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  

Abstract 

The prevalence of allergic diseases such as allergic rhinitis, asthma, food allergy and atopic 

dermatitis has increased dramatically during the last decades, which is associated with altered 

environmental exposures and lifestyle practices. The purpose of this review is to highlight the 

potential role for dietary fatty acids, in the prevention and management of these disorders. In 

addition to their nutritive value, fatty acids have important immunoregulatory effects. Fatty acid-

associated biological mechanisms, human epidemiology and intervention studies are summarized in 

this review. The influence of genetics and the microbiome on fatty acid metabolism is also discussed. 

Despite critical gaps in our current knowledge, it is increasingly apparent that dietary intake of fatty 

acids may influence the development of inflammatory and tolerogenic immune responses. However, 

the lack of standardized formats (i.e. food versus supplement), standardized doses and frequently a 

lack of pre-study serum fatty acid level assessments in clinical studies significantly limit our ability to 
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compare allergy outcomes across studies and to provide clear recommendations at this time.  Future 

studies must address these limitations and individualized medical approaches should consider the 

inclusion of specific dietary factors for the prevention and management of asthma, food allergy and 

atopic dermatitis.  

 

Abbreviations 

AA - Arachidonic Acid; AD – Atopic Dermatitis; AERD - Aspirin-Exacerbated Respiratory Disease; ALA 

– alpha-linolenic acid; DGHA - Dihomo-γ-Linoleic Acid; DHA - Docosahexaenoic Acid; EETs - 

Epoxyeicosatrienoic acids; EPA - Eicosapentaenoic Acid; FA – Fatty Acid; GLA - γ-Linoleic Acid; GPCRs 

- G Protein-Coupled Receptors; HETEs - Hydroxyeicosatetraenoic acids; iNKTs - Invariant Natural 

Killer T cells; LA - Linoleic Acid; LC-PUFA – Long Chain Polyunsaturated Fatty Acid; MUFA - 

Monounsaturated Fatty Acid; n-6 - omega-6; n-3 - omega-3; SCFA - Short-Chain Fatty Acids; SFA - 

Saturated Fatty Acid; SPT – Skin Prick Test.  

 

Introduction 

Intensive research efforts and debate are focused on understanding the reasons for the 

rising prevalence of allergic diseases today. It is commonly thought that environmental exposures 

and lifestyle factors such as diet, infections, microbiome, pollutants, exercise, hygiene, vaccinations 

etc, may play a role. Among the many dietary factors that can influence immune mechanisms, we 

will focus specifically on one dietary component in this review, i.e. fatty acids. The search terms used 

to identify potentially relevant papers are indicated in supplementary appendix 1.  

Fatty acids are carboxylic acids containing varying number of carbons with no double bonds 

between them (saturated – SFA), one double bond (monounsaturated - MUFA), more than one 

double bond (polyunsaturated - PUFA) .1 Examples are illustrated in Figure 1. Fatty acids are the 

building blocks of all complex lipids within the human body;  therefore, they are fundamental to 

several major physiological processes including: i) they are essential components of phospholipids, 

glycolipids and sphingolipids within cell membranes; ii) they are important energy sources; iii) they 
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are required for intracellular trafficking of proteins following their covalent attachment; iv) their 

derivatives serve as hormones and important intracellular and extracellular mediators and 

messengers. Fatty acids are ingested in the diet and some can also be generated by either the gut 

microbiota or host cells. Certain fatty acids are classed as “essential” (e.g. linoleic (LA) and alpha 

linolenic (ALA)) because the body cannot synthesize them. Mammals lack the enzymes to introduce 

double bonds at carbon atoms beyond C-9;therefore, precursor unsaturated fatty acids or long chain 

polyunsaturated fatty acids (LC-PUFAs), need to be ingested. Certain lipid mediators promote 

inflammation, whereas others promote cellular homeostasis mechanisms and serve to dampen 

inflammatory responses.  

 

Figure 1: Classification of fatty acids   Mechanisms of immune regulation 

Fatty acids impact and influence the immune system on multiple levels. Direct interactions between 

allergenic proteins and lipids can occur, impacting their allergenicity. For example, Pru p 3, the major 

peach allergen and a member of the non-specific lipid transfer protein (nsLTP) family, can bind to a 

range of lipids, which facilitates crossing of the intestinal epithelial barrier interacting with lipid rafts 

and caveolae formation, thus resulting in interaction with immune cells and polarizing a Th2 

response.2 In addition, certain lipids are presented via CD1 molecules expressed by DCs, 

macrophages and B cells, leading to activation of invariant natural killer T cells (iNKTs).2 3 

Interference with FA synthesis pathways exert therefore, profound effects on the metabolic 

programming of T cells. For example, the glycolytic-lipogenic axis is crucial for Th17 development, 

but not for Treg cells. Moreover, protein acetylation, N-myristoylation and palmitoylation, which 

depend on availability of the corresponding FA, are crucial for many T cell functions.4 
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Many of the lipid mediators that regulate inflammation are metabolites derived from 

omega-6 (n-6) or omega-3 (n-3) fatty acids, including arachidonic acid (AA; 20:4n-6), LA (18:2n-6), 

ALA (18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3) 

(Figure 2). In general, n-6 fatty acids are associated with proinflammatory responses, while n-3 fatty 

acids are associated with anti-inflammatory responses. Thus, the n-6:n-3 ratio in the diet is 

important in influencing host immunological activity. Foods typically high in n-3 fatty acids include 

fatty fish, algae, flax seeds, chia seeds and walnuts, while n-6 fatty acids are typically high in 

vegetable oils and seeds. AA and its metabolites are particularly involved in several pro- and anti-

inflammatory mechanisms in the pathogenesis of asthma and allergy.5 Once liberated, AA is a 

substrate for several enzymes including i) cyclooxygenase 1 and 2 (COX1 and 2) giving rise to 

prostaglandins D2, E2, prostacyclins, thromboxanes, lipoxins and other pro-resolving mediators; ii) 5-

lipooxygenase, leukotriene C4 synthase and leukotriene hydrolase involved in production of 

leukotriene B4 and cysteinyl leukotrienes C4, D4 and E4; and iii) cytochrome P450, producing several 

hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs).6-8 These active lipid 

mediators act intracellularly or in local extracellular microenvironments through several G protein-

coupled receptors (GPCRs) such as DP1 and CRTH2 (DP2), EP1-4, cysLTR1-2, as well as through 

peroxisome proliferator-activated receptors (PPARs). 

 

Figure 2: Immunomodulatory effect of fatty acids 

EPA and DHA can be incorporated into membrane phospholipids of effector cells at the 

expense of AA. This results in alterations in membrane fluidity, which can affect lipid rafts essential 

for immune cell activation. In addition, changes in the AA:EPA ratio limits the production of 

inflammatory eicosanoids that can impact Th2 lymphocytes and ILC2 cells.9 Moreover, lipid 

mediators produced from EPA and DHA show anti-inflammatory and inflammatory resolving 

potency, for example by limiting neutrophil infiltration or by inhibiting pro-inflammatory cytokine 
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production. In addition, n-3 EPA and DHA directly inhibit production of pro-inflammatory cytokines 

through inhibition of the activation of the nuclear transcription factor NF-B, which can result from 

disruption of lipid rafts that initiates inflammatory signaling (e.g. TLR4-Myd88 interactions), from 

induction of PPARy that physically interacts with NF-B, and/or from interaction with GPR120 

receptors which interferes with the NF-B activation pathway.  

Essential fatty acids are incorporated into plasma membrane phospholipids of keratinocytes 

and lamella bodies - the contents of which form part of the lipid-rich extracellular matrix of the 

stratum corneum. However, reduced levels of ceramides have been observed in AD compared to 

healthy skin and differential expression of ceramide-processing enzymes have also been identified in 

AD skin. Notably, decreased gene expression of the PUFA-processing enzymes δ-6-desaturase and δ-

5-desaturase have been observed in AD. Potentially impaired desaturase activity is further 

supported by findings of elevated levels of LA and significantly reduced levels of its downstream 

metabolites γ-linoleic acid (GLA), dihomo-γ-linoleic acid (DGHA) and AA in AD. Thus, defective 

essential fatty acid metabolism may lead to abnormal lipid composition of the stratum corneum, 

defective interactions with other elements of the epidermal structures and result in barrier 

disruption.10 

 

Animal models 

Multiple animal models have demonstrated the impact of dietary fatty acids on allergic 

outcomes in the gut, skin and lung. Dietary supplementation with fish oil from the start of weaning 

suppressed inflammatory responses to challenge with ovalbumin (OVA), whey or peanut in murine 

food allergy models.11 12 Supplementation was shown to increase EPA and DHA levels in erythrocyte 

membranes at the expense of AA, and to decrease PGE2 levels in plasma. Erythrocytes are used as 

indicator cells and increased levels are expected also in other cell membranes. Moreover, a DHA-
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enriched diet led to modification in dendritic cell and T cell subpopulations in spleen or GALT. 

Notably, allergen-specific CD4+CD25+ cells were induced and were required for the protective 

effect. A direct effect of DHA-enriched diet on effector mast cells, independently of adaptive cells, 

was also shown. A -linolenic acid (ALA)-rich diet resulted in a high content of ALA and its 

metabolites EPA and DHA in the lamina propria of the large intestine and in serum of mice. The 

cytochrome P450 EPA-derived metabolite 17,18-epoxyeicostetraenoic acid (17,18-EpETE) was 

identified as the active lipid mediator decreasing mMCP1 levels and the allergic diarrhea.13 14 

However, the conversion of ALA to DHA and EPA in humans has been shown to be much more 

limited than that observed in mice.14  

The influence of dietary fatty acids on inflammation of the skin has long been studied in 

animal models, which show that a fatty acid (e.g. LA or ALA) deficient diet induced skin changes, 

including erythema, scaling and hyperkeratosis. One widely used mouse model to investigate the 

mechanisms of AD is the NC/Nga model.15 Plasma levels of total IgE in NC/Nga mice are markedly 

elevated, correlating with increased numbers of mast cells and IL-4+ T cells in the skin. Oral 

administration of DGHA prevents development of the skin disease. An additional murine strain, 

termed Hairless mice, develop AD-like features when fed an unsaturated fatty acid deficient diet, 

which are reversed by supplementation with LA, ALA, GLA and AA.16 DHA suppressed the 

development of hapten-induced dermatitis in mouse models by reducing serum IgE, histamine 

production, ear thickness, and lymph node size, associated with increased CTLA4+ regulatory T 

cells.17 Similarly, fish oil feeding to rats reduced transepidermal water loss, increased skin hydration, 

alleviated the acetone induced skin barrier alteration, and eliminated itch-related scratching induced 

by dry skin.18 Finally, a significant reduction in cyclosporine usage could be achieved by LC-PUFAs 

supplementation in dogs with AD.19  
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As described above for the gut and the skin, multiple animal studies have shown modulatory 

effects of dietary fatty acids on allergen-induced respiratory inflammation. In particular, n-3 fatty 

acids seem to function as protective molecules in murine models of respiratory inflammation.20 

Interestingly, DHA inhalation during the allergen challenge phase in mice was also effective in 

suppressing airway eosinophilic inflammation.21 The pro-resolving lipid mediators protectin D1 (PD1) 

and resolvin E1 (RvE1) may play important roles in mediating n-3 fatty acid protective effects in the 

lung.22 

 

Role of fatty acids in food allergy 

Epidemiological evidence 

Unfortunately, studies investigating the role of fatty acids in allergy seldom evaluate food 

allergy, particularly challenge-proven food allergy, as an outcome. Typically, studies make use of 

sensitization data as a proxy for potential food allergy (most commonly to cow’s milk, egg and 

peanut).  

(A) Pregnancy and lactation: Two observational studies have evaluated the relationship between 

maternal intake of butter (rich in saturated fats), margarine, vegetable oils (rich in parental n-6 and 

n-3 PUFA) and fish (rich in n-3 LC-PUFA) during pregnancy and food sensitization in their offspring. 

Sausenthaler et al. found no association between sensitization to cow’s milk, egg and peanut at 2 

years of age and maternal fat intakes during the last four weeks of pregnancy.23 Similarly, Calvani et 

al.  found that SPT reactivity to fresh cow’s milk and egg white was not associated with maternal 

intake of butter and margarine in a group of children (median age 5 years). However, this study did 

observe a reduced risk of food sensitization by over a third associated with increased (2-3 

times/week or more) maternal consumption of fish (white or fatty fish type was unspecified); this 
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trend was significant in the whole study population (including both allergic and non-allergic 

mothers).24 

Notenboom et al. measured maternal fatty acid status (n-3 and n-6 LC-PUFAS in maternal 

phospholipids) during the last trimester of pregnancy in atopic and non-atopic mothers. They 

reported no significant differences between the groups in the levels of individual fatty acids. 

Maternal fatty acid status was not associated with allergic sensitization to hen's egg, cow's milk, or 

peanut in the offspring at 24 months.25 Pike et al. also measured maternal fatty acid status 

(phosphatidylcholine fatty acid composition) during the last trimester. In this study, a higher ratio of 

LA to unsaturated metabolic products was associated with a significantly reduced risk of 

sensitization in the offspring.26 

Soto-Ramirez et al. measured n-3 and n-6 fatty acids in maternal colostrum and mature milk 

samples. No association was found between any of the fatty acids studied in human milk colostrum 

with atopy at age 12 months.27 However, for mature breast milk (2 weeks after delivery), total n-3 

fatty acids as well as individual n-3 fatty acids (EPA, DHA and DPA), were associated with reduced 

sensitization to food allergens (milk, egg, peanut) at 12 months. These findings are supported by 

those of a separate study.28 A third study investigating the effects of maternal diet during lactation 

on the risk of sensitization to cow’s milk, egg, wheat and inhalant allergens in the offspring found 

none of the dietary variables investigated was significantly related to sensitization to milk or egg but 

was associated with sensitization to wheat. Risk of sensitization to wheat was lower with higher 

maternal intakes of total PUFA, n-3 and n-6 LC-PUFA during lactation.29  

(B) Infants and children: Fish consumption by infants during the first year of life in the BAMSE Cohort 

was associated with reduced development of allergic disease including sensitization (specific IgE to 

milk, egg, fish, soy, peanut and wheat) by age 4 years. The effect was dose-dependent but significant 

only for children without any parental allergy history.30 Introducing fish early during the first year of 
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life (age 3-8 months) was more beneficial than introducing fish later on (age >= 9 months). However, 

the fish type (white/fatty) was not specified. 

(C) Adults: No studies investigating the role of fatty acids and food allergy prevention were 

identified. 

 

Prevention trials (summarized in supplementary Table S1) 

(A) Pregnancy and lactation: In a randomized double blind placebo controlled trial providing n-3 LC-

PUFA supplements to atopic and non-atopic women during pregnancy continuing up to 3-4 months 

of breastfeeding, the prevalence of egg, milk or wheat sensitization and food allergy was significantly 

lower in the offspring at 1 year of age compared to placebo (soybean oil), particularly so for 

offspring of non-atopic mothers.31 At 2 years of age, the cumulative incidence (0–24 months) of 

positive SPTs to food was lower in the n-3 group. 32 The effect was related to maternal and infant 

plasma proportions of n-3 LC-PUFA in a dose-dependent manner. A subgroup analysis found that the 

supplementation regimen also increased the proportions of n-3 LC-PUFA in breastmilk and that a 

high proportion of n-3 LC-PUFA in colostrum and early mature milk was associated with the absence 

of food allergy. 32 32 32 32,56   Another study suggested that egg sensitization at one and three years 

may be reduced in infants at high risk of allergy through maternal supplementation with n-3 LC-

PUFA during pregnancy. 33 34 However, sensitization to other foods was not reduced and longer term 

follow up found the effect on egg sensitization was no longer significant at 3 years of age.35 

In contrast, Bisgaard et al.36 reported no reduction in the risk of sensitization to milk or egg 

allergens in infants at 6 months and 18 months of age following n-3 LC-PUFA supplementation given 

as a fish oil capsule to their mothers during pregnancy.  Fish oil supplementation for up to 4 months 

during breastfeeding did not reduce the prevalence of food allergy.37 Similarly for pre-term infants, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

consumption of expressed breastmilk from mothers taking either a high-DHA or standard-DHA 

supplement had no effect on incidence of parental reported food allergy.38 

(B) Infants and children: Direct supplementation of infants at high risk of atopy from birth to 6 

months improved their n-3 LC-PUFA status but did not reduce the prevalence of food allergy and 

sensitization at 12 months of age.39 In children, n-3 PUFA supplementation was compared to a 

reduced n-6 PUFA diet and the intervention led to a significantly higher proportion of n-3 fatty acids 

and a lower proportion of n-6 fatty acids in plasma.40 However, there were no differences in the 

prevalence of atopy defined as physician diagnosis of IgE-mediated food allergy, eczema, or asthma. 

(C) Adults: No studies investigating the role of fatty acids and prevention of food allergy were 

identified. 

 

Treatment studies 

No human intervention studies have been identified that assessed the impact of fatty acids 

on patients with existing food allergy. However, one study found that food allergic children on 

elimination diets had significantly lower total plasma levels of LC-PUFAs, particularly EPA and DHA.41 

Due to the immunomodulatory role of n-3 and n-6 LC-PUFAs, future studies should examine 

supplementation in patients with food allergy.  

 

Role of fatty acids in atopic dermatitis 

Epidemiological evidence 

(A) Pregnancy and lactation: Prenatal maternal fatty acid intake was not associated with the 

development of AD in the offspring.29  An additional study also found that no specific fatty acid 

measured in maternal plasma at 12 weeks gestation was associated with AD in children at 14 
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months, except for a decreased risk of AD with increasing concentration of LC-PUFA.42 In the same 

study, increasing concentrations of cord blood total n-3 PUFA, DHA, and total LC-PUFA reduced the 

risk of AD. Notenboom et al. found, an increasing ratio of maternal third trimester n-6 to n-3 LC-

PUFA plasma levels decreased the risk of AD in 6-7-year old children; while an increasing 

concentration of AA increased the risk of AD at 7 and 12 months but not after 12 months.25 

Low levels of n-3 LC-PUFAs in breast milk have been shown to be a risk factor for AD.43-45 

Another study showed a protective effect of high concentrations of n-3 fatty acids and ruminant 

fatty acids in breast milk at 1 month on the development of AD.46 In contrast, in a high-risk birth 

cohort, measurements of fatty acids in colostrum and breast milk at 3 months showed that high 

levels of n-3 LC-PUFA were associated with an increased risk of AD.47  Similarly, a Swedish study 

reported higher mean concentrations of cord serum n-3 PUFA and n-6 PUFA in AD cases compared 

to non-allergic 13-year old children; however, non-allergic children had higher cord serum 

concentrations of saturated and mono-unsaturated fatty acids.48 Finally, another study showed no 

association between levels of LC-PUFA in breast milk and allergic diseases, such as AD.49  

(B) Infants and children: A population-based epidemiological study reported a decreased intake of n-

3 PUFA, reduced serum level of n-3 PUFA, and an increased intake of n-6 PUFA among patients with 

AD.50  Higher levels of LA and lower levels of its metabolites were associated with an increased risk 

of AD; also higher levels of its metabolites decreased the severity of AD.51 In a large Swedish cohort, 

introduction of fish before 9 months (unspecified white or fatty fish type) was protective against the 

development of AD in the first year of life.52 However, in another Swedish study, fatty acid profiles 

measured at 13 years did not differ between AD cases and non-allergic children.53 In a Spanish cross-

sectional study, consumption of butter ≥3 times a week was associated with a decreased risk of AD 

in 6-7-year-old children, but not consumption of seafood/fish or margarine.54 

(C) Adults: There is one epidemiological study on fatty acids and AD in adults. Solvoll et al reported 

that women with consumed diets that were low in vitamin D and n-3 LC-PUFAs.55 
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Prevention studies (summarized in supplementary Table S2) 

(A) Pregnancy and lactation: In three studies32 33 56 57 and one subgroup analysis56 pregnant women 

received supplements ranging from 900 mg to 3.7 g n-3 LC-PUFA with varying amounts of DHA and 

EPA. IgE-associated diseases, including AD, were significantly reduced by n-3 LC-PUFA 

supplementation in the study by Furujelhm et al and in the subgroup analysis in the Warstedt et al. 

study.32 57 Palmer et al. only observed an effect for AD in sensitized participants.33The final study by 

Dunstan et al observed no difference in the frequency of AD at one year, but AD severity was less in 

the supplemented group.56 

(B) Infants and children: At 6 months, n-3 LC-PUFA levels were associated with lower risk of eczema 

following supplementation of high risk infants with fish oil; however, there were no differences in 

prevalence of allergic outcomes.39 In a subgroup analysis, infants with higher plasma DHA levels 

were significantly less likely to develop eczema, while lower erythrocyte EPA levels also predicted 

eczema development.58 Healthy infants who received DHA- and AA- supplemented formula had 

significantly lower odds for developing AD.59 Supplementation with GLA during early life was not 

protective against AD development.60 61 However, early life supplementation with blackcurrant seed 

oil had a transient protective effect at 12 months of age, which disappeared by 24 months.62 

(C) Adults: No prevention studies were identified in adults. 

 

Treatment studies 

AD treatment studies are summarized in supplementary Table S3. The use of fish oil 

supplementation in adults, particularly rich in n-3 LC-PUFAs, have shown some benefit on the 

severity of AD in small randomized clinical trials.63-65 Also, a small study on DHA supplementation 

showed a reduction in AD severity in adults after 8 weeks.66 An open label small trial with children 

and adults showed improvement in SCORAD scores following LC-PUFA supplementation.67 However, 
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other RCTs using fish oil in adults and children did not show any benefit over placebo for AD.68 69 

Similarly to the prevention studies, clinical trials on the therapeutic effect of supplementation with 

GLA on AD were inconclusive.70 

 

Role of fatty acids in asthma 

Epidemiological evidence 

(A) Pregnancy and lactation: Two studies showed that higher maternal PUFA levels during pregnancy 

were associated with a decreased risk of asthma or non-atopic persistent wheeze in offspring.26 71 

However, a different study showed no association between maternal fatty acids blood levels and 

offspring airway-related atopic manifestations at 7 months of age.25  Maternal ALA, total n-3 LC-

PUFA and palmitic acid intake may decrease, while AA intake may increase the risk of asthma in the 

offspring at 5 years of age.72 In addition, fish (unspecified fish type) intake during pregnancy was 

shown to have protective respiratory effects in a number of studies.73-75 A further study suggested 

that maternal intake of butter, the ratio of n-6:n-3 FA and intake of LC-PUFA and ALA during 

pregnancy may be potential determinants of allergic rhinitis in the offspring.29 However, not all 

maternal fatty acids intake studies have shown consistent results.76  

 High levels of total n-6 PUFAs measured in breast milk were associated with an increased 

risk for asthma-like symptoms, whereas n-3 PUFAs decreased the risk of atopy.27 Similarly, asthma is 

less prevalent in children of allergic mothers receiving breast milk with higher levels of n-3 LC-PUFA 

and more prevalent in children of non-allergic mothers receiving breast milk with higher levels of n-6 

PUFA.28 However, another study suggested that maternal fatty acid intake during lactation did not 

influence the risk of asthma by 5 years of age.72 

(B) Infants and children: School age children adhering strictly to a Western diet, high in total and 

saturated fat and processed foods, have a higher risk of asthma.77 High levels of low-density 
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lipoprotein cholesterol were associated with asthma in children and this association was amplified in 

overweight and obese children.78 79 In contrast, adolescent asthma was associated with low serum 

high-density-lipoprotein cholesterol levels independent of childhood levels.80 Increased intake of 

SFAs, myristic and palmitic acids was associated with current asthma in school children, while no 

relationship was seen with the intake of any other fatty acids or the n-6/n-3 ratio.81 North American 

adolescents with the lowest dietary intakes of fruits and n-3 FAs had lower pulmonary function 

(lower FEV1) and increased respiratory symptoms (chronic bronchitic symptoms).82 Total red blood 

cell n-3 PUFAs were lower in Korean preschoolers with atopy (including asthma) than controls, while 

n-6 PUFA and the n-6/n-3 PUFA ratio were greater.83 Higher proportions of LA and total n-6 PUFAs 

were associated with an increased risk of atopic asthma, while higher proportions of EPA were 

associated with a decreased risk of nonatopic asthma.84 Indeed, continuous farm milk consumption 

protects against asthma at school age potentially by means of higher intake of n-3 PUFAs.85 

However, daily n-3 and n-6 PUFA dietary intakes were not significantly different between sensitized 

wheezers compared with nonsensitized nonwheezy children.86 Similarly, no association was seen for 

fatty acids with a reduced prevalence of asthma in preschool children.87 Consumption of both n-3 

and n-6 polyunsaturated fatty acids, especially LA, was associated with an increased prevalence of 

wheeze in Japanese children.88 

(C) Adults: A high concentration of DHA in serum phospholipids may have a protective effect on lung 

function in adults.89 Serum levels of palmitoleic acid, AA and DHA were significantly reduced in non-

obese asthma patients with severe or uncontrolled disease, which was not observed in obese 

asthma patients. In addition, the serum desaturation index (palmitoleic:palmitic ratio) was 

significantly suppressed in severe asthma patients, suggesting that inhibition of desaturase activity 

might be associated with airway hyper-responsiveness.90 Of note, this desaturation index is 

controlled by a δ-9-desaturase, which is unrelated to the δ-6- and δ-5-desaturase enzymes involved 

in the LC-PUFA pathways. However, reduced δ-9-desaturase activity may be driven by an excess of 

dietary n-6 fatty acids. Intakes of n-3 PUFAs have been inversely longitudinally associated with the 
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incidence of asthma in American young adults.91 Higher intakes of n-3 LC-PUFA, ALA and SFA were 

associated with good asthma control, while the risk for uncontrolled asthma increased with a higher 

n-6:n-3 PUFA ratio.92 Increased intake of n-3 fatty acids (g/day) in adult asthma patients was 

associated with an increase in FEV1.93  

Fish consumption and the n-3 to n-6 ratio may be associated with a reduced prevalence of asthma in 

young female Japanese adults.94 In older adults (>55 years), higher intake of antioxidant vitamins 

and n-3 PUFAs was associated with better pulmonary health.95 A high intake of n-3 PUFAs does not 

appear to protect against asthma in Dutch adults, but a high intake of several n-6 PUFAs was 

associated with a significant reduction in FEV1. These findings indicate that high dietary intake of n-6 

PUFAs, rather than reduced n-3 intake, may have an adverse effect on lung health.96  

 

Prevention studies (summarized in supplementary Table S4) 

(A) Pregnancy and lactation: Fish oil capsule supplementation during pregnancy reduced the 

probability of having asthma medication prescribed, an asthma discharge diagnosis or having been 

prescribed allergic rhinitis medication in adult offspring.97 Similarly, a trend towards reduction in the 

incidence of parent-reported hay fever (p=0.06) and significant reduction in house dust mite 

sensitization following maternal supplementation with n-3 LC-PUFA fish oil was noted.35 Maternal 

supplementation with n-3 LC-PUFA showed that at 5 year follow-up, there was a significant 

reduction in the risk of persistent wheeze or asthma and reduced lower respiratory tract infections 

(best effects seen in mothers with lowest EPA and DHA levels).36 In addition, maternal n-3 LC-PUFA 

supplementation reduced cord blood plasma IL-13 levels.98 

(B) Infants and children: Infants fed formula supplemented with DHA and ARA had a reduced 

incidence and delayed onset of upper respiratory infection and wheezing or asthma at 3 years of 

age.59 In high risk infants, no difference in asthma prevalence was observed at 5 years, but wheeze 
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and cough were reduced at younger time points when comparing n-3 versus n-6 oils and spreads.99 

Similarly, n-3 LC-PUFA fish oil supplementation of high risk infants resulted in elevated plasma levels 

of DHA and total n-3 LC-PUFA at 6 months associated with a reduced risk of recurrent wheeze in the 

first 12 months of life.39 Infant formula supplemented with n-3 and n-6 PUFA reduced the risk of 

respiratory allergic diseases in childhood with effects influenced by maternal allergies.100 High dose 

DHA supplementation of preterm infants reduced bronchopulmonary dysplasia and hay fever in 

boys.38 

(C) Adults: No prevention studies in adults were identified. 

 

Treatment studies (summarized in supplementary Table S5) 

 (A) Children: In two small trials, LC-PUFA supplementation was associated with decreased asthma 

symptom scores or improvement in exhaled nitric oxide and FEV1.101 102 However, an additional small 

study showed no clinical differences with LC-PUFA supplementation, although reduced TNF- 

secretion and a trend towards lower blood eosinophils was observed.103 Interestingly, a larger study 

combining multiple supplements (fish oil, fruit & vegetables and a probiotic) showed significant 

improvements in pulmonary function parameters.104  

(B) Adults: In adults with exercise-induced bronchoconstriction, multiple studies examining 

supplementation with n-3 LC-PUFAs showed attenuation of hyperpnoea-induced 

bronchoconstriction and/or improved asthma symptoms.105 106-108 However, one study showed no 

effect in this asthma group.109 Compared to placebo, supplementation with n-3 and n-6 LC-PUFAs 

was associated with improvement in exhaled nitric oxide and serum eosinophils following a low dose 

allergen challenge.110 Supplementation with LC-PUFAs generally showed no clinical benefits in adults 

with all other types of asthma (studies are summarized in supplementary Table S5). 
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Influence of genetics on fatty acid absorption, synthesis and signaling  

Given the heterogeneity in responses to fatty acid supplementation described above, it is 

possible that gene-environment interactions may play a critical role, in addition to the type of fatty 

acid intervention, fatty acid dose and outcome studied. The n -5 and n-6 fatty acid desaturase (FADS) 

genes are involved in the desaturation of n-3 and n-6 PUFAs.  Schaeffer et al. found that single-

nucleotide-polymorphisms (SNPs) in the FADS gene cluster were associated with protection from 

allergic rhinitis and atopic eczema, but lost significance after correction for multiple testing.111 

However, the AA levels in serum phospholipids were associated with SNPs in the FADS genes. Rzehak 

et al. analyzed two cohorts in the Netherlands and Germany, and also found that SNPs in the FADS 

gene cluster were associated with LC-PUFAs in the blood and with eczema in Dutch, but not the 

German cohort.112 However, the further analysis of these SNPs in a large cohort did not confirm any 

associations with eczema, asthma, hay fever or bronchitis.113 Recent gene-nutrition interaction 

studies suggest that FADS genotypes might be indirectly implicated in atopic diseases. For example, 

Standl at al. found that the n-3/n-6 PUFA ratio and daily margarine intake were associated with an 

increased risk of hayfever and asthma, only in homozygous major allele FADS SNPs carriers.114 

Similarly, breast feeding had a protective effect against asthma development only for heterozygous 

and homozygous carriers of the minor SNPs alleles of the FADS gene cluster.115 Minor FADs allele 

carriers also had decreased risk of developing atopic eczema, while FADS2 gene variants have been 

associated with asthma.116 117 Phospholipase A2 cleaves AA from membrane phospholipids and its 

activity can be regulated on the transcriptional level by two microsatellite regions. One 

microsatellite fragment has been associated with a severe asthma phenotype.118 There was no 

association between the genetic variants of PTGS1 or PTGS2 (encoding COX1 or COX2 respectively) 

and asthma, disease severity, atopy, or AIA in certain populations.119  However, PTGS2 gene variants 

were associated with asthma only in females and resulted in significantly increased monocyte 

secretion of PGE2 and PGD2 or were associated with asthma, atopy and lung function parameters.120 

PTGS1 variants were also associated with AERD.121  
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PGD2 receptors DP1 and DP2 (CRTH2) are encoded respectively by PTGDR and PTGDR2 

genes. Associations between PTGDR gene variants with asthma, allergy or NSAIDs-induced urticaria 

have been replicated in several studies.122 However, the PTGDR gene variant associations can 

disappear in different ethnical backgrounds and age groups.  PGE2 receptors EP1-4 are encoded by 

PTGER1- PTGER4 genes, while PTGIR and TBXA2R genes encode receptors for PGI2 and thromboxane 

A2, respectively. Genetic variants or SNPs in all of these genes have been linked with asthma and/or 

bronchial hyperesponsiveness.123 Indeed, PTGER4 gene variants were associated with differential 

suppressive function of regulatory T cells.124 

Several leukotriene metabolism pathway loci have been implicated in asthma or asthma 

pharmacogenomics studies.125 ALOX5 polymorphisms were associated with asthma or asthma 

severity and responsiveness to leukotriene receptor antagonists in several but not all populations. 

Similarly, LTC4S polymorphic loci were associated with asthma, asthma exacerbations, NSAID-

exacerbated respiratory disease (N-ERD) and urticaria.126 127 PTGDR and LTC4S polymorphisms 

influence responsiveness to leukotriene receptor antagonists in Korean children with asthma.128 

CYSLTR1 promoter polymorphisms were associated with atopy and N-ERD in some populations and 

in a gender specific manner, while other variants of CYSLTR1 were associated with atopy, and/or 

asthma in some but not all studies.129 130 CYSLTR2 gene variants also showed associations with 

asthma, N-ERD and atopy, but were not associated with AD or asthma in different genetic 

backgrounds.131 132 

 Thus, fatty acid synthesis, metabolism and signaling are significantly influenced by a wide 

range of genetic polymorphisms. Future studies examining dietary interventions with fatty acids 

should include genetic analyses of lipid metabolism genes to better define these gene-diet-disease 

interactions. 
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Interactions between fatty acids and the microbiota 

The influence of the mucosal-associated microbiota on the innate and adaptive immune 

system has been well described, with changes in microbiota composition and/or metabolism 

affecting the development of asthma, AD and food allergy.133-135 The composition and activity of the 

microbiota is influenced by many factors, including hygiene practices, antibiotics, medications, 

infections and most importantly, diet.136 The influence of fat content on the composition of the gut 

microbiota has been shown in humans, where European children on a high fat, low fiber diet showed 

a higher abundance of Shigella and Escherichia and an overall lower microbial diversity compared to 

African children on a low fat, high fiber diet.137 Gut bacterial enterotypes were strongly associated 

with long-term diets, particularly protein and animal fat (Bacteroides-dominated) versus 

carbohydrates (Prevotella-dominated).138 The microbiota of obese individuals is significantly 

different to lean individuals and microbiota changes were linked to higher pro-oxidant and pro-

inflammatory status.139 Murine studies suggest that the high-fat content of the diet, rather than 

obesity itself, was responsible for influencing microbial functional changes.140 Indeed, when animals 

were fed a high fat diet (HFD) enriched with n-6 (HFDn-6) or n-3 (HFDn-3) PUFAs, different dietary 

fat profiles led to distinct microbiota, intestinal and metabolic outcomes that were independent of 

obesity.141 The HFD and HFDn-6 groups showed significant changes in the H2S-producing bacteria 

Bilophila and Desulfovibrio, which were associated with reduced gut integrity. The HFDn-3 group was 

free from all intestinal or metabolic dysfunctions and did not display elevated inflammatory cell 

numbers in mesenteric fat. 

 Short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate are produced in the 

colon following the fermentation of dietary fibers by intestinal microbes, or can be consumed in 

certain foods such as milk products containing significant amounts of butyrate. SCFAs influence 

dendritic cell and T cell responses, via their binding to GPCRs and their inhibition of histone 

deacetylases, thereby promoting epigenetic changes.142 Deliberate administration of SCFAs, or 
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dietary fibers that are metabolized to SCFAs, has repeatedly been shown to reduce airway 

inflammation in murine models.143 A recently published study in humans suggests that high levels of 

butyrate and propionate at 1 year of age is associated with a reduced risk of later life atopic 

outcomes.144 In addition to SCFAs, commensal microbes secrete lipid ligands that structurally mimic 

human signaling molecules, thereby binding to GPCRs such as prostaglandin receptors.145 Finally, 

lipid metabolism by gastrointestinal microbes can modify host fatty acid composition.146 Thus, 

the microbiota can directly or indirectly influence fatty acid levels and signaling processes in the 

host, suggesting that future fatty acid prevention or intervention studies should consider the impact 

of the microbiota in their trials. 

 

Practical messages: Where science and food meet – what do we advise? 

 As outlined above, there are numerous inconsistencies in the allergic outcomes reported for 

studies examining the role of fatty acids in the prevention or treatment of food allergy, AD and 

asthma (as demonstrated in Supplementary tables S1- S5 and summarized in Supplementary Tables 

S6.1 [prevention] and S6.2 [treatment]). These inconsistencies can be partially explained by 

complicating factors such as variability in trial design, doses tested, different product formats, 

genetics, microbiota and lifestyle factors. However, it’s important to note that the most significant 

protective effects in some studies were observed in individuals who had the lowest pre-existing 

levels of LC-PUFAs, suggesting that targeted supplementation of individuals with a low level of LC-

PUFAs could be advised. In addition, LC-PUFA supplementation appears to be well tolerated, even 

during pregnancy. Despite the relatively small number of studies, and their inconsistencies, we have 

summarized our practical messages and recommendations in Box 1. 
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Box1: Current opportunities relating to fatty acids that may mitigate risk and be of benefit to 

treatment of allergic disease. 

  

Maternal fatty acid intake during pregnancy: The European Food Safety Authority (EFSA) set 

recommendations for EPA and DHA of approximately 250 mg of EPA+DHA per day for adults plus an 

additional 100 – 200 mg of preformed DHA per day during pregnancy.147 Current intervention trials 

have used much higher doses than these recommended amounts. Based on the current evidence we 

advise that pregnant women should adhere to the current recommendations from their respective 

countries regarding fatty acid intake, either by consuming it through their diet or as a supplement.  

 

Maternal fatty acid intake during lactation: Maternal intake of LC-PUFAs will affect breast milk fatty 

acid content. Breast milk has been shown to be an important source of fat and in particular n-3 and 

n-6 LC-PUFAs.148 Several cross-sectional and epidemiological studies described above suggest that a 

high n-3 LC-PUFA (EPA and DHA) or fish intake (usually unspecified fish type) during lactation 

reduces the risk of allergen sensitization in the offspring. However, the effects are not consistent 

across all studies and there are differences between allergic- and non-allergic mothers. We 

recommend adhering to the international recommendations on FA intakes, as summarized in 

Supplementary Table S7. 

 

Fatty acids in infant formula: The current European Union (EU) Directive on infant formula 

[2006/141/EC] provides clear guidelines on the content of fatty acids in infant formula (total lipid 

content of 4.4 – 6 g/100 kcal). LC-PUFAs may be added to formula and when added they should not 

exceed 1% of total fat content for n-3 or 2% for n-6 LC-PUFAs. EPA content should not exceed that of 

DHA and the DHA content should not exceed that of n-6 LC-PUFAs. Several guidelines have 

suggested the addition of LC-PUFAs to infant formula as desirable, but the ideal levels of n-3 and n-6 

LC-PUFAs are still debated.149 150 EFSA has published adequate nutrient intakes of PUFAs for infant 
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formulas from birth to the age of 6 months as 100 mg DHA/day and 140 mg AA/day.147 Several 

studies have been published on the positive impact of LC-PUFAs in supplemented formula, including 

a potential influence on allergic disease.100 Although the allergy prevention data are not conclusive, 

no studies have found PUFA supplementation harmful and as PUFAs are found in breast milk, it 

seems prudent to choose a formula (including hypoallergenic formulas) with LC-PUFAs. 

 

Fatty acids in foods: The EFSA Panel has made recommendations on adequate intakes of n-3 LC-

PUFAs of 100mg DHA per day for infants >6 months to 24 months of age, approximately 250 mg of 

EPA plus DHA per day for children aged 2-18 years and for adults (i.e., 1 to 2 fatty fish meals per 

week); and 250 mg DHA and EPA per day during pregnancy and lactation with an additional 100 - 

200 mg per day of DHA. The Joint Food and Agriculture Organization (FAO) and World Health 

Organization (WHO) Expert Consultation on Fats and Fatty Acids in Human Nutrition provide a 

similar recommendation, namely 300 mg/day EPA and DHA, of which at least 200 mg/day should be 

DHA.151 While there is limited scientific evidence to support specific recommendations regarding 

dietary intakes of fish for the purposes of prevention or treatment of allergic disease in infants and 

children, current recommended fatty fish intakes would achieve intakes above those that were 

effective in published epidemiological studies. However, certain populations such as women 

planning a pregnancy, and those who are pregnant or breastfeeding, as well as children are advised 

to limit their consumption of oily fish due to pollutants such as methylmercury which can build up in 

the body over time. EFSA has recommended national guidance is provided to balance the health 

benefits of regular fish and seafood consumption with risk of pollutants based on patterns of fish 

consumption in each country.147   
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Food allergy: Studies have reported inconsistent results but in general, increased maternal breast 

milk n-3 LC-PUFA (EPA and DHA) levels seem to have protective effects against the development of 

food allergy. The early introduction of fish to infants may be more beneficial than later introduction 

(i.e. later than 9 months of age).  Supplementation studies are not conclusive but where successful, 

the effect was related to pre-treatment maternal and infant n-3 LC-PUFA levels. A recent systematic 

review also indicates that n-3 supplementation during pregnancy and lactation may reduce food 

allergen sensitization.152 

 

Atopic dermatitis: In general, increased maternal and breast milk n-3 LC-PUFA (EPA and DHA) levels 

were associated with a reduced risk of AD in the offspring. A diet low in n-3 LC-PUFAs or fish was 

associated with an increased risk of AD during childhood in some studies, but not all. Similarly, 

prevention studies with n-3 LC-PUFA supplements were often, but not always, protective against the 

development of AD. Although results are contradictory, dosages and duration of supplementation 

were diverse, and because no adverse effects were found, supplementation with n-3 LC-PUFAs (EPA 

and DHA) could be recommended for the prevention and treatment of AD. 

 

Asthma: A substantial number of studies have assessed the role of fatty acids in asthma prevention 

and treatment. In general, maternal and infant n-6 PUFA levels were associated with an increased 

risk of asthma-like symptoms, while n-3 PUFA levels were often associated with a decreased risk. 

Supplementation was most effective for the children of mothers with the lowest n-3 LC-PUFA status 

and those with a FADS genotype associated with low PUFA blood levels. This suggests that targeting 

of particular populations may be the most effective way to achieve the benefits of n-3 LC-PUFA 

supplementation for asthma prevention during pregnancy and infancy.   



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Treatment studies in adult asthmatics generally did not show any clinical benefits, other 

than the notable exception of exercise-induced bronchoconstriction. 

 

Current gaps and future directions  

Bioavailability and incorporation of n-3 LC-PUFAs: Inconsistent trial results with n-3 LC-PUFAs can, at 

least in part, be explained by differences in bioavailability and inter-individual variability in response 

to supplementation.153 Bioavailability can be influenced by lipid structure and pancreatic lipase 

activity, but most important is the degree of emulsification, which is best when given as part of a 

meal rich in lipids. Thus, n-3 LC-PUFA bioavailability within different foods and supplements will 

influence subsequent incorporation into host cells and the pooling of trial results from different 

studies testing fixed PUFA dosages, but without incorporation data, is not reasonable. The 

biologically effective status can be assessed by analyzing the Omega-3 Index (the sum of EPA and 

DHA in erythrocytes). For optimal cardio-vascular health, the HS-Omega-3 Index® has been 

established with a target range of 8% to 11%. For future allergy and asthma trials, instead of giving a 

fixed dosage, a target range for the Omega-3 index should be defined and the required 

supplementation dose should be individually determined. In addition, future studies should use a 

standardized single formulation (i.e. supplement and not a food) to allow for a systematic review of 

multiple studies across multiple indications. 

 

Conversion from ALA to n-3 PUFAs: EPA and DHA are derived directly from the diet or via conversion 

of their dietary precursor ALA. Although conversion of the plant-derived n-3 PUFA ALA to the longer 

chain derivates, particularly DHA, is theoretically possible it appears to be limited in humans.154 

Intake of foods fortified with ALA does not alter erythrocyte fatty acid composition, while 

competition between the plant-derived n-6 PUFA LA and ALA is thought to negatively impact on the 
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capacity to convert ALA.  Thus, supplementation with preformed n-3 derivatives or consumption of 

foods rich in n-3 LC-PUFAs (e.g. fatty fish, certain microalgae and meat from ruminants reared with 

adequate exercise and a grass-based diet) are likely to be more beneficial than intake of ALA. 

 

Can some trans-fatty acids be beneficial: Trans-fatty acids derived by partial dehydrogenation of 

vegetable oils are known to have detrimental health effects.155 However, naturally occurring trans-

fatty acids, which differ markedly from their industrially derived counterparts, seem to possess 

protective health effects. Consumption of the ruminant milk trans-fatty acid Vaccenic acid (tVA) and 

conjugated linoleic acid (c9,t11-CLA) may reduce sensitization and allergic inflammation, possibly via 

a PPAR-gamma-related mechanism and by reducing eicosanoid precursors.46 156 Future research 

needs to further examine the role for these ruminant-derived trans-fatty acids in the prevention and 

treatment of atopic disorders. In addition, possible synergies between n-3 LC-PUFAs and natural, 

trans-fatty acids should be explored. 

 

An individualized approach to nutrition: The lack of consistent results across the different studies 

presented in this review may largely be influenced by the lack of a standardized approach to 

supplementation and individual host features that are difficult to compare across studies. 

Polymorphisms in genes associated with fatty acid synthesis, catabolism and utilization will influence 

fatty acid requirements and function. GWAS-led prevention and intervention studies, including 

functional microbiome, immunological, metabolomic and lipidomic assessments are required and 

will increase our understanding of the importance of fatty acids in the natural course of allergies and 

asthma. It is likely that a custom-individual-tailored approach to nutrition, including fatty acid 

supplementation, is required to observe the optimal benefits that can potentially be derived from 

fatty acids in the prevention and treatment of allergies and asthma. Future research and clinical 
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efforts should be focused on large, adequately powered human studies, which are focused on 

identifying the key host characteristics (i.e. genetics, environmental factors, microbiome, 

biochemical and inflammatory parameters and functional clinical characterization) that influence 

responses, whilst also taking the composition of the total underlying diet and nutrient interactions 

into account. Furthermore, interactions between LC-PUFAs and concomitant allergy/asthma 

medications need to be evaluated. 
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Figure 1: Classification of fatty acids 
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Figure 2: Immunomodulatory effect of fatty acids 
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Box1: Current opportunities relating to fatty acids that may mitigate risk and be of benefit to 

treatment of allergic disease. 

 

Recommendation Rationale 

Optimize and disseminate public health dietary 

recommendations 

Fatty acids are essential components of a healthy 

diet and deficiencies should be avoided. In 

addition, allergy prevention with LC-PUFA 

supplementation may be more effective in 

individuals with the lowest pre-existing levels of 

LC-PUFAs, particularly EPA and DHA. 

PUFA-supplemented formulas  

No studies have found LC-PUFA supplementation 

harmful. LC-PUFAs are found in breast milk in 

significant quantities. Infant formula constituents 

should be as close as possible to that of human 

milk. Hence, if a formula is to be used, the LC-

PUFAs constituents should be considered. .  

Supplementation of at-risk populations (e.g. 

allergic children on food elimination diets)  

Allergic children on elimination diets can be 

deficient in LC-PUFAs, particularly the n-3 series. 

Due to their immunomodulatory role and general 

health benefits, a dietary assessment of LC-PUFAs 

intake is advised and safe dietary expansion to 

include LC-PUFA rich foods or alternatively, PUFA 

supplementation may be required in these 

children. 

Supplementation of pregnant and lactating 

mothers with low pre-existing EPA and DHA 

levels 

A reduced risk of food allergy, atopic dermatitis 

and asthma was more consistently observed in 

supplementation studies when mothers had low 

pre-existing levels of EPA and DHA 

 

 


