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Construction of Bio-constrained Code for
DNA Data Storage

Yixin Wang, Md. Noor-A-Rahim, Erry Gunawan, Yong Liang Guan, Chueh Loo Poh

Abstract—With extremely high density and durable preserva-
tion, DNA data storage has become one of the most cutting-
edge techniques for long-term data storage. Similar to traditional
storage which impose restrictions on the form of encoded data,
data stored in DNA storage systems are also subject to two
biochemical constraints, i.e., maximum homopolymer run limit
and balanced GC content limit. Previous studies used successive
process to satisfy these two constraints. As a result, the process
suffers low efficiency and high complexity. In this paper, we
propose a novel content-balanced run-length limited (C-RLL)
code with an efficient code construction method, which generates
short DNA sequences that satisfy both constraints at one time.
Besides, we develop an encoding method to map binary data into
long DNA sequences for DNA data storage, which ensures both
local and global stability in terms of satisfying the biochemical
constraints. The proposed encoding method has high effective
code rate of 1.917 bits per nucleotide and low coding complexity.

Keywords—DNA data storage, constrained code, Run-length
limited code, long term data storage.

I. INTRODUCTION

With four molecular units named nucleotide (nt), including
Adenine (’A’), Thymine(’T’), Cytosine(’C’) and Guanine(’G’),
DNA as a storage medium provides a twice larger capacity
than binary systems, while with an information density in
magnitude of petabyte. Meanwhile, DNA-based data storage
can be preserved for many years under favorable conditions
[1]. Attracted by these features, several proof-of-principle
DNA storage schemes have been implemented [2–10].

In DNA data storage, data is stored in the form of oligo
which represents a string of nucleotides of length around
200nt. It has been found that oligos with high/low GC content
or long homopolymer runs are prone to sequencing errors [11].
We thus consider that the DNA sequence has global stability
(i.e., robust against errors in the processes of data storage),
if it has no homopolymer run larger than 3 and GC content
of around 50% and has local stability, if its short component
blocks (sub-strings) also satisfy the constraints.

In [8], two bits were directly mapped to one nucleotide with
code rate close to the theoretical channel capacity, while the
iterative post-processing impedes the approach as it may cause
severe error propagation in decoding [12]. The authors in [13]
designed capacity-approaching constrained codes that avoid
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long homopolymer runs using a sequence replacement method,
but neglected the GC content constraint. [12] presents a scheme
to concatenate short codes that only satisfy homopolymer run
constraint into long DNA sequences that satisfy both con-
straints, achieving 1.9 bits/nt code rate. However, the encoding
method suffers high complexity, and the encoded long DNA
sequences cannot guarantee a balanced GC content in the short
component blocks.

In this work, we have devised a new bio-constrained code
called content-balanced run-length limited (C-RLL) code. A
key advantage of the proposed method is that it constructs
codes satisfying both biochemical constraints at one time. We
constructed C-RLL codes of lengths from 8 to 12. Based
on these codes, we developed an encoding scheme to map
binary data to long DNA sequences. As a result, not only
each encoded long DNA sequence but also its component sub-
strings satisfy the two biochemical constraints (global and local
stability). Compared to previous works, our proposed encoding
method achieves a high effective code rate of 1.917 bits/nt
with lower coding complexity. In addition, the encoded DNA
sequences have both global and local stability.

II. CODING WITH HOMOPOLYMER RUN CONSTRAINT

Homopolymer run constraint in DNA data storage restricts
the maximum number of consecutively repetitive nucledotides
in the encoded DNA sequences. Similar constraints exist in
traditional recordings, in which the stored data are required to
avoid certain patterns of repetitions (run-lengths) [14]. Codes
that satisfy the run-length limits are known as run-length
limited (RLL) codes [15]. (M,d + 1, k + 1) RLL codes that
define M -ary codes with at least d+ 1 run-length and at most
k + 1 run-length can be generated from (M,d, k) constrained
codes that define M -ary codes with at least d and at most k
zeros between consecutive non-zeros. (M,d, k) codes can be
constructed by a state transition diagram, in which the state
si, where i ∈ {0, 1, ..., k}, records k consecutively repetitive
zeros in the output sequence. Codewords in the constructed
(M,d, k) code can be regarded as transition sequences which
are then fed to an M -mod precoder to generate the RLL code
via yi = yi−1+xi (mod M), where yi is the current precoding
symbol, yi−1 is the last precoded symbol and xi is the current
transition symbol in the transition sequence.

We consider the DNA data storage as an (M,d, k) con-
strained system, where M = 4, d = 0 and k = 2 as the
maximum homopolymer run is 3nt (which refers to k + 1)
and no limit on the minimum homopolymer run. With Z4 =
{0, 1, 2, 3} to represent 4 transition symbols, e.g., transiting
’A’ to ’A’, ’C’, ’T’ and ’G’ using 4 different symbols, we
generate the finite state transition diagram (FSTD) of the
homopolymer-constrained DNA system as illustrated in Fig. 1.
Note that transition sequences of any arbitrary length can be
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generated by the labels of the edges of a path in the FSTD
and subsequently transformed into the RLL sequences via
the precoder. Next, We introduce an approach to ensure the
resultant RLL sequences also satisfy the balanced GC content.

Fig. 1: Finite state transition diagram of (4, 0, 2) constrained
DNA storage.

III. CONTENT BALANCED RLL CODE CONSTRUCTION

The following definitions and notations are used in the
proposed code construction:

Content state: Recall that GC content is the ratio of the
number of G and C against the total number of symbols
in a DNA sequence. We define two content pairs, {A, T},
{G,C}, of which symbols in the same pair count for the
same content, i.e., AT content and GC content. With the
mapping A 7→ 0, C 7→ 1, T 7→ 2, G 7→ 3 in the ring Z4

of integers modulo 4, when adding 0 or 2 to any symbol, the
symbol will be transited to itself or its partner in the same
content pair, while when adding 1 or 3, it will be transited to
symbols in the other content pair. We thus denote {0, 1, 2, 3}
as a content-based transitions set, in which 0 and 2 transform
a symbol to the same content pair, increasing the symbol’s
corresponding content, while 1 and 3 transform a symbol to
the other content pair, reducing the corresponding content. The
change of content led by the DNA transition step is represented
by the change of content state.

Basic transition word set (BTWS): As shown in Fig. 1,
one can construct a finite set consisting of words by starting
from and ending with state s0. These words can be arbitrarily
concatenated into long transition sequences. We denote this
set, {1, 2, 3, 01, 02, 03, 001, 002, 003}, as the BTWS X.

Content disparity: It is defined by the difference between
the number of A & T and the number of G & C of an n-length
DNA sequence, denoted as ∆(n). For simplicity, we assume n
is an even number. For 50% GC content, ∆(n) = 0, while for
40%-60% GC content, −(2b 3n

5 c−n) ≤ ∆(n) ≤ (2b 3n
5 c−n).

Instead of the single quaternary symbols that are used in
the conventional FSTD, we generate a reduced FSTD in Fig. 2
based on elements of the BTWS, where cs1 and cs2 are two
DNA content states. According to this FSTD, a state transition
function is defined to indicate the changes of content states that
are led by the new concatenated words,

α(Si) =

{
α(Si−1) ŝi ∈ {0, 2}
−α(Si−1) ŝi ∈ {1, 3} , for i > 0 (1)

Fig. 2: A reduced finite state transition diagram based on the
basic transition word set (BTWS).

where ŝi represents the last symbol of ith concatenated word
Si (i > 0), and the initial content state α(S0) is set to be 1.

In the concatenation, for each symbol of the new con-
catenated transition word from the BTWS, the content state
used for computing the content contribution in the resultant
C-RLL code remains to be the one that is passed from the
last concatenated word. Thus, the content contribution of each
concatenated word can be identified as a content weight,

W (X) =

|X|∑
j=1

w(xj), X ∈ X (2)

where w(x) equals 1 for symbol x ∈ {0, 2} and equals −1
for symbol x ∈ {1, 3}. |X| and xj are the length and the
jth symbol of the transition word X , respectively. A content
weight array W = {−1, 1,−1, 0, 2, 0, 1, 3, 1} is thus obtained,
elements of which measure the content contributions of corre-
sponding transition words in the C-RLL code. Afterwards, a
content disparity function is used to ensure the encoded code
with a balanced GC content,

∆(n) =
l∑

i=1

α(Si−1)W (Si),
l∑

i=1

|Si| = n, Si ∈ X (3)

where n is the length of the codeword, |Si| is the length
of the ith concatenated word Si, α(.) follows (1), and W (.)
follows (2). With a predefined codeword length n and a content
disparity parameter ∆(n) = δ, the resultant C-RLL code
C(δ, n) can be constructed using the precoding operation on
the transition sequence set S(δ, n), which consists of transition
sequences S = S1S2S3......Sl−1Sl. This process is denoted by
C(δ, n)⇐ S(δ, n).

We notice that some valid codewords1 cannot be directly
constructed via the above approach due to the following two
reasons brought by FSTD. Firstly, all transition sequences
generated based on the BTWS end with a non-zero symbol.
Thus, all resultant C-RLL codes have different symbols at
the last two positions. Second, there is no codeword that
begins with three consecutively repetitive initial symbols in
the resultant C-RLL codes. This is because no transition word
has a number of zeros more than 2 that can be used as the
first concatenated word to produce a 3nt repetition of the
initial symbols at the beginning of the resultant codewords.
To have a complete investigation into the cardinality of the

1Codewords that satisfy specific content constraint and RLL limit.
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bio-constrained code, we now explain how to overcome the
limitation of FSTD and retrieve the codewords that are missed
by the finite-length code construction using FSTD.

To retrieve the lost valid codewords due to the first reason,
in the construction process, we attach one extra zero symbol
at the end of the transition sequences of length n− 1 and two
extra zeros at the end of the transition sequences of length n−
2 before checking the content disparity. The updated content
disparity are calculated based on the following function with
parameter µ0 to be α(Sl) and 2α(Sl), respectively.

∆(n) =
∑l

i=1 α(Si−1)W (Si) + µ0w(0) (4)

Similarly, we address the second issue, aiming to retrieve
valid transition sequences that have three heading zero sym-
bols. To avoid repeated generations, only the sequences that
begin with two zero symbols are used in the following op-
erations. We attach one, two and three extra zero symbols to
sequences of length n− 1, n− 2 and n− 3, respectively. For
each attaching operation, only one zero is attached at the head,
while other zeros are attached at the end. The computations
of the content disparity follows (4) with parameters µ0 to be
1, 1 + α(Sl) and 1 + 2α(Sl), respectively.

Algorithm 1 is the pseudo code for constructing complete
C-RLL codes that satisfy 3nt maximum homopolymer run and
40%-60% GC content. The following notations are used:
• ~S: A transition sequence set, of which each sequence

consists of words from the BTWS X.
• ~Cs: The content state vector of ~S.
• ~Cd: The content disparity vector of ~S.
• |sx|: The length of the concatenation of words s and x.
The algorithm includes two steps, one is to generate the

transition sequences, and the other is to construct the bio-
constrained C-RLL code using precoding and DNA mapping.
In every outer loop of Algorithm 1, ~S, ~Cd and ~Cs are initially
reset empty after passing values to corresponding intermediate
vectors. In every inner loop, only sixj that satisfies the
conditions in line 14 is added to ~S. Meanwhile, the content
disparity and content state of the valid sixj that have been
computed in line 6 and line 8, respectively, are added to ~Cd,
~Cs, respectively.

IV. CONCATENATED CODING FOR LONG DNA SEQUENCE

We construct the long DNA sequence by concatenating
the codewords from the C-RLL code. Note that the short C-
RLL codewords cannot be arbitrarily concatenated into a long
sequence as the resultant sequence may disobey the homopoly-
mer constraint in the conjunctions of two short component
codewords. First, we eliminate the codewords ending with 3
repetitive symbols from the candidate component codeword
set. Based on the updated candidate set, the concatenated
encoding performs in serial, in which each DNA component
block is encoded by considering the binary data block Bi and
the last two symbols of the previous encoded block C̃i−1. The
encoding function fe encodes kN(n) bits to kn DNA symbols,
denoted as fe:ZkN(n)

2 → Zkn
4 . We use B = B1B2...Bk ∈

ZkN(n)
2 to denote a binary sequence of length kN(n) that

consists of k binary blocks of length N(n). As N(n) depends
on the maximum number of component codewords that can be

Algorithm 1: Complete C-RLL Code Construction
Input : X, W, n, δ = 2b 3n

5
c − n

1 Step 1: Generating transition sequences

2 Initialization: ~S = X, ~Cd = W, count = 1, S(n, δ) = ø,
~Cs = {−1, 1,−1,−1, 1,−1,−1, 1,−1}

3 while count < n do
4 for si in ~S do
5 for xj in X do
6 Compute the content disparity Cd of sixj (refer to (3))
7 if |sixj | < n then
8 Update the content state Cs (refer to (1))
9 if |sixj |∈{n− 1, n− 1, n− 3}&−δ ≤ updated Cd

≤ δ then
10 Add lost valid sequences to S(n, δ)

11 /* Conditional updates. */
12 δt = n− |sixj |+ δ
13 if |sixj | < n

2
or −δt ≤ Cd ≤ δt then

14 Update ~S, ~Cd, ~Cs

15 else if |sixj | == n then
16 if −δ ≤ Cd ≤ δ then
17 Add sixj to S(n, δ)

18 count = count+1

19 Step 2: Precoding and mapping to C-RLL code
20 Initialization: DNAset = {A,C, T,G}
21 for S in S(n, δ) do
22 Perform precoding → Y

23 /* Convert quaternary symbols to DNA symbols. */
24 for yi in Y do
25 zi = DNAset(yi)

26 Z = z1z2z3...zi ∈ C(n, δ)

Output: Bio-constrained C-RLL Code C(n, δ)

arbitrary concatenated to any component codeword, N(n) is
computed by

N(n) = blog2min{Q(◦◦, n), Q(◦•, n)}c (5)

where Q(◦◦, n) and Q(◦•, n) represent the numbers of com-
ponent codewords that can concatenate with codewords ending
with the pattern of two repetitive symbols and two varied
symbols without disobeying the homopolymer run constraint,
respectively. Afterward, the fe(B) = C1C2...Ck is defined
such that,

Ci =

{
Γo(Bi) i = 1
ΓC̃i−1

(Bi) i = 2, 3, ..., k

where C̃i−1 = cn−1
i−1 c

n
i−1 ∈ Z2

4, is the last two symbols of
the codwords Ci−1 = c1i−1c

2
i−1...c

n−1
i−1 c

n
i−1, and ΓΘ(Bi) :

ZN(n)
2 → Zn

4 . For simplicity, the ΓΘ(.) can be the lexi-
cographic encoding, which directly constructs an one-to-one
mapping between each N(n)-bit binary sequence Bi to each
n-nt valid DNA sequence Ci

V. RESULTS

With the constraints of 3nt maximum homopolymer run and
40%-60% GC content, we construct the proposed C-RLL code
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TABLE I: Short C-RLL code

n Q R

8 17,608 1.763

9 124,816 1.881

10 653,896 1.932

11 1,792,992 1.889

12 9,562,368 1.932

TABLE II: Concatenated long bio-constrained DNA storage
code

n Q Q(◦◦) Q(◦•) R N Re

8 17,056 16,172 16,928 1.748 13 1.625

10 628,456 593,488 622,380 1.918 19 1.900

12 9,178,232 8,662,056 9,086,470 1.921 23 1.917

of lengths from 8 to 12 based on the construction approach
discussed in Section III. The code cardinality Q and code rate
R of the short C-RLL code are shown in Table. I.

With the C-RLL codes of length 8, 10 and 12, we used them
as the component codewords in concatenated encoding for
constructing long DNA storage code. In Table. II, Q is the car-
dinality of the component code Cele gained after eliminating
codewords that end with 3nt repetitions from the constructed
C-RLL code. Q(◦◦) and Q(◦•) are counted by excluding
codewords that cannot concatenate to any corresponding pat-
tern from Cele. The code rate R of the long concatenated
code is calculated by R = log2min{Q(◦◦), Q(◦•)}/n. N
is the number of binary bits that can be encoded in each
component codeword of length n, which is computed based
on (5). Re = N

n is the effective code rate of the concatenated
encoding scheme, which represents the number of binary bits
encoded in one nucleotide.

Our effective code rate 1.917 bits/nt is higher than the 1.90
bits/nt reported in [12]. Besides, the encoding method exhibits
lower coding complexity, as [12] used the last three symbols
for concatenated encoding leading to a complexity (O(3k)),
while we only use the last two symbols with corresponding
complexity order (O(2k)). The reduced coding complexity
is due to the new observation on the effective component
codewords. Moreover, the authors in [12] sorted the codeword
set based on the GC content to select codewords with mostly
balanced GC content. This sorting resulted in redundant com-
plexity. As the short codes we constructed already satisfied
both constraints, our long sequence construction refrains from
the sorting complexity and both the long sequence and its
component short blocks satisfy two biochemical constraints.

VI. CONCLUSION

We have proposed a novel bio-constrained C-RLL code,
which satisfies both maximum homopolymer run and balanced

GC content constraints. The proposed method provides a par-
allel process to construct the codes efficiently. In addition, we
have devised an encoding scheme to map binary data to long
bio-constrained DNA sequences based on the constructed short
C-RLL codes. The proposed encoding scheme guarantees the
encoded long DNA sequences have local and global stability in
terms of satisfying the biochemical constraints. The proposed
approach achieves a high effective code rate of 1.917 bits/nt
with lower encoding complexity compared to previous works.
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