SUPPLEMENTARY MATERIAL

METHODS
Subject recruitments
Patients were screened by telephone and if eligible for study participation, a measurement visit was arranged in the Department of Medicine, Cork University Hospital. All subjects were recruited through referral and stratified post screening. This also allowed for the minimisation of differences in environmental confounding factors between the normal bone density group and the osteoporosis and osteopenia groups compared to if a control group would have been recruited separately through a different methodology. 

Bone densitometry assessment
Quality control analysis was performed on the iDXA machine before use on each measurement day. T-score threshold was used to define 3 groups based on their BMD. 

Clinical and demographical information
A number of clinical measurements were taken including weight, height, blood pressure, and heart rate using standardized method. Serum blood samples were taken and concentrations of 25-hydroxyvitamin D (25(OH)D) were measured at the Cork Centre for Vitamin D and Nutrition Research using a LC-MS/MS method as described by Cashman et al. (2013)[1]. Muscle mass was assessed by standard tape measurement of mid-calf and mid-arm circumferences and muscle strength assessed by handheld dynamometer (Jamar, Illinois, USA). A full medical, surgical, and medications history was recorded from each patient including a previous fracture history. Co-morbidities were quantified using the Charlson co-morbidity index[2]. Functional status was assessed using the Barthel index[3] and mini-mental state examination (MMSE)[4]. Patients’ physical activity levels were estimated using the Godin-Shepard leisure time physical activity questionnaire[5]. 
Dietary data collection
Dietary habits were assessed by means of a 146-item food frequency questionnaire (FFQ). Participants were asked to record their usual pattern of dietary intake over the previous 3 months. The FFQ was an adapted version of the questionnaire used in the UK arm of the European Prospective Investigation into Cancer (EPIC) study[6], which was based on the original Willet FFQ[7]. Quality of nutritional intake was assessed using the mini-nutritional assessment (MNA)[8]. Diet quality was represented by the Healthy Food Diversity (HFD) index which was determined from the food frequency of the FFQ dataset based on the publication by Drescher et al. (2007)[9].

Molecular methods and bioinformatics
The faecal samples obtained from the participants were stored at -80 C until processed. Mock communities were not utilized as positive controls in the current study. All samples were processed with the same method and sequenced in a single run. Extraction of genomic DNA from the faecal samples stored in the storage tube was carried out based on modified Yu and Morrison protocol[10]. The homogenising step was reduced to 60 seconds followed by cooling on ice for 30-60 seconds. The steps were repeated twice more. All other subsequent steps remained same as described in the original protocol. Nuclease free water was used as a negative control which was processed along with other samples for PCR. As no amplicons were observed in the electrophoresis gel after the amplification step, negative samples were not sent for sequencing. Because faecal samples contain considerably greater microbial biomass than the negative controls, possible reagent contaminant DNA cannot easily outcompete with the amplification template in a faecal DNA preparation [11]. It has also been shown that the extraction protocol has a much greater impact on faecal microbiota composition than reagent choices and read counts from negative controls are negligible [12]. The V3-V4 region of the 16S ribosomal RNA (rRNA) gene was amplified and sequenced using the following primers:
16S Amplicon PCR Forward Primer (S-D-Bact-0341-b-S-17) = 5'
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG
16S Amplicon PCR Reverse Primer (S-D-Bact-0785-a-A-21) = 5'
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC[13]
The 2 x 250 paired reads obtained were merged using flash (v1.2.8)[14] using the following parameters: The average read length is 250. The expected length of merged reads is 460. The standard deviation of length of merged reads is 46. All other parameters were set to default.
The quality filtering of reads and removal of reverse primers were carried out using the QIIME (v 1.9.1)[15] pipeline. The split_libraries_fastq.py was set to filter with minimum average quality score set to 20 and truncate_reverse_primer.py with default settings was used to trim. All other settings were set to default. The OTU table was generated as follows using USEARCH (v8.1)[16]: The unique sequences of length 360-460 were filtered and sorted by length. The sequences were then clustered at 97% (cluster_otus) and chimeras were removed using (uchime_ref) the ChimeraSlayer reference database (microbiomeutil-r20110519)[17] to generate representative OTUs. All the reads were mapped against the representative OTUs (usearch_global) and the mapped reads were tabulated in R (v3.4.0)[18] to obtain the OTU table. All reported taxa were classified with at least 80% confidence at all levels. Multiple sequence alignment of the representative OTUs were carried out using PyNAST[19], and the phylogenetic tree was constructed using FastTree[20]. Calculation of alpha diversity and beta diversity measures were carried out using R and QIIME as follows: using the vegan library [21](v2.4.3), a rarefied OTU table was computed by rarefying to the minimum sequencing depth (10613 reads) among the samples. Beta diversity measures (Bray-Curtis) and alpha diversity indexes (chao1, number of unique OTUs (observed richness) and Shannon) were calculated using the rarefied table using the same library. Using the rarefied OTU table and the phylogenetic tree, weighted and unweighted UniFrac distance measure and phylogenetic diversity index were obtained in QIIME.

Analysis of meta-data
Missing values in FFQ dataset were replaced by the median value of that particular food item. Violin plots and stacked bar plots were created using ggplot2(v2.2.1)[22], RColorBrewer(v1.1.2)[23] and gridExtra(v2.2.1)[24] to visualise significant meta-data. 

Analysis of microbiota data
Bar plots of relative abundance of taxa at phylum level and the top 20 genera based on average abundance across the whole dataset were generated. 
To explore the covariance between the FFQ dataset and the microbiota dataset, co-inertia analysis using the ade4 library (v1.7.6)[25], was carried out on the Principle Component Analysis (PCA) of log to the base 10 transformed values of the FFQ dataset and microbiota dataset. The first five PCA axes of the microbiota and FFQ dataset were considered for co-inertia analysis. The minimum non-zero value (1e-05) was added to the matrix to remove all zeros before log transformation. Significance of the analysis was determined by Monte-Carlo test with 1000 permutations.
PCoA (Principal Coordinates Analysis) was done for visualising the global microbiota profiles in general as explained by any variable and distance dbRDA (distance based redundancy analysis) was carried out to explore the global profile as explained by the BMD measures. Both PCoA and dbRDA was done using ade4 library on Bray-Curtis distance. Significance of dbRDA was determined by anova.
Body Mass Index (BMI) was categorised into underweight (≤18), normal (>18 and <25), overweight (≥25 and <30) and obese (≥30) for all further analyses.
DESeq2 (v1.16.1)[26] was used to identify differentially abundant taxa from the microbiota composition table. For the OTU level dataset, DESeq2 analysis was carried out with only group variable. Log2 fold difference of the significant genera based on pairwise comparisons were shown as bar plots created using ggplot2. By default, DESeq2 generates adjusted p-values for only the two groups analysed. As a 3-way comparison was carried out, all of the DESeq2 p-values were adjusted separately using Benjamini-Hochberg method and only those taxa were selected that passed both DESeq2 adjusted p-values and independently adjusted values.

Identification of meta-data variables associated with beta-diversity
All nominally significant meta-data were analysed to identify their effect size. The effect size was evaluated individually to identify their individual contribution in explaining variance in the global microbiota profiles. Bar-plots and donut plots were made showing the individual effect size, the combined effect size based on pre-defined groups and the overall cumulative effect size. For reproducibility of simulations and permutations, set.seed() function in R was set to 100 for all cases.

Analysis of confounding variables
Analysis of confounding variables was carried out using a univariate general linear mixed model (GLMM) regression with a negative binomial distribution from the library glmmADMB(v0.9.35)[27]. Given that R-squared cannot be exactly calculated for mixed models easily. Various methods have been designed recently to approximately obtain a similar value. A pseudo R-squared value is determined for the general linear mixed models in this study using the first formula described by Ben Bolker (https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#bibliography). All R-squared/effect size values reported are proportional.

Analysis of association of taxa after removal of the effect of BMI, medications and vitamin D levels on BMD measures
A multi-step analysis was carried out to remove the effect of BMI, medications and vitamin D on the BMD measures. At first, we investigated the effect of BMI on the BMD measures by linear regression of BMD to BMI values and determined the associated coefficients and significance using summary. To remove the effect of BMI, medications and vitamin D levels on BMD measures, we generated two multiple regression model one for AP spine BMD and another for Neck of Femur BMD scores. In both these models, the effect of medications (Calcium, Bisphosphonate and Denosumab) and vitamin D levels were investigated. BMI was included in these multiple regression models if it showed significant association with BMD measures in the linear regressions. The residuals were then calculated by removing the effect of the medications investigated and vitamin D levels. Given that the group variable is necessary to show that effect of the medications on BMD measures in the disease groups, the residuals obtained now also had the group effect removed. This effect was added back to the residuals obtained to restore the association with groups and BMD measures excluding BMI, medications and vitamin D levels. To validate this, the values obtained after restoring the effect was modelled against BMI, medications, vitamin D levels and the BMD measures in individual linear regression models and compared against the variations observed between BMD measures to groups. This can be described as follows
Model 1 BMD ~ BMI (If BMI is significant, it is added to the next multiple regression model)
Model 2 BMD ~ BMI + Groups + medication 1 + medication 2 + medication n + vitamin D levels (multiple regression model)
Model 3 BMD ~ Groups (Difference of residuals to BMD from this model is added to residuals of model 2 to restore the effect of groups lost in model 2)
Model 4 Modified residuals ~ Groups (The associated coefficients from model 4 should be similar to model 3)
Model 5 Modified residuals ~ BMD (this results should be near exact fit (coefficient closer to one))
Model 6 Modified residuals ~ BMI/medications/vitamin D levels + Groups (All associations should be with model 4 only and no significance with the other confounders)
Once verified, these residuals without the effect of BMI, medications and vitamin D levels were investigated using univariate GLMMs against the significant taxa identified to determine whether the association of taxa to the disease status were retained or not after removing the effect of BMI, medications and vitamin D levels. 

RESULTS
Descriptive statistics of the study population
Across all groups, 83% of the participants were women with a mean age of 64.64±5.5 and mean age of male is 63.77±5.76. The BMI of 1% of the participants were underweight while 41% of them were within the normal range, 36% of the participants were overweight and 22% of them were in the obese category. Analysis of the food frequency questionnaire did not reveal any food items to be significantly differentially consumed across the groups. The percentage of missing values in the FFQ dataset was 0.6%. There was no significant difference in diet quality across the groups as defined the HFD metric (Supplementary table S2, available at Rheumatology online). Diet is controlled for in all microbiota related results using the HFD metric.

Microbiota characterization
Microbiota profiling and analysis was carried out using 16S rRNA gene amplicon sequencing of V3-V4 region which generated 12,821,961 reads in total from 181 samples. After quality filtering and removal of chimeras, we obtained a table comprising of 4835 OTUs. From 181 participants, a total of 6,512,978 reads were mapped to 4835 OTUs. The average number of reads were 35983±9725.

[bookmark: _Hlk515022185]Identification of significantly differentially abundant taxa in patients with osteopenia and osteoporosis
At the OTU level, significant differences (p-adjusted ≤ 0.05) were observed in the abundance of certain OTUs between the three groups (Supplementary table S5, available at Rheumatology online). Blautia was more abundant in osteopenia and osteoporosis compared to normal BMD however it was significantly higher in osteopenia compared to osteoporosis also. Clostridium IV and Eggerthella was higher only in the case of osteoporosis compared to normal BMD where as Bacteroides was significantly abundant in normal BMD compared to osteopenia and osteoporosis. Escherichia/Shigella was significantly higher in normal BMD and osteopenia compared to osteoporosis but was highest in osteopenia. The results of this analysis was not considered for further analysis due to the sparseness of the dataset.
We applied a DESeq2 model in which we adjusted for fractures; this analysis returned the same results as the above mentioned model. Two additional taxa, Akkermansia and Klebsiella, were identified as being more abundant in osteopenia compared to normal BMD subjects but because they were not identified in the earlier model, they were not investigated further.

[bookmark: _Hlk515022219]Alterations at taxonomic levels are not associated with confounding factors
Abundance of Actinomyces was positively associated with osteoporosis group and all measures of bone in the univariate model. Bisphosphonate use was not significantly associated when groups category was present, however Coeliac Disease, a prior history of cholecystectomy and total vitamin D levels remained significantly positively associated in the bivariate models. For Clostridium Cluster XlVa, an increased abundance was observed with the diseased status. Bisphosphonate and anticoagulant medication and HFD index showed positive significant associated along with the groups variable while Godin score was negatively associated in the bivariate models. Three measures of bone - Groups, AP spine T-score and BMD, were associated with increased abundance of Eggerthella. Gender, vitamin D levels, opiod use and previous cholecystectomy were also significantly associated with this genus in the univariate models but only gender and previous cholecystectomy remained significant in presence of the group category. Escherichia/Shigella abundance showed negative associations with vitamin D levels and positively associated with hip circumference measure and appendicectomy. Abundance of this taxon was observed to be lower in osteoporosis and increased in osteopenia. Hip, calf, mid-arm circumference measures and MNA were significantly negatively associated in the bivariate model for Veillonella and presence of these confounders showed a non-significant association with disease status. However, after adjustment for calcium and bisphosphonate supplements, BMI, MMSE, medications (anti-epileptics, analgesia (opiods), inhalers and proton pump inhibitors), Veillonella was still significantly associated with decreased abundance in osteoporosis and increased in osteopenia. Appendicectomy was also significantly associated after adjustment.

Adjustment for BMI, medications and vitamin D levels
To control for the effect of BMI, medications and vitamin D levels on the bone mineral density, the relationship between these variables and the BMD values were modelled and the residual BMD values generated from the multiple regression models were recorded. These residual BMD values represent the BMD values after adjusting for the effect of BMI, medications (Calcium, Bisphosphonate and Denosumab) and vitamin D levels on the BMD measures (Supplementary table S8b-S9b, available at Rheumatology online). The validation of this removal of effect is described in supplementary table S8c-e and S9c-e, available at Rheumatology online. Supplementary table S8c and S9c, available at Rheumatology online, shows the association of BMD measures to groups categorisation. It can be observed that the Groups categorisation explained 66% of variation with AP spine BMD and 3% variations with neck femur BMD values individuals. The BMD residuals obtained from model 2 and restoring group effect from model 3 shows similar results (Supplementary table S8d.1, S9d.1, available at Rheumatology online) compared to supplementary table S8c and S9c, available at Rheumatology online. We also observed that the modified BMD residuals explain 97% of variation with BMD measures (Supplementary table S8d.2, S9d.2, available at Rheumatology online), thus proving that residuals obtained accurately represents the groups and BMD information. To further, validate the removal of confounder effects, we regress this modified residual values against BMI, medications and vitamin D level and show that the variations in the BMD residuals values is not associated at all with BMI, medications or vitamin D levels and any variation explained is attributed the groups status only (Supplementary table S8e,S9e, available at Rheumatology online). After validation of BMD residuals, we used the GLMM regression to show that significant associations are observed with the significant taxa. We observe that the association of the taxa identified to be significant with BMD measures are retained, except for Clostridium XlVa, and Veillonella where the significance is lost after this adjustment (p-value > 0.05) (Supplementary table S8f-S9f, available at Rheumatology online) and Lactobacillus which is not significant in this analysis except for the lowest neck femur residuals.
Supplementary figure legends
[bookmark: _GoBack]Supplementary figure S1 Variables associated with BMD subject groups. Pairwise comparison of the clinical and BMI data across groups identifies significant alterations in clinical measures in osteoporosis and osteopenia groups compared to the normal BMD group. The violin plots show the distribution of the significant meta-data within each group. Total Vitamin D and Vitamin D3 levels are increased in osteoporosis and osteopenia groups compared to normal BMD, whilst bone mineral density related measurements, BMI and other anthropometric measures are reduced. BMI: body mass index; BMD: bone mineral density; AP spine: antero-posterior spine; Total 25(OH) D, total vitamin D; 25(OH)D3, vitamin D3. ‘***’ ≤ 0.0005, ‘**’ ≤ 0.005, ‘*’ ≤ 0.05 (P-adjusted)
Supplementary figure S2 Medications associated with different BMD subject groups
(A) Consumption of Calcium supplements and (B) Bisphosphonate medication in the normal BMD controls, osteopenia and osteoporosis individuals.
Supplementary figure S3 Relative abundance of the gut microbiota across different BMD groups. (A) Composition of bacteria at phylum level and (B) the 20 most abundant genera in normal BMD, osteopenia and osteoporosis individuals shows similar composition between the groups
Supplementary figure S4 Microbiota α- and β-diversity across the different BMD subject groups. A) Global microbiota profile as observed by unconstrained ordination (PCoA) on Bray-Curtis distance measure. B) Constrained ordination i.e. distance based redundancy analysis (dbRDA) on Bray-Curtis shows global profile best explained by BMD measures. Significant difference in α-diversity between the groups was not observed in C) Chao1 and D) Phylogenetic distance
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