
An adaptive task scheduler for a cloud of drones
* Hazzaa N. Alshareef

College of Computing and Informatics

Saudi Electronic University

Madinah, Saudi Arabia

h.alshareef@seu.edu.sa

Dan Grigoras

Department of Computer Science

University College Cork (UCC)

Cork, Ireland

grigoras@cs.ucc.ie

Abstract—Drones are now being widely used in

different civilian applications, such as delivering

shipments to consumers, as proposed by Amazon, and

providing internet access to users, as offered by Facebook

and Google. Drones can also contribute in emergencies by

helping to find victims in places that are not reachable by

rescuers, as well as assisting emergency centers to better

manage a reported emergency. However, drones have a

short flying time due to limited battery life. Therefore, a

reliable strategy that minimizes energy consumption and

uses collaborative working is required in order to

increase drones’ ability to operate for longer periods in

emergency situations. This paper presents an adaptive

task scheduler that allows tasks to be shared/transferred

among the drones in a cloud of drones, in order to extend

the operational time, achieve faster task execution and, at

the same time, reduce the usage of each drone’s resources.

The ultimate result is an extension of battery life that

leads to longer flying and service time for individual

drones.

Keywords—Cloud of drones; emergency; battery power;

task scheduling; services

I. INTRODUCTION

There is a high level of interest in drones and their

usage in civilian applications [1-7]. One of the most

important features of using drones is their ability to

reach places faster than humans. Furthermore, drones

can reach locations that are sometimes difficult for

humans to access and are less costly than, for example,

helicopters [8]. Access difficulties could be due to the

nature of these places or the risk associated with being

there, as is the case with many post-disaster locations.

With camera and other sensor capabilities, drones can

survey the locations being monitored. One example

could be managing rescue and recovery operations after

catastrophic events (e.g., floods, fires, and

earthquakes). Another strong feature of drones is their

ability to provide means of communication using the

drones’ resources. For example, drones can act as

communication relays to exchange data, as well as

providing the ability to access the internet by acting as

an access point or base station to the area over which

they are flying.

However, drones face a number of challenges,

including limited battery life and communication

capabilities. Drones execute a small set of tasks (pre-

loaded) that are known in terms of the resources they

consume. For example, for video streaming, we can

determine the energy consumed/minute or hour. The

same applies to the Voice over Internet Protocol (VoIP).

In practice, a number of solutions have been proposed

to reduce these limitations and help save energy, which

would lead to longer flying time. For instance, short-

range line-of-sight (LoS) communication links can

reduce the demand on drones’ resources, particularly

energy.

Building a cloud of drones was considered in a

previous paper [9]. Drones can connect with each other

to create a cloud of drones that can share information

and, more importantly, resources. Since drones have a

limited battery life, which renders them incapable of

executing long tasks or even high priority tasks that

need to be executed immediately, the idea is to use the

benefits of a cloud of drones to share task executions

among multiple drones and avoid intensive

consumption of one drone’s resources. The cost is,

therefore, shared.

In this paper, we propose an adaptive task scheduler

for multiple drones as part of the cloud of drones’

model. Based on the energy level of each drone and the

task priorities, the scheduler decides the order of

execution and task sharing. This paper presents this

scheduler in detail and evaluates its effectiveness.

The rest of the paper is organized as follows. Section

II discusses existing systems and related work. Section

III provides a list of tasks considered in our proposal

and section IV presents the design of the adaptive task

scheduler. Section V presents the experimental set-up

and details the evaluation of the results. Section VI

provides conclusions and plans for future work.

II. RELATED WORK

Both unmanned ground vehicles (UGVs) and

unmanned aerial vehicles (UAVs) can be considered to

support rescue operations in emergencies. Loss of

communication is one of the most critical issues that can

limit their usage. In [10], an interesting approach is

discussed that mainly aims at allowing the dynamic

setting of communications between UGVs and UAVs

with humans in the location of an emergency. Authors

use decentralized (i.e. ad-hoc) networks, since it can be

assumed that the current infrastructure is down. A

mobile cloud is used in this paper to create a cloud of

UGVs and UAVs. The store-and-forward routing

protocol is modified to allow message routing without

buffering packets. The authors rely on a well-known

project, called Serval mesh, which provides a

messaging protocol for disasters.

An interesting use of drones in emergencies is

brought by [11], which provides a means of

communication in the case of a large-scale disaster. The

idea is to implement LTE femtocell base stations on

drones to offer an alternative network infrastructure if

the current one is affected. Authors designed an

algorithm to help identify the number of drones

necessary to cover an affected area, as well as the

optimal locations for the flying drones.

A flying ad-hoc network (FANET) [12] protocol has

been suggested due to some of the limitations of using

multiple drones in an application, such as the need for

expensive and complicated hardware to allow drones to

communicate with ground base stations or a satellite.

The reliability of these communications/links and the

high possibility of disconnections are other limitations

to take into consideration. According to the paper, a

FANET is viewed as a modified form of MANET and

vehicular ad-hoc network (VANET) that can be used to

cope/deal with drones’ special requirements, including

their high degree of mobility, frequent changes in

topology, a much longer average distance between

nodes, different data delivery strategies from different

types of sensors, etc. The paper includes interesting

investigations of drones’ networked issues. There are

also some recent implementations of FANETs, such as

in [13 - 15].

The idea of scheduling tasks in drones is not new.

Many researchers have tried to minimize the impact of

executing tasks to save energy. However, most of this

research focuses on scheduling tasks and CPU usage,

such as in [16, 17].

To summarize, comparing our work with the

previously mentioned papers, we find that most of the

research deals with CPU management aspects and how

power consumption can be reduced based on CPU

usage. Some papers consider classifying tasks and

running each type of task in a different CPU core to

achieve more efficient management of the power

consumption. This research is concerned with sharing

tasks among drones in a way that draws less from the

drones’ resources, which will lead to less power

consumption when the task load is divided among

multiple drones. Other papers collect basic information,

such as task execution time and the speed of each task

worker (a VM in some papers or the CPU core in

others), which we do not believe is sufficient to decide

which task should be executed by which worker. Here,

more information is collected about each task, as well

as extra data about each drone, to determine which

drone should execute a task, and assess the ability to run

a task among a number of drones at the same time.

III. EXAMPLES OF TASKS

Tasks can be anything that a drone can run and a user

needs in the case of an emergency. However, for the

purpose of this paper, two types of task are selected, as

follows.

1) Video streaming (live view)

A task could be flying a drone to a particular place,

starting a real-time video recording, and streaming it to

the cloud to be watched in the emergency management

centre or by one of the rescue teams near the emergency

location. This is a demanding task because it requires a

continuous video feed to a local user or remote centre.

Multiple drones can be involved in this task to provide

wide coverage of an emergency location, as well as for

handing over from one drone to another if/when needed.

One important point is that this is a built-in task of

commercial drones, controlled remotely by the user.

However, the scheduler can signal to the drone to

start/stop this. The task will start if there is no higher

priority task and will stop if a new task of higher priority

is ready.

2) VoIP

One of the most important services provided in the

case of an emergency is voice communication.

Rescuers can talk to each other as well as contact the

emergency management office to request help or

special equipment, for example. Hence, the task given

to drones is to act as communication relays. Using the

proposed scheduler, the service can still operate even if

the drone that runs this service leaves or becomes

unavailable due to low battery, by handing the task over

to a different drone that has the capability to continue

executing the task and ensure the service is provided to

the users.

IV. ADAPTIVE TASK SCHEDULER

The concept behind the adaptive task scheduler is to

share tasks among multiple drones. Two possibilities

are considered: (i) using a centralized solution with the

benefits of all the data being collected in one place and

consistent decisions based on these data (as in Figure

1); and (ii) a distributed approach, in which drones

directly negotiate with their neighbours with regard to

how they share/split a task (see Figure 2).

A. Centralized approach

Figure 1 Centralized approach to allocating tasks

The centralized management component fulfils two

main roles:

1) Collects and stores information from all drones in

the cloud of drones.

2) Distributes or allocates tasks to one drone or

multiple drones based on several factors, two of which

are more important than the others:

 The status of the selected drone(s).

 The task characteristics, including task priority

and estimated energy consumption/time unit

(secs).

Two methods are used to collect the status of each

drone: push, whereby each drone sends current

information periodically, or once a change occurs; for

example, if it flies to another location or its battery level

is low; and pull, for which a request is sent to all

connected drones asking for their current status,

including location, battery level, and availability. This

request is sent before a new task or set of tasks is

allocated for execution.

The benefit of the push method is that knowledge

about all the connected drones is already acquired. As a

result, once a new task is dispatched, it will be directly

allocated/scheduled to the most suitable drone(s).

However, using this method will have a negative impact

on the drones’ resources (especially battery life). With

the second method (pull), drones are contacted only if a

new task arrives and a decision needs to be taken

regarding which drone(s) will execute the task. This

method requires less extensive communication. As a

result, it will have a positive impact on the drones’

resources (e.g., battery life).

Once the drones’ status has been collected, they will

be categorized in different groups to decide which

drone(s) is suitable for which task. For example, drones

that have a full (or almost full) battery can be used for

long tasks, whereas drones that are close to each other

can share their resources to execute a heavy

computational or resource-intensive task(s). The

following are the categories in which each drone can be

included:

 Drones that can handle heavy computational or

resource-intensive tasks, such as video

streaming.

 Drones that can handle short and/or small tasks,

such as accessing an interactive map or

redirecting a help request to the emergency

centre.

B. Distributed approach

Figure 2 Drones negotiating task sharing inside a cloud

of drones
As shown in Figure 2, a cloud of drones can be

created that other drones could join and ask a neighbour

to share a task. These drones can, therefore, cooperate

locally inside the cloud of drones to execute the task.

Two methods are offered in this research:

Figure 3 Two drones running/sharing the same task

 Direct communication: a drone can look for

another drone to join and share a running task. For

example, a drone might run a task and need another

drone to share the task to save resources or provide

wider coverage. In this case, a direct request is sent

to a neighbour in the cloud of drones to share the

task. Figure 3 presents a graphical explanation of

how one drone can connect directly to another one

to share the execution of a task, such as providing a

live view of a certain location. However, an issue

might arise here because of the sharing aspect, such

as overlapping in the visual area (e.g. two drones

sending a video of the same location). Thus, the

drone that shared the request should take

responsibility for avoiding this situation by

changing location, for example, or providing a

location that needs to be covered by the invited

drone.

 Dedicated cluster: a drone might run a high

priority task, such as VoIP communication for team

members on the ground and look for other drones

to share the task. The drones create a cluster to share

the task, then invite other drones in the same area to

join the cluster. Figure 4 shows a drone providing a

VoIP service to ground users then starting to create

a cluster of drones to share the execution of the

VoIP service to the end users.

C. Collaboration protocol

Before sharing a task, the drones need to reach

agreement by exchanging messages. Therefore, a

simple messaging protocol is proposed. Each drone

should have an IP address or ID so that the drones are

able to locate each other. Messages include sending a

sharing request and replying to that request. Another

type of message can be notifying other drones about an

action that is about to happen, such as a drone leaving

to charge the battery. Table 1 shows these types of

messages with a description of each.

Table 1 Examples of messages exchanged in the

collaboration protocol

Message Sent by Description

task_sharing
Requester

drone

A drone that requests task

sharing sends a request to

one of its neighbours

asking to share the

execution of a task.

accept/reject
Selected

drone

A reply is returned by the

drone addressed.

Depending on the status,

the reply will accept or

reject the task-sharing

request.

ACK
Both

drones

Acknowledgement (ACK)

of the request.

Synch
Both

drones

The two drones have to

share the progress of the

task and synchronize the

execution of the running

task.

share data
Requester

drone

If the task requires data

during its execution, the

requester drone attaches all

the necessary data to the

message.

leaving
Both

drones

If a drone detects a low

battery and is about to

leave, a message is

broadcast to all connected

drones.

D. Tasks handover framework

As part of the new scheduler, drones can transfer the

execution of a running task to another drone that is part

of the same cloud of drones. This migration of tasks

might be needed due to some issue in the drone running

the task, such as a low battery level or the drone needing

to run a higher priority task that has just been allocated.

Simply put, a drone that wishes to transfer the execution

a task can send a request to all reachable neighbours to

plan the task execution transfer. The task’s description

and progress are attached to the request to ensure that

the task runs smoothly once the transfer is made. Once

a reply is received from a neighbour to handle this task,

the execution of a task transfer is started.

To avoid wasting resources, a timer is used here to

wait for a reply from reachable neighbours. If the timer

is due and no reply has been received, another attempt

is allowed. However, if the timer for the second attempt

is due and no reply is received, the task will be

suspended until the drone is able to resume it (e.g.,

having recharged its battery and returned to operating

normally).

Figure 5 illustrates the steps needed for one drone to

transfer a task to another one. Figure 6 shows the type

of messages that will be exchanged between a drone

that is executing a task and the drone that will take over

the task in order to execute it. In other words, one drone

sends a request after attaching all the information

required and the receiver drone sends an

acknowledgement (ACK) message if it agrees to take

over the task.

Figure 4 VoIP task run by one or a cluster of drones

Figure 5 Steps needed for a drone to transfer the

execution of a running task to another drone in the same

cloud of drones

Figure 6 Messages exchanged between a drone that

wants to hand over a running task and the drone

selected to take over the task

E. Task scheduler

Each drone runs the task scheduler which decides,

based on the battery level and the priority of the task, to

stop other tasks. The scheduler informs other drones of

this decision, to split the task with other drones,

engaging in communication using the protocol

mentioned above, or to call for another drone. In

practice, we are suggesting a new drone task model, in

which the set of tasks is controlled both locally and

remotely. There are three main scheduler scenarios

once a new task is received.

1) The drone is idle

The scheduler accepts the task if capable of running

it (i.e., it has enough battery). However, if it is not able

to run the incoming task due to limited resources, a

clustering approach can be used.

2) The drone is busy running a task

The scheduler will check the priority of the newly

incoming task with the current running task.

 If the new task has higher priority, the drone

stops the current task and starts immediately

the new one.

 If the new task has lower priority, the drone

queues the new task.

3) The drone is engaged in a cluster to share the

execution of a task

The scheduler will check the priority of the incoming

task with that of the task executed by the cluster.

 If the new task has higher priority, the drone

stops the current execution and notifies the

members of the cluster of this action. It then

starts executing the new task.

 However, if the new task has lower priority, the

drone schedules the new task for after the

current one has finished.

F. Data security

This paper does not deal with security but focuses

instead on scheduling tasks executed by drones and how

these can be shared or even transferred from one drone

to another. However, some existing security protocols

could fit easily here to protect data, such as using secure

channels in communications between drones inside the

cloud of drones and with end users. Moreover, a light

encryption mechanism can be used if it can be verified

that there will be no negative impact on the drones’

resources.

V. EVALUATION AND EXPERIMENTAL RESULTS

This section presents detailed information about the

cost of the previously mentioned tasks (video and VoIP)

in terms of power for the purpose of helping drones

decide either to reject or accept a task (or share a task)

based on how much the task received will consume or

how many resources it might need if using a distributed

approach. The idea of transferring the execution of a

task from one drone to another to determine the impact

of this in terms of both drones’ batteries is also tested.

Since it is difficult to modify an existing drone’s

hardware (i.e. control unit), we used several Raspberry

Pi to conduct our experiments. Each Raspberry Pi acts

as a drone control unit. In general, there is no direct way

to profile/report the power consumption or battery

usage of a Pi. Some developers use external equipment

(i.e. a power detector) and others calculate the cost from

the CPU usage. For the purpose of this paper, we

collected the power usage using a 10000 mAh (36 Wh)

Cellularline portable power supply [18] that has a built-

in screen to show the amount of power as a percentage.

The following subsections present the experimental

results of the two proposed tasks as well as a scenario

for transferring tasks execution between drones.

1) Video task results

After ensuring the power bank was fully charged

(100%), we plugged the Pi into the power bank. We

started the video using a webcam that is connected to

the Pi via a USB port. Once the video previewed on the

screen, the change in the portable power bank was

recorded. We found that running a video stream from

the webcam for 30 minutes consumed 4% of the battery

capacity.

Since the portable power has 10,000 milliampere

hours (mAh) of battery capacity that means running the

video task on the Pi will consume 400 mAh, although

this amount of power is also shared with other functions

on the Pi, such as booting the Pi and other operating

system (OS)-related tasks (i.e. communication and

control). Therefore, we have to exclude these services

and tasks from this rate.

To obtain the amount of battery consumed by the Pi

without the video task, we plugged the Pi into the same

power bank after we ensured it was fully charged

(100%). We ran the Pi in idle mode for 30 minutes (i.e.

no video task running) to determine the amount of

energy consumed. We found that running the Pi in idle

mode for 30 minutes consumed around 2% of the

portable battery, therefore the actual consumption

which was 200 mAh.

We used a 5v portable battery (1 watt-hour or Wh).

However, the v-value in real drones, such as the

Phantom 4, is 15v, which would consume 3 Wh.

To summarize, running a video task for 30 minutes

will consume around 200 mAh, which is almost the

same as the power needed to run a Pi in idle mode for

30 minutes. This type of task needs 3 Wh to run on real

drones, such as the DJI Phantom.

We can do some calculations based on the

specifications for drones provided in the marketing

information. For instance, the Phantom 4 comes with a

5,350 mAh battery, which allows up to 30 minutes of

flying in calm conditions at a constant speed. This is

around half the capacity of the portable power bank we

used in our experiment. However, running the video

task will share this battery with the flying task, which

means the total flying time will be reduced. If we

consider the results collected from running the video

task (200 mAh) and subtract these from the battery

capacity of a real drone, it will be affected by around 3-

4%, which is not that much.

2) VoIP task results

The Pi was running a VoIP server and connected to a

fully charged power bank (100%). Two Android-based

mobile devices were used in this experiment. After

registering the two Android devices as VoIP clients on

the VoIP server that runs on the Pi, a call was

established. We kept the line active for 30 minutes

between the two clients. To ensure a voice was

transferred through the communication link, we played

a piece of music during the call.

We found that running an active VoIP call between

two mobile devices managed by a Pi consumed around

7% of the battery capacity. As mentioned, the portable

power has 10,000 milliampere hours (mAh) of battery

capacity, which means 700 mAh.

From the previous section, the idle cost of running a

Pi without executing a task is 200 mAh. Therefore, the

actual cost of running a VoIP service between two

clients through a Pi is 500 mAh. Since we used a 5v

portable battery, the energy consumed is 2.5 Wh.

In summary, running a VoIP task to serve two end

users for 30 minutes will consume around 500 mAh,

which is around 2.5 times the power needed to run a Pi

in idle mode for 30 minutes or running a video task.

Based on the market specification of a well-known

drone (Phantom 4), running a VoIP task could consume

around 7.5 Wh (with a v-value of 15). To ensure the

reliability of this task configuration, we managed to

maintain a call between two registered Android devices

for up to 1 hour without issues.

B. Tasks handover results

This section tests the idea of transferring the

execution of a running task from one drone to another.

1) Experiment scenario

We assumed the following scenario: a drone is

running two tasks at the same time (video and VoIP)

and both are running normally. However, following a

trigger (e.g., low battery level), one of these tasks is

moved to another drone that is within reach and part of

the same cloud of drones. Technically, the moved task

is terminated in the first drone and started in the second

drone.

2) Experiment set-up

For testing, two Raspberry Pis were used. They:

- were connected to the same network and each

was assigned an IP address;

- were running a continuous communication

channel (TCP socket) to listen to incoming

messages;

- had VoIP server capability;

- were equipped with a camera, and

- were connected to a portable power bank that

was fully charged (100%).

The first Pi (we called it Pi_A) runs a VoIP server

(serving two clients) and in the same time running a

video task. The second Pi (Pi_B) is idle and within

reach of Pi_A. We defined the trigger here as a 30-

minute timer. Once the timer is due, the execution of

video task is transferred from Pi_A to Pi_B, after

terminating the task in Pi_A. We reset the timer (30

minutes) to assess the impact of this transfer on both Pis

in terms of battery usage.

3) Experiment results

Running both tasks (VoIP and video) on Pi_A for 30

minutes consumed 9% of the 10,000 mAh power bank

(900 mAh). After the 30-minute timer was due, the

video task was transferred to Pi_B, which consumed 6%

of the 10,000 mAh power bank (600 mAh). We

observed the change in power consumption after the

second 30-minute timer was due and found that the

consumption of Pi_B increased by 1% by 1% of the

10,000 mAh power bank (100 mAh) compared with the

consumption before receiving and running the

transferred task. The battery consumption of Pi_A

decreased by 2% of the 10,000 mAh power bank (200

mAh) after terminating and moving one of the running

tasks. Figures 7 and 8 present these results graphically.

Figure 7 Bar chart showing the impact of using the proposed

idea on the battery level of two Pis

Figure 8 Graph showing the readings for both power banks

used during the experiment

1) Experiment summary

The proposed task scheduler can improve drones’

resources by reducing battery consumption once a task

is shared or handed over to other drones.

2) Experiment limitations

One of the most noticeable limitations is associated

with the power bank used in the set-up. The bank has a

large capacity, which makes it difficult to read the

change in running tasks, especially if the task is of short

duration. We decided to examine tasks that would run

for 30 minutes because most drones operate for 20-30

minutes. We were able to establish that the total

percentage indicated on the power bank screen

decreased faster when running two tasks compared with

undertaking one task.

In addition, moving from one percentage to the next

needs a Pi to consume 100 mAh to show the new

percentage on the power bank screen, which means that

even consuming 99 mAh is still considered as the same

percentage. This could be acceptable since we ran these

experiments as a proof of concept to show there is a

positive impact of using the proposed task scheduler.

However, in future work, we need to investigate

another way of reducing the power consumption. For

instance, using a smaller power bank with less capacity

so we can observe the change in percentage more

precisely would be recommended. Alternatively, we

could run tasks of longer duration (e.g., 1 hour or more).

VI. CONCLUSION AND FUTURE WORK

Drones are becoming increasingly useful in

emergencies, as they have unique features that can help

in such situations.

However, drones face a number of issues that make

their use in emergencies difficult. The main issue is

battery capacity, which mainly affects flying duration.

Some drones cannot fly continuously for more than a

few minutes (7-10) and some less than that. Even the

more expensive drones cannot fly for more than 30

minutes. Therefore, extending battery capacity is

essential. A larger battery would affect the ability to fly.

Therefore, the direction should lie in minimizing the

usage of a drone’s battery. This could happen by

reducing power consumption.

In this paper, we proposed an adaptive task scheduler

that can run on a drone and make decisions that will

help reduce power consumption. This scheduler can

force running tasks to stop or to terminate if another

task with higher priority needs to be executed.

Furthermore, this scheduler can help one drone create a

cluster of drones inside a cloud of drones. The aim is to

engage multiple drones in executing one task that is

resource intensive. Similarly, cloud computing

capability is introduced here as a centralized solution to

assign/share tasks between drones in a cloud of drones.

This means that task management will be shifted to the

cloud, which will have a positive impact on drones’

resources, especially battery life.

We ran a number of experiments to ensure our

proposed task scheduler is valid and able to achieve its

goals. For instance, we executed video and VoIP tasks

to determine how much these would consume and to

discuss the impact of these tasks on real drones in terms

of power. We can state that running a video task will

consume the same amount of battery needed to run a

drone with basic functions. In addition, it takes around

double this amount to run a VoIP communication

between two clients for 30 minutes.

The idea of transferring the execution of a running

task from one drone to another was also tested. A drone

can reduce battery usage by moving a running task to

another drone inside a cloud of drones.

However, one critical task that drones run and that

consumes most of the battery’s capacity is flying.

Therefore, we need to establish how much energy the

flying task will consume and compare it with the

available battery level/capacity. Since the goal is to

increase the flying time, or at least not reduce it, the

proposed scheduler could help by sharing tasks among

multiple drones. For example, two drones could run a

task whereby each drone can perform part of the task

but consume less of the battery power normally

required for the task.

As future work, we are planning to extend the

experiments by testing the centralized approach as well

as adding more tasks, such as proposing a new drone

model for emergency management. Furthermore, we

will consider the use of energy harvesting systems to

deal with the limited battery life of drones by finding

another source of power that can feed drones and

improve their battery level.

REFERENCES
[1] J. George, P.B. Sujit and J. Sousa, “Search strategies

for multiple UAV search and destroy missions”, Journal
of Intelligent and Robotics Systems, vol. 61, no. 1-4, pp.

355-367, 2011.

[2] Z. Sun, P. Wang, M.C. Vuran, M. Al-Rodhaan, A. Al-

Dhelaan and I.F. Akyildiz, “BorderSense: border patrol

through advanced wireless sensor networks”, Ad Hoc
Networks, vol. 9, no. 3, pp. 468-477, 2011.

[3] C. Barrado, R. Messeguer, J. López, E. Pastor, E.

Santamaria and P. Royo, “Wildfire monitoring using a

mixed air-ground mobile network”, IEEE Pervasive

Computing, vol. 9, no. 4, pp. 24-32, 2010.

[4] A. Cho, J. Kim, S. Lee and C. Kee, “Wind estimation

and airspeed calibration using a UAV with a single-

antenna GPS receiver and pitot tube”, IEEE Trans on
Aerospace and Electronic Systems, vol. 47, no. 1, pp. 109-

117, 2011.

[5] I. Maza, F. Caballero, J. Capitán, J.R. Martínez-De-

Dios and A. Ollero, “Experimental results in multi-UAV

coordination for disaster management and civil security

applications”, Journal of Intelligent and Robotics Systems,

vol. 61, no. 1-4, pp. 563-585, 2011.

[6] H. Xiang and L. Tian, “Development of a low-cost

agricultural remote sensing system based on an

autonomous unmanned aerial vehicle”, Biosystems
Engineering, vol. 108, no. 2, pp. 174-190, 2011.

 [7] E. Semsch, M. Jakob, D. Pavlicek and M. Pechoucek,

“Autonomous UAV Surveillance in Complex Urban

Environments”, 2009 IEEE/WIC/ACM International Joint

Conference on Web Intelligence and Intelligent Agent
Technology (Volume 02), Milan, Italy, 2009, pp. 82-85.

[8] H. Péter, D. László and V.P. János, “Civilian use of

drones in the life of mining rescue helicopters”, 2016
IEEE 17th International Symposium on Computational

Intelligence and Informatics (CINTI), Budapest, Hungary,

2016, pp. 000299-000302.

[9] H. Alshareef and D. Grigoras, “Multi-service cloud of

drones for multi-purpose applications”, 16th International
Symposium on Parallel and Distributed Computing

(ISPDC), Innsbruck, Austria, 2017, pp. 165-174.

[10] L. Baumgärtner et al., “Emergency communication in

challenged environments via unmanned ground and aerial

vehicles”, 2017 IEEE Global Humanitarian Technology
Conference (GHTC), San Jose, CA, 2017, pp. 1-9.

[11] M. Deruyck, J. Wyckmans, L. Martens and W.

Joseph, “Emergency ad-hoc networks by using drone

mounted base stations for a disaster scenario”, 2016 IEEE

12th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob),

New York, NY, 2016, pp. 1-7.

[12] I. Bekmezci, O.K. Sahingoz and S. Temel, “Flying

ad-hoc networks (FANETs): a survey”, Ad Hoc Networks,

vol. 11, no. 3, pp. 1254-1270, 2013.

[13] I. Bekmezci, I. Sen and E. Erkalkan, “Flying ad hoc

networks (FANET) test bed implementation”, 2015 7th

International Conference on Recent Advances in Space
Technologies (RAST), Istanbul, Turkey, 2015, pp. 665-

668.

[14] A. Savita, P. Sharma and S.K. Tiwari, “Cloud based

decentralized approach for FANET”, 2016 International

Conference on Signal Processing, Communication, Power
and Embedded System (SCOPES), Paralakhemundi, India,

2016, pp. 2017-2020.

[15] D.Y. Kim and J.W. Lee, “Topology construction for

flying ad hoc networks (FANETs)”, 2017 International

Conference on Information and Communication

Technology Convergence (ICTC), Jeju, South Korea,

2017, pp. 153-157.

[16] I. Zhuravska, S. Borovlyova, M. Kostyria and O.

Koretska, “Efficiency improvement of using unmanned

aerial vehicles by distribution of tasks between the cores

of the computing processor”, Technology Audit and
Production Reserves, vol. 6, no. 2(38), pp. 4-13, 2017.

[17] S.J. Nam, Y.G. Kim and S.W. Chung, “An energy-

efficient task scheduler for mobile web browsing”, 2017

IEEE International Conference on Consumer Electronics

(ICCE), Las Vegas, NV, 2017, pp. 188-189.

[18] Portable charger [Online]. Available at:

https://www.cellularline.com (Accessed: 27 Oct 2018).

