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ABSTRACT The draft genome sequence of Paracoccus sp. strain JM45, isolated from
a marine sponge harvested off the west coast of Ireland, is reported here. Quorum
sensing and quorum sensing inhibition activities have been reported recently for
this bacterium, and genomic analysis supports its potential use for novel therapeutic
development.

Paracoccus is a Gram-negative bacterial genus belonging to the Alphaproteobacteria
class. Paracoccus denitrificans is the best-characterized member of this genus, and

this is due in part to its broad metabolic diversity (1), capacity for denitrification (2), and
ability to degrade organic compounds (3). Recently, the discovery of the cell-cell
signaling phenomenon referred to as quorum sensing (QS) in Paracoccus denitrificans
captured the attention of many researchers, and QS has been reported to be involved
in biofilm formation, iron uptake, and denitrification in this organism (4, 5). Paracoccus
sp. strain JM45 was isolated from a marine sponge sample belonging to the genus
Polymastia collected off the west coast of Ireland as part of the marine biodiscovery
cruise performed in May 2010. To isolate Paracoccus sp. strain JM45 from a marine
sponge, we followed a protocol previously described with minor modifications in the
use of SYP-SW (soluble starch, yeast extract, peptone-seawater) medium and marine
agar (Difco) (6). We previously reported QS and quorum sensing inhibition (QSI)
properties for this bacterial strain (7). Therefore, here, we announce the genome
sequence of Paracoccus sp. strain JM45, a promising source of novel QSI compounds
with potential for controlling multidrug-resistant pathogens. Total DNA of Paracoccus
sp. strain JM45 was extracted using the UltraClean microbial DNA isolation kit (Mo Bio
Laboratories, Inc., Carlsbad, CA) and was subjected to DNA library preparation using a
TruSeq exome library prep kit. The draft genome sequencing project of Paracoccus sp.
strain JM45 was performed by the Beijing Genomics Institute (BGI, China) using the
Illumina HiSeq 4000 sequencing platform involving paired-end reads with a read length
of 150 bp. The superfast FASTA/Q file manipulation tool, readfq.v5 (BGI unpublished
software [8]), was used for quality trimming. This software removes the paired-end
reads with a certain proportion of low-quality bases (default, 40%; parameter setting,
6 bp), reads with a certain proportion of Ns (ambiguous bases; default, 10%; parameter
setting, 10 bp), reads with adapter contamination (default, 15 bp overlapped between
adapter and reads), and duplicate sequences. Thus, the high-quality-filtered reads were
all 150 bp long. A total of 166.66 Mb of data were generated, and high-quality reads
were assembled using SOAPdenovo 2.04 with default parameters. The sequencing
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depth provided 45� coverage of the genome. The draft genome assembly comprised
84 contigs with an N50 value of 167,336 grouped into 81 scaffolds with a total size of
3,602,847 bp and an overall GC content of 59.1%. Genome sequence annotation and
gene identification were carried out by the Rapid Annotations using Subsystems
Technology (RAST) server version 2.0 using default parameters and the RAST tool kit
(RASTtk) for annotation pipelines (9, 10) and by the NCBI Prokaryotic Genome Anno-
tation Pipeline (PGAP) using default parameters. Detection of secondary metabolite
gene clusters was performed using antiSMASH bacterial version 3.0 (11). Based on PGAP
annotation results, 3,516 coding sequences, 3 ribosomal RNAs, and 45 tRNAs were
detected. Two potential acyl homoserine lactone (AHL)-based quorum sensing systems
were found in scaffolds 7 and 18. Both systems are related to the production of
long-chain AHLs, consistent with our previous finding of AHL-based QS activity in this
isolate (7), which was confirmed using the Agrobacterium tumefaciens NTL4 biosensor
strain (12). In the context of QSI properties, a penicillin amidase enzyme with potential
for AHL degradation was encoded in scaffold 1. Finally, antiSMASH predicted several
potential gene clusters involved in secondary metabolite production. A gene cluster
observed and related to the production of a novel polyketide by type III polyketide
synthases was of particular interest. Polyketides are an important class of biologically
active compound (13), and while further in vitro investigations are required to establish
activity profiles, in silico identification through antiSMASH supports the bioactive
potential of Paracoccus sp. strain JM45. Furthermore, an ectoine biosynthetic gene
cluster was found in scaffold 1. Based on known activities of ectoine and other
compatible solutes, this could be relevant for growth at high concentrations of salt, as
previously demonstrated in other bacteria (14).

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number QQVY00000000. The version de-
scribed in this paper is version QQVY01000000. The raw reads from this study have
been submitted to the NCBI Sequence Read Archive (SRA) under the accession number
SRP166726.
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