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Abstract—Drones are now being widely used in 

different civilian applications, such as delivering 

shipments to consumers, as proposed by Amazon, and 

providing internet access to users, as offered by Facebook 

and Google. Drones can also contribute in emergencies by 

helping to find victims in places that are not reachable by 

rescuers, as well as assisting emergency centers to better 

manage a reported emergency. However, drones have a 

short flying time due to limited battery life. Therefore, a 

reliable strategy that minimizes energy consumption and 

uses collaborative working is required in order to 

increase drones’ ability to operate for longer periods in 

emergency situations. This paper presents an adaptive 

task scheduler that allows tasks to be shared/transferred 

among the drones in a cloud of drones, in order to extend 

the operational time, achieve faster task execution and, at 

the same time, reduce the usage of each drone’s resources. 

The ultimate result is an extension of battery life that 

leads to longer flying and service time for individual 

drones. 

Keywords—Cloud of drones; emergency; battery power; 

task scheduling; services 

I.  INTRODUCTION 

There is a high level of interest in drones and their 

usage in civilian applications [1-7]. One of the most 

important features of using drones is their ability to 

reach places faster than humans. Furthermore, drones 

can reach locations that are sometimes difficult for 

humans to access and are less costly than, for example, 

helicopters [8]. Access difficulties could be due to the 

nature of these places or the risk associated with being 

there, as is the case with many post-disaster locations. 

With camera and other sensor capabilities, drones can 

survey the locations being monitored. One example 

could be managing rescue and recovery operations after 

catastrophic events (e.g., floods, fires, and 

earthquakes). Another strong feature of drones is their 

ability to provide means of communication using the 

drones’ resources. For example, drones can act as 

communication relays to exchange data, as well as 

providing the ability to access the internet by acting as 

an access point or base station to the area over which 

they are flying.  

However, drones face a number of challenges, 

including limited battery life and communication 

capabilities. Drones execute a small set of tasks (pre-

loaded) that are known in terms of the resources they 

consume. For example, for video streaming, we can 

determine the energy consumed/minute or hour. The 

same applies to the Voice over Internet Protocol (VoIP). 

In practice, a number of solutions have been proposed 

to reduce these limitations and help save energy, which 

would lead to longer flying time. For instance, short-

range line-of-sight (LoS) communication links can 

reduce the demand on drones’ resources, particularly 

energy.  

Building a cloud of drones was considered in a 

previous paper [9]. Drones can connect with each other 

to create a cloud of drones that can share information 

and, more importantly, resources. Since drones have a 

limited battery life, which renders them incapable of 

executing long tasks or even high priority tasks that 

need to be executed immediately, the idea is to use the 

benefits of a cloud of drones to share task executions 

among multiple drones and avoid intensive 

consumption of one drone’s resources. The cost is, 

therefore, shared. 

In this paper, we propose an adaptive task scheduler 

for multiple drones as part of the cloud of drones’ 

model. Based on the energy level of each drone and the 

task priorities, the scheduler decides the order of 

execution and task sharing. This paper presents this 

scheduler in detail and evaluates its effectiveness. 

The rest of the paper is organized as follows. Section 

II discusses existing systems and related work. Section 

III provides a list of tasks considered in our proposal 

and section IV presents the design of the adaptive task 

scheduler. Section V presents the experimental set-up 

and details the evaluation of the results. Section VI 

provides conclusions and plans for future work. 

II. RELATED WORK 

Both unmanned ground vehicles (UGVs) and 

unmanned aerial vehicles (UAVs) can be considered to 

support rescue operations in emergencies. Loss of 

communication is one of the most critical issues that can 

limit their usage. In [10], an interesting approach is 



discussed that mainly aims at allowing the dynamic 

setting of communications between UGVs and UAVs 

with humans in the location of an emergency. Authors 

use decentralized (i.e. ad-hoc) networks, since it can be 

assumed that the current infrastructure is down. A 

mobile cloud is used in this paper to create a cloud of 

UGVs and UAVs. The store-and-forward routing 

protocol is modified to allow message routing without 

buffering packets. The authors rely on a well-known 

project, called Serval mesh, which provides a 

messaging protocol for disasters.  

An interesting use of drones in emergencies is 

brought by [11], which provides a means of 

communication in the case of a large-scale disaster. The 

idea is to implement LTE femtocell base stations on 

drones to offer an alternative network infrastructure if 

the current one is affected. Authors designed an 

algorithm to help identify the number of drones 

necessary to cover an affected area, as well as the 

optimal locations for the flying drones. 

A flying ad-hoc network (FANET) [12] protocol has 

been suggested due to some of the limitations of using 

multiple drones in an application, such as the need for 

expensive and complicated hardware to allow drones to 

communicate with ground base stations or a satellite. 

The reliability of these communications/links and the 

high possibility of disconnections are other limitations 

to take into consideration. According to the paper, a 

FANET is viewed as a modified form of MANET and 

vehicular ad-hoc network (VANET) that can be used to 

cope/deal with drones’ special requirements, including 

their high degree of mobility, frequent changes in 

topology, a much longer average distance between 

nodes, different data delivery strategies from different 

types of sensors, etc. The paper includes interesting 

investigations of drones’ networked issues. There are 

also some recent implementations of FANETs, such as 

in [13 - 15]. 

The idea of scheduling tasks in drones is not new. 

Many researchers have tried to minimize the impact of 

executing tasks to save energy. However, most of this 

research focuses on scheduling tasks and CPU usage, 

such as in [16, 17]. 

To summarize, comparing our work with the 

previously mentioned papers, we find that most of the 

research deals with CPU management aspects and how 

power consumption can be reduced based on CPU 

usage. Some papers consider classifying tasks and 

running each type of task in a different CPU core to 

achieve more efficient management of the power 

consumption. This research is concerned with sharing 

tasks among drones in a way that draws less from the 

drones’ resources, which will lead to less power 

consumption when the task load is divided among 

multiple drones. Other papers collect basic information, 

such as task execution time and the speed of each task 

worker (a VM in some papers or the CPU core in 

others), which we do not believe is sufficient to decide 

which task should be executed by which worker. Here, 

more information is collected about each task, as well 

as extra data about each drone, to determine which 

drone should execute a task, and assess the ability to run 

a task among a number of drones at the same time. 

III. EXAMPLES OF TASKS 

Tasks can be anything that a drone can run and a user 

needs in the case of an emergency. However, for the 

purpose of this paper, two types of task are selected, as 

follows. 

1) Video streaming (live view)  

A task could be flying a drone to a particular place, 

starting a real-time video recording, and streaming it to 

the cloud to be watched in the emergency management 

centre or by one of the rescue teams near the emergency 

location. This is a demanding task because it requires a 

continuous video feed to a local user or remote centre. 

Multiple drones can be involved in this task to provide 

wide coverage of an emergency location, as well as for 

handing over from one drone to another if/when needed. 

One important point is that this is a built-in task of 

commercial drones, controlled remotely by the user. 

However, the scheduler can signal to the drone to 

start/stop this. The task will start if there is no higher 

priority task and will stop if a new task of higher priority 

is ready.  

2) VoIP 

One of the most important services provided in the 

case of an emergency is voice communication. 

Rescuers can talk to each other as well as contact the 

emergency management office to request help or 

special equipment, for example. Hence, the task given 

to drones is to act as communication relays. Using the 

proposed scheduler, the service can still operate even if 

the drone that runs this service leaves or becomes 

unavailable due to low battery, by handing the task over 

to a different drone that has the capability to continue 

executing the task and ensure the service is provided to 

the users. 
 

IV. ADAPTIVE TASK SCHEDULER 

The concept behind the adaptive task scheduler is to 

share tasks among multiple drones. Two possibilities 

are considered: (i) using a centralized solution with the 

benefits of all the data being collected in one place and 

consistent decisions based on these data (as in Figure 



1); and (ii) a distributed approach, in which drones 

directly negotiate with their neighbours with regard to 

how they share/split a task (see Figure 2).  

A. Centralized approach 

 
Figure 1 Centralized approach to allocating tasks 

 

The centralized management component fulfils two 

main roles: 

 

1) Collects and stores information from all drones in 

the cloud of drones. 

2) Distributes or allocates tasks to one drone or 

multiple drones based on several factors, two of which 

are more important than the others: 

 The status of the selected drone(s). 

 The task characteristics, including task priority 

and estimated energy consumption/time unit 

(secs). 

Two methods are used to collect the status of each 

drone: push, whereby each drone sends current 

information periodically, or once a change occurs; for 

example, if it flies to another location or its battery level 

is low; and pull, for which a request is sent to all 

connected drones asking for their current status, 

including location, battery level, and availability. This 

request is sent before a new task or set of tasks is 

allocated for execution. 

The benefit of the push method is that knowledge 

about all the connected drones is already acquired. As a 

result, once a new task is dispatched, it will be directly 

allocated/scheduled to the most suitable drone(s). 

However, using this method will have a negative impact 

on the drones’ resources (especially battery life). With 

the second method (pull), drones are contacted only if a 

new task arrives and a decision needs to be taken 

regarding which drone(s) will execute the task. This 

method requires less extensive communication. As a 

result, it will have a positive impact on the drones’ 

resources (e.g., battery life). 

Once the drones’ status has been collected, they will 

be categorized in different groups to decide which 

drone(s) is suitable for which task. For example, drones 

that have a full (or almost full) battery can be used for 

long tasks, whereas drones that are close to each other 

can share their resources to execute a heavy 

computational or resource-intensive task(s). The 

following are the categories in which each drone can be 

included:  

 Drones that can handle heavy computational or 

resource-intensive tasks, such as video 

streaming. 

 Drones that can handle short and/or small tasks, 

such as accessing an interactive map or 

redirecting a help request to the emergency 

centre. 

B. Distributed approach 

 
Figure 2 Drones negotiating task sharing inside a cloud 

of drones 
As shown in Figure 2, a cloud of drones can be 

created that other drones could join and ask a neighbour 

to share a task. These drones can, therefore, cooperate 

locally inside the cloud of drones to execute the task. 

Two methods are offered in this research: 

 
Figure 3 Two drones running/sharing the same task 

 

 Direct communication: a drone can look for 

another drone to join and share a running task. For 

example, a drone might run a task and need another 

drone to share the task to save resources or provide 

wider coverage. In this case, a direct request is sent 

to a neighbour in the cloud of drones to share the 

task. Figure 3 presents a graphical explanation of 

how one drone can connect directly to another one 

to share the execution of a task, such as providing a 

live view of a certain location. However, an issue 



might arise here because of the sharing aspect, such 

as overlapping in the visual area (e.g. two drones 

sending a video of the same location). Thus, the 

drone that shared the request should take 

responsibility for avoiding this situation by 

changing location, for example, or providing a 

location that needs to be covered by the invited 

drone. 

 Dedicated cluster: a drone might run a high 

priority task, such as VoIP communication for team 

members on the ground and look for other drones 

to share the task. The drones create a cluster to share 

the task, then invite other drones in the same area to 

join the cluster. Figure 4 shows a drone providing a 

VoIP service to ground users then starting to create 

a cluster of drones to share the execution of the 

VoIP service to the end users. 
 

 

 

 

 

 

 

 

 

 

C. Collaboration protocol 

Before sharing a task, the drones need to reach 

agreement by exchanging messages. Therefore, a 

simple messaging protocol is proposed. Each drone 

should have an IP address or ID so that the drones are 

able to locate each other. Messages include sending a 

sharing request and replying to that request. Another 

type of message can be notifying other drones about an 

action that is about to happen, such as a drone leaving 

to charge the battery. Table 1 shows these types of 

messages with a description of each. 

Table 1 Examples of messages exchanged in the 

collaboration protocol 

Message Sent by Description 

task_sharing 
Requester 

drone 

A drone that requests task 

sharing sends a request to 

one of its neighbours 

asking to share the 

execution of a task. 

accept/reject 
Selected 

drone 

A reply is returned by the 

drone addressed. 

Depending on the status, 

the reply will accept or 

reject the task-sharing 

request. 

ACK 
Both 

drones 

Acknowledgement (ACK) 

of the request. 

Synch 
Both 

drones 

The two drones have to 

share the progress of the 

task and synchronize the 

execution of the running 

task. 

share data 
Requester 

drone 

If the task requires data 

during its execution, the 

requester drone attaches all 

the necessary data to the 

message. 

leaving 
Both 

drones 

If a drone detects a low 

battery and is about to 

leave, a message is 

broadcast to all connected 

drones. 

D. Tasks handover framework 

As part of the new scheduler, drones can transfer the 

execution of a running task to another drone that is part 

of the same cloud of drones. This migration of tasks 

might be needed due to some issue in the drone running 

the task, such as a low battery level or the drone needing 

to run a higher priority task that has just been allocated. 

Simply put, a drone that wishes to transfer the execution 

a task can send a request to all reachable neighbours to 

plan the task execution transfer. The task’s description 

and progress are attached to the request to ensure that 

the task runs smoothly once the transfer is made. Once 

a reply is received from a neighbour to handle this task, 

the execution of a task transfer is started.  

To avoid wasting resources, a timer is used here to 

wait for a reply from reachable neighbours. If the timer 

is due and no reply has been received, another attempt 

is allowed. However, if the timer for the second attempt 

is due and no reply is received, the task will be 

suspended until the drone is able to resume it (e.g., 

having recharged its battery and returned to operating 

normally).  

Figure 5 illustrates the steps needed for one drone to 

transfer a task to another one. Figure 6 shows the type 

of messages that will be exchanged between a drone 

that is executing a task and the drone that will take over 

the task in order to execute it. In other words, one drone 

sends a request after attaching all the information 

required and the receiver drone sends an 

acknowledgement (ACK) message if it agrees to take 

over the task. 

 
Figure 4 VoIP task run by one or a cluster of drones  

 

 



 
Figure 5 Steps needed for a drone to transfer the 

execution of a running task to another drone in the same 

cloud of drones 

 
Figure 6 Messages exchanged between a drone that 

wants to hand over a running task and the drone 

selected to take over the task 

E. Task scheduler 

Each drone runs the task scheduler which decides, 

based on the battery level and the priority of the task, to 

stop other tasks. The scheduler informs other drones of 

this decision, to split the task with other drones, 

engaging in communication using the protocol 

mentioned above, or to call for another drone. In 

practice, we are suggesting a new drone task model, in 

which the set of tasks is controlled both locally and 

remotely. There are three main scheduler scenarios 

once a new task is received. 

1) The drone is idle 

The scheduler accepts the task if capable of running 

it (i.e., it has enough battery). However, if it is not able 

to run the incoming task due to limited resources, a 

clustering approach can be used.  

2) The drone is busy running a task 

The scheduler will check the priority of the newly 

incoming task with the current running task. 

 If the new task has higher priority, the drone 

stops the current task and starts immediately 

the new one. 

 If the new task has lower priority, the drone 

queues the new task.  

3) The drone is engaged in a cluster to share the 

execution of a task 

The scheduler will check the priority of the incoming 

task with that of the task executed by the cluster. 

 If the new task has higher priority, the drone 

stops the current execution and notifies the 

members of the cluster of this action. It then 

starts executing the new task. 

 However, if the new task has lower priority, the 

drone schedules the new task for after the 

current one has finished. 

F. Data security 

This paper does not deal with security but focuses 

instead on scheduling tasks executed by drones and how 

these can be shared or even transferred from one drone 

to another. However, some existing security protocols 

could fit easily here to protect data, such as using secure 

channels in communications between drones inside the 

cloud of drones and with end users. Moreover, a light 

encryption mechanism can be used if it can be verified 

that there will be no negative impact on the drones’ 

resources. 

V. EVALUATION AND EXPERIMENTAL RESULTS 

This section presents detailed information about the 

cost of the previously mentioned tasks (video and VoIP) 

in terms of power for the purpose of helping drones 

decide either to reject or accept a task (or share a task) 

based on how much the task received will consume or 

how many resources it might need if using a distributed 

approach. The idea of transferring the execution of a 

task from one drone to another to determine the impact 

of this in terms of both drones’ batteries is also tested. 

Since it is difficult to modify an existing drone’s 

hardware (i.e. control unit), we used several Raspberry 

Pi to conduct our experiments. Each Raspberry Pi acts 

as a drone control unit. In general, there is no direct way 

to profile/report the power consumption or battery 

usage of a Pi. Some developers use external equipment 

(i.e. a power detector) and others calculate the cost from 

the CPU usage. For the purpose of this paper, we 

collected the power usage using a 10000 mAh (36 Wh) 

Cellularline portable power supply [18] that has a built-

in screen to show the amount of power as a percentage. 

The following subsections present the experimental 

results of the two proposed tasks as well as a scenario 

for transferring tasks execution between drones. 

 

1) Video task results 

After ensuring the power bank was fully charged 

(100%), we plugged the Pi into the power bank. We 

started the video using a webcam that is connected to 

 

 



the Pi via a USB port. Once the video previewed on the 

screen, the change in the portable power bank was 

recorded. We found that running a video stream from 

the webcam for 30 minutes consumed 4% of the battery 

capacity. 

Since the portable power has 10,000 milliampere 

hours (mAh) of battery capacity that means running the 

video task on the Pi will consume 400 mAh, although 

this amount of power is also shared with other functions 

on the Pi, such as booting the Pi and other operating 

system (OS)-related tasks (i.e. communication and 

control). Therefore, we have to exclude these services 

and tasks from this rate.  

To obtain the amount of battery consumed by the Pi 

without the video task, we plugged the Pi into the same 

power bank after we ensured it was fully charged 

(100%). We ran the Pi in idle mode for 30 minutes (i.e. 

no video task running) to determine the amount of 

energy consumed. We found that running the Pi in idle 

mode for 30 minutes consumed around 2% of the 

portable battery, therefore the actual consumption 

which was 200 mAh. 

We used a 5v portable battery (1 watt-hour or Wh). 

However, the v-value in real drones, such as the 

Phantom 4, is 15v, which would consume 3 Wh. 

To summarize, running a video task for 30 minutes 

will consume around 200 mAh, which is almost the 

same as the power needed to run a Pi in idle mode for 

30 minutes. This type of task needs 3 Wh to run on real 

drones, such as the DJI Phantom. 

We can do some calculations based on the 

specifications for drones provided in the marketing 

information. For instance, the Phantom 4 comes with a 

5,350 mAh battery, which allows up to 30 minutes of 

flying in calm conditions at a constant speed. This is 

around half the capacity of the portable power bank we 

used in our experiment. However, running the video 

task will share this battery with the flying task, which 

means the total flying time will be reduced. If we 

consider the results collected from running the video 

task (200 mAh) and subtract these from the battery 

capacity of a real drone, it will be affected by around 3-

4%, which is not that much. 

2) VoIP task results 

The Pi was running a VoIP server and connected to a 

fully charged power bank (100%). Two Android-based 

mobile devices were used in this experiment. After 

registering the two Android devices as VoIP clients on 

the VoIP server that runs on the Pi, a call was 

established. We kept the line active for 30 minutes 

between the two clients. To ensure a voice was 

transferred through the communication link, we played 

a piece of music during the call. 

We found that running an active VoIP call between 

two mobile devices managed by a Pi consumed around 

7% of the battery capacity. As mentioned, the portable 

power has 10,000 milliampere hours (mAh) of battery 

capacity, which means 700 mAh. 

From the previous section, the idle cost of running a 

Pi without executing a task is 200 mAh. Therefore, the 

actual cost of running a VoIP service between two 

clients through a Pi is 500 mAh. Since we used a 5v 

portable battery, the energy consumed is 2.5 Wh. 

In summary, running a VoIP task to serve two end 

users for 30 minutes will consume around 500 mAh, 

which is around 2.5 times the power needed to run a Pi 

in idle mode for 30 minutes or running a video task. 

Based on the market specification of a well-known 

drone (Phantom 4), running a VoIP task could consume 

around 7.5 Wh (with a v-value of 15). To ensure the 

reliability of this task configuration, we managed to 

maintain a call between two registered Android devices 

for up to 1 hour without issues. 

B. Tasks handover results 

This section tests the idea of transferring the 

execution of a running task from one drone to another. 

1) Experiment scenario  

We assumed the following scenario: a drone is 

running two tasks at the same time (video and VoIP) 

and both are running normally. However, following a 

trigger (e.g., low battery level), one of these tasks is 

moved to another drone that is within reach and part of 

the same cloud of drones. Technically, the moved task 

is terminated in the first drone and started in the second 

drone. 

2) Experiment set-up  

For testing, two Raspberry Pis were used. They: 

- were connected to the same network and each 

was assigned an IP address; 

- were running a continuous communication 

channel (TCP socket) to listen to incoming 

messages; 

- had VoIP server capability; 

- were equipped with a camera, and 

- were connected to a portable power bank that 

was fully charged (100%).  

The first Pi (we called it Pi_A) runs a VoIP server 

(serving two clients) and in the same time running a 

video task. The second Pi (Pi_B) is idle and within 

reach of Pi_A. We defined the trigger here as a 30-

minute timer. Once the timer is due, the execution of 



video task is transferred from Pi_A to Pi_B, after 

terminating the task in Pi_A. We reset the timer (30 

minutes) to assess the impact of this transfer on both Pis 

in terms of battery usage. 
 

3) Experiment results  

Running both tasks (VoIP and video) on Pi_A for 30 

minutes consumed 9% of the 10,000 mAh power bank 

(900 mAh). After the 30-minute timer was due, the 

video task was transferred to Pi_B, which consumed 6% 

of the 10,000 mAh power bank (600 mAh). We 

observed the change in power consumption after the 

second 30-minute timer was due and found that the 

consumption of Pi_B increased by 1% by 1% of the 

10,000 mAh power bank (100 mAh) compared with the 

consumption before receiving and running the 

transferred task. The battery consumption of Pi_A 

decreased by 2% of the 10,000 mAh power bank (200 

mAh) after terminating and moving one of the running 

tasks. Figures 7 and 8 present these results graphically. 

 

 
Figure 7 Bar chart showing the impact of using the proposed 

idea on the battery level of two Pis 
 

 
Figure 8 Graph showing the readings for both power banks 

used during the experiment 

1) Experiment summary  

The proposed task scheduler can improve drones’ 

resources by reducing battery consumption once a task 

is shared or handed over to other drones. 

2) Experiment limitations  

One of the most noticeable limitations is associated 

with the power bank used in the set-up. The bank has a 

large capacity, which makes it difficult to read the 

change in running tasks, especially if the task is of short 

duration. We decided to examine tasks that would run 

for 30 minutes because most drones operate for 20-30 

minutes. We were able to establish that the total 

percentage indicated on the power bank screen 

decreased faster when running two tasks compared with 

undertaking one task. 

In addition, moving from one percentage to the next 

needs a Pi to consume 100 mAh to show the new 

percentage on the power bank screen, which means that 

even consuming 99 mAh is still considered as the same 

percentage. This could be acceptable since we ran these 

experiments as a proof of concept to show there is a 

positive impact of using the proposed task scheduler.  

However, in future work, we need to investigate 

another way of reducing the power consumption. For 

instance, using a smaller power bank with less capacity 

so we can observe the change in percentage more 

precisely would be recommended. Alternatively, we 

could run tasks of longer duration (e.g., 1 hour or more). 

VI. CONCLUSION AND FUTURE WORK 

Drones are becoming increasingly useful in 

emergencies, as they have unique features that can help 

in such situations.  

However, drones face a number of issues that make 

their use in emergencies difficult. The main issue is 

battery capacity, which mainly affects flying duration. 

Some drones cannot fly continuously for more than a 

few minutes (7-10) and some less than that. Even the 

more expensive drones cannot fly for more than 30 

minutes. Therefore, extending battery capacity is 

essential. A larger battery would affect the ability to fly. 

Therefore, the direction should lie in minimizing the 

usage of a drone’s battery. This could happen by 

reducing power consumption. 

In this paper, we proposed an adaptive task scheduler 

that can run on a drone and make decisions that will 

help reduce power consumption. This scheduler can 

force running tasks to stop or to terminate if another 

task with higher priority needs to be executed. 

Furthermore, this scheduler can help one drone create a 

cluster of drones inside a cloud of drones. The aim is to 

engage multiple drones in executing one task that is 

resource intensive. Similarly, cloud computing 

capability is introduced here as a centralized solution to 

assign/share tasks between drones in a cloud of drones. 

This means that task management will be shifted to the 

cloud, which will have a positive impact on drones’ 

resources, especially battery life.  

We ran a number of experiments to ensure our 

proposed task scheduler is valid and able to achieve its 

goals. For instance, we executed video and VoIP tasks 

to determine how much these would consume and to 

discuss the impact of these tasks on real drones in terms 



of power. We can state that running a video task will 

consume the same amount of battery needed to run a 

drone with basic functions. In addition, it takes around 

double this amount to run a VoIP communication 

between two clients for 30 minutes.  

The idea of transferring the execution of a running 

task from one drone to another was also tested. A drone 

can reduce battery usage by moving a running task to 

another drone inside a cloud of drones.  

However, one critical task that drones run and that 

consumes most of the battery’s capacity is flying. 

Therefore, we need to establish how much energy the 

flying task will consume and compare it with the 

available battery level/capacity. Since the goal is to 

increase the flying time, or at least not reduce it, the 

proposed scheduler could help by sharing tasks among 

multiple drones. For example, two drones could run a 

task whereby each drone can perform part of the task 

but consume less of the battery power normally 

required for the task. 

As future work, we are planning to extend the 

experiments by testing the centralized approach as well 

as adding more tasks, such as proposing a new drone 

model for emergency management. Furthermore, we 

will consider the use of energy harvesting systems to 

deal with the limited battery life of drones by finding 

another source of power that can feed drones and 

improve their battery level. 
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