated, partial
UniRef50_R5ZYR0: Serine (Threonine) dehydratase involved in lantibiotic biosynthesis
UniRef50_F5X0K2: Glycosyltransferase in exopolysaccharide biosynthesis
UniRef50_Q5LZN9: Exopolysaccharide biosynthesis protein, sugar transferase
UniRef50_Q5LZP0: Exopolysaccharide polymerization protein
UniRef50_Q5LZP3: Exopolysaccharide biosynthesis protein

Lactobacillus delbrueckii UniRef50_F0K085: Exopolysaccharide biosynthesis protein
UniRef50_W5XGS2: Exopolysaccharide biosynthesis protein
UniRef50_F6CC46: Exopolysaccharide biosynthesis protein
UniRef50_D5GZ53: Response regulator bacteriocinproduction-related
UniRef50_F0TGY1: Exopolysaccharide biosynthesis protein
UniRef50_F6CC46: Exopolysaccharide biosynthesis protein
UniRef50_W5XGS2: Exopolysaccharide biosynthesis protein

Clostridium tyrobutyricum UniRef50_G7M1R9: Capsular exopolysaccharide family
UniRef50_R4K4E3: Exopolysaccharide biosynthesis protein
UniRef50_W6NKH4: Linocin_M18 bacteriocin protein

Lactococcus raffinolactis UniRef50_S6CA35: Truncated bacteriocin ABC transporter ATP-binding and permease components
UniRef50_I7JFK8: Exopolysaccharide biosynthesis protein
UniRef50_I7LPF2: Exopolysaccharide biosynthesis protein

Brevibacterium linens UniRef50_UPI0001BC2DFF: bacteriocin ABC transporter ATP-binding protein
UniRef50_D6ZIG8: Bile acid transporter
UniRef50_K9B0K5: Collagen adhesion protein
UniRef50_A0JWH3: L-carnitine dehydratase/bile acid-inducible protein F
UniRef50_UPI000050FBF9: L-carnitine dehydratase/bile acid-inducible protein F
UniRef50_A0A022L0W5: Bile acid:sodium symporter

Enterococcus faecalis UniRef50_R4A735: Collagen adhesion protein
UniRef50_D4MFL5: ABC-type bacteriocin/lantibiotic exporters, contain an N-terminal double-glycine peptidase domain
UniRef50_S4ERW5: Putative bacteriocin-processing/bacteriocin ABC transporter, ATP-binding protein
UniRef50_F0PCJ3: Antimicrobial peptide, streptococcin A-M57 family protein
UniRef50_P36962: Bacteriocin lactococcin-G subunit beta
UniRef50_D4MFL5: ABC-type bacteriocin/lantibiotic exporters, contain an N-terminal double-glycine peptidase domain
UniRef50_F3R8B9: Type 2 lantibiotic biosynthesis protein LanM

Lactococcus lactis UniRef50_G8P9Z6: Pleiotropic regulator of exopolysaccharide synthesis, competence and biofilm formation Ftr, XRE family
UniRef50_Q9CHP4: Collagen adhesin
UniRef50_Q07596: Nisin leader peptide-processing serine protease NisP
UniRef50_Q9CJB7: Lactococcin A secretion protein LcnD-like
UniRef50_D2BND8: Mucus-binding protein, LPXTG-anchored
UniRef50_K7VR84: CHW repeat-/cell adhesion domain-containing protease and peptidase
UniRef50_K7VVE3: Lactococcin A1
UniRef50_P0A313: Bacteriocin lactococcin-A
UniRef50_P0A3M8: Lactococcin-A immunity protein
UniRef50_K7VRC5: Bacteriocin immunity protein A3
UniRef50_P0A3M8: Lactococcin-A immunity protein
UniRef50_P42708: Nisin immunity protein
UniRef50_F8LI03: Sal9 lantibiotic transport ATP-binding protein
UniRef50_P23648: Nisin-resistance protein
UniRef50_P42708: Nisin immunity protein
UniRef50_Q03202: Nisin biosynthesis protein NisC

Leuconostoc mesenteroides UniRef50_B1MWF8: ABC-type metal ion transport system, periplasmic component/surface adhesin
UniRef50_Q03VR9: ABC-type metal ion transport system, periplasmic component/surface adhesin
UniRef50_Q03V11: Prebacteriocin
UniRef50_C2KM58: Sodium bile acid symporter family protein (Fragment)
UniRef50_C2KM58: Sodium bile acid symporter family protein (Fragment)

Serratia proteamaculans UniRef50_V6A4U5: Fimbrial adhesin
UniRef50_L0MJS0: Capsular exopolysaccharide biosynthesis protein
UniRef50_P16316: Serralysin B
UniRef50_Q11137: Serralysin
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Table S3. Correlations between the relative abundances of microbial genera and the levels of volatile 
compounds 

Genus Compound(s) R-value Uncorrected p-value 

Acetobacter Acetic acid 0.76 <0.01 

 2-methyl-1-butanol 0.65 0.01 

 2,3-butanedione 0.67 <0.01 

Kazachstania Acetic acid 0.52 0.05 

 2-methyl-1-butanol 0.53 0.04 

 2,3-butanedione 0.85 <0.01 

 2,3-pentanedione 0.68 <0.01 

 2,3-hexanedione 0.72 <0.01 

Lactobacillus Carboxylic acids 0.6 0.02 

 Esters 0.59 0.02 

 3-methyl-1-butanol 0.58 0.02 

Leuconostoc 2,3-butanedione 0.68 0.005 

Saccharomyces Carboxylic acids 0.71 <0.01 

 Esters 0.78 <0.01 
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Table S4: Changes in the volatile profile of kefirs supplemented with (A) Lb. kefiranofaciens 484 NCFB 
2797 and (B) L. mesenteroides DPC 7047. 

 

  

Compound RT CAS LRI Ref LRI Non-spiked (%) Spiked (%) Difference (%) Comment
3-Methylbutanol 6.992 123-51-3 728 733 0 0 0.00 NA
2-Methylbutanol 7.058 137-32-6 731 755 2.65 2.39 -10.83 Addition of Lk resulted in a decrease in the % of 2-Methylbutanol
Acetoin 7.188 513-86-0 737 709 64.25 56.90 -12.93 Addition of Lk resulted in a decrease in the % of Acetoin
2,3-Butanediol 8.454 513-85-9 796 802 1.96 3.21 39.02 Addition of Lk resulted in an increase in the % of 2,3-Butanediol
Acetic acid 5.938 64-19-7 667 629 10.28 12.50 17.79 Addition of Lk resulted in an increase in the % of Acetic acid
2-Methylpropanoic acid 7.813 79-31-2 766 774 3.00 3.13 4.15 Addition of Lk resulted in an increase in the % of 2-Methylpropanoic acid
2-Methyl-butanoic acid 10.25 116-53-0 863 831 1.09 1.17 6.32 Addition of Lk resulted in an increase in the % of 2-Methyl-butanoic acid
Hexanoic acid 13.229 142-62-1 971 983 0.42 0.39 -6.74 Addition of Lk resulted in a slight decrease in the % of Hexanoic acid
Octanoic acid 18.242 124-07-2 1156 1160 0.10 0.08 -17.83 Addition of Lk resulted in a slight decrease in the % of Octanoic acid
Ethenyl acetate 4.683 108-05-4 557 564 0.78 1.91 59.15 Addition of Lk resulted in an increase in the % of Ethenyl acetate
Ethyl acetate 4.929 141-78-6 587 614 0.00 0.12 100.00 Addition of Lk resulted in an increase in the % of Ethyl acetate
Methyl-3-butyrate 10.071 503-74-2 856 848 6.45 8.82 26.83 Addition of Lk resulted in an increase in the % of Methyl-3-butyrate
2-Methylbutyl acetate 10.492 624-41-9 872 868 0.41 0.47 11.44 Addition of Lk resulted in an increase in the % of 2-Methylbutyl acetate
Acetone 3.975 67-64-1 470 496 2.83 3.29 13.87 Addition of Lk resulted in an increase in the % of Acetone
2-Heptanone 10.875 110-43-0 886 891 0.08 0.22 65.86 Addition of Lk resulted in an increase in the % of Heptanone
3-Methylbutanol 6.992 123-51-3 728 733 3.92 0.00 -100.00 Addition of Lm resulted in a decrease in the % of 3-Methylbutanol
2-Methylbutanol 7.058 137-32-6 731 755 4.05 1.49 -63.22 Addition of Lm resulted in a decrease in the % of 2-Methylbutanol
Acetoin 7.188 513-86-0 737 709 49.91 60.05 20.33 Addition of Lm resulted in an increase in the % of Acetoin
2,3-Butanediol 8.454 513-85-9 796 802 2.34 2.68 14.91 Addition of Lm resulted in an increase in the % of 2,3-Butanediol
Acetic acid 5.938 64-19-7 667 629 7.28 19.52 168.28 Addition of Lm resulted in an increase in the % of Acetic acid
2-Methylpropanoic acid 7.813 79-31-2 766 774 1.38 3.01 117.76 Addition of Lm resulted in an increase in the % of 2-Methylpropanoic acid
2-Methyl-butanoic acid 10.25 116-53-0 863 831 1.03 0.93 -9.97 Addition of Lk resulted in an increase in the % of 2-Methyl-butanoic acid
Hexanoic acid 13.229 142-62-1 971 983 0.85 0.59 -31.50 Addition of Lm resulted in a decrease in the % of Hexanoic acid 
Octanoic acid 18.242 124-07-2 1156 1160 0.21 0.14 -32.72 Addition of Lm resulted in a decrease in the % of Octanoic acid
Ethenyl acetate 4.683 108-05-4 557 564 1.08 0.70 -34.79 Addition of Lm resulted in a decrease in the % of Ethenyl acetate
Ethyl acetate 4.929 141-78-6 587 614 0.00 0.06 0.00 Addition of Lk resulted in an increase in the % of Ethyl acetate
Methyl-3-butyrate 10.071 503-74-2 856 848 8.01 7.21 -10.01 Addition of Lm resulted in a decrease in the % of Methyl-3-butyrate
2-Methylbutyl acetate 10.492 624-41-9 872 868 0.23 0.46 99.70 Addition of Lk resulted in a decrease in the % of 2-Methylbutyl acetate
Acetone 3.975 67-64-1 470 496 2.27 0.99 -56.43 Addition of Lm resulted in a decrease in the % of Acetone
2-Heptanone 10.875 110-43-0 886 891 0.15 0.15 -1.52 Addition of Lm resulted in a decrease in the % of Heptanone
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Table S5: Sensory terms for the ranking descriptive analysis of Kefir. 

 

 

Attribute Definition Scale
Hedonic

Appearance-Liking The liking of appearance 0 = extremely dislike,10 = extremely like
Flavour-Liking The liking of flavour 0 = extremely dislike,10 = extremely like
Aroma-Liking The liking of aroma 0 = extremely dislike,10 = extremely like
Texture-Liking The liking of texture 0 = extremely dislike,10 = extremely like
Overall acceptability The acceptability of the product 0 = extremely unacceptable,10 = extremely acceptable

Intensity
Kefir-like Flavour Complex olfactory sensation due to fermentation of milk with kefir bacteria 0 = none, 10 = extreme
Medicinal Flavour The flavours associated with Medicine 0 = none, 10 = extreme 
Buttermilk Flavour The flavours associated with Buttermilk 0 = none, 10 = extreme 
Fruity/Estery flavour The flavours associated with fatty acid ethyl esters 0 = none, 10 = extreme
Off-flavour Off-flavour (Rancid) 0 = none, 10 = extreme
Bitter taste Fundamental taste sensation of which caffeine or quinine in soda water is typical 0 = none, 10 = extreme
Sweet taste Fundamental taste sensation of which sucrose is typical 0 = none, 10 = extreme 
Sour Fundamental taste sensation of which lactic acid is typical 0 = none, 10 = extreme 
Prickling texture A tingling feeling on the tongue similar to a carbonated mineral water 0 = none, 10 = extreme
Creamy texture Velvet/soft feeling in the mouth (not fatty/oily) 0 = none, 10 = extreme 
Mouth coating Sensation of a thin film coating of the oral cavity 0 = none, 10 = extreme
Viscous texture High resistance to flow in the mouth 0 = none, 10 = extreme
After taste Lingering sour/milky taste associated with kefir 0 = none, 10 = extreme
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ABSTRACT  

In this study, a young Cheddar curd was used to produce two types of surface-ripened 

cheese, using two commercial smear-culture mixes of yeasts and bacteria. Whole-

metagenome shotgun sequencing was used to screen the microbial population within 

the smear-culture mixes, and on the cheese surface, comparing microorganisms both 

at species and strain level. The use of two smear mixes resulted in the development of 

distinct microbiota on the surface of the two test cheeses. In one case, most of the 

species inoculated on the cheese established themselves successfully on the surface 

during ripening; while in the other, some of species inoculated were not detected 

during ripening and the most dominant bacterial species, Glutamicibacter arilaitensis, 

was not a constituent of the culture mix. Generally, yeast species, such as 

Debaryomyces hansenii and Geotrichum candidum, were dominant during the first 

stage of ripening, but were overtaken by bacterial species, such as Brevibacterium 

linens and G. arilaitensis, in the later stages. Using correlation analysis, it was possible 

to associate individual microorganisms with volatile compounds detected by GC-MS 

in the cheese surface. Specifically, D. hansenii correlated with the production of 

alcohols and carboxylic acids, G. arilaitensis with alcohols, carboxylic acids and 

ketones and B. linens and G. candidum with sulphur compounds. In addition, 

metagenomic sequencing was used to analyse the metabolic potential of the microbial 

population on the surface of the test cheeses, revealing a high relative abundance of 

metagenomic clusters associated with the modification of colour, variation of pH and 

flavour development. 
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INTRODUCTION 

Recent studies, utilising metagenomics alongside metabolomics, have begun to 

address the role of the microbiota in the biochemical dynamics of fermentation 

processes (1-4). It is clear that in fermented foods, the metabolic interactions which 

regulate the composition of the microbial population influence the taste, shelf life and 

safety of the subsequent product (5). The ability to manipulate fermented food 

microbiota represents an important avenue for the food industry to develop new food 

products with precise characteristics.  

Surface-ripened cheese, such as Münster, Tilsit, Livarot, Limburger or Comté, is 

characterised by the growth of a heterogeneous microbiota on the cheese surface, with 

the consequent development of a strong flavour. The flavour and the appearance of 

these types of cheese are related to the metabolic activities of bacteria and yeasts, 

which comprise the smear consortium. Generally, the cheese is brined or surface-

salted, which also influences the growth of surface microbiota. In some traditional 

procedures, young cheese is smeared by transferring the smear from older cheese to 

younger curd (“old-young” technique) (6, 7). However, today, commercial mixtures 

of smear bacteria and yeasts are more commonly used to produce a more standardised 

product. 

Metagenomic sequencing has proven to be a valid method for investigating the 

microbial population on the exterior of the surface-ripened cheese (3, 8-10). In studies 

of complex microbial communities in fermented foods, such as kefir, the information 

gained through whole-metagenome shotgun sequencing allows variations of the 

microbial populations, and also the metabolic pathways involved in the fermentation 

processes, to be monitored (1). 



160 
 

The aim of the current study was to investigate, at both the species and strain levels, 

the succession of the microbial populations present on the rind of a surface-ripened 

cheese, produced with young Cheddar cheese curd as a base, using two different 

commercial smear-culture mixes. Studies were performed over the course of 30 days 

of ripening to correlate volatile analysis with data generated through whole-

metagenome shotgun sequencing in order to understand how microbial composition 

related to flavour development. Moreover, metagenomic analysis allowed for the 

screening of metagenomic clusters during cheese ripening, showing the involvement 

of the surface microbiota in a variety of biochemical processes. 

 

MATERIAL AND METHODS 

Smearing of cheese blocks 

A block of commercial Cheddar cheese, < 24 hours after manufacture, was aseptically 

cut into smaller blocks (~8 × 6.5 × 30 cm) and washed with smearing solutions, as 

described in our previous study (11). Two commercial smear-culture mixes 

comprising of Geotrichum candidum, Debaryomyces hansenii, Brevibacterium linens, 

Glutamicibacter arilaitensis and Staphylococcus xylosus (S5 mix) (Sacco, Cadorago, 

Italy) and D. hansenii, Cyberlindnera jadinii, Brevibacterium casei and B. linens (D4 

mix) (DuPont™ Danisco®, Beaminster, Dorset, UK) were used to inoculate the 

surface of the cheese curd. The blocks of cheese were washed with the smearing 

solutions and placed in sterile racks inside a sterile plastic bags (Südpack 

Verpackungen, Ochsenhausen, Germany), as previously described (11). The cheese 

was ripened for 30 days at 15°C, with a relative humidity of ~97%. At days 7, 10 and 

15 of ripening, the cheese blocks were brushed with a sterile sponge, soaked in a sterile 

brine solution (5% NaCl), to uniformly spread the smear microbiota on the cheese 
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surface. As a control, un-smeared cheese blocks were vacuum-packed in sterile bags 

and incubated at 15°C, similarly to the test cheeses.  

 

Sampling cheese 

Three replicate cheese trials were performed at different times during Cheddar cheese 

making season. All data presented are the results of the analysis performed on samples 

taken from the cheese surface (at a depth of ~ 0.5cm). All analyses were performed in 

triplicate. 

 

Compositional analysis and pH 

pH level was measured on day 0, 18, 24 and 30 using a standard pH meter (Mettler-

Toledo MP220, Schwerzenbach, Switzerland). The data were analysed by one-way 

analysis of variance (ANOVA) using SAS 9.3 (12). 

 

Determination of colour 

At day 0, 18, 24 and 30 of ripening, the colour was measured on the cheese surface at 

room temperature, using a Minolta Colorimeter CR-300 (Minolta Camera, Osaka, 

Japan). The instrument was calibrated on white tile, and the colour of the cheese 

surface was measured using L*, a* and b*-values. L* value measures the visual 

lightness (as values increase from 0 to 100), a* value measures from the redness to 

greenness (positive to negative values, respectively) and b* value from the yellowness 

to blueness (positive to negative values, respectively). 
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Total DNA extraction from cheese surface 

The total DNA was extracted from the smear culture mixes and the cheese samples 

using the PowerSoil DNA Isolation kit, as described in the manufacturer’s protocol 

(Cambio, Cambridge, United Kingdom). For the DNA extraction from the cheese 

surface, at day 0, 18, 24 and 30, a pre-treatment step was included as follows. Samples 

were removed from different parts of the cheese block and pooled to give a 

representative sample of 5 g. The cheese was placed in a stomacher bag with 50 ml of 

2% trisodium citrate and homogenised using a masticator mixer (IUL S.A., 

Barcellona, Spain) for 5 min.  

15 ml of the smear-culture mix, or the cheese solution, were placed into sterile falcon 

tubes and centrifuged for 30 min at 4,500×g. After centrifugation, the supernatant was 

discarded and the pellet was placed in a 2 ml Eppendorf tube. The pellet was washed 

several times with sterile phosphate buffered saline (PBS) by centrifuging at 14,500×g 

for 1 min, until the supernatant was completely clear. The pellet was then added to 

PowerBead tubes (Cambio, Cambridge, United Kingdom) provided with the kit as 

described in the protocol and homogenised by shaking on the TissueLyser II (Qiagen, 

West Sussex, United Kingdom) at 20 Hz for 10 min. The DNA was then purified 

according to the protocol of the standard PowerSoil DNA Isolation kit (Cambio, 

Cambridge, United Kingdom). 

Total DNA was initially qualified and quantified by gel electrophoresis and the 

NanoDrop 1000 (BioSciences, Dublin, Ireland) before more accurate quantification 

with Qubit High Sensitivity DNA assay (BioSciences, Dublin, Ireland). 

 

Whole-metagenome shotgun sequencing 
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Whole-metagenome shotgun libraries were prepared in accordance with the Nextera 

XT DNA Library Preparation Guide from Illumina (13). Libraries for the starter 

mixture samples were sequenced on the Illumina MiSeq, with a 2 x 300 cycle v3 kit. 

Libraries for the cheese samples were sequenced on the Illumina NextSeq 500, with a 

NextSeq 500/550 High Output Reagent Kit v2 (300 cycles). All sequencing was done 

in the Teagasc sequencing facility, in accordance with standard Illumina sequencing 

protocols. 

 

Bioinformatic analysis 

Raw whole-metagenome shotgun sequencing reads were processed, on the basis of 

quality and quantity, using a combination of Picard Tools 

(https://github.com/broadinstitute/picard) and SAMtools (14). Processing of raw 

sequence data produced a total of 3,214,480 ± 841,719 filtered reads for samples 

sequenced on the MiSeq, and 19,210,475 ± 12,478,696 filtered reads for samples 

sequenced on the NextSeq. The metagenomic binning tool Kaiju (15) was used to 

determine the species-level microbial compositional of samples. The NCBI non-

redundant protein database (16) was used with Kaiju. PanPhlAn (17) was used for 

strain-level analysis of species of interest. PanPhlAn works by aligning sequencing 

reads against a species pangenome database, built from reference genomes, to identify 

the gene families present in strains from metagenomic samples. The reference 

genomes included for each pangenome database are outlined in Table S1. SUPER-

FOCUS (18) was used to characterise the microbial metabolic potential of samples. 

SUPER-FOCUS measures the abundances of subsystems, or groups of proteins with 

shared functionality, by aligning sequencing reads against a reduced SEED (19) 
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database. Sequencing reads have been deposited in the European Nucleotide Archive 

under the project accession number PRJEB15423. 

 

Free amino acid analysis 

FAA analysis was performed at the end of the ripening (day 30) on the soluble N 

extracts using a Jeol JLC-500V AA analyser fitted with a Jeol Na+ high performance 

cation exchange column (Jeol Ltd., Garden city, Herts, UK) (20). The 

chromatographic analyses were conducted at pH 2.2. Results were expressed as µg 

mg-1 of cheese. 

 

Free fatty acid analysis 

FFA extracts were performed at the end of the ripening (day 30) according to the 

method outlined by De Jong and Badings (21). The FFA extracts were derivitised as 

methyl esters as described by Mannion et al. (22). Fatty acid methyl esters extracts 

were analysed using Varian CP3800 gas chromatograph (Aquilant, Dublin 22, Ireland) 

with a CP84000 auto-sampler and flame ionisation detector and a Varian 1079 injector 

(Aquilant, Dublin 22, Ireland). Results were expressed as µg mg-1 of cheese. 

 

Volatile analysis 

The volatile compounds were analysed at days 0, 18, 24 and 30. The surface of the 

cheese was removed, wrapped in foil and stored vacuum-packed at -20°C until 

analysis. Before analysis the samples were defrosted, grated and 4 g of cheese surface 

were used. Analysis was carried out as outlined by Bertuzzi et al. (11).  
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Statistical analysis 

Statistical analysis was done with SAS 9.3 (12) and R-3.2.2 (23). The R packages 

ggplot2 and pheatmap were used for data visualization. The vegan package was used 

to calculate the Bray-Curtis dissimilarity between samples, while the Hmisc package 

was used for correlation analysis. 

 

RESULTS 

Microbial composition of the smear-culture mixes 

Two smear-culture mixes D4 and S5 were used for the cheese trials, and contained, as 

outlined in the supplier specification sheet, Brevibacterium linens, Debaryomyces 

hansenii, Cyberlindnera jadinii and Brevibacterium casei, or Staphylococcus xylosus, 

B. linens, D. hansenii, Geotrichum candidum and Glutamicibacter arilaitensis 

(previously Arthrobacter arilaitensis), respectively. Using metagenomic analysis, 

performed with Kaiju, the relative abundances of the individual species within the 

mixes were determined (Figure 1). Overall, Kaiju was able to assign 81.7 ± 1.5% of 

reads from the starter mix samples at the species-level. The proportion of assigned 

reads for each starter mixture sample is presented in Figure S1. B. casei (60.83%) and 

C. jadinii (15%) were the most abundant bacterial and yeasts species in D4, while B. 

linens and D. hansenii were minor components in the smear-culture mix with relative 

abundances of 5.25% and 1.92%, respectively (Figure 1; Table S1). In the S5 mix, G. 

arilaitensis (64.25%) together with D. hansenii (14.56%) and G. candidum (11.83%) 

were the most abundant bacterial and yeasts; S. xylosus (0.59%) and B. linens (3.52%) 

were present at lower relative abundances. Other species, not specified by the 

suppliers, were identified at low relative abundance in the smear-culture mixes D4 and 

S5, and are reported in Table S1. 
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Figure 1: Relative abundances of the species (%), which were indicated as being present by the supplier, 

within the smear-culture mixes D4 and S5 (replicates of three analyses DA, DB, DC, and SA, SB, SC).  
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Species-level composition of the cheese surface 

Two test cheeses, D4 and S5, were prepared by smearing young Cheddar cheese curd 

with the two aforementioned commercial smear-culture mixes and ripened for 30 days 

at 15°C. Kaiju was used to determine the bacterial and yeast composition of the cheese 

surface at day 0, 18, 24 and 30, for both the control cheese (un-smeared and ripened 

under vacuum) and the two test cheeses. Overall, Kaiju was able to assign 57.5 ± 8.3% 

of reads from the cheese samples at the species-level. The proportions of assigned 

reads for each sample are presented in Figure S2. Compositional data of the cheese 

surface were analysed by a one-way analysis of variance (ANOVA), designed with 

SAS 9.3 to determine the significant differences in the proportions of the individual 

species present over time. As expected, lactic acid bacteria dominated the surface of 

all samples at day 0, and their relative abundance on the surface of the control did not 

significantly change throughout the 30 days of ripening (Figure 2). L. lactis and S. 

thermophilus were identified in all samples analysed (D4, S5 and control) (Figure 2). 

L. lactis was the dominant species in the control, constituting 75.85% of the initial 

population at day 0, decreasing to 65.99% at day 30. S. thermophilus increased from 

19.65% at day 0 to 28.21% at day 30, while the relative abundance of Lb. helveticus 

was low throughout the ripening period (2.12% at day 0, and 2.72% at day 30) (Table 

S2). However, over the course of 30 days of ripening, the smearing processes clearly 

influenced the microbial population of the cheese surface of both test cheeses, D4 and 

S5, causing a significant reduction in the relative abundance of Lb. helveticus 

(P<0.03) and L. lactis (P<0.0001). From day 0 to day 18, the population on the surface 

of D4 changed from predominately LAB to Debaryomyces hansenii and 

Glutamicibacter arilaitensis (Figure 2). Subsequently, over the course of ripening, the 

relative 
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Figure 2: Relative abundance at the species-level of the microbiota on the cheese surface of control, D4 and 
S5 at day 0, 18, 24 and 30. Data shown for the three replicate trials.  
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abundance of D. hansenii, significantly decreased (P<0.0001) from 34.12% at day 

18 to 4.14% at day 30 (Table S2). In parallel, the relative abundance of G. 

arilaitensis significantly increased (P<0.0001) from 30.9% at day 18, to become the 

dominant population on the cheese surface (73.75%) at day 30 (Table S2). The 

secondary microbial population (individually between 1% and 3% of the population) 

of the D4 surface was composed of species not included in the initial smear-culture 

mix, and included Arthrobacter sp., Corynebacterium variabile, Debaryomyces 

fabryi, G. candidum, Staphylococcus equorum and Staphylococcus saprophyticus 

(Table S2). In addition, some species present in the initial smear-culture mix (C. 

jadinii and B. casei) were not detected during ripening, while B. linens was detected 

at only at a very low relative abundance on the cheese surface of D4 throughout 

ripening (Table S2). By comparison, the microbiota was more diverse in cheese S5 

(Figure2; Table S2). On the cheese surface of S5, the relative abundance of the LAB 

decreased, while B. linens increased significantly (P<0.004) from day 18 to day 24, 

reaching 37.05 %, before decreasing, but not significantly, to 22.84% at day 30 

(Table S2). The yeasts D. hansenii and G. candidum (components of the S5 mix) 

were the most abundant population on the cheese surface at day 18, comprising 

21.2% and 37.54% of the microbiota, respectively, but their relative abundance 

significantly decreased (P<0.04) by day 24 to 9.57% and 17.6%, respectively, 

without showing further significant reductions at day 30 (Table S2). S. xylosus was 

detected at 9.08% at day 18, and did not change significantly throughout the ripening 

period (Table S2). In addition, a secondary microbial population, comprising of D. 

fabryi (detected in the S5 mix; Table S1) and Psychrobacter sp (not detected in the 

S5 mix; Table S1), developed at low relative abundance (1-2%) on the surface of the 

cheese S5 (Table S2) over the course of the ripening period. However, some 
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inoculated species were either not detected (S. equorum) at any stage throughout 

ripening, or detected at very low relative abundance (G. arilaitensis ~0.44%) on the 

cheese surface during ripening (Table S2). 

 

Strain-level analysis of bacterial starter and smearing cultures 

The metagenomic sequences of the bacteria used as starter cultures in the Cheddar 

cheese curd (L. lactis and S. thermophilus) and as smearing cultures (B. linens, S. 

xylosus, and G. arilaitensis) were compared at the strain-level, using PanPhlAn, to 

determine the presence/absence of the inoculated bacterial strains on the cheese 

throughout ripening and to investigate possible cross-contamination between the 

samples. PanPhlAn indicated that the same L. lactis and S. thermophilus strains were 

present in each cheese throughout ripening (Figure 3). In contrast, the B. linens strains 

detected in all D4 samples appeared to be distinct from those in all S5 samples (Figure 

3). Additionally, the B. linens strains detected on both cheeses clustered with those 

present in their respective starter cultures (Figure 3), which suggests that the 

inoculated B. linens strains colonised the cheese surfaces. As mentioned, although G. 

arilaitensis was present in the D4 mix, but not the S5 mix, this species was only 

detected on S5 cheeses, which suggested possible cross-contamination between the 

samples. However, PanPhlAn indicated that these G. arilaitensis strains were distinct 

(Figure 3). Interestingly, though, the G. arilaitensis strain from the D4 mix did appear 

to cluster more closely to that detected on the control cheeses (Figure 3). Finally, the 

S. xylosus strain from the S5 mix was distinct from that present on the S5 cheeses, 

which suggests that the inoculated strain may not have colonised the cheese surface. 
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Figure 3: Principal-component analysis (PCA) plot of the profiles of the strains determined by PanPhlAn.  
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Volatile compounds present on the cheese surface 

Headspace solid phase micro-extraction (HS-SPME) gas chromatography-mass 

spectrometry (GC-MS) was used to analyse the development of volatile compounds 

at day 0, 18, 24 and 30 of ripening, for both control and test cheeses. In total, 53 

volatile compounds that could potentially contribute to the flavour development were 

detected on the cheese surface. These compounds are predicted to arise from a variety 

of substrates, and consisted of 8 alcohols, 6 aldehydes, 10 carboxylic acids, 10 esters, 

13 ketones, 2 S-thioesters and 4 sulphur compounds (i.e. a total of 53 compounds). As 

expected, given the microbial diversity on the surface there was a greater variety and 

intensity of volatile compounds detected compared to the control cheese, in which 

only 23 of the aforementioned 53 compounds were detected. In all cheeses, all 

volatiles were detected increased throughout the ripening period, apart from 2,3-

butanediol, hexanal, heptanal, octanal, nonanal, 2,3-butanedione and dimethylsulfone. 

 

Correlations between microbial taxa and volatile compounds 

Correlation analysis on the relative abundance of microbial species and the abundance 

of volatile compounds detected on the cheese surface was performed using the 

Spearman correlation test, as described previously by Walsh et al. (1). From the results 

of the metagenomic analysis (performed with Kaiju) and the volatile analysis, it was 

possible to associate both yeasts and bacteria, at species-level, with specific volatile 

compounds. Figure 4 demonstrates the degree of correlation between the volatile 

compounds and the organisms detected. 

There was a strong correlation between B. linens and G. candidum with sulphur 

compounds and 2-methyl-1-butanol; S. xylosus was correlated with sulphur 
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Figure 4: Hierarchically clustered map showing the correlation 
between the relative abundance of the microbial species and the 
levels of volatile compounds detected on the cheese surface. 
Clustering was performed by using the hclust function in R. The 
colour of each tile of the heat map indicates the level of correlation 
for a given species-compound combination, as indicated by the 
colour key. 
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compounds, 2-methyl-1-butanol and some ethyl esters; C. variablile was correlated 

with ketones; D. hansenii was correlated with acids and alcohols; G. arilaitensis was 

correlated with ketones and alcohols and acids, and S. saprophyticus with ketones, 

esters, acids and alcohols (Figure 4; Table 1). 

 

Gene content of cheese surface microbiota 

Using SUPER-FOCUS, whole-metagenome shotgun sequencing was used to 

characterise the functional potential of the whole microbial community on the cheese 

surface at different stages of ripening.  Overall, SUPER-FOCUS was able to assign 

62.5 ± 10.9% of reads from the cheese samples to a function. The proportions of 

assigned reads for each cheese sample are presented in Figure S2. The functional 

clusters analysed were initially organised into three different levels, in relation to the 

specificity of the metabolic pathways. Pathway data was analysed to determine the 

significant differences of the individual metabolic clusters by one-way analysis of 

variance (ANOVA), using SAS 9.3, with the selection of sixteen specific functional 

clusters with relative abundance significantly higher (P<0.05) on the cheese surface 

of S5 and D4, compared to the control (Figure 5).  

 

Colour and pH variation 

pH and colour analysis was performed on the three cheese types and the resultant data 

was examined using a split-plot test, designed with SAS 9.3. A significant interactive 

effect (P<0.0001) between smear treatments and ripening time was observed for pH. 

At days 18, 24 and 30, the pH was significantly higher (P<0.0001) on the surface of 

S5 and D4, compared to the control. In addition, the pH was 
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Correlation species and compound Potential precursor R value
Debaryomyces hansenii

2-Methyl butanoic acid Isoleucine 0.81
3-Methyl-1-butanol Leucine 0.85
Octanoic acid Lipolysis 0.76
Hexanoic acid Lipolysis 0.81
2-Heptanol 2-Heptanone (fatty acid oxidation) 0.8

Glutamicibacter arilaitensis
2-Methyl butanoic acid Isoleucine 0.9
3-Methyl-1-butanol Leucine 0.86
3-Methyl butanoic acid Leucine 0.77
Phenylethyl alcohol Phenylalanine 0.83
3-Methyl-2-pentanone Fatty acid oxidation 0.89
2-Undecanone Fatty acid oxidation 0.82
5-Methyl-2-heptanone Fatty acid oxidation 0.78
2-Pentanone Fatty acid oxidation 0.77
2-Nonaone Fatty acid oxidation 0.76
2-Heptanol 2-Heptanone (fatty acid oxidation) 0.86

Geotrichum candidum
2-Methyl-1-butanol Isoleucine 0.76
Methanethiol Methionine 0.76
Dimethyldisulfide Methanethiol 0.79

Brevibacterium linens
2-Methyl-1-butanol Isoleucine 0.81
Methanethiol Methionine 0.82
Dimethyldisulfide Methanethiol 0.85
Dimethyltrisulfide Methanethiol 0.77

Staphylococcus xylosus
2-Methyl-1-butanol Isoleucine 0.77
Methanethiol Methionine 0.84
Dimethyldisulfide Methanethiol 0.95
Dimethyltrisulfide Methanethiol 0.86
Methylthio hexanoate Methanethiol   hexanoic acid 0.78
Ethyl hexanoate Ethanol   hexanoic acid 0.85
Ethyl octanoate Ethanol   octanoic acid 0.77

Staphylococcus saprophyticus
2-Methyl-butanoic acid Isoleucine 0.76
3-Methyl-1-butanol Leucine 0.77
Heptanoic acid Lipolysis 0.76
5-Methyl-2-heptanone Fatty acid oxidation 0.98
2-Undecanone Fatty acid oxidation 0.88
8-Nonen-2-one Fatty acid oxidation 0.87
3-Methyl-2-pentanone Fatty acid oxidation 0.77
2-Nonanol 2-Nonaone (fatty acid oxidation) 0.78
Isopentyl acetate 3-Methyl-1-butanol   acetic acid 0.87
Isopentyl butanoate 3-Methyl-1-butanol   butanoic acid 0.8
Isopentyl hexanoate 3-Methyl-1-butanol   hexanoic acid 0.8

Corynebacterium variabile
3-Octanone Fatty acid oxidation 0.99
2-Octanone Fatty acid oxidation 0.78
5-Methyl-2-heptanone Fatty acid oxidation 0.77

a Correlations for which the P  value was 0.001 (corrected for multiple comparisons using the Bonferroni method) and the R  value was 0.75.

Table 1: List of strong positive correlations (R>+0.5) between the levels of volatile 
compounds and the relative abundance of species on the cheese surface. 



176 
 

  

  

Figure 5: Average and standard error (SE) between the three replicate trials 
of the relative abundance of significantly different (P<0.05) metagenomic 
clusters detected with SUPER-FOCUS at day 0 (red), 18 (orange), day 24 
(green) and 30 (blue), for the cheese surface of control, D4 and S5. 
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significantly higher (P<0.0001) on the surface of S5, compared to D4, from day 18 

onwards (Figure S3). 

A significant interactive effect (P<0.0001), between time and smear treatments, was 

observed on L*, a* and b* values. At days 18, 24 and 30, the a* value was significantly 

higher (P<0.0001) for the surface of S5 and D4, compared to the control. At day 30, 

the a* value was also significantly higher (P<0.02) on the surface of D4 compared to 

S5 (Figure S4). 

 

Free amino acids and fatty acids 

Free amino acid (FAA) and free fatty acid (FFA) analysis was performed on the three 

cheese types and the experimental results were examined by one-way analysis of 

variance (ANOVA), using SAS 9.3. The concentrations of total FAAs on the surface 

of S5 (15158±1683 µg mg-1) and D4 (11914±1769 µg mg-1) were significantly higher 

(P<0.05) than those on the control surface (6605±819 µg mg-1). In addition, some 

individual FAAs, such as tyrosine, proline and histidine, were significantly higher 

(P<0.05) on the surface of S5, compared to the surface of D4 and the control (Figure 

S5). 

The concentrations of total FFAs on the surface of S5 (22069±3875 µg mg-1) and D4 

(26562±2606 µg mg-1) were significantly higher (P<0.05) compared to the control 

(1336±70 µg mg-1). Some individual FFAs, such as C4:0, C8:0, C10:0, C12:0, C14:0 

and C18:0, were significantly higher (P<0.05) on the surface of D4, compared to S5 

or the control (Figure S5).  

 

DISCUSSION 
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In this study, the use of whole-metagenome shotgun sequencing facilitated the 

characterisation, at species and strain levels, of microbial succession among smear 

microorganisms (both bacteria and yeasts) on the cheese surface, and the analysis of 

the metabolic potential of the whole microbial community at different stages of 

ripening. Volatile flavour compounds were analysed over time, using HS-SPME GC-

MS, and correlated with the microbial species that developed during ripening. 

Cheddar cheese curd, < 24h post manufacture, was inoculated with two different 

smear-culture mixes and incubated at 15°C, for 30 days. Un-smeared Cheddar cheese 

curd, vacuum packed to prevent the growth of spoilage moulds on the cheese surface, 

was used as a control. This model was chosen to investigate the microbial succession 

and flavour development as it had been shown in a previous study that yeasts and 

bacteria establish themselves satisfactorily on the surface of young Cheddar cheese 

curd, producing cheese with modified flavour and appearance (11). 

On the cheese surface of S5 and D4, a very heterogeneous microbial consortium 

developed during ripening, triggering an array of biochemical processes. Yeasts are 

considered the responsible of the deacidification of the cheese surface (observed on 

S5 and D4; Figure S3) by the degradation of lactate (to CO2 and H2O) (24, 25) 

together with the formation of alkaline metabolites (from metabolism of FAAs) (26), 

and the secretion of growth factors (vitamins and amino acids) which support the 

growth of bacteria (25, 27). As expected, in parallel with the growth of the yeasts, the 

relative abundance of the metagenomic clusters related to lactate- utilization, and the 

biosynthesis and uptake of biotin, was higher for the cheese surface of D4 and S5, 

compared to the control (Figure 5). During ripening, the surfaces of D4 and S5 were 

washed with a 5% salt solution, causing a hyperosmotic stress on the microbial 

population of the cheese surface (28). This correlated with a higher relative abundance 
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for the metagenomic clusters related to osmotic stress resistance and metabolism of 

choline and betaine (osmoprotectants) (29), for the washed cheeses compared to the 

unwashed control (Figure 5).  

The development of a red/orange colour on the surface is an important characteristic 

of many smear ripened cheeses. This colour development is usually derived through 

the metabolism of carotenoids (30, 31), and correspondingly higher relative abundance 

of metagenomic clusters, involved in the metabolism of the carotenoids (carotenoids 

and carotenoid biosynthesis), was observed on the surface of the cheese S5 and D4, 

compared to the control (Figure 5). 

Surface-ripened cheeses are also characterised by a strong flavour which is driven by 

the biochemical metabolism of the microbial consortium which develops on the cheese 

surface over time. These are associated with proteolytic and lipolytic pathways, 

driving the increase in the levels of FAAs and FFAs. These pathways, together with 

lactose and citrate metabolism, are considered to be responsible for the main 

precursors of flavour compounds in cheese. In the current study, the relative 

abundance of the metagenomic clusters associated with the proteolytic pathway and 

the metabolism of triacylglycerols was higher for D4 and S5, compared to the control, 

which was consistent with FAA- and FFA-related data (Figure S5). During ripening, 

the relative abundance of metagenomic clusters directly related to the formation of 

volatile compounds, such as carbohydrate metabolism, organic acids (including FFAs) 

and FAAs (except aromatic amino acids), and indirectly related, such as TCA cycle 

(important for the α-ketoglutarate production), was significantly higher (P<0.05) for 

the cheese surface of both D4 and S5, compared to the control (Figure 5). 

Correspondingly, numerous volatile compounds (alcohols, aldehydes, carboxylic 

acids, ketones, sulphur compounds, esters and S-thioesters) (Figure 3) were produced 
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on the cheese surface of S5 and/or D4, conferring an intense flavour to the cheese 

surface of D4 and S5.  

During ripening, on the cheese surface of S5 and D4, a microbial succession, involving 

various inoculated, and indeed some non-inoculated, microorganisms, was apparent. 

Consistent with other studies, specific smear strains, added as adjunct cultures to the 

milk, or on the exterior of surface-ripened cheese during manufacture, have not been 

detected at the end of ripening (32-36). In this study, the species detected on the cheese 

surface by metagenomic analysis did not fully correspond with the components of the 

smear-culture mixes. Different contaminant populations developed on the cheese 

surface of both test cheeses, especially on D4, probably due to the different 

interactions and competition with the cultures of the two mixes (Figure 2; Table S2).  

D. hansenii was part of the inoculum used for both S5, and D4 surface. D. hansenii is 

a component of the surface microbiota of many surface-ripened cheeses, and is very 

tolerant to high salt concentrations and low pH conditions (24, 37). Presumably due 

to these characteristics, D. hansenii was present at high relative abundance in both test 

cheeses, mainly in the early stage of ripening (at day 18), and then decreased gradually 

in the later stages (day 24 and 30) (Table S2). Volatile compounds significantly 

associated (P<0.001) with D. hansenii were mainly alcohols and carboxylic acids 

(Figure 4; Table 1). The biosynthesis of branched chain alcohols and carboxylic acids, 

from FAA metabolism, and the biosynthesis of medium-long carboxylic acids, from 

FFA metabolism, are processes mainly attributed to yeast and mould metabolism, 

including D. hansenii (38-43).  

On the cheese D4, the relative reduction of D. hansenii with time, corresponded to an 

increase of Gram-positive bacteria. G. arilaitensis, a component of S5 mix, did not 

grow on the cheese surface of S5, and, though not inoculated as part of the culture 
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mix, was the dominant bacteria on the surface of D4 (Figure 2; Table S2). Through 

the use of PanPhlAn, which uses metagenomic data to achieve strain-level microbial 

profiling resolution, we have demonstrated that the G. arilaitensis strain, present on 

D4, was not the same strain as inoculated onto S5 (Figure 3). The inability of the 

inoculated G. arilaitensis strain to grow on the S5 cheese is most likely due to the 

different interactions within the microbiota on the cheese surface. Other studies on the 

microbial composition of the surface of Limburger cheese observed that G. arilaitensis 

behaved in a similar manner, showing high relative abundance when it was co-

inoculated only with D. hansenii, while showing low relative abundance when 

combined with both D. hansenii and G. candidum (25). That G. arilaitensis contributes 

to cheese flavour has been shown previously in model cheese media (44) (producing 

alcohols, and especially ketones), and in the current study, where it was significantly 

(P<0.001) associated with 3-methyl-1-butanol and phenylethyl alcohol, branched 

carboxylic acids (from FAAs metabolism), 2-heptanol and ketones (from FFAs 

metabolism) (Figure 4; Table 1). In addition a genomic study showed numerous genes 

encoding for protein degradation and fatty acid oxidation in G. arilaitensis (45).  

On the cheese surface of S5, G. candidum was co-inoculated with D. hansenii and 

established itself to become the most abundant yeast population by day 18. The 

successful cohabitation of G. candidum and D. hansenii may be explained by the fact 

that they do not compete for energy sources in the same way in cheese. D. hansenii 

uses lactate, or the limited amount of lactose present in the cheese post manufacture 

(0.8-1%), while G. candidum preferentially uses only lactate (29, 46). During ripening, 

sulphur compounds were significantly associated (P<0.001) with G. candidum 

(Figure 4; Table 1), which is in agreement with other studies which have shown that 
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G. candidum is able to catabolise methionine in one-step degradation, with the 

biosynthesis of sulphur compounds (42, 47, 48). 

The production of sulphur compounds is an important characteristic of many surface 

ripened cheese and B. linens is considered one of the main species responsible for the 

development of the strong flavour of many surface-ripened cheese through the 

biosynthesis of sulphur compounds derived from methanethiol. In this study B. linens 

was present at relatively low abundance in the original culture mixes (5.26% and 

3.53% for D4 and S5, respectively; Table S1). However, while detected at very low 

relative abundance on the cheese surface of D4, was one the most dominant bacteria 

detected on S5 (37.05% at day 24; Table S2). While this may be due to inter-strain 

differences, it is most likely due to the different interactions within the microbiota of 

S5 and D4. Studies have shown that B. linens does not always establish itself on the 

cheese surface during ripening, even if it is present in the initial culture mix (33-35, 

49, 50). However, in previous studies G. candidum has been shown to stimulate the 

growth of B. linens in co-culture (51), suggesting the hypothesis that in S5, G. 

candidum, present at high relative abundance, might have likely produced growth 

factors that supported the growth of B. linens; while in D4, it was out-competed by G. 

arilaitensis, which established itself very quickly on the surface of S5 and made up 

75% of the microbiota at the end of ripening. B. linens was significantly associated 

(P<0.001) with methanethiol and its derivatives (dimethyldisulfide and 

dimethyltrisulfide) (Figure 4; Table 1), which likely originated from the one-step 

degradation of methionine (38, 44, 52, 53).  

Other species, while present at lower relative abundance on the cheese surface of S5 

and D4, were also responsible for the biosynthesis of some volatile compounds. S. 

xylosus, present in the S5 mix, was not as successful as B. linens at establishing itself 
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on the cheese surface, and was present at only at 10.83-13.36% of relative abundance, 

during ripening (Table S2). This is most likely due to competition for nutrients within 

the microbiota, as suggested by Mounier et al. (46). Members of the genus 

Staphylococcus can establish themselves on surface ripened cheese in the early stages 

of ripening but are regularly overtaken by other bacteria at the later stages (34, 54, 55). 

In this study, specific species detected in low relative abundances in S5, such as S. 

xylosus (9.08-13.36%), and in D4, such as S. saprophyticus (1.06-2.69%), and C. 

variable (2.04-2.08%) (Table S2), were significantly associated (P<0.001) with a 

range of flavour compounds important in surface-ripened cheese (Figure 4; Table 1), 

and interestingly, while S. xylosus has been previously shown to produce sulphur 

compounds only in fermented meat (56, 57), in this study was correlated with specific 

sulphur compounds in cheese. This data would suggest that some smear bacteria 

though present at relatively low abundance in cheese are likely contributors to the 

release of FFAs and to their degradation, due to esterase activity and hence contribute 

to the aroma and flavour in the final cheese product (58, 59). 

In the study reported here, whole-metagenome shotgun sequencing was employed as 

a novel method for the analysis of a fermented product with a complex microbiota. 

Metagenomic analysis was an efficient tool to understand the variations of the 

microbial population of the cheese surface over time and the related metabolic 

potential. Moreover, the association between the volatile compounds and the species 

represents a novel system to study the flavour development in cheese. In conclusion, 

the approach used in this study enabled us to determine the microbial succession 

during ripening, and also to begin to unravel the contributions of the various 

components of the surface microbiota when present within a complex microbial 

environment. The method proposed in this study can be adopted in industry to control 
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the microbiota of fermented food, driving to the production of food products with 

specific flavour characteristics.  
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SUPPLEMENTAL MATERIAL 

Table S1: Relative abundance (%) of the microbial species within D4 and S5 mix. Data are the mean of 3 
replicates. Species highlighted in bold were stated as present by the culture provider. 

Species in the smear-culture mixes 
(%) 

D4 
mix 

S5 
mix 

Brevibacterium casei 61.09 -nd 

Brevibacterium linens 5.26 3.53 

Glutamicibacter arilaitensis - 64.03 

Staphylococcus xylosus - 0.57 

Cyberlindnera jadinii 14.84 - 

Debaryomyces hansenii 1.88 14.66 

Geotrichum candidum - 12.12 

Brevibacterium sp. VCM10 12.82  

Brevibacterium siliguriense 1.41 - 

Brevibacterium epidermidis 1.1 - 

Brevibacterium sandarakinum 0.59 - 

Arthrobacter sp. NIO-1057 - 1.27 

Debaryomyces fabryi - 1.07 

Arthrobacter sp. W1 - 0.38 

Glutamicibacter mysorens - 0.24 

Arthrobacter sp. EpRS66 - 0.16 

Paeniglutamicibacter antarcticus - 0.14 

Others 1 1.81 
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Table S2: Relative abundance of the microbial species on the cheese surface of control, D4 and S5 at day 0, 
18, 24 and 30. Data are the mean of 3 replicates. 

 

  

Species 0 18 24 30 0* 18 24 30 0* 18 24 30

Lactococcus lactis 75.85 57.58 57.76 65.99 74.35 18.7 21.72 6.18 74.74 13.59 11.02 13.94

Streptococcus thermophilus 19.65 36.93 36.53 28.21 19.4 6.03 11.66 4.98 20.04 5.79 5.91 5.82

Glutamicibacter arilaitensis -nd - 0.24 - - 30.9 43.27 73.75 - 0.26 0.44 0.42

Debaryomyces hansenii - - 0.07 0.45 - 34.12 13.29 4.14 - 21.2 9.57 14.09

Geotrichum candidum - - 0.08 0.28 - - 0.31 1.11 - 37.54 17.6 26.44

Brevibacterium linens - - - - - - 0.17 0.26 - 8.84 37.05 22.84

Staphylococcus xylosus - - - - - 0.11 - - - 9.08 13.36 10.83

Lactobacillus helveticus 2.12 3.1 2.78 2.72 2.38 1.39 1.41 0.34 2.19 0.86 0.48 0.46

Acinetobacter baumannii 0.82 0.12 0.17 0.37 0.63 - - - 0.95 - - 0.15

Streptococcus pneumoniae 0.56 0.79 0.74 0.66 0.95 - 0.29 0.06 0.74 0.12 0.06 -

Streptococcus salivarius 0.5 0.93 0.93 0.71 0.52 - 0.3 - 0.5 0.11 0.06 0.05

Arthrobacter sp. NIO-1057 - - - - - 0.57 0.72 1.29 - - - -

Staphylococcus equorum - - - - - 1.32 0.43 0.45 - - - -

Staphylococcus saprophyticus - - - - - 2.69 0.93 1.06 - - - -

Penicillium camemberti - - - - - 0.37 0.4 0.63 - - - -

Corynebacterium variabile - - - - - - 2.04 2.08 - - - -

Debaryomyces fabryi - - - - - 1.47 0.56 0.13 - 1.64 0.71 1.09

Psychrobacter sp. P11F6 - - - - - - - - - - 0.4 0.5

Psychrobacter glacincola - - - - - - - - - - 0.83 1.13

Psychrobacter sp. JCM 18903 - - - - - - - - - - 0.52 0.65

Stenotrophomonas maltophilia - - 0.2 0.37 - - - - - 0.17 - 0.18

Brevibacterium sandarakinum - - - - - - - - - 0.2 0.94 0.58

Anaplasma phagocytophilum 0.22 - - - 0.74 - - - 0.45 - - -

Other 0.27 0.54 0.49 0.24 1.04 2.33 2.5 3.56 0.39 0.59 1.03 0.86

Control D4 S5
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Table S3: Reference genomes used to construct PanPhlAn pangenome databases. 

Pangenome Database Reference Strain (RefSeq Assembly 
Accession) 

Brevibacterium linens 

GCF_000167575 

GCF_000807915 

GCF_001606005 

GCF_001729525 

Glutamicibacter 
arilaitensis 

GCF_000197735 

GCF_000238915 

GCF_001302565 

GCF_002189495 

Lactococcus lactis 

GCF_000014545 

GCF_000025045 

GCF_000143205 

GCF_000312685 

GCF_000348965 

GCF_000442845 

GCF_000447825 

GCF_000447845 

GCF_000447885 

GCF_000447985 

GCF_000468955 

GCF_000479375 

GCF_000488975 

GCF_000493355 

GCF_000534815 

GCF_000615405 

GCF_000731635 

GCF_000761115 

GCF_000786755 

Streptococcus thermophilus 

GCF_000011825 

GCF_000011845 

GCF_000014485 

GCF_000182875 

GCF_000253395 

GCF_000262675 

GCF_000284675 

GCF_000335495 

GCF_000335515 

GCF_000434755 

GCF_000500565 

GCF_000521265 

GCF_000521285 



188 
 

GCF_000521305 

GCF_000521325 

GCF_000572065 

GCF_000572095 

GCF_000698885 

GCF_000836675 

GCF_000971665 

GCF_001068405 

GCF_001071365 

GCF_001073445 

Staphylococcus xylosus 

GCF_000338275 

GCF_000467225 

GCF_000706685 

GCF_000709415 

GCF_000815285 

GCF_000953575 

GCF_001476985 

GCF_001747725 

GCF_001747735 

GCF_001747745 

GCF_001748025 

GCF_001748045 

GCF_002078255 

GCF_900098615 
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Figure S1: Proportions of reads assigned to the species-level by Kaiju 
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Figure S3. Changes in the pH values of the surfaces of the control (circles), D4 
(squares), and S5 (triangles) cheeses. Data show the means and standard 
deviations of results from three replicate trials. 

Figure S2: Proportions of assigned reads with Kaiju (A) and SUPER-FOCUS (B) for samples cheese surface samples. 
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Figure S4: Color development on the surfaces of the control (circles), 

D4 (squares), and S5 (triangles) cheeses. Data show the means and 

standard deviations of results from three replicate trials. 
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Figure S5: Free amino acid (A) and free fatty acid (B) concentrations (micrograms per 

milligram) on the surfaces of the control (red), D4 (green), and S5 (yellow) cheeses at day 30. 

Data show the means of results from three replicate trials. The significant differences (P < 

0.05) are indicated with a, b, and c. 



193 
 

References 

1. Walsh AM, Crispie F, Kilcawley K, O’Sullivan O, O’Sullivan MG, 

Claesson MJ, Cotter PD. 2016. Microbial Succession and Flavor 

Production in the Fermented Dairy Beverage Kefir. mSystems 1:e00052-

00016. 

2. Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, 

Irlinger F, Landaud S, Leclercq-Perlat M-N, Bento P. 2015. Overview of 

a surface-ripened cheese community functioning by meta-omics analyses. 

PLoS One 10:e0124360. 

3. Wolfe BE, Button JE, Santarelli M, Dutton RJ. 2014. Cheese rind 

communities provide tractable systems for in situ and in vitro studies of 

microbial diversity. Cell 158:422-433. 

4. Wolfe Benjamin E, Dutton Rachel J. 2015. Fermented Foods as 

Experimentally Tractable Microbial Ecosystems. Cell 161:49-55. 

5. Montel M-C, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, 

Desmasures N, Berthier F. 2014. Traditional cheeses: Rich and diverse 

microbiota with associated benefits. International Journal of Food 

Microbiology 177:136-154. 

6. Mounier J, Coton M, Irlinger F, Landaud S, Bonnarme P. 2017. Chapter 

38 - Smear-Ripened Cheeses, p 955-996, Cheese (Fourth edition) 

doi:https://doi.org/10.1016/B978-0-12-417012-4.00038-7. Academic Press, 

San Diego. 

7. Desmasures N, Bora N, Ward AC. 2015. Smear Ripened Cheeses, p 1-18. 

In Bora N, Dodd C, Desmasures N (ed), Diversity, Dynamics and Functional 



194 
 

Role of Actinomycetes on European Smear Ripened Cheeses 

doi:10.1007/978-3-319-10464-5_1. Springer International Publishing, Cham. 

8. Quigley L, O'Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter 

PD. 2012. High-throughput sequencing for detection of subpopulations of 

bacteria not previously associated with artisanal cheeses. Applied and 

Environmental Microbiology 78:5717-5723. 

9. Delcenserie V, Taminiau B, Delhalle L, Nezer C, Doyen P, Crevecoeur S, 

Roussey D, Korsak N, Daube G. 2014. Microbiota characterization of a 

Belgian protected designation of origin cheese, Herve cheese, using 

metagenomic analysis. Journal of Dairy Science 97:6046-6056. 

10. Bokulich NA, Mills DA. 2013. Facility-specific “house” microbiome drives 

microbial landscapes of artisan cheesemaking plants. Applied and 

Environmental Microbiology 79:5214-5223. 

11. Bertuzzi AS, Kilcawley KN, Sheehan JJ, O'Sullivan MG, Kennedy D, 

McSweeney PLH, Rea MC. 2017. Use of smear bacteria and yeasts to 

modify flavour and appearance of Cheddar cheese. International Dairy 

Journal 72:44-54. 

12. Roy J. 2007. SAS for Mixed Models, Second Edition. R. C.Littell, G. A. 

Milliken, W. W. Stroup, R. D. Wolfinger, and O. Schabenberger. Journal of 

Biopharmaceutical Statistics 17:363-365. 

13. Clooney AG, Fouhy F, Sleator RD, O’Driscoll A, Stanton C, Cotter PD, 

Claesson MJ. 2016. Comparing Apples and Oranges?: Next Generation 

Sequencing and Its Impact on Microbiome Analysis. PLoS One 

11:e0148028. 



195 
 

14. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, 

Abecasis G, Durbin R. 2009. The sequence alignment/map format and 

SAMtools. Bioinformatics 25:2078-2079. 

15. Menzel P, Ng KL, Krogh A. 2016. Fast and sensitive taxonomic 

classification for metagenomics with Kaiju. Nature Communications 

7:11257. 

16. Pruitt KD, Tatusova T, Maglott DR. 2006. NCBI reference sequences 

(RefSeq): a curated non-redundant sequence database of genomes, transcripts 

and proteins. Nucleic Acids Research 35:D61-D65. 

17. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, Truong DT. 

2016. Strain-level microbial epidemiology and population genomics from 

shotgun metagenomics. Nature Methods 13:435-438. 

18. Silva GGZ, Green KT, Dutilh BE, Edwards RA. 2016. SUPER-FOCUS: a 

tool for agile functional analysis of shotgun metagenomic data. 

Bioinformatics 32:354-361. 

19. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang H-Y, Cohoon 

M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R. 2005. The subsystems 

approach to genome annotation and its use in the project to annotate 1000 

genomes. Nucleic Acids Research 33:5691-5702. 

20. McDermott A, Visentin G, De Marchi M, Berry DP, Fenelon MA, 

O’Connor PM, Kenny OA, McParland S. 2016. Prediction of individual 

milk proteins including free amino acids in bovine milk using mid-infrared 

spectroscopy and their correlations with milk processing characteristics. 

Journal of Dairy Science 99:3171-3182. 



196 
 

21. Catrienus DJ, T. BH. 1990. Determination of free fatty acids in milk and 

cheese procedures for extraction, clean up, and capillary gas chromatographic 

analysis. Journal of High Resolution Chromatography 13:94-98. 

22. Mannion DT, Furey A, Kilcawley KN. 2016. Comparison and validation of 

2 analytical methods for the determination of free fatty acids in dairy 

products by gas chromatography with flame ionization detection. Journal of 

Dairy Science 99:5047-5063. 

23. Team RC. 2014. R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 2013. ISBN 3-

900051-07-0. 

24. Ferreira AD, Viljoen BC. 2003. Yeasts as adjunct starters in matured 

Cheddar cheese. International Journal of Food Microbiology 86:131-140. 

25. Mounier J. 2015. Microbial Interactions in Smear-Ripened Cheeses, p 155-

166. In Bora N, Dodd C, Desmasures N (ed), Diversity, Dynamics and 

Functional Role of Actinomycetes on European Smear Ripened Cheeses 

doi:10.1007/978-3-319-10464-5_6. Springer International Publishing, Cham. 

26. Zikánová B, Kuthan M, Řičicová M, Forstová J, Palková Z. 2002. Amino 

acids control ammonia pulses in yeast colonies. Biochemical and Biophysical 

Research Communications 294:962-967. 

27. Corsetti A, Rossi J, Gobbetti M. 2001. Interactions between yeasts and 

bacteria in the smear surface-ripened cheeses. International Journal of Food 

Microbiology 69:1-10. 

28. Hickey CD, Fallico V, Wilkinson MG, Sheehan JJ. 2018. Redefining the 

effect of salt on thermophilic starter cell viability, culturability and metabolic 

activity in cheese. Food Microbiology 69:219-231. 



197 
 

29. Monnet C, Landaud S, Bonnarme P, Swennen D. 2015. Growth and 

adaptation of microorganisms on the cheese surface. FEMS Microbiology 

Letters 362:1-9. 

30. Krubasik P, Sandmann G. 2000. A carotenogenic gene cluster from 

Brevibacterium linens with novel lycopene cyclase genes involved in the 

synthesis of aromatic carotenoids. Molecular and General Genetics MGG 

263:423-432. 

31. Mounier J, Irlinger F, Leclercq-Perlat M-N, Sarthou A-S, Spinnler H-E, 

Fitzgerald GF, Cogan TM. 2006. Growth and colour development of some 

surface ripening bacteria with Debaryomyces hansenii on aseptic cheese 

curd. Journal of Dairy Research 73:441-448. 

32. Feurer C, Vallaeys T, Corrieu G, Irlinger F. 2004. Does Smearing 

Inoculum Reflect the Bacterial Composition of the Smear at the End of the 

Ripening of a French Soft, Red-Smear Cheese. Journal of Dairy Science 

87:3189-3197. 

33. Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, 

Cogan TM, Vancanneyt M, Scherer S. 2008. Commercial ripening starter 

microorganisms inoculated into cheese milk do not successfully establish 

themselves in the resident microbial ripening consortia of a South german red 

smear cheese. Appl Environ Microbiol 74:2210-2217. 

34. Rea MC, Görges S, Gelsomino R, Brennan NM, Mounier J, Vancanneyt 

M, Scherer S, Swings J, Cogan TM. 2007. Stability of the Biodiversity of 

the Surface Consortia of Gubbeen, a Red-Smear Cheese. Journal of Dairy 

Science 90:2200-2210. 



198 
 

35. Larpin-Laborde S, Imran M, Bonaiti C, Bora N, Gelsomino R, Goerges 

S, Irlinger F, Goodfellow M, Ward AC, Vancanneyt M, Swings J, 

Scherer S, Gueguen M, Desmasures N. 2011. Surface microbial consortia 

from Livarot, a French smear-ripened cheese. Can J Microbiol 57:651-660. 

36. Gori K, Ryssel M, Arneborg N, Jespersen L. 2013. Isolation and 

Identification of the Microbiota of Danish Farmhouse and Industrially 

Produced Surface-Ripened Cheeses. Microbial Ecology 65:602-615. 

37. Cholet O, Henaut A, Casaregola S, Bonnarme P. 2007. Gene expression 

and biochemical analysis of cheese-ripening yeasts: focus on catabolism of 

L-methionine, lactate, and lactose. Appl Environ Microbiol 73:2561-2570. 

38. Yvon M, Rijnen L. 2001. Cheese flavour formation by amino acid 

catabolism. International Dairy Journal 11:185-201. 

39. Collins YF, McSweeney PLH, Wilkinson MG. 2003. Lipolysis and free 

fatty acid catabolism in cheese: a review of current knowledge. International 

Dairy Journal 13:841-866. 

40. Leclercq-Perlat MN, Corrieu G, Spinnler HE. 2004. Comparison of 

Volatile Compounds Produced in Model Cheese Medium Deacidified by 

Debaryomyces hansenii or Kluyveromyces marxianus. Journal of Dairy 

Science 87:1545-1550. 

41. Klaus G, Marie SL, Agerlin PM, Lene J, Nils A. 2012. Debaryomyces 

hansenii strains differ in their production of flavor compounds in a cheese‐

surface model. MicrobiologyOpen 1:161-168. 

42. Arfi K, Spinnler H, Tache R, Bonnarme P. 2002. Production of volatile 

compounds by cheese-ripening yeasts: requirement for a methanethiol donor 



199 
 

for S-methyl thioacetate synthesis by Kluyveromyces lactis. Applied 

Microbiology and Biotechnology 58:503-510. 

43. Martin N, Berger C, Le Du C, Spinnler HE. 2001. Aroma Compound 

Production in Cheese Curd by Coculturing with Selected Yeast and Bacteria. 

Journal of Dairy Science 84:2125-2135. 

44. Deetae P, Bonnarme P, Spinnler HE, Helinck S. 2007. Production of 

volatile aroma compounds by bacterial strains isolated from different surface-

ripened French cheeses. Applied Microbiology and Biotechnology 76:1161-

1171. 

45. Monnet C, Loux V, Gibrat J-F, Spinnler E, Barbe V, Vacherie B, 

Gavory F, Gourbeyre E, Siguier P, Chandler M, Elleuch R, Irlinger F, 

Vallaeys T. 2010. The Arthrobacter arilaitensis Re117 Genome Sequence 

Reveals Its Genetic Adaptation to the Surface of Cheese. PLoS One 

5:e15489. 

46. Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou AS, Helias A, 

Irlinger F. 2008. Microbial interactions within a cheese microbial 

community. Appl Environ Microbiol 74:172-181. 

47. Boutrou R, Guéguen M. 2005. Interests in Geotrichum candidum for cheese 

technology. International Journal of Food Microbiology 102:1-20. 

48. Jollivet N, Chataud J, Vayssier Y, Bensoussan M, Belin J-M. 1994. 

Production of volatile compounds in model milk and cheese media by eight 

strains of Geotrichum candidum Link. Journal of Dairy Research 61:241-

248. 



200 
 

49. Brennan NM, Ward AC, Beresford TP, Fox PF, Goodfellow M, Cogan 

TM. 2002. Biodiversity of the bacterial flora on the surface of a smear 

cheese. Appl Environ Microbiol 68:820-830. 

50. Mounier J, Gelsomino R, Goerges S, Vancanneyt M, 

Vandemeulebroecke K, Hoste B, Scherer S, Swings J, Fitzgerald GF, 

Cogan TM. 2005. Surface microflora of four smear-ripened cheeses. Appl 

Environ Microbiol 71:6489-6500. 

51. Lecocq J, Gueguen M. 1994. Effects of pH and Sodium Chloride on the 

Interactions Between Geotrichum candidum and Brevibacterium linens. 

Journal of Dairy Science 77:2890-2899. 

52. Rattray FP, Fox PF. 1999. Aspects of Enzymology and Biochemical 

Properties of Brevibacterium linens Relevant to Cheese Ripening: A 

Review1. Journal of Dairy Science 82:891-909. 

53. Jollivet N, Bézenger M-C, Vayssier Y, Belin J-M. 1992. Production of 

volatile compounds in liquid cultures by six strains of coryneform bacteria. 

Applied Microbiology and Biotechnology 36:790-794. 

54. Irlinger F, Morvan A, El Solh N, Bergere JL. 1997. Taxonomic 

Characterization of Coagulase-Negative Staphylococci in Ripening Flora 

from Traditional French Cheeses. Systematic and Applied Microbiology 

20:319-328. 

55. Mounier J, Goerges S, Gelsomino R, Vancanneyt M, 

Vandemeulebroecke K, Hoste B, Brennan NM, Scherer S, Swings J, 

Fitzgerald GF, Cogan TM. 2006. Sources of the adventitious microflora of 

a smear-ripened cheese. J Appl Microbiol 101:668-681. 



201 
 

56. Stahnke LH. 1999. Volatiles Produced by Staphylococcus xylosus and 

Staphylococcus carnosus during Growth in Sausage Minces Part I. Collection 

and Identification. LWT - Food Science and Technology 32:357-364. 

57. Tjener K, Stahnke LH, Andersen L, Martinussen J. 2004. The pH-

unrelated influence of salt, temperature and manganese on aroma formation 

by Staphylococcus xylosus and Staphylococcus carnosus in a fermented meat 

model system. International Journal of Food Microbiology 97:31-42. 

58. Curtin ÁC, Gobbetti M, McSweeney PLH. 2002. Peptidolytic, esterolytic 

and amino acid catabolic activities of selected bacterial strains from the 

surface of smear cheese. International Journal of Food Microbiology 76:231-

240. 

59. Casaburi A, Villani F, Toldrá F, Sanz Y. 2006. Protease and esterase 

activity of staphylococci. International Journal of Food Microbiology 

112:223-229. 

 



202 
 

Chapter 5 

Strain-level metagenomic analysis of the fermented 

dairy beverage nunu highlights potential food safety 

risks 

Figures updated since publication in Applied and Environmental Microbiology 

(doi: https://doi.org/10.1128/AEM.01144-17)  

Authors: Aaron M. Walsh, Fiona Crispie, Kareem Daari, Orla O'Sullivan, Jennifer 

C. Martin, Cornelius T. Arthur, Marcus J. Claesson, Karen P. Scott, and Paul D. 

Cotter 

Contributions: 

 Candidate performed sequencing library preparations, bioinformatics 

analysis, and statistical analysis 

 KD, JCM, and CTA performed culture work and DNA extractions 

 OOS provided guidance for bioinformatic analysis 

 FC, MJC, KPS, and PDC supervised the study 

https://doi.org/10.1128/AEM.01144-17


203 
 

Abstract 

The rapid detection of pathogenic strains in food products is essential for the 

prevention of disease outbreaks. It has already been demonstrated that whole 

metagenome shotgun sequencing can be used to detect pathogens in food but, until 

recently, strain-level detection of pathogens has relied on whole metagenome 

assembly, which is a computationally demanding process. Here, we demonstrate that 

three short read alignment-based methods, MetaMLST, PanPhlAn, and StrainPhlAn, 

can accurately, and rapidly, identify pathogenic strains in spinach metagenomes 

which were intentionally spiked with Shiga toxin-producing Escherichia coli in a 

previous study. Subsequently, we employ the methods, in combination with other 

metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian 

fermented milk product which is produced by the spontaneous fermentation of raw 

cow milk. We show that nunu samples are frequently contaminated with bacteria 

associated with the bovine gut, and worryingly, we detect putatively pathogenic E. 

coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our 

work establishes that short read alignment-based bioinformatics approaches are 

suitable food safety tools, and we describe a real-life example of their utilisation.  
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Introduction 

In recent years, high-throughput sequencing (HTS) has become an important tool in 

food microbiology (1). HTS enables in-depth characterisation of food-related 

microbial isolates, via whole genome sequencing (WGS), and it facilitates culture-

independent analysis of mixed microbial communities in foods, via metagenomic 

sequencing. 

WGS has provided invaluable insights into the genetics of starter cultures (2, 3), and 

it is routinely used in epidemiology to identify outbreak-associated foodborne 

pathogens isolated from clinical samples, by comparing the single nucleotide 

polymorphism (SNP) profiles of outbreak strain genomes versus non-outbreak strain 

genomes (4-6). Metagenomic sequencing enables the elucidation of the roles of 

microorganisms during food production (7-9), and it can be used to track 

microorganisms of interest through the food production chain, as illustrated by Yang 

et al. (10), who used whole metagenome shotgun sequencing to track pathogenic 

species in the beef production chain. Indeed, metagenomic sequencing can be used to 

detect pathogens in foods to  monitor outbreaks of foodborne illnesses (11), but few 

studies have done so, because of the limited taxonomic resolution achievable using 

these methods. Typically, 16S rRNA gene sequencing provides genus-level 

taxonomic resolution (12), and although sub-genus-level classification is achievable 

using species-classifiers (13) or oligotyping (14, 15), these methods cannot 

accurately discriminate between strains. Similarly, metagenome sequence 

classification tools usually provide species-level resolution (16). However, strain-

level resolution is necessary for the accurate identification of pathogens in food 

products (17). Leonard et al. successfully achieved strain-level resolution of Shiga 

toxin producing Escherichia coli strains in spinach samples using metagenome 
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shotgun sequencing (18). However, the bioinformatics methods used in that study 

were based on metagenome assembly, which is a computationally demanding 

process (19, 20), and thus alternative strain-level identification methods are needed. 

Since 2016, several short read alignment based software applications, including 

MetaMLST (20), StrainPhlAn (21), and PanPhlAn (19), have been released that can 

achieve strain-level characterisation of microorganisms from metagenome shotgun 

sequencing data. All three applications are considerably faster than metagenome 

assembly based methods. To date, these programs have not been employed to detect 

pathogens in food products, but there is strong evidence to suggest that they have 

considerable potential for this purpose: MetaMLST accurately predicted that the 

strain responsible for the 2011 German E. coli outbreak belonged to E. coli ST678 

(20), and similarly, PanPhlAn accurately predicted that the strain was a Shiga toxin 

producer (19), based on the analysis of the gut metagenomes of infected patients 

(22). StrainPhlAn has so far not been used for epidemiological purposes, but a recent 

study demonstrated that it can be used to predict the phylogenetic relatedness of 

bacterial strains from different samples (21). 

MetaMLST aligns sequencing reads against a housekeeping gene database to 

identify sequence types present in metagenomic samples based on multilocus 

sequence typing (MLST). The MetaMLST database contains all currently known 

sequence types, but it can be updated as required to include newly identified 

sequence types. MetaMLST does not require any prior knowledge of the microbial 

composition of sample and it can simultaneously detect different species’ sequence 

types. PanPhlAn aligns sequencing reads against a species pangenome database, 

constructed from reference genomes, to functionally characterise strains present in 

metagenomic samples. PanPhlAn allows the user to generate customisable 
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pangenome databases for any species. StrainPhlAn extracts species specific marker 

genes from sequencing reads and it aligns the markers against reference genomes to 

identify the strains present in metagenomic samples. StrainPhlAn requires output 

from MetaPhlAn2, and both programs use the same database. 

In this study, we describe the characterisation of nunu, a traditional Ghanaian 

fermented milk product (FMP), at the genus, species, and strain-levels, using a 

combination of 16S rRNA gene sequencing and whole metagenome shotgun 

sequencing. Nunu is produced by the spontaneous fermentation of raw cow milk in 

calabashes or plastic or metal containers under ambient conditions, and it is usually 

consumed after 24-36 hours (23). At present, little is known about nunu’s 

microbiology, relative to other FMPs, like kefir or yoghurt (24). Previously, a 

number of potentially pathogenic bacteria, including Enterobacter, Escherichia and 

Klebsiella, were detected in nunu by culture based methods (25). Here, we carry out 

the first culture-independent analysis of a number of nunu samples. In addition to 

detecting the presence of a variety of lactic acid bacteria (LAB) typical of fermented 

dairy products, MetaMLST, PanPhlAn and StrainPhlAn all indicated the presence of 

pathogenic E. coli and Klebsiella pneumoniae in a subset of the samples. We also 

demonstrate that these tools can accurately predict the presence of pathogenic strains 

in foods by testing them on food metagenomes which were spiked with Shiga toxin 

producing E. coli. Ultimately, our work establishes that short read alignment based 

methods can be used for the detection of pathogens in foods. 

 

Materials and Methods 

Sampling 
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Five nunu samples were collected from producers with hygiene practice training, and 

another five samples were collected from producers without hygiene practice 

training. The identity of the samples from trained and untrained individuals was 

blinded until after sequencing analysis was completed. The samples from the trained 

group were labelled 1t2am, 1t6am, 1t7am, 1t8am, and 2t2am. The samples from the 

untrained group labelled 1u6am, 2u2am, 2u3am, 2u6am, and 2u8am. All samples 

were collected in the morning and placed on ice for transport to the lab. Sample 

aliquots (4ml) were then mixed with glycerol to a final concentration of 20% and 

stored at -20°C prior to DNA extraction. DNA was extracted from the samples at the 

Animal Research Institute, Accra, Ghana and then sent to Scotland to comply with 

International laws on the import of animal samples (Import Licence form AB117). 

 

Microbiological analysis 

Basic microbiology culture analysis was carried out in Ghana. The plate-count 

technique was used to estimate the total viable bacterial count of the nunu samples 

on Milk Plate Count Agar (LAB M, UK). Bacterial counts were compared for plates 

growing aerobically or anaerobically at 30°C for 36-72 h. Anaerobic plates were 

incubated in airtight canisters containing C02Gen sachets (Oxoid, UK), which 

created an anaerobic atmosphere. Following incubation, colonies were counted using 

an SC6+ electronic colony counter (Stuart Scientific, UK). The presence of specific 

pathogens in the nunu samples was determined by streaking nunu directly onto 

selective agar plates to visually assess bacterial growth. The following selective 

agars were used: Blood agar (Merck, Germany) for Staphylococcus; MacConkey 

agar (Merck, Germany) for Enterobacteria; de Man Rogosa Sharpe agar (MRS) 
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(Oxoid, UK) for Lactobacillus species; and Salmonella Shigella agar (Oxoid, UK). 

Any mixed growth plates were re-purified by streaking onto selected secondary 

agars. Lactose fermenting colonies identified on MacConkey agar were sub-cultured 

onto Eosin Methylene Blue Agar (EMBA) (Scharlau Chemie, Spain) to 

isolate/identify E. coli. Additionally, Staphylococcus colonies from Blood Agar were 

sub-cultured onto Mannitol Salt Agar (MSA) (Oxoid, UK) to isolate/identify 

Staphylococcus aureus. The following biochemical tests were used to confirm 

bacterial identification: the Motility Indole Urea (MIU) test; the catalase test; the 

Triple Sugar Iron (TSI) test; and the Indole Methyl Red Vorges-Proskeur Citrate 

(IMViC) tests. Cellular morphology was determined by Gram staining as well as 

microscopic examination. 

 

DNA extraction and next generation sequencing 

Briefly, 1 ml of each thawed sample was diluted in 9 ml of sterile PBS, mixed 

thoroughly using vortex and centrifuged for 10 min (8,000-10,000 g). The bacterial 

cell pellets were resuspended in 432 µl sterile dH2O and 48µl 0.5 M EDTA, mixed 

thoroughly by a combination of vortex and with a sterile pipette tip and the 

suspension frozen. The frozen samples were thawed on the bench and refrozen and 

finally thawed (giving a total of two freeze/thaw cycles) before extracting the DNA 

using the Promega Wizard genomic DNA extraction kit (Promega, Madison, WI, 

USA) according to the manufacturer’s protocol. The freeze/thaw cycles were carried 

out to maximise bacterial cell lysis. Following extraction, the DNA pellets were air 

dried for about 60 minutes and stored sealed under airtight conditions and 
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transported from the Animal Research Institute, Accra, Ghana to the Rowett 

Institute, at University of Aberdeen, for further analysis.  

DNA extracts were quantified using the Qubit High Sensitivity DNA assay 

(BioSciences, Dublin, Ireland). 16S rRNA gene sequencing libraries were prepared 

from extracted DNA using the 16S Metagenomic Sequencing Library Preparation 

protocol from Illumina, with minor modifications (26). Samples were sequenced on 

the Illumina MiSeq in the Teagasc sequencing facility, with a 2 x 250 cycle V2 kit, 

in accordance with standard Illumina sequencing protocols. Whole-metagenome 

shotgun libraries were prepared in accordance with the Nextera XT DNA Library 

Preparation Guide from Illumina (26). Samples were sequenced on the Illumina 

MiSeq in the Teagasc sequencing facility, with a 2 x 300 cycle V3 kit, in accordance 

with standard Illumina sequencing protocols. 

 

Bioinformatics 

Raw 16S rRNA gene sequencing reads were quality filtered using PRINSEQ (27). 

Denoising, OTU clustering, and chimera removal were done using USearch (v7-

64bit) (28), as described by Doyle et al. (29). OTUs were aligned using PyNAST 

(30). Alpha-diversity and beta-diversity were calculated using Qiime (1.8.0) (31). 

Taxonomy was assigned using a BLAST search (32) against SILVA SSU 119 

database (33). 

Raw whole-metagenome shotgun sequencing reads were filtered, on the basis of 

quality and quantity, and trimmed to 200 bp, with a combination of Picard Tools 

(https://github.com/broadinstitute/picard) and SAMtools (34). MetaPhlAn2 was used 

to characterise the microbial composition of samples at the species-level (35). 

https://github.com/broadinstitute/picard
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MetaMLST (20), PanPhlAn (19), and StrainPhlAn (21) were used to characterise the 

microbial composition of the samples at the strain-level. GraPhlAn (36) was used to 

construct phylogenetic trees from the StrainPhlAn output. SUPER-FOCUS (37) and 

HUMAnN2 (38) were used to determine the microbial metabolic potential of 

samples. IDBA-UD (39) was used for metagenome assembly. 

Sequence data have been deposited in the European Nucleotide Archive (ENA) 

under the project accession number PRJEB20873. 

 

Statistical analysis 

Statistical analysis was done in R-3.2.2 (40). The Kruskal-Wallis test was done using 

the compareGroups package, and the resulting p-values were for multiple 

comparisons. PCoA analysis of 16S rRNA gene sequencing data was done using the 

phyloseq package (41). Multidimensional scaling (MDS) was done using the vegan 

package. Data visualisation was done using the ggplot2 package. 

 

Results 

16S rRNA gene sequencing of nunu samples 

Nunu samples were collected from producers with hygiene practice training (n=5) 

and producers without hygiene practice training (n=5), respectively. 16S rRNA gene 

sequencing analysis revealed that there were no significant differences in the alpha-

diversity of nunu samples from trained or untrained producers (Figure S1a), although 

there was a clear separation in the beta-diversity of the two groups (Figure S1b). 
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The 16S rRNA data was also analysed to determine bacterial composition (Figure 

1a). At the family level, all of the samples were dominated by Lactobacillales, and at 

the genus-level, most samples were dominated by Streptococcus, although the 

sample 1t2am was dominated by Lactococcus. Enterococcus was detected in 4/10 

samples (1 trained and 3 untrained) at ≥3% relative abundance, and it was highest in 

the sample 2u6am, where it was present at 19% relative abundance. In addition, 

Staphylococcus was detected in all 10 samples, although its abundance was ≤1% in 

each case. The detection of staphylococci was consistent with a corresponding 

culture-dependent analysis of the samples (supplemental material).  Importantly, 

Enterobacteriales were also prevalent. Enterobacter was detected in 9/10 samples (4 

samples from trained producers and 5 from untrained producers) at ≥1% relative 

abundance, and it was highest in the sample 2u8am, where it was present at 23% 

relative abundance. Escherichia-Shigella was detected in 8/10 samples (4 trained and 

4 untrained) at ≥1% relative abundance, and it was highest in the sample 1t7am, 

where it was present at 17% relative abundance; this finding was again consistent 

with culture-dependent analysis of the samples (supplemental material). 

The Kruskal-Wallis test indicated that there were significant differences in the 

relative abundances of Macrococcus (p=0.01), which was higher in samples from 

trained producers, and Streptococcus (p=0.02), which was higher in samples from 

untrained producers (Figure 1b). No other genera were significantly different. 

 

Species-level compositional analysis of nunu samples as revealed by shotgun 

sequencing 
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Figure 1: 16S rRNA gene sequencing based analysis of nunu samples. (A) Heat map showing the 25 most 
abundant bacterial genera across the nunu samples. (B) Bar plot showing genera which were differentially 
abundant in either group.  
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MetaPhlAn2-based analysis of shotgun metagenomic data provided results that were 

generally consistent with those derived from amplicon sequencing. 11 species 

accounted for >90% of the microbial composition of every sample (Figure 2). At the 

species-level, most samples were dominated by Streptococcus infantarius, although 

sample 1t2am was dominated by Lactococcus lactis. Enterococcus faecium was 

detected in 4/10 samples (2 trained and 2 untrained) at ≥1% relative abundance, and 

it was highest in the sample 1t2am, where it was present at 22% relative abundance. 

High abundances of Enterobacteriales were again apparent. Enterobacter cloacae 

were detected in the sample 1t8am, where it was present at 1% relative abundance. 

Escherichia coli was detected in 2/10 samples (2 trained) at ≥7% relative abundance, 

and it was highest in 1t7am, where it was present at 13% relative abundance. 

Klebsiella pneumoniae was detected in 7/10 samples (4 trained and 3 untrained) at 

≥3% relative abundance, and it was highest in 1t8am, where it was present at 71% 

relative abundance. In contrast, Klebsiella was not detected by amplicon sequencing, 

and this discrepancy might be due to similarities in the 16S rRNA genes from these 

genera(42). 

The Kruskal-Wallis test indicated that there were significant differences in the 

relative abundances of Macrococcus caseolyticus (p=0.01), which was higher in 

samples from trained producers, and Streptococcus infantarius (p=0.01), which was 

higher in samples from untrained producers (Figure S2). No other species were 

significantly different. 

 

Investigation of the functional potential of the nunu microbiota 
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Figure 2: The species-level microbial composition of nunu samples, as determined by MetaPhlAn2.   
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SUPER-FOCUS was used to provide an overview of the functional potential of the 

nunu metagenome. As expected, a significant proportion of the metagenome was 

assigned to housekeeping functions like carbohydrate metabolism, nucleic acid 

metabolism, and protein metabolism (Figure 3). However, SUPER-FOCUS also 

detected high levels of functions associated with horizontal gene transfer and 

virulence in nunu. The level 1 subsystem “Phages, Prophages, Transposable 

elements” was present at ≥1% average relative abundance in both groups, although it 

was significantly higher in nunu samples from trained producers (p=0.047). 

Similarly, the level 1 subsystem “Virulence” was present at ≥3.5% average relative 

abundance in both groups.  

HUMAnN2 was used to provide more comprehensive insights into the functional 

potential of the nunu metagenome. Unsurprisingly, the 25 most abundant genetic 

pathways were associated with carbohydrate metabolism, nucleic acid metabolism, 

and protein metabolism (Figure 4a). MDS analysis of all the normalised HUMAnN2 

pathway abundances suggested that there were differences in the overall functional 

potential of the groups (Figure S3), and we detected significant differences in the 

relative abundances of some individual pathways (Table S1). Notably, we observed 

that histidine degradation pathways were higher in trained samples (p=0.047) (Figure 

4c). Furthermore, histidine decarboxylase genes were only detected in trained 

samples. Several other undesirable genetic pathways were detected in both groups. 

For example, putrescine biosynthesis pathways and polymyxin resistance genes co-

occurred in 7/10 samples (Figure 4c), and these pathways were all attributed to E. 

cloacae, E. coli, K. pneumoniae, or a combination of these three species. We 

detected several other antibiotic resistance genes, including beta-lactamase genes and 

methicillin resistance genes, in both groups (Figure S4). In addition, we found HGT- 
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Figure 3: The average abundances of the SUPER-FOCUS Level 1 functions that were detected in nunu 
samples. 
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Figure 4: HUMAnN2 analysis. (A) Heat map showing the 25 most abundant MetaCyc pathways detected 
across the ten nunu metagenomic samples. (B) Bar plot showing differences in histidine metabolic 
potential between nunu samples from trained producers and nunu samples from untrained producers. (C) 
Bar plots showing the relative contributions of E. cloacae, E. coli and K. pneumoniae to the MetaCyc 
pathways PWY-6305 (putrescine biosynthesis) and PWY0-1338 (polymyxin resistance). 
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associated genes, including plasmid maintenance genes and transposition genes, in 

both groups. 

 

Application of strain-level analysis to characterise enteric bacteria in nunu 

Leonard et al. previously used metagenomic sequencing to detect E. coli in spinach 

which was intentionally spiked with E. coli O157:H7 strain Sakai (11). We 

downloaded the metagenomic reads from that study (16 samples) and we subjected 

them to StrainPhlAn, MetaMLST and PanPhlAn analysis, to confirm that these tools 

can accurately detect pathogens in food samples: MetaMLST was used for multi-

locus sequence typing, StrainPhlAn was used for phylogenetic identification, and 

PanPhlAn was used for functional characterisation. MetaMLST accurately detected 

E. coli ST11 in 7/16 spinach samples (Table 1). StrainPhlAn detected E. coli strains 

in 5/16 samples and it showed that the E. coli strain in each of these samples was 

closely related to E. coli O157:H7 strain Sakai (Figure 5). PanPhlan detected Shiga 

toxin genes in 15/16 samples (Table 1) and it indicated that the E. coli strain in each 

of these samples was most closely related to E. coli O157:H7 strain Sakai. Thus, 

overall, PanPhlAn was the most sensitive method in this instance, since it was able 

to detect STEC in almost all of the samples, whereas the other tools detected STEC 

in less than half of the samples. In a follow-on study, Leonard et al. spiked spinach 

with 12 different Shiga toxin producing E. coli strains, and they detected single 

strains in 17 samples (18). We downloaded the metagenomic reads from the 17 

samples and ran PanPhlAn, and were able to identify Shiga toxin genes in all 17 

samples (Table S2). 
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Table 1: The results of MetaMLST and PanPhlAn analysis of spinach 

metagenomes spiked with E. coli O157:H7 Sakai 

Sequence 

accession 

number Reads 

E. coli 

abundance 

(%) stx2A stx2B 

Sequence 

type (ST) 

Confidence 

(%) 

SRR2177250 9,365,812 5.28412 1 1 Unknown NA 

SRR2177251 17,562,542 4.31712 1 1 11 99.97 

SRR2177280 11,707,292 21.16364 1 1 100001 99.97 

SRR2177281 10,580,532 2.84187 1 1 Unknown NA 

SRR2177282 6,155,636 60.51406 1 1 11 100 

SRR2177283 13,120,244 10.11327 1 1 11 100 

SRR2177284 7,500,056 2.05064 NA NA Unknown NA 

SRR2177285 14,482,370 66.69813 1 1 11 100 

SRR2177286 14,035,970 69.17834 1 1 11 100 

SRR2177287 12,242,348 5.62746 1 1 Unknown NA 

SRR2177288 8,303,788 10.75005 1 1 11 100 

SRR2177357 14,621,672 8.02047 1 1 11 100 

SRR2177358 10,684,052 3.18652 1 1 Unknown NA 

SRR2177359 4,964,436 1.17146 1 1 Unknown NA 

SRR2177360 12,729,834 1.81229 1 0 Unknown NA 

SRR2177361 11,946,092 0.70921 0 1 Unknown NA 
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Figure 2: StrainPhlAn analysis of the spinach metagenome. 
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Having established the relative merits of these tools, we subsequently employed all 

three strategies to identify the strains of E. coli and K. pneumoniae present in the 

nunu samples. With regard to E. coli, MetaMLST detected a novel E. coli sequence 

type in 1t7am (Table 2).  StrainPhlAn detected 24 E. coli marker genes in the 

samples and a phylogenetic tree (Figure 6a), which was generated by aligning these 

markers against 118 E. coli reference genomes (listed in Table S3), revealed that the 

E. coli strain in one sample, 1t7am, was closely related to E. coli O139:H28 

E24377A. PanPhlAn detected E. coli strains in two samples: 1t7am and 1t8am. MDS 

analysis indicated that the strains from the two samples were functionally distinct 

from one another. Notably, a ShET2 enterotoxin encoding gene was identified in the 

E. coli strain from 1t7am. The same gene was found in E. coli O139:H28 E24377A. 

With regard to K. pneumoniae, MetaMLST detected the known sequence type K. 

pneumoniae ST39 in the sample 2u3am. Apparently novel K. pneumoniae sequence 

types were identified in six other samples (Table 1). StrainPhlAn detected 38 K. 

pneumoniae marker genes in the samples and a phylogenetic tree (Figure 6b), which 

was constructed by aligning these markers against 40 K. pneumoniae reference 

genomes (listed in Table S4), revealed that the K. pneumoniae strains in two 

samples, 1t8am and 2u3am, were closely related to K. pneumoniae KpQ3. In 

contrast, the K. pneumoniae strain in1t7am was most closely related to K. 

pneumoniae UCICRE 7. MDS analysis of the PanPhlAn output showed that five of 

the detected K. pneumoniae strains were functionally similar to one another (Figure 

6c). However, two of the detected K. pneumoniae strains, in samples 1t6am and 

1t7am, appeared to be functionally distinct from the others. In addition, PanPhlan 

indicated that sample 1t6am might have contained multiple strains, since an 

unusually high number of 5746 K. pneumonia gene families were detected. A TEM 
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 Table 2: The results of MetaMLST analysis of the nunu metagenomic samples 

Species Sequence type (ST) Confidence (%) Sample 

Klebsiella pneumoniae 100001 98.7 1t2am 

Klebsiella pneumoniae 100002 100 1t6am 

Esherichia coli 100001 100 1t7am 

Klebsiella pneumoniae 100003 99.9 1t7am 

Klebsiella pneumoniae 100004 100 1t8am 

Klebsiella pneumoniae 39 100 2u3am 

Klebsiella pneumoniae 100005 99.91 2u6am 

Klebsiella pneumoniae 100006 99.91 2u8am 
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Figure 6: Strain-level analysis. Phylogenetic trees showing the relationships between (A) 
E. coli strains and (B) K. pneumoniae strains detected in the nunu metagenomic samples 
and their respective reference genomes, as predicted by StrainPhlAn. (C) MDS showing 
the functional similarities between strains detected in the nunu metagenomic samples, as 
predicted by PanPhlAn; reference genomes are shown in faded grey. 
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beta-lactamase gene was found in 1t2am using PanPhlAn and, furthermore, an OXA-
48 carbapenemase gene was detected in 2u8am and the same gene was found in K. 
pneumoniae KpQ3. 

Finally, we compared the time taken to process 10 nunu metagenome samples using 

the short-read alignment tools versus the metagenome assembler IDBA-UD (Figure 

S5). In each case, we observed that all of the short-read alignment tools were faster 

than IDBA-UD. It is important to note that additional bioinformatics analyses 

(contig binning, SNP analysis, etc.) are required to achieve strain-level identification 

from assembled metagenomes, and this emphasises the superior speed of the short-

read alignment tools.  

 

Discussion 

Foodborne pathogens are responsible for millions of cases of disease annually, in the 

United States alone (43). High-throughput sequencing can potentially be used to 

detect pathogenic strains in food products to prevent the occurrence of disease 

outbreaks. A recent proof of concept study demonstrated that whole metagenome 

shotgun sequencing accurately detected Shiga toxin producing E. coli (STEC) strains 

in spiked spinach samples (18). However, that study used whole metagenome 

assembly-based approaches to achieve strain-level taxonomic resolution of the STEC 

in the samples. Whole metagenome assembly is a computationally intensive, time-

consuming process, as illustrated by Nurk et al., who recently reported that 

metagenome assembly can take between 1.5 hours to 6 hours, with a memory 

footprint ranging from 7.3 GB to 234.5 GB, to process a single human gut 

metagenomic sample, depending on the chosen assembler (44). Thus, the application 

of more rapid, less intensive bioinformatic tools for strain detection is desirable. In 
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this study, we demonstrate that the short read alignment-based programs 

MetaMLST, StrainPhlAn, and PanPhlAn can accurately identify pathogens in food 

products. 

We validated the accuracy of each approach by processing spinach metagenome data 

from samples that were spiked with the STEC O157:H7 Sakai in a previous study 

(11).  We observed that PanPhlAn was the most sensitive approach. Indeed, 

PanPhlAn was able to identify STEC in every sample where it was present at >2% 

relative abundance, whereas the other approaches worked best when STEC was 

present at high relative abundances. However, none of the tools detected E. coli 

O157:H7 Sakai in every sample tested. The observation of false negatives highlights 

that the tools are not entirely accurate. It is likely that increased sequencing depth 

and/or longer sequencing read lengths would reduce the false negative rate. We 

recommend that these tools be used to supplement data from metagenome sequence 

classifiers like MetaPhlAn2, which did detect E. coli in each sample. Therefore, we 

subsequently used the strain-level analysis tools in combination with other 

metagenomic approaches to assess the safety of nunu, a traditional Ghanaian 

fermented milk product. 

Nunu is produced through the spontaneous fermentation of raw cow milk in 

calabashes or other containers for 24-36 hours at ambient temperature (23). The 

crude nature of the nunu production process has raised food safety concerns (25). 

Indeed, several potentially pathogenic microorganisms were previously detected in 

nunu samples by microbial culturing (25). This resulted in some nunu producers 

receiving hygiene practice training to improve food safety. However, our work 

suggests that there is little difference in the prevalence of pathogens in nunu samples 

from trained and untrained producers. One reason for this may be that it is difficult 
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for the nunu producers to adhere to the training recommendations which are not 

appropriate to the rural production conditions. During training, the producers were 

advised to pasteurise the milk before cooling and adding a starter culture. After 

incubating for 4-6 hours in a covered container, they were advised to stir the mixture 

and refrigerate the product. Lack of access to specific heat control and electricity, as 

well as the variance from the traditional method, which does not use a starter culture, 

are both reasons why the training is not adhered to. 

16S rRNA gene sequencing revealed that the samples were dominated by 

Lactobacillales. However, we also detected high abundances of Enterobacteriales, 

including Enterobacter and Escherichia, in both groups. Subsequently, whole 

metagenome shotgun sequencing showed that most samples were dominated by 

Streptococcus infantarius, a species which was previously identified in other African 

dairy products (45, 46). Concernedly, S. infantarius has been linked to several 

human diseases, including bacteraemia (47), endocarditis (48) and colon cancer (49).  

Aside from S. infantarius, two other potentially pathogenic species, Escherichia coli 

and Klebsiella pneumoniae, were identified in a subset of samples.  

Overall, our findings indicate that nunu samples from trained producers and 

untrained producers were contaminated with faecal material. Cattle faeces can be a 

major source of bacterial contaminants in raw cow milk (29), and thus, our results 

are not entirely surprising, but the remarkable abundance of such microorganisms in 

nunu is worrying. It had been hoped that nunu could be used to supplement 

traditional cereal-based weaning foods to improve infant nutrition. However, 

qualitative research among mothers and health workers highlighted safety concerns, 

which, as we have shown here, are valid. In particular, the presence of E. coli and K. 



227 
 

pneumoniae in nunu is a concern, and, thus, we employed strain-level metagenomics 

for the further characterisation of these bacteria. 

In terms of E. coli, strain-level analysis indicated that the E. coli strain in one sample 

was an enterotoxin producer and it was closely related to E. coli O139:H28 

E24377A, a strain which was linked to an outbreak of waterborne diarrhoea in India 

(50). In terms of K. pneumoniae, strain-level analysis indicated that the K. 

pneumoniae strains in two samples were antibiotic resistant and they were closely 

related to K. pneumoniae KpQ3, a strain which was linked to nosocomial outbreaks 

among burn unit patients. Thus, strain-level analysis suggests that there are likely 

pathogens in some of the samples. Interestingly, PanPhlAn also suggested that there 

were functionally distinct strains of both species in nunu samples from different 

producers. Perhaps, this indicates multiple incidences or sources of contamination. 

Undoubtedly, our work highlights an urgent need to further improve hygiene 

practices during nunu production, and the pasteurisation of the starting milk and the 

use of starter-based fermentation systems is an obvious solution. 

In conclusion, our work suggests that short read alignment-based strain detection 

tools can be used to detect pathogens in other foods, apart from nunu or spinach, and 

they might also be useful for tracing the sources of foodborne disease outbreaks back 

to particular foods. Such tools are a significant improvement over 16S rRNA gene 

sequencing, which is often limited to genus-level identification, or metagenome read 

classification tools, which are limited to species-level identification (16). In addition, 

they are faster, and less computationally intensive, than metagenome assembly-based 

strain detection methods, making them more relevant to real-life scenarios which 

necessitate the rapid testing of many food samples. With DNA sequencing costs 
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continuing to decrease, the approach outlined here is an affordable option for food 

safety testing. 
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Supplemental material 

Supplemental results 

Bacterial culturing 

Total counts were similar on plates incubated aerobically and anaerobically and but 

there was considerable variation between samples with counts ranging from lows of 

107 bacteria/ml sample to highs of 1011.  

The selective culturing method indicated that more than 60% of the samples tested 

contained coliform bacteria, with a further 20% containing detectable 

Staphylococcus. The likelihood of culturing potentially pathogenic bacteria was the 

same in samples from trained and untrained producers.  
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Figure S1: (A) Box plots showing the alpha diversity of nunu samples. (B) PCoA 
plot showing the beta diversity of nunu samples. 
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Figure S2: Bar plot showing species that were differentially abundant between nunu samples from trained 
producers and nunu samples from untrained producers. 
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Figure S3: MDS plot showing the functional similarities between nunu samples from trained 
producers and nunu samples from untrained producers. 
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Figure S4: Bar plot showing the abundances of antibiotic resistance-associated functions and 
horizontal gene transfer (HGT)-associated functions in the nunu metagenome. 
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Figure S5: Bar plot showing (a) the total time taken to process nunu metagenomic samples, and (b) the 
mean time taken to process each nunu metagenomic sample, using IDBA-UD, MetaMLST, PanPhlAn and 
StrainPhlAn.  
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Table S1: MetaCyc pathways (detected by HUMAnN2) which were differentially different between trained 
versus untrained nunu samples 

. 

MetaCyc pathway p-value 
(BH adjusted) 

1CMET2-PWY: N10-formyl-tetrahydrofolate biosynthesis 0.016 

ALLANTOINDEG-PWY: superpathway of allantoin degradation in yeast 0.019 

ARGSYNBSUB-PWY: L-arginine biosynthesis II (acetyl cycle) 0.047 

ARO-PWY: chorismate biosynthesis I 0.047 

ASPASN-PWY: superpathway of L-aspartate and L-asparagine biosynthesis 0.047 

BRANCHED-CHAIN-AA-SYN-PWY: superpathway of branched amino acid 
biosynthesis 

0.016 

CALVIN-PWY: Calvin-Benson-Bassham cycle 0.009 

COA-PWY-1: coenzyme A biosynthesis II (mammalian) 0.047 

COA-PWY: coenzyme A biosynthesis I 0.016 

COMPLETE-ARO-PWY: superpathway of aromatic amino acid biosynthesis 0.047 

DTDPRHAMSYN-PWY: dTDP-L-rhamnose biosynthesis I 0.047 

GALACTUROCAT-PWY: D-galacturonate degradation I 0.009 

GLUTORN-PWY: L-ornithine biosynthesis 0.047 

GLYCOGENSYNTH-PWY: glycogen biosynthesis I (from ADP-D-Glucose) 0.016 

HEME-BIOSYNTHESIS-II: heme biosynthesis I (aerobic) 0.028 

HISDEG-PWY: L-histidine degradation I 0.047 

HISTSYN-PWY: L-histidine biosynthesis 0.028 

HOMOSER-METSYN-PWY: L-methionine biosynthesis I 0.028 

ILEUSYN-PWY: L-isoleucine biosynthesis I (from threonine) 0.009 

KDO-NAGLIPASYN-PWY: superpathway of (Kdo)2-lipid A biosynthesis 0.034 

LACTOSECAT-PWY: lactose and galactose degradation I 0.009 

NONOXIPENT-PWY: pentose phosphate pathway (non-oxidative branch) 0.047 

P122-PWY: heterolactic fermentation 0.028 

P161-PWY: acetylene degradation 0.009 

PENTOSE-P-PWY: pentose phosphate pathway 0.009 

PEPTIDOGLYCANSYN-PWY: peptidoglycan biosynthesis I (meso-diaminopimelate 
containing) 

0.047 

POLYISOPRENSYN-PWY: polyisoprenoid biosynthesis (E. coli) 0.047 

PWY-2942: L-lysine biosynthesis III 0.016 

PWY-3001: superpathway of L-isoleucine biosynthesis I 0.028 

PWY-4242: pantothenate and coenzyme A biosynthesis III 0.047 

PWY-5097: L-lysine biosynthesis VI 0.016 

PWY-5100: pyruvate fermentation to acetate and lactate II 0.028 

PWY-5103: L-isoleucine biosynthesis III 0.016 

PWY-5104: L-isoleucine biosynthesis IV 0.034 

PWY-5173: superpathway of acetyl-CoA biosynthesis 0.009 

PWY-5265: peptidoglycan biosynthesis II (staphylococci) 0.016 

PWY-5384: sucrose degradation IV (sucrose phosphorylase) 0.016 

PWY-5686: UMP biosynthesis 0.028 

PWY-5747: 2-methylcitrate cycle II 0.016 

PWY-5850: superpathway of menaquinol-6 biosynthesis I 0.047 
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PWY-5860: superpathway of demethylmenaquinol-6 biosynthesis I 0.047 

PWY-5913: TCA cycle VI (obligate autotrophs) 0.009 

PWY-5973: cis-vaccenate biosynthesis 0.009 

PWY-6124: inosine-5'-phosphate biosynthesis II 0.009 

PWY-6125: superpathway of guanosine nucleotides de novo biosynthesis II 0.016 

PWY-6147: 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I 0.047 

PWY-6163: chorismate biosynthesis from 3-dehydroquinate 0.028 

PWY-6168: flavin biosynthesis III (fungi) 0.047 

PWY-621: sucrose degradation III (sucrose invertase) 0.009 

PWY-6282: palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) 0.047 

PWY-6385: peptidoglycan biosynthesis III (mycobacteria) 0.028 

PWY-6386: UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing) 0.028 

PWY-6387: UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate 
containing) 

0.028 

PWY-6507: 4-deoxy-L-threo-hex-4-enopyranuronate degradation 0.009 

PWY-6527: stachyose degradation 0.009 

PWY-6901: superpathway of glucose and xylose degradation 0.028 

PWY-6936: seleno-amino acid biosynthesis 0.009 

PWY-7111: pyruvate fermentation to isobutanol (engineered) 0.009 

PWY-7115: C4 photosynthetic carbon assimilation cycle, NAD-ME type 0.047 

PWY-7184: pyrimidine deoxyribonucleotides de novo biosynthesis I 0.028 

PWY-7187: pyrimidine deoxyribonucleotides de novo biosynthesis II 0.047 

PWY-7197: pyrimidine deoxyribonucleotide phosphorylation 0.047 

PWY-7199: pyrimidine deoxyribonucleosides salvage 0.009 

PWY-7200: superpathway of pyrimidine deoxyribonucleoside salvage 0.015 

PWY-7208: superpathway of pyrimidine nucleobases salvage 0.047 

PWY-7228: superpathway of guanosine nucleotides de novo biosynthesis I 0.016 

PWY-7242: D-fructuronate degradation 0.047 

PWY-7357: thiamin formation from pyrithiamine and oxythiamine (yeast) 0.009 

PWY-7539: 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia) 0.047 

PWY-7663: gondoate biosynthesis (anaerobic) 0.009 

PWY0-1061: superpathway of L-alanine biosynthesis 0.047 

PWY0-1296: purine ribonucleosides degradation 0.009 

PWY0-1297: superpathway of purine deoxyribonucleosides degradation 0.009 

PWY0-1298: superpathway of pyrimidine deoxyribonucleosides degradation 0.047 

PWY0-1319: CDP-diacylglycerol biosynthesis II 0.009 

PWY0-42: 2-methylcitrate cycle I 0.016 

PWY66-409: superpathway of purine nucleotide salvage 0.009 

PWY66-422: D-galactose degradation V (Leloir pathway) 0.047 

RHAMCAT-PWY: L-rhamnose degradation I 0.047 

SER-GLYSYN-PWY: superpathway of L-serine and glycine biosynthesis I 0.047 

THRESYN-PWY: superpathway of L-threonine biosynthesis 0.028 

TRPSYN-PWY: L-tryptophan biosynthesis 0.009 

VALSYN-PWY: L-valine biosynthesis 0.009 
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Table S2: The results of PanPhlAn analysis of 17 spinach samples spiked with different STEC. 

Sequence accession 
number Strain 

E. coli 
abundance 

(%) 
stx1A stx1B stx2A stx2B 

SRR4101289 E. coli O157:H7 str. Sakai 89.73 1 1 1 1 

SRR4101293 E. coli O157:H7 str. TW14359 79.9 1 1 1 1 

SRR4101297 E. coli O157:H7 str. TW14359 42.74 0 0 1 1 

SRR4101299 E. coli O113:H21 str. CL-3  45.7 0 0 1 1 

SRR4101303 E. coli O113:H21 str. CL-3  68.17 1 1 0 0 

SRR4101307 E. coli serovar O145:H28 92.98 0 0 1 1 

SRR4101308 E. coli serovar O121:H19 92.14 0 0 1 1 

SRR4101310 E. coli EC1738 60.59 0 0 1 1 

SRR4101311 E. coli EC1738 87.5 0 0 1 1 

SRR4101312 E. coli O104:H4 str. 2011C-3493 80.43 0 0 1 1 

SRR4101314 E. coli O104:H4 str. 2011C-3493 66.08 0 0 1 1 

SRR4101315 E. coli serovar O104:H7 89.98 0 0 1 1 

SRR4101317  E. coli serovar O145:H28  20.56 0 0 1 1 

SRR4101318 E. coli STEC_B2F1 38.67 0 0 1 1 

SRR4101319 E. coli STEC_B2F1 56.95 0 0 1 1 

SRR4101321 E. coli O113:H21 str. CL-3 92.83 0 0 1 1 

SRR4101323 E. coli O113:H21 str. CL-3 76.2 0 0 1 1 
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Table S3: Escherichia coli reference genomes used in this study. 

Escherichia coli strain RefSeq assembly accession 

RM13514 GCF_000520035 

ST540 GCF_000599625 

ST2747 GCF_000599685 

RM12761 GCF_000662395 

RM12581 GCF_000671295 

BIDMC 59 GCF_000692395 

BIDMC 74 GCF_000692575 

CHS 77 GCF_000692735 

SE11 GCF_000010385 

SE15 GCF_000010485 

UTI89 GCF_000013265 

536 GCF_000013305 

APEC O1 GCF_000014845 

E24377A GCF_000017745 

ATCC 8739 GCF_000019385 

SMS-3-5 GCF_000019645 

DH1 GCF_000023365  

BL21-Gold(DE3)pLysS AG GCF_000023665 

IAI1 GCF_000026265 

S88 GCF_000026285 

UMN026 GCF_000026325 

042 GCF_000027125 

KO11 GCF_000147855 

ABU 83972 GCF_000148365 

UM146 GCF_000148605 

MS 45-1 GCF_000164295 

TA280 GCF_000176655 

MS 145-7 GCF_000179115 

W GCF_000184185 

LT-68 GCF_000188815 

E1167 GCF_000190795 

1.2741 GCF_000194175 

3003 GCF_000194665 

TW07793 GCF_000194685 

UMNK88 GCF_000212715 

96.0497 GCF_000215185 

9.0111 GCF_000215265 

UMNF18 GCF_000220005 

STEC_DG131-3 GCF_000225125 

clone D i14 GCF_000233895 

B093 GCF_000242015 

DEC2D GCF_000249215 

P12b GCF_000257275 

https://www.ncbi.nlm.nih.gov/assembly/GCA_000520035
https://www.ncbi.nlm.nih.gov/assembly/GCA_000599625
https://www.ncbi.nlm.nih.gov/assembly/GCA_000599685
https://www.ncbi.nlm.nih.gov/assembly/GCA_000662395
https://www.ncbi.nlm.nih.gov/assembly/GCA_000671295
https://www.ncbi.nlm.nih.gov/assembly/GCA_000692395
https://www.ncbi.nlm.nih.gov/assembly/GCA_000692575
https://www.ncbi.nlm.nih.gov/assembly/GCA_000692735
https://www.ncbi.nlm.nih.gov/assembly/GCF_000010385
https://www.ncbi.nlm.nih.gov/assembly/GCF_000010485
https://www.ncbi.nlm.nih.gov/assembly/GCF_000013265
https://www.ncbi.nlm.nih.gov/assembly/GCF_000013305
https://www.ncbi.nlm.nih.gov/assembly/GCF_000014845
https://www.ncbi.nlm.nih.gov/assembly/GCF_000017745
https://www.ncbi.nlm.nih.gov/assembly/GCF_000019385
https://www.ncbi.nlm.nih.gov/assembly/GCF_000019645
https://www.ncbi.nlm.nih.gov/assembly/GCF_000023365
https://www.ncbi.nlm.nih.gov/assembly/GCF_000023665
https://www.ncbi.nlm.nih.gov/assembly/GCF_000026265
https://www.ncbi.nlm.nih.gov/assembly/GCF_000026285
https://www.ncbi.nlm.nih.gov/assembly/GCF_000026325
https://www.ncbi.nlm.nih.gov/assembly/GCF_000027125
https://www.ncbi.nlm.nih.gov/assembly/GCF_000147855
https://www.ncbi.nlm.nih.gov/assembly/GCF_000148365
https://www.ncbi.nlm.nih.gov/assembly/GCF_000148605
https://www.ncbi.nlm.nih.gov/assembly/GCF_000164295
https://www.ncbi.nlm.nih.gov/assembly/GCF_000176655
https://www.ncbi.nlm.nih.gov/assembly/GCF_000179115
https://www.ncbi.nlm.nih.gov/assembly/GCF_000184185
https://www.ncbi.nlm.nih.gov/assembly/GCF_000188815
https://www.ncbi.nlm.nih.gov/assembly/GCF_000190795
https://www.ncbi.nlm.nih.gov/assembly/GCF_000194175
https://www.ncbi.nlm.nih.gov/assembly/GCF_000194665
https://www.ncbi.nlm.nih.gov/assembly/GCF_000194685
https://www.ncbi.nlm.nih.gov/assembly/GCF_000212715
https://www.ncbi.nlm.nih.gov/assembly/GCF_000215185
https://www.ncbi.nlm.nih.gov/assembly/GCF_000215265
https://www.ncbi.nlm.nih.gov/assembly/GCF_000220005
https://www.ncbi.nlm.nih.gov/assembly/GCF_000225125
https://www.ncbi.nlm.nih.gov/assembly/GCF_000233895
https://www.ncbi.nlm.nih.gov/assembly/GCF_000242015
https://www.ncbi.nlm.nih.gov/assembly/GCF_000249215
https://www.ncbi.nlm.nih.gov/assembly/GCF_000257275
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KO11FL GCF_000258025 

W GCF_000258145 

P4 GCF_000259425 

APEC O78 GCF_000332755 

KTE193 GCF_000351025 

KTE233 GCF_000351325 

KTE56 GCF_000351525 

KTE66 GCF_000351625 

KTE67 GCF_000351645 

KTE17 GCF_000352125 

KTE42 GCF_000352185 

KTE29 GCF_000352245 

KTE79 GCF_000352445 

KTE84 GCF_000352465 

KTE115 GCF_000352525 

KTE135 GCF_000352585 

KTE141 GCF_000352645 

KTE144 GCF_000352665 

KTE146 GCF_000352685 

KTE147 GCF_000352705 

KTE154 GCF_000352725 

KTE192 GCF_000352785 

KTE184 GCF_000352885 

KTE183 GCF_000352905 

KTE196 GCF_000352925 

KTE197 GCF_000352945 

KTE218 GCF_000353105 

2720900 GCF_000355175 

KTE114 GCF_000407765 

KTE19 GCF_000407825 

KTE31 GCF_000407925 

KTE98 GCF_000408545 

KTE102 GCF_000408585 

HVH 55 (4-2646161) GCF_000456825 

HVH 58 (4-2839709) GCF_000456865 

HVH 65 (4-2262045) GCF_000456945 

HVH 111 (4-7039018) GCF_000457555 

HVH 115 (4-4465989) GCF_000457655 

HVH 139 (4-3192644) GCF_000458035 

HVH 164 (4-5953081) GCF_000458495 

HVH 188 (4-2356988) GCF_000458825 

HVH 195 (3-7155360) GCF_000458955 

KOEGE 44 (106a) GCF_000459715 

UMEA 3052-1 GCF_000460035 

UMEA 3087-1 GCF_000460095 

UMEA 3124-1 GCF_000460255 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000258025
https://www.ncbi.nlm.nih.gov/assembly/GCF_000258145
https://www.ncbi.nlm.nih.gov/assembly/GCF_000259425
https://www.ncbi.nlm.nih.gov/assembly/GCF_000332755
https://www.ncbi.nlm.nih.gov/assembly/GCF_000351025
https://www.ncbi.nlm.nih.gov/assembly/GCF_000351325
https://www.ncbi.nlm.nih.gov/assembly/GCF_000351525
https://www.ncbi.nlm.nih.gov/assembly/GCF_000351625
https://www.ncbi.nlm.nih.gov/assembly/GCF_000351645
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352125
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352185
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352245
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352445
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352465
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352525
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352585
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352645
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352665
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352685
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352705
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352725
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352785
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352885
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352905
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352925
https://www.ncbi.nlm.nih.gov/assembly/GCF_000352945
https://www.ncbi.nlm.nih.gov/assembly/GCF_000353105
https://www.ncbi.nlm.nih.gov/assembly/GCF_000355175
https://www.ncbi.nlm.nih.gov/assembly/GCF_000407765
https://www.ncbi.nlm.nih.gov/assembly/GCF_000407825
https://www.ncbi.nlm.nih.gov/assembly/GCF_000407925
https://www.ncbi.nlm.nih.gov/assembly/GCF_000408545
https://www.ncbi.nlm.nih.gov/assembly/GCF_000408585
https://www.ncbi.nlm.nih.gov/assembly/GCF_000456825
https://www.ncbi.nlm.nih.gov/assembly/GCF_000456865
https://www.ncbi.nlm.nih.gov/assembly/GCF_000456945
https://www.ncbi.nlm.nih.gov/assembly/GCF_000457555
https://www.ncbi.nlm.nih.gov/assembly/GCF_000457655
https://www.ncbi.nlm.nih.gov/assembly/GCF_000458035
https://www.ncbi.nlm.nih.gov/assembly/GCF_000458495
https://www.ncbi.nlm.nih.gov/assembly/GCF_000458825
https://www.ncbi.nlm.nih.gov/assembly/GCF_000458955
https://www.ncbi.nlm.nih.gov/assembly/GCF_000459715
https://www.ncbi.nlm.nih.gov/assembly/GCF_000460035
https://www.ncbi.nlm.nih.gov/assembly/GCF_000460095
https://www.ncbi.nlm.nih.gov/assembly/GCF_000460255
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UMEA 3144-1 GCF_000460315 

UMEA 3150-1 GCF_000460335 

UMEA 3152-1 GCF_000460375 

UMEA 3200-1 GCF_000460735 

UMEA 3212-1 GCF_000460835 

UMEA 3271-1 GCF_000461115 

UMEA 3718-1 GCF_000461675 

UMEA 4076-1 GCF_000461855 

BIDMC 19C GCF_000474825 

JJ1886 GCF_000493755 

HVH 36 (4-5675286) GCF_000494935 

K-12 substr. MG1655 GCF_000005845 

12009 GCF_000010745 

2009EL-2050 GCF_000299255 

2009EL-2071 GCF_000299475 

2011C-3493 GCF_000299455 

11128 GCF_000010765 

E2348/69 GCF_000026545 

E24377A GCF_000017745 

EC4115 GCF_000021125 

EDL933 GCF_000732965 

Sakai GCF_000008865 

TW14359 GCF_000022225 

Xuzhou21 GCF_000262125 

11368 GCF_000091005 

CB9615 GCF_000025165 

RM12579 GCF_000245515 

CE10 GCF_000227625 

NRG 857C GCF_000183345 

55989 GCF_000026245 

ETEC H10407 GCF_000210475 

https://www.ncbi.nlm.nih.gov/assembly/GCF_000460315
https://www.ncbi.nlm.nih.gov/assembly/GCF_000460335
https://www.ncbi.nlm.nih.gov/assembly/GCF_000460375
https://www.ncbi.nlm.nih.gov/assembly/GCF_000460735
https://www.ncbi.nlm.nih.gov/assembly/GCF_000460835
https://www.ncbi.nlm.nih.gov/assembly/GCF_000461115
https://www.ncbi.nlm.nih.gov/assembly/GCF_000461675
https://www.ncbi.nlm.nih.gov/assembly/GCF_000461855
https://www.ncbi.nlm.nih.gov/assembly/GCF_000474825
https://www.ncbi.nlm.nih.gov/assembly/GCF_000493755
https://www.ncbi.nlm.nih.gov/assembly/GCF_000494935
https://www.ncbi.nlm.nih.gov/assembly/GCF_000005845
https://www.ncbi.nlm.nih.gov/assembly/GCA_000010745.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000299255.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000299475.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000299455.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000010765.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000026545.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000017745.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000021125.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000732965.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000008865.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000022225.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000262125.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000091005.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000025165.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000245515.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000227625.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000183345.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000026245.1
https://www.ncbi.nlm.nih.gov/assembly/GCA_000210475.1
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Table S4: Klebsiella pneumoniae reference genomes used in this study. 

Klebsiella pneumoniae strain RefSeq assembly accession 

HS11286 GCF_000240185 

NTUH-K2044 GCF_000009885 

KCTC 2242 GCF_000220485 

Kp13 GCF_000512165 

KPNIH31 GCF_000785005 

234-12 GCF_000981845 

DHQP1002001 GCF_001704235 

Kp_Goe_154414 GCF_001902335 

ATCC 13884 GCF_000163455 

LCT-KP214 GCF_000255975 

WGLW1 GCF_000300655 

WGLW2 GCF_000300675 

KpQ3 GCF_000300835 

WGLW5 GCF_000300955 

909957 GCF_000485755 

BIDMC 40 GCF_000492215 

BIDMC 36 GCF_000492295 

BIDMC 25 GCF_000492315 

BIDMC 24 GCF_000492335 

BIDMC 23 GCF_000492355 

UCICRE 14 GCF_000492415 

UCICRE 7 GCF_000492535 

BWH 30 GCF_000492695 

BWH 28 GCF_000492735 

MGH 44 GCF_000492795 

MGH 43 GCF_000567685 

XDR GCF_000785625 

KP-7 GCF_000406385 

ATCC 25955 GCF_000409715 

CCBH13327 GCF_000805735 

- GCF_000821685 

ATCC 11296 GCF_000826585 

50531633 GCF_001462885 

YMC2010/8/B2027 GCA_001901745 

12-3578 GCF_000367165 

1183_KPNE GCF_001060495 

570_KPNE GCF_001063755 

k414 GCF_900085035 

k2254 GCF_900085435 

W2-15-ERG3 GCF_900093395 
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Abstract 

Background: The use of shotgun metagenomics to analyse low complexity 

microbial communities in foods has the potential to be of considerable fundamental 

and applied value. However, there is currently no consensus with respect to choice of 

species classification tool, platform or sequencing depth. Here, we benchmarked the 

performances of three high-throughput short-read sequencing platforms, the Illumina 

MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. 

Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, 

the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial 

species. A variety of bioinformatics tools were used to analyse the data generated, 

and the effects of sequencing depth on these analyses was tested by randomly 

subsampling reads.  

Results: Compositional analysis results were consistent between the platforms at 

divergent sequencing depths. However, we observed pronounced differences in the 

predictions from species classification tools. Indeed, PERMANOVA indicated that 

there was no significant differences between the compositional results generated by 

the different sequencers (p=0.693, R2=0.011), but there was a significant difference 

between the results predicted by the species classifiers (p=0.001, R2=0.127). The 

relative abundances predicted by the classifiers, apart from MetaPhlAn2, were 

apparently biased by reference genome sizes. Additionally, we observed varying 

false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive 

rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis 

results were also similar across platforms. Each platform correctly identified the 

strains present in the mock community, but accuracy was improved slightly with 

greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each 
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kefir sample above 500,000 reads per sample. Again, the outputs from functional 

profiling analysis using SUPER-FOCUS were generally accordant between the 

platforms at different sequencing depths. Finally, and expectedly, metagenome 

assembly completeness was significantly lower on the MiSeq than either the 

NextSeq (p=0.03) or the Proton (p=0.011), and it improved with increased 

sequencing depth. 

Conclusions: Our results demonstrate a remarkable similarity in the results 

generated by the three sequencing platforms at different sequencing depths, and, in 

fact, the choice of bioinformatics methodology had a more evident impact on results 

than the choice of sequencer did. 
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Background 

Next generation sequencing has revolutionised microbiological research by enabling 

high-throughput metagenomic analysis of mixed microbial communities from many 

different environments (1-3). Briefly, metagenomics involves the culture-

independent analysis of genomic DNA isolated from an entire microbial community, 

whereas genomics involves the culture-dependent analysis of genomic DNA isolated 

from a single microbial isolate (4). Metagenomic sequencing is an umbrella term 

which encompasses two distinct culture-independent sequencing approaches: 

amplicon sequencing or shotgun metagenomics. To date, amplicon sequencing, 

primarily of the 16S rRNA gene, has been the most commonly utilised 

metagenomics approach (5). 16S rRNA gene sequencing is used to investigate the 

bacterial composition of samples (6), but it is typically limited to genus-level 

identification (7), although higher resolution is sometimes possible (8, 9). In 

contrast, shotgun metagenomics enables species-level (10), and potentially strain-

level classification (11-14) of microorganisms. Importantly, shotgun metagenomics 

can also be applied to determine the genetic content of samples to assess the 

associated functional potential (15). Shotgun metagenomics has been relatively 

underutilised, primarily because it is more expensive than 16S rRNA gene 

sequencing as it necessitates considerably higher sequencing depths (16). Indeed, 

desired sequencing depth is a factor that frequently dictates the choice of sequencing 

platform for high-throughput sequencing investigations (17).  

A variety of sequencing platforms is currently available from several manufacturers, 

which vary in sequencing chemistry, read length and/or throughput. Presently, 

Illumina sequencers are the most commonly used sequencing platforms for 

microbiological research applications, including shotgun metagenomics (18). 
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Illumina sequencing chemistry is based on sequencing-by-synthesis, wherein 

adaptor-ligated DNA fragments on the surface of a flow cell are amplified by bridge 

PCR to generate clusters which are then sequenced via cyclic rounds of single-base 

extension with a mixture of fluorescently labelled dNTPs whose incorporation is 

detected using a high-sensitivity camera (19). The Illumina range of sequencers 

includes, in order of throughput, the MiSeq, NextSeq, and HiSeq series.  Generally, 

the NextSeq or the HiSeq are preferred to the MiSeq for shotgun metagenomics, 

although there are several examples of the MiSeq also being used for this approach 

(20-22).  

The Ion Torrent PGM from Life Technologies is another frequently utilised 

sequencer in microbiology, particularly for whole genome sequencing analysis of 

microbial isolates (23), although it is also used for shotgun metagenomics (24). In 

contrast, the higher-throughput Ion Proton, also from Life Technologies, is 

comparatively overlooked for metagenomic sequencing, whereas it is widely used 

for exome sequencing analysis of higher organisms (25-27). Ion sequencing 

chemistry is based on semiconductor sequencing, wherein adaptor-ligated DNA 

fragments attached to the surface of beads are amplified using emulsion PCR (28). 

Subsequently, these beads are placed inside microwells on a semiconductor 

sequencing chip, where a sequencing-by-synthesis reaction occurs which is similar 

to the Illumina method, except that base incorporation is determined by the 

measurement of pH changes caused by the escape of hydrogen ions during DNA 

extension. 

Numerous studies have previously compared the performances of the Illumina 

MiSeq versus the Ion Torrent PGM to determine the relative accuracy of the 

sequencers and, now, it has been well established that the error rate of the Illumina 
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platforms, less than 1%, is lower than that of their Ion counterparts, approximately 

1.7% (29). Specifically, Ion reads contain a higher incidence of insertions/deletions 

(30), and they are susceptible to premature sequence truncation (31). Long 

homopolymer tracts are especially problematic for Ion sequencing (32). 

Previous investigations have aimed to determine if the choice of sequencing platform 

significantly influences metagenomic analyses. Recently, Fouhy et al. compared the 

MiSeq with the PGM for 16S rRNA gene sequencing analysis and reported that 

compositional results differed depending on the platform used (33). However, when 

these platforms were compared with the HiSeq for shotgun metagenomic 

applications, it was apparent that compositional results were similar across platforms 

but varied depending on the species classification tools used (34).  Although these 

studies focused on gut microbial populations, shotgun metagenomics also has 

enormous potential with respect to the analysis of low complexity microbial 

communities, such as those in foods. Indeed, shotgun metagenomics has already 

vastly improved our knowledge of the microbiology of a number of fermented foods 

(35), and has numerous potential applications relating to food quality and safety (36). 

Furthermore, it has been proposed that metagenomic analysis of fermented foods can 

yield insights into the nature of microbial interactions or microbial community 

formation in other, more complicated, environments (37). However, the absence of a 

consensus with respect to the optimal sequencing platform or bioinformatic tools for 

shotgun metagenomic analysis of simple microbial communities could delay the 

more widespread application of the approach.  

Here, we describe the first comparison of the performances of the short read DNA 

sequencing platforms, the Illumina MiSeq, the Illumina NextSeq, and the Ion Proton, 

for shotgun metagenomic-analysis of low complexity food-associated microbial 
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communities. This analysis was combined with an investigation of the impact of 

sequencing depth and downstream bioinformatic analysis, with a view to informing 

researchers, and especially food microbiologists, when designing shotgun 

metagenomic experiments.  

 

Methods 

Sources of metagenomic DNA 

Metegenomic DNA representative of a low complexity, food-based, microbial 

community was generated by mixing equimolar ratios of genomic DNA from 13 

food-related bacteria (Table 1). Strains were selected on the basis of the availability 

of corresponding complete or near-complete genome sequences from RefSeq (38). 

Genomic DNA was sourced from ATCC, DSM, and LMG. Genomic DNA 

concentration was determined prior to pooling using the Qubit High Sensitivity DNA 

assay (BioSciences, Dublin, Ireland). We also analysed metagenomic DNA from six 

kefir milk samples which were previously isolated by Walsh et al. (39). Briefly, the 

samples were produced using either the Ick grain (samples: i24hd4; i24hd5; i24hd6) 

or the UK3 grain (samples: u24hd4; u24hd5; u24hd6). Three separate kefir 

fermentations were done using each grain. Fermented kefir samples were collected 

after 24 hours fermentation.  

DNA sequencing 

Illumina libraries were prepared using the Nextera XT kit in accordance with the 

Nextera XT DNA Library Preparation Guide from Illumina. MiSeq libraries were 

sequenced on the Illumina MiSeq sequencing platform in the Teagasc sequencing 
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facility, using a 2 x 300 cycle v3 kit, following standard Illumina sequencing 

protocols. NextSeq libraries were sequenced on the Illumina NextSeq 500, with a 

NextSeq 500/550 High Output Reagent Kit v2 (300 cycles), in accordance with 

standard Illumina sequencing protocols. Proton libraries were prepared in accordance 

with the Ion Xpress Plus gDNA Fragment Library Preparation User Guide. Proton 

libraries were enriched using the ION Proton PI template OT2 200 Kit v3, and 

sequenced using the Ion PI Sequencing 200 Kit v3, in accordance with standard Ion 

protocols. 

 

Bioinformatic analysis 

Raw shotgun metagenomic fastq files were converted to bam files using SAMtools 

(40), and duplicate reads were subsequently removed using Picard Tools 

(https://github.com/broadinstitute/picard). Next, low quality reads were removed 

using the trimBWAstyle.usingBam.pl script 

(https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/H

mpSraProcess/trimBWAstyle.usingBam.pl). Specifically, Illumina reads were 

filtered to 200 bp, and reads with a quality score less than Q30 were discarded. Ion 

Proton reads were filtered to 110 bp, and reads with a quality score less than Q20 

were discarded. The resulting fastq files were then converted to fasta files using the 

fq2fa option from IDBA-UD (41). Reads were randomly subsampled using seqtk 

(https://github.com/lh3/seqtk). 

Compositional analysis was performed using the following species-classifiers: 

CLARK (42), Kaiju (43), Kraken (44), MetaPhlAn2 (45), and SLIMM (46). Species 

detected below 0.1% relative abundance were categorised as "other" for each 

https://github.com/broadinstitute/picard
https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl
https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl
https://github.com/lh3/seqtk
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classifier. Note that Bowtie 2 (47) was used to map reads against the slimmDB_5k 

database. Strain-level metagenomic analysis was performed using PanPhlAn (12), 

which aligns reads against a pangenome database to functionally characterise strains. 

See supplemental material for a detailed description of the settings used for each 

species-classifier and/or PanPhlAn. Functional analysis was performed with SUPER-

FOCUS (48), using the aligner DIAMOND (49), and HUMAnN2 (50), using the --

bypass-translated-search option. Briefly, SUPER-FOCUS measures the abundances 

of subsystems, or groups of proteins with shared functionality, by aligning 

sequencing reads against a reduced SEED database (51), whereas HUMAnN2 

measures the abundances of UniRef clusters (52) by aligning sequences against the 

ChocoPhlAn database.  HUMAnN2 gene families were mapped to level-4 enzyme 

commission (EC) categories using HUMAnN2 utility mapping files. Metagenome 

assembly was performed using IDBA-UD (41).  

Sequence data have been deposited in the European Nucleotide Archive (ENA) 

under the project accession number PRJEB22610. 

Statistical analysis 

Statistical analysis was performed in R-3.2.2 (53). The vegan package (version 2.3.0) 

(54) was used for alpha diversity analysis, as well as Bray-Curtis based 

multidimensional scaling (MDS) analysis. The adonis function in vegan was used for 

PERMANOVA (permutational analysis of variance) analysis, and the betadisper 

function, also in vegan, was used to calculate the distance of points from the 

centroid. The Kruskal-Wallis test was used to identify significant differences, and 

the resultant p-values were adjusted using the Benjamini-Hochberg method. The 
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Hmisc package (version 3.16.0) (55) was used for correlation analysis. The ggplot2 package 

(version 2.2.1) (56) was used for data visualisation. 

It is important to note that the mock community DNA sample was only sequenced once on 

each platform, and thus we were unable to assess technical variation across sequencing runs. 

However, previous studies have already demonstrated that such variation is small, 

accounting for 1.3% to 2.3% variation between KEGG functional profiles (57). Additionally, 

we chose 0.1% relative abundance as an arbitrary cut-off to compare species or pathways, 

whereas, in reality, potentially important taxa or functions may be present below this 

threshold. 

 

Results 

Compositional analysis is influenced more by the choice of species-classifier than 

platform used 

The Illumina MiSeq, the Illumina NextSeq, and the Ion Proton platforms were used for 

shogun metagenomic sequencing of a mock community sample, containing an equimolar 

mixture of genomic DNA from 13 food-related bacteria (Table 1), as well as six kefir DNA 

samples. The MiSeq produced 1,869,744 ± 401,024 reads per sample. The NextSeq 

produced 13,415,363 ± 4,098,763 reads per sample. The Proton produced 19,328,498 ± 

3,240,112 reads per sample. The species classifiers CLARK, Kaiju, Kraken, MetaPhlAn2, 

and SLIMM were used to determine the bacterial composition of the samples. 

Compositional analysis of the mock community sample were generally consistent across the 

three platforms (Figure 1A), although some minor differences were observed, particularly 

between the Illumina sequencers versus the Ion Proton. For example, based on the average 

results from each species-classifier, the MiSeq, the NextSeq and the Proton detected 

Acetobacter pasteurianus in the mock community sample at 9.8%, 9.3% and 7.8%, 

respectively,  
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Table 1.  Bacterial strains whose genomic DNA was mixed in an equimolar ratio to construct the Mock 

Community DNA sample.  

Species Strain 

RefSeq assembly 

accession 

GC content 

(%) 

Genome size 

(bp) 

Acetobacter pasteurianus LMG 1513 GCF_000010825.1 53.1 2,907,495  

Bacteroides vulgatus  DSM 1447 GCF_000012825.1 42.2 5,163,189  

Bifidobacterium adolescentis Reuter DSM 20083 GCF_000010425.1 59.3 2,089,645  

Corynebacterium casei LMG 19264 GCF_000550785.1  55.7 3,113,488  

Gluconacetobacter medellinensis LMG 1693 GCF_000182745.2 66.3 3,136,818  

Lactobacillus brevis ATCC 376 GCF_000014465.1 45.6 2,291,220  

Lactobacillus casei ATCC 334 GCF_000014525.1 46.6 2,895,264  

Lactobacillus delbrueckii DSM 20081* GCF_001437195.1 49.7 415,890  

Lactobacillus fermentum LMG 18251 GCF_000010145.1 51.8 2,098,685  

Lactobacillus reuteri DSM 20016 GCF_000016825.1 38.9 1,999,618  

Leuconostoc mesenteroides LMG 6909* GCF_000160595.1 37.7 543,364  

Propionibacterium freudenreichii LMG 16412 GCF_000940845.1 67.3 2,649,166  

Streptococcus thermophilus LMG 18311 GCF_000011825.1 39.1 1,796,846  

* = incomplete genome sequence         
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Figure 1: Compositional analysis of the mock community using the total number of reads from each 
sequencer. (A) Species-level profile of the mock community, as determined by each species-classifier. (B) 
Correlations between the relative abundances of species with their respective genome sizes. 
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and Lactobacillus reuteri in the same sample at 2.2%, 2.5% and 5.1%, respectively. 

With respect to species classifier, based on the average results from each sequencer, 

Bacteroides vulgatus was detected at 25.7% with CLARK compared to 10.2% with 

MetaPhlAn2, while Lactobacillus brevis was detected at 15.3% with Kaiju compared 

to 10.9% with SLIMM. Additionally, Kaiju, MetaPhlAn2, and SLIMM detected all 

13 mock community species from data generated from each of the sequencing 

platforms used, whereas CLARK and Kraken did not detect Corynebacterium casei 

from any of the datasets, despite this species being represented with their respective 

databases. The mock community species were not present at equal relative 

abundances in any sample, despite genomic DNA having being mixed in equimolar 

ratios. For example, based on the average results from all data, the relative 

abundance of Bacteroides vulgatus was 20.8%, whereas the relative abundance of 

Streptococcus thermophilus was 1.6%. Indeed, the relative abundances of mock 

community species positively correlated with their genome size for all of the 

classifiers, apart from MetaPhlAn2 (Figure 1B). However, this observation is not 

entirely unexpected, since it is logical that larger reference genomes will receive 

more hits than smaller ones, and the issue has already been reported elsewhere (58). 

We subsequently found that normalising relative abundances, as predicted by 

CLARK, Kaiju, Kraken, and SLIMM, according to reference genome sizes resulted, 

on average, in a more equal distribution (Levene’s test: p=0.01) (Figure S1). Note 

that since the L. delbrueckii DSM 20081 and L. mesenteroides LMG 6909 reference 

genomes were incomplete (Table 1), we normalised their abundances according to 

the median genome size for each species. 

A number of species not present in the mock community DNA sample were detected 

as false-positives (Figure S2). With respect to platforms, the MiSeq and NextSeq 
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gave the lowest and highest numbers of false positives, respectively. Of the species 

classifiers, MetaPhlAn2 and SLIMM gave the lowest and highest numbers of false 

positives, respectively. However, it is important to note that all of the false positives 

were detected at less than 1% relative abundance, and species assigned were closely 

related to actual mock community species. 

Overall, our results indicate that MetaPhlAn2 is the most accurate method, since it 

provided the lowest number of false positives. Additionally, the relative abundances 

predicted by MetaPhlAn2 were not biased by reference genome sizes. 

The microbiota composition of kefir samples were similar as determined across the 

three platforms (Figure 2A), but again there were some significant differences. 

Specifically, two classifiers, Kaiju and SLIMM, indicated that Lactobacillus 

plantarum was present at significantly lower ratios in MiSeq-sequenced samples 

than Proton-sequenced samples (Kaiju: p=0.031; SLIMM: p=0.031), and SLIMM 

also indicated that Lactobacillus acidophilus was significantly lower in MiSeq 

samples compared to NextSeq samples (p=0.019). MetaPhlAn2 also failed to detect 

Acetobacter in MiSeq samples, but the tool did identify Acetobacter in the other 

sample groups. Alpha diversity measures were not significantly different between 

sequencers (Table S1), but they were significantly different between classifiers 

(Table S2). Specifically, the alpha diversity predicted by MetaPhlAn2 was lower 

than any other classifier, while the alpha diversity predicted by CLARK was also 

lower than SLIMM. Multidimensional scaling (MDS) analysis of compositional data 

confirmed that there was no significant dissimilarity between the sequencers 

(PERMANOVA: p= 0.693, R2=0.011) (Figure 2B), but it revealed that there was a 

significant dissimilarity between the species classifiers (PERMANOVA: p=0.001, 

R2=0.127) (Figure 2C). MetaPhlAn2 was especially different from the other 
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Figure 2: Compositional analysis of kefir samples using the total number of reads from each sequencer. 
(A) Species-level profile of the kefir samples, as determined by each species-classifier. (B) Dissimilarity 
plot showing differences between sequencers. (C) Dissimilarity plot showing differences between species-
classifiers. 
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classifiers, since it did not detect Acetobacter pasteurianus or Leuconostoc citreum 

(Figure S3). Thus, although the mock community analysis indicated that 

MetaPhlAn2 is the most accurate approach, these results suggest that it is less 

sensitive than the other methods. Furthermore, only Kaiju detected Acetobacter 

senegalensis, while only SLIMM detected Bacillus cereus (Figure S3). However, 

there were no significant differences in the abundances of the two dominant kefir 

species, Lactobacillus kefiranofaciens or Leuconostoc mesenteroides, between any 

classifier (Table S3). 

We averaged the results from each species classifier to generate a consensus 

taxonomic profile of the kefir samples (Figure S4A), and subsequent MDS analysis 

verified that there was no significant dissimilarity between the sequencers 

(PERMANOVA: p=0.912, R2=0.02) (Figure S4B). 

 

Bacterial strain identification was consistent across platforms 

To further increase taxonomic resolution, we used PanPhlAn to characterise bacterial 

strains present in the samples. The results of strain-level metagenomic analyses were 

consistent across the three sequencers. For the mock community sample, PanPhlAn 

identified the correct strain of each of the analysed species (Figure 3A). For 

example, the MiSeq, NextSeq and Proton indicated that the Lactobacillus fermentum 

strain in the mock community shared 89.6%, 97.5% and 98.1%, respectively, of its 

pangenome gene-families with L. fermentum IFO 3956, while they indicated that the 

Streptococcus thermophilus strain in the mock community shared 76.6%, 86.9% and 

96.7%, respectively, of its pangenome gene-families with S. thermophilus LMG 

18311. Note that greater than two reference genomes are needed 
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Figure 3: Strain-level analysis, with PanPhlAn, using the total number of reads from each 
sequencer. (A) The highest match for each of 11 mock community species for which ≥2 
reference strain genomes are available at RefSeq, based on the presence/absence of 
pangenome gene-families. (B) A comparison of the relatedness of the Lactobacillus 
kefiranofaciens and Leuconostoc mesenteroides strains detected in kefir samples with each of 
the reference strain genomes present in the respective PanPhlAn pangenome databases. 
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to construct a PanPhlAn pangenome database, and hence we were unable to use 

PanPhlAn for strain-level analysis of Corynebacterium casei or Gluconacetobacter 

xylinus. 

For the kefir samples, PanPhlAn was used to provide strain-level analysis of the two 

most dominant species, Lactobacillus kefiranofaciens and Leuconostoc 

mesenteroides. Analysis on the MiSeq, NextSeq and Proton platforms all indicated 

that the Lactobacillus kefiranofaciens strain detected in the kefir samples was most 

closely related to L. kefiranofaciens GCF_001434195, but the MiSeq detected 

significantly fewer shared pangenome gene-families than either the NextSeq 

(p=0.01) or the Proton (p=0.01). Similarly, analysis of data from all three platforms 

indicated that the Leuconostoc mesenteroides strain was most closely related to L. 

mesenteroides GCF_000447945 (Figure 3B), but, again, the MiSeq detected 

significantly fewer shared pangenome gene-families than either the NextSeq 

(p=0.024) or the Proton (p=0.024). It is likely that the decreased accuracy achieved 

with the MiSeq was due to its lower sequencing depth relative to the other two 

sequencers. The contribution of sequencing depth to the accuracy of strain-level 

analysis is investigated in subsequent sections.  

 

Metagenome assembly completeness varies significantly between platforms but 

functional profiles remain consistent 

IDBA-UD was used to assemble the mock community and kefir metagenomes. The 

n50 number, which is a measure of metagenome assembly completeness, of MiSeq 

assembles was significantly lower than either NextSeq (p=0.03) or Proton assemblies 
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(p=0.011) (Figure S5). The mean n50 numbers for each platform were as follows: 

n50=3,151 (MiSeq); n50=13,874 (NextSeq); and n50=9,307 (Proton). 

The functional profile of the mock community sample, as characterised by SUPER-

FOCUS, was congruent across the three platforms (Figure 4A). As anticipated, a 

large proportion of the metagenome was involved in housekeeping functions such as 

carbohydrate or protein metabolism. Specifically, the MiSeq, NextSeq and Proton 

detected the “carbohydrates” subsystem at 18.2%, 18.4% and 18.7%, respectively, 

while they detected the “protein metabolism” subsystem at 8.4%, 8.3% and 8.4%, 

respectively. Similarly, the functional potential of kefir samples was accordant 

across the three platforms. Indeed, MDS analysis indicated that the Illumina 

sequencers were more similar to each other than the Proton, but there was no 

significant overall dissimilarity between the three sequencers (PERMANOVA: p= 

0.808, R2=0.057) (Figure 4B). However, we did observe significant differences in 

the abundances of three SUPER-FOCUS subsystems that were present at greater 

than 1% relative abundances in kefir. Specifically, assignments to the “fatty acid” 

subsystem was significantly higher among the samples sequenced on the MiSeq than 

those sequenced with the NextSeq (p=0.049); levels of “heat shock” subsystem-

assigned reads were significantly different between all three platforms (MiSeq versus 

NextSeq: p=0.01; MiSeq versus Proton: p=0.037; NextSeq versus Proton: p=0.01); 

and reads assigned to the “protein biosynthesis” subsystem were significantly higher 

among samples sequenced on the Proton than those sequenced with either the MiSeq 

(p=0.037) or the NextSeq (p=0.037) (Figure 4C). 

 

Metagenomic pathway analysis tools provide inconsistent results 
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Figure 4: Functional analysis, with SUPER-FOCUS, using the total number of sequences from each 
sequencer. (A) The relative abundances of SUPER-FOCUS level-1 subsystems detected in the mock 
community. (B) Dissimilarity plot based on the relative abundances of the SUPER-FOCUS level 3 
subsystems detected in the kefir samples. (C) SUPER-FOCUS level 2 subsystems which were significantly 
altered between sequencers. 
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The results from SUPER-FOCUS were compared to those from HUMAnN2, which 

is an alternative tool for functional analysis of metagenomes. MDS analysis revealed 

that there was a significant dissimilarity between the two tools (PERMANOVA: p= 

0.808, R2=0.057) (Figure S6), based on the relative abundances of 865 level-4 

enzyme commission (EC) categories which were detected by both programs. Indeed, 

in total, 749 EC categories were differentially abundant between the methods. 

 

Sequencing depth does not significantly affect measured composition or 

predicted functional potential of low complexity food microbiomes 

Reads from the mock community and kefir samples were randomly subsampled to 

assess the effects of sequencing depth on compositional and functional analysis. 

MiSeq reads were subsampled from 100,000 to 1,000,000 reads per sample, while 

NextSeq and Proton reads were subsampled from 100,000 to 7,500,000 reads per 

sample.  

For the mock community sample, the compositions were close to identical, 

regardless of sequencing depth (Figure 5A). For example, Kraken detected 

Lactobacillus reuteri at 2.6% using 100,000 NextSeq reads, while it was detected at 

2.5% using 7,500,000 NextSeq reads. Similarly, the results of compositional analysis 

were uniform at divergent sequencing depths (Figure 5B). For instance, based on 

SUPER-FOCUS results, the carbohydrate metabolism subsystem was detected at 

18.6% using 100,000 NextSeq reads, while it was detected at 18.4% using 7,500,000 

NextSeq reads. 
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Figure 5: The effect of sequencing depth on compositional and functional analysis of the mock community. 
(A) The species-level profile of the mock community sample at different sequencing depths on each 
sequencer. (B) The relative abundances of the top five most prevalent SUPER-FOCUS level 1 subsystems 
detected in the mock community at different sequencing depths on each sequencer. 
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The microbial profiles of the subsampled kefir reads were highly similar at different 

sequencing depths (Figure 6A). Indeed, there were no significant differences in the 

abundances of any species present at >0.1% relative abundance, as detected by each 

classifier, at sequencing depths of 100,000, 1,000,000 or 7,500,000 reads per sample. 

However, we did observe some notable, albeit non-significant, differences (Figure 

6B). Specifically, MetaPhlAn2 indicated that the abundance of Acetobacter was 

lower at 100,000 NextSeq reads compared to 7,500,000 NextSeq reads (p=0.06). 

SLIMM indicated that the abundance of Latcobacillus casei was lower at: 100,000 

MiSeq reads compared to 1,000,000 MiSeq reads (p=0.054); 100,000 NextSeq reads 

compared to 7,500,000 NextSeq reads (p=0.056); and 1,000,000 NextSeq reads 

compared to 7,500,000 NextSeq reads (p=0.056). Additionally, there were no 

significant differences in alpha diversity at these different sequencing depths on any 

sequencer (Table S5), although alpha diversity measures predicted by MetaPhlAn2 

did visibly increase with sequencing depths up to 1,000,000 reads per sample (Figure 

S7A). Similarly, MDS analysis indicated that there were no clear differences in 

microbial composition predicted by CLARK, Kaiju, Kraken or SLIMM at different 

sequencing depths, but there were apparent differences between the microbial 

compositions predicted by MetaPhlAn2 at different sequencing depths (Figure S7B). 

It is important to note that we only included species which were detected at >0.1% 

relative abundance in our diversity analysis. It is possible that higher sequencing 

depths might improve the detection of species present at <0.1%, which may affect 

diversity measures. 
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Figure 6: The effect of sequencing depth on compositional and functional 
analysis of kefir. (A) The average species-level profile of kefir samples at 
different sequencing depths on each sequencer. (B) Species whose 
abundances were most highly impacted by sequencing depth (0.05<p<0.1). 
(C) Dissimilarity plot based on the relative abundances of the SUPER-FOCUS 
level 3 subsystems detected in the kefir samples at different sequencing 
depths on each sequencer. 
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SUPER-FOCUS analysis of subsampled kefir reads again revealed that the 

functional profiles were highly similar at the different sequencing depths. Indeed, 

MDS analysis indicated that data points did not cluster by the number of reads per 

sample (Figure 6C), but instead we identified six distinct clusters, representing each 

of the six kefir samples. However, we did identify fifteen differentially abundant 

level 2 subsystems at different sequencing depths, but these functions were all 

present at <0.01% relative abundance (Figure S8). 

Metagenome assembly of subsampled kefir reads using IDBA-UD showed that 

sequencing depth had a major impact on metagenome completeness (Figure 7A). 

The n50 number of metagenomes assembled from 100,000 reads was significantly 

lower than the n50 number of those assembled from 1,000,000 reads (p=0.003) or 

7,500,000 reads (p=0.003) (Figure 7B). Additionally, the n50 number of 

metagenomes assembled from 1,000,000 reads was significantly lower than the n50 

number of those assembled from 7,500,000 reads (p=0.009). 

Finally, we used PanPhlAn to assess the impact of sequencing depth on strain-level 

analysis of the two dominant kefir species, L. kefiranofaciens and L. mesenteroides. 

Below 500,000 reads per sample, PanPhlAn failed to characterise either species at 

the strain-level for several kefir samples on each sequencer, but above 500,000 reads 

per sample, PanPhlAn successfully characterised both species at the strain-level for 

every kefir sample on each sequencer (Figure 8A). PanPhlAn indicated that the L. 

kefiranofaciens and L. mesenteroides strains detected in kefir samples shared the 

greatest similarity to L. kefiranofaciens GCF_001434195 and L. mesenteroides 

GCF_000447945, respectively. However, the percentage shared pangenome gene-

families was significantly lower at 500,000 reads per sample compared to 7,500,000 

reads per sample on the NextSeq for both species (L. kefiranofaciens: p=0.031; L. 
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Figure 7: The effect of sequencing depth on metagenome assembly using IDBA-UD. (A) The n50 numbers at 
each sequencing depth. (B) Statistical differences in the n50 number at 100,000, 1,000,000 and 7,500,000 
reads per sample. 
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Figure 8: The effect of sequencing depth on PanPhlAn analysis of the two most 
abundant kefir species, Lactobacillus kefiranofaciens and Leuconostoc mesenteroides. 
(A) The predicted percentage similarity of kefir strains relative to their most closely 
related reference strain, at each sequencing depth. Grey cells indicate that the species 
was not classified to the strain-level at the specified depth. (B) Statistical differences in 
the percentage similarity at 100,000, 1,000,000 and 7,500,000 reads per sample. 
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mesenteroides: p=0.012) (Figure 8B). Overall, our results indicate that the tool’s 

accuracy improves with increased sequencing depth. 

 

The reproducibility of random subsampling improves with increased 

sequencing depth 

The reproducibility of sequence subsampling was assessed by randomly subsampling 

each kefir sample 10 times at 100,000 reads, 250,000 reads, and 500,000 reads. The 

subsampled reads were analysed using MetaPhlAn2 and SUPER-FOCUS. For 

MetaPhlAn2, MDS showed that replicates clustered together at each sequencing 

depth (Figure S9A). However, the average distance from replicates to their 

respective centroids significantly decreased with increased sequencing depth for 

each sequencer (Figure S9B). Additionally, at 500,000 reads, the distance to the 

centroid was significantly lower for the MiSeq than either the NextSeq or the Proton 

(Figure S9C). Similarly, for SUPER-FOCUS, MDS showed that replicates clustered 

together at each sequencing depth (Figure S10A). However, again, the distance to 

the centroid significantly decreased with increased sequencing depth for each 

sequencer (Figure S10B). Furthermore, at all sequencing depths, the distance to the 

centroid was lower for the MiSeq than either the NextSeq or the Proton, and it was 

also lower for the NextSeq than the Proton (Figure S10C). Overall, our results 

indicate that random subsampling is consistent but reproducibility does improve with 

sequencing depth. The MiSeq gave the most consistent results, which is perhaps 

because it produces longer read lengths than the other two platforms. 
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 Discussion 

Currently, there is no consensus as to which next generation sequencing platforms 

are most suitable for shotgun metagenomics of low complexity microbial 

communities, such as those in foods. Optimised determination of food microbiota is 

of considerable relevance to ensuring the safety, quality and health-promoting 

attributes of foods. Here, we use a variety of bioinformatic tools to benchmark the 

performances of three high-throughput platforms for shotgun metagenomics of food 

microbial communities: the Illumina MiSeq, the Illumina NextSeq, and the Ion 

Proton. Our results highlight a remarkable similarity in the results generated with 

each platform in terms of compositional, functional, and strain-level analysis. In 

contrast, several issues with the outputs from species classifiers were identified. 

Notably, the results of MetaPhlAn2 analysis differed from those of the other species 

classifiers. We expect that this is because MetaPhlAn2 is based on the alignments 

with species-specific marker gene sequences, whereas the other methods, which can 

be categorised as taxanomic binning tools, are based on alignments with whole 

genome sequences. In fact, we noted that the relative abundances of mock 

community species, as predicted by all of the species classifiers apart from 

MetaPhlAn2, correlated to the size of their respective reference genomes. Thus, our 

results confirm previous observations that these species classifiers are biased by the 

size of the reference genome (58), in the same way that 16S rRNA gene sequencing 

is biased by the number of 16S rRNA genes per genome. It is important to be aware 

of this issue when reporting species abundances. A potential solution to the problem 

is to normalise relative abundances by genome size. Indeed, this solution has already 

been suggested elsewhere (58, 59), and we found that normalisation resulted in a 

more even species distribution. However, this solution is limited by the assumption 
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that intraspecific strains share the same genome sizes, when, in fact, genome sizes 

often vary within a species (60). We noted some additional discrepancies between 

the species classifiers. Specifically, Corynebacterium casei was overlooked within 

the mock community by CLARK or Kraken, even though the species was present in 

their respective databases. Compositional analysis of the mock community also 

produced numerous probable false positive species classifications, especially in the 

case of SLIMM, but most of the false positives were closely related to the actual 

mock community species and they were present at less than 1% relative abundance. 

Overall, our results indicated that none of the classifiers are entirely accurate, but we 

suggest that MetaPhlAn2, and perhaps Kaiju, are the most suitable for compositional 

analysis of low complexity communities, especially foods, since both tools identified 

all of the mock community species and they can additionally detect eukaryotic 

organisms. 

Compositional analysis of kefir showed that the choice of sequencing platform did 

not noticeably affect the results. However, dissimilarity analysis again highlighted 

marked differences between the outputs generated by the species classifiers. Thus, 

for compositional analysis, the choice of sequencing platform had less of an 

influence on results than the choice of species classifier. These observations are 

consistent with findings from a previous sequencing platform comparison study (34), 

where the authors demonstrated that gut metagenome samples clustered by species 

classifier. Such results highlight a need for consistency in bioinformatics 

methodologies across studies, but the issue is confounded by the increasing 

availability of different species classifiers.  The recently developed method 

MetaMeta (59), which integrates the results from multiple species classifiers to 

mitigate the flaws from each individual tool, might partially address this problem. 
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We did not use MetaMeta here because the default program employs a different 

combination of species classifiers to that used in our study. Instead, we averaged the 

predicted taxonomic profiles from each species classifier for every sample, as an 

alternative solution, and subsequent analysis confirmed that there was no significant 

dissimilarity between the sequencers. Another possible option for compositional 

analysis, which we did not explore here, is to use a de novo metagenome assembly 

approach, wherein genomes are binned using tools like CONCOCT (61) or 

MetaBAT (62), and reads are then mapped against these bins to calculate species 

abundances. An advantage of such an approach is that it does not rely on a reference 

database for diversity analysis, and it may also be able to estimate the abundances of 

potentially novel genomes. However, sequence alignment against a reference 

database is still necessary to assign taxonomy to the bins, and, additionally, the 

approach requires a considerably higher sequencing depth than short-read alignment-

based methods (63).  

Another important aspect of shotgun metagenomics is its ability to characterise the 

functional potential of metagenomes. Again, the results of functional analysis were 

generally consistent between all three sequencing platforms, but SUPER-FOCUS did 

detect significant differences in three functions which were present at greater than 

1% relative abundance within the kefir metagenome. Such discrepancies suggest that 

results generated with different sequencers cannot be reliably compared. 

Above, we described a considerable difference in the compositional profiles 

determined by different species classifiers. Hence, we also compared results from 

SUPER-FOCUS with those from HUMAnN2, which is an alternative tool for 

functional analysis of metagenomes. We observed a similarly pronounced disparity 

in the results generated by these methods. Specifically, 865 level-4 enzyme 
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commission (EC) categories were detected with both tools, but 749 of these EC 

categories were differentially abundant between them. Our observation is not 

unexpected since these pipelines use inherently different approaches, but it does 

further emphasise that results obtained using different methods cannot be directly 

compared. 

Next, we compared the results of strain-level analysis using PanPhlAn, and we found 

that all three sequencers correctly identified the analysed strains from the mock 

community sample. Similarly, the three platforms each indicated that the L. 

kefiranofaciens and L. mesenteroides strains detected in the kefir samples were most 

closely related to L. kefiranofaciens GCF_001434195 and L. mesenteroides 

GCF_000447945, respectively. PanPhlAn was significantly less accurate when 

utilising data generated by the MiSeq compared to either NextSeq or Proton data, 

suggesting that sequencing depth affected strain-level analysis. We subsequently 

confirmed this by randomly subsampling kefir sequencing reads which demonstrated 

that PanPhlAn failed to detect L. kefiranofaciens GCF_001434195 or L. 

mesenteroides GCF_000447945 a subset of kefir samples below 500,000 reads per 

sample using any sequencer. Similarly, and as expected, we observed that 

sequencing depth significantly improved metagenome assembly completeness. On 

the other hand, sequencing depth did not have a noticeable effect on compositional 

or functional analysis of the mock community or kefir, regardless of the choice of 

sequencer. Indeed, the results of these analyses were almost uniform at sequencing 

depths ranging from 100,000 reads per sample to 7,500,000 reads per sample, 

regardless of the choice of species classifier. It is important to note, however, that 

increased sequencing depth caused a slight, but significant, improvement in the 
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reproducibility of random subsampling, which suggests that higher coverage offers 

more reproducible results. 

Overall, our findings confirm that the Proton is on par with Illumina sequencers in 

terms of accuracy, but  only a handful of studies have used the Proton for shotgun 

metagenomics to date (64, 65), even if it is widely used for human exome 

sequencing. On the basis of these investigations the Proton is a viable option for 

metagenomic analyses.  

To date, most high-throughput sequencing-based studies of microbial communities 

of food have relied upon 16S rRNA gene sequencing (35). Shotgun metagenomics 

can, in general, offer higher taxonomic resolution than amplicon sequencing, 

although the latter approach may be superior for studying poorly microbiologically 

characterised environments that contain few species for which there are available 

reference genomes. Shotgun metagenomics can also be used for the direct functional 

characterisation of metagenomes. Several recent studies have demonstrated the 

enormous potential for shotgun metagenomic analysis of foods, and indeed, we have 

previously used the approach to: identify the cause of a pink discoloration defect in 

Swiss-type cheeses (66), link microbial species with distinct flavours during kefir 

fermentation (39), and identify pathogenic strains in nunu (67). However, the higher 

cost of shotgun metagenomics is considered prohibitive for commercial application 

of the technology by the food industry and, consequently, the approach has been 

relatively underutilised. This is partially due to a perception that shotgun 

metagenomics requires considerable sequencing depth per sample. Notably, our 

results suggest that this is not necessarily true for the low complexity microbial 

communities present in foods and suggest that 750,000 to 1,000,000 reads per 
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sample is sufficient for compositional and/or functional analysis of such simple 

communities.  

 

Conclusion 

In conclusion, analysis of low diversity metagenomic DNA representative of food 

microbial communities highlighted that outputs were consistent across a variety of 

sequencing platforms at different sequencing depths, but there were clear disparities 

between the outputs of bioinformatics tools. Thus, the choice of sequencer for 

shotgun metagenomics can be dictated by logistical factors, like platform 

availability, budget or sample size, rather than sequencing chemistry. It is hoped that 

this work will guide researchers, particularly food microbiologists, in designing 

shotgun metagenomics experiments to exploit the extensive possibilities offered by 

the approach. 
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SUPPLEMENTAL MATERIAL 

Compositional analysis 

Here, we outline the commands used for each species classifier, in addition to 

PanPhlAn, and we describe how these parameters deviated from the default settings. 

Commands are highlighted in grey. 

 

CLARK 

classify_metagenome.sh -O sample.fasta -R sample.clark.out -m 0 

estimate_abundance.sh -F sample.csv -D $DIR_DB -a 0.1 -c 1 -g 0.05 

 

Description: The CLARK classification step was run with full mode execution. 

The CLARK estimate abundances step was run with minAbundance 0.1, 

minConfidenceScore 1, and minGamma 0.05. 

 

Kaiju 

kaiju -t $KAIJU_DIR/nodes.dmp -f $KAIJU_DIR/kaiju_db.fmi -i sample.fasta 
-o sample.kaiju.out -z 10 –m 33 -x -v 

kaijuReport -u -m 0.1 -t $KAIJU_DIR/nodes.dmp -n $KAIJU_DIR/names.dmp 
-r species -i sample.kaiju.out -o sample.species.summary 

 

Description: The Kaiju classification step was run using the SEG low complexity 

filter, and the minimum match length was set to 22. Reads were mapped against the 

RefSeq database. The Kaiju report step was run using minAbundance 0.1. Only 

classified reads were reported. 



295 
 

Kraken 

kraken --threads 10 --preload --db $KRAKEN_DIR/krakken_db sample.fasta > 
sample.kraken.out 

kraken-filter --db $KRAKEN_DIR/krakken_db --threshold 0.5 
sample.kraken.out > sample.kraken.filtered 

kraken-mpa-report --db $KRAKEN_DIR/krakken_db sample.kraken.filtered > 
sample.kraken.mpa 

 

Description: Kraken results were filtered using a threshold set to 0.5 to remove low 

confidence classifications. 

 

MetaPhlAn2 

MetaPhlAn2 was run using default parameters 

(https://bitbucket.org/biobakery/biobakery/wiki/metaphlan2).  

 

SLIMM 

bowtie2 -x $SLIMM_DB/AB_5K_indexed_ref_genomes_bowtie2/AB_5K -U 
sample.fastq | samtools view -bSF4 - > sample.slimm.mapped.bam 

slimm -m $SLIMM_DB/slimmDB_5K sample.slimm.mapped.bam 

 

Description: Bowtie 2 (1) was used to trimmed fastq reads against the 

slimmDB_5K reference database. 

 

PanPhlAn 

https://bitbucket.org/biobakery/biobakery/wiki/metaphlan2
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panphlan_map.py -c $pangenome_bowtie2_index -i sample.fasta -o map_results 

panphlan_profile.py -c $pangenome_bowtie2_index -i map_results --
add_strains --min_coverage 1 --left_max 1.70 --right_min 0.30 --o_dna 
result_gene_presence_absence.csv --strain_hit_genes_perc percent_match.txt 

 

Description: The PanPhlAn profiling step was run with a –min_coverage set to 1, -

-left_max set to 1.7, and –right_min set to 0.3. These parameters increase the tool’s 

sensitivity.   

 

REFERENCES 
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2. Nature methods 9:357-359. 
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Figure S1: The effect of normalising predicted relative abundances by 
reference genome size. The histogram shows the distribution of the relative 
abundances of the mock community species, before and after 
normalisation. The results are averaged across sequencers and 
metagenome binning tools (i.e. CLARK, Kaiju, Kraken, and SLIMM). 
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Figure S2: False positives detected using each species classifier with the total number of reads from each 
sequencer. 
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Figure S3: Species detected ≥2.5% relative abundance in kefir samples using each species-classifier with 
the total number of reads from each sequencer. 
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Figure S4: (A) The consensus taxonomic profile of kefir samples, as predicted by averaging the results 
from each species classifier. (B) Dissimilarity plot based on the average results from each species classifier. 
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Figure S5: n50 number of metagenome assemblies which 
were assembled using the total number of reads from each 
sequencer. 



302 
 

  

Figure S6: Dissimilarity plot based on the relative abundances of the 865 level-4 enzyme 
commission (EC) categories which were detected by both HUMAnN2 and SUPER-FOCUS. 
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Figure S7: The effect of subsampling on the predicted diversity of kefir samples. (A) The alpha-diversity of 
kefir samples at different sequencing depths on each sequencer. (B) Dissimilarity plot based on the relative 
abundances of the compositional analysis of subsampled kefir reads from each sequencer. 

Figure S8: SUPER-FOCUS level 2 subsystems which were significantly altered at different sequencing depths. 
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Figure S9:  Consistency in the MetaPhlAn2 profiles of randomly subsampled replicates from the same 
samples. (A) MDS plot (facetted by number of reads) where replicates (coloured by sample) are connected to 
their respective centroids. (B) The average distance of replicates to their respective centroids at each 
sequencing depth. (C) The average distance of replicates to their respective centroids for each sequencer. 
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Figure S10: Consistency in the SUPER-FOCUS profiles of randomly subsampled replicates of the same 
samples. (A) MDS plot (facetted by number of reads) where replicates (coloured by sample) are connected 
to their respective centroids. (B) The average distance of replicates to their respective centroids at each 
sequencing depth. (C) The average distance of replicates to their respective centroids for each sequencer. 

  



306 
 

Table S1: Statistical differences in the alpha diversity of kefir samples between the three sequencers. 

 

  

Classifier Index p.MiSeq vs NextSeq p.MiSeq vs Proton p.NextSeq vs Proton
CLARK Shannon 0.873 0.873 0.873
CLARK Simpson 1 1 1
Kaiju Shannon 0.522 0.522 0.522
Kaiju Simpson 0.635 0.635 0.873
Kraken Shannon 0.631 0.631 0.631
Kraken Simpson 0.873 0.873 0.873
MetaPhlAn2 Shannon 0.164 0.075 0.423
MetaPhlAn2 Simpson 0.505 0.235 0.522
SLIMM Shannon 0.635 0.635 0.749
SLIMM Simpson 0.337 0.3 0.3
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Sequencer
Index

p.CLARK vs Kaiju
p.CLARK vs Kraken

p.CLARK vs M
etaPhlAn2

p.CLARK vs SLIM
M

p.Kaiju vs Kraken
p.Kaiju vs M

etaPhlAn2
p.Kaiju vs SLIM

M
p.Kraken vs M

etaPhlAn2
p.Kraken vs SLIM

M
p.M

etaPhlAn2 vs SLIM
M

M
iSeq

Shannon
0.098

0.053
0.053

0.016
0.522

0.016
0.166

0.016
0.033

0.016
M

iSeq
Sim

pson
0.421

0.421
0.58

0.273
0.873

0.4
0.421

0.4
0.364

0.25
N

extSeq
Shannon

0.098
0.053

0.053
0.016

0.522
0.016

0.166
0.016

0.033
0.016

N
extSeq

Sim
pson

0.421
0.421

0.58
0.273

0.873
0.4

0.421
0.4

0.364
0.25

Proton
Shannon

0.47
0.098

0.098
0.02

0.873
0.075

0.098
0.054

0.062
0.02

Proton
Sim

pson
0.701

0.481
0.701

0.082
0.749

0.481
0.137

0.481
0.083

0.065

Table S2: Statistical differences in the alpha diversity of kefir sam
ples betw

een species classifiers. 
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Sequencer
Species

p.overall
p.CLARK vs Kaiju

p.CLARK vs Kraken
p.CLARK vs M

etaPhlAn2
p.CLARK vs SLIM

M
p.Kaiju vs Kraken

p.Kaiju vs M
etaPhlAn2

p.Kaiju vs SLIM
M

p.Kraken vs M
etaPhlAn2

p.Kraken vs SLIM
M

p.M
etaPhlAn2 vs SLIM

M
M

iSeq
Acetobacter pasteurianus

0.006
0.47

0.47
0.018

0.47
0.47

0.007
0.47

0.007
1

0.007
M

iSeq
Acetobacter senegalensis

0.001
0.002

N
A

N
A

N
A

0.002
0.002

0.002
N

A
N

A
N

A
M

iSeq
Acetobacter sp. SLV 7

0.001
0.007

N
A

N
A

N
A

0.007
0.007

0.007
N

A
N

A
N

A
M

iSeq
Acetobacter unclassified

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

M
iSeq

Bacillus cereus
0.008

N
A

0.14
N

A
0.052

0.14
N

A
0.052

0.14
0.14

0.052
M

iSeq
Gluconacetobacter diazotrophicus

0.002
0.065

0.05
0.353

0.077
0.328

0.025
0.286

0.01
0.423

0.01
M

iSeq
Gluconobacter oxydans

0.003
0.082

0.04
0.453

0.04
0.58

0.025
0.58

0.01
0.749

0.01
M

iSeq
Kozakia baliensis

0.001
0.022

N
A

N
A

N
A

0.022
0.022

0.022
N

A
N

A
N

A
M

iSeq
Lactobacillus acidophilus

0.001
0.003

0.003
N

A
0.003

0.004
0.003

0.004
0.003

0.749
0.003

M
iSeq

Lactobacillus buchneri
0.002

0.088
0.005

N
A

0.005
1

0.088
1

0.005
0.337

0.005
M

iSeq
Lactobacillus helveticus

0.391
0.631

0.58
0.489

0.58
0.58

0.58
0.58

0.489
0.58

0.489
M

iSeq
Lactobacillus kefiranofaciens

0.913
0.832

0.832
0.832

0.832
0.832

0.873
0.832

0.832
0.832

0.832
M

iSeq
Lactobacillus plantarum

0.001
0.039

0.051
0.317

0.007
0.036

0.007
0.007

0.007
0.007

0.007
M

iSeq
Lactobacillus sanfranciscensis

0.005
0.749

0.701
0.005

0.605
0.701

0.005
0.525

0.005
0.605

0.005
M

iSeq
Lactococcus lactis

0.011
0.529

0.529
0.146

0.577
0.529

0.007
0.631

0.007
0.525

0.007
M

iSeq
Leuconostoc carnosum

0.001
0.053

0.007
0.155

0.007
0.068

0.007
0.053

0.007
0.423

0.007
M

iSeq
Leuconostoc citreum

0.001
0.006

0.121
0.005

0.749
0.006

0.005
0.006

0.005
0.121

0.005
M

iSeq
Leuconostoc gelidum

0.003
0.178

0.37
0.117

0.747
0.25

0.007
0.062

0.007
0.25

0.007
M

iSeq
Leuconostoc kim

chii
0.003

0.25
0.155

0.056
0.181

0.58
0.007

0.25
0.007

0.749
0.007

M
iSeq

Leuconostoc m
esenteroides

0.456
0.873

0.701
0.5

0.701
0.701

0.5
0.701

0.5
0.701

0.5
N

extSeq
Acetobacter pasteurianus

0.008
0.701

0.701
0.018

0.701
0.701

0.007
0.873

0.007
0.701

0.007
N

extSeq
Acetobacter senegalensis

0.001
0.002

N
A

N
A

N
A

0.002
0.002

0.002
N

A
N

A
N

A
N

extSeq
Acetobacter sp. SLV 7

0.001
0.007

N
A

N
A

N
A

0.007
0.007

0.007
N

A
N

A
N

A
N

extSeq
Acetobacter unclassified

0.001
N

A
N

A
0.002

N
A

N
A

0.002
N

A
0.002

N
A

0.002
N

extSeq
Bacillus cereus

0.006
N

A
0.068

N
A

0.052
0.068

N
A

0.052
0.068

0.135
0.052

N
extSeq

Gluconacetobacter diazotrophicus
0.004

0.082
0.077

0.374
0.082

0.374
0.025

0.374
0.01

0.423
0.01

N
extSeq

Gluconobacter oxydans
0.006

0.18
0.044

0.453
0.044

0.873
0.044

0.873
0.01

0.873
0.01

N
extSeq

Kozakia baliensis
0.012

0.059
N

A
N

A
N

A
0.059

0.059
0.059

N
A

N
A

N
A

N
extSeq

Lactobacillus acidophilus
0.001

0.003
0.003

N
A

0.003
0.004

0.003
0.004

0.003
0.016

0.003
N

extSeq
Lactobacillus buchneri

0.002
0.088

0.005
N

A
0.005

1
0.088

1
0.005

0.544
0.005

N
extSeq

Lactobacillus helveticus
0.35

0.631
0.631

0.5
0.525

0.605
0.631

0.5
0.5

0.561
0.5

N
extSeq

Lactobacillus kefiranofaciens
0.893

0.87
0.873

0.87
0.87

0.87
0.873

0.873
0.87

0.87
0.873

N
extSeq

Lactobacillus plantarum
0.001

0.191
0.066

0.353
0.008

0.63
0.037

0.008
0.008

0.008
0.008

N
extSeq

Lactobacillus sanfranciscensis
0.003

0.374
0.631

0.005
0.374

0.374
0.005

0.299
0.005

0.374
0.005

N
extSeq

Lactococcus lactis
0.036

0.629
0.421

0.421
0.421

0.421
0.03

0.421
0.03

0.58
0.03

N
extSeq

Leuconostoc carnosum
0.001

0.129
0.024

0.155
0.014

0.053
0.007

0.021
0.007

0.262
0.007

N
extSeq

Leuconostoc citreum
0.001

0.006
0.121

0.005
0.522

0.006
0.005

0.006
0.005

0.121
0.005

N
extSeq

Leuconostoc gelidum
0.006

0.328
0.328

0.146
0.747

0.328
0.007

0.219
0.007

0.374
0.007

N
extSeq

Leuconostoc kim
chii

0.002
0.47

0.156
0.018

0.187
0.156

0.007
0.109

0.007
0.873

0.007
N

extSeq
Leuconostoc m

esenteroides
0.623

0.631
0.631

0.631
0.631

0.631
0.631

0.631
0.631

0.631
0.631

Proton
Acetobacter pasteurianus

0.015
0.873

0.789
0.018

0.789
0.789

0.01
0.789

0.01
0.832

0.018
Proton

Acetobacter senegalensis
0.001

0.002
N

A
N

A
N

A
0.002

0.002
0.002

N
A

N
A

N
A

Proton
Acetobacter sp. SLV 7

0.012
0.059

N
A

N
A

N
A

0.059
0.059

0.059
N

A
N

A
N

A
Proton

Acetobacter unclassified
0.001

N
A

N
A

0.002
N

A
N

A
0.002

N
A

0.002
N

A
0.002

Proton
Bacillus cereus

0.001
N

A
0.009

N
A

0.009
0.009

N
A

0.009
0.009

0.045
0.009

Proton
Gluconacetobacter diazotrophicus

0.017
0.359

0.067
0.421

0.209
0.83

0.146
0.935

0.021
0.421

0.037
Proton

Gluconobacter oxydans
0.029

0.658
0.258

0.279
0.307

0.37
0.195

0.579
0.021

0.873
0.037

Proton
Kozakia baliensis

0.012
0.059

N
A

N
A

N
A

0.059
0.059

0.059
N

A
N

A
N

A
Proton

Lactobacillus acidophilus
0.001

0.005
0.005

N
A

0.008
0.006

0.005
0.006

0.005
0.055

0.008
Proton

Lactobacillus buchneri
0.02

0.255
0.103

0.453
0.145

1
0.145

0.896
0.021

0.789
0.037

Proton
Lactobacillus helveticus

0.332
0.701

0.701
0.437

0.437
0.605

0.749
0.437

0.437
0.437

0.437
Proton

Lactobacillus kefiranofaciens
0.928

0.873
0.873

0.873
0.873

0.873
0.873

0.873
0.873

0.873
0.873

Proton
Lactobacillus plantarum

0.002
0.131

0.077
0.317

0.033
0.166

0.025
0.077

0.021
0.078

0.025
Proton

Lactobacillus sanfranciscensis
0.001

0.47
0.749

0.007
0.078

0.47
0.007

0.05
0.007

0.078
0.018

Proton
Lactococcus lactis

0.164
0.684

0.58
0.58

0.58
0.374

0.323
0.58

0.225
0.58

0.323
Proton

Leuconostoc carnosum
0.003

1
0.098

0.098
0.152

0.041
0.01

0.112
0.01

0.97
0.025

Proton
Leuconostoc citreum

0.001
0.006

0.25
0.005

0.749
0.006

0.005
0.006

0.005
0.47

0.005
Proton

Leuconostoc gelidum
0.007

0.281
0.324

0.146
0.935

0.935
0.01

0.156
0.01

0.182
0.025

Proton
Leuconostoc kim

chii
0.008

1
0.332

0.056
0.525

0.075
0.01

0.481
0.01

0.701
0.025

Proton
Leuconostoc m

esenteroides
0.598

0.529
0.58

0.529
0.529

0.529
0.873

0.529
0.529

0.529
0.529

Table S3: Statistical differences in the predicted species relative abundances betw
een classifiers. 
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Table S4: Statistical differences in alpha diversity at different sequencing depths. 

 

Sequencer Classifier Index 100,000 reads versus 1,000,000 reads 100,000 reads versus 7,500,000 reads 1,000,000 reads versus 7,500,000 reads
Shannon 1 NA NA
Simpson 0.873 NA NA
Shannon 1 1 1
Simpson 1 1 1
Shannon 1 1 1
Simpson 0.873 0.873 0.873
Shannon 1 NA NA
Simpson 1 NA NA
Shannon 1 1 1
Simpson 0.873 0.873 0.873
Shannon 1 1 1
Simpson 0.873 0.873 0.873
Shannon 0.749 NA NA
Simpson 1 NA NA
Shannon 1 1 1
Simpson 0.873 0.873 0.873
Shannon 1 1 1
Simpson 0.946 0.946 1
Shannon 0.423 NA NA
Simpson 0.631 NA NA
Shannon 0.3 0.3 0.873
Simpson 0.783 0.783 0.873
Shannon 0.224 0.224 0.873
Simpson 0.635 0.635 0.873
Shannon 0.749 NA NA
Simpson 0.749 NA NA
Shannon 0.873 0.873 0.873
Simpson 0.749 0.749 0.749
Shannon 1 1 1
Simpson 0.631 0.631 0.631

Kaiju

CLARK

CLARK

CLARK

MetaPhlAn2

Kraken

Kraken

Kraken

Kaiju

Kaiju

Proton

NextSeq

MiSeq

Proton

NextSeq

SLIMM

SLIMM

SLIMM

MetaPhlAn2

MetaPhlAn2

MiSeq

Proton

NextSeq

MiSeq

Proton

NextSeq

MiSeq

Proton

NextSeq

MiSeq
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ABSTRACT 

It is increasingly understood that the gut microbiota can influence behaviour through 

what has been coined the microbiota-gut-brain axis. In addition, administration of 

bacterial strains exerting a positive effect on the host (probiotics) can improve mood 

and have even been termed psychobiotics. Interestingly, this term of psychobiotics 

has recently been extended to prebiotics. Recent evidence also suggests that 

fermented foods, which frequently contain probiotics, may affect mood. Here, we 

investigated if the traditional fermented dairy beverage kefir modulates the 

microbiota-gut-brain axis in mice. Two distinct kefirs (UK4 and Fr1) or milk control 

were administered to male adult mice and behaviour was assessed. The kefir UK4 

significantly decreased repetitive behaviour and induced a trend towards decreased 

depressive-like behaviour. Similarly, the kefir Fr1 significantly increased reward-

seeking behaviour. Additionally, shotgun metagenomics revealed that both kefirs 

altered the microbiome along the gastrointestinal tract in the mice. Notably, strain-

level analysis indicated that kefir ingestion increased the relative abundances of 

bacteria containing genes for gamma-aminobutyric acid (GABA) production along 

with tryptophan biosynthesis. Deficiencies in GABA and the tryptophan derivative 

serotonin have been linked to anxiety and depression. Thus, our findings show that 

kefir is able to modulate the microbiota-gut-brain axis and modify mood, potentially 

by increasing the capacity for the gut microbiome to synthesise neurotransmitters 

and/or their precursors.  
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INTRODUCTION 

Increasing evidence suggests that the gastrointestinal microbiota can influence host 

behaviour via bi-directional communication along the gut-brain axis (1). 

Consequently, the gut microbiota might be a taget for treating disorders such as 

anxiety or depression (2). Treatment with probiotics, which are live microorganisms 

that confer health benefits (3), represents one strategy with which to manipulate the 

gut microbiota (4), and it has been established that some probiotics,  also termed 

‘psychobiotics’, can improve mood (5). Additionally, recent data indicates that some 

prebiotics may be classified as psychobiotics (6). It is also becoming apparent that 

fermented foods might benefit conditions such as social anxiety (7) or gestational 

depression (8). Notably, a fermented milk product, which was produced using 

known probiotics, has been demonstrated to modulate brain activity in healthy 

women (9). Such findings merit investigation into the mechanisms by which 

fermented foods might affect the gut-brain axis. 

Kefir is a traditional fermented milk beverage that is produced by adding a kefir 

grain to milk, which is then incubated at room temperature for approximately 24 

hours. The kefir grains are exopolysaccharide matrices with what is frequently 

referred to as ‘cauliflower-like’ appearance harbouring symbiotic microbial 

communities, including bacteria and yeasts, which together are responsible for 

fermentation. The word kefir is derived from the Turkish keyif, which translates as 

“good feeling” (10). Indeed, numerous health benefits have been ascribed to kefir 

(11) and, consequently, it is frequently described as a natural probiotic beverage 

(12). It is increasingly understood that kefir microbes are at least partially 

responsible for these effects (11, 13). Notably, several studies have reported that 

kefir reduces inflammation in animal models (14-16), while amplicon sequencing 
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has also revealed that kefir can alter the gut microbiota in mice (17, 18). One of the 

ways in which the microbiota is able to influence the brain it through modulation of 

the immune system (19), and, therefore, it is conceivable that kefir might influence 

behaviour through the gut-brain axis. Intriguingly, a 2014 study showed that kefir 

reduced nicotine cessation-induced anxiety- and depressive-like behaviour, as well 

as impairments in long-term spatial learning, in rats (20), but its impact on the gut 

microbiota was not examined in that study. 

Shotgun metagenomics is a powerful tool for characterising the gut microbiota (21), 

but the approach has rarely been employed to study the microbiome in the context of 

the gut-brain axis (22), and it has not yet been utilised to characterise the ways in 

which kefir alters the gut metagenome. Instead, most studies have relied on amplicon 

sequencing, which typically only offers genus-level information on the composition 

of microbiota (23). Contrastingly, shotgun metagenomics, which involves 

determining the entire microbial genetic content within environmental samples, 

including intestinal samples, yields insights into the functional potential, in addition 

to the species-level composition, of microbiota (24). Furthermore, several tools, such 

as PanPhlAn (25) or StrainPhlAn (26), have recently been released which enable 

strain-level analysis from shotgun metagenomics data. In the present study we 

employ shotgun metagenomics in parallel with behavioural analysis to investigate 

the effects of two traditionally prepared kefirs, relative to unfermented milk, on the 

intestinal microbiota and behaviour of mice. Specifically, shotgun metagenomics 

was performed to compare the species- and strain-level microbial composition and 

the functional potential of the microbiome in the ileum, cecum, and faeces of each 

treatment group. Our results indicate that kefir ameliorates anxious or depressive-

like behaviours in mice, while simultaneously increasing the abundance of bacteria 
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which contain genes associated neurotransmitter production. Thus, we present strong 

evidence that a traditional fermented food modulates the gut-brain axis.  

 

METHODS 

Animals  

This study used male C57Bl/6j mice (8 weeks of age on arrival; Envigo, UK; n = 

12/group, n = 48 in total). Animals were housed in groups of 4. Food and drinking 

water were provided ad libitum throughout the study. The holding room had a 

temperature of 21 ± 1 °C and humidity of 55 ± 10% with a 12-hour light/dark cycle 

(lights on at 7:00 am). Bodyweight was monitored on a weekly basis. Experiments 

were conducted in accordance with the European Directive 86/609/EEC and the 

Recommendation 2007/526/65/EC and approved by the Animal Experimentation 

Ethics Committee of University College Cork. All efforts were made to reduce the 

number of animals used and to minimise the suffering of these animals. 

 

Experimental timeline and behavioural testing 

Animals were habituated for one week prior to the onset of daily kefir administration 

by oral gavage. After three weeks of treatment, animals were assessed for various their 

behavioural phenotype using various tests, which were formed in order of least 

stressful to most stressful to reduce the likelihood of prior behavioural tests 

influencing subsequent ones (Figure 1). In addition, there was a minimum of 36-hours 

between tests. The order of testing was as follows: 1) Marble burying test, 2) 3-

Chamber social interaction test, 3) Elevated plus maze, 4) Open field test, 5) Tail- 
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Figure 1: Experimental design. After one week of treatment lead-in, animals were assessed for their 
behavioural phenotype. Treatment groups consisted of: 1) No gavage control, 2) Milk gavage control, 3) Kefir 
gavage – Fr1, and 4) Kefir gavage – UK4 (n = 12/group). The order of behavioural tests was as following; Week 
4: Marble burying test (MB), 3-Chamber social interaction test (3CT) and Elevate plus maze (EPM); Week 5: 
Open field test (OF) and Tail suspension test (TST); Week 6: Saccharin preference test (SPT); Week 7: Female 
urine sniffing test (FUST); Week 8: Stress-induced hyperthermia test (SIH); Week 9: Intestinal motility test (IM) 
and Faecal water content assessment (FWC): Week 9-12: Appetitive Y-maze; Week 13: Fear conditioning; Week 
14: Forced swim test; Week 15: Euthanasia. Postmortem, the immune system was assessed by flow cytometry, 
Ileal, caecal and faecal microbiota composition and function was investigated by shotgun sequencing, and ileum 
and colonic serotonergic levels were quantified by high-performance liquid chromatography (HPLC). 
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suspension test, 6) Saccharin preference test, 7) Female urine sniffing test, 8) Stress-

induced hyperthermia test, 9) In testinal motility test, 10) Assessment of faecal water 

content and weight, 11) Appetitive Y-maze, 12) Fear conditioning, 13) Forced swim 

test. At the end of the study, body composition (i.e. percentage lean, fat and fluid mass) 

was assessed (Minispec mq 7.5), after which animals were immediately sacrificed by 

decapitation. 

  

Kefir culturing and administration 

Kefir grains were cultured in whole milk (2% w/v) at 25 °C and milk was renewed 

every 24 hours using a sterile Buchner funnel and sterile Duran bottle. Grains were 

rinsed with deionised water prior to the renewal of milk. The fermented milks (i.e. 

kefirs) collected after the culturing, or milk control, were administered to the mice 

within one hour by oral gavage (0.2 mL). Daily kefir administration was performed 

after the behavioural test, if one was performed that day, between 4 pm and 7 pm. To 

analyse the kefir microbiota over time, aliquots from the kefir administered to the mice 

were taken on a weekly basis and stored at −80 °C for later analysis. 

 

Marble burying test 

Mice were tested for repetitive and anxiety-like behaviour with the marble burying 

test, which was conducted as previously described (6). Animals were individually 

placed in a novel Plexiglas cage (35 × 28 × 18.5 cm, L × W × H), which was filled 

with sawdust (5 cm) and had 20 equally spread marbles placed on top (5 x 4 rows). 

After mice had spent 30 minutes in the cage, the number of buried marbles was 

counted by two researchers and averaged. A buried marble was defined as 2/3 of the 
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marble not being visible anymore. Sawdust was renewed, and marbles cleaned with 

70% ethanol in-between animals. 

 

3-Chamber social interaction test 

The three-chamber sociability test was used to assess social preference and recognition 

and was conducted as previously described (27). The testing apparatus was a three-

chambered, rectangular box. The dividing walls between each chamber (20 × 40 × 22 

cm, L × W × H) had small circular openings (5 cm diameter), allowing for access to 

all chambers. The two outer chambers contained wire cup-like cages (10 cm bottom 

diameter, 13 cm height), allowing for auditory, olfactory and visual, but not physical 

contact. The test consisted of 10-minute three phases: 1) Habituation, 2) Social 

preference, 3) Social recognition. In the first phase (Habituation), mice were allowed 

to explore the entire box with both wire cup-like cages left empty to allow for 

habituation to the novel environment. In the second phase (Social preference), one 

wire cup-like cage contained a novel, age-matched, conspecific, male mouse, whereas 

the other cage contained an object (rubber duckie). In the third phase (Social 

recognition), the mouse of the previous trial was left in the wire cup-like cage 

(Familiar mouse), while the object was replaced with a conspecific mouse (Novel 

mouse). The test mouse was held in the middle chamber while the conspecific mouse 

and object were placed in the cup wire-like cages. The location of the conspecific mice 

and object were systemically altered in-between test mice. The three-chamber test 

apparatus and wire cup-like cages were cleaned with 70% ethanol after each test 

mouse and left to dry for a few minutes. To reduce potential anxiogenic factors, all 

mice were habituated to the testing room 40 minutes before the test, the floor of the 

testing arena was covered with sawdust and testing was performed under dim light (60 
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lux). All experiments were videotaped using a ceiling camera and were scored blinded 

for the time interacted with the wire cup-like cages. The discrimination index was 

calculated as follows: (Time spent interacting with object or mouse/Total time spent 

interacting)*100%. 

 

Elevated plus maze 

The elevated plus maze test was used to assess anxiety-like behaviour and was 

conducted as previously described (6). The elevated plus maze apparatus was elevated 

1 meter above the ground and consisted of a grey cross-shaped maze with two open 

arms and two closed arms (50 × 5 cm with 15 cm walls in the closed arms and 1 cm 

walls in the open arms). Mice were allowed to explore the maze for 5 min. Mice were 

habituated to the room 30 minutes prior to the test. Experiments were conducted in red 

light (5 lux). The elevated plus maze apparatus was cleaned with 70% ethanol in-

between animals. Experiments were videotaped using a ceiling camera and videos 

were scored blinded for time spent in the open arms, which was defined as all paws in 

the open arm. 

 

Open field test 

Mice were assessed for locomotor activity and response to a novel environment in the 

open field test, which was conducted as previously described (6). Animals were placed 

in an open arena (40 × 32 × 24 cm, L × W × H) and were allowed to explore the arena 

for 10 minutes. Animals were habituated to the room 30 minutes prior to the test. 

Testing was performed under dim light (60 lux). The open field test box was cleaned 

with 70% ethanol in-between animals. Experiments were videotaped using a ceiling 
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camera and were analysed for time spend in the virtual centre zone (defined as 50% 

away from the edges) and total distance travelled using Ethovision version 13 software 

(Noldus). 

 

Tail-suspension test 

The tail-suspension test was used to assess depressive-like behaviour and was 

conducted as previously described (6). Mice were hung by their tail using adhesive 

tape (2 cm from the tip of the tail) to a 30 cm-elevated grid bar for 6 min. Experiments 

were videotaped using a numeric tripod-fixed camera and videos were scored blinded 

for the time mice spent immobile. 

 

Saccharin preference test 

Mice were assessed for reward-seeking behaviour using the saccharin preference test 

as previously conducted (28). Mice were first habituated to single housing and having 

two drinking water bottles for 3 days. Drinking water intake and food intake was 

measured during the habituation phase of the test. Hereafter, one drinking water bottle 

was replaced by one containing a saccharin solution (0.1% w/v) for 24 hours. Drinking 

water bottles were weighed every 12 hours during the testing phase to calculate 

saccharin preference. The side on which the regular drinking water bottle and the one 

containing saccharine solution was, were randomised and counterbalanced between 

groups. During the habituation phase, drinking water bottles were alternated every 24 

hours, whereas bottles were alternated every 12 hours during the testing phase. 

Saccharin preference was calculated using the following formula: (Total Sucrose 

Intake/Total fluid intake)*100%. 
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Female urine sniffing test 

Mice were assessed for hedonic and reward-seeking behaviour in the female urine 

sniffing test, which was performed as previously described (29). Prior to this 

experiment, vaginal smears from age-matched female C57Bl/6 mice (n=20; Envigo, 

UK) were taken and assessed for their estrous cycle. Urine from female mice in the 

esterus stage was collected and pooled. Male mice were habituated 45 min before the 

start of the test to the test room, with a cotton bulb attached to the lid of their housing 

cage. The test mice were subsequently introduced to a new cotton bulb containing 60 

μl of sterile water. After a 45 min intertrial-interval, mice were introduced to a new 

cotton bulb containing 60 μl of urine from a female mouse in esterus for 3 min. The 

experiment was conducted in red light (5 lux). All tests were videotaped using a ceiling 

camera and interaction time with the cotton bulbs was scored blinded. 

 

Stress-induced hyperthermia test 

The stress-induced hyperthermia test was used to assess stress-responsiveness, which 

was conducted as previously described (6). Body temperature was determined at 

baseline (T1) and 15 minutes later (T2) by gently inserting a Vaseline-covered 

thermometer 2.0 cm into the rectum. The temperature was noted to the nearest 0.1 °C 

after it stabilised (~10 s). Mice were restrained by scruffing during this procedure 

which was the stressor. Animals were habituated to the testing room 1 hour prior to 

the test. The difference between T1 and T2 reflected the stress-induced hyperthermia. 
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Intestinal motility assay 

Gastrointestinal motility was assessed as previously described (30). Briefly, mice were 

single-housed at 8.00 a.m. with ad libitum access to food and drinking water. Three 

hours later, 0.2 mL of non-absorbable 6% carmine red in 0.5% methylcellulose 

dissolved in sterile phosphate-buffered saline was administered by oral gavage, after 

which drinking water was removed. The latency for the excretion of the first red-

coloured faecal pellet was subsequently timed as a measure of gastrointestinal 

motility. 

 

Assessment of faecal water content and weight 

Mice were single-housed for one hour during which faecal pellets were collected (± 9 

per animal). Pellets were subsequently weighed, incubated at 50 °C for 24 hours and 

weighed again. The average weight per pellet and percentage of faecal water content 

were calculated.  

 

Appetitive Y-maze 

The appetitive Y-maze was used to assess long-term spatial learning and was 

performed as previously described (31). The test consisted of two phases; the initial 

learning phase, where the first associated between the location of the food reward and 

spatial reference cues were formed, and the reversal learning phase, where the location 

of the food reward was altered in reference to the spatial reference cues, in which the 

relearning of a context was measured.  

The Y-maze apparatus was elevated 80 cm above the ground and consisted of three 

arms (50 x 9.5 cm, L x W, with a 0.5 cm-high rim) arranged at an angle of 120° of 
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each other (Figure S1A). The apparatus could be rotated during testing. A small plastic 

food well (a cap of a 15 mL tube) was placed at the distal end of each arm. Testing 

was performed under dim light (30 lux). 

Prior to testing, mice were food restricted (3-4 gram food per day) and kept between 

90-95% of their free-feeding bodyweight (Figure S1B). Two days later, animals were 

habituated in their home cage to the small plastic well containing 1 mL food reward 

(sweetened condensed milk diluted in water 1:1) per mouse before the onset of the 

active phase. Mice were subsequently habituated on the Y-maze apparatus in home 

cage groups until mice were freely running around and readily collecting the food 

reward (each arm contained 1 mL food reward), which took 2 days. Finally, mice were 

individually placed on the Y-maze until they were running and collected the food 

reward (each arm contained 0.1 mL food reward), which took 4 days. 

During the first phase (Initial learning), mice were assigned a goal arm according to 

the position in the room, which was counter-balance between groups. The maze was 

rotated 120° every trial to prevent potential associations of the correct goal arm with 

the texture or smell of the arm. The starting position for each trial was determined by 

a pseudo-randomised computer sequence, which was different for each mouse but was 

the same across treatment groups. This sequence did not contain more than three 

consecutive starts in the same position to avoid temporary position preferences. 

Animals were tested in groups of eight, with four animals of two experimental groups 

(i.e. two home cages). Each mouse received ten trials per day with an inter-trial 

interval of approximately 10 minutes. The time of testing was counterbalanced 

between groups and rotated each day to reduce the effect of testing during a specific 

time of the day. Mice received eight consecutive days of initial learning, resulting in 

a total of 80 trials. During the second phase (reversal learning), the goal arm was 
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changed to a different arm, and the placement of the mice was changed accordingly. 

This phase lasted 5 days, resulting in a total of 50 trials. 

For each trial, the food well on the goal arm was filled with 0.1 mL food reward 

(sweetened condensed milk diluted in water 1:1). The mouse was placed at the end of 

the start arm and was allowed to run freely on the maze. The entries into each arm 

were counted, as well as when the mouse went into the goal arm immediately, of which 

the latter was counted as a successful trial. The mouse was placed back into the home 

cage after it consumed the food reward. In the rare occasion that the mouse did not 

walk into the goal arm and collect the food reward within 90 seconds, then the mouse 

was gently guided towards the goal arm and given a chance to collect the food reward, 

after which it was also returned to the home cage. A trial where the mouse did not 

walk into any arm was excluded from the analysis, as this indicates that the mouse was 

anxious. An entry was counted when the tail of the animal passed the entry of the arm. 

Between mice, the food wells were not cleaned so that a slight odour of milk reward 

remained at all times, ensuring mice found the goal arm based on spatial cues, rather 

the olfactory cues. 

 

Fear conditioning 

Fear conditioning was used as a assess amygdala-dependent learning memory and was 

conducted as previously described (32). The test consisted of 3 days/phases; 1) 

Training, 2) Assessment of cued memory, 3) Assessment of contextual memory, each 

of which was carried on successive days with a 24-hour interval. In phase 1 (training), 

animals were recorded for 3 minutes (baseline), followed by 6 tone-conditioned 

stimuli (70 dB, 20 s), followed by a foot shock (0.6 mA, 2 s), with a 1-minute interval. 
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In phase 2 (Assessment of cued memory), mice were placed in a novel context (i.e. 

black-checker walls with a solid Plexiglas opaque floor, under which paper was placed 

containing a 400 μl vanilla solution (79.5% water/19.5% ethanol/1% vanilla-extract 

solution), and after an initial acclimation period of 2 minutes, mice received 40 

presentations of the tone-conditioned stimuli, each lasting 30 seconds with a 5-second 

interval. In phase 3 (assessment of contextual memory), mice were placed in the 

context of day 1 and recorded for 5 minutes, without the presentation of any tone-

conditioned stimuli. The fear conditioning apparatus was cleaned with 70% ethanol 

in-between animals. 

 

Forced swim test 

The forced swim test was used to assess depressive-like behaviour and was conducted 

as previously described (33). Mice were individually placed in a transparent glass 

cylinder (24 × 21 cm diameter), containing 15-cm-depth water (23-25 °C), for 6 

minutes. Mice were gently dried after the test and water was renewed after each 

animal. Experiments were videotaped using a ceiling camera and videos were scored 

blinded for immobility time in the last 4 min of the test. 

 

Tissue collection 

Collection of faecal samples throughout the study was done by single housing mice 

until 2 pellets were dropped between 10.00 and 12.00 a.m. The order faecal pellet 

collection was counterbalanced between groups to minimise the effect of circadian 

rhythm. Pellets were snap-frozen on dry ice within 3 minutes after excretion and 

subsequently stored at -80 °C.  
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Animals were sacrificed by decapitation in a random fashion regarding test groups 

between 9.00 a.m. and 2.00 p.m. Trunk blood was collected in EDTA-containing tubes 

and 100 μl was put in a separate Eppendorf for flow cytometry. Both tubes were 

centrifuged for 10 min at 3,500 g at 4°C, after which plasma was collected and stored 

at −80 °C for later analysis. The remaining cell pellet of the Eppendorf containing 100 

μl of blood was stored at 4 °C and subsequently used for flow cytometry. Mesenteric 

lymph nodes (MLNs) were dissected, cleaned from fat tissue and in stored in RPMI-

1640 medium with L-glutamine and sodium bicarbonate (R8758, Sigma), 

supplemented with 10% FBS (F7524l, Sigma) and 1% Pen/strep (P4333, Sigma) at 4 

°C for subsequent flow cytometry. The contents of the distal part of the ileum (2 cm), 

as well as faecal pellets, were collected, snap-frozen on dry ice and stored at −80 °C 

for later sequencing. The caecum was weighed, snap-frozen on dry ice and stored at 

−80 °C. The length of the colon was measured, and the proximal and distal 2 cm were 

collected and cut in half. One side was snap-frozen on dry ice and stored at −80 °C 

and the other treated with RNAlater (Sigma, R0901). This was done by incubating the 

tissues for 48 hours at 4°C, after which the RNAlater was removed and tissues were 

stored at -80 °C for later gene expression analysis. Whole brains were snap-frozen in 

ice-cold isopentane and stored at -80 °C. 

 

Flow cytometry 

Blood and MLNs collected when animals were sacrificed were processed on the same 

day for flow cytometry. Blood was resuspended in 10 mL home-made red blood cell 

lysis buffer (15.5 mM NH4Cl, 1.2 mM NaHCO3, 0.01 mM tetrasodium EDTA diluted 

in deionised water) for 3 minutes. Blood samples were subsequently centrifuged (1500 

g, 5 minutes), split into 2 aliquots and resuspended in 45 μl staining buffer (autoMACS 
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Rinsing Solution (Miltenyi, 130-091-222) supplemented with MACS BSA stock 

solution (Miltenyi, 130-091-376)) for the staining procedure. MLNs were poured over 

a 70 µm strainer and disassembled using the plunger of a 1 mL syringe. The strainer 

was subsequently washed with 10 mL media (RPMI-1640 medium with L-glutamine 

and sodium bicarbonate, supplemented with 10% FBS and 1% Pen/strep), centrifuged 

and 1x106 cells were resuspended in 45 μl staining buffer for the staining procedure. 

For the staining procedure, 5 μl of FcR blocking reagent (Miltenyi, 130-092-575) was 

added to each sample. Samples were subsequently incubated with a mix of antibodies 

(Blood aliquot 1; 5 μl CD11b-VioBright FITC (Miltenyi, 130-109-290), 5 μl LY6C-

PE (Miltenyi, 130-102-391), 0.3 μl CX3CR1-PerCP-Cyanine5.5 (Biolegend, 149010) 

and 5 μl CCR2-APC (Miltenyi, 130-108-723); Blood aliquot 2 and MLNs; 1 μl CD4-

FITC (ThermoFisher, 11-0042-82) and 1 μl CD25-PerCP-Cyanine5.5 (ThermoFisher, 

45-0251-80)) and incubated for 30 minutes on ice. Blood aliquot 1 was subsequently 

fixed in 4% PFA for 30 minutes on ice, whilst Blood aliquot 2 and MLNs underwent 

intracellular staining using the eBioscience™ Foxp3 / Transcription Factor Staining 

Buffer Set (ThermoFisher, 00-5523-00), according to the manufacturers’ instructions, 

using antibodies for intracellular staining (2 μl FoxP3-APC (ThermoFisher, 17-5773-

82) and 5 μl Helios-PE (ThermoFisher, 12-9883-42)). Fixed samples were 

resuspended in staining buffer and analysed the subsequent day on the BD 

FACSCalibur flow cytometry machine. Data were analysed using FlowJo (version 

10). The investigated cell populations were normalised to PBMC levels. 

 

HPLC analysis 

The concentrations of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5HIAA) in 

ileal and colonic tissues were determined using high performance liquid 
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chromatography (HPLC), based on a methodology described previously (34). See 

supplemental material for a detailed description of these methods. 

 

Statistical analysis on behavioural and physiological parameters in mice 

All behavioural and physiological data were assessed for normality using the Shapiro-

Wilk test and Levene's test for equality of variances. No gavage and milk gavage 

datasets were assessed for statistical significance using an unpaired Student’s t-test to 

investigate the impact of milk gavage. The effect of kefir was determined by a two-

way ANOVA, followed by Dunnett's post hoc test whenever data were normally 

distributed. If data were non-parametrically distributed, then a Kruskal-Wallis test, 

followed by a Mann-Whitney U test was used. Parametric data is depicted as bar 

graphs with points as individual datapoint and expressed as mean ± SEM. Non-

parametric data is depicted as a box with whiskers plot. Statistical analysis was 

performed using SPSS software version 24 (IBM Corp). A p-value < 0.05 was deemed 

significant. Table S1 summarises all tests performed, in addition to their 

corresponding p-values. 

 

DNA extractions and sequencing 

For analysis of the kefir microbiome, DNA was extracted from the fermented milk 

using the PowerSoil DNA Isolation Kit, as described previously (35). For analysis of 

the murine gut microbiome, DNA was extracted from the total ileal contents, cecal 

contents and faecal pellets using the QIAamp PowerFecal DNA Kit. Whole-

metagenome shotgun libraries were prepared using the Nextera XT kit in accordance 

with the Nextera XT DNA Library Preparation Guide from Illumina, with the 
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exception that tagmentation time was increased to 7 minutes. Kefir libraries were 

sequenced on the Illumina MiSeq sequencing platform with a 2 x 300 cycle v3 kit. 

Gut libraries were sequenced were sequenced on the Illumina NextSeq 500 with a 

NextSeq 500/550 High Output Reagent Kit v2 (300 cycles). All sequencing was 

performed at the Teagasc sequencing facility in accordance with standard Illumina 

sequencing protocols. 

 

Bioinformatics 

Murine reads were removed from the raw sequencing files using the NCBI Best 

Match Tagger (BMTagger) (ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger/), and 

fastq files were converted to unaligned bam files using SAMtools (36). Duplicate 

reads were subsequently removed using Picard Tools 

(https://github.com/broadinstitute/picard). Next, low quality reads were removed 

using the trimBWAstyle.usingBam.pl script from the Bioinformatics Core at UC 

Davis Genome Center 

(https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/H

mpSraProcess/trimBWAstyle.usingBam.pl). Specifically, MiSeq reads were filtered 

to 200 bp, while NextSeq 105 bp. All reads with a quality score less than Q30 were 

discarded. The resulting fastq files were then converted to fasta files using the fq2fa 

option from IDBA-UD (37).  

Compositional analysis was performed using MetaPhlAn2 (38). Strain-level 

metagenomic analysis was performed using StrainPhlAn (26), which 

phylogenetically characterises strains by identifying single nucleotide 

polymorphisms in species-specific marker genes, and PanPhlAn (39), which 

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/bmtagger/
https://github.com/broadinstitute/picard
https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl
https://github.com/genome/genome/blob/master/lib/perl/Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl
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functionally characterises strains by aligning reads against a species-specific 

pangenome database. StrainPhlAn outputs were visualised using GraPhlAn (40). 

Custom PanPhlAn databases were constructed from complete genome assemblies 

which were annotated using Prokka (41). See Table S2 for the list of reference 

genomes used in this study. Functional analysis was performed with HUMAnN2 

(42), using the --bypass-translated-search option, and PanPhlAn. HUMAnN2 

measures the abundances of UniRef clusters (43) by aligning sequences against the 

ChocoPhlAn database.  HUMAnN2 gene families were mapped to level-4 enzyme 

commission (EC) categories using HUMAnN2 utility mapping files. 

Sequence data have been deposited in the European Nucleotide Archive (ENA). 

 

Statistical analysis of shotgun metagenomic data 

The R package vegan (44) was used for alpha diversity analysis and principal 

component analysis. The Wilcoxon rank-sum test was used to measure statistical 

differences in alpha diversity between groups, and p-values were adjusted using the 

Benjamini-Hochberg method. The adonis function from vegan was used for 

PERMANOVA (PERMutational ANalysis Of VAriance) analysis. The linear 

discriminant analysis (LDA) effect size (LEfSe) method (45) was used to investigate 

if any taxa or HUMAnN2 pathways were differentially abundant (i.e. LDA>3.0) 

between groups. Correlation analysis was performed using HAllA 

(https://bitbucket.org/biobakery/halla/wiki/Home). Data was visualised using hclust2 

(https://bitbucket.org/nsegata/hclust2), GraPhlAn, and the R package ggplot2 (46). 

 

https://bitbucket.org/biobakery/halla/wiki/Home
https://bitbucket.org/nsegata/hclust2
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RESULTS 

The fermented milk drink kefir is well-tolerated 

Kefir administration did affect body weight, body composition, food intake and 

drinking water intake (Figure S2A-F). In addition, no differences were found in basal 

body temperature, as detected in the stress-induced hyperthermia test, as well as the 

locomotor activity assessed in the open field test (Figure S2G, H). Overall, this 

indicates that the fermented milk drink kefir was well-tolerated by mice. 

 

Kefir did not affect gastrointestinal motility 

Assessment of gastrointestinal motility by carmine red administration showed that 

kefir did not induce any changes in gastrointestinal propulsion (Figure S3A). In line 

with these findings was the absence of differences in faecal pellet weight and faecal 

water content (Figure S3B, C). Finally, no differences in caecum weight and colon 

length were detected at the end of the study (Figure S3D, E).  

 

Kefir modulates anxiety- and depressive-like, as well as reward-seeking 

behaviour 

In the marble burying test, we found that administration of UK4 decreased the number 

of marbles buried (F(2,35) = 5.464, p = 0.009) (Figure 2A). Even though no 
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Figure 2: Kefir differentially affects repetitive/anxiety-like, depressive-like and reward-seeking 
behaviours. Repetitive/anxiety-like behaviour was assessed using the marble burying test (A). Depressive-
like behaviour was determined using the forced swim test (B). Anhedonia and reward-seeking behaviours were 
investigated using the female urine sniffing test (C) and saccharin preference test (D, E). Significant differences 
are depicted as: *p < 0.05, **p < 0.01, ***p < 0.001 for Milk gavage compared to Kefir supplementation; and $p 
< 0.05 for No gavage compared to Milk gavage. All data are expressed as mean ± SEM (n = 11-12).  
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changes were observed in other tests assessing anxiety-like behaviour such as the 

elevated plus maze, open field test and stress-induced hyperthermia test (Figure S4A-

C). Regarding depressive-like behaviour, UK4 induced a subtle trend towards 

decreased time spent immobile in the forced swim test (F(2,33) = 2.327, p = 0.114) 

(Figure 2B), even though this effect was not observed in the tail suspension test (Figure 

S4D). In the female urine sniffing test, mice receiving milk gavage spent less time 

interacting with the cotton bulb containing water compared to mice receiving no  

gavage (𝜒𝜒P

2(1) = 6.367, p = 0.012), which was ameliorated by both Fr1 and UK4 (𝜒𝜒P

2(2) 

= 13.238, p < 0.001) (Figure 2C). In addition, mice receiving UK4 spent more time 

interacting with the cotton bulb containing the urine from a female mouse in esterus, 

as a measure of reward-seeking behaviour (𝜒𝜒P

2(2) = 6.280, p = 0.043) (Figure 2C). 

Finally, Fr1 administration increased saccharin preference in the saccharin preference 

test, also often used as a measure of reward-seeking behaviour (𝜒𝜒P

2(2) = 12.826, p = 

0.002) (Figure 2D, E).  

 

Kefir does not affect sociability 

All groups exhibited normal social preference and recognition in the 3-chamber social 

interaction test, indicating that kefir did not affect sociability (Figure S5A, B). 

 

Kefir – UK4 modulates contextual learning and memory 

No differences were observed in the fear conditioning test in phase 1 – acquisition, as 

determined by the time mice spent frozen during the presentation of the cue, as well 

is in-between the cues (Figure 3A, B). In addition, no differences were seen during 

phase 2, when cued-dependent fear memory was assessed (Figure 3C). 
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Figure 3: UK4 enhances fear-dependent contextual memory yet decreases long-term spatial learning. 
Fear-dependent memory and learning were assessed using fear conditioning. At phase 1 – Acquisition, mice 
were presented with a tone, followed by a foot shock. Cue-associative learning was assessed by measuring 
freezing behaviour during the presentation of the tone (A), whereas context-associative learning was determined 
in-between tones (B). At phase 2 – Cued memory, mice received 40 presentations of the same cue (the first 10 
are shown), without foot shock, in a different context, in which fear-dependent cued memory was assessed (C). 
At phase 3 – Contextual memory, mice were exposed to the same context as day one for 5 minutes and 
contextual memory was assessed (D). Long-term spatial learning was assessed in the appetitive Y-maze, as 
determined by the percentage of times the mice made the correct choice as the first choice for reaching the goal 
(food reward) (E), as well as the number of average entries it took the mice to reach the goal (F). Significant 
differences are depicted as: *p < 0.05 for Milk gavage compared to Kefir supplementation; and $p < 0.05 No 
gavage compared to Milk gavage. All data are expressed as mean ± SEM (n = 10-12).  
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However, mice receiving UK4 showed a trend towards increased freezing behaviour 

in phase 3 – contextual memory (F(2,34) = 3.181, p = 0.055) (Figure 3D). Conversely, 

mice receiving UK4 made more errors in the reverse learning phase of the appetitive 

Y-maze as seen by the percentage correct choices (F(2,33) = 3.870, p = 0.031) (Figure 

3E), and the amount of entries mice needed to reach the food reward (F(2,33) = 3.387, 

p = 0.046) (Figure 3F). It is interesting to note however, that a similar difference was 

found on day 10 in the percentage correct choices made between the “No gavage” and 

“Milk gavage” group (t(22) = -2.303, p = 0.031), where the mice receiving milk 

gavage performed superior (Figure 3F).  

 

Kefir – Fr1 selectively increases colonic serotonergic activity 

We found that mice receiving milk gavage showed decreased ileal serotonin (5-HT) 

levels compared to mice receiving no gavage (t(21) = 2.650, p = 0.015) (Figure 4B). 

This resulted in an increased 5HIAA/5-HT ratio (t(22) = 2.650, p < 0.001) (Figure 

4C), indicating an increased serotonin turnover and serotonergic activity. The exact 

opposite was seen in the colon, where the milk gavage induced a trend towards 

increased 5-HT levels (t(22) = -1.937, p = 0.066) (Figure 4E), whilst decreasing the 

5HIAA/5-HT ratio (t(22) = 2.907, p = 0.008) (Figure 4F). Interestingly, this phenotype 

in the colon, but not in the ileum, was ameliorated by Fr1 (5HIAA/5-HT ratio: F(2,35) 

= 9.026, p < 0.001) (Figure 4E, F). 

 

Both kefirs differentially impact the peripheral immune system 

UK4 increased the prevalence of T regulatory cells (Treg; CD4+, CD25+, FoxP3+) 

(F(2,34) = 8.709, p < 0.001) (Figure 5A), a well-known anti-inflammatory T helper 

cell subset known to be induced by gut microbial metabolites (47). Interestingly, 
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Figure 4: Fr1 modulates serotonergic signalling in the colon, but not ileum. Ileal (A-C) and colonic (D-F) 
tissues were quantified for 5HIAA and serotonin (5-HT) levels using HPLC. The 5HIAA/5-HT ratio was 
subsequently calculated. Significant differences are depicted as: **p < 0.01 for Milk gavage compared to Kefir 
supplementation; and $p < 0.05, $$p < 0.01, $$$p < 0.001 for No gavage compared to Milk gavage. All data are 
expressed as mean ± SEM (n = 11-12). 
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Figure 5: UK4 increases Treg cells levels, while Fr1 decreases neutrophil levels. Using flow cytometry, T 
regulatory cells (CD4+, CD25+, FoxP3+) were assessed in mesenteric lymph nodes (MLNs) and blood (A, C). 
Cells were subsequently assessed for Helios expression (B), as a measure of their origin (i.e. periphery (pTreg) or 
thymus). In addition, inflammatory monocytes (CD11b+, LY6C (high)) (D) and neutrophils (CD11b+, 
LY6C(mid), SSC(high)) (E) were assessed in the blood. Significant differences are depicted as: *p < 0.05, **p < 
0.01 for Milk gavage compared to Kefir supplementation; and $p < 0.05, $$p < 0.01 for No gavage compared to 
Milk gavage. All data are expressed as mean ± SEM (n = 11-12). 
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these cells did not express the Helios transcription factor (F(2,34) = 7.548, p = 0.002) 

(Figure 5B), indicating that they were induced in the periphery (pTreg) rather than in 

the thymus (48), potentially indicating that gut microbial-derived metabolites could 

have driven this increase in Treg cells. This UK4-induced increase Treg cells was also 

observed in the peripheral circulation (F(2,31) = 3.420, p = 0.046) (Figure 5C), 

indicating that these effects reached non-gastrointestinal tissues.  

Interestingly, we observed an increase in circulating inflammatory monocytes 

(CD11b+, LY6C(high)) in mice receiving milk gavage, compared to mice receiving 

no gavage (t(22) = −2.437, p = 0.023) (Figure 5D). In line with this finding, was an 

increase in neutrophil levels (CD11b+, LY6C(mid), SSC(high)) induced by milk 

gavage (t(22) = −3.583, p = 0.002) (Figure 5E), indicating an activation of the innate 

immune system. The neutrophil levels however, were ameliorate by Fr1 

administration (F(2,34) = 5.412, p = 0.009) (Figure 5E). 

 

Kefir microbiota were largely stable over time 

Shotgun metagenomics was used to determine the species-level composition of two 

kefirs, Fr1 and UK4, at six time-points over the twelve week duration of the 

experiment. Overall, the populations were temporally stable, and it was observed that 

both kefirs were dominated by Lactococcus lactis, and also consistently contained 

Lactobacillus kefiranofaciens (Figure S6). Several other species were identified but 

they were not consistently detected at each time-point. It was interesting to note that 

Bifidobacterium breve was detected at three time-points at >1% relative abundance 

in both kefirs. Additionally, Pseudomonas species, which likely originated in the 
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starting milk, were detected at the same two time-points in both kefirs at >10% 

relative abundance.  

 

Kefirs exerted similar effects on gut microbiota composition, at both the 

species- and strain-levels 

MetaPhlAn2 was employed to characterise the species-level microbial composition 

of the ileum, cecum and faeces. It was observed that the ileum was dominated by 

Bifidobacterium pseudolongum (73% in Fr1, 68% in UK4, and 56% in Milk), the 

cecum was dominated by Mucispirillum schaedleri (47% in Fr1, 40% in UK4, and 

48% in Milk), while faeces were also dominated by B. pseudolongum (40% in Fr1, 

35% UK4, and 29% in Milk) (Figure S7A). Additionally, Lactobacillus species, such 

as Lactobacillus murinis or Lactobacillus reuteri, were subdominant in each region. 

Expectedly, alpha diversity progressively increased from the ileum to the faeces 

(Figure S7B). 

Pairwise comparisons were performed to identify differences between Fr1 versus 

Milk-fed mice, and UK4 versus Milk-fed mice. The Shannon diversity index was not 

significantly different between Fr1-fed mice versus Milk fed-mice in the ileum 

(p=0.11), cecum (p=0.19), or faeces (p=0.16) (Figure 6A). Similarly, 

PERMANOVA analysis indicated that there were no significant differences in beta 

diversity between Fr1-fed mice versus Milk-fed mice in the ileum (p=0.088, 

R2=0.111), cecum (p=0.087, R2=0.087), or faeces (p=0.077, R2=0.114) (Figure 6B). 

However, LEfSe identified several differentially abundant species between Fr1-fed 

mice versus Milk-fed mice (Figure S8). In the ileum, Bifidobacterium pseudolongum 

(LDA=4.93) was significantly higher in Fr1-fed mice. In the cecum, 



339 
 

 

Figure 6: (A) Violin plots showing the alpha diversity (as measured using the Shannon index) of Fr1 versus 
Milk-fed mice. (B) MDS plots showing the dissimilarity in the microbial composition between Fr1 versus 
Milk-fed mice.   
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Parabacteroides goldsteinii (LDA=3.99) and Lactobacillus reuteri (LDA=4.36) 

were significantly higher in Fr1-fed mice, whereas Lachnospiraceae bacterium 

3_1_46FAA (LDA=4.25) was significantly higher in Milk-fed mice. In the faeces, 

Bacteroides intestinalis (LDA=3.49), Anaerotruncus unclassified (LDA=3.75), 

Eubacterium plexicaudatum (LDA=3.77), and Parabacteroides goldsteinii 

(LDA=4.02) were significantly higher in Fr1-fed mice, whereas Bacillus 

amyloliquefaciens (LDA=3.04) and Propionibacterium acnes (LDA=3.25) were 

significantly higher in Milk-fed mice. 

The Shannon diversity index was significantly higher in the cecum (p=0.017) in 

UK4 versus Milk-fed mice, but there were no significant differences in the ileum 

(p=0.44) or faeces (p=0.24) (Figure 7A). PERMANOVA analysis indicated that 

there were no significant differences in beta diversity between UK4 versus Milk-fed 

mice in the ileum (p=0.058, R2=0.092), cecum (p=0.1, R2=0.092), or faeces 

(p=0.073, R2=0.09) (Figure 7B). LEfSe identified several differentially abundant 

species between UK4 versus Milk-fed mice (Figure S9). In the ileum, Candidatus 

Arthromitus unclassified (LDA=4.45) was higher in Milk-fed mice. In the cecum, 

Alistipes unclassified (LDA=4.08), L. reuteri (LDA=4.02), Eubacterium 

plexicaudatum (LDA=4.22) and B. pseudolongum (LDA=4.7) were higher in UK4-

fed mice, whereas Lachnospiraceae bacterium 3_1_46FAA (LDA=4.28) was higher 

in Milk-fed mice. In the faeces, E. plexicaudatum (LDA=3.67) and L. reuteri 

(LDA=4.07) were higher in UK4-fed mice, whereas B. amyloliquefaciens 

(LDA=3.58) and P. acnes (LDA=4.04) were higher in Milk-fed mice.  

Subsequently, PanPhlAn was used alongside StrainPhlAn to characterise 

differentially abundant species to the strain-level. Both tools indicated that the same 

B. pseudolongum strain, which was closely related to B. pseudolongum UMB-MBP- 
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Figure 7: (A) Violin plots showing the alpha diversity (as measured using the Shannon index) of UK4 
versus Milk-fed mice. (B) MDS plots showing the dissimilarity in the microbial composition between UK4 
versus Milk-fed mice.   
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01, was present in each treatment group (Figure 8). Similarly, PanPhlAn indicated 

that the same L. reuteri strain, which was closely related to L. reuteri TD1, was also 

present in each treatment group (Figure 8). StrainPhlAn only detected a L. reuteri 

strain in one Fr1-fed sample, but again it indicated that this strain was closely related 

to L. reuteri TD1 (Figure 8). No other differentially abundant species could be 

characterised to the strain-level. Finally, neither PanPhlAn nor StrainPhlAn 

identified any of the strains detected in kefir in the gut microbiota. 

 

Species relative abundances significantly correlate with immuno-physiological 

parameters in the murine gut 

The tool HAllA revealed that no species were significantly associated with 

behavioural measurements (Figure S10), but several species were significantly 

associated with immuno-physiological parameters (Figure 9). In the ileum, B. 

pseudolongum was negatively associated with neutrophil levels (R=-0.52, q=0.47); 

Candidatus Arthromitus unclassified was negatively associated with Treg cell levels 

(R=-0.49, q=0.98); Lactobacillus johnsonii was positively associated with the ileal 

5HIAA-5HT ratio (R=0.54, q=0.047); and L. murinis was positively associated with 

neutrophil levels (R=0.50, q=0.053). In the cecum, L. johnsonii was again positively 

associated with the ileal 5HIAA-5HT ratio (R=0.56, q=0.065). In the stool, there 

were no species were significantly associated with any immuno-physiological 

parameters. 

 

Kefirs caused significant shifts in the functional potential of the gut microbiome 
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Figure 8: Strain-level analysis of Bifidobacterium pseudolongum and Lactobacillus reuteri detected in the 
mouse gut. (A) PCA plot based on gene families presence/absence matrices from PanPhlAn. The reference 
strains which shared the most gene families with that detected in the murine gastrointestinal tract are labelled. (B) 
Phylogenetic trees generated from StrainPhlAn outputs. Note that colours represent the group to which strains 
belong and shapes represent the source of the strains.  
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Figure 9: Correlations between species relative abundances and immuno-physiological parameters in the 
murine gut. The heatmap shows the Spearman rank correlation coefficient for each combination of variables. 
Significant associations, as determined by HAllA, are highlighted with asterisks.    
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HUMAnN2 was used to characterise the functional potential of the microbiome in 

the ileum, cecum and faeces. PERMANOVA analysis revealed that there was a 

significant functional separation in the microbiome between Fr1 versus Milk-fed 

mice in the cecum (p=0.019, R2=0.079), but not in the ileum (p=0.052, R2=0.099) or 

the faeces (p=0.108, R2=0.068) (Figure 10A). Additionally, there was also a 

significant separation in the microbiome between UK4 versus Milk-fed animals in 

the cecum (p=0.018, R2=0.092) and faeces (p=0.01, R2=0.09), but not in the ileum 

(p=0.212, R2=0.092) (Figure 10B). LEfSe identified 31 differentially abundant 

features (LDA>3.0) between Fr1 versus Milk-fed mice, while it also identified 23 

differentially abundant features (LDA>3.0) between UK4 versus Milk-fed mice 

(Table S3). Notably, there were significant differences in several EC categories that 

may be involved in producing precursors to neurotransmitters. Specifically, genes 

encoding glutamine--fructose-6-phosphate transaminase (isomerising) (EC 2.6.1.16) 

(LDA=3.03), which produces glutamate, in addition to glutamate--ammonia ligase 

(EC 6.3.1.2) (LDA=3.34), which produces glutamine, were higher in the ileum in  

Fr1-fed mice compared to Milk-fed mice (Figure 10C). Genes encoding glutamine--

fructose-6-phosphate transaminase (isomerising) were also higher in the ileum in 

UK4-fed mice compared to Milk-fed mice (LDA=3.31) (Figure 10C). Furthermore, 

the following EC categories were differentially abundant in the cecum in UK4-fed 

mice compared to Milk-fed mice: glutamate--ammonia ligase was higher in UK4-fed 

mice (LDA=3.1), whereas tryptophan synthase (EC 4.2.1.20), which produces 

tryptophan, was higher in Milk-fed mice (LDA=3.47) (Figure 10C). Finally, genes 

encoding glutamate--cysteine ligase (EC 6.3.2.2) were higher in the faeces in UK4-

fed mice compared to Milk-fed mice (LDA=3.03) (Figure 10C). 
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Figure 10: Functional analysis of the gut microbiome in mice fed kefir or unfermented milk. The MDS 
plots show the functional dissimilarity in the gut microbiome between (A) Fr1 versus Milk-fed mice and (B) 
UK4 versus Milk-fed mice. The violin plots (C) show differentially abundant EC level 4 categories of interest. 
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Potential GABA- and tryptophan-producing strains were increased following 

kefir ingestion 

PanPhlAn gene-family matrices were examined to investigate if neurotransmitter-

associated genes were present in either B. pseudolongum or L. reuteri, which were 

both significantly increased in the kefir groups. It was observed that the detected B. 

pseudolongum strain had genes encoding glutamate synthase, which may be 

involved in glutamate production, in addition to glutamine--fructose-6-phosphate 

transaminase (isomerising). Furthermore, it also encoded a putative 

glutamate/gamma-aminobutyrate antiporter, which may be involved in exporting 

glutamate or gamma-Aminobutyric acid (GABA) from the cell. However, no genes 

encoding glutamate decarboxylase, which produces GABA by the decarboxylation 

of glutamate, were identified in the detected B. pseudolongum strain. Interestingly, 

although HUMAnN2 indicated that tryptophan synthase (EC 4.2.1.20) was 

decreased in the kefir groups, genes encoding the protein were present in this strain.  

The detected L. reuteri strain was found to encode glutamine--fructose-6-phosphate 

transaminase (isomerising). Importantly, this strain encoded glutamate 

decarboxylase along with a putative glutamate/gamma-aminobutyrate antiporter. 

Overall, these results indicate that both strains can potentially produce glutamate 

and/or GABA, while the detected B. pseudolongum strain might also synthesise 

tryptophan. 

 

DISCUSSION 
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In the present study we report that, compared to unfermented fermented milk, two 

traditional kefirs, Fr1 and UK4, modulate repetitive and anxiety-like behaviour, 

depressive-like behaviour, reward-seeking behaviour, and cognition in mice.  

We show the kefir UK4 induces an antidepressant-like effect in the forced swim test 

and female urine sniffing test, as well as a reduction in repetitive and anxiety-like 

behaviour in the marble burying test. In addition, UK4 enhanced contextual fear-

dependent learning in the fear conditioning test, whilst decreasing long-term spatial 

learning in the appetitive Y-maze. The differing findings in regards to cognition and 

learning could indicate that UK4 modulates the central nervous system in a brain 

region-dependent manner, as fear-dependent learning is largely dependent on the 

involvement of the amygdala in contrary to long-term spatial learning in the 

appetitive Y-maze. The other kefir, Fr1, increased reward-seeking behaviour in the 

saccharin preference test and the female urine sniffing test as indicated by interaction 

time with the water-containing cotton bulb, indicating that Fr1 might be able to 

modulate central reward-circuitry. Interestingly, no significant differences were 

found in other behavioural tests assessing anxiety- and depressive-like behaviour as 

the elevated plus maze, open field test, stress-induced hyperthermia test and tail-

suspension test. The differing findings regarding anxiety- and depressive-like 

behaviour across multiple tests highlight the benefits of screening in a battery style. 

Shotgun metagenomics was employed to characterise the effects of the two kefirs on 

the ileal, cecal and faecal microbiome of mice. Species-level compositional analysis 

with MetaPhlAn2 revealed that both kefirs produced generally similar effects. 

Indeed, B. pseudolongum was increased in the ileum of Fr1-fed mice and the cecum 

of UK4-fed mice, L. reuteri was increased in the cecum of both groups and in the 

faeces of UK4-fed mice, while E. plexicaudatum was increased in the cecum of 
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UK4-fed mice and in the faeces of both groups. Conversely, Lachnospiraceae 

bacterium 3_1_46FAA was decreased in the cecum of both groups, while both B. 

amyloliquefaciens and P. acnes were decreased in the faeces of both groups. 

However, some kefir-specific effects were observed. Specifically, P. goldsteinii was 

increased in the cecum and faeces of Fr1-fed mice, while Alistipes unclassified was 

increased in the cecum of UK4-fed mice. Additionally, Candidatus Arthromitus 

unclassified was decreased in the ileum of UK4-fed mice. Furthermore, alpha 

diversity was only increased in the cecum of UK4-fed mice. 

Several of these differentially abundant species have potential implications for 

health. Specifically, Lachnospiraceae, which was decreased in both kefir groups, has 

been frequently linked to obesity (49), whereas P. goldsteinii, which was increased 

in the Fr1 group, has been negatively correlated with this condition (50). 

Interestingly, although we did not observe any differences in percentage body fat 

here, two recent studies reported that kefir reduced weight gain in high-fat diet fed 

mice (18, 51). Furthermore, B. pseudolongum has been shown to increase the anti-

inflammatory cytokine IL-10 in mice (52), while, similarly, L. reuteri has been 

shown to decrease inflammation in humans by increasing Treg cells (53). 

Importantly, UK4 increased anti-inflammatory Treg cells, suggesting that UK4 

modulated the adaptive immune system, while Fr1 decreased neutrophils levels, 

suggesting that Fr1 modulated the innate immune system. It is possible that the 

increases in B. pseudolongum and/or L. reuteri contributed to the observed immune 

responses. Indeed, we identified a significant negative correlation between the 

abundance of B. pseudolongum in the ileum and blood neutrophil levels. Although it 

has already been established that kefir can modulate the immune system (11), this 

finding is particularly relevant here since immunomodulation by the gut microbiota 
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has been implicated in gut-brain axis signalling (54). This is further enforced by the 

observed changes in behaviour, even though more research is warranted to conclude 

any concrete mechanism. In addition, it should be noted that the observed 

immunomodulatory effects may also have been caused by metabolites in kefir itself, 

which were not studied here. 

Strain-level analysis with PanPhlAn and StrainPhlAn indicated that the same B. 

pseudolongum and L. reuteri strains were present in each treatment group. Our 

finding suggests that these strains were endogenous to the gut, but that kefir 

promoted their growth. The detected B. pseudolongum strain was most closely 

related to B. pseudolongum UMB-MBP-01 (55), a strain that has been linked to 

improved organ transplant outcome in C57BL/6J mice, while the detected L. reuteri 

strain was most closely related to L. reuteri TD1 (56), a strain that was isolated from 

type 1 diabetes-resistant rats, which further indicates potential immunomodulatory 

roles for these bacteria. It is notable, though, that we did not detect any kefir strains 

in the mice, which suggests that the ingested microbes did not colonise the gut. 

Metabolic reconstruction with HUMAnN2 revealed that both kefirs significantly 

altered the functional potential of the cecum, while UK4 also altered it in the faeces. 

Overall, across each region, 31 pathways were differentially abundant between Fr1 

versus Milk-fed mice, while 23 pathways were differentially abundant between UK4 

versus Milk-fed mice. Intriguingly, several genes involved in neurotransmitter 

production were differentially abundant between the groups. Specifically, genes 

encoding glutamine--fructose-6-phosphate transaminase (isomerising), which 

produces glutamate, were higher in the ileum of both kefir groups, while genes 

encoding glutamate--ammonia ligase, which produces glutamine, a precursor to 

glutamate, were also higher in the ileum of Fr1-fed mice. Glutamate, which is an 
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important excitatory neurotransmitter in the brain (57), is itself a precursor to 

gamma-aminobutyric acid (GABA), which is the main inhibitory neurotransmitter in 

the central nervous system (58). Subsequent strain-level functional analysis with 

PanPhlAn showed that both of the detected B. pseudolongum and L. reuteri strains 

encoded glutamine--fructose-6-phosphate transaminase (isomerising), while B. 

pseudolongum additionally encoded glutamate synthase. Furthermore, the detected 

L. reuteri strain encoded glutamate decarboxylase, which produces GABA from 

glutamate, while both strains were found to encode a putative glutamate/GABA 

antiporter. Thus, kefir consumption apparently increased the capacity for the gut 

microbiome to synthesise glutamate and/or GABA. Deficiencies in the GABA 

system have been linked to anxiety and depression (59). Interestingly, Bravo et al. 

previously showed that a probiotic, Lactobacillus rhamnosus JB-1, regulated 

emotional behaviour in mice by altering GABA receptor expression in the animals 

(60). Therefore, it is remarkable that anxious or depressive-like behaviours were 

decreased in both kefir groups. Our results might suggest that kefir reduced these 

symptoms by increasing GABA production in the gut. 

HUMAnN2 also indicated that genes encoding tryptophan synthase, which produces 

tryptophan, were decreased in the cecum of UK4-fed mice.  However, PanPhlAn 

showed that the detected B. pseudolongum strain, which was significantly increased 

in both kefir groups, encoded tryptophan synthase. Thus, UK4 consumption 

apparently decreased the total capacity for the microbiome to synthesise tryptophan 

in the cecum, but both kefirs increased a tryptophan producer in the same region.   

Indeed, this seemingly counterintuitive observation emphasises the value of strain-

level functional analysis of the gut. Tryptophan is a precursor to the neurotransmitter 

serotonin, which is central to mood regulation in addition to cognition (61). It is 
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unclear if microbial synthesis of tryptophan influences host tryptophan levels, but it 

is noteworthy that, in a previous study, treatment with Bifidobacterium infantis was 

found to increase tryptophan levels in rats (62). Here, we observed that Fr1 increased 

serotonergic activity in the colon, but not in the ileum. It is possible that the detected 

B. pseudolongum strain contributed to this increase by augmenting tryptophan levels 

in the mice. Alternatively, serotonergic activity in the colon might have simply been 

increased because tryptophan is typically higher in kefir than in unfermented milk 

(13, 63). 

In conclusion, the present study provides evidence which indicates that the 

traditional fermented dairy beverage kefir may modulate the gut-brain axis in mice. 

Our work supports the recent broadening of the definition of psychobiotic to include 

fermented foods like the fermented milk drink kefir. We show that kefir modulates 

repetitive and anxiety-like behaviour, depressive-like behaviour, reward-seeking 

behaviour, and cognition, while simultaneously increasing the abundance of bacterial 

strains containing genes associated with the biosynthesis of glutamate, GABA and 

tryptophan. However, it is possible that metabolites within kefir itself contributed to 

the observed improvements in behaviour, and therefore future investigations must 

address the effects of kefir isolates on mood. Regardless, our work suggests that 

kefir may serve as a dietary intervention to improve mood, and it merits further 

studies to confirm these effects in humans. 
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Supplemental material 

HPLC analysis 

Mobile phase consisted of 0.1M citric acid, 0.1M sodium dihydrogen phosphate 

monohydrate, 0.01mM EDTA disodium salt (Alkem/Reagecon, Cork), 5.6mM 

octane-1-sulphonic acid (Sigma Aldrich), and 9% (v/v) methanol (Alkem/Reagecon).  

The pH of the mobile phase was adjusted to 2.8 using 4N sodium hydroxide 

(Alkem/Reagecon). Briefly, tissue samples were sonicated (Sonopuls HD 2070, 

Bandelin, Berlin Germany) in 500uL of cold mobile phase containing 4ng/40uL of 

N-methyl serotonin (Sigma Aldrich). Tissues were sonicated for 4 seconds and were 

kept chilled during sonication. Tissue homogenates were then centrifuged at 

14000RPM for 20min at 4oC. The supernatant was collected and transferred to a new 

collection tube; the pellet was discarded. The supernatant was then vortexed and 30 

uL of supernatant was spiked into 270uL of mobile phase that did not contain N-

methyl serotonin. 20uL of the 1:10 dilution (4oC) was injected into the HPLC system 

(Shimadzu, Japan) which was comprised of a SCL 10-Avp system controller, LC-

10AS pump, SIL-10A autoinjector, CTO-10A oven, LECD 6A electrochemical 

detector, and Class VP-5 software. The chromatographic conditions were flow rate 

of 0.9mL/min using a Kinetex 2.6u C18 100A x 4.6mm column, oven temperature of 

30oC, and detector settings of +0.8V. The total run time for each sample was 40min. 

External standards (serotonin creatinine sulfate and 5-hydroxyindole-3-acetic acid; 

Sigma Aldrich) were run in duplicate at a final concentration of 2ng/20uL. 

Monoamines in unknown samples were determined by their retention times 

compared to external standards. Peak heights of the analyte:internal standard ratio 

were used to quantitate monomamine concentrations in each sample. Monoamine 

concentration was presented as ug of monoamine per g of tissue. 
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Table S1. Summary of statistical analysis on behavioural and physiological parameters in mice. Note that 
NG represents "No gavage". 

Test Comparison Measure P-value 

3-Chamber test - Social preference 

Fr1 v Milk 
Mouse 0.998 

Object 0.998 

NG v Milk 
Mouse 0.745 

Object 0.729 

UK4 v Milk 
Mouse 0.693 

Object 0.831 

3-Chamber test - Social recognition 

Fr1 v Milk 
Familiar 0.685 

Novel 0.685 

NG v Milk 
Familiar 0.745 

Novel 0.729 

UK4 v Milk 
Familiar 0.693 

Novel 0.831 

Appetitive Y-maze - % 

Fr1 v Milk 

Correct choices (%) D1 0.582 

Correct choices (%) D10 0.9996 

Correct choices (%) D11 0.9858 

Correct choices (%) D12 1 

Correct choices (%) D13 0.94 

Correct choices (%) D2 0.943 

Correct choices (%) D3 0.995 

Correct choices (%) D4 0.88 

Correct choices (%) D5 0.919 

Correct choices (%) D6 0.996 

Correct choices (%) D7 0.3065 

Correct choices (%) D8 0.876 

Correct choices (%) D9 0.969 

NG v Milk 

Correct choices (%) D10 0.031 

Correct choices (%) D1 0.97 

Correct choices (%) D11 0.1119 

Correct choices (%) D12 0.872 

Correct choices (%) D13 0.844 

Correct choices (%) D2 0.588 

Correct choices (%) D3 1 

Correct choices (%) D4 0.981 

Correct choices (%) D5 0.943 

Correct choices (%) D6 0.932 

Correct choices (%) D7 0.8778 

Correct choices (%) D8 0.529 

Correct choices (%) D9 0.66 

UK4 v Milk 

Correct choices (%) D11 0.031 

Correct choices (%) D1 0.766 

Correct choices (%) D10 0.0697 

Correct choices (%) D12 0.21 
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Test Comparison Measure P-value 

Correct choices (%) D13 0.307 

Correct choices (%) D2 0.862 

Correct choices (%) D3 0.981 

Correct choices (%) D4 0.62 

Correct choices (%) D5 0.799 

Correct choices (%) D6 0.53 

Correct choices (%) D7 0.0779 

Correct choices (%) D8 0.273 

Correct choices (%) D9 0.694 

Appetitive Y-maze - Average 

Fr1 v Milk 

Average number of entries: D1 0.411 

Average number of entries: D10 0.936 

Average number of entries: D11 0.9999 

Average number of entries: D12 1 

Average number of entries: D13 0.887 

Average number of entries: D2 1 

Average number of entries: D3 0.999 

Average number of entries: D4 0.949 

Average number of entries: D5 0.994 

Average number of entries: D6 0.998 

Average number of entries: D7 0.3829 

Average number of entries: D8 0.984 

Average number of entries: D9 0.953 

NG v Milk 

Average number of entries: D1 0.99 

Average number of entries: D10 0.224 

Average number of entries: D11 0.1955 

Average number of entries: D12 0.959 

Average number of entries: D13 0.706 

Average number of entries: D2 0.689 

Average number of entries: D3 1 

Average number of entries: D4 0.984 

Average number of entries: D5 1 

Average number of entries: D6 0.956 

Average number of entries: D7 0.7822 

Average number of entries: D8 0.591 

Average number of entries: D9 0.739 

UK4 v Milk 

Average number of entries: D11 0.046 

Average number of entries: D1 0.872 

Average number of entries: D10 0.286 

Average number of entries: D12 0.243 

Average number of entries: D13 0.325 

Average number of entries: D2 0.984 

Average number of entries: D3 1 

Average number of entries: D4 0.534 
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Test Comparison Measure P-value 

Average number of entries: D5 0.26 

Average number of entries: D6 0.308 

Average number of entries: D7 0.0626 

Average number of entries: D8 0.675 

Average number of entries: D9 0.896 

Body Temperature 

Fr1 v Milk 

Body temperature (°C) 

0.25 

NG v Milk 0.994 

UK4 v Milk 0.374 

Body weight 

Fr1 v Milk 

Body weight: D0 0.126 

Body weight: D100 0.58 

Body weight: D14 0.509 

Body weight: D20 0.987 

Body weight: D27 1 

Body weight: D3 0.0848 

Body weight: D34 1 

Body weight: D41 0.984 

Body weight: D48 0.994 

Body weight: D56 0.948 

Body weight: D64 0.66 

Body weight: D7 0.374 

Body weight: D92 0.229 

NG v Milk 

Body weight: D0 0.983 

Body weight: D100 0.952 

Body weight: D14 0.117 

Body weight: D20 0.504 

Body weight: D27 0.609 

Body weight: D3 0.3357 

Body weight: D34 0.106 

Body weight: D41 0.314 

Body weight: D48 0.13 

Body weight: D56 0.157 

Body weight: D64 0.813 

Body weight: D7 0.102 

Body weight: D92 0.995 

UK4 v Milk 

Body weight: D0 0.572 

Body weight: D100 0.474 

Body weight: D14 0.993 

Body weight: D20 0.935 

Body weight: D27 0.803 

Body weight: D3 0.7277 

Body weight: D34 0.844 

Body weight: D41 0.845 

Body weight: D48 0.98 
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Test Comparison Measure P-value 

Body weight: D56 0.719 

Body weight: D64 0.791 

Body weight: D7 0.958 

Body weight: D92 0.249 

Cecum weight 

Fr1 v Milk 

Cecum weight (%) 

0.996 

NG v Milk 0.955 

UK4 v Milk 0.584 

Circulating inflammatory monocytes 

Fr1 v Milk 

Percentage CD11b+, LY6C(high) cells 

0.5932 

NG v Milk 0.023 

UK4 v Milk 0.9993 

Circulating neutrophils 

Fr1 v Milk 

Percentage CD11b+, LY6C(mid), SSC(high) cells 

0.009 

NG v Milk 0.002 

UK4 v Milk 0.9999 

Circulating Treg cells 

Fr1 v Milk 

Percentage CD4+, CD25+, FoxP3+ cells 

0.9496 

NG v Milk 0.2456 

UK4 v Milk 0.046 

Colon 5HIAA 

Fr1 v Milk 

5HIAA (μg/g tissue) 

0.725 

NG v Milk 1 

UK4 v Milk 0.801 

Colon 5HIAA:5HT ratio 

Fr1 v Milk 

Ratio 

<0.001 

NG v Milk 0.088 

UK4 v Milk 0.94923 

Colon 5HT 

Fr1 v Milk 

5HT (μg/g tissue) 

0.158 

NG v Milk 0.066 

UK4 v Milk 0.266 

Colon length 

Fr1 v Milk 

Colong length (cm) 

0.893 

NG v Milk 1 

UK4 v Milk 0.917 

Elevate plus maze 

Fr1 v Milk 

Time spent in open arm (s) 

0.966 

NG v Milk 0.758 

UK4 v Milk 1 

Faecal pellet weight 

Fr1 v Milk 

Weight per pellet (g) 

1 

NG v Milk 0.943 

UK4 v Milk 0.986 

Faecal water content 

Fr1 v Milk 

Faecal water content (%) 

1 

NG v Milk 0.892 

UK4 v Milk 0.884 

Fat mass 

Fr1 v Milk 

Fat mass (%) 

0.982 

NG v Milk 0.816 

UK4 v Milk 0.99 

Fear conditioning Phase 1: Acquisition-Context Fr1 v Milk 

End 0.369 

Interval 1 0.797 

Interval 2 0.992 
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Test Comparison Measure P-value 

Interval 3 0.968 

Interval 4 0.506 

Interval 5 0.663 

Interval 6 0.374 

Start 0.763 

NG v Milk 

End 0.577 

Interval 1 0.949 

Interval 2 0.994 

Interval 3 0.604 

Interval 4 0.919 

Interval 5 0.48 

Interval 6 0.22 

Start 0.982 

UK4 v Milk 

End 1 

Interval 1 0.455 

Interval 2 0.448 

Interval 3 0.882 

Interval 4 0.649 

Interval 5 0.89 

Interval 6 1 

Start 0.99 

Fear conditioning Phase 1: Acquisition-Cue 

Fr1 v Milk 

Cue 1 0.52 

Cue 2 0.843 

Cue 3 0.6 

Cue 4 0.6 

Cue 5 0.0991 

Cue 6 0.915 

NG v Milk 

Cue 1 0.985 

Cue 2 0.961 

Cue 3 0.941 

Cue 4 0.941 

Cue 5 0.1091 

Cue 6 0.58 

UK4 v Milk 

Cue 1 0.899 

Cue 2 0.677 

Cue 3 0.767 

Cue 4 0.767 

Cue 5 0.6183 

Cue 6 1 

Fear Conditioning Phase 2 - Contextual learning 

NG v Milk 

Percentage freezing (%) 

0.2363 

UK4 v Milk 0.055 

Fr1 v Milk 0.1095 

Fear conditioning Phase 2: Cued learning Fr1 v Milk Presentations of the cue: D1 0.999 
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Test Comparison Measure P-value 

Presentations of the cue: D10 0.999 

Presentations of the cue: D2 0.99 

Presentations of the cue: D3 0.785 

Presentations of the cue: D4 0.601 

Presentations of the cue: D5 0.999 

Presentations of the cue: D6 0.989 

Presentations of the cue: D7 0.289 

Presentations of the cue: D8 0.967 

Presentations of the cue: D9 0.938 

NG v Milk 

Presentations of the cue: D1 0.563 

Presentations of the cue: D10 0.996 

Presentations of the cue: D2 0.359 

Presentations of the cue: D3 0.16 

Presentations of the cue: D4 0.201 

Presentations of the cue: D5 0.902 

Presentations of the cue: D6 0.469 

Presentations of the cue: D7 0.562 

Presentations of the cue: D8 0.998 

Presentations of the cue: D9 0.898 

UK4 v Milk 

Presentations of the cue: D1 0.327 

Presentations of the cue: D10 0.954 

Presentations of the cue: D2 0.216 

Presentations of the cue: D3 0.344 

Presentations of the cue: D4 0.823 

Presentations of the cue: D5 0.807 

Presentations of the cue: D6 0.344 

Presentations of the cue: D7 0.465 

Presentations of the cue: D8 0.953 

Presentations of the cue: D9 0.992 

Female urine sniffing test 

Fr1 v Milk 
Interaction time (s): Urine 0.1695 

Interaction time (s): Water 0.0189 

NG v Milk 
Interaction time (s): Water 0.012 

Interaction time (s): Urine 0.2942 

UK4 v Milk 
Interaction time (s): Urine 0.043 

Interaction time (s): Water 0.2522 

Fluid mass 

Fr1 v Milk 

Fluid mass (%) 

0.584 

NG v Milk 1 

UK4 v Milk 0.83 

Food intake 

Fr1 v Milk 

Food intake (g) 

0.202 

NG v Milk 0.977 

UK4 v Milk 0.481 

Forced swim test 
Fr1 v Milk 

Immobility time (s) 
0.4062 

NG v Milk 0.6487 



369 
 

Test Comparison Measure P-value 

UK4 v Milk 0.114 

Gastrointestinal moltility 

Fr1 v Milk 

Transit time (s) 

0.629 

NG v Milk 1 

UK4 v Milk 0.827 

Ileum 5HIAA 

Fr1 v Milk 

5HIAA (μg/g tissue) 

0.948 

NG v Milk 0.266 

UK4 v Milk 0.696 

Ileum 5HIAA:5HT ratio 

Fr1 v Milk 

Ratio 

0.99884 

NG v Milk <0.001 

UK4 v Milk 0.99389 

Ileum 5HT 

Fr1 v Milk 

5HT (μg/g tissue) 

0.9079 

NG v Milk 0.015 

UK4 v Milk 0.8529 

Lean mass 

Fr1 v Milk 

Lean mass (%) 

0.99 

NG v Milk 0.821 

UK4 v Milk 0.999 

Marble burying test 

Fr1 v Milk 

Marbles buried 

0.5191 

NG v Milk 0.83514 

UK4 v Milk 0.009 

Mesenteric lymph nodes pTreg 

Fr1 v Milk 

Percentage CD4+, CD25+, FoxP3+, Helios-cells 

0.7727 

NG v Milk 0.9877 

UK4 v Milk 0.002 

Mesenteric lymph nodes Treg 

Fr1 v Milk 

Percentage CD4+, CD25+, FoxP3+ cells 

0.7728 

NG v Milk 0.9877 

UK4 v Milk 0.001 

Open field - Locomotor activity 

Fr1 v Milk 

Distance moved (cm) 

0.998 

NG v Milk 0.848 

UK4 v Milk 1 

Open field test 

Fr1 v Milk 

Time spent in centre (s) 

0.882 

NG v Milk 0.679 

UK4 v Milk 0.995 

Saccharin preference test 

Fr1 v Milk 

Saccharin preference (%): 36h 0.002 

Saccharin preference (%): 12h 0.35 

Saccharin preference (%): 24h 0.63 

Saccharin preference (%): 48h 0.211 

NG v Milk 

Saccharin preference (%): 12h 0.63 

Saccharin preference (%): 24h 0.66 

Saccharin preference (%): 36h 0.7125 

Saccharin preference (%): 48h 0.885 

UK4 v Milk 

Saccharin preference (%): 12h 0.27 

Saccharin preference (%): 24h 0.93 

Saccharin preference (%): 36h 0.4552 

Saccharin preference (%): 48h 0.755 
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Test Comparison Measure P-value 

Stress-induced hyperthermia 

Fr1 v Milk 

Δ Body temperature (°C) 

0.992 

NG v Milk 0.291 

UK4 v Milk 1 

Tail-suspension test 

Fr1 v Milk 

Time spent immobile (s) 

0.588 

NG v Milk 0.223 

UK4 v Milk 0.998 

Water intake 

Fr1 v Milk 

Water intake (mL) 

0.261 

NG v Milk 0.999 

UK4 v Milk 0.845 
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Figure S1: Room layout with cues for the appetitive Y-maze and food restriction. The room layout with the 
various cues used in the appetitive Y-maze is depicted (A). In addition, mice were kept on food restriction of 90-
95% of the free-feeding body weight. All data are expressed as mean ± SEM (n = 12). 
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Figure S2: Kefir was well-tolerated.  Body weight as measured throughout the study (A). The gap in-between 
day 64 and 92 represents the appetitive Y-maze, in which animals were food restricted. Food intake and drinking 
water intake were measured during the habituation phase of the saccharin preference test (B, C). Body 
composition (i.e. lean, fat and fluid mass) were quantified at the end of the study (D-F). Basal body temperature 
was taken during the stress-induced hyperthermia test (G). Locomotor activity was assessed in the open field test. 
All data are expressed as mean ± SEM (n = 11-12). Dots on each graph represent individual animals. 
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Figure S3: Kefir did not influence gastrointestinal motility. Gastrointestinal motility was assessed by carmine 
red administration (A). Faecal pellet weight and water content were quantified during the “faecal water content 
assessment” (B, C). Caecum weight and colon length were measured at the end of the study (D, E). All data are 
expressed as mean ± SEM (n = 11-12). Dots on each graph represent individual animals. 
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Figure S4: Selective anxiety-like and depressive-like behavioural measurement showed no differences. 
Repetitive/anxiety-like behaviour was assessed using the elevated plus maze and open field test (A, B). Stress-
responsiveness was determined using the stress-induced hyperthermia test (C). Depressive-like behaviour was 
investigated using the tail suspension test (D). All data are expressed as mean ± SEM (n = 11-12). Dots on each 
graph represent individual animals. 
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Figure S5: Kefir did not influence social preference or recognition. Social preference and recognition were 
assessed with the 3-chamber social interaction test (A, B). All data are expressed as mean ± SEM (n = 12). 
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Figure S6: Stacked area chart showing the microbial composition of kefirs over the course of the 
experiment. 
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Figure S7: Compositional analysis of the murine gastrointestinal (GI) tract within each group. (A) 
Heatmap showing the 25 most abundant species across each region of the GI tract. (B) Violin plots showing 
differences in alpha diversity across each GI region.  
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Figure S8: Taxa which were differentially abundant between Fr1 versus Milk-fed mice, as determined by 
LEfSe. 
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Figure S9: Taxa which were differentially abundant between UK4 versus Milk-fed mice, as determined by 
LEfSe. 
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Figure S10: Correlations between species and immuno-physiological parameters. The heatmap shows the 
Spearman rank correlation coefficient for each combination of variables. HAllA indicated that none of these 
correlations were significant. 
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Table S2: Reference genomes which were included in the custom PanPhlAn pangenome databases used in 
this study. 

Species Assembly Strain 
Lactobacillus reuteri GCF_000010005 JCM 1112 
Lactobacillus reuteri GCF_000016825 DSM 20016 
Lactobacillus reuteri GCF_000159455 SD2112 

Lactobacillus reuteri GCF_000236455 
ATCC 
53608 

Lactobacillus reuteri GCF_000410995 I5007 
Lactobacillus reuteri GCF_000439275 TD1 
Lactobacillus reuteri GCF_001046835 IRT 
Lactobacillus reuteri GCF_001618905 ZLR003 
Lactobacillus reuteri GCF_001688685 I49 
Bifidobacterium pseudolongum GCF_000800475 PV8-2 

Bifidobacterium pseudolongum GCF_002282915 
UMB-MBP-
01 

Bifidobacterium pseudolongum GCF_002706665 DSM 20092 
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Com

parison
Enzym

e
Accepted nam

e
Reaction catalysed

Treatm
ent

LDA
Alpha

Cecum
: Fr1 v M

ilk
1.1.1.27

L-lactate dehydrogenase
(S)-lactate + N

AD(+) <=> pyruvate + N
ADH

Fr1
3.219828704

0.01655138
Cecum

: Fr1 v M
ilk

2.4.2.8
Hypoxanthine phosphoribosyltransferase

IM
P + diphosphate <=> hypoxanthine + 5-phospho-alpha-D-ribose 1-diphosphate

Fr1
3.141821655

0.021052562
Cecum

: Fr1 v M
ilk

5.4.2.11
Phosphoglycerate m

utase (2,3-diphosphoglycerate-dependent)
2-phospho-D-glycerate <=> 3-phospho-D-glycerate

Fr1
3.099165012

0.037500712
Cecum

: Fr1 v M
ilk

1.5.1.36
Flavin reductase (N

ADH)
Reduced flavin + N

AD(+) <=> flavin + N
ADH

Fr1
3.086778546

0.019050703
Cecum

: Fr1 v M
ilk

2.3.1.n3
Glycerol-3-phosphate acyltransferase (acyl-phosphate transferring)

Acyl-phosphate + sn-glycerol 3-phosphate <=> 1-acyl-sn-glycerol 3-phosphate + phosphate
Fr1

3.002299062
0.036169089

Ileum
: Fr1 v M

ilk
2.6.1.16

Glutam
ine--fructose-6-phosphate transam

inase (isom
erizing)

L-glutam
ine + D-fructose 6-phosphate <=> L-glutam

ate + D-glucosam
ine 6-phosphate

Fr1
3.338367894

0.001822735
Ileum

: Fr1 v M
ilk

6.3.1.2
Glutam

ate--am
m

onia ligase
ATP + L-glutam

ate + N
H(3) <=> ADP + phosphate + L-glutam

ine
Fr1

3.471479978
0.024343384

Ileum
: Fr1 v M

ilk
4.3.1.19

Threonine am
m

onia-lyase
L-threonine <=> 2-oxobutanoate + N

H(3)
Fr1

3.313442872
0.017926339

Ileum
: Fr1 v M

ilk
5.1.3.4

L-ribulose-5-phosphate 4-epim
erase

L-ribulose 5-phosphate <=> D-xylulose 5-phosphate
Fr1

3.597203657
0.01304252

Ileum
: Fr1 v M

ilk
3.2.1.22

Alpha-galactosidase
Hydrolysis of term

inal, non-reducing alpha-D-galactose residues in alpha-D-galactosides, including galactose oligosaccharides, galactom
annans and galactolipids

Fr1
3.502049323

0.043308143
Ileum

: Fr1 v M
ilk

2.4.2.9
Uracil phosphoribosyltransferase

UM
P + diphosphate <=> uracil + 5-phospho-alpha-D-ribose 1-diphosphate

Fr1
3.496299022

0.011074438
Ileum

: Fr1 v M
ilk

3.2.1.21
Beta-glucosidase

Hydrolysis of term
inal, non-reducing beta-D-glucosyl residues w

ith release of beta-D-glucose
Fr1

3.377517348
0.024343384

Ileum
: Fr1 v M

ilk
3.2.1.38

Beta-D-fucosidase
Hydrolysis of term

inal non-reducing beta-D-fucose residues in beta-D-fucosides
Fr1

3.377517348
0.024343384

Ileum
: Fr1 v M

ilk
1.1.1.274

2,5-didehydrogluconate reductase (2-dehydro-D-gluconate-form
ing)

2-dehydro-D-gluconate + N
ADP(+) <=> 2,5-didehydro-D-gluconate + N

ADPH
Fr1

3.376891932
0.043308143

Ileum
: Fr1 v M

ilk
5.3.1.4

L-arabinose isom
erase

L-arabinose <=> L-ribulose
Fr1

3.352503195
0.009374768

Ileum
: Fr1 v M

ilk
5.4.2.2

Phosphoglucom
utase (alpha-D-glucose-1,6-bisphosphate-dependent)

Alpha-D-glucose 1-phosphate <=> alpha-D-glucose 6-phosphate
Fr1

3.316771064
0.043308143

Ileum
: Fr1 v M

ilk
2.6.1.42

Branched-chain-am
ino-acid transam

inase
L-leucine + 2-oxoglutarate <=> 4-m

ethyl-2-oxopentanoate + L-glutam
ate

Fr1
3.289575919

0.037666922
Ileum

: Fr1 v M
ilk

1.1.1.27
L-lactate dehydrogenase

(S)-lactate + N
AD(+) <=> pyruvate + N

ADH
Fr1

3.284127788
0.006656727

Ileum
: Fr1 v M

ilk
4.2.1.11

Phosphopyruvate hydratase
2-phospho-D-glycerate <=> phosphoenolpyruvate + H(2)O

Fr1
3.209400442

0.011074438
Ileum

: Fr1 v M
ilk

1.2.1.11
Aspartate-sem

ialdehyde dehydrogenase
L-aspartate 4-sem

ialdehyde + phosphate + N
ADP(+) <=> L-4-aspartyl phosphate + N

ADPH
Fr1

3.13617197
0.037666922

Ileum
: Fr1 v M

ilk
5.2.1.8

Peptidylprolyl isom
erase

Peptidylproline (om
ega=180) <=> peptidylproline (om

ega=0)
M

ilk
3.311774084

0.04964723
Ileum

: Fr1 v M
ilk

4.2.99.18
DN

A-(apurinic or apyrim
idinic site) lyase

The C-O
-P bond 3' to the apurinic or apyrim

idinic site in DN
A is broken by a beta-elim

ination reaction, leaving a 3'-term
inal unsaturated sugar and a product w

ith a term
inal 5'-phosphate

M
ilk

3.029327569
0.028103306

Stool: Fr1 v M
ilk

3.6.3.27
Phosphate-transporting ATPase

ATP + H(2)O
 + phosphate(O

ut) <=> ADP + phosphate + phosphate(In)
Fr1

3.391469552
0.009374768

Cecum
: UK4 v M

ilk
4.2.1.20

Tryptophan synthase
L-serine + 1-C-(indol-3-yl)glycerol 3-phosphate <=> L-tryptophan + D-glyceraldehyde 3-phosphate + H(2)O

M
ilk

3.028761616
0.028240369

Cecum
: UK4 v M

ilk
4.2.99.18

DN
A-(apurinic or apyrim

idinic site) lyase
The C-O

-P bond 3' to the apurinic or apyrim
idinic site in DN

A is broken by a beta-elim
ination reaction, leaving a 3'-term

inal unsaturated sugar and a product w
ith a term

inal 5'-phosphate
M

ilk
3.028359552

0.022546702
Cecum

: UK4 v M
ilk

6.3.2.2
Glutam

ate--cysteine ligase
ATP + L-glutam

ate + L-cysteine <=> ADP + phosphate + gam
m

a-L-glutam
yl-L-cysteine

UK4
3.147997304

0.037666922
Cecum

: UK4 v M
ilk

3.6.3.27
Phosphate-transporting ATPase

ATP + H(2)O
 + phosphate(O

ut) <=> ADP + phosphate + phosphate(In)
UK4

3.744720001
0.032625612

Cecum
: UK4 v M

ilk
2.4.2.9

Uracil phosphoribosyltransferase
UM

P + diphosphate <=> uracil + 5-phospho-alpha-D-ribose 1-diphosphate
UK4

3.120486959
0.003228225

Cecum
: UK4 v M

ilk
6.3.2.6

Phosphoribosylam
inoim

idazolesuccinocarboxam
ide synthase

ATP + 5-am
ino-1-(5-phospho-D-ribosyl)im

idazole-4-carboxylate + L-aspartate <=> ADP + phosphate + (S)-2-(5-am
ino-1-(5-phospho-D-ribosyl)im

idazole-4-carboxam
ido)succinate

UK4
3.014603844

0.043308143
Ileum

: UK4 v M
ilk

2.6.1.16
Glutam

ine--fructose-6-phosphate transam
inase (isom

erizing)
L-glutam

ine + D-fructose 6-phosphate <=> L-glutam
ate + D-glucosam

ine 6-phosphate
UK4

3.10300258
0.020921335

Ileum
: UK4 v M

ilk
1.2.1.11

Aspartate-sem
ialdehyde dehydrogenase

L-aspartate 4-sem
ialdehyde + phosphate + N

ADP(+) <=> L-4-aspartyl phosphate + N
ADPH

UK4
3.179455722

0.043308143
Stool: UK4 v M

ilk
1.6.5.11

N
ADH dehydrogenase (quinone)

N
ADH + a quinone <=> N

AD(+) + a quinol
M

ilk
3.390974785

0.032663442
Stool: UK4 v M

ilk
6.3.2.2

Glutam
ate--cysteine ligase

ATP + L-glutam
ate + L-cysteine <=> ADP + phosphate + gam

m
a-L-glutam

yl-L-cysteine
UK4

3.028164813
0.011074438

Stool: UK4 v M
ilk

3.6.3.27
Phosphate-transporting ATPase

ATP + H(2)O
 + phosphate(O

ut) <=> ADP + phosphate + phosphate(In)
UK4

3.458753884
0.003892417

Stool: UK4 v M
ilk

2.7.7.6
DN

A-directed RN
A polym

erase
N

ucleoside triphosphate + RN
A(n) <=> diphosphate + RN

A(n+1)
UK4

3.284084737
0.020921335

Stool: UK4 v M
ilk

3.5.1.5
Urease

Urea + H(2)O
 <=> CO

(2) + 2 N
H(3)

UK4
3.167115479

0.007911789
Stool: UK4 v M

ilk
2.7.2.1

Acetate kinase
ATP + acetate <=> ADP + acetyl phosphate

UK4
3.094500366

0.01304252
Stool: UK4 v M

ilk
2.7.7.7

DN
A-directed DN

A polym
erase

Deoxynucleoside triphosphate + DN
A(n) <=> diphosphate + DN

A(n+1)
UK4

3.025162116
0.024343384

T
able S3: E

nzym
e C

om
m

ission (E
C

) level 4 categories w
hich w

ere 
differentially abundant betw

een kefir versus M
ilk-fed m

ice, as 
determ

ined by L
E

fSe. 
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General Discussion  
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As discussed in Chapter 1, the field of food microbiology has been revolutionised by 

the advent of high-throughput sequencing (HTS). This technology enables 

unprecedented characterisation of food-related microbial isolates, including starter 

cultures, probiotics, and foodborne pathogens. Additionally, and of particular 

relevance to this thesis, HTS allows culture-independent metagenomic analysis of 

the mixed microbial communities, or microbiota, present in fermented foods. As 

stated in Chapter 2, food fermentation has been practised for millennia as a means to 

preserve or enhance foods. Today, fermented foods are becoming increasingly 

popular since many health benefits, including anti-diabetic, anti-inflammatory, and 

anti-obesity effects, have been attributed to them (1). HTS has been extensively 

utilised to catalogue the microbial compositions of an array of fermented foods, but 

it can also be employed to predict or measure the activities of microbes during 

fermentations, which yields insights into microbial dynamics in situ. Such 

information may shed light on the ways in which microbes contribute to qualities 

such as flavour in fermented foods, and thus it might be used to optimise 

fermentations to produce food with desired properties. Another important 

consideration for producing fermented foods is safety, and, as mentioned in Chapter 

1, HTS may potentially be applied to detect pathogens in these foods. Furthermore, 

in Chapter 1, we also highlight that HTS might be used to determine the effects of 

fermented foods on the gut microbiota, which may help to elucidate the underlying 

mechanisms responsible for the health benefits associated with these foods. In this 

thesis, we have demonstrated that HTS, especially shotgun metagenomics, is an 

invaluable tool to (i) expand our understanding on the microbiology of food 

fermentations, (ii) ensure the safety of fermented foods, and (iii) investigate their 

impact on the host. 



385 
 

In Chapters 3 and 4, we investigated the ways in which microbes may influence 

flavour development in fermented foods. Firstly, in Chapter 3, we utilised shotgun 

metagenomics to characterise the kefir microbiome during fermentation. 

Specifically, we examined kefirs from three separate countries. We observed 

consistent patterns in microbial succession in the analysed kefirs, and, additionally, 

we found that changes in the microbiota corresponded with changes in the 

metabolome. Notably, we observed that particular species correlated with particular 

flavour compounds, which suggested that the different microbes present in kefir had 

distinct effects on its flavour. Indeed, we subsequently confirmed that spiking milk 

with isolates from kefir resulted in predictable changes in flavour compounds. A 

similar approach was taken in Chapter 4 to characterise smear ripened cheeses 

during ripening, where we again observed that particular microbes correlated with 

particular flavour compounds. Importantly, we detected pathways associated with 

flavour development in both studies. Our work highlights that the microbiota is, 

unsurprisingly, linked to flavour development in fermented food. Crucially, it also 

reveals that sequencing can be used to understand the ways in which microbes 

contribute to flavour in fermented foods. We propose that such knowledge might 

ultimately be used to design starter mixes to produce fermented foods with enhanced 

flavours. Future work will focus on characterising microbial gene expression during 

food fermentations to gain deeper insights into the intricate networks through which 

microbes contribute to flavour (2, 3). Alternatively, metagenome-scale metabolic 

modelling (4) is another approach which may enable us to predict in silico the 

flavour compounds produced by starters. 

Safety, rather than flavour, is undoubtedly the most important food quality, and 

foodborne pathogens are responsible for millions of illnesses, annually (5). In 
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Chapter 5, we assess the potential to use shotgun metagenomics to detect pathogens 

in fermented foods. A previous study had already achieved strain-level detection of 

pathogens in spinach samples that had been spiked with Escherichia coli, but the 

methods used therein relied on metagenome assembly (6), which is a 

computationally intensive process not conducive to rapid large-scale testing, and 

thus alternative approaches are desirable. In Chapter 5, we addressed this issue by 

demonstrating that three short-read alignment-based tools, MetaMLST (7), 

PanPhlAn (8), and StrainPhlAn (9), accurately and rapidly, detected pathogens in the 

aforementioned spinach samples. Subsequently, we employed these tools to test the 

safety of nunu, which is a traditional fermented dairy beverage from Ghana that is 

produced by the spontaneous fermentation of raw cow milk. We observed that nunu 

was frequently contaminated with gut-associated bacteria, and, worryingly, we 

detected putatively pathogenic strains in several samples. Thus, we concluded that 

better hygiene practises were imperative for producing safer nunu. Overall, these 

results show that short-read alignment approaches may be suitable food safety tools, 

and we expect that they can be applied to inform safety measures during production, 

detect pathogens in products, or trace outbreaks to source. We envisage that this 

technology may eventually be adopted by the food industry, especially if sequencing 

costs continue to decrease. The ability to simultaneously detect every pathogen in a 

fermented food is, unquestionably, invaluable. 

In Chapters 3 to 5 we highlighted several examples of the ways in which shotgun 

metagenomics can be applied to characterise fermented food microbiota. However, 

currently, there is still no consensus on the optimal methods to use for such analyses. 

Therefore, in Chapter 6, we investigated the influences of sequencer choice, 

sequencing depth and bioinformatics methodologies on the analysis of fermented 
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food metagenomes. We found that three high-throughput short-read sequencers, the 

Illumina MiSeq, NextSeq 500, and Ion Proton, provided accordant results at 

divergent sequencing depths. Functional analysis with SUPER-FOCUS (10) gave 

congruent results across the sequencers at sequencing depths ranging from 100,000 

to 7,500,000 reads. Strain-level analysis with PanPhlAn produced similar results 

across the sequencers, and, remarkably, it correctly identified the dominant strains in 

every kefir sample with over 500,000 reads. Compositional analysis, with a given 

species classifier, was also accordant across the sequencers at different sequencing 

depths. However, the compositional results from classifiers were significantly 

different to each other. Notably, we observed that the species abundances predicted 

by each classifier apart from MetaPhlAn2 (11) were biased by their respective 

reference genome sizes. Furthermore, we identified different false positive rates 

between the classifiers, of which MetaPhlAn2 produced the fewest false positive 

results. Thus, our findings highlight that species classifier choice is pivotally 

important when analysing fermented food metagenomes, and they suggest that 

MetaPhlAn2 is perhaps the most accurate species classifier analysed here. 

Additionally, there is a preconception that shotgun metagenomics requires a 

considerable sequencing depth per sample (12), but our work suggests that this is not 

necessarily true for fermented food microbiota. Indeed, we found that over 500,000 

reads per sample was sufficient even for strain-level analysis. We hope that this 

study will guide other food microbiologists in their efforts to design shotgun 

metagenomics experiments. 

While in Chapters 3-6 we used shotgun metagenomics to characterise fermented 

food microbiota; in Chapter 7 we examined if consumption of kefir could impact the 

gut microbiota of mice as this may be a mechanism by which kefir exerts its reported 
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health benefits (13, 14).  To this end, we utilised shotgun metagenomics as a tool; 

specifically, we combined shotgun metagenomics with behavioural analysis to 

determine if kefirs, compared to unfermented milk, altered the gut-brain axis in 

mice. The gut-brain axis refers to bidirectional communication from the gut to the 

brain, and growing evidence indicates that the gastrointestinal microbiota can 

influence mood via this system (15, 16). Our work was motivated by recent evidence 

which suggested that fermented foods can alleviate anxiety or depression (17, 18). 

Excitingly, we observed that kefirs modulated the gut microbiota in mice, while they 

simultaneously ameliorated anxious and depressive-like behaviours in the animals. 

We used species-level analysis alongside strain-level functional analysis to reveal 

that kefir ingestion induced an apparent increase in the relative abundance of bacteria 

containing genes for gamma-aminobutyric acid (GABA) production along with 

tryptophan biosynthesis. GABA is the main inhibitory neurotransmitter in the central 

nervous system (19), while tryptophan is a precursor to serotonin. Importantly, 

deficiencies in both have been linked to anxiety and depression (20, 21). Thus, our 

discoveries hint that kefir reduced anxious and depressive-like behaviours by 

increasing the capacity for the gut microbiome to synthesise these neurotransmitters. 

However, more work, such as host gene expression analysis, metabolomics, or 

metatranscriptomics, is needed to discern the mechanism by which kefir exerted 

these effects in mice. Additionally, trials are necessary to assess if kefir may be used 

as a dietary intervention for anxiety in humans. 

In conclusion, in this thesis, I have demonstrated the value of high-throughput 

sequencing-based characterisation of fermented foods and their impact on the host 

gut microbiota. 
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