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Abstract 

Pregnancy and early life are characterized by marked changes in body microbial composition. 

Intriguingly, these changes take place simultaneously with neurodevelopmental plasticity, 

suggesting a complex dialogue between the microbes that inhabit the gastrointestinal tract and 

the brain. The purpose of this chapter is to describe the natural trajectory of microbiota during 

pregnancy and early life, as well as review the literature available on its interaction with 

neurodevelopment. Several lines of evidence show that the gut microbiota interacts with diet, 

drugs and stress both prenatally and postnatally. Clinical and preclinical studies are illuminating 

how these disruptions result in different developmental outcomes. Understanding the role of the 

microbiota in neurodevelopment may lead to novel approaches to the study of the 

pathophysiology and treatment of neuropsychiatric disorders.



Introduction 

The connection between the brain and the gastrointestinal tract has been extensively 

studied, but the existence of a bidirectional microbiota-gut-brain axis has only received attention 

in the last decade [1, 2]. The individual microorganisms that live in our body, the microbiota, and 

their collective genomes, the microbiome, exert considerable influence over host brain and 

behaviour [3, 4]. (Table 1). Variations in microbiota composition have been linked to 

neuropsychiatric disorders, including autism, stress, anxiety and major depressive disorder [3, 

5].  

Almost 30 years ago, it was proposed that prenatal and postnatal environmental factors 

interact with genetics to program health and disease in adulthood [6, 7]. Building on Barker’s 

hypothesis, it was recently proposed that the microbiota could play an important role in 

programming adult brain health and disease [8]. Whether diet or other factors, such as stress 

and drugs, interact with the microbiota in early life to program brain health is currently being 

addressed by clinical and preclinical studies. This chapter reviews the natural trajectory of the 

composition of the microbiota during pregnancy and early life and outlines the current 

knowledge on the interaction between the microbiota and neurodevelopment.  

Early-Life Neurodevelopmental Plasticity and the Microbiota 

Dramatic structural and functional changes in the brain are characteristic of the first years 

of life. This neurodevelopmental plasticity requires timely and adequate migration, division and 

differentiation of neuronal and glial precursors [9]. Neuronal migration and axonal guidance 

establish short- and long-range connections that enable the recruitment of multiple brain areas 

for the execution of complex behaviours [10, 11]. Differentiated oligodendrocytes insulate 

neuronal axons with a myelin sheath to guarantee proper conductance of neuronal signals [12]. 

A growing emphasis is now placed on the role of astrocytes and microglia in facilitating synaptic 

pruning during early life through adolescence, allowing later in life the fine tuning of complex 



circuits [13]. Plasticity is a key feature of the standard neurodevelopmental trajectory and 

modulates the dynamics of synaptic connections and neural circuitry formation. Deviations from 

the neurodevelopmental trajectory can account for increased susceptibility to brain diseases 

later in life. 

There is a growing appreciation of the link between neurodevelopment and intestinal 

microbiota. Studies in germ-free mice have shown abnormal brain development, especially in 

male mice [14–16]. More recent studies in these microbiota-deficient mice have shown altered 

expression of genes implicated in neurophysiology processes, such as neurotransmission, 

neuronal plasticity, metabolism and morphology in the amygdala [17] and hippocampus [18]. 

Hypermyelination in the prefrontal cortex and abnormal microglia maturation characterize the 

glia profile of these animals [19–23]. Furthermore, they showed increased blood-brain barrier 

permeability [24]. Functionally, such changes translate to increased stress response [14, 16], 

changes in anxiety [25] and fear recall [26], cognitive deficits [27], social changes [21, 28] and 

visceral pain responses [29]. Thus, the complete absence of microbial colonization in early life 

has dramatic effects on offspring’s brain development and function (Table 1). 

Dynamics of the Maternal Microbiota during Pregnancy 

Pregnancy is a unique period in human life, and both the gut and vaginal microbiome 

have evolved to follow an optimum trajectory to support the mother and the developing fetus 

and allow for the ideal handover of microbiome at birth, informing maternal and child health 

outcomes.  

The human female gut microbiota undergoes dynamic compositional changes across 

gestation [30–32]. As pregnancy progresses, a reduction in the diversity of the intestinal 

microbiota takes place, characterized by an enrichment in Proteobacteria [30]. This natural shift 

in the bacterial populations is functional to the increased metabolic demands by the developing 

fetus. The Proteobacteria expansion can help the body with the increased energetic 



requirement that is characteristic of the third trimester [33]. Interestingly, when gut microbiota 

from this time period was transferred to microbiota-depleted rats, they showed increased 

adiposity, reduced glucose tolerance and inflammation, signs of metabolic syndrome [30]. This 

suggests that the changes in gut microbiota composition during pregnancy have an adaptive 

role for maternal and newborn health.  

The vaginal microbiota composition also changes during pregnancy towards a less 

diverse configuration [34, 35]. As with gastrointestinal microbiota, the change in vaginal 

microbiota has a specific role during pregnancy. An increase in the presence of Lactobacilli 

helps maintain a low pH, limiting bacterial growth opportunity for other bacteria [35]. 

Furthermore, vaginal microbiota composition is critical in the context of vertical transmission of 

microbial populations [36]. Whether interventions in the physiological trajectory of maternal 

microbiota could alter the prenatal environment and, in turn, deviate normal brain development 

is a key question in neuroscience that is starting to be addressed both in preclinical and clinical 

areas (Fig. 1). 

Preclinical Models of Early-Life Microbiota Trajectory 

Similar to humans, mice and rat intestinal and vaginal microbiota go through 

compositional changes during pregnancy, providing a robust preclinical model for studying the 

link between maternal gut environment and offspring brain development [37–40]. Early 

gestation is characterized by a transitional increase in the relative abundance of Akkermansia 

and Bifidobacterium, which in late pregnancy decrease to levels seen in non-pregnant mice. In 

contrast, Bacteroides remain relatively elevated throughout pregnancy [37]. Interestingly, 

microbiota compositional changes also occur post-partum. The relative abundance of 

Actinobacteria increases early post-partum, while the one of Bacteroidetes decreases [38].  

The vaginal microbiota has its own trajectory in pregnant mice. After the first week of 

pregnancy, there is an increase in bacterial diversity characterized by a growth of the Firmicutes 



and Bacteroidetes phyla [40, 41]. The changes seen in mice gut microbiota during pregnancy 

and post-partum make it a solid approach to the study of interventions in the maternal 

microbiota and the impact on offspring’s neurodevelopment.  

External Challenges to Maternal Microbiota Dynamics 

Given the importance of early-life microbiota in neurodevelopment, any factor that affects 

its composition has the potential to influence brain health. Indeed, a variety of exogenous 

factors affect the trajectory of microbiota composition during pregnancy. Diet, drugs, infection, 

hospitalization, prematurity and stress are among the influences that divert maternal microbiota 

from its natural course and impact on offspring’s brain, immune system and the hypothalamic-

pituitary-adrenal axis (HPA) development.  

Diet and Maternal Microbiota 

Diet is one of the major sculptors of the diversity and abundance of the intestinal 

microbiota [42]. Inadequate intake of macronutrients or micronutrients during pregnancy has 

been related to altered maternal microbiota [43] and offspring’s poor neurocognitive outcome 

(Table 2) [44]. This association suggests a role for the maternal microbiota in brain prenatal 

programming.  

One of the most common macronutrient consumption imbalances during pregnancy is 

the consumption of high-fat diets. Maternal overweight has been associated in humans with 

increased risk of poor neurodevelopmental outcomes [45]. In rodents, consumption of a high-fat 

or Western diet prior and during pregnancy impairs the trajectory of maternal and offspring’s 

microbiota [37, 46]. This alteration was associated with a neuroinflammatory profile in the 

hippocampus and amygdala of the offspring, resulting in juvenile impaired social behaviour and 

anxiety-like phenotype [47]. Interestingly, a high-fat diet prior to and during pregnancy impairs 

maternal HPA axis plasticity and the offspring’s hypothalamic gene response to stress [48, 49]. 

However, caution is required when interpreting the literature on the neurobiological changes 



induced by diets rich in fat and sugar in rodents as the content of the control diets regarding 

fibre and other nutrients needs to be taken into account [50, 51]. Nevertheless, preclinical 

studies on maternal high-fat and Western diets (see [8] for an extensive review) support the 

idea of a role for diet-induced microbiota changes in brain programming.  

During fetal development, micronutrients are required for neurological development. 

Deficiency in B vitamins, folate or ions, such as iron and zinc, exerts detrimental effects on 

neurocognitive development in humans and rodents [52, 53]. Folate deficiency is paradigmatic 

of the impact of micronutrient deficit on offspring neurodevelopment. Mammalian cells are 

unable to synthetize this vitamin; thus, humans depend on food or supplements to compensate 

for their requirement [54]. Failure to achieve normal serum folate levels during pregnancy has 

been associated with increased neural tube defects in the offspring [55]. Conveniently, bacteria 

residing in our colon can produce many vitamins of the B group, including folate. In mice, a loss-

of-function mutation in an intestinal folate transporter can account for folate malabsorption, 

suggesting that bacterial produced folate plays a major role in host metabolism [56]. In humans, 

consumption of a vegetarian diet during early pregnancy was associated with a distinctive 

microbial composition rich in biosynthesis pathways for fatty acids, lipids and folate [57].  

Prebiotics and Probiotics 

Research on the effect of prebiotic and probiotic administration during pregnancy is at an 

early stage (Table 3). Current reports indicate that the administration of prebiotics or probiotics 

to pregnant women is not associated with an increase or decrease in the risk of preterm birth or 

other infant and maternal adverse pregnancy outcomes [58]. Researchers are beginning to 

shed light on their effects on offspring’s brain and immune development [58].  

Prebiotics promote the growth of beneficial bacteria and include indigestible fibres that 

are fermented by colonic bacteria to produce short-chain fatty acids and provide a health benefit 

[59]. In humans, the effects of maternal intake of prebiotics on neurodevelopment have not 

been well studied, and there is uncertainty about their effects on allergy risk [60, 61]. Galacto-



oligosaccharide (GOS) and inulin administration to pregnant mice modulated the gut microbiota 

and prevented immune activation and intestinal permeability in the offspring [62]. Moreover, it 

has recently been shown that the addition of inulin to a mouse maternal high-fat diet abrogated 

the negative metabolic effect of the high-fat diet on offspring [63].  

Probiotics are beneficial strains of bacteria that confer a health benefit to the host [64]. 

There is lack of research on the prenatal impact of probiotics on neurodevelopment in humans 

and rodents. Administration of probiotics to pregnant women impact on immunity, reducing the 

risk of atopy but not of asthma [65, 66]. More preclinical and clinical research must be 

conducted to determine the impact of prenatal probiotics on the maternal and offspring 

microbiota.  

Drugs 

Antibiotics 

Antibiotics are widely used during pregnancy, but little is known about their effects on the 

trajectory of the maternal microbiome [67]. Preclinical models are starting to shed light on the 

effect of antibiotic exposure on offspring neurodevelopment. Administration of antibiotics to 

pregnant rats caused impairments in social behaviour and pre-pulse inhibition of the offspring 

[68]. In mice, administration of non-absorbable antibiotics during pregnancy reduced the 

exploratory behaviour in the offspring [69]. These results warrant further research on the effect 

of microbiota.  

Psychotropics 

Recently, Maier et al. [70] showed that a large amount of non-antibiotic human-targeted 

drugs have antimicrobial properties. Among them, drugs that can be prescribed during 

pregnancy, such as proton pump inhibitors, were found to disturb the growth of commensal 

bacteria (Table 2). Interestingly, psychotropic medications also influence the composition of gut 

bacteria in rodents [70, 71]. Selective serotonin uptake inhibitors, tricyclic antidepressants and 

antipsychotics negatively impact bacterial growth [71–73]. Looking at the effects on postnatal 



development, prenatal exposure to fluoxetine induces an anxiety-like phenotype in rats [74]. 

Also, in rodents, valproic acid administration during pregnancy disturbs the microbiome of the 

offspring and results in impairment of the social behaviour of the offspring [75, 76]. Owing to the 

prevalence of psychotropic administration during pregnancy, it is crucial to characterize the 

interaction between maternal health, microbiota and offspring neurodevelopment (Table 2).  

Stress and the Maternal Microbiota  

In humans, prenatal and postnatal maternal stress has been associated with young adult 

offspring behavioural and depressive symptoms [77] and aberrant infant intestinal microbiota 

development (Table 2) [78, 79]. In rodents, prenatal stress shifts maternal gut and vaginal 

bacterial community and induces long-lasting alterations in the gut microbiota composition of 

the offspring [40, 80]. Moreover, this alteration was shown to occur in a sex-specific manner, 

and it correlates with hyper-reactivity of the HPA axis [40]. 

The Microbiota in Transition: from Prenatal to Postnatal  

When the first contact with the microbiota occurs remains controversial. The sterility of 

the uterus during pregnancy is one of the paradigms that research on the microbiome is 

revisiting. Bacteria have been found in the placenta [81, 82], amniotic fluid and meconium of 

humans [83, 84]. Moreover, the presence of specific bacteria in utero has been associated with 

pregnancy risks, including higher rates of preterm delivery [85]. Nevertheless, the reliability of 

these findings is widely debated in the context of whether it is contamination or not [86, 87]. The 

existence of germ-free mice models further dismisses the idea of a prenatal microbiome [86]. It 

is generally accepted that the moment of birth is the first opportunity for large-scale bacterial 

colonization of the newborn. Thus, the mode of delivery has a tremendous impact on the 

establishment of the microbiota of infants. 

Early-Life Microbiota and Birth Mode 



A large number of studies associate the mode of delivery to a distinctive trajectory of 

microbiota development in the newborn [35, 36, 66, 88–99]. Unexposed to the birth canal, 

Caesarean section (C-section)-born babies elude mother-neonate vertical vaginal transmission 

of bacteria and viruses [36, 89, 100]. In turn, the microbiota resembles skin and environment 

microbiota, suggesting that C-section first colonizers come from diverse sources (Table 2) [35, 

89].  

That said it is worth reinforcing that mode of delivery-induced changes in microbiota 

composition are transitory. Vaginally delivered infants have significantly higher microbiota 

richness and diversity than C-section-born infants as early as 3 days after birth [88, 100–102]. 

Nevertheless, the early decline in Proteobacteria and the late Firmicutes expansion occur timely 

over the first year of life of C-section-born infants [101]. 

The time course of these microbiota alterations overlaps with a critical period for neuro- 

and immune development (see [103] for extensive review). It has been suggested that C-

section-distinctive microbiota composition plays a functional role in predisposing these infants to 

a greater relative risk of neonatal infections, allergy, asthma, obesity and type 1 diabetes [35, 

101, 104–108]. Preclinical models of C-section suggest that the mode of delivery could impact 

on early neuronal maturation [109, 110]. Whether modifying the initial colonizing microbiota 

induces directly or indirectly different trajectories in brain development has yet to be deciphered. 

Epidemiology studies have shown that C-section-induced changes in terms of brain 

health and school performance later in life are subtle at best [111, 112] and, in the case of 

autism, do not withstand correcting for familial confounding [111]. 

Various strategies have been designed to restore the normal trajectory of the microbiota 

[113]. Although controversial, artificial vaginal microbiota transference was performed to C-

section-born infants to mimic vertical transmission [114]. Other interventions, including 

supplementation with probiotics and prebiotics, were proposed to decrease the impact of 

delivery mode on the microbiota.  



Early Postnatal Perturbations of the Microbiota 

Early postnatal life entails an intrinsic sensitivity to environmental factors. As with the 

maternal microbiome, infant exposure to differences in diet, drugs and stress can interfere with 

the trajectory of the microbiota and neurodevelopment in a manner that is characteristic of this 

developmental period.  

Mode of Nutritional Provision in Early Life 

The stability and composition of the early-life gut microbiota community is also dependent 

on diet [115]. Accumulating evidence suggests that breastfeeding and formula-based nutrition 

leave a distinctive fingerprint in the intestinal microbiota (Table 2). Gut bacterial composition of 

infants exclusively breastfed is characterized by higher relative abundance of Bacteroides and 

Bifidobacterium compared to the one from formula-fed infants [108, 116]. Furthermore, 

breastfeeding had a positive effect on myelination and increased general, verbal and non-verbal 

cognitive abilities during childhood [117]. The implications of these findings are still unclear, but 

longitudinal studies are starting to shed light on the effect of early-life nutrition on the temporal 

course of microbiota maturation.  

Human breast milk has a unique composition that interacts with the developing gut 

microbiota. Culture-dependent and -independent techniques revealed that it is a source of 

bacteria [118]. Interestingly, the human milk microbiome can be influenced by maternal body 

mass index and mode of delivery [119]. The other main components of breast milk are human 

milk oligosaccharides, which act as prebiotics [120, 121]. Supplementation of infant formula with 

GOS increases the abundance of Bifidobacteria and Lactobacilli to levels reported in breastfed 

infants [122, 123]. Both breast milk microbes and prebiotics play a role in the standard gut 

microbial developmental trajectory.  

Later in life, feeding transitions drive important changes in composition and functionality 

of the intestinal microbiota [36, 89, 124]. From breastfeeding to solid food, the microbiome 

transitions from being enriched in genes associated with digestion of sugars from breast milk, 



vitamin production and iron transport to degradation of starch and high sugars [36]. 

Furthermore, the microbiota continues to undergo change; at 7–12 years of age, the 

composition and function of the microbiota remains significantly different from the one of adults 

[125], suggesting a role of the microbiome in the neurodevelopmental changes associated with 

adolescence.  

Probiotics and Prebiotics 

Most of the evidence available on the effect of early-life exposure to pre- and probiotics 

comes from preclinical studies. Early-life prebiotic administration in humans has shown effects 

on reducing the risk of atopy, an autoimmune disease [126], but neurodevelopmental outcomes 

have not been studied yet. In preclinical studies, oligosaccharides have been shown to 

modulate the gut-brain axis, highlighting the role of breastfeeding in neurodevelopment. 

Administration of the human milk oligosaccharides 3’Sialyllactose (3’SL) or 6’Sialyllactose (6’SL) 

to mice exposed to social disruption prevented stress-induced colonic microbial disruption and 

anxiety-like behavior [127]. Furthermore, fructo-oligosaccharide (FOS) and GOS administration 

attenuated corticosterone release in response to an acute stressor and protected the mice from 

the impact of chronic stress on the microbiota [128].  

Preliminary clinical trials of probiotic interventions have yielded promising results with 

regard to reducing the risk for gastrointestinal problems, sepsis, allergies and even autism 

spectrum disorder and attention deficit hyperactivity disorder [129–134]. Several groups have 

now shown that early probiotic interventions mitigate the effects of early-life stress, maternal 

high-fat diet and maternal immune activation on infant outcomes [47, 135–138]. Oral 

administration at weaning of Bifidobacterium fragilis ameliorates the abnormal stereotyped and 

anxiety-like behaviours of the maternal immune activation mouse model of autism [136]. 

Probiotic administration during adolescence restores social interaction-induced long-term 

potentiation in an animal model of social impairment by maternal high-fat diet exposure [47]. In 

maternally separated rat pups, a combination of Lactobacillus rhamnosus and Lactobacillus 



helveticus reduced pup corticosterone responses to stress and normalized fear behaviour [135, 

137, 138]. Another probiotic, Bifidobacterium infantis, normalized behavioural deficits in adult 

rats exposed to maternal separation [139].  

Although clinical evidence on the role of pre- and probiotics for neurodevelopment is still 

lacking, preclinical research gives cause for a focus on early-life microbiota interventions.  

Drugs: Antibiotics and Beyond in a Paediatric Setting 

Antibiotics are commonly prescribed during the first years of life, yet the effect on brain 

health programming is unknown. Longitudinal clinical studies support the idea that early-life 

exposure to antibiotics perturbs the natural trajectory of the microbial communities by altering 

their stability [140]. Furthermore, neonatal exposure to antibiotics in rodents not only altered the 

microbiota but also induced increased visceral sensitivity and long-lasting changes in brain 

cytokines and behaviour [141, 142].  

The interaction between early-life exposure to psychotropics, neurodevelopment and the 

microbiota is currently unknown. Not only exposure to psychotropics mediated by breastfeeding 

but direct administration of these drugs early in life could impact the developing microbiota. 

Serotonin uptake inhibitors and atypical antipsychotics indicated for the treatment of paediatric 

psychiatric disorders are among the non-antibiotic drugs known to change the microbiome 

composition [70, 71]. Atypical antipsychotics indicated for the treatment of the irritability 

associated with autism spectrum disorders have been shown to inhibit gut bacteria [70]. At the 

same time, the composition of the microbiota of autistic patients was shown to be altered [143–

147]. Whether there is an interaction between microbiota populations, psychotropic drugs and 

behaviour has yet to be determined.  

Early-Life Stress 

The impact of stress on the development of the HPA axis has been shown to contribute to 

the programming of brain health in later life [148]. Interestingly, evidence from preclinical studies 

shows that early-life stress also alters the microbiota. Maternal separation during early life 



disrupted the microbiota of the offspring of rhesus monkeys and rats [149, 150]. Interestingly, a 

diet containing prebiotics in combination with live Lactobacillus rhamnosus GG attenuated the 

effects of early-life maternal separation on anxiety-like behaviour and hippocampal-dependent 

learning [151]. Germ-free mice were more vulnerable to restraint stress, resulting in higher 

adrenocorticotropic hormone and corticosterone in plasma [14, 16], a reduction in glucocorticoid 

receptor mRNA and an increased stress response [14]. Remarkably, these effects were rescued 

with microbiota transplantation during adolescence but not adulthood [14]. 

Future Perspectives 

Pregnancy and the first years of life are unique stages of plasticity for the intestinal 

microbiota. In both cases, there is a dynamic trajectory of the intestinal microbiota composition 

that is functional to the requirements of the host. Although plasticity represents an opportunity 

for adaptation, it is also a vulnerable stage. As we have reviewed, clinical and preclinical studies 

suggest that diet, stress and drugs can interact with the natural trajectory of the microbiota and 

play a part in programming brain health (Fig. 1). However, the evidence is still scarce, and 

further research is needed to understand the functional implications of these interactions.  

The nervous system and the microbiota show concurrent developmental trajectories, 

offering a unique opportunity for intervention. There is potential for the development of early-life-

targeted interventions of the microbiome, aiming to reduce the risk of disease later in life. 

Further research is needed on the characterization of critical windows to modulate the 

microbiota and the consequences of early intervention.  
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Legend(s) 

Fig. 1. Factors that determine the trajectory of the microbiota during early life. The gut and 

vaginal microbiome of the mother is altered by diet, drugs and stress. The mode of 

delivery determines the first colonizers of the newborn’s gut. Early in life, diet, drugs and 

stress can also affect the infant microbiota composition.  

Table(s) 

 

Table 1. Glossary of terms related to the gut-brain axis 
  
  
Term Definition 
  
  
Gut-brain axis The multidirectional biological system comprising the central nervous 

system, the neuroendocrine and neuroimmune systems, the 
gastrointestinal tract and components of the enteric and autonomous 
nervous system 

  
  
Microbiota The collection of microbes (including bacteria, viruses and fungi) that 

inhabit a particular site 
  
  
Microbiome The totality of the microbial genes at a particular site 
  
  
Host The organism that houses a given microbial population 
  



  
Commensal microorganisms The intrinsic microbes that reside in the host 
  
  
Prebiotic Non-digestible foods that have a beneficial effect on the microbiome 

for the host 
  
  
Probiotic Live microbes that have a positive effect on host health when 

ingested in adequate quantities 
  
  
Germ free A host without a microbiome; generally refers to mice and rats that 

were born and reared in a sterile environment to keep them from 
developing a microbiome 

  
  

 
 

 

Table 2. Factors that interfere with the gut microbiota trajectory during development 
    
    
Factor  Effect on the microbiota Ref. 
    
    
Diet pregnancy Unhealthy diets can disrupt the 

natural trajectory of microbiota during 
pregnancy 

[31] 

early life Formula feeding is associated with a 
distinctive fingerprint in the intestinal 
microbiota ■■■ 

[10
8] 

    
    
Mode of delivery C-section is associated with a 

distinctive early microbial profile, 
dissimilar to the vaginal microbiota 
implicated in vertical transmission 

[35]  

    
    
Drugs non-antibiotic Inhibition of commensal bacteria 

growth both during pregnancy and 
early life 

[70, 
140
] 

antibiotic Reduce the stability of early-life 
microbiota 

    
    
Stress Prenatal and postnatal stress alter 

the composition of early-life 
microbiota 

[78]  

    
    

 
 

 

Table 3. Interventions that support microbiota development 
    
    
Factor Effect on the microbiota Ref.  
    



    
Diet pregnancy Diets high in fibre improve gut 

microbiota diversity 
[152] 

early life Due to its unique composition that 
includes prebiotics, breast milk 
supports early-life microbial 
development 

[108] 

    
    
Prebiotic Growth stimulation of specific bacteria 

populations that is associated 
with a health benefit 

[153]  

    
    
Probiotic Modulates microbiota functionality, 

intestinal immunity and  
epithelial responsiveness 
In adequate amounts confers health 
benefits to the host 

[154]  
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