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Abstract

Abstract

Recommender systems are discovery tools. Typically, they infer a user’s pref-
erences from her behaviour and make personalized suggestions. They are one
response to the overwhelming choices that the Web affords its users.

Recent studies have shown that a user of a recommender system is more likely
to be satisfied by the recommendations if the system provides explanations that
allow the user to understand their rationale, and if the system allows the user to
provide feedback on the recommendations to improve the next round of recom-
mendations so that they take account of the user’s ephemeral needs.

The goal of this dissertation is to introduce a new recommendation framework
that offers a better user experience, while giving quality recommendations. It
works on content-based principles and addresses both the issues identified in
the previous paragraph, i.e. explanations and recommendation feedback. We
instantiate our framework to produce two recommendation engines, each focusing
on one of the themes: (i) the role of explanations in producing recommendations,
and (ii) helping users to articulate their ephemeral needs.

For the first theme, we show how to unify recommendation and explanation to a
greater degree than has been achieved hitherto. This results in an approach that
enables the system to find relevant recommendations with explanations that have
a high degree of both fidelity and interpretability. For the second theme, we show
how to allow users to steer the recommendation process using a conversational
recommender system. Our approach allows the user to reveal her short-term
preferences and have them taken into account by the system and thus assists her
in making a good decision efficiently. Early work on conversational recommender
systems considers the case where the candidate items have structured descriptions
(e.g. sets of attribute-value pairs). Our new approach works in the case where
items have unstructured descriptions (e.g. sets of genres or tags).

For each of the two themes, we describe the problem settings, the state-of-the-
art, our system design and our experiment design. We evaluate each system using
both offline analyses as well as user trials in a movie recommendation domain.
We find that the proposed systems provide relevant recommendations that also
have a high degree of serendipity, low popularity-bias and high diversity.

Chain-Based Recommendations xii Arpit Rana



Part I

Introduction and Background

1



Chapter 1

Introduction

In this dissertation, we introduce chain-based recommendation, a new frame-
work for content-based recommendation in which recommender engines construct
chains of items. We instantiate this framework in two concrete ways. Firstly, we
use chains of items to explain recommendations. In this case, chains contain
items from the user’s profile, apart from the final item in the chain, which is a
recommended item. Secondly, we use chains to explore item space. In this case,
chains are sequences of recommended items, and the chains are constructed it-
eratively in response to user feedback, allowing the user to reveal her ephemeral
needs, tastes, and interests.

1.1 Motivation

The Web affords its users an abundance of choice among items that include
products, services and sources of information. However, having more choice is
not necessarily better than having less. For example, Iyengar & Lepper found
in their studies on choice overload that participants actually reported greater
subsequent satisfaction with their selections when their original set of options
had been limited [IL00]. People say that they like more choices but they often
experience greater satisfaction when the range of choices matches their ability to
manage them [OHS09].

Automated personalization is one way of tuning systems to the needs and pref-
erences of individual users and, consequently, alleviating the problems caused by
choice overload. Recommender systems, in particular, attempt to filter a set of
items and suggest to the user a smaller set – ones which it thinks are most likely to
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1. Introduction 1.1 Motivation

satisfy the user [AT05]. While a recommender system can make non-personalized
recommendations (e.g. based on item popularity), most often they use person-
alization techniques: they infer the user’s preferences from her behaviour and
suggest items that they think will match these inferred preferences.

Some recommender systems can also provide explanations. Explanations can
serve a multiplicity of aims: they give credibility to recommendations [SS02,
PC07], help users make better choices [BM05], positively contribute to a better
user experience [KR12] and so on. Due to the wide adoption of recommender
systems in many aspects of our lives, explaining recommendations has attracted
considerable attention [ZC18, TM15]. Despite this attention, most recommenda-
tion explanations are posthoc rationalizations.

In current recommender systems, computing recommendations and generating
corresponding explanations are considered as two separate, sequential processes.
This affords the recommender the freedom to include in the explanation informa-
tion different from that which it used to compute the recommendation [AN16].
For example, in [RSZ13], a recommendation generated by matrix factorization
is explained using topic models mined from textual data associated with items.
Such differences are one cause of low fidelity [KSB+13] (also called objective trans-
parency [GJG14]): the extent to which the explanation reveals the logic of the
underlying recommender. In an experiment with a music recommender, Kulesza
et al. found that the more that explanations were both sound and complete with
respect to the recommender, the greater the users’ trust in the recommender and
the better their understanding [KSB+13]. This finding indicates that there is
an intimate connection between the process of computing recommendations and
generating corresponding explanations; and that this close relationship may lead
to better recommendations for the user. In Part II of this dissertation, we in-
vestigate the role of explanations in the process of computing recommendations,
aiming to achieve a higher degree of fidelity between the explanations and the
operation of the recommender system, without compromising the interpretability
of the explanations and the quality of the recommendations.

It can also be advantageous to incorporate user feedback into the recommenda-
tion process [JJ17]. He et al. claimed that recommender systems achieve higher
levels of trust and transparency, and greater acceptance if they enable users to
steer the recommendation process [HPV16]. This is not possible in early so-called
single-shot recommender systems, where, on receipt of a set of recommendations,
the user can only choose to consume the recommended items or not. It was soon

Chain-Based Recommendations 3 Arpit Rana



1. Introduction 1.2 Contributions

realized that the process by which a user selects an item to consume (e.g. a movie
to watch) should be an iterative one: the user’s requirements may be uncertain, or
even erroneous, and may be refined by exposure to the items a system presents
to her [PC08]. Single-shot recommendation fails to handle the case where the
user has an ephemeral goal, in which case her short-term preferences may differ
from her long-term ones. For example, a user might usually watch documentaries
but this evening she is not in the mood for something so serious. Or, perhaps,
this evening she wants something to watch with her mother, so she should ac-
commodate her mother’s tastes as well as her own. These factors motivate the
use of conversational recommender systems that allow repeated interactions be-
tween the user and the system. Part III of this dissertation investigates how to
integrating a user’s feedback on a set of recommendations into the process of
computing the next round of recommendations, in order to help the user reveal
her ephemeral needs.

1.2 Contributions

This dissertation presents a new recommendation framework that offers a better
user experience, while giving quality recommendations. We focus on two main
issues that can improve the user experience: explanation and incorporation of
recommendation feedback. Both exploit a new form of content-based recommen-
dations that constructs chains of items.

We highlight the main contributions that we make to address the aforementioned
issues below.

1.2.1 Recommendation-by-Explanation

We introduce Recommendation-by-Explanation (r-by-e), a novel unified approach
for recommendation explanation: the system constructs an explanation, a chain
of items from the user’s profile, for each candidate item; then it recommends those
candidate items that have the best explanations. By unifying recommendation
and explanation, r-by-e finds relevant recommendations with explanations that
have a high degree of fidelity.

Unlike classic content-based systems, r-by-e treats each item as a set of elements
(e.g. its features or neighbours) and constructs an explanation chain by iteratively
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adding items from the user profile in an effort to cover potentially different ele-
ments of the candidate item. Hence, in the chain, the item closest to the candidate
shares more of its elements with the candidate and the item farthest from the can-
didate shares the least with the candidate. Consecutive items in the chain must
also share elements. Thus, the explanation chain enables a user to understand
the mutual relationships between the neighbouring items as well as relationships
between items from her profile and the candidate item in an incremental manner.
In some sense, the chain ‘leads’ the user through ever more relevant items from
her profile towards the candidate. This, we believe has the potential to explain
more diverse and serendipitous recommendations in an effective manner that is
sensitive to user understanding.

1.2.1.1 Basic version of r-by-e

In Chapter 4, we present a basic form of r-by-e where the chains of items (ex-
planations) try to cover the features of the candidate items; top-n candidates are
selected for recommendation based on this feature coverage and their capacity to
cover the user’s profile.

We compare r-by-e with a customized version of a classic content-based method on
a movie recommendation dataset. Results from offline experiments show that r-
by-e attains better precision, while remaining competitive on measures of diversity
and surprise.

We also evaluate r-by-e through two user trials involving over a hundred partici-
pants. In one trial, we evaluate the quality of recommendations. Participants in
this trial found r-by-e’s recommendations to be more diverse, serendipitous and
relevant than those of the competitor system. In the other trial, we evaluate the
effectiveness of its explanations. We analyse users’ response and found that r-by-
e’s explanations allow users to make more accurate judgments about the quality
of recommended items.

1.2.1.2 Extensions to r-by-e

In Chapter 5, we extend r-by-e. We give ways of generating chains that use
different item representations: i) as a set of its features (e.g. keywords or tags);
and ii) as a set of its neighbours (i.e. similar items). We also explore weighting
schemes to give more refined versions of the proposed algorithms. Thus, we define
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four versions of chain generation.

We also generalize chain selection: r-by-e’s approach to selecting the top-n chains
to recommend. In Chapter 4, r-by-e assigns a score to each generated chain that
is simply a sum of the coverage of the candidate’s features and coverage of the
user’s profile. In Chapter 5, we redefine the score to be a linear combination of
the two controlled by a balancing parameter α.

We give a comprehensive empirical comparison of all four versions (99 configura-
tions of each) with their corresponding customized classic content-based methods
on two different datasets. The versions of r-by-e that represent an item as a set
of its features has several advantages over the others, and the empirical compar-
ison shows that the one of these versions —one that assigns weights to the item
features based on their importance to that item (designated as wfb)— is also
the best in terms of recommendation accuracy, diversity, and surprise, while still
generating chains whose lengths are manageable enough to be interpretable by
users.

We analyse the influence of α on the measures of quality such as precision, di-
versity, and surprise for wfb. We plot graphs of these measures against α to
better understand their relationships. We also find correlation among these mea-
sures and other factors; for example, we show how precision correlates to the
candidate’s coverage.

We conduct another user trial using a new version of the dataset in which item
features are nouns extracted from user-generated reviews and where these nouns
are assigned weights that reflect user sentiment to generate sentiment-aware ex-
planation chains. We found on this version of the dataset that wfb provides more
relevant recommendations and that they are also diverse and serendipitous; and
we found that its sentiment-aware chains are more helpful to users when judging
recommendation quality than the competitor explanations.

1.2.2 Navigation-by-Preference

We propose Navigation-by-Preference (n-by-p), a new conversational recom-
mender that uses preference-based feedback (where a user simply selects one
of the current round of recommendations) to help users navigate through item
space to find an item of interest, especially when it is different from her long-
term tastes. n-by-p works on unstructured item representations (such as sets of
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keywords or tags), thus it extends preference-based feedback to these representa-
tions. n-by-p can be configured to also take into account long-term preferences,
or feedback from earlier cycles in the dialog, or both, in order to minimize the
effort of reaching an item of interest.

We define twelve techniques to update the set of candidate items available for
the next round of recommendation for each of the neighbour-based and feature-
based representations. We group the update techniques into two: immediate and
cumulative. The former includes five techniques that select or discard candidates
based on the item that the user selects, while the latter includes seven techniques
that update weights for all available candidates.

We give a comprehensive empirical comparison of all 120 configurations (60 con-
figurations for each representation) for their performance (in terms of hit-rate) on
a movie recommendation dataset with simulated users. The techniques that use
the neighbour-based representation have several advantages over the others, and
the empirical comparison shows that one of these methods —one that includes
the user’s long-term preferences; uses both positive and negative feedback, uses
previous rounds of feedback— is the one with highest hit-rate.

We also evaluate the best performing version of n-by-p in a user trial. We com-
pare this version of n-by-p with one that ignores long-term preferences for both
the neighbour-based and feature-based representations. This version of n-by-p ob-
tains the best survey responses and lowest measures of effort in a between-subject
trial involving over 200 participants.

We give an improvement metric to analyze the difference between the user’s seed
movie (her initial choice from her profile) and the final accepted movie (from the
candidate items). We also found that n-by-p reduces the popularity bias and
suggests more surprising recommendations as the dialog length increases.

It is also noteworthy that we design a novel protocol for exploring short-term
preferences in recommender system user trial of this kind.

1.3 Structure of the Dissertation

This dissertation comprises four parts. Part I (Chapters 1–2) contains this
introduction and the conceptual background to the proposed chain-based rec-
ommendation framework. Part II (Chapters 3–5) concerns recommendation-by-
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explanation, covering a literature review, the design and experimental evaluation
of a basic technique, and the design and evaluation of extensions to that tech-
nique. Part III (Chapters 6–7) concerns navigation-by-preference, again covering
a literature review design and experimental evaluation. Part IV (Chapter 8)
presents conclusions and ideas for future work.

Part I

Chapter 1 – Introduction

In this chapter, we present the contributions that we have made in this work.

Chapter 2 – Background

In this chapter, we present the main types of recommender system, including their
strengths and weaknesses. We also introduce our recommendation framework:
chain-based recommendation. We also give material that is common to the whole
dissertation. This includes an overview of the dataset we use, the evaluation
measures that we use in offline experiments and the main notation.

Part II

Chapter 3 – Recommendation Explanation: State of the
Art

In this chapter, we review existing work on explanations of recommendations.
We begin by looking at explanation goals and end with their evaluation with real
users. In between, we review previous work according to various characteriza-
tions of explanations, such as based on their information content, based on their
assumptions about the recommender, and based on their role in the recommen-
dation process.

Chapter 4 – Explanation Chains

In this chapter, we explain Recommendation-by-Explanation (r-by-e) in detail.
We report the results of an offline experiment on a publicly available movie
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dataset. Using the best performing configuration of r-by-e that we find in these
offline experiments, we also evaluate our system with real users. As r-by-e unifies
recommendation and explanation, we conduct two user-trials: one to evaluate the
quality of its recommendations and the other to measure the effectiveness of the
corresponding explanations.

Chapter 5–Extensions to Recommendation-by-Explanation

Where Chapter 4 presents and evaluates a basic form of r-by-e, in Chapter 5
we consider various extensions. We present two different ways of representing
items: the first, feature-based, was used in Chapter 4, and we contrast it with
an alternative, neighbour-based. We also explore weighting schemes that can be
used to give a more refined form of r-by-e. Finally, we formulate versions of r-by-e
that work with item representations that include user sentiment. In the case of
these sentiment-aware explanation chains, we carry out another user trial.

Part III

Chapter 6 – Conversational Recommendation: State of the
Art

In this chapter, we review conversational recommender systems, in which user
iteratively reveal their preferences. We describe the goals of these systems, and
how they are evaluated. Between these two, we review existing work according to
various characterizations, such as who is taking the initiative in the interaction,
what kind of feedback the user provides during the interaction, and the role of
long- and short-term preferences.

Chapter 7 – Preference Chains

In this chapter, we explain Navigation-by-Preference (n-by-p) in detail. We
present various versions, including ones that only take the most recently revealed
preferences into account and ones that accumulate preferences across the dialog,
and versions that use the feature-based and neighbour-based item representations
that we covered previously in Chapter 5.
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We present an offline experiment, with simulated users, that selects the best of
60 different configurations of two versions of n-by-p. Then we used a web-based
system to conduct a user trial. The trial has a novel protocol for assigning short-
term preferences to participants.

Part IV

Chapter 8 – Conclusions and Future Work

This concluding chapter summarizes the contributions we have made, discusses
the implications of the work, and points to directions for future research.

1.4 Publications

• Arpit Rana and Derek Bridge: Navigation-by-Preference: A New Conver-
sational Recommender with Preference-based Feedback, submitted, 2019.

• Arpit Rana and Derek Bridge: Explanations that are Intrinsic to Recom-
mendations, Proceedings of the Twenty-Sixth Conference on User Modeling,
Adaptation and Personalization, ACM, pp.187-195, 2018.

• Arpit Rana and Derek BridgeExplanation Chains: Recommendations by
Explanation, in Domonkos Tikk and Pearl Pu (eds.), Proceedings of the
Poster Track of the Eleventh ACM Conference on Recommender Systems,
CEUR Workshop Proceedings, vol-1905, 2017.
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Chapter 2

Background

In this chapter, we present the background concepts used in this dissertation.
We begin with the fundamentals of recommender systems, and the primary ap-
proaches to recommendation along with some of their benefits and short-comings.
We then introduce the notion of chain-based recommendations. We also cover
some material that is common to the rest of the dissertation: the dataset that we
use, the evaluation measures that we use in offline experiments, and finally the
main notation that we use.

2.1 Recommender Systems

Recommender systems are prominent for services with a large number of items,
where users are faced with an overwhelming choice of which items to consume.
They are tools for item discovery. Typically, they use data that they have col-
lected about user behaviour to algorithmically infer user preferences, so as to se-
lect and present relevant and novel content to the users [KR12]. News [DDGR07],
blogs [EAVSG09], search results [GLK+09] and streamed videos [GUH16] are a
few among the many domains in which recommendation can be valuable.

Let U be a set of users and I be a set of items. Then one simple formulation
of a recommender system is to define it as a system that attempts to find an
item i∗ ∈ I for user u ∈ U such that the utility of item i∗ for user u, u(u, i∗), is
maximized:

i∗ = arg max
i∈I

u(u, i) (2.1)

The recommender may use models learned from demographic or social network
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data about users, or from descriptions of the items (such as the genres of a
movie). But most common is to use data about user-item interactions. These
might be in the form of actions such as clicks, downloads or purchases, or feedback
in the form of ratings or reviews. In some cases, interactions are accompanied
by contextual information, which affords the possibility of building a context-
aware recommender, in which recommendations are contextualized as well as
personalized. Since the majority of recommender systems so far are built from
user feedback interactions, we consider this in more detail.

A user can reveal her opinions in either an explicit or implicit manner. Directly
stated opinions are explicit feedback. Most often this takes the form of a rating
from an ordinal scale, e.g. a star rating between 1 and 5 stars. But it could
be binary: positive/negative or like/dislike or thumbs-up/thumbs-down. Less
usually, it could take the form of a binary comparison, e.g. item A is preferred
over item B. User reviews also offer explicit feedback, although it may take a lot
of processing to recover opinions about items and their features from the text
contained in these reviews.

On the other hand, if a user’s opinion is derived from her other interactions
with the system, then the feedback is said to be implicit. Typically, this type
of feedback does not contain negative observations. Examples include inferring
preference from purchase actions, from clicks, from dwell-time, from consumption
frequency (such as the number of times a song is listened to), and so on.

2.2 Recommendation Approaches

Based on the information that a recommender uses to compute the utility of items
to users, recommendation systems can be classified into at least the following three
types:

• Collaborative methods recommend items that either users with similar tastes
liked in the past or that, according to the other users, are similar to items
that are liked by the active user.

• Content-based methods recommend items which, according to the item de-
scriptions, are similar to items that are liked by the active user.

• Hybrid methods combine collaborative and content-based methods.
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2.2.1 Collaborative methods

Collaborative methods rely on the notion that similar users tend to like items
similarly. In order to recommend items to an active user, these methods learn
the inter-dependencies among users and items from the observed set of user-item
interactions, such as ratings.

We can visualize user-item ratings as a ratings matrix whose rows designate users
and whose columns designate items. Thus an entry in the matrix denotes a user’s
rating for an item. Typical collaborative algorithms use the available information
in the rating matrix to predict missing values, i.e. to predict ratings for items
that the active user has not rated yet. Imputing missing values is thus a matrix
completion task and is commonly accomplished by means of either memory-based
methods or model-based methods [Agg16].

Memory-based methods (also known as neighbourhood-based collaborative meth-
ods) are usually heuristic approaches that predict the missing ratings either based
on the ratings given by peers to that item (referred to as user-based collabora-
tive filtering) or based on the ratings of items that have similar rating patterns
to that item (referred to as item-based collaborative filtering). The discovery
of these neighbourhoods of ratings and their aggregation is usually deferred to
recommendation time.

By contrast, model-based methods use machine learning and data mining algo-
rithms in advance of recommendation time to learn a model that can predict
the missing ratings for an active user. Common model-building techniques in
this context include Matrix Factorization [Kor08] and Sparse Linear Methods
[NK11]. More recent methods even eschew the prediction of ratings, building in-
stead models that can predict item rankings, from which top-n recommendation
lists can be taken and presented to the user. Bayesian Personalized Ranking is
one such method [RFGST09].

Limitations of collaborative methods

• Sparsity: In any recommender system, the number of observed ratings
is usually very small compared to the number of user-item pairs. It is
challenging to find similar users, similar items or other patterns that are
non-spurious in such sparse data [AT05, Agg16].

• Cold-start items and users: Collaborative systems rely solely on ratings to
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make recommendations. Therefore, until a new item is rated by a substan-
tial number of users, and a new user rates a substantial number of items,
this kind of recommender system would not be able to recommend the new
item or recommend to the new user [RRS11, Agg16].

• Popularity bias: Collaborative methods recommend items based on ratings
and hence on prior consumption. Hence, they tend not to recommend
products with limited historical data. For example, in the movie domain,
there may be many movies that have been rated by only few people and
these movies would be recommended very rarely, even if those few users gave
high ratings to them. Therefore, recommenders can create a rich-get-richer
effect for popular items. This is known as concentration- or popularity-bias
[AT14].

• Shilling attacks: In collaborative settings, malicious users and/or com-
peting vendors may insert fake profiles in an effort to effect the rating
predictions for their own advantages [GKBP14].

2.2.2 Content-based methods

Content-based methods try to predict the utility of items for an active user based
on item descriptions and her past preferences. In content-based systems, there
are choices to be made about the following [LDGS11]: how items are represented,
how user preferences are modeled, and how items are matched with the user
preferences.

Item representation: Items are typically represented in one of the following
ways:

• Structured: There is a finite and typically small set of attributes, each
with a corresponding domain of values. Each item is described by a set
of attribute-value pairs. For example, in a restaurant recommender, the
attributes might include the type of cuisine and the average cost of a main
course.

• Unstructured: Each item is described by free text as, for example, in the
case of news articles. However, the text is often processed to obtain, for
example, a set of the most important terms or vectors of weights (such as
TF-IDF weights) for terms. This processing presents challenges in handling
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polysemy (one word having several meanings) and synonymy (several words
having the same meaning), among others. In some cases, we may be given
sets of terms directly, without having to recover them from text. For exam-
ple, we might be given keywords that describe a movie or tags that users
have assigned to images. Media other than text (such as images, audio or
video) can also be thought of as unstructured but again it is common to
try to derive simpler representations from the raw media.

• Semi-structured: Each item is described by a mixture of structured and
unstructured information. For example a movie has attributes such as its
running time but also free text that gives a synopsis of the plot.

User profile: A user’s profile represents her preferences. Preferences may be
persistent, indicating a user’s long-term tastes and interests, or ephemeral, re-
flecting her transient requirements [SHY04]. The user profile is most typically a
representation of the persistent preferences.

A user profile might simply consist of a history of the user’s interactions with the
recommender system, e.g. items she has viewed or purchased, or ratings that she
has given to the items. Sometimes instead a user profile comprises features that
describe the user’s tastes and interests. These might have been obtained from a
form on sign-up to the system or they might be aggregated from the items the
user interacts with.

Filtering technique: A filtering technique suggests relevant items from a set
of candidate items. These techniques are also split into memory-based and model-
based. The former employ similarity measures to match the representations of
candidate items against the profile [PB07, RRS11]. The latter learn from the
profile a model that can predict item relevance. One example of the latter are
Naïve Bayes recommenders [PB07, RRS11].

Limitations of content-based methods The main advantage of content-
based methods is that they are easy to explain at feature-level. Their most
significant challenges include the following:

• They are limited by the degree of content analysis: Their ability to discrim-
inate between items depends on the granularity of the item representations.
If two different items are represented by the same set of features, they are
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indistinguishable and equally likely to be recommended. But it might be
that the representations were derived in one case from a well-written article
and in the other case from a badly written one, if they happen to use the
same terms [AT05, Agg16].

• Over-specialization: Content-based methods tend to recommend items
that are similar to items the user has liked in the past. For instance, if a
user has never seen or rated a “reality-show”, a content-based system will
probably not recommend one to her. Thus, content-based recommendations
are often among the least serendipitous recommendations [AT05, PB07,
Agg16].

• Cold-start user: The user needs to build enough of a profile (e.g. she
must rate a sufficient number of items) before a content-based recommender
system can really understand her preferences and present her with reliable
recommendations. A new user, with an immature profile, is less likely to
get accurate recommendations [AT05, RRS11].

2.2.3 Hybrid methods

Hybrid recommender systems combine one or more techniques, e.g. collaborative
and content-based, to improve performance [Bur02]. The intention is that the
combination reduces the limitations of the individual recommendation algorithms.
For instance, collaborative recommenders are susceptible to the item cold-start
problem (where recommendations cannot be generated for new items) [LKH14,
FTBE+16]. By including content-based methods in a hybrid, a new item that has
few ratings may still be recommended in a content-based way on the basis of its
description. There are many ways to combine different recommender techniques
in a hybrid system, and they are surveyed in [Bur02].

In this dissertation, we propose a new framework that we call chain-based rec-
ommendation. It works on content-based principles; it represents items with
unstructured descriptions; it requires only implicit user feedback; and it makes
use of a coverage-based approach to find the top-n potentially interesting items
for the user. We describe our framework in the next section.
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2.3 Chain-Based Recommendations

Over the years, the recommendation task has variously been formulated as pre-
dicting the ratings for an unseen user-item pair (e.g. [NK11]), learning to rank
the top-k recommendations for a user (e.g. [RFGST09]), and predicting a link
between a user and an item in the (bipartite) user-item interaction graph (e.g.
[LC13]). In our chain-based recommendation framework, we reduce the recom-
mendation task to one of constructing a chain in the item-item similarity graph
that connects items in the user’s observed space of items (e.g. her past preferences)
to items in the unobserved space (e.g. candidate items that can be recommended
to the user).

2.3.1 Definitions and concepts

A chain in chain-based recommendation is a sequence of items 〈i1, i2, · · · , in〉 such
that in every neighbouring pair (ir, ir+1), item ir reinforces its successor ir+1.

Since chain-based recommendation is a form of content-based recommendation,
each item has a description. We assume that this takes the form of a set of features
(e.g. a set of keywords or a set of user-assigned tags). However, we also define
an alternative item representation that makes use of these features indirectly. In
this alternative, an item is represented by its set of neighbours, i.e. by similar
items, where similarity is defined in term of the item features used in the other
representation. In both cases, we assume a symmetric similarity measure between
item descriptions, based on feature/neighbour overlap. Hence, we can define an
item-item similarity graph: nodes are items, and there is an edge between a pair
of nodes if the similarity of the items represented by those nodes is non-zero.

The problem of constructing a chain can then be thought of as a path search in
the item-item similarity graph. In adding the next item to a chain, candidates
come from its neighbours in the item-item graph.

The exact details of the chain construction method will depend on the purpose.
This will determine where the start node comes from. For example, in Chapter 4,
the start node is an item that is a candidate for recommendation (i.e. it belongs to
the user’s unobserved space); in Chapter 7, it is an item that the user chooses from
her observed space. The purpose will also determine how the process terminates.
For example, in Chapter 4, we stop adding nodes to a chain when no candidate
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node improves the chain sufficiently; in Chapter 7, we stop when the user chooses
an item to consume (or abandons the recommender).

We formulate the path search problem as a set-cover problem with constraints.
Pairs of successive items in a chain must satisfy a local constraint in the form of
a ‘similarity threshold’ (θ) since there is a desire for ‘smooth’ transitions between
consecutive chain members. Additionally, each item in the chain may have to
satisfy a global constraint in the form of a threshold on the level of coverage it
contributes towards elements of the goal item (referred to as the ‘gain threshold’
ε). The similarity threshold refers to the minimum acceptable similarity between
two neighbouring items in the chain. A lower similarity threshold gives a larger
set of potential chain members at each step but may lead to less interpretable
transitions. The gain threshold refers to the minimum acceptable coverage of
the goal item by a chain member. Higher values of the gain threshold impose
stricter similarity requirements that leads to shorter chains. Again, the purpose
for which the chain is built determines which constraints to apply. For instance,
in Chapter 4, we impose both constraints while constructing a chain; in Chapter
7, we omit the global constraint, giving freedom to subsequent chain members.

2.3.2 Types of chains

Let I be the set of all items. Let’s assume a recommender does not recommend
items that have already been consumed. We define two disjoint subsets on I.
First, are the items P in the user’s profile. These items form the user’s observed
space. Since we are assuming unary, implicit feedback, these are items that the
user has interacted with and we are inferring (possibly inaccurately) that they
are items she likes. Second are the items I, which are candidate items — ones
that can be recommended to the user. These items form the user’s unobserved
space.1

Chains are constructed in such a way that they form a path between the two
disjoint sets. Given P and I, we realize the notion of chains of items in the
following ways:

1In the simplest case, I = I \ P . However, suppose we also know the items that the user
has interacted with but that she does not like. We make no use of these ourselves in this work.
But, in that case, the candidates I comprises I less all the items she has interacted with.
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Explanation Chains In this case, chain-based recommendation begins with
the goal ig ∈ I and works backwards. The other items in the chain are drawn
from items in the user’s profile P and are intended to support the recommendation
(i.e. the goal). In this way, the chain relates the user’s past preferences to the
candidate item. The strength of their connections is assured by means of the
local and global constraints: each chain member shares a part of its description
with its predecessor and also contributes to covering the description of the goal.
Based on the strength of the chains, top-n chains are chosen to recommend to
the user. We distilled this idea into a system which we call ‘recommendation-by-
explanation’ and the chains are designated as ‘explanation chains’. We cover the
details of this in Part II of the dissertation.

Preference Chains In contrast to the previous case, this type of chain begins
with a seed is ∈ P and moves forwards. The other chain members are recommen-
dations that belong to the candidate set I. Instead of automatically generating
the chain, at each step the user is recommended a certain number of items and
is asked to choose from among them, thus extending the chain. This process is
repeated until the user finds her item of interest. We use this idea in a system
which we call ‘navigation-by-preference’ and the chains generated by this system
are called ‘preference chains’. In navigation-by-preference, the user has control
over the direction in which to proceed, how much the chain members have affinity
with the seed, and where to stop the chain. In this type of chain, the global con-
straint is omitted. The details of navigation-by-preference and preference chains
are covered in Part III of this dissertation.

2.3.3 Advantages of chains

Chains are personalized paths that connect items in the user’s observed space
to items in her unobserved space. These chains are found either automatically
(in the case of explanation chains) or by taking user feedback into account (in
the case of preference chains). Chains are built on the same principles as other
content-based recommender systems. However, they have several advantages over
classic content-based recommender systems.

• Chain-based systems use coverage-based heuristics. The heuristics penalize
chains that cover features of the candidates or the seed that have already
been covered. By thus encouraging feature-level uniqueness, they ultimately
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lead to an increase in the diversity of the recommendation list. We discuss
this in detail in Chapter 5.

• In our experiments, we have found a positive correlation between the length
of the chain and the surprise of the recommended items. Shorter chains
result in more obvious recommendations while longer chains may lead to
more surprising recommendations. We discuss this in detail in Chapter 5.

• Chain-based systems can be built on different item representations and
can also be extended to collaborative settings, though in the latter case
explaining the connections may present some challenges.

This dissertation contains many offline experiments and some user trials. In the
next two sections, we summarize some of what is common to these experiments
and user trials.

2.4 Overview of Dataset

We used the hetrec2011-movielens-2k dataset2 but, in place of the tags given in
that dataset, we assigned each movie its keywords from IMDb3. From the original
dataset, only those movies for which IMDb has keyword information are used in
our experiments performed. Thus, the dataset comprises 2113 users, 5992 movies,
80639 keywords, and over half a million ratings.

On average, a typical movie has 107 keywords, ranging from 2 to 626, which
shows a very high variance in the number of keywords. Each movie has non-zero
similarity with, on average, 77% of the other movies in the dataset. This suggests
that the item-item similarity graph is highly dense with an average out-degree of
a typical node being around 4600.

In our user-trials, users interact with web-based recommender systems. In order
to increase the chances of user familiarity with the movies, these trials use only
hetrec2011-movielens-2k movies that were released between the years 2000 and
2011 inclusive.. This results in trials that use 1851 (≈ 30%) of the 5992 movies
in the dataset.

In Chapter 5, we use some sentiment data from user reviews. We postpone a
description of this until Chapter 5, where it is needed.

2https://grouplens.org/datasets/hetrec-2011/
3http://www.imdb.com
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2.5 Evaluation Measures

In the offline experiments, for each user u, we generate a list of top-n recommen-
dations, Ru. We evaluate this list for accuracy (against Tu, the set of items in the
test set that are known to be relevant for user u) and beyond accuracy-measures.
Here we describe the evaluation metrics that we will use in this dissertation. All
of these metrics are calculated as an average of all users in the test set (denoted
UT ) using definitions given in Section 7 of [KB16].

Precision@n. This is the fraction of relevant items in the recommended list
Ru for each test user u.

1
|UT |

∑
u∈UT

1
|Ru|

|Ru ∩ Tu| (2.2)

Diversity (Div). This measures the diversity of the recommendation list Ru

as the average pairwise distance among its elements. In content-based settings,
we calculate the distance between two items (i, j) as the complement of their
Jaccard similarity computed on their features sim(Fi, Fj).

1
|UT |

∑
u∈UT

1
|Ru|(|Ru| − 1)

∑
i∈Ru

∑
j∈Ru\i

1− sim(Fi, Fj) (2.3)

Surprise (Sur). This measures the surprise of a recommended item as the
minimum distance between the item and items in the user’s profile Pu. This is
averaged over the recommended items i ∈ Ru .

1
|UT |

∑
u∈UT

1
|Ru|

∑
i∈Ru

min
j∈Pu

1− sim(Fi, Fj) (2.4)

Novelty (Nov). This is based on the fraction of users in the dataset who rated
the item i. The logarithm is used to emphasize the novelty of the most rare items.

1
|UT |

∑
u∈UT

1
noveltymax · |Ru|

∑
i∈Ru

− log2
|u ∈ U, r(u, i) 6= 0|

|U|
(2.5)
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Here noveltymax = − log2
1
|UT |

is the maximum possible novelty value which is
used to normalize the novelty score of each individual item into [0, 1].

Coverage. This is the fraction of the items which are recommended at least
once, across all users. Higher values of coverage indicate that the algorithm
counterbalances the popularity bias by covering a large portion of the catalogue.

| ∪u∈UT
Ru|

|I|
(2.6)

There are a few other metrics that are used in the dissertation. But we describe
them in the chapters in which they are needed.

2.6 Table of Symbols

In Table 2.1, we list symbols used throughout the dissertation. Each chapter then
also introduces chapter-specific notation.

In the next two parts of the dissertation we describe the two forms of chain-based
recommendation that we have explored in our work. Specifically, the next part
describes Recommendation-by-Explanation, which is a novel approach to recom-
mendation and explanation that unifies the process of computing recommenda-
tions and generating corresponding explanations.
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Table 2.1: Table of the most common symbols used in the dissertation.

Symbol Description

U Set of users, U = {u1, u2, · · · , um}
I Set of items, I = {i1, i2, · · · , il}

r(u, i) A rating assigned by user u to item i.
P A user’s profile, P = {i ∈ I | r(u, i) ≥ 4}. Only where we need to

be explicit, do we write Pu

I Set of candidate items, I ⊆ I. Only where we need to be
explicit, do we write Iu

R Set of recommended items, R ⊆ I. Only where we need to be
explicit, do we write Ru

| · | Cardinality of a set
n Number of recommendations required
θ Similarity threshold
ε Gain threshold

η or α Balancing factor
Fi Set of features of an item i
Ni Candidate neighbours of item i, Ni = {j ∈ I | sim(Fi, Fj) > θ}
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Chapter 3

Recommendation Explanation:
State of the Art

Recommender systems provide explanations to help users make better decisions
[BM05], increase user trust in the system [SS02], and improve user acceptance of
recommendations [HKR00].

An explanation of a recommendation is any content additional to the recommen-
dation itself that justifies the recommended item to the user. For instance, a
textual explanation, ‘We recommend you the movie A Beautiful Mind because
it has features drama and biography that you liked before’ justifies the movie
‘A Beautiful Mind’ to the user by means of its features ‘drama’ and ‘biography’
which she liked before.

In addition to supporting end-users, explanations of recommendations may have
a role in issues such as: detecting shilling attacks [GKBP14]; detecting bias
and discrimination [LOL+18]; and contesting algorithmic decisions on personal
data as allowed for in government legislation such as GDPR1 [GF17].2 These
concerns related to user safety, system fairness, and government policies implicitly
or explicitly demand that choices recommended to the user need to be perceived
as reliable, fair, and transparent by those who rely on them. Recommender
systems might achieve higher levels of trust and greater acceptance by means of
explanations that allow users to understand and scrutinize automated decisions,
and to provide feedback to improve the systems [AN18].

1https://eugdpr.org/
2Some people believe that GDPR gives rise to the right to an explanation [GF17], while

other people disagree [WMF17].
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3. Recommendation Explanation:
State of the Art

3.1 Goals of Explanations of
Recommendations

Explanations are especially important in high-risk domains where the cost of
making a wrong decision is higher (e.g. buying a laptop, planning a holiday,
etc.) than in low-risk domains (e.g. selecting a song to play) [HKR00]. The
level of detail in an explanation may also vary with the level of risk associated
with the decision-making process [CP05]. In general, it also makes more sense if
these explanations are personalized to the end-users so that the explanations are
sensitive to the users’ level of understanding [TM08a].

It is important to understand the goals of an explanation when designing an
explanation facility for a recommender system [TM07b, FZ11]. The goals help
to determine what information should be given to the user, to what extent the
system’s logic needs to be revealed, and how the system will be evaluated [NJ17].
We describe these goals in detail in the next section.

3.1 Goals of Explanations of Recommendations

Tintarev & Masthoff [TM07b] identified seven explanation goals (effectiveness,
persuasion, scrutability, etc.) applicable to single item recommendations. These
goals are often presented in a list as if they were independent. However, they are
related in different ways [TM07a]. Nunes & Jannach [NJ17] argued that the choice
and the design of an explanation mechanism must be guided by the overarching
goals that should be achieved with the explanations. They distinguish between
three levels of explanation objectives: i) stakeholder goals, ii) user-perceived qual-
ity factors, and iii) explanation purposes. The service provider has an objective
(e.g. long-term customer relations) which should be related to a user-perceived
service quality factors (e.g. confidence), and that is ultimately implemented with
a corresponding explanation purpose (e.g. effectiveness).

Beside end-users and service-providers, bodies who audit or who police intelli-
gent systems also have (or will have in the future) a perspective on investigating
algorithmic decision-making [SHKL14]. Automated decision making systems are
(or will be) audited to detect bias and other unwanted algorithmic behaviours.
Often this will be done from the outside without the need to know about, or the
ability to inspect, specific design or implementation details. This is performed by
means of scripts and tools emulating real data and real users in the auditing pro-
cess. Explanations may play a role in scaling auditing to an ever larger number
of algorithms [MZR18]. This calls for explainable systems that take into account
fidelity (e.g. [RB18]), safety (e.g. [RMTM10]) and fairness (e.g. [AN18]).
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3.1 Goals of Explanations of
Recommendations

In this section, we describe Tintarev &Masthoff’s well-accepted seven explanation
goals.

Transparency. An explanation may reveal how a recommender system has
reached its conclusions. Sinha & Swearingen highlighted the importance of trans-
parency in recommender systems [SS02]. They found in a user-study that users
are not just looking for blind recommendations from a system, but are also looking
for a justification of the system’s choice. Thus, users like and feel more confident
about recommendations that they perceive as transparent.

Gedikli et al. [GJG14] distinguish between objective and perceived transparency.
While objective transparency is the extent to which the explanation reveals the
true logic of underlying recommender (also referred to as fidelity [KSB+13]),
perceived transparency is based on a user’s perception about how well the system
explains its inner logic. Of course, this perception may be mistaken when there
is a perception of high transparency but the explanation is not faithful to the
underlying logic. Where explanations are designed for perceived transparency
with no or little regard to objective transparency, they are sometimes referred to
as justifications instead of explanations [VSR09].

Scrutability. Explanations may help users to modify or correct the assump-
tions (or steps) that the system made while collecting and interpreting informa-
tion about the user. Scrutability can give more control to the user by allowing
her to modify incorrect assumptions.

There have been efforts that let users take control over recommendations in-
cluding: enabling them to modify data which is stored about them [CK02]; al-
lowing them to adjust the weights of the items they liked and friends they have
[KBOK12]; critiquing recommended items by rating them [WWP+13]; and allow-
ing them to specify which features are relevant or changing their weights [LAW14].

Scrutability is closely related to transparency but deserves to be distinguished
from it. A system can offer transparency but transparency alone does not allow
users to influence the system’s reasoning.

Trust. An explanation may help increase users’ confidence in the recommender
system’s competence. A study of users’ trust suggests that users are more likely
to report an intention to return to systems which they find trustworthy [CP05].
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Trust in the recommender system is found to be positively correlated with its
competence [MLKR03]. A study shows that transparency and the possibility of
interacting with the system can increase user trust [SS02]. Also, in the case of a
bad recommendation, an explanation though does not compensate; however may
reduce its effect on user trust by unfolding the reasoning behind and may allow
user to interact with the system to prevent it from occurring again [TM15].

In contrast, there are also some cases where transparency and trust are not found
to be related [CER+08].

Satisfaction. Explanations may increase enjoyment in the use of a recom-
mender system and ultimately acceptance of the overall system. The effect of
other explanation goals on satisfaction is reported in [GJG14]. They showed that
perceived transparency had a positive effect on overall satisfaction with the ex-
planation interface but they did not find any effect of efficiency or effectiveness
on satisfaction.

Nunes & Jannach [NJ17] split satisfaction into ease of use, enjoyment, and use-
fulness. Explanations may be provided to increase the perceived usefulness of the
system; however, this may require large cognitive effort on the part of the user.

Effectiveness. Effective explanations help users to evaluate the quality of
a recommendation with respect to their own preferences. Thus, effective ex-
planations may help users accept relevant items and discard irrelevant ones
[SRS+13, NDZ18].

Apart from accurate decision making, effective explanations can also be used to
introduce a new domain or product range to novice users and help them under-
stand the range of alternatives [CP05].

Efficiency. Explanations may help users make decisions more quickly. For ex-
ample, explanations of trade-offs may help users to more rapidly understand the
set of alternatives and to reach a quicker decision [McS05, MRMS04, CW17].

Efficiency is often used in the evaluation of conversational recommender systems
where users repeatedly interact with the system and refine their preferences.
These systems are called efficient if the task completion time or the number
of cycles needed to find the item of interest are low [TGL04].
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3.2 Characterizing Explanations of
Recommendations

Persuasiveness. Explanations may change a user’s behaviour, i.e. they may
increase the likelihood that a user accepts one of the given recommendations
[HKR00]. Influencing user behaviour has been investigated in low- [CLA+03,
SRS+13] and high-cost domains [TM08b].

Cosley et al. [CLA+03] show that users can be manipulated to rate close to the
predicted value whether the prediction is accurate or not. It has also been found
that users trust a recommendation more if the system displays high confidence in
its recommendation, even steering the user towards less relevant items [SRS+13].

In the next section, we describe different ways of characterizing explanations of
recommendations.

3.2 Characterizing Explanations of Recommen-
dations

Explanations of recommendations can be characterized in a variety of different
ways such as: the type of knowledge they use (e.g. user demographics, item de-
scriptions, etc.); their fidelity to the recommender (i.e. white-box vs. black-box);
and their role in producing recommendations. We explore these characterizations
in detail below with the help of twenty-six systems proposed in the literature from
the year 2000 to the year 2018. These systems span the breadth and depth of
research into explanations in recommender systems.

3.2.1 Based on their type of knowledge

Explanations of recommendations often relate the recommended item to the user
through intermediary entities. These intermediary entities may be other users,
other items, item features, or context; see Figure 3.1. This way of thinking about
explanations was introduced in [VSR09] but we have extended it to also include
context. Based on these intermediary entities, explanations can be described
as either user-based, item-based, feature-based, context-based or, in the case of
combinations, hybrid [BM05, PSM12].
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Active user Recommended
Item

Intermediary entities

Users

Items

Features

Context

is similar to

likes

likes

is in the

who like

are similar to

present in

appropriate for

Figure 3.1: Intermediary entities relate the active user to the recommended item
(adapted from [VSR09]).

3.2.1.1 User-based

User-based explanations say that an item is recommended because users who are
similar to the active user liked it. More specifically, at one end, these users are
related to the active user as they have similar tastes; at the other end, these
users have rated the recommended item positively. For example, social networks
such as Facebook3 often use user-based explanations when recommending to the
active user a person to add as a friend or to follow. The explanations show a
list of the active user’s friends who are already a friend of the recommended
person; see the examples in Figure 3.2. However, these methods do not scale up
to user-based collaborative filtering systems, where: the number of neighbours is
usually larger; most, if not all of them, are not known to the active user; and
the number of co-rated items between the active user and any neighbour can be
too large to readily comprehended [BD14]. Even in professional networks such
as LinkedIn4, user-based explanations sometimes take the form of a statistic that
summarizes the neighbours’ behaviour or tastes. Figure 3.2 shows examples in
which recommendations to join a group or follow an organization take the form
of a count of connections.

In [HKR00], twenty-one different explanations were proposed. In a user survey,
the most persuasive of these was an explanation of user-based collaborative fil-
tering that comprised a histogram of the active user’s neighbours’ ratings of the
recommended item: it showed the number of neighbours who had assigned high
ratings (4s and 5s), neutral ratings (3s) and low ratings (1s and 2s).

3https://www.facebook.com
4https://www.linkedin.com/
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Figure 3.2: Examples of user-based explanations in social networks

Another example, this time from personalized information retrieval, is in [CS05],
where the search histories of a community of online users are used to generate
explanations in the form of a relevance percentage, a set of related queries, and
recency information. These highlight how other users have interacted with search
results under similar search conditions in the past. It was found that such expla-
nations help searchers to better understand the relevance of search results.

3.2.1.2 Item-based

Item-based explanations say that the item is being recommended because the
user liked similar items, i.e. the similar items that the user liked before relate
the recommended item to the user. Figure 3.3 shows examples of item-based
explanations from Netflix5 and LinkedIn. Famously, Amazon6 also uses item-
based explanations for its recommendations [LSY03].

Studies show that item-based approaches present the relationship between the
user and recommended items in an easily interpretable way which helps users
to make accurate decisions [BM05]. Accordingly, in [BD14], the authors showed
how even user-based collaborative recommendations can be explained using item-
based explanations. They mined (item-based) rules from the neighbours’ ratings.

However, item-based explanations may have a shortcoming, which is that users
may not understand the relationship between the items in the explanation and
the recommended item [TM07a]. This problem can be resolved by hybrid expla-
nations (Subsection 3.2.1.5) by showing the features that the explicands have in

5https://www.netflix.com/
6https://www.amazon.com/
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Figure 3.3: Examples of item-based explanations.

common with recommended item.

3.2.1.3 Feature-based

Feature-based explanations say that the recommended item has features that the
user likes. For instance, Pandora uses altogether 450 musical attributes for rep-
resenting each music track7 and provides explanations such as: Based on what
you’ve told us so far, we’re playing this track because it features a leisurely tempo,
a sparse piano solo, a lazy swing groove, major tonality and many other similar-
ities identified [TM15]. In the literature, features take numerous different forms,
e.g. attribute-value pairs, item content, user-generated tags, opinions mined from
user reviews, and linked data. We will look at each in turn.

Attribute-value pairs. One common way to represent an item is in terms of
values for predefined attributes. For example, Tintarev generated explanations
for a recommended movie based on the user’s most preferred actor, genres and
director [Tin07]. In another approach [SCLDL12], each item is represented as
an entity and described by its attributes retrieved from the Freebase semantic
knowledge base. A dataset was obtained from a user study in which users were
asked to rate self-selected movies and to annotate the movies’ attribute-value
pairs: ‘good’ for attribute-values that predisposed them towards the movie and
‘bad’ for those that predisposed them against the movie. Finally, explanations
of recommended movies were provided similarly, i.e. by showing ‘good’ and ‘bad’

7https://www.pandora.com/about/mgp
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annotations against their attribute-values.

Although attribute-value pairs have the potential to explain recommended items,
they have problems too, which include: designing the set of attributes and the
permissible values requires domain experts’ knowledge; they might not be suffi-
ciently descriptive; and they may not accommodate changing needs [Shi07].

Item content. Items such as news, books, articles or blogs take the form of
textual content. This content can be mined for keywords and the keywords can
be used to describe the items. Bilgic & Mooney showed that these keywords can
be used in explanations that help users to make more accurate decisions [BM05].

Explanations that are based on item content have some limitations, which include:
there are items which may not have easily available textual content (e.g. music
or images); and keywords extracted from textual descriptions give a quite low-
level representation, rather than conveying high-level meta-data that represent
the quality of the item [VSR09].

User-generated tags. Many platforms allow users to assign tags to items.
Tags can be characterized as objective (where they convey factual information
about an item) or subjective (where they express the user’s opinion about an
item). Tags have a possible advantage over other forms of item description: they
are created, maintained, and applied by users themselves without any dependency
on domain experts [GH06]. Hence, they may capture what it is that users care
about. The downside, however, is that, being the responsibility of end-users,
tags may be of lower quality or more inconsistently applied than domain expert
descriptions.

A user may assign a tag for the purpose of item identification, organiza-
tion, semantic search and so on. But tags may also be useful in recom-
mendation and in explanation of recommendations. There have, for example,
been several efforts to exploit user-generated tags to explain recommendations
[VSR09, GGJ11, GJG14]. Vig et al. [VSR09] proposed tag-based explanations,
which they call ‘tagsplanations’. Their system explained a recommended item (in
their case, a movie) by means of a filtered and ranked list of tags with their rel-
evance scores. For filtering and ranking, they use two measures:: tag preference
and tag relevance. Tag preference is user-specific; it measures the relationship
between a tag and a user as the degree to which user likes that tag (based on
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frequency of use). Tag relevance is item-specific; it captures the relationship be-
tween a tag and an item as the degree to which a tag describes an item and not
other items.

Tag clouds are a popular way to visualize an item’s tags. A tag cloud is a set of
tags where properties related to their appearance such as font size, font weight,
colour, and position within the cloud may have a semantic meaning such as
relevance, sentiment score, or the frequency with which users assign that tag to
that item [GGJ11].

Gedikli et al. [GGJ11] used tag clouds to explain movie recommendations. They
experimented with non-personalized tag clouds, where font size showed the tag’s
importance for the recommended movie, which they measured by the number
of times the tag was assigned to the movie. They also experimented with per-
sonalized tag clouds, where font colour was based on the average rating for that
movie by the user’s nearest-neighbours: blue in the case where on average the
neighbours like the item, red where they dislike it, and black where they are neu-
tral. Gedikli et al. conducted a user trial that showed the advantages of their tag
clouds over more traditional keyword-based explanations [GJG14].

User reviews. Online marketplaces (such as Amazon and AirBnB) allow their
customers to share their experiences or opinions about a product or service in
the form of reviews. User reviews benefit both businesses and customers because
of the valuable information that they contain. Hu et al. [HLZ08] argue that
customers can identify, understand and respond to favourable opinions. Users
are often influenced by reviews when making decisions, e.g. customers are more
likely to buy items with more reviews [PLH07].

User reviews are typically expressed in free text. They are often accompanied
by a score (e.g. a count of votes) indicating their helpfulness. There may be
information about the context in which the user consumed the item, e.g. in the
case of a hotel, the review may be accompanied by information about whether
the user was traveling for business or pleasure, whether she was traveling alone
or with others, etc.

User reviews can be mined for features of the item and sentiment towards the
item or its features, e.g. [HL04, HEZ+12, DSOS13]. Recently, an amount of
work has proposed to use features and sentiments mined from user reviews in
recommendation explanations [CHT16, CODL18, BZIL18, CW17, MLRS15].
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In [CHT16], for example, Chang et al. propose a process that combines crowd-
sourcing and computation to produce personalized natural language explanations.
They first generate tag clusters for a movie and select a representative tag for each
cluster and leverage crowd-wisdom to refine the output. For these representative
tags which serve as topical dimensions, they ask crowdworkers to write explana-
tions based on quotes mined from online movie reviews. Finally, they compute
users interest in the topical dimension based on her activities and present users
explanation that are most interesting to them. Also, Costa et al. [CODL18]
propose a method for the automatic generation of personalized natural language
explanations. They train a character-level attention-enhanced long short-term
memory (LSTM) model on user-rated review texts for items. In the offline ex-
periments, by means of natural language processing metrics, they find that the
quality of the generated texts is close to that of text written by real users.

User reviews have also been processed to extract so-called aspects: relevant factors
of interest. Baral et al. [BZIL18] proposed an approach in which they extracted
aspects from user reviews posted on location-based social networks. They mod-
eled users and point-of-interests (POIs) as review-aspects, and user preferences
on aspects as a location-aspect bipartite graph. They used these bipartite graphs
to generate the explanation by extracting the most dense sub-graphs. They found
that their explainable recommendation model outperformed the ones without ex-
planations.

In domains in which items have a high purchase cost (e.g. laptops) or a high
consumption cost (e.g. tours of historic sites), trade-off explanations have been
found to be effective. For example, Mohammad et al. describe a case-based
recommender system that exploits opinions mined from user-generated reviews in
the domain of holiday tour planning [MLRS15]. They produce explanations that
shows an item’s pros and cons in terms of the item’s features. The features are
found in the reviews using one of two patterns such as a noun followed by a noun or
an adjective followed by a noun or a noun on its own (after eliminating nouns that
are rarely associated with sentiment words in reviews). In this case, the trade-
offs are for a single item. But trade-offs can also explain sets of recommendations
by showing how members of the set compare to each other. Chen & Wang
[CW17], for example, create such explanations in the domain of digital cameras
and laptops. They produced trade-off-oriented explanations by incorporating
products’ specifications and feature sentiments extracted from product reviews.
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Linked data. Linked data is inter-connected data that is published in a way
that complies with the Linked Data principles. For example, DBpedia8 is the
result of an effort to extract structured content from the information available in
various Wikipedia projects. DBpedia is one part of the Linked Open Data (LOD)
cloud, which contains publicly-available linked data resources.

Musto et al. present EXPLOD [MNL+16], in which data available in the LOD
cloud (especially DBpedia) is used to fill templates to generate natural language
explanations of recommendations. EXPLOD exploits the properties encoded in
DBpedia to link the user’s previously liked items with the recommended ones.
Musto et al. extend their idea by incorporating properties not directly connected
to the item to be recommended in order to build explanations containing more
interesting and unexpected patterns [MNL+19].

3.2.1.4 Context-based

It has been argued that contextual information, such as time, location, weather,
or companions, can influence how a person perceives a product or service. Hence,
recommender systems should take context into account when providing recom-
mendations [AMRT11]. For example, it is important to know the user’s compan-
ions before recommending a movie to watch.

Most recently, contextual information has been used in explanations too. In
[SAN+18], Sato et al. proposed explanations that include contexts suitable for
consuming the recommended item. For this, Sato et al. prepared visit logs by
asking crowdworkers to describe the restaurants they have visited and the context
of their visits. Then, a model was trained on these visit logs to produce recom-
mendations as well as context-based explanations: the item is presented to the
user as a recommendation and the context is used as a corresponding explanation.

3.2.1.5 Hybrid

Recall that in user-based explanations, we show similar users who like the rec-
ommended item. However, it may not be clear why the users in the explanation
are similar to the active user. Assuming that similarity between the active user
and the users in the explanation is based on having co-rated items and, indeed,

8https://wiki.dbpedia.org/about
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Table 3.1: Summary of past research based on the type of knowledge they use in
their explanations. In the table, ‘Features’ is denoted as Feats. and ‘Context’ as
Ctxt.

System Users Items Feats. Ctxt. Style
Herlocker et al. [HKR00] 3 neighbours
Coyle & Smyth [CS05] 3 neighbours
Bilgic & Mooney [BM05] 3 3 hybrid
Cramer et al. [CER+08] 3 feats. list
Symeonidis et al. [SNM08] 3 3 hybrid
Vig et al. [VSR09] 3 tag-list
Yu et al. [YLAY09] 3 neighbours
Zanker & Ninaus [ZN10] 3 nat. lang.
Gedikli et al. [GGJ11] 3 tag-cloud
Scheel et al. [SCLDL12] 3 trade-offs
Blanco et al. [BCL+12] 3 feats. list
Chen et al. [CHL13] 3 tag-cloud
Rossetti et al. [RSZ13] 3 topics
Bridge & Dunleavy [BD14] 3 item rules
Zhang et al. [ZLZ+14] 3 word-cloud
Cleger et al. [CFLH14] 3 neighbours
Muhammad et al. [MLRS15] 3 trade-offs
Musto et al. [MNL+16] 3 nat. lang.
Chang et al. [CHT16] 3 nat. lang.
Chen & Wang [CW17] 3 trade-offs
Costa et al. [CODL18] 3 nat. lang.
Baral et al. [BZIL18] 3 3 graph
Sato et al. [SAN+18] 3 context
Rana & Bridge [RB18] 3 3 chains
Naveed et al. [NDZ18] 3 3 3 arguments
Wang et al. [WCY+18] 3 nat. lang.

similar rating values for these co-rated items, then explanations might addition-
ally show these co-rated items. Similarly, in item-based explanations, we show
items that the active user liked and that are similar to the recommended item.
This time, let’s assume that similarity between the items in the explanation and
the recommended item is based on sharing features. Then, explanations might
additionally show these features.

As defined in [PSM12], any combination of the aforementioned types of explana-
tion (user-based, item-based, feature-based and context-based) are called ‘hybrid’
explanations. Our own Explanation Chains are hybrids: they are item-based but
they expose item relationships through the shared features.
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3.2.1.6 Summary

In this section, we have reviewed work on explanations in recommender systems
based on the type of knowledge that they contain. This can be similar users,
similar items, item features, context or combinations of these. We summarize the
papers in Table 3.1. We have found that most explanations so far are provided
using item features but this encompasses a wide range of types of knowledge
including user-generated tags, features extracted from user reviews and linked
data.

These explanations are presented in various styles: from simple list of neighbours
through to special structures such as tag-clouds, graphs, and chains.

In the next section we characterize explanations in terms of their fidelity.

3.2.2 Based on their fidelity

In Artificial Intelligence in general, explanations are sometimes categorized as
white-box (also sometimes called model-based) or black-box (sometimes called
model-agnostic) [HKR00, FZ11]. The distinction typically reflects on the fidelity
of the explanations to the underlying reasoning done by the AI system.

Black-box explanations raise the issue of fidelity [KSB+13] (also called objective
transparency [GJG14]): the extent to which the explanation reveals the logic
of the underlying recommender. Kulesza et al. considered two dimensions of
explanation fidelity: soundness and completeness. They defined the former as
the extent to which each component of an explanation’s content is truthful in
describing the underlying system; and the latter as the extent to which all of the
underlying system is described by the explanation. For example, a recommender
system that explains its reasoning with a simpler model than it actually uses (e.g.
a set of rules instead of additive feature weights) reduces soundness, whereas a
system that explains only some of its reasoning (e.g. only a subset of a user
neighbourhood) reduces completeness.

In an experiment with a music recommender, Kulesza et al. found that the more
that explanations were both sound and complete with respect to the recom-
mender, the greater the users’ trust in the recommender and the better their
understanding [KSB+13]. Arguably, black-box systems cannot achieve fidelity.
(The LIME system [RSG16], which is model-agnostic, claims to achieve ‘local
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Figure 3.4: Generation of white-box and black-box explanations.

fidelity’, but this is not the same concept.) Recommendation-by-Explanation
seeks to achieve quite high fidelity since, in r-by-e, explanation is intrinsic to
recommendation.

We now describe white-box and black-box explanations in further detail.

3.2.2.1 White-box explanations

White-box explanations are built from traces of the system’s reasoning; see Fig-
ure 3.4a. These explanations disclose something of the underlying model in order
to reveal ‘how’ the system has reached its conclusions. For example, if we have
a user-based nearest-neighbours recommender that makes recommendations by
finding items liked by the active user’s nearest neighbours, then a histogram
of the neighbours’ ratings [HKR00] is a white-box explanation. Different rec-
ommender systems employ different types of knowledge and inference methods:
simple content-based systems calculate similarities between the descriptions of
candidate items and the descriptions of items the user has liked in the past;
nearest-neighbour collaborative systems exploit similarities between users and
items; and knowledge-based systems match item features against the user’s re-
quirements. However, the conceptual models employed in these systems are sim-
ple and can be easily conveyed to the user by means of white-box explanations.

Simple white-box explanations are provided, for example, in an artwork rec-
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ommender [CER+08, CES+08], where features of the recommended artwork are
listed that are in common to the artworks previously liked by the user. In [BM05],
information about the neighbourhood (items that the user has liked before and
that are similar to the recommended item, and the keywords that these items
share with the recommended item) are presented in different explanation styles
to explain the recommendations generated by their hybrid content-boosted col-
laborative system. In a similar vein, Symeonidis et al. [SNM08, SNM09] proposed
a novel approach to provide relevant and justifiable recommendations. They cre-
ate biclusters — group of users exhibiting similar rating behaviour (to a target
user) on group of items. They also assign weights to the target user’s feature
profile (item features that better describe the target user tastes and distinguish
her from others). They find nearest neighbours using items and features common
between the user’s profile and the biclusters. Finally, they identify items in the
neighbouring biclusters which are highly preferred by other users and contain
significant features from user’s feature profile. In their approach, they use the
common features to justify each of the recommended item.

For other kinds of recommender systems, white-box explanations are much more
challenging. Explaining the recommendations of latent factor models, for exam-
ple, is not straightforward because it is difficult to attach semantic meaning to
the latent factors. However, there have been efforts to learn these models not just
from user-item ratings but also jointly from item feature knowledge. The hope
is that the latent factors will reflect patterns in the item feature data to improve
their explainability. Chen et al. [WHL11] proposed a four-order tensor that mod-
els the quaternary relationship among users, items, tags and ratings, and builds a
unified framework for user, item, tag, and rating prediction. In order to provide
intuitive explanations, they represent users, tags, and items in a common latent
space. In this latent space, they find the tag whose representation is closest to the
representation of the active user and the recommended item in order to use it as a
dominant feature for explanation. In this way, a tag-cloud is generated to explain
the recommendation [CHL13]. Zhang et al. [ZLZ+14] improve the explainability
of matrix factorization by incorporating both user-feature and item-feature rela-
tions along with user-item ratings into a new unified hybrid matrix factorization
framework. They extracted explicit product features and user opinions from user
reviews and used them while explaining a product.

As we have seen, white-box methods are aware of the underlying recommender
system’s conceptual model and they exploit information to generate explanations.
As they use the same information to generate explanations which they use for
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computing recommendations, they are sound (to some degree) and can achieve a
high degree of fidelity.

3.2.2.2 Black-box explanations

Black-box explanations, by contrast, make no use of knowledge of how the sys-
tem produced its decision. Black-box explanations are post-hoc rationalizations.
For example, the LIME system explains classification decisions by interrogating
the classifier to obtain a dataset from which LIME builds a distinct explanation
model [RSG16]. In general, since they make no use of traces of the system’s
reasoning, black-box explanations must make use of other sources of information
that were not used in the decision-making; see Figure 3.4. In [RSZ13], for exam-
ple, recommendations are made by matrix factorization on a ratings matrix but
the recommendations are explained using topic models that are mined from tex-
tual data associated with the items but not used by the recommender. Black-box
explanations are model-agnostic, since the explanation component is independent
of the reasoning component — in our case, the recommender. Black-box models
have the additional advantage that they protect intellectual property: a white-box
model, by contrast, discloses something of the algorithm by which decisions are
made. But the main motivation for resorting to black-box explanations is when
the reasoning model is too complex or unintuitive to be explained itself, e.g. as
is probably the case with many deep-learning-based models. The separation be-
tween the recommender and the explanation component affords greater freedom
in designing explanations as they are not restricted by the recommendation model
[VSR09].

Vig et al.’s tagsplanations, whch we described earlier, were in fact an example of
black-box explanations [VSR09]. They explained the recommended item (movie)
by means of a list of tags with their corresponding relevance scores. But their rec-
ommender was an item-based nearest-neighbours recommender: it made no use of
the tags and no trace of its reasoning was passed to the explanations component.
This made the explanations model-agnostic: the item-based recommender could
be replaced with any other, e.g. a matrix factorization model, and the system
could still produce tagsplanatons for its recommendations. This means low, or
no, fidelity. Indeed, Vig et al. recognized this and referred to their tagsplanations
as justifications, not explanations, to emphasize their lack of fidelity.

Similarly, Zanker & Ninaus [ZN10] proposed a framework for generating explana-
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tions that exploits domain knowledge to show why a recommended item matches
the user’s preferences. They employed a variant of Predicate-based Finite State
Automata (PFSA) to represent an explanation model such that transitions are
represented by constraints formulating restrictions on a finite set of variables.
Their knowledge-based explanation model is independent of the operation of their
recommender system and therefore generates black-box explanations. The expla-
nation frameworks reported in [MNL+16, MNL+19] that exploit the information
available in the Linked Open Data (LOD) cloud (DBpedia) are also examples of
black-box explanations as they use linked data to generate explanations which is
not used while computing the recommendations.

Recently, a reinforcement learning framework for explaining recommendations has
been proposed [WCY+18]. The framework is model-agnostic: it can be used to
explain any recommendation model including complex deep-learning-based ones.
Given user-item interaction data and the recommendation model, their approach
represents each item in terms of interpretable components (e.g. sentences ex-
tracted from user reviews). From a set of all interpretable components, it aims
to select those components that are concise (e.g. shorter sentences), consistent
with the user’s rating, and sufficient for predicting the user’s preference for the
recommended item.

3.2.2.3 Summary

In this section, we have reviewed past work on explanations in recommender
systems based on their fidelity. Table 3.2 summarizes this work. Fourteen of
the systems that we have reviewed are white-box and the other twelve are black-
box. Content-based systems are often easy to explain but are found to be less
accurate than collaborative systems. Therefore, in many white-box systems, hy-
bridization of content-based with collaborative systems or joint modeling of item
features with user-item ratings were proposed to achieve higher accuracy without
compromising their interpretability.

3.2.3 Based on their role in producing recommendations

In current recommender systems, computing a recommendation and generating
corresponding explanation are two separate, sequential processes. Below we will
look at some work that challenges this assumption.
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Table 3.2: Summary of past research based on fidelity. In this table, K-type means
knowledge type, UCF is user-based collaborative filtering, CB is a content-based
system, CBCF is content-boosted collaborative filtering, LFM is a latent factor
model, CBR is case-based reasoning, FM is a factorization machine, PBRS is
a preference-based recommender system, and ANY means that the explanation
component is independent of the recommender system.

System White-box Black-box K-type Model
Herlocker et al. [HKR00] 3 users UCF
Coyle & Smyth [CS05] 3 users UCF
Bilgic & Mooney [BM05] 3 hybrid CBCF
Cramer et al. [CER+08] 3 features CB
Symeonidis et al. [SNM08] 3 features CBCF
Vig et al. [VSR09] 3 features ANY
Yu et al. [YLAY09] 3 users UCF
Zanker & Ninaus [ZN10] 3 features ANY
Gedikli et al. [GGJ11] 3 features ANY
Scheel et al. [SCLDL12] 3 features CBCF
Blanco et al. [BCL+12] 3 features ANY
Chen et al. [CHL13] 3 features LFM
Rossetti et al. [RSZ13] 3 features LFM
Bridge & Dunleavy [BD14] 3 items UCF
Zhang et al. [ZLZ+14] 3 features LFM
Cleger et al. [CFLH14] 3 users UCF
Muhammad et al. [MLRS15] 3 features CBR
Musto et al. [MNL+16] 3 features ANY
Chang et al. [CHT16] 3 features ANY
Chen & Wang [CW17] 3 features PBRS
Costa et al. [CODL18] 3 features ANY
Baral et al. [BZIL18] 3 hybrid FM
Sato et al. [SAN+18] 3 hybrid CB
Rana & Bridge [RB18] 3 hybrid CB
Naveed et al. [NDZ18] 3 hybrid UCF
Wang et al. [WCY+18] 3 features ANY

3.2.3.1 Classical approaches

It seems obvious that a recommender should first produce its recommendations
and then seek to build explanations for them. This is the classic approach depicted
leftmost in Figure 3.5. Almost all of the systems that we have cited in the previous
subsections work in this way.

Chain-Based Recommendations 43 Arpit Rana



3. Recommendation Explanation:
State of the Art

3.2 Characterizing Explanations of
Recommendations

Generate reasons 
to Recommend 
(Explanations)

Recommend those 
with the best 

Reasons

Classical 
Approaches

Recommendation-
by-Explanation

Compute and Rank
Recommendations

Generate 
Explanations

Re-ranked
Recommendations

Compute
Recommendations

Generate 
Explanations

Rank
Recommendations

Figure 3.5: Role of explanations in producing recommendations.

3.2.3.2 Re-ranked recommendations

There have been a few efforts that modify the classical approach a little. These
are shown in the middle of Figure 3.5. In Re-ranked Recommendations, for ex-
ample, the system finds some recommendations, it generates explanations for
the recommendations, it scores the explanations, and it re-ranks the recom-
mendations based on their explanation scores before showing them to the user
[MLRS15, MLS16].

Yu et al. [YLAY09] propose a similar approach. Their goal is to diversify recom-
mendations. This is almost always done in recommender systems by re-ranking
the recommendations so that the top-n are more dissimilar to each other. In Yu
et al.’s work the re-ranking seeks to minimize the overlap between the recommen-
dations’ explanations.

One of the goals of providing explanations is that by analyzing why the system
recommends a particular item or proposes a certain rating, the user might also
consider the quality of the recommendation and, if appropriate, propose a change
to the predicted value [CTFLH12]. On this basis, Cleger et al. [CFLH14] propose
their idea to learn from explanations. For user-user collaborative filtering, they
gathered knowledge from explanations showing neighbours’ opinions on user’s
previously rated items (e.g. from histograms showing how neighbours have rated
an item) in the form of a set of numerical features, e.g. predicted rating, number
of items supporting the recommendations, entropy, etc. A regression model is
learned on this knowledge and, where appropriate, use this model to predict the
rating prediction error and change the predicted rating for a target item.

Chain-Based Recommendations 44 Arpit Rana



3. Recommendation Explanation:
State of the Art

3.2 Characterizing Explanations of
Recommendations

Table 3.3: Summary of past research based on the role of explanations in the
recommendation process.

System Classical Re-ranked r-by-e
Herlocker et al. [HKR00] 3

Coyle & Smyth [CS05] 3

Bilgic & Mooney [BM05] 3

Cramer et al. [CER+08] 3

Symeonidis et al. [SNM08] 3

Vig et al. [VSR09] 3

Yu et al. [YLAY09] 3

Zanker & Ninaus [ZN10] 3

Gedikli et al. [GGJ11] 3

Scheel et al. [SCLDL12] 3

Blanco et al. [BCL+12] 3

Chen et al. [CHL13] 3

Rossetti et al. [RSZ13] 3

Bridge & Dunleavy [BD14] 3

Zhang et al. [ZLZ+14] 3

Cleger et al. [CFLH14] 3

Muhammad et al. [MLRS15] 3

Musto et al. [MNL+16] 3

Chang et al. [CHT16] 3

Chen & Wang [CW17] 3

Costa et al. [CODL18] 3

Baral et al. [BZIL18] 3

Sato et al. [SAN+18] 3

Rana & Bridge [RB18] 3

Naveed et al. [NDZ18] 3

Wang et al. [WCY+18] 3

3.2.3.3 Recommendation-by-Explanation

Our new approach, Recommendation-by-Explanation, is shown rightmost in Fig-
ure 3.5. Uniquely as far as we are aware, it reverses the process. First, it finds
explanations for all the candidate items. Then, it recommends the candidates
that have the best explanations. Hence, Recommendation-by-Explanation is an
approach that unifies the two processes: computing recommendations and gen-
erating corresponding explanations. This, we believe, gives it high fidelity. We
describe it at much greater length in the next two chapters of this dissertation.
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3.2.3.4 Summary

Table 3.3 summarizes the systems we have reviewed in this section. We can see
that most of these systems follow the classical approach, where recommendation
and explanation are separate and sequential processes. Only a handful of systems
are different.

In the next section, we describe how to evaluate explanations of recommendations.

3.3 Evaluating Explanations of Recommenda-
tions

As we have seen, explanations of recommendations vary in many different ways.
Defining generic criteria to judge the quality of an explanation is difficult, if not
impossible. Furthermore, there is no consensus on what constitutes a good expla-
nation [NMLDL12]. While the literature offers a few principles, e.g. succinctness
and authenticity [FZ11, Fri04], most definitions or methods for measuring expla-
nation quality should take into account the goal of the explanations (Section 3.1).
Evaluating explanations for their persuasiveness may not be the same as evalu-
ating them for their effectiveness in decision-support.

Explanations are user-centric. Offline experiments are of very limited use; for
example, we can measure the size of a system’s explanation (e.g. how many items
or features they contain). But to evaluate the subjective perception of the users
and their impact on user behaviour really requires either user trials or online
evaluation with a deployed system.

Table 3.4 summarizes the evaluation of recommendation explanation. In this
table, we included only those systems where it was explicitly mentioned that the
proposed system was evaluated for a particular explanation goal or to find an
effect of one goal on another.

Bilgic & Mooney introduce a protocol for evaluating explanation effectiveness
[BM05]. This protocol is now well-established, having been adopted by many
others, e.g. [BD14, RB18, GJG14]. In this protocol, a user is initially asked
to rate a recommendation in the case where she is given only the explanation
and not the identity of the item. This is called the explanation-rating. The
user is asked later to re-rate the recommended item in the case where she is not
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Table 3.4: Summary of past research based on how explanations are evaluated.
In this table, Transparency is denoted as Trns, Scrutability as Scrt, Trust as Trst,
Satisfaction as Sats, Effectiveness as Efec, Efficiency as Effi and Persuasiveness
as Pers.

System Trns Scrt Trst Sats Efec Effi Pers
Herlocker et al. [HKR00] 3 3

Sinha & Swearingen [SS02] 3 3 3

Coyle & Smyth [CS05] 3 3

Thompson et al. [TGL04] 3

Bilgic & Mooney [BM05] 3 3 3

McSherry [McS05] 3

Chen & Pu [CP05] 3 3

Pu & Chen [PC07] 3 3 3

Tintarev & Masthoff [TM08b] 3 3 3

Cramer et al. [CES+08] 3 3 3 3

Vig et al. [VSR09] 3 3

Gedikli et al. [GGJ11] 3 3 3 3 3

Shani et al. [SRS+13] 3 3

Kulesza et al. [KSB+13] 3 3

Bridge & Dunleavy [BD14] 3

Muhammad et al. [MLRS15] 3

Musto et al. 2016 [MNL+16] 3 3 3

Chang et al. [CHT16] 3 3 3

Chen & Wang [CW17] 3 3 3 3

Costa et al. [CODL18] 3

Sato et al. [SAN+18] 3 3

Rana & Bridge [RB18] 3 3

Naveed et al. [NDZ18] 3 3

Balog et al. [BRA19] 3 3

given the explanation but she is given information about the item, including its
identity. This is called the actual-rating. Effective explanations are ones where
the explanation-ratings are close to the actual-ratings.

Persuasiveness is also often measured using a difference in the explanation-rating
and actual-rating. When the explanation-rating is greater than the correspond-
ing actual-rating, it indicates that the explanation made the user to overrate
the recommendation and thus it is characterized as a persuasive explanation
[CLA+03, TM08b].

A recent study on transparent, scrutable and explainable user models measures
the scrutability in terms of impact of user’s feedback on the performance of
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the recommender system [BRA19]. However, not all of the seven explanation
goals have standard evaluation protocols. More generally, explanations are eval-
uated by directly asking users about their perception of explanation quality.
For instance, Vig et al. [VSR09] determined perceived effectiveness by asking
user about the helpfulness of the explanation in identifying the recommended
item. Transparency of an explanation is usually evaluated by asking question
about the perceived understanding of the recommendation to the participants
of a user-study [VSR09, CES+08, GGJ11, KSB+13]. Satisfaction can be eval-
uated informally by asking users about enjoyment, usefulness, and ease of use
[GGJ11, MNL+16, NDZ18, WCY+18]. In the literature, trust is sometimes
related to an intention to return to the system to use it again in the future
[CP05, PC07, CHT16].

In our work, we are interested in effectiveness, which is why one of our user trials
uses the re-rating protocol.

3.4 Conclusion

In this chapter, we have reviewed explanations in recommendations, from their
goals to their evaluation. We characterized them based on various criteria in-
cluding what knowledge they contain, their fidelity, and the role they play in the
recommendation process.

From this literature review, we have identified a lack of work in which explanations
are intrinsic to recommendations, and therefore issues with explanation fidelity.

Classic content-based systems are often inherently interpretable while collabora-
tive systems attain higher accuracy but lower interpretability. In general, the
two types of systems are integrated to overcome their shortcomings, i.e. hybrid
systems have been proposed where collaborative recommendations are explained
in a content-based manner. As we will see in the following chapters, by only
using a content-based approach and unifying the processes of computing recom-
mendations and generating corresponding explanations, our new approach attains
greater accuracy than some other content-based systems, and also a higher degree
of fidelity, diversity, and surprise.
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Chapter 4

Explanation Chains

4.1 Introduction

Recommender systems provide explanations to the user to achieve one or more
of the seven goals that we discussed in the previous chapter. Conventionally,
computing recommendations and generating corresponding explanations are two
separate, sequential processes. This separation is one possible cause of low fidelity
between the explanations and the operation of the recommender.

In this chapter, we present Recommendation-by-Explanation (r-by-e), in which
explanation is intrinsic to recommendation. In r-by-e, the system constructs a
reason, or explanation, for recommending each candidate item; then it recom-
mends those candidates that have the best explanations. r-by-e’s explanations
take the form of what we call Explanation Chains. Figure 4.1 shows an example
of an Explanation Chain in the movie domain. The rightmost item (in this case,
The Notebook) is the candidate for recommendation to the user, and will typically
not already be in the user’s profile. The other items (Big Fish, Pearl Harbour and
The Illusionist) form the chain. They are drawn from positively-rated items in
the user’s profile and are intended to support recommendation of the candidate
item. Pairs of successive items in a chain satisfy a local constraint in the form
of a similarity threshold; additionally, each item in the chain satisfies a global
constraint in the form of a threshold on the level of coverage it contributes to-
wards features of the candidate item. For example, Big Fish has the keywords:
secret-mission and parachute in common with Pearl Harbour, as well as the
keyword romantic-rivalry in common with The Notebook.
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User’s Past Preferences Candidate Item

Big Fish
• romantic-rivalry
• carnival
• secret-mission
•parachute
• . . .

Pearl Harbor
• fiancé-fiancee-
relationship

• shooting
• secret-mission
• volunteer
•u.s.-army
•parachute
• . . .

The Illusionist
• fiancé-fiancee-
relationship

• shooting
• secret-love
•broken-
engagement

• star-crossed-lovers
• . . .

The Notebook
• star-crossed-lovers
• secret-love
•broken-
engagement

• volunteer
•u.s.-army
• romantic-rivalry
• self-discovery
• . . .

★★★★☆ ★★★★☆★★★★★

Figure 4.1: An explanation chain.

We believe that r-by-e has the following characteristics:

• Unified approach: It is a unified approach that combines the processes of
computing recommendations and generating corresponding explanations.

• Fidelity: By unifying recommendation and explanation, there is a guaran-
teed level of fidelity between explanations and the operation of the recom-
mender.

• Diversity and serendipity: The approach uses hyperparameters whose val-
ues can be adjusted to loosen or tighten constraints between items in the
chain and thus increase or decrease the diversity and serendipity of the
recommendations.

4.2 Recommendation by Explanation

Recommendation by Explanation (r-by-e) is a novel approach that unifies rec-
ommendation and explanation: it computes recommendations by generating
and ranking corresponding personalized explanations in the form of Explanation
Chains. Here we explain in detail how r-by-e constructs the chains for candidate
items and selects the n that it will recommend.
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Algorithm 1 r-by-e top-n recommendation.
Input: n, number of recommendations

I, set of candidate items
P , user’s profile
θ, similarity threshold
ε, marginal gain threshold

Output: L∗, ranked list of top-n Explanation Chains.
1: function Recommend(n, I, P, θ, ε)
2: L← [ ]
3: for each i ∈ I do
4: C ← GenerateChain(i, P, θ, ε)
5: if |C| > 0 then
6: append 〈C, i〉 to L
7: return SelectChains(L, n)

4.2.1 r-by-e top-n Recommendation

Let I be the set of all items. r-by-e works in a scenario of implicit ratings, where
the user’s profile P ⊆ I is the set of items that she likes. r-by-e will recommend
up to n items from a set of candidate items, I ⊆ I. Candidates I can be defined
in whatever way is suited to the task in hand. Typically, for example, they will
be items not already in P . But they could be further constrained by contextual
factors such as time or location, e.g. recently-released movies, TV shows to be
broadcast in the next few hours, or restaurants in the vicinity of the user. Another
way to obtain candidates is to take the top-n′ recommendations of another rec-
ommender system (n′ >> n); in this case, r-by-e will filter and re-rank the other
system’s recommendations. In our experiments later in this chapter, we define I
to be items that are not in the user’s profile but which do have at least a certain de-
gree of similarity to the user’s profile, I = {i ∈ I \ P | sim(Fi, Fp) > θ,∃ p ∈ P}.
Here Fi and Fp denote the features of items i and p, and we define sim as Jaccard
similarity.

For each candidate item, r-by-e generates an Explanation Chain and then it
selects the top n of those chains to recommend to the user; see Algorithm 1.

4.2.2 Chain generation

Given a candidate item, r-by-e works backwards to construct a chain: starting
with the candidate item, it finds predecessors, greedily selects one, finds its pre-
decessors, selects one; and so on; see Algorithm 2.
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Algorithm 2 Chain generation.
Input: i, a candidate item

P , user’s-profile
θ, similarity threshold
ε, marginal gain threshold

Output: C, an Explanation Chain C for candidate i.
1: function GenerateChain(i, P, θ, ε)
2: C ← [ ]
3: sum_ovrlps = 0
4: j ← i
5: while True do
6: J ← {p ∈ P \ C | sim(Fj, Fp) > θ ∧ ovrlp(p, i, C) > ε}
7: if |J | = 0 then
8: return C
9: j = arg max

p∈J
ovrlp(p, i, C)

10: append j to C
11: sum_ovrlps = sum_ovrlps + ovrlp(j, i, C)

The predecessors of an item are all its neighbours in the item-item similarity
graph that satisfy four conditions: (a) they are members of the user’s profile P ;
(b) they are not already in this chain; (c) their similarity to the subsequent item
in the chain exceeds a similarity threshold θ; and (d) their overlap (see below)
exceeds a marginal gain threshold ε. When there are no further predecessors, the
chain is complete.

At each step, the predecessor that gets selected is the one with the highest overlap.
The overlap ovrlp(p, i, C) of adding predecessor p to partial chain C that explains
candidate item i is given by:

ovrlp(p, i, C) = |(Fp \ covered(i, C)) ∩ Fi|
|Fi|

+ |(Fp \ covered(i, C)) ∩ Fi|
|Fp|

(4.1)

Here again Fi and Fp denote the features of items i and p. covered(i, C) is the set
of features of candidate i that are already covered by members of the chain C, i.e.
covered(i, C) = ⋃

j∈C Fj∩Fi. Then the first term in the definition of ovrlp(p, i, C)
measures p’s coverage of those features of i that are not yet covered by the chain.
The second term in the definition measures the same but with respect to the size
of Fp rather than the size of Fi and therefore assures p’s fitness to explain the
candidate by penalizing items that have high coverage simply by virtue of having
more features.
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Algorithm 3 Chain selection.
Input: L, list of Explanation Chains for different candidate items

n, number of recommendations
Output: L∗, ranked list of top-n Explanation Chains.
1: function SelectChains(L, n)
2: if |L| ≤ n then
3: sort L using score
4: return L
5: L∗ ← [ ]
6: while |L∗| < n do
7: 〈C, i〉∗ = arg max

〈C,i〉∈L
score(〈C, i〉, L∗)

8: append 〈C, i〉∗ to L∗
9: remove 〈C, i〉∗ from L

10: return L∗

4.2.3 Chain selection

After constructing a chain C for each candidate item i, we must select the top-n
chains so that we can recommend n items to the user, along with their explana-
tions. This is done iteratively based on a chain’s total coverage of the candidate
item’s features and the chain’s dissimilarity to other chains already included in
the top-n; see Algorithm 3.

Specifically, we score 〈C, i〉 relative to a list of all the items that appear in already-
selected chains L∗ using the following:

score(〈C, i〉, L∗) = sum_ovrlps
|C|+ 1 +

∣∣∣C \ ⋃j∈L∗ j
∣∣∣

|C|+ 1 (4.2)

Here, the first term is the sum of the overlaps of the items in the chain divided
by its length plus 1 (so as to include candidate item i). It gives higher scores to
chains that do a better job of covering the features of their candidate item. The
second term gives higher scores to a chain if its members are not also members
of already-selected chains and hence encourages the final recommendation list to
cover as many items in the user’s profile as possible. (Note that the second term is
about coverage of items that appear in already-selected chains, not their features.)
We have found this term to have the effect of diversifying the recommendation
list.
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4.3 Offline Evaluation

We ran an offline experiment to evaluate r-by-e’s performance. We compare it
with a content-based recommender, which works as follows. Given candidate item
i, it finds the items in P whose similarity to i exceeds θ; it takes the k of these
neighbours with highest similarity; it scores the candidate by taking a similarity-
weighted average of their ratings. It recommends the n candidates with highest
scores.

The main difference between the two recommenders is that the content-based
recommender relies on similarity relationships between members of P and the
candidate item, whereas r-by-e, by requiring consecutive members of chains to
be similar to each other, additionally takes into account similarity relationships
between members of P themselves. We wanted this experiment to reveal the
effect of this difference. So we otherwise tried to ensure that the two systems
were as similar as possible. They both use the same item features (keywords,
see below), and they both use the same similarity measure (Jaccard). For the
content-based system, we chose to set k in a dynamic fashion, as follows. If, for
candidate item i, r-by-e generates a chain of length |C|, then the content-based
system uses k = |C| when it scores that candidate item. It follows that k is set
dynamically: different candidates may have different values for k. We designate
this system CB-|C|, using a name that emphasizes that, dynamically, k = |C|.1

4.3.1 Experiment settings

We used the hetrec2011-movielens-2k dataset augmented by keywords from IMDb
as described in section 2.4. In r-by-e, user profiles simply contain items the user
likes. We treated ratings of 4 and 5 as ‘likes’, so user u’s profile is given by
{i | ru,i ≥ 4}. We split each user’s ratings into training, validation and test sets
in the ratio 60 : 20 : 20, repeated five times.

We experimented with five different values [0.03, 0.06, 0.09, 0.12, 0.15] of each of
the similarity threshold (θ) and the marginal gain threshold (ε), giving 25 config-
urations of r-by-e. When choosing the best configuration, there is an issue about
what to optimize. It makes sense, for example, to choose the configuration that

1Although we only report results for the dynamic version of this content-based recom-
mender, we did perform preliminary experiments with a version whose value for k was fixed by
a hyperparameter optimization process. In these preliminary experiments, the two versions of
this content-based recommender had quite similar results.
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optimizes precision on the validation sets. But it could be interesting to choose
configurations that optimize other criteria. Therefore, we also show results for
the case where we choose the configuration that optimizes for diversity on the
validation set, and for the case where we choose the configuration that maximizes
the percentage of explanations of size 2–4.

We also suspect that users will find an explanation to be easily intelligible only
if it is fairly small (chains or sets of neighbours of size 2–4 items), so we recorded
the percentage of explanations that were of this size.
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4.3.2 Experiment results

We evaluated the performance of r-by-e against CB-|C| using evaluation measures
described in Section 2.5. Table 4.1 summarizes the results.

For the most part differences in the results for r-by-e and CB-|C| are small but,
since standard deviations are low, in all but one case they are statistically signif-
icant. In two cases, differences are larger: r-by-e has better precision and CB-|C|
has better catalogue coverage. It is noteworthy that r-by-e can produce more
accurate recommendations without sacrificing diversity and surprise.

We will discuss the results further for each of the different ways of optimizing the
hyperparameters:

• Optimizing hyperparameters for precision: In this setting, r-by-e performs
better in terms of precision, diversity, and % of explanations of size 2 – 4,
but it has lower values for surprise, novelty, and coverage. This shows that,
in this setting, items recommended by r-by-e are more relevant and diverse,
but are popular and close to the user-profile.

• Optimizing hyperparameters for diversity: In this setting, r-by-e attains
four times higher precision without compromising diversity. r-by-e’s rec-
ommendations have a higher score for novelty but this is not statistically
significant. Over 65% of CB-|C|’s explanations contain 2–4 items, but most
of r-by-e’s chains are longer.

• Optimizing hyperparameters for % of explanations of size 2–4: In this set-
ting, for both recommenders, explanations are mostly of manageable size
(2–4 items). While CB-|C|’s recommendation cover 90% of the catalogue,
only 1% of them are relevant; they are, however, more diverse, novel, and
surprising. On the other hand, r-by-e gives around seven times more rele-
vant recommendations with nearly similar diversity by covering only 35%
of the catalogue.

4.4 User Trials

We also built a web-based system in order to conduct user trials, again comparing
r-by-e with CB-|C| using the hyperparameter values (θ and ε) that optimized the
percentage of explanations of size 2–4. r-by-e is, above all, a recommender and
so we designed one trial to measure recommendation quality as well as a trial
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Figure 4.2: A screenshot showing top-5 recommendations from the two recom-
menders and survey questions.

to measure explanation quality. In total, 190 people attempted the trials. The
majority of them were undergraduate and postgraduate students recruited online
from universities in India and Ireland. We did not collect any demographic data,
but it is most likely that they were predominantly young, male Computer Science
students. They were not rewarded for participation in any way. To increase the
chances of user familiarity with the movies, the web-based recommenders use only
movies released between the years 2000 and 2011 inclusive.: 1851 (≈ 30%) of the
5992 movies in the dataset used in the offline experiment.

Each participant begins by creating a user profile containing at least 30 movies.
The instructions were that the movies should be the ones the user likes. The user
interface offers both a scrollable grid of movies and a search box to enable her to
find these movies.

We assigned half the participants to the recommendation trial and the other half
to the explanation trial. Of the 190, only 115 completed all parts of the trial to
which they were assigned.

4.4.1 Recommendation trial

RQ: Does r-by-e generate more diverse, serendipitous, and relevant recommen-
dations than CB-|C|?
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4.4.1.1 Experiment settings

The recommendation trial is a within-subjects trial: users see two lists of rec-
ommendations, one list from r-by-e and the other from CB-|C| and they answer
questions that compare the quality of the two lists [EHWK14]; see Figure 4.2.
Lists have length 5 and are sorted in decreasing order of recommender scores.

Before displaying the recommendations, we ensured that the two lists contained
different movies. Each movie that was common to both lists was removed and the
next best recommendations from the top-10 were added to the end of the lists.
(If it was not possible to create two different lists of length 5 from the top-10
recommendations, the user’s responses to the survey were discarded. We did this
to avoid skewing responses about the diversity of recommendations: shorter lists
are less likely to be diverse. In our experiments, there were only two users whose
responses were discarded for this reason.)

For half the users, the list on the left (‘List A’) came from r-by-e and the list on
the right (‘List B’) from CB-|C|; for the other half of the users, List A was from
CB-|C| and List B from r-by-e.

Participants were required to answer three questions:

• Diversity: Which list has a greater variety of movies?

• Serendipity: Which list has more pleasantly surprising recommendations?

• Satisfaction: Which list has more recommendations that you would be likely
to try?

Their answers were on a 5-point: Much more List A than List B; More List A
than List B; About the Same; More List B than List A; and Much more List B
than List A.

4.4.1.2 Experiment results

Sixty-six participants completed this trial. Table 4.2 summarizes their responses.

• Diversity question: 42.4% of participants found r-by-e recommendations
to be much more or more diverse than CB-|C| recommendations, 21.2%
found the recommendation lists to be equally diverse, leaving 36.4% finding
CB-|C| to be much more or more diverse.
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Table 4.2: Results of the Recommendation Trial.

User’s opinion Diversity Serendipity Satisfaction
Much more r-by-e 14 15 28
More r-by-e 14 11 13
About the same 14 23 8
More CB-|C| 11 10 7
Much more CB-|C| 13 7 10

• Serendipity question: 39.4% of participants found r-by-e recommendations
to be much more or more pleasantly surprising, 34.8% found the recom-
mendation lists to be equally surprising, leaving 25.8% finding CB-|C| to
be much more or more surprising.

• Satisfaction question: 62.1% of participants found r-by-e recommendations
to be ones they would be much more or more likely to try, 12.1% found
the recommendations to be equally worthy of trying, leaving 25.8% finding
CB-|C| to be much more or more worth trying.

On all criteria r-by-e produced the better recommendation lists. However, only
in the case of the satisfaction question was this statistically significant. (We used
two-tailed proportion tests with significance level p0 = 0.05. The null hypothesis
was that those preferring r-by-e was equal to those preferring CB-|C|, i.e., ignoring
those who thought the two lists were about the same.)

4.4.2 Explanation trial

RQ: Does r-by-e generate more effective explanations than CB-|C|?

Users who were directed to this trial participated in a re-rating task. Re-rating
tasks are an established method of evaluating explanation quality when the goal
of the explanation is effectiveness: helping users make better decisions [BM05,
GJG14]. A user is initially asked to rate a recommendation in the case where
she is given only the explanation and not the identity of the movie. This is
called the explanation-rating. The user is asked later to re-rate the recommended
item in the case where she is given information about the item, including its
identity. This is called the actual-rating. An effective explanation is one where
the explanation-rating is close to the actual-rating: the explanation allowed the
user to predict how much she would like the item. Effective explanations will
be ones for which (a) µd (the mean difference between explanation-ratings and
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Figure 4.3: A screenshot of an explanation chain. The user has moused over the
arrow that connects the first two movies, which causes the system to bring up
boxes of keywords that these two movies have in common.

corresponding actual-ratings) is close to zero; (b) σd (their standard deviation) is
small; and (c) r (their Pearson correlation) is highest.

4.4.2.1 Experiment settings

In our Explanation Trial, we used r-by-e to generate the top-5 recommendations
for the user. Each of these, of course, came with an explanation in the form of
Explanation Chain, C. For the same movies, we then generated the explanations
that the CB-|C| system would have produced had it made these recommendations:
the k = |C|most similar movies in the user’s profile. If the set of movies in r-by-e’s
chain and CB-|C|’s neighbours were identical, we replaced the recommendation
by the next best recommendation from r-by-e’s top-10 recommendations. (In
contrast to the Recommendation Trail, in this trial, where we were not able to
make 5 recommendations from the top-10, we did not discard the user’s responses:
we are comparing the effectiveness of pairs of corresponding explanations not, for
example, the diversity of lists of recommendations.)

For n recommendations, we have 2n explanations to show to the user: two of
each kind. We show them to the user in a random order and with the identity of
the recommended movie redacted (shown as “XXXX”).

Explanation Chains were displayed in the fashion shown in Figures 4.3 and 4.4:
arrows connect a movie to its successor in the chain.

CB-|C|’s explanations (sets of neighbours, rather than chains) were displayed in
the fashion shown in Figure 4.5: arrows connect each movie to the recommended

Chain-Based Recommendations 61 Arpit Rana



4. Explanation Chains 4.4 User Trials

Figure 4.4: A screenshot of an explanation chain. The user has moused over the
icon for the second movie, which causes the system to display an arrow between
that movie and the recommended movie and to bring up boxes of keywords that
these two movies have in common.

Figure 4.5: A screenshot of a CB-|C| explanation. The user has moused over the
icon for the second movie, which causes the system to increase the width of the
arrow between that movie and the recommended movie and to bring up boxes of
keywords that these two movies have in common.

movie.

In both cases, the user can mouse over parts of the explanation, which causes the
system to display keywords that movies have in common (see the captions of the
Figures). A maximum of three keywords is displayed in any box, and they are
selected by their TF-IDF scores.

As can be seen at the foot of Figures 4.3, 4.4 and 4.5, we asked the user to supply
an explanation-rating (1–5 stars): how much they thought they might like the
movie based only on the explanation.
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Figure 4.6: Ratings from the Explanation Trial.

Table 4.3: Ratings from the Explanation Trial.

Rating type µ σ r

Actual 3.7889 1.0711 –
r-by-e 3.9749 0.9610 0.4855
CB-|C| 3.9799 0.9794 0.2367

After the user has given these 2n ratings, the system then shows her in a random
order each of the n recommended movies again. This time, the identity of the
movie is not redacted but no explanation is shown. Instead, we show genre,
plot synopsis, main cast members, directors, writers, duration, and release date.
Again we ask the user for a rating (the so-called actual-rating) to indicate how
much she thinks she will like the movie.

Note that, although the user has rated the same movie three times, nothing in
the on-screen instructions makes this apparent.

4.4.2.2 Experiment results

Forty-nine participants completed this trial: it is quite onerous and more partic-
ipants abandoned it partway through than did for the other trial. In total, we
obtained 597 ratings, this being three ratings for 199 recommended movies. (As
we mentioned above, we did not always have 5 recommendations per user, e.g.
where explanations contained identical movies).

Chain-Based Recommendations 63 Arpit Rana



4. Explanation Chains 4.4 User Trials

0
3

7

27

93

56

10

1 21 2

14

28

87

44

10 12

1
0

10

20

30

40

50

60

70

80

90

100

-4 -3 -2 -1 0 1 2 3 4

Fr
eq

ue
nc

y

Difference values

Explanation - Actual Rating Distribution

r-by-e - Actual CB-|C| - Actual

Figure 4.7: Differences in ratings from the Explanation Trial.

Table 4.4: Differences in ratings from the Explanation Trial.

Explanation type µd σd 95% Conf. Int.
r-by-e 0.1859 1.0350 (0.0412, 0.3306)
CB-|C| 0.1910 1.2688 (0.0136, 0.3683)

Figure 4.6 shows the distribution of the users’ ratings; Table 4.3 gives summary
statistics.

We can see that users mostly think they will like the movies that the system
recommends, both when they see explanations only and when they see movie
identity. For the differences between explanation-ratings and actual-ratings, Fig-
ure 4.7 shows the distribution of values and Table 4.4 gives summary statistics.

The mean difference between r-by-e ratings and actual ratings is 0.1859; for CB-
|C|, it is 0.1910. Hence, both kinds of explanations cause users to overestimate
their actual-ratings. Using a two-tailed paired t-test (p0 = 0.05), we observed that
in this study, i) the difference between r-by-e-ratings and actual-ratings are sta-
tistically significant; ii) the differences between CB-|C|ratings and actual-ratings
are also statistically significant; and iii) r-by-e-ratings and CB-|C|-ratings are not
statistically different. In terms of µd and σd, then, neither kind of explanation
is better than the other. But there is still the question of correlation with the
actual-ratings.

Table 4.3 shows r, the Pearson correlation between explanation-ratings and
actual-ratings. We see that r-by-e-ratings are better correlated with actual-
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ratings. We calculated the probability of getting this correlation due to chance
to be 0 in both cases.

4.5 Conclusion

Recommendation-by-Explanation (r-by-e) unifies recommendation and explana-
tion. It computes explanations first and then recommends the items with the best
explanations. Its explanations take the form of Explanation Chains, which are
sequences of items from the user’s profile. There are local relationships between
consecutive items in the chain: they have some similarity to each other. There are
also global relationships between items in the chain and the recommended item:
the items are chosen in an effort to cover the features of the recommended item.
The items to be recommended are selected based both on this feature coverage
relationship and the degree of coverage of items in the user’s profile.

This chapter presented experiments to evaluate r-by-e. An offline trial shows the
approach to have better precision than a closely-related content-based recom-
mender, while remaining competitive on measures of diversity and serendipity.

We use a web-based system to conduct user trials. The Recommendation Trial
shows that r-by-e produces recommendations that are apparently more diverse
and serendipitous than those of a content-based recommender (although not sta-
tistically significantly so) and with statistically significantly higher levels of sat-
isfaction. The Explanation Trial is a re-rating task for measuring explanation
effectiveness. Users rate an item given only an explanation (with its identity
hidden) and later re-rate when given the identity without the explanation. The
correlation between these pairs of ratings is much greater in the case of r-by-e
explanations.

In the next chapter, we extend r-by-e. We give ways of generating chains that
use different item representations and weighting schemes. We compare their
performances and report their evaluation results on the dataset we have used
in this chapter but also a variant that includes knowledge extracted from user
reviews.
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Chapter 5

Extensions to
Recommendation-by-Explanation

5.1 Introduction

Recommendation by Explanation (r-by-e) unifies recommendation and explana-
tion: it computes recommendations by generating and ranking corresponding
personalized explanations in the form of Explanation Chains. We previously ex-
plained in detail how r-by-e constructs the chains for candidate items and selects
the top-n items that it will recommend. Although we observed promising results,
the way we compute overlap (ovrlp) and score (score) were relatively simple, and
we considered only one way of representing items — in terms of their features.

In this chapter, we extend r-by-e in two ways (see Figure 5.1). First, we consider
a scheme for assigning weights to an item’s features based on their informative-
ness. We define weighted overlap to take advantage of these weights. Second, we
propose an alternative item representation which makes no explicit reference to
features. We refer to it as a neighbour-based item representation. For this new
item representation, we define both an unweighted and weighted overlap.

We also generalize r-by-e’s chain selection. In place of simply adding the average
overlap and average profile overlap, we define the score to be a linear combination
of the two but controlled by a parameter α.

We explore these variants using two versions of our movie dataset. The first
version is the one we have used so far, described in Section 2.4. Using this
dataset, we represent each item as a set of its keywords. In the second version
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Figure 5.1: Extended Recommendation-by-Explanation

of the dataset, we use sentiment data extracted from user reviews and represent
each item as a set of its terms associated with sentiment values. The complete
details of this version of the dataset are covered in Section 5.4.

In a set of offline experiments, on the first version of the dataset, we com-
pare all four versions of chain generation: i) unweighted feature-based (fb),
ii) weighted feature-based (wfb), iii) unweighted neighbour-based (nb), and iv)
weighted neighbour-based. Notice that unweighted feature-based is what we cov-
ered already in the previous chapter. We include it here again but in a normalized
form for better understanding the difference among all four approaches. We show
in the results that by varying the balancing parameter (α), r-by-e selects longer
chains that subsequently increase the surprise and the diversity of the recom-
mendations. Further offline experiments, this time on the second version of the
dataset, compare the weighted feature-based and weighted neighbour-based forms
of chain generation. (As we will explain, the unweighted forms of chain generation
do not apply to the sentiment version of the dataset.)

From the offline experiments, we choose the best version of r-by-e to compare
with a baseline in a user trial. We conduct this trial on the sentiment version of
the dataset.
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5.2 Extended r-by-e

As previously explained, we have modeled the chain generation step as a set-cover
problem. But, in this chapter, we show that we have two ways of formulating
this. In one of our approaches, feature-based generation, our aim is to cover
the candidate item’s set of features (e.g. its keywords); in our other approach,
neighbour-based generation, we aim to cover the candidate’s set of neighbours (i.e.
similar items). The core of chain generation is computing overlap (ovrlp) between
a potential predecessor and a candidate item. This can simply be performed by
counting the number of elements (either features or neighbours) that are covered.
We call this unweighted overlap. An alternative way of computing overlap (ovrlp)
is to assign weights to the elements based on their informativeness. We call this
weighted overlap.

In r-by-e, chain selection takes the explanation chains (one per candidate item)
and selects the top-n to recommend to the user. This is based on the chains’
scores. The score function is a sum of the average overlap of the chain members
and a diversification term (see Eq. 4.2). The diversification term measures the
number of items (not features) in the user’s profile uniquely covered by the items
in a chain members relative to the chain length. We refer to this as neighbour-
based selection. Analogous to the way we have both feature-based and neighbour-
based chain generation, it seem obvious to design a feature-based version of chain
selection to complement the neighbour-based representation. We did indeed de-
sign and experiment with a feature-based version of chain selection. However, we
found that, in our dataset, the neighbour-based diversification term had a negligi-
ble effect on a chain’s total score. This is because, for a manageable size of chain
(2–4 members), the features of the items in the chain cover only a small part
of the large number of features of the items in the user profile. Consequently, a
chain’s score ends up being nearly equal to just the average overlap of the items.
Therefore, in this dissertation we only show results for neighbour-based chain
selection. However, in this chapter we do make one change to the score function
4.2: we generalize it so that it is no longer a simple sum of the average overlap and
the diversification term; it is now a weighted sum, using a parameter α, allowing
us to vary the importance of the two components of the definition.

The following subsections give the formulae for the extensions that we have just
outlined.
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5.2.1 Feature-based generation

In feature-based settings, an item is represented as the set of its features. At each
step of the chain generation, the predecessor that gets selected is the one that
most covers the candidate’s features.

5.2.1.1 Unweighted overlap

The unweighted overlap ovrlp(p, i, C) of adding predecessor p to partial chain C
that explains candidate item i is given by:

ovrlp(p, i, C) = 2 · |(Fp \ covered(i, C)) ∩ Fi|
|Fi|+ |Fp|

(5.1)

Here Fi and Fp denote the features of items i and p. covered(i, C) is the set of
features of candidate i that are already covered by members of the chain C, i.e.
covered(i, C) = ⋃

j∈C Fj ∩ Fi. This is different from Eq. 4.1 that we defined in
the previous chapter. This is the harmonic mean of the two terms of Eq. 4.1 and
returns a value of ovrlp in the range of [0, 1]. We made this change to make it
comparable with the other versions of overlap that we define below.

5.2.1.2 Weighted overlap

Features associated with an item can be assigned weights based on how represen-
tative or informative they are to that item. In the information retrieval domain,
for example, there are many ways to weight the terms of a corpus of documents.
One such approach to term-weighting is term frequency–inverse document fre-
quency (TF-IDF) [SB88].

As shown in Eq. 5.2, the weight of a feature f of a candidate item i with respect
to the set of candidates I is proportional to the frequency of occurrence of f in i
(denoted as ofi), but inversely proportional to the frequency of occurrence of f
in I overall, thus giving preference to the features that help to discriminate item
i ∈ I from the other items in the collection. The set of items consisting of the
feature f is denoted as If .

In our experiments, we treat an item as a document and its features as terms,
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and adopt the weighting scheme for a feature f of item i as:

wfi =
(1 + log(ofi)) ·

(
log |I|

|If |

)
√∑

f ′∈i

(
(1 + log(of ′i)) ·

(
log |I|

|If ′ |

))2
(5.2)

where ofi is the number of occurrences of a feature f in the item i, |If | is the
number of items containing the feature f , and |I| is the total number of candi-
date items. The equation above is a variant of TF-IDF modeling with cosine
normalization in feature–item space. Intuitively, it measures the informativeness
of a feature f for an item i with respect to informativeness of all other features
in the item. The set of item features (analogous to documents in term-document
space) are of different sizes. In general, larger set of features have higher feature
frequencies because many features are repeated. The cosine normalization helps
lessen the impact of the size of the item description in the modeling [HGE+12].

Using weights assigned to features as above, we define the weighted overlap
wovrlp(p, i, C) of adding predecessor p to partial chain C that explains candi-
date item i as:

wovrlp(p, i, C) =
2 ·
(∑

f∈(Fp\covered(i,C))∩Fi) 1− |wfp − wfi|
)

|Fi|+ |Fp|
(5.3)

The numerator in the definition of wovrlp(p, i, C) measures p’s weighted coverage
of those features of i that are not yet covered by the chain. Specifically, it penalizes
the number of these features by subtracting the difference between their weights
wfi and wfp. Here, we assume that the weights of item features are in the range
of [0, 1] which is guaranteed from Eq. 5.2.

5.2.2 Neighbour-based generation

In neighbour-based settings, an item i is represented as a set of its neighbours Ni.
The set of neighbours of an item i contains items whose similarity to i exceeds a
threshold θ: Ni = {j ∈ I \ i : sim(Fi, Fj) > θ}. At each step, the aim is to cover
neighbours of the candidate item instead of its features.

We define neighbour-based overlap slightly differently from feature-based overlap.
In this approach, covering a candidate item’s neighbours may result in relatively
loosely connected chains — more loosely connected than those built by covering
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its contents. In r-by-e, loosely connected chains may have lower interpretability.
To ‘tighten’ the chains, in the definition of neighbour-based overlap, we remove
already covered elements (covered(i, C)) from the size of neighbours (e.g. Ni and
Np) in the denominator. This assures that chain members have relatively more
neighbours in common with the candidate’s neighbours.

5.2.2.1 Unweighted overlap

We will denote the unweighted overlap of adding predecessor p to partial chain
C that explains candidate item i in the neighbour-based setting by ovrlp(p, i, C),
which is the same as we used in the feature-based setting. The context will make
clear which version is intended at any point. The definition is:

ovrlp(p, i, C) = 2 · |(Np \ covered(i, C)) ∩Ni|
|Ni \ covered(i, C)|+ |Np \ covered(i, C)| (5.4)

Here Ni and Np are the neighbours of items i and p. covered(i, C) is the set of
neighbours of candidate i that are already covered by members of the chain C, i.e.
covered(i, C) = ⋃

j∈C Nj ∩ Ni. The denominator means that coverage is relative
to the size of Ni and Np after removing already covered neighbours. Including
Np in the denominator ensures that p’s fitness to explain the candidate is not
inflated simply by virtue of having more neighbours.

5.2.2.2 Weighted overlap

Neighbours of an item can be assigned weights based on their closeness to the
item. In this approach, we simply define closeness between two items as the
similarity between their sets of features. So, the weight (wji) of a neighbour j of
a candidate item i equals the similarity between them: wji = sim(j, i).

The weighted neighbour-based reward wovrlp(p, i, C) of adding predecessor p to
partial chain C that explains candidate item i is given by:

wovrlp(p, i, C) =
2 · (∑j∈(Np\covered(i,C))∩Ni) 1− |wjp − wji|)
|Ni \ covered(i, C)|+ |Np \ covered(i, C)| (5.5)

This is analogous to Eq. 5.3.

Notice that neighbour-based overlap makes no explicit reference to features. Fea-
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tures are being used, but only implicitly: the set Ni contains items that have high
feature similarity with the candidate item i; and, in the weighted case, weights
are defined in term of feature similarity.

5.2.3 Generalized chain selection

In this chapter, we generalize Eq. 4.2 so that we score 〈C, i〉 relative to a list of
all the items that appear in already-selected chains L∗ using the following:

score(〈C, i〉, L∗) = (1− α) · sum_ovrlps
|C|+ 1 + α ·

∣∣∣C \ ⋃j∈L∗ j
∣∣∣

|C|+ 1 (5.6)

Here, the first term is the average of the overlaps of the candidate features (or
neighbours, depending upon the item representation) in the chain and the second
term is the coverage of items in the user profile with respect to the length of
the chain. α is a parameter that balances the two. We have found increasing
α to have the effect of increasing the length of the chains. On the whole, as we
shall see, this has the effect of increasing the surprise as well as the diversity of
recommendations.

The rest of this chapter reports the results of experiments that evaluate the
extensions that we have presented in this chapter.

5.3 Extended Chains on Keywords

In this section, we evaluate extended chains on the dataset that we discussed in
Section 2.4, which is a dataset in which item features are keywords.

5.3.1 Offline evaluation

We ran an offline experiment to evaluate the different versions of r-by-e. We
wanted the experiment to reveal the effect of the difference between the following:

• feature-based versus neighbour-based: The former represents an item as a set
of its keywords, while the latter represents an item as s set of its neighbours
(similar items) in which the features are used only indirectly.
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• unweighted versus weighted: The former takes into account the feature or
neighbour in a binary way (1 indicates that the feature or neighbour is
present and 0 shows it is not), while the latter assigns weights in [0, 1] to
the features or neighbours.

• CB and CB-|C| versus versions of r-by-e: CB is the classic content-based
system and CB-|C| is the dynamic content-based system. Details of the
dynamic content-based system have been covered in Section 4.3. The CB
systems rely on similarity relationships between members of the user profile
and the candidate item, whereas versions of r-by-e, by requiring consecutive
members of chains to be similar to each other, additionally take into account
similarity relationships between members of the user profile themselves.

• The influence of α: When selecting the top-n chains, α balances the over-
lap of candidate features and the overlap of items in the user profile (see
Eq. 5.6). We vary α from 0 (overlap of candidate features or neighbours
only) to 1 (overlap with the user profile only) in steps of 0.1.

For conciseness, we will refer to the four versions of r-by-e using just fb for
unweighted feature-based, wfb for weighted feature-based, nb for unweighted
neighbour-based, and wnb for weighted neighbour-based.

5.3.1.1 Experiment settings

The evaluation is performed under the same experiment settings as we discussed
in Section 4.3.1. However, we explain the values for the hyperparameters that we
use in this experiment.

Apart from α that we vary from [0, 1] in steps of 0.1, we also consider different
values (0.03, 0.06, 0.09) for the similarity threshold (θ) in the definition of Ni and
different sets of values for the marginal gain threshold (ε): for the feature-based
representation, we experimented with (0.03, 0.06, 0.09); and for neighbour-based
representation, we experimented with (0.05, 0.10, 0.15)1.

The reason behind the using different values for the marginal gain threshold ε for
the two representations is the difference in the size of an item’s set of keywords (for
feature-based representation) and the size of its set of neighbours (for neighbour-
based representation). As we saw in Section 2.4, a typical item has on average

1Because of the high computational cost, in place of the five different values of each of θ
and ε that we used in the previous chapter (Section 4.3.1), we use only three values for each of
the two hyperparameters
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107 keywords while it is connected to 77% of the available items (i.e. over 4600).
Hence, the contribution each chain member makes when covering a candidate’s
features is generally lower than when covering its neighbours. Consequently, we
experiment with higher values of the marginal gain threshold for the neighbour-
based representation.

Three values of each of θ and ε with eleven values of α gives 99 configurations
for each of the four versions of r-by-e. We use this offline experiment to decide
which version performs the best and how it works on different values of α.

5.3.1.2 Experiment results

Table 5.1 and Table 5.2 summarize the results of the feature-based and neighbour-
based approaches. The columns of the table are the different evaluation measures.
The rows are divided into blocks, one block per optimization criteria for which all
hyperparameters are tuned. Rows within blocks are for different recommendation
approaches.

Feature-based chain generation. We looked at the differences in the re-
sults between: i) fb and fb-CB-|C|; ii) wfb and wfb-CB-|C|; and iii) fb and wfb.
The results for the first two comparisons are statistically significant except for
Diversity when optimized for precision. For the most part, differences in the re-
sults for (iii) are small but, since standard deviations are low, in all but one case
they are statistically significant. They are not significantly different for precision
when optimized for % of explanations of size 2–4. In comparison to the fb and
wfb recommenders, CB attains higher diversity, surprise, novelty, and coverage,
but around five times lower precision. Similarly, the CB-|C| recommenders have
higher diversity, surprise, and novelty but lower precision and coverage. We dis-
card the CB recommender when optimizing for % of explanations of size 2–4 as
this criteria is not applicable to CB.

If we look in more detail at the results according to the way hyperparameter
values have been optimized, we see the following:

• Optimizing hyperparameters for precision: In this setting, wfb performs best
in terms of precision and % of explanations of size 2–4, while giving lower
values for diversity, surprise, novelty, coverage. The baseline recommender
makes more diverse and surprising recommendations but at the cost of their
relevance.
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• Optimizing hyperparameters for diversity: In this setting, CB attains high-
est diversity and coverage, while giving very low precision. CB-|C| recom-
menders also give higher values of diversity but they cover only around 4%
of the catalogue and they make almost irrelevant recommendations.

• Optimizing hyperparameters for % of explanations of size 2–4: In this set-
ting, almost all of the chains for top-n recommendations of fb and wfb satisfy
the size constraint, while CB-|C| recommenders hardly generate chains of
this size. The results for fb and wfb look quite similar, but are still statis-
tically significant except for their precision.

Neighbour-based chain generation. Differences in the results between: i)
nb and nb-CB-|C|; and ii) wnb and wnb-CB-|C| are statistically significant in all
cases. On the other hand, differences in the results for nb and wnb are generally
very low and in no case are they statistically significant. Overall, the CB-|C|
recommenders attain higher values of diversity, surprise, and novelty, but they
have lower precision and coverage.

• Optimizing hyperparameters for precision: In this setting, nb and wnb ob-
tain nearly the same level of precision, diversity, surprise, and coverage
with no significant differences. The corresponding CB-|C| recommenders
attain higher values of diversity, surprise and novelty with lower precision,
coverage, and % of explanations of size 2–4.

• Optimizing hyperparameters for diversity: In this setting, CB-|C| recom-
menders give the most diverse, surprising, and novel recommendations but
they are almost never relevant. These recommender also cover only around
3% of the catalogue. Differences in the results for nb and wnb are statisti-
cally significant in all cases except the coverage.

• Optimizing hyperparameters for % of explanations of size 2–4: In this set-
ting, over 97% of the chains generated by nb and wnb recommenders are
of manageable size (2–4 items). However, they cover around 16% of the
catalogue with nearly 1.5% of relevant recommendations. Their diversity,
surprise, and novelty are nearly equal and also lower than their correspond-
ing CB-|C| recommenders.

Feature-based vs. neighbour-based chain generation. We will now com-
pare the two types of item representation by looking at results from both Table
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5.1 and Table 5.2 together.

• Optimizing hyperparameters for precision: In this setting, feature-based
approaches attain three times higher precision, greater coverage, almost
similar levels of diversity and % of explanations of size 2–4, and lower sur-
prise and novelty. This shows that items recommended by feature-based
approaches are more relevant, equally diverse, but less surprising when ap-
proaches are optimized for precision.

• Optimizing hyperparameters for diversity: In this setting, feature-based ap-
proaches attain around five times higher precision, a nearly equal level of
diversity but lower surprise, novelty, and coverage. Over 81% of neighbour-
based explanation chains are of size 2–4 in comparison to around 46% of
feature-based chains.

• Optimizing hyperparameters for % of explanations of size 2–4: In this set-
ting, feature-based approaches attain almost equal precision but with higher
levels of diversity, surprise, novelty, coverage, and explanation chains of size
2–4.
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Let us select one of the four approaches for further study. To pick one, let us
assume that optimizing for the % of explanations of size 2–4 is best, since it
generally gives explanations that are not so long as to be uninterpretable. In
this setting, wfb performs better than other versions of r-by-e, and so this is the
version that we will explore further.

We will study the effect of hyperparameters θ, ε, and α on the performance of
wfb. Although, we considered different values (0.03, 0.06, 0.09) for the similarity
threshold θ in the definition of Ni, we found that varying θ does not make any
noticeable effect on the evaluation measures. Therefore, we only show results
for θ = 0.03. Varying the marginal gain threshold ε affects the chain generation
step (in particular, the chain length) and the balancing parameter α plays a
role in the scoring function of the chain selection step (hence it affects the top-n
recommendations).

Figure 5.2 has six sub-figures — one for each evaluation measure. Each line that
we plot in a sub-figure is for one of the three different values of ε. In most cases,
increasing ε does not change the trend of the measure; it only ‘shifts’ the values
of the measure because higher values of ε impose a stricter constraint. It can also
be seen that in almost all the plots, values of the evaluation measures remain
constant for α ∈ [0.06 − 0.09]. This means that almost the same chains are
selected in the top-n for this range of values for α. We look in the detail at the
results for each evaluation measure individually. We explain results by referring
to Eq. 5.6: for conciseness, we refer to its first term, which indicates the average
amount of overlap of candidate features, as the overlap term; and we refer to its
second term, which indicates the overlap of items in the user profile with respect
to the length of the chain, as the profile term.

Chain length: In Figure 5.2(a), we see that the length of top-n chains (averaged
over all users) increases up to α = 0.5; then, further increase in α does not
affect the length much. This indicates that increasing α gives more weight to
the profile term which enables the system to select longer chains; on the other
hand, the overlap term favours selecting shorter chains. It is also noteworthy
that increasing ε imposes a stricter constraint on chains such that their average
length reduces substantially.

Precision: In Figure 5.2(b), we see that precision varies in four different ways
as we increase the value of α: i) up to 0.2, it increases; ii) from 0.2 to 0.7, it
decreases; iii) from 0.7 to 0.9, it remains almost constant; and iv) at 1.0, it slightly
decreases. In explanation chains, precision is proportional to the candidate’s
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Figure 5.2: Results for wfb with θ = 0.03, ε ∈ {0.03, 0.06, 0.09}, and α ranges in
[0.0− 1.0] for extended chains on keywords.

coverage: the greater the candidate’s coverage, the higher is the precision. We
will define the candidate’s coverage as the ratio of the number of candidate’s
features covered by the chain members to the size of the candidate’s feature set.
The variation in precision with respect to α indicates that the system selects
those chains where: in the case of (i), adding members to the chain (as chain
length increases) helps to increase the candidate’s coverage; for (ii), the overlap
term dominates, so the system selects chains that have a large candidate feature
set that cannot be covered easily, which reduces the coverage and so also reduces
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Figure 5.3: Relationships between precision, diversity and surprise with candidate
coverage, uniqueness, chain length and surprise at θ = 0.03 and ε = 0.03. Above
each sub-figure, we show Pearson correlation. All of the correlation coefficient
values are statistically significant (i.e. p < 0.05).

the precision; for (iii), the system selects almost similar chains; and for (iv), the
system totally ignores the overlap term and so the chains it selects do not try to
cover the candidate, they only try to cover the profile, hence precision decreases.
We plot the relationship between the precision and the candidate’s coverage in
Figure 5.3(a).

Diversity: In Figure 5.2(c), we see that, (i) up to α = 0.4; diversity decreases;
and (ii) it then increases up to α = 1.0. In explanation chains, the diversity of
the top-n recommendations depends upon the uniqueness of the chain members:
the lower the overlap among chains, the higher is the level of diversity. We
will define the uniqueness of a set of chains recommended to a user as the ratio
of the number of distinct items in the union of the chains over the sum of their
lengths. We find that diversity is highest at α = 0.0 because there is least overlap
among chains; increasing α, for (i), increases the chain length and so the overlap;
however, for (ii), when the profile term starts to dominate, the system selects
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even longer chains which increases uniqueness among chains, and thus diversity.
In Figure 5.3(b), we show that both diversity and uniqueness follow the same
trend for increasing α.

Surprise: Figure 5.2(d) shows that up to α = 0.6, surprise increases (though
up to α = 0.2, it increases only slightly); then it remains almost unchanged
(up to α = 0.9); and finally, at α = 1.0, it increases again. Increasing α gives
more weight to the profile term. In effect, the system selects longer chains that
increases their surprise. The intuition behind this relationship is that chains are
shorter when they easily cover the candidate’s features, while they are longer
when the candidate’s features are not easily covered: more items from the user’s
profile are needed to support the candidate item. We find a correlation between
the surprise and the chain length that we show in Figure 5.3(c). We also see in
Figure 5.3(d) that precision and surprise exhibit almost the opposite behaviour
of each other. This is confirmed by the Pearson correlation values (also shown in
the Figure) that are negative for all values of α. This inverse relation between
precision and surprise also indicates inverse proportionality between surprise and
the candidate’s coverage.

Novelty: Figure 5.2(e) shows that novelty decreases up to α = 0.2; then, increases
up to α = 0.6; up to α = 0.9, it remains almost unchanged; and finally, at
α = 1.0, it slightly increases. It can be seen that novelty varies in a way that
is similar to surprise on increasing α. This indicates that for lower values of α,
the system selects those chains that have high candidate’s coverage: intuitively,
popular items can be easily covered. As α increases, the system suggests novel
items which cannot be covered easily and need more items from the user profile
to support them. On ε ∈ {0.06, 0.09}, novelty almost increases with the increase
in chain length.

Coverage: In Figure 5.2(f) we see that coverage varies in a way that is quite
similar to diversity on increasing α. First, it decreases up to α = 0.3, then it
increases up to α = 0.6, it becomes almost unchanged up to α = 0.9, and finally,
it increases at α = 1.0. Shorter chains with low levels of uniqueness cannot cover
much of the catalogue, while longer chains with high uniqueness cover larger part
of it. On higher values of ε, the system imposes a stricter constraint that lowers
the catalog coverage.
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5.3.2 User trial

We reported the results of a user trial of fb on this dataset in the previous chapter.
It might be interesting to see the results we would obtain were we to use wfb
instead. However, given the cost of running user trials and the modest differences
in offline results between fb and wfb, we chose not to conduct this user trial. We
do, however, produce a variant of our dataset (see below) and conduct both offline
experiments and another user trial on that dataset.

5.3.3 Summary

In this section, we have presented offline experiments to evaluate all four versions
of r-by-e. They confirm that the weighted feature-based approach attains better
precision than the other approaches, while remaining competitive on measures
of diversity and serendipity. We have also found that, overall, feature-based ap-
proaches outperform neighbour-based ones, although they may provide relatively
less serendipitous recommendations.

We have also explained the behaviour of evaluation measures for different hyper-
parameter values by means of their dependency on other factors: precision and
candidate coverage is one such example, among others. We will also investigate
these relationships on a different version of the dataset in the next section.

5.4 Extended Chains on Sentiments

In this section, we describe evaluation of extended chains on a different version
of our dataset in which items are represented as sentiment features. We will
refer to chains that make use of these sentiment features as Sentiment-aware
Explanation Chains. These chains guarantee that items are connected only if
they share features with close polarity scores.

We perform experiments with the aim of revealing the effect of sentiment aware-
ness on the quality of recommendations and on the effectiveness of their corre-
sponding explanations.

Next, we describe how we obtain these sentiment features for our dataset.
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5.4.1 Dataset

In the user trial that we described in Chapter 4, we use only hetrec2011-movielens-
2k movies that were released between the years 2000 and 2011 inclusive. This
results in trials that use 1851 (≈ 30%) of the 5992 movies in the dataset. In the
offline experiments and user trial that we report in the remainder of this chapter,
we use sentiment data extracted from user reviews for each of these 1851 movies.

Here, we would like to acknowledge Rafael Martins D’Addio, who followed the
steps that he proposed in [DFDCM18, DMM19] for preparing the sentiment-based
item representation and sharing the dataset with us for this set of experiments.
The only difference in the way he prepared this dataset from the methods he
describes in [DFDCM18, DMM19] is that, after extracting concepts from the
user reviews, here he filtered them using cosine normalized TF-IDF scores as
we mentioned in Eq. 5.2, whereas in his previous work he filtered them using a
different but related measure that he calls SF-IDF [DMM19].

5.4.1.1 User reviews to concepts

First, the top-10 most helpful user reviews for each of the items in the dataset
were scraped from IMDb2. From these user reviews, concepts were extracted to
be used as features. These will be weighted by the sentiments that users have
towards them, and these sentiment-weighted features will be used to describe our
items.

A concept in the approach given in [DFDCM18, DMM19] describes an idea or a
notion. Concepts can be seen as synsets, i.e. sets of word synonyms which define
an idea. By using concepts as features in place of words, we reduce issues such as
polysemy (a word with multiple meanings) and synonymy (multiple words with
the same meaning).

In order to extract concepts and sentiments from user reviews, two different
natural language processing resources were used: Stanford CoreNLP3 [MSB+14]
for sentence splitting, parsing and sentence-level sentiment analysis; and BabelFy4

[MRN14] for word sense disambiguation and entity linking.

First, the items’ reviews were processed with Stanford CoreNLP using the fol-

2https://www.imdb.com/
3https://stanfordnlp.github.io/CoreNLP/
4http://babelfy.org/
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lowing pipeline: tokenization, part-of-speech (POS) tagging, parsing, sentence
splitting and sentiment analysis. From there, the sentences of the reviews were
processed by BabelFy. BabelFy process the texts, returning disambiguated con-
cepts in the form of BabelNet synsets [NP12]. BabelNet5 is a knowledge base
that links several linguistic resources, such as Wikipedia, Wikidata, WordNet,
among others. The unified ontology organizes all these resources into BabelNet
synsets, which define both concepts (such as “romance”, “action movie”) and
named entities (such as “Steven Spielberg” or “Willem DaFoe”), and provides
links between them.

The synsets that are selected to compose our vocabulary are only those that come
from common and proper nouns, and noun phrases. Our vocabulary is built only
with these parts of speech because, in sentiment analysis, features most commonly
come from nouns and noun phrases (such as ‘action’, ‘plot’ and ‘special effects’ in
a movie review), while adjectives and adverbs may be opinion words, i.e. words
that indicate sentiment towards features [LZ12].

5.4.1.2 Filtering concepts

In this experiment, explanation chains are built over concepts. In order to improve
their quality and informativeness, concepts were filtered using the following two
steps:

• Concepts that appear in only one item were removed from the vocabulary.
Since our chains are constructed from links between features of the target
item and items present in the user profile, it is natural that features which
appear in a single item are removed because they will not influence any-
thing in the explanation chain generation. Similarly, the concepts that were
present in all the items in the dataset were also removed since they are too
general.

• Concepts obtained from the previous step were assigned weights using cosine
normalized TF-IDF scores as in Eq. 5.2. Concepts whose average weight
across the reviews in which they appeared were less than 0.01 were re-
moved. The remaining concepts constitute the vocabulary which were used
to produce item representations.

Thus, the dataset comprises 2036 users, 1851 movies, 34088 concepts, and around

5https://babelnet.org/
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300000 ratings. On average, a typical movie has 324 concepts ranging from 104 to
646, which shows a very high variance in the number of concepts. Each movie has
non-zero similarity with 90% (over 1670) of the other movies in the dataset. This
suggests that the item-item similarity graph is even denser than the similarity
graph of keywords where each item was connected to 77% of the other movies.
Also, the average item-item similarity is greater in comparison to the previous
version of the dataset which, we will see, will affect the quality of the top-n chains
recommended to the user.

5.4.1.3 Representing items

Finally, concepts and the items they occur in were modeled using a traditional
vector space representation. Each item is a vector of sentiment scores assigned
to the concepts from the vocabulary. These sentiments can be positive (>=4),
negative (<3), or neutral (=3). The overall sentiment score for a feature of an
item is the average of the different sentiment scores according to its appearances
in the reviews of the corresponding item. In case a feature is not present, a zero is
assigned to it in the vector. This, of course, is still a feature-based representation
(not a neighbour-based representation).

However, we can define the item-item similarity graph on this feature-based rep-
resentation using cosine similarity. From this, we can also define the neighbour-
based representation, where each item is a set of its neighbours in the graph.

The values in the vectors are like the weights we used in our weighted approaches.
Hence, unweighted versions of the sentiment-aware approaches do not make
any sense. Therefore, we run experiments only on weighted versions: weighted
feature-based (wfb) and weighted neighbour-based (wnb).

5.4.2 Offline evaluation

We ran an offline experiment to evaluate sentiment-aware r-by-e’s performance.
We compare i) wfb and wnb; ii) both wfb and wnb with a classic content-based
recommender (CB); and iii) both wfb and wnb with their corresponding dynamic
content-based recommenders: wfb-CB-|C| and wnb-CB-|C|.
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5.4.2.1 Experiment settings

We use the same experiment settings as we described previously. The only differ-
ence is in the values of the similarity threshold (θ) and the marginal gain threshold
(ε). We experimented with θ from (0.06, 0.09, 0.12) for both wfb and wnb; and
we use ε from (0.03, 0.06, 0.09) for wfb, and from (0.10, 0.20, 0.30) for wnb.

5.4.2.2 Experiment results

Table 5.3 and Table 5.4 summarize the results of the weighted feature-based and
weighted neighbour-based approaches.

Feature-based chain generation. We looked at the differences in the results
between: i) CB and wfb; and ii) wfb and wfb-CB-|C|. The wfb results for both the
comparisons are statistically significant. In comparison to the wfb recommender,
the CB and wfb-CB-|C| recommenders attain higher levels of diversity, surprise,
and novelty but lower values of precision and coverage. In particular, the wfb-CB-
|C| recommender covers only around 3% of the catalogue with almost irrelevant
recommendations. We discard the CB recommender when optimizing for % of
explanations of size 2–4 as this criteria is not applicable to CB.

We look in more detail at the results according to the way hyperparameter values
have been optimized as below:

• Optimizing hyperparameters for precision: In comparison to the wfb rec-
ommender, the CB recommender attains higher levels of diversity, surprise,
and novelty but has around eight times lower precision and a lower cover-
age. Similarly, the wfb-CB-|C| recommender has higher diversity, surprise,
and novelty but covers only around 3% of the catalogue with almost no rel-
evant recommendations. In this setting, wfb-CB-|C| selects no explanations
of size 2–4; in fact, they all contain only one item.

• Optimizing hyperparameters for diversity: In this setting, when compared to
the wfb recommender, we see that CB and wfb-CB-|C| suggest more diverse,
surprising, and novel recommendations (though they are not much different
in the case of diversity and surprise); however, they are less accurate and
cover less of the catalog.

• Optimizing hyperparameters for % of explanations of size 2–4: In this set-
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ting, around 97% of wfb’s top-n recommendations have explanations that
satisfy the size constraint as opposed to 20% of wfb-CB-|C|’s recommenda-
tions. The wfb recommender attains much higher precision and catalogue
coverage, but has lower levels of diversity, surprise, and novelty.

Neighbour-based chain generation. Now, we see the differences in the re-
sults between: i) CB and wnb; and ii) wnb and wnb-CB-|C|. They are statistically
significant in all cases. Changing the item representation does not aply to CB,
so its results are the same as before. The CB and wnb-CB-|C| recommenders
attain higher values of diversity, surprise, and novelty, while having lower pre-
cision. In particular, the wnb-CB-|C| recommender has lower catalog coverage
with explanations satisfying the size constraint.

• Optimizing hyperparameters for precision: In comparison to CB and wnb-
CB-|C|, wnb attains higher precision but lower levels of diversity, surprise,
and novelty. Over 84% of its top-n chains are of size of 2–4. wnb-CB-|C|
covers only 3% of the catalog with almost no relevant recommendations.
None of its top-n explanations are of size 2–4.

• Optimizing hyperparameters for diversity: In this case, the wnb-CB-|C| rec-
ommender generates the most diverse, surprising, and novel recommenda-
tions but almost none of them are relevant. Even wnb’s recommendations,
though better, are mostly not relevant. Around 99% of wnb’s explanation
chains are of size 2–4 as opposed to 71% of wnb-CB-|C|’s explanations.

• Optimizing hyperparameters for % of explanations of size 2–4: In this set-
ting, almost all of the chains generated by the wnb recommender are of
the size of 2–4. However, they cover only 27% of the catalogue and only
nearly 1.2% of them are relevant. Its recommendation diversity, surprise,
and novelty are lower than the wnb-CB-|C| recommender.
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Feature-based vs. neighbour-based chain generation. We will now com-
pare the two types of item representation by looking at results from both Table
5.1 and Table 5.2 together.

• Optimizing hyperparameters for precision: In this setting, the wfb recom-
mender attains three times higher precision, greater coverage, nearly equal
levels of diversity and % of explanations of size 2–4, but lower surprise and
novelty than the wnb recommender.

• Optimizing for Diversity: In this setting, the wfb recommender attains
around three times higher precision, nearly equal levels of diversity and sur-
prise but lower levels of novelty and coverage than the wnb recommender.
The wfb recommender generates over 90% of explanation chains of size 2–4
as opposed to 98% of wnb’s chains.

• Optimizing for % of explanations of size 2–4: In this case, the wfb rec-
ommender has around eight times more relevant recommendations with a
nearly equal level of diversity as the wnb recommender. The coverage of the
wfb recommender is greater, while its surprise and novelty are lower than
the wnb recommender.

Overall, in comparison to the wnb recommender, the wfb recommender performs
much better in terms of precision, while remaining competitive for diversity. In
contrast, the wnb recommender gives less relevant but more surprising and novel
recommendations.

As we did in the last experiment, we now select one of the four approaches for
further study. To pick one, we assume that optimizing for the percentage of
explanations of size 2–4 is best, since it generally gives explanations that are not
so long as to be uninterpretable. In this setting, wfb performs better than other
versions of r-by-e, and so this is the version that we will explore further.

We will study the effect of hyperparameters ε and α on the performance of wfb.
Figure 5.4 shows six sub-figures — one for each evaluation measure. It can be seen
that in all the plots for ε ∈ {0.06, 0.09}, values of the evaluation measures remain
almost constant for values of α in the range of [0.02− 0.09]. Only for ε = 0.03 is
there some variation in the evaluation measures but this variation occurs only for
the initial and last values of α; the measures remain largely constant in between.
This shows the effect of high similarity among items in this dataset.

We look in detail at the results for each evaluation measure individually. Again,
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Figure 5.4: Results for wfb with θ = 0.06, ε ∈ {0.03, 0.06, 0.09}, and α ranges in
[0.0− 1.0] for extended chains on sentiments.

we refer Eq. 5.6 and, as before, for conciseness, we refer to its first and second
terms as the overlap term and the profile term respectively.

Chain length: In Figure 5.4(a), we see that the length of top-n chains increases
up to α = 0.4; then, increasing α does not show a noticeable effect on the length.
This indicates that for lower α, the overlap term dominates, and the system selects
shorter chains; it selects longer chains as α gives more weight to the profile term.
For higher values of ε, the system imposes a stricter constraint on chains so their
average length reduces substantially.
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Precision: In Figure 5.4(b), for ε = 0.03, we see that precision varies in three
different ways on increasing the value of α: i) up to 0.5, it decreases; ii) from 0.5
to 0.9, it remains unchanged; and iii) at 1.0, it decreases again. As we mentioned
before, in explanation chains, precision is proportional to the candidate’s cover-
age. In particular, for this dataset, in the case of (i), items are very similar to
each other and adding more members to the chain (i.e. increasing chain length)
does not necessarily increase the candidate’s coverage; for (ii), the system selects
almost similar chains; and for (iii), the system totally ignores the overlap term,
selects chains based only on profile term and these chains do not try to cover the
candidate only the profile; therefore, precision decreases. For ε ∈ {0.06, 0.09},
where there is a stricter constraint, precision becomes constant even earlier. We
show the relationship between the precision and the candidate’s coverage for dif-
ferent values of α in Figure 5.5(a).

Diversity: In Figure 5.4(c), we see diversity remains almost unchanged up to
α = 0.9 and decreases at α = 1.0 for ε = 0.03 (and increases for ε ∈ {0.06, 0.09}).
In our system, as we have shown in the previous experiment, the diversity of the
top-n recommendations depends upon their uniqueness: the lower the overlap
among the members of top-n chains, the higher is the diversity. However, in this
dataset, items are quite similar to each other so varying α does not affect the
uniqueness of the top-n chains except at α = 0.0 when the profile term is totally
ignored. We show in Figure 5.5(b) that in all but one case uniqueness of chain
members is negatively correlated with diversity.

Surprise: Figure 5.4(d) shows that for ε = 0.03, (i) surprise increases up to
α = 0.4; after that (ii) it remains almost unchanged up to α = 0.9; and (iii) it
increases again at α = 1.0. In the case of (i), the system initially selects shorter
chains that easily cover the candidate’s features thus giving low surprise, but, as
α increases, the system selects those candidates that need more chain members
(i.e. longer chains) to be covered. We show the relationship between the chain
length and the surprise in Figure 5.3(c). It shows negative correlation at the
extremes of α because, for lower values of α variation in the values of surprise is
much lower than the chain length, while the reverse applies at α = 1.0. We also
see in Figure 5.5(d) that precision and surprise behave almost the reverse of each
other. This is confirmed by the Pearson correlation values in the Figure that are
all negative.

Novelty: Figure 5.4(e) shows that novelty increases up to α = 0.4, then remains
almost at the same level. It shows that on lower values of α, the overlap term
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Figure 5.5: Relationships between precision, diversity and surprise with candidate
coverage, uniqueness, chain length and surprise at θ = 0.06 and ε = 0.03. Above
each sub-figure, we show Pearson correlation. All of the correlation coefficient
values are statistically significant (i.e. p < 0.05).

dominates, enabling the system to recommend mostly popular items which can
be easily covered by shorter chains; on increasing α, the profile term dominates
and the system suggests novel items that cannot be easily covered. On ε ∈
{0.06, 0.09}, novelty almost increases with the increase in chain length.

Coverage: Figure 5.4(f) shows that coverage increases up to α = 0.4, then remains
almost unchanged. In this dataset, this indicates that up to α = 0.4, coverage
increases with the increase in the chain length; afterwards, it remains nearly at
the same level as the chain length. On higher values of ε, the system imposes a
stricter constraint that lowers the coverage.

5.4.3 User trials

We used our web-based system in order to conduct a user trial, again comparing
wfb with wfb-CB-|C| (but this time the sentiment-aware versions) using the hy-
perparameter values (θ, ε) and α that optimized the percentage of explanations
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Table 5.5: Results of the Recommendation Trial for Extended chains on Senti-
ments.

User’s opinion Diversity Serendipity Satisfaction
Much more r-by-e 11 8 20
More r-by-e 17 16 14
About the same 9 12 5
More CB-|C| 11 12 7
Much more CB-|C| 7 7 9

of size 2–4. This user trial uses the same methodology as the previous one.

In total, 144 people attempted the trial. Although they were anonymous, our
method of recruiting them (e.g. using personal email lists ) means that the major-
ity of them were undergraduate and postgraduate students of Computer Science
recruited online from universities in Ireland, Brazil, and India. Again they were
not rewarded for participation in any way. We assigned half the participants to
the recommendation trial and the other half to the explanation trial. Of the 144,
only 100 completed all parts of the trial to which they were assigned.

5.4.3.1 Recommendation trial

RQ: Does wfb generate more diverse, serendipitous, and relevant recommenda-
tions than wfb-CB-|C|?

Experiment settings. The recommendation trial is identical to the one con-
ducted in the previous chapter (see Figure 4.2).

Experiment results Fifty-five participants completed this trial. Table 4.2
summarizes their responses.

• Diversity question: 50.9% of participants found r-by-e recommendations
to be much more or more diverse than CB-|C| recommendations, 16.4%
found the recommendation lists to be equally diverse, leaving 32.7% finding
CB-|C| to be much more or more diverse.

• Serendipity question: 43.7% of participants found r-by-e recommendations
to be much more or more pleasantly surprising, 21.8% found the recom-
mendation lists to be equally surprising, leaving 34.5% finding CB-|C| to
be much more or more surprising.
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Figure 5.6: A screenshot of an explanation chain. The user has moused over the
arrow that connects the first two movies, which causes the system to bring up
boxes of sentiments that these two movies have in common.

• Satisfaction question: 61.8% of participants found r-by-e recommendations
to be ones they would be much more or more likely to try, 9.1% found
the recommendations to be equally worthy of trying, leaving 29.1% finding
CB-|C| to be much more or more worth trying.

On all criteria r-by-e produced the better recommendation lists. However, only
in the case of the satisfaction question was this statistically significant. (We used
two-tailed proportion tests with significance level p0 = 0.05. The null hypothesis
was that those preferring r-by-e was equal to those preferring CB-|C|, i.e. ignoring
those who thought the two lists were about the same.)

5.4.3.2 Explanation trial

RQ: Does wfb generate more effective explanations than wfb-CB-|C|?

Experiment settings Users who were directed to this trial participated in a
re-rating task. All of the experiment settings are same as the explanation trial
from the previous chapter.

CB-|C|’s explanations (sets of neighbours, rather than chains) were displayed in
the fashion shown in Figure 4.5: arrows connect each movie to the recommended
movie.

In both cases, as before, the user can mouse over parts of the explanation, which
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Figure 5.7: A screenshot of an explanation chain. The user has moused over
the icon for the first movie, which causes the system to display an arrow between
that movie and the recommended movie and to bring up boxes of sentiments that
these two movies have in common.

Figure 5.8: A screenshot of a CB-|C| explanation. The user has moused over
the icon for the first movie, which causes the system to increase the width of the
arrow between that movie and the recommended movie and to bring up boxes of
sentiments that these two movies have in common.

causes the system to display features that movies have in common (see the cap-
tions of the Figures). A maximum of three features is displayed in any box. But
now they are selected by their sentiment scores. Each is also associated with a
smiley icon indicating the sentiment of the feature. We used different colors for
different sentiments: positive (green smiley face), negative (red frowny face), and
neutral (yellow neutral face).

As before, the user gives us 2n ratings based on explanations with redacted movies
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Figure 5.9: Ratings from the Explanation Trial for Extended chains on Senti-
ments.

Table 5.6: Ratings from the Explanation Trial for Extended chains on Sentiments.

Rating type µ σ r

Actual 3.2400 1.2193 –
r-by-e 3.3156 1.0492 0.5338
CB-|C| 3.3867 1.0925 0.1613

and n ratings based on movie information without any explanations.

Experiment results. Forty-five participants completed this trial: it is quite
onerous and more participants abandoned it partway through than did for the
other trial. In total, we obtained 675 ratings, this being three ratings for 225
recommended movies.

Figure 4.6 shows the distribution of the users’ ratings; Table 4.3 gives summary
statistics.

We can see that users mostly think they will like the movies that the system
recommends, both when they see explanations only and when they see movie
identity. For the differences between explanation-ratings and actual-ratings, Fig-
ure 4.7 shows the distribution of values and Table 4.4 gives summary statistics.

The mean difference between r-by-e ratings and actual ratings is 0.0756; for CB-
|C|, it is 0.1467. Hence, both kinds of explanations cause users to overestimate
their actual-ratings. Using a two-tailed paired t-test (p0 = 0.05), we observed that
in this study, i) the difference between r-by-e-ratings and actual-ratings are not
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Figure 5.10: Differences in ratings from the Explanation Trial for Extended chains
on Sentiments.

Table 5.7: Differences in ratings from the Explanation Trial for Extended chains
on Sentiments.

Explanation type µd σd 95% Conf. Int.
r-by-e 0.0756 1.1054 (-0.0688, 0.2199)
CB-|C| 0.1467 1.5002 (-0.0494, 0.3427)

statistically different; ii) the differences between CB-|C|ratings and actual-ratings
are also not statistically significant; and iii) r-by-e-ratings and CB-|C|-ratings are
not statistically different. In terms of µd and σd, then, neither kind of explanation
is better than the other. But there is still the question of correlation with the
actual-ratings.

Table 4.3 shows r, the Pearson correlation between explanation-ratings and
actual-ratings. We see that r-by-e-ratings are better correlated with actual-
ratings. We calculated the probability of getting this correlation due to chance
to be 0 in both cases.

5.4.4 Summary

In this section, we have presented offline experiments on a sentiment dataset
to evaluate the weighted versions of r-by-e. The experiments confirm that the
weighted feature-based approach attains better precision than the other ap-
proaches, while remaining competitive on measures of diversity and serendipity.
We have also found that, overall, feature-based approaches outperform neighbour-
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based ones, although they may provide less serendipitous recommendations. Be-
cause, in this dataset, item-item similarity is higher than it was in the previ-
ous one, overall diversity of the recommendations is lower. We also conducted
user trials to evaluate the quality of recommendations and effectiveness of the
sentiment-aware explanation chains. We have found that such chains also pro-
duce more diverse and serendipitous recommendations and generate explanations
that are more helpful for users to make accurate decisions than the closely cus-
tomized version of classic content-based method.

5.5 Conclusion

In this chapter, we considered various extensions to r-by-e. We presented two item
representations: i) feature-based; and ii) neighbour-based. The former represents
an item as a set of its features (e.g. keywords), and the latter makes no explicit
reference to features and represents an item as a set of its neighbours. For each
of these representations, we also explored weighting schemes to assign weights
to the features (or neighbours). We formulated a normalized form of both an
unweighted and weighted overlap for the two representations and thus defined
four versions of r-by-e’s chain generation. We also generalized r-by-e’s chain
selection by redefining the scoring function as a linear combination of the average
candidate overlap and the average profile overlap balanced by a parameter α.

This chapter presented experiments to evaluate these extensions to r-by-e. An
offline experiment on a dataset where items are described by keywords shows that
the weighted feature-based (wfb) version gives more relevant recommendations
that are also competitive on measures of diversity and serendipity than all other
versions of r-by-e and the baselines. We also found an interesting relationship
between the chain length and the surprise: the higher the chain length, the
more surprising is the recommendation. Another offline experiment, this time on
a dataset where items are described by features weighted by sentiment scores,
confirms that wfb outperforms the other system, however, because of greater
similarities among the items in the dataset, wfb provides recommendations with
a similar level of relevance but lower levels of diversity and surprise than it did
when the dataset used keywords.

We also conducted user trials in case of sentiment-aware explanation chains to
evaluate the quality of recommendations and the effectiveness of the correspond-
ing explanations. The Recommendation Trial shows that r-by-e produces recom-
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mendations that are more diverse and serendipitous than those of a customized
classic content-based recommender (although not statistically significantly so)
and with statistically significantly higher levels of satisfaction. User response
in the Explanation Trial confirmed that the sentiment-aware explanation chains
allow them to make more accurate judgements about the quality of the recom-
mended items than do the baseline’s explanations.

Now, we move to the next part of the dissertation in which we investigate how
to integrate a user’s feedback on a set of recommendations into the process of
computing the next round of recommendations, in order to help the user reveal
her ephemeral needs.
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Chapter 6

Conversational Recommendation:
State of the Art

As we saw in Chapter 2, chains are a unifying framework for this dissertation.
They can be built backwards automatically to explain a candidate item by vis-
iting items in the user’s profile or, as we will see, they can be built forwards in
partnership with the user from a seed, through a chain of recommendations (usu-
ally items that are not in the user’s profile) that, it is hoped, by taking the user
feedback into account, do an ever better job of satisfying the user. Incorporating
the user’s feedback while recommending items to the user makes the system more
conversational. In this chapter, we review the state-of-the-art in conversational
systems.

Recommender systems infer the user’s long-term preferences from her past inter-
actions (e.g. ratings, etc.) with the items, which are recorded in a user profile.
Recommendation algorithms often assume single-shot recommendation: the rec-
ommender ranks the candidate items and allows the user to explore the top-n
items from this ranking. The problem with single-shot recommendation comes
when the user is not fully satisfied by the recommended items. Other things
being equal, the recommender cannot offer her a fresh set of recommendations
unless she changes her profile, e.g. adding a new interaction such as by consuming
and rating an item. In conversational recommendation, by contrast, the user is
invited to provide feedback on the current top-n recommendations, even without
consuming them; for example, the user might simply indicate which of the top-n
recommendations comes closest to the kind of item she wants to consume on this
occasion. The recommender takes account of the feedback in generating a fresh
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top-n recommendations. It may take several recommendation cycles before the
user finds a suitable item, which is why these systems are called conversational
recommender systems and why the interaction is referred to as a dialog. This
terminology dates back ten years, e.g. [BGMS05, Smy07]. More recently, the
word “conversational” has implied not just a dialog, as before, but a dialog in
natural language, e.g. [GGL18]. In this chapter, we continue to use the word
“conversational” in its earlier, broader sense; indeed, the research we describe in
this chapter uses a graphical user interface and not a natural language interface.

Conversational recommender systems (CRSs) cater for a user who is not satisfied
with the initial top-n recommendations. This is particularly useful where the
user has an ephemeral goal, so she has short-term preferences that differ from her
long-term preferences. For example, a user might usually watch documentaries
but this evening she is not in the mood for something so serious. Or, perhaps, this
evening she wants something to watch with her mother, so she should accommo-
date her mother’s tastes as well as her own. Conversational recommendation is
therefore one approach to context-aware [AMRT11] and context-driven [PCL+16]
recommendation: the user can give feedback to steer the recommendations toward
ones that best suit the context [HMB14]. However, most context-aware recom-
mender systems are single-shot systems: they confine their contextual factors to
ones that are observable at the start of the session [HMB14]. The advantage
of conversational systems is that they handle the case where requirements (e.g.
context, the user’s mood, her ephemeral goals, etc.) are not fully observable or
uncertain [PC08].

The goals of CRSs are important as they help to determine how to manage
the dialog between the system and the user and they also help determine how to
evaluate the performance of conversational systems. Our review starts by looking
at these goals.

6.1 Goals of CRSs

A conversational system typically has two goals: effectiveness and efficiency
[MGS02b, CP06]. Effectiveness is the degree to which the system helps the user
to accomplish her task. In a CRS, for example, it might be whether the user
finds a relevant recommendation or some broader measure of user satisfaction.
Efficiency in this context is not about algorithmic run-time; rather, it is a mea-
sure of the effort involved in completing the task (perhaps in terms of time, total
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number of user actions with the system’s user interface, number of interaction
cycles, or cognitive load).

In a CRS, satisfaction is to be maximized (effectiveness) while effort is to be
minimized (efficiency) [JM]. The two goals may be in conflict. For example, a
system that provides explanations alongside recommendations may demand more
effort from its user (due to the time taken to comprehend the explanations) but
in some cases explanations have been found to increase user satisfaction. Or,
to give another example, a user who takes more time exploring the item space
may become more aware of the trade-offs between the items available, perhaps
resulting in more confidence in her final choice, at the expense of the extra time
taken.

6.2 Characterizing CRSs

Conversational recommender systems help users navigate through a complex item
space to find an item of interest. During the dialog, the CRS must select items
for recommendation and elicit feedback from the user, which it must take into
account before making the next set of recommendations.

CRSs can be characterized in many different ways, such as: who is going to control
the dialog; what form does user feedback take; and how will the user’s preferences
(both long-term, revealed by the user’s profile, and ephemeral, revealed by the
feedback) be used to produce the recommendations in each cycle of the dialog.
We explore each of these in the following sections.

6.2.1 Initiative

In a conversation, e.g. with a CRS, at any time, the agent (user or system)
controlling the conversation is said to have the initiative. In some cases, initiative
always rests with the system; in other cases, it always rests with the user; and in
some cases, it may flip between the two.

6.2.1.1 System-initiative

In system-initiative interactions, the system initiates all interactions and waits for
the appropriate responses from the user before moving on to the next interaction.
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At any time, both the system and the user know what the kinds of next possible
actions by the user are, because they must respond to the system’s request.
For example, systems in which user preferences are elicited exclusively through
‘question-answering’ are examples of system-initiative: the system asks questions
about a recommended item [LHZ14] or set of items [CRH16, CBL+18] or feature
values [ZCA+18, SZ18], and the user must answer these questions.

These systems are usually simple to build and are applicable and well-suited
to applications that are task-oriented where the task is quite specific. There is
the potential for an efficient dialog, since there are no user-initiated digressions.
However, users may feel over-constrained and there are challenges in making sure
that the dialog has a natural ‘flow’ from the point of view of the user.

6.2.1.2 User-initiative

In user-initiative dialogs, it is the user who makes requests, and the system that
must respond to the requests. A simple search system might be an example. In
this case, the user takes the initiative by entering a query. The role of the system
is to find sets of relevant resources and its only contribution to the dialog is to list
these resources. But even allowing, for example, voice input to such a system is
likely to change the dialog from user-initiative to mixed-initiative since the system
may need to seize the initiative in order to seek clarification or confirmation of
its interpretations of the user’s input.

6.2.1.3 Mixed-initiative

In the system-initiative and user-initiative dialogs, the roles are fixed. But finding
an item to consume is a two-way information exchange. The system knows the
item space: which items are possible/impossible and which are available/ unavail-
able while the user knows (perhaps imperfectly) her preferences. It makes sense
for each agent to contribute to the dialog whatever it is best suited to contribute
and at the most appropriate time. Thus, the system’s contributions to the dialog
help users to focus on what they will reveal of their preferences, and the user’s
contributions help the system to focus what it reveals of the item space [Bri02].
Such a dialog is referred to as mixed- initiative [AGH99]. In such interactions,
initiative shifts back and forth between the user and the system.

The advantage of mixed-initiative dialogs is that the system can guide the user,
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Table 6.1: Summary of past research based on dialog initiative.

System System- User- Mixed-
proposed by initiative initiative initiative
Burke et al. [BHY97] 3

Smyth & Cotter [SC00] 3

Shimazu [Shi02] 3

McGinty & Smyth [MGS02a] 3

Thompson et al. [TGL04] 3

Faltings et al. [FPTV04] 3

Nguyen & Ricci [NR04] 3

McCarthy et al. [MRMS05] 3

Reilly et al. [RMMS05] 3

Ricci & Nguyen [RN07] 3

Nguyen & Ricci [NR08] 3

McCarthy et al. [MSS10] 3

Li & Pu [CP10] 3

Vig et al. [VSR11] 3

Salem & Hong [SH13] 3

Gupta & Chakraborti [GC13] 3

Loepp et al. [LHZ14] 3

Hariri et al. [HMB14] 3

Christakopoulou et al. [CRH16] 3

Zhang et al. [ZCA+18] 3

Sun & Zhang [SZ18] 3

Christakopoulou et al. [CBL+18] 3

Pan et al. [PCM18] 3

Nguyen & Ricci [NR18] 3

but the user is also free to say anything she wants, e.g. to ask questions, to
introduce new ‘topics’, and so on. On the downside, these systems are difficult
to build: the system must keep track of its own agenda, remember which parts
of this agenda have been completed, interpret user actions even when they seem
irrelevant to the agenda, and bring the user back to the agenda to ensure task
completion.

6.2.1.4 Summary

Table 6.1 summarizes past research on CRSs in terms of dialog initiative. Most
of the systems in the literature have system-initiative dialog.

Thompson et al.’s Adaptive Place Advisor [TGL04] is mixed-initiative. The sys-
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tem uses frames (which are sets of attribute-value pairs) and seeks to fill the frame
with the user’s values. The system can choose which attribute to ask about next,
but the user has the flexibility to volunteer the value for an attribute different
from the one suggested by the system. Similarly, Vig et al.’s Movie Tuner [VSR11]
allows the user to critique tag dimensions other than the ones the system suggests.

Of the systems that we surveyed, none has a purely user-initiative dialog.

The system that we design and evaluate in the remainder of this dissertation
has a system-initiative interaction strategy. In each interaction cycle, the system
makes recommendations, displaying them as a tree on the screen, and the user
must select the one from the tree that comes closest to what she is looking for.

6.2.2 User feedback

CRSs make use of two basic strategies to help users navigate through the item
space: navigation-by-asking and navigation-by-proposing [Shi02]. Each of the two
strategies depends upon different forms of user feedback. In navigation-by-asking,
the user responds to questions. Usually, questions ask about specific item features,
such as the maximum price she is prepared to spend on, for example, a new laptop.
Hence, this form of feedback is referred to as value elicitation. Navigation-by-
proposing collects user preferences in a less direct manner: instead of asking for
specific feature details, it proposes a set of recommendations and invites the user
to evaluate the recommended items. It makes use of one of the three forms of
feedback: critiquing, rating-based and preference-based [SM03a, MS06].

The use of these different forms of feedback is influenced by four factors [MS06]:
i) cost, i.e. the effort required by the user to provide the feedback; ii) ambiguity,
i.e. the ability of the feedback to guide the recommender; iii) expertise, i.e. the
level of domain knowledge needed by the user to provide the feedback; and iv)
interface, i.e. the type of user interface required to capture the feedback. We
describe the different forms of feedback with their comparative strengths and
weaknesses based on these influencing factors below.

6.2.2.1 Value-elicitation

The most common and direct form of feedback is for the user to provide her
preferred value or value for a specific attribute, usually in response to a question
about this attribute, e.g. a user seeking a laptop and asked about her preferred
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CPU might say she wants a 1.66GHz Itanium microprocessor. The challenge of
building a CRS that uses value-elicitation is in equipping the CRS with a strategy
for selecting an optimal set of attributes to request from the user and a logical
order in which to ask about them. Attributes can be chosen for example in an
heuristic manner [DC00, Sch02] or using a more sophisticated model obtained
by deep reinforcement learning [SZ18], deep recurrent networks [CBL+18], or
multi-memory networks [ZCA+18].

This form of user feedback is suitable only in domains where items are described
in a structured way (e.g. a set of attribute-value pairs); strategies for selecting the
next attribute to ask about may need a high level of domain knowledge; and users
must be willing and able to specify their preferences as responses to direct and
sometimes quite specialized questions. Demands are placed on the user interface
too: it might need to allow selection from lists or the entry of values (e.g. by
typing or speech). In contrast, some forms of navigation-by-proposing require
only an interface that allows clicking or pointing.

6.2.2.2 Critiquing

Another form of feature-level feedback is critiquing where, instead of providing
a specific value for an attribute, users propose ‘tweaks’ to attribute values that
would improve a recommended item (e.g. “like this but cheaper”) [BHY97].

A critique can be unit or compound. The former allows users to give feedback on
a single attribute at a time [BHY97] while the latter allows users to tweak more
than one attribute at a time [RMMS04]. Some people believe that compound
critiquing strategies potentially lead to higher accuracy with shorter dialog length
[ZP06]; others disagree [CP06].

A critique can also be classified as system-suggested or user-initiated. In system-
suggested critiquing systems, the user is allowed to tweak the current recom-
mendation by selecting one of a set of critiques offered by the system. In the
early FindMe systems, these critiques were pre-designed (e.g. ‘cheaper’, ‘quieter’,
‘nicer’ in [BHY97]’s restuarent finder system). Because of the limitations of pre-
designed critiques, Reilly et al. [RMMS04] proposed dynamic critiquing – the au-
tomated selection of multiple features from a range of compound critiques based
on the user’s current position within the item space (e.g. ‘different manufacturer,
lower processor speed, and cheaper’ in [MRMS05]). The main advantage of these
systems is that they reveal knowledge about the remaining recommendation op-
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portunities and they accelerate the user’s critiquing process if they correspond
well to the user’s intended feedback criteria.

In contrast, user-initiated critiquing systems do not propose pre-computed cri-
tiques, but provide a facility to users to freely create and combine critiques
themselves [CP09]. Pu et al. [PCK08] presented an example critiquing agent
in which a user either accepts a result, or takes a near solution by applying cri-
tiques provided for each product attribute under ‘keep’ (default), ‘improve’ and
‘take any suggestion’ labels. Thus, she can critique one attribute by either im-
proving its current value (selecting ‘improve’) or accepting a compromised value
suggested by the system (selecting ‘take any suggestion’). A study has shown
that user-initiated systems enable users to achieve significantly higher decision
accuracy, preference certainty, and sense of control, compared to systems that
provide system-suggested critiques [CP06]. This study also motivated the de-
velopment of hybrid critique-based recommender systems that combine both the
systems: system-suggested and user-initiated, in order to compensate each other.
For example, Vig et al.ś Movie Tuner System [VSR11] is a hybrid system.

One characteristic of the work we have surveyed so far is that it requires struc-
tured item descriptions, usually in the form of sets of attribute-value pairs. We
are aware of only one exception: in [VSR11], Vig et al. extend the critiquing idea
to items whose descriptions are sets of tags. Users are free to apply unit and com-
pound critiques, and are also allowed either to choose from the system-suggested
tags or enter additional tags of their own, resulting in a mixed-initiative model
of critiquing.

On the whole, critiquing provides a relatively unambiguous indication of the user’s
current preferences, imposes low burden on the user, may have low interface re-
quirements (especially when critiques are pre-designed and system-suggested),
and might even be usable by users with minimal understanding of the item fea-
tures.

6.2.2.3 Rating-based

Rating is usually an item-level form of feedback [SM03a]. Rating is familiar in
the case where a user has consumed an item, perhaps one recommended by the
system, and is asked for her opinion. But here we are considering the case where
a user may receive a set of recommendations and rates them without having
consumed them in order to improve the next cycle of recommendations. From
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information about the item (e.g. a movie poster, stills from the movie, a synopsis,
perhaps a trailer, and so on), the user must decide whether she is likely to enjoy
the item: in a CRS, these ratings precede consumption.

In general, ratings-based feedback is a relatively low-cost form of feedback since
the user only needs to express a qualitative or quantitative indication of her
preference for each recommended item. However, the level of efforts increases as
the number of items presented also increases [SM03a]. Since this kind of feedback
has some ambiguity (e.g. exactly what it is about the item that the user thinks
she will like or dislike), dialogs might be long with many recommendations and
hence a lot of user feedback. This form of feedback places moderate demands on
the interface: the user needs only to select her rating for each item.

6.2.2.4 Preference-based

In preference-based feedback, the user expresses preferences at the item level
(rather than, for example at the level of features or attributes). She indicates
simply which of the current recommendations she prefers. The system then may
interpret this as a request for further recommendations similar to the one the
user has selected (“more like this”) [SM03b, GC13]. This is attractive in domains
where users might struggle to articulate their preferences in more detail [SM03a].
It avoids issues about the accuracy and stability of explicit ratings [APTO09]
and aligns with evidence that users prefer to compare items rather than to rate
them [JBB11].

It is the lowest cost form of feedback. But if preference-based feedback is to
result in efficient dialogs, account needs to be taken too of the ways in which
the rejected items differ from the selected one, as is done in comparison-based
recommendation [MGS02a]. Extensions to the work also reveal, for example, the
usefulness of controlling the diversity of the recommendations in each cycle of the
dialog [MGS03, SM03b, MS06].

The work on comparison-based recommendation has assumed that items have
structured descriptions in the form of sets of attribute-value pairs. Differences
between the attribute values of the selected and rejected items forms part of
the basis for making the next set recommendations in the dialog. One of the
contributions of our work described in the next chapter is that we extend the
preference-based and comparison-based feedback idea to items whose descriptions
are sets of features such as keywords or tags. There is a relationship here with

Chain-Based Recommendations 111 Arpit Rana



6. Conversational Recommendation:
State of the Art 6.2 Characterizing CRSs

the large body of work on relevance feedback in information retrieval, surveyed in,
e.g., [RL03]. This work often involves modification of a query (e.g. adding terms
or modifying vector weights). There is also recent work on exploratory search and
information retrieval that allows users to dynamically influence document ranking
by interacting with summaries of the documents’ keywords or tags [dSSV16,
dSBV18].

An alternative to structured representations (attribute-value pairs) and unstruc-
tured representations (sets of keywords or tags) is presented in [LHZ14], where
a latent factor model is learned from user ratings, thus requiring no item de-
scriptions at all. During a dialog, the user is repeatedly presented with, and
may select between, a set of items [PCM18] that score low on a system-chosen
latent factor and another set of items that score high on that factor. The user
chooses between these sets of items, resulting in updates to a vector that captures
the user’s choices and drives the next set of recommendations. Similar work is
reported in [GW15] and [CRH16] but with a focus on cold-start.

6.2.2.5 Summary

In general, there is a trade-off between the ability of a particular form of feedback
to efficiently guide a CRS and the cost to the user of providing the feedback. If
value-elicitation sits at one extreme, then simple preference-based feedback sits
at the other: the former has high cost to the user but may focus the recommen-
dations; the latter has low cost but is more ambiguous about what it is that the
user likes about the selected item and therefore has less ability to focus the rec-
ommendations. In the end the appropriate form of feedback to use will depend
largely on the characteristics of a particular application scenario.

Table 6.2 summarizes past research on CRSs based on the type of user feedback.
It is noticeable that most systems using natural language for conversation use
value-elicitation. A rich set of systems have been proposed that make use of
critiquing. But recent years has seen an upturn in interest in preference-based
user feedback.

In the next section, we characterize CRSs based on what kind of user preferences
they model.
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Table 6.2: Summary of past research based on user feedback.

System Value Critique Rating Pref.
proposed by -elicitation -based -based -based
Burke et al. [BHY97] 3

Smyth & Cotter [SC00] 3

Shimazu [Shi02] 3 3

McGinty & Smyth [MGS02a] 3

Thompson et al. [TGL04] 3

Faltings et al. [FPTV04] 3

Nguyen & Ricci [NR04] 3

McCarthy et al. [MRMS05] 3

Reilly et al. [RMMS05] 3

Ricci & Nguyen [RN07] 3

Nguyen & Ricci [NR08] 3

McCarthy et al. [MSS10] 3

Li & Pu [CP10] 3

Vig et al. [VSR11] 3

Salem & Hong [SH13] 3

Gupta & Chakraborti [GC13] 3

Loepp et al. [LHZ14] 3

Hariri et al. [HMB14] 3

Christakopoulou et al. [CRH16] 3

Zhang et al. [ZCA+18] 3

Sun & Zhang [SZ18] 3

Christakopoulou et al. [CBL+18] 3

Pan et al. [PCM18] 3

Nguyen & Ricci [NR18] 3

6.2.3 User preferences

In recommender systems, and especially CRSs, a user’s preferences may consist
of her long-term (or persistent) preferences and her short-term (or ephemeral)
preferences [SHY04, GCN+18]. We describe this in detail below.

6.2.3.1 Long-term preferences

A user’s long-term preferences are ones that are relatively stable, e.g. in gen-
eral, she likes comedies. In contrast, short-term preferences are more ephemeral,
e.g. although she generally likes comedies, this evening she is in the mood for
something more serious.
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When we talk about a user profile in a recommender system, this is usually a
representation of the user’s long-term preferences. It might take the form of a set
of features (e.g. genres) that the user likes; or it might take the form of a set of
items that the user has consumed and ratings for those items. The profile might
be initialized at registration time [PC08], e.g. by asking the user to select genres
that she likes or by asking her to rate some movies. It grows over time as the
user consumes more items.

Single-shot recommender systems generate recommendations by exploiting the
user’s long-term preferences [JLJ15]. No CRS solely depends upon a user’s long-
term preferences. If it did, it would have no basis for making an interesting set
of new recommendations in each cycle of the dialog. Therefore, for a CRS, it
is essential to capture short-term preferences as well as, or instead of, long-term
preferences.

6.2.3.2 Short-term preferences

CRSs, in general, execute an adaptive process to personalize the current session to
the user of the system [BHY97, MGS02a, TGL04]. For this, they typically exploit
users’ short-term preferences that may include the observable context information
(e.g. time, weather, location etc.) available at the start of the session as well as
the unobservable context (e.g. mood, companion, etc.) collected either explicitly
by asking the user or implicitly from the feedback that the user provides within
a session [HMB14].

Conversational systems exploit user feedback to improve the next cycle of recom-
mendations. However, they usually ignore successive feedback provided within
a given session. This may lead to inefficiencies on the part of the recommender
system, and confusion on the part of the user [RMMS05, DLQW18]. In order to
resolve this issue, Reilly et al. [RMMS05], for example, proposed an incremental
approach for critiquing-based CRSs such that it maintains a critique-based user
model as a set of unit critiques that the user has applied in the current session.

Another issue with CRSs is that they require some user effort while exploring
the recommended items and selecting the most appropriate one. This becomes
onerous specially in the case of using mobile devices with limited screen size
and input modality. A few critiquing-based CRSs have been proposed to min-
imize user effort and improve overall recommendation efficiency by reusing the
critiquing histories of other users [MSS10, SH13]. Alternatively, there have been

Chain-Based Recommendations 114 Arpit Rana



6. Conversational Recommendation:
State of the Art 6.2 Characterizing CRSs

efforts to jointly model and integrate user’s long- and short- term preferences.
We discuss these systems in the next sub-section.

6.2.3.3 Long- and short-term preferences

Relying solely on long-term models seems to be insufficient as these models cannot
easily adapt to the user’s ephemeral needs. However, long-term user models are
not only suitable for generating non-contextualized recommendations but also
encode valuable knowledge that can be exploited for matching immediate short-
term preferences [JLJ15].

Nguyen & Ricci [NR04] proposed a preference initialization methodology inte-
grating user’s long- and short- term preference models in order to find an inter-
esting travel product. In their approach, user’s preferences are represented as
a composite query consisting of three components: i) logical query – is a con-
junction of conditions that recommended items must satisfy, e.g. price < 500$;
ii) favorite pattern – is a feature vector representing which conditions the recom-
mender should satisfy, e.g. type of restaurant = vegetarian; iii) feature importance
weight vector – is a vector whose size is the number of item features where a value
between 0 and 1 represents the importance of that feature for the user. They
used different knowledge sources (e.g. user’s current location, her pre-travel plan,
etc.) to initialize the user’s preferences and update the query based on the user’s
feedback in the form of critiques. In their later work [NR08], they evaluated the
impact on recommendation accuracy of the long- and short- term user preferences
of simulated users using a critique-based mobile recommender system.

In the same line, Wu et al [WASB16] proposed inferring user intent through
in-session navigation information and then updating pages of recommendations
based on the inferred user intent. For this, they used a probabilistic model that
incorporates current session navigation information as well as logged navigation
and consumption data. The model infers interest in candidate rows of recom-
mended items based on navigation to a certain point on the page and populates
the remaining rows on the page with more relevant content that reflects the cur-
rent likely predicted intent.

Du et al. [DLQW18] proposed an efficient online personalized next-item recom-
mendation approach via long- and short-term preference learning. The approach
makes use of users’ long-term personalized preferences and short-term sequential
actions to predict the next choices such that the model is updated in time when
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receiving users’ new action information. They model users’ past preferences by
two different matrices: one for users’ long-term preferences and the other ma-
trix contributes to construct short-term preferences. They model a user’s current
preferences as a linear combination of her long- and short-term preferences. The
long-term preference are not filtered in any way. However, they consider only a
recent window of item feedback for a user’s short-term preferences.

Nguyen & Ricci [NR17] proposed a method for combining users’ long-term and
discussion-generated preferences for group recommendations. They model the
two types of preferences linearly such that when a user’s preferences are not
influenced by the group, the preference aggregation model should weigh more the
long-term preferences. On the other hand, when discussion-generated preferences
tend either to align with each other or to diverge due to the group setting, it is
beneficial to take into account more the discussion-generated preferences, which
helps to capture the newly arising interests of the users.

6.2.3.4 Summary

Table 6.3 summarizes past research based on the kind of preferences used. Logi-
cally, no CRSs rely solely on long-term preferences. Some systems use short-term
preferences only. Others combine short-term preferences with long-term prefer-
ences. In these systems, long-term preferences might be used at the start of the
dialog or they may be used jointly with short-term preferences throughout the
dialog.

In the next section, we describe the evaluation of CSRs.

6.3 Evaluating CRSs

The performance of CRSs is measured in offline and online settings with simulated
and real users respectively. In CRSs, a user explores the item space by navigating
from one item to others, looking for better options. Most past work on CRSs
assume a structured item representation (e.g. each item is represented as a set
of attribute-value pairs). A user can start the navigation from a shown example
item, post a critique (e.g. a cheaper camera) or select her preference (e.g. show me
more like this) or rate the recommended choices (e.g. 1–5 stars). More precisely,
navigating the item space involves finding items having more optimal values on
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Table 6.3: Summary of past research based on user preferences.

System Short Long Feedback
proposed by -term & Short -type
Burke et al. [BHY97] 3 critiquing
Smyth & Cotter [SC00] 3 rating
Shimazu [Shi02] 3 val elicit.
McGinty & Smyth [MGS02a] 3 preference
Thompson et al. [TGL04] 3 val elicit.
Faltings et al. [FPTV04] 3 critiquing
Nguyen & Ricci [NR04] 3 critiquing
McCarthy et al. [MRMS05] 3 critiquing
Reilly et al. [RMMS05] 3 critiquing
Ricci & Nguyen [RN07] 3 critiquing
Nguyen & Ricci [NR08] 3 critiquing
McCarthy et al. [MSS10] 3 critiquing
Li & Pu [CP10] 3 critiquing
Vig et al. [VSR11] 3 critiquing
Salem & Hong [SH13] 3 critiquing
Gupta & Chakraborti [GC13] 3 preference
Loepp et al. [LHZ14] 3 preference
Hariri et al. [HMB14] 3 preference
Christakopoulou et al. [CRH16] 3 preference
Zhang et al. [ZCA+18] 3 val elicit.
Sun & Zhang [SZ18] 3 val elicit.
Christakopoulou et al. [CBL+18] 3 val elicit.
Pan et al. [PCM18] 3 preference
Nguyen & Ricci [NR18] 3 preference

one or several attributes, while accepting compromised values for other attributes.

In the case of evaluating with simulated users, Mc Ginty & Smyth [MGS02a,
MS06] proposed an evaluation methodology that can be used for critiquing- and
preference- based feedback for case-based recommendations. Each case of the
case-base represents an item and is temporarily removed and used in two ways:
first, each case serves as the basis for a set of random queries of varying sizes.
Second, a case in the case-base which is most similar to the current target case
serves as the recommendation targets during the experiments. In other words,
the original target case is taken as the ideal query for a user, a generated query
serves as the initial query that the user provides to the recommender, and the
best case is the best available case for the user based on their ideal query. In this
way, at each cycle the case most similar to the target is selected to expand in the
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next recommendation cycle.

Although simulations are helpful to evaluate the performance of recommendation
algorithms, investigating evaluation criteria from a real-user perspectives has also
been recognized as a prime concern, especially for CRSs [PCH12]. Therefore, it
is valuable to conduct user trials to measure how users perceive the recommen-
dations generated by a CRS.

In user trials, this is specifically performed qualitatively with real users by asking
questions and quantitatively by analyzing their interaction data. If the task is
unambiguous, it can be simply measured by absolute task success (e.g. the system
books the right flight for its user). Pu & Kumar [PK04] proposed a standard
protocol for evaluating critiquing-based conversational systems. According to the
protocol, the user is asked to identify the most preferred item (e.g. an apartment)
and then she is asked to navigate from that item to find items that achieve various
trade-offs, e.g. “Can you find something closer? You can compromise on one and
only one attribute”. Finally, the system’s performance is measured in terms
of users’ task completion time and error rates, i.e. the total number of wrong
answers. Similarly, Chen & Pu [CP06] measured decision accuracy quantitatively
by the fraction of participants that switched to a different, better option when
they were asked to view all alternatives in the database. The lower is the fraction,
the better is the recommendation accuracy. They also measured decision effort
in terms of the number of products viewed, critiquing effort, etc.

It is often infeasible to run complete user satisfaction studies after each change in
the system. For this reason, it is useful to have performance evaluation heuristics
that correlate well with human satisfaction. As discussed earlier (Section 6.1),
effectiveness and efficiency are the two basic factors that define a user’s overall
satisfaction with a conversational recommender system. Effectiveness is typically
measured in terms of task completion success (i.e. hit-rate), the user’s confidence
in the choice she has made, the system’s ability to recommend a variety of op-
tions to the user (i.e. diversity), the system’s potential to suggest serendipitous
recommendations (i.e. surprise), and the system’s ability to minimize user effort
(i.e. decision effort). The effectiveness is often measured in each cycle of the
dialog [TGL04, RMMS05]. On the other hand, efficiency is typically measured
in terms of task completion time in seconds or simply by the total number of
recommendation cycles elapsed to reach to the item of interest.
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6.4 Conclusion

In this chapter, we have reviewed work on conversational recommender systems,
from their goals to their evaluation. We characterized them based on various
criteria including interaction initiative, the form of feedback they use in the dialog,
and how they model users’ preferences.

In the next chapter we introduce Navigation-by-Preference (n-by-p), which ex-
tends the work on conversational recommenders by showing how we can use
preference-based feedback in domains where items have unstructured descrip-
tions. Navigation-by-Preference allows us to combine a user’s long- and short-
term preferences and can be configured to take short-term preferences into ac-
count in a variety of ways. We also propose a new protocol for user trials that
has a novel way of giving a user some short-term preference, different from her
long-term preference.
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Chapter 7

Preference Chains

7.1 Introduction

As we have discussed, the process by which a user selects an item to consume (e.g.
a movie to watch) is often an iterative one: the user’s requirements may be un-
certain, or even erroneous, and may be refined by exposure to the items a system
presents to her [PC08]. This motivates the use of conversational recommender
systems that allow repeated interactions between the user and the system.

In this chapter, we present a new conversational recommender system, which
we call Navigation-by-Preference (n-by-p). As we will explain in more detail, it
works in a content-based way on unstructured item descriptions such as sets of
keywords or tags. It uses preference-based feedback, in which a user simply selects
from the current n recommendations the one that comes closest to the kind of
item she wants to consume [SM03b]. It combines short-term preferences (from
the user feedback) with long-term preferences (from the user profile). But it can
be configured in a variety of ways including: how much it weights the long-term
preferences; whether it takes account of feedback given only in the most recent
cycle or feedback given throughout the dialog; whether it uses only the positive
feedback revealed by the item that the user selects in a cycle or whether it also
takes into account the negative feedback revealed by the items that the user does
not select.

Figure 7.1 shows an example n-by-p conversation in the form of a tree of rec-
ommendations. In the example, the user provides a seed movie, in this case,
A Beautiful Mind. The system recommends three movies (My Big Fat Greek
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Figure 7.1: An example of navigation-by-preference, showing a preference chain.

Wedding, The Best of Youth, and Antitrust). The user indicates that, of these
three, My Big Fat Greek Wedding comes closest to the kind of movie she wants
to watch. From this feedback, in the next cycle, the system recommends a fur-
ther three movies. This continues for several more cycles, forming a sequence
of selected movies that we call a preference chain, which is highlighted in the
diagram.

The work we report in this chapter makes the following contributions:

• Past work on preference-based feedback, and most past work on conversa-
tional recommender systems, assumes that items have structured descrip-
tions, usually in the form of sets of attribute-value pairs. n-by-p works on
unstructured item descriptions, such as sets of keywords or tags. Hence,
the chapter extends preference-based feedback to these representations.

• Past work on preference-based feedback, and most past work on conversa-
tional recommender systems, takes into account only the most recent round
of feedback: long-term preferences and feedback revealed in earlier cycles
are ignored. n-by-p can be configured to also take into account long-term
preferences, or feedback from earlier in the dialog, or both.

• Past work on preference-based feedback, and most past work on conver-
sational recommender systems, has been evaluated only in offline experi-
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ments. In this chapter, as well as offline experiments, we report the results
of a user trial. Furthermore, our trial adopts a novel protocol for exploring
short-term preferences in recommender system evaluation.

Just like r-by-e, there are different versions of n-by-p: feature-based and
neighbour-based. We will describe neighbour-based first.

7.2 Neighbour-Based n-by-p

Navigation-by-Preference (n-by-p) is a novel conversational recommender system
that uses preference-based feedback on unstructured item representations. In
high-level terms, n-by-p works as follows. The user selects a seed item, s, typically
from her user profile. n-by-p recommends n candidate items to the user. Let’s
call the set of recommendations R. From R, the user selects one item — the
one which comes closest to what she wants to consume on this occasion (e.g.
the movie that is closest to the kind of movie she wants to watch tonight). Her
choice, s, becomes the ‘query’ item for the next cycle. This repeats until she finds
a recommendation s ∈ R that she wants to consume.

Let I be the set of all items. n-by-p works in a scenario of implicit ratings, where
the user profile of the active user P is simply a set of items that the active user
likes, P ⊆ I. Candidate items for the active user u, I, are items that might be
recommended to u; these are simply the items that are not in the user’s profile:
I = {i : i ∈ I \ P}.

Each item i has a set of features (e.g. keywords or tags), denoted Fi. The simi-
larity of two items, sim(i, j), is given by the Jaccard similarity of their features,
|Fi∩Fj |
|Fi∪Fj | . In the version of n-by-p that we are describing in this section, the features
are used only indirectly. When reasoning about an item i, this version of n-by-p
uses a set of related items, Ni, which are candidate items that are neighbours of i,
i.e. whose similarity to i exceeds a threshold θ: Ni = {j ∈ I \ {i} : sim(i, j) > θ}.

Suppose, during the dialog, the user selects an item s from the latest set of
recommendations R. Which items might we recommend in the next interaction
cycle? The obvious answer is: candidates that are similar to s, i.e. Ns. This
is the essence of preference-based feedback: recommending items that are like
the one that the user selected (“more like this”). But, not every member of Ns

should be a candidate for recommendation in the next cycle. We exclude any
previously recommended items, for example, since we choose not to recommend
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an item more than once in a dialog. Furthermore, we might take into account
the ‘negative’ feedback that we have received. We know that the user’s most
recent choice, s ∈ R, is preferred to the other members of R (R \ {s}). We might
discard some members of Ns to reflect this fact. We will postpone the details of
different ways of doing this to subsequent sections. But, by way of notation, let’s
refer to this subset of Ns as the selection-consistent candidates and denote it by
S, S ⊆ Ns.

The next question is: how do we choose n items from S to recommend to the user?
We want to ensure that the set of recommendations R on each cycle (a) reflect
the user’s long-term preferences, as revealed by the user’s profile; (b) reflect her
short-term preferences, as revealed by the items she has chosen (and not chosen)
during the dialog, especially her most recent selection; and (c) are different from
each other, to ensure diversity.

A user’s long-term preferences L are represented by the candidate items that are
neighbours of each item in the user’s profile: L = ∪i∈P Ni. For (a) above, for each
candidate i ∈ S, we can measure how much Ni overlaps with L. Her short-term
preferences are given by S itself, so for (b) above, we can measure how much Ni

overlaps with S as a whole. For (c), diversity, we can make sure that Ni covers
parts of S that were not covered by other recommendations. Again, we postpone
the details to subsequent sections.

In fact, we propose two versions of neighbour-based n-by-p: Navigation-by-
Immediate-Preference (n-by-i-p) and Navigation-by-Cumulative-Preference (n-by-
c-p). Both make use of the user’s long-term preferences (given by L); they differ
in how they handle short-term preferences. In n-by-i-p, only feedback from the
most recent cycle affects the next cycle; in n-by-c-p, we use item weights to allow
feedback from earlier cycles to also affect the next cycle. We now present each in
detail.

7.2.1 Neighbour-based n-by-i-p

Neighbour-based n-by-i-p is shown as Algorithm 4. It initializes the selection-
consistent candidates, S, to candidate items that are neighbours of the user-
provided seed, Ns. It repeatedly makes a set of n recommendations, R, drawn
from S. In each cycle, the user makes a selection, s ∈ R. She also chooses an
action, a. In the case that a = STOP, the dialog is over; the user has chosen to
consume s; in the case that a = CONTINUE , s is not ideal but it is the member
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Algorithm 4 Neighbour-based n-by-i-p
Input: s: seed item, chosen by the user

L: candidate items that are neighbours of items in P
π: update policy
n: number of recommendations per cycle

Output: i ∈ I, a candidate item to consume
1: S ← Ns

2: Tabu ← ∅
3: while |S| > n do
4: R← Recommend(S, L, n,Tabu)
5: s, a← user chooses s ∈ R and a ∈ {STOP,CONTINUE}
6: if a = STOP then
7: return s
8: S ← Update(s, R \ {s}, π)
9: Tabu ← Tabu ∪R

of R that comes closest to satisfying the user, and the dialog continues. In the
latter case, S is updated based on the item that the user selected (s), the ones
she did not select (R \ s) and an update policy (π), yet to be explained. But it
excludes from S members of R, since we choose not to recommend an item more
than once in a given dialog.

We will look at recommendation and update in more detail.

7.2.1.1 Recommending

Recommendation in n-by-i-p (Algorithm 5) greedily selects the n members of
S that have highest score. The score for an item i, score(i, S, L,R), depends
on the selection-consistent candidates S (to capture short-term preferences), the
candidates that are neighbours of items in the user profile L (to capture long-
term preferences), and the incrementally-constructed set of recommendations R
(so that the next item to be added to R can be different from the ones that
have already been added, thus ensuring a level of diversity to the final set of
recommendations).

More formally, the score for inserting a candidate i into a (partial) recommenda-
tion list R given S and L is a linear combination of short- and long-term scores:

score(i, S, L,R) = (1− η) · ovrlp(i, S,R) + η · ovrlp(i, L \ S,R) (7.1)

η in [0, 1] controls the balance between the short- and long-term scores. In the
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Algorithm 5 Neighbour-based n-by-i-p’s Greedy Recommender
Input: S: selection-consistent candidates

L: candidate items that are neighbours of items in P
n: number of recommendations per cycle

Output: R, a list of n recommendations
1: function Recommend(S, L, n,Tabu)
2: Candidates ← S \ Tabu
3: R← [ ]
4: while |R| < n and |Candidates| > 0 do
5: i∗ ← arg max

i∈Candidates
score (i, S, L,R)

6: append i∗ to R
7: Candidates ← Candidates \ {i∗}
8: return R

second term, we pass in L \ S instead of L, to ensure that members of S do not
get double-counted in the scoring.

ovrlp(i,X,R) simply measures the overlap between i’s neighbours (excluding any
that are already covered by R) and a set of items X (where X is either S or L\S;
see Eq. 7.1):

ovrlp(i,X,R) = 2 · |(Ni \ cov(X,R)) ∩X|
|Ni \ cov(X,R)|+ |X \ cov(X,R)| (7.2)

In essence, the numerator is the size of the intersection of the candidate items
that are neighbours of i (Ni) and the set X, Ni ∩ X. However, we do not
want to reward i with a high score if it is similar to items that we have already
decided to recommend, R. We define cov(X,R) to be the items in X that are
already covered by neighbours of items in the partial recommendation list R, i.e.
cov(X,R) = ⋃

j∈R Nj ∩X.

The denominator in Eq. 7.2 is the sum of the sizes of both Ni and X (excluding
cov(X,R)). If we divide only by the size of X, we would not penalize items that
have high overlap simply by virtue of having more neighbours (large Ni). Since
we divide by both, we also double the numerator in compensation, resulting in a
Harmonic mean.

Notice how the definition of ovrlp makes no explicit reference to features. We
are reasoning about items through their neighbours (Ni) and considering how the
set of neighbours covers the set of items X. Features are being used, but only
implicitly: the set Ni contains candidate item that have high feature similarity
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Table 7.1: Update policies: Update(s, R \ {s}, π)
Here, s is the selected item; for brevity we write R′ for the set of rejected items,
R′ = R \ {s}; and we write Sims(j) for the set {sim(j, j′) : j′ ∈ R′}.

π = Strict: S ← Ns \
⋃

j∈R′ Nj

Discard a member of Ns if it is a neighbour of any member of R′.

π = Relaxed: S ← Ns \
⋂

j∈R′ Nj

Discard a member of Ns if it is a neighbour of every member of R′.

π = Open: S ← Ns

Do not discard any members of Ns (i.e. ignore R′).

π = Mean: S ← Ns \ {j ∈ Ns : sim(j, s) < mean(Sims(j))}
Discard a member of Ns if its similarity to s is less than the mean of its
similarities to the members of R′.

π = Max : S ← Ns \ {j ∈ Ns : sim(j, s) < max(Sims(j))}
Discard a member of Ns if its similarity to s is less than the greatest of its
similarities to the members of R′.

with i.

7.2.1.2 Updating

Suppose a user selects an item s ∈ R and chooses action CONTINUE. Then we
must update the selection-consistent candidates S. Remember that, in n-by-i-p,
previous rounds of feedback are forgotten. In essence, S becomes Ns, candidate
items that are neighbours of the most recently selected item, s. But, we might
also take into account the negative feedback: the rejected items R \ {s}. We
have defined five different update policies π, which differ in how they make use
of the members of R\{s}. One policy (Open) ignores the rejected items entirely;
another (Strict) ensures that no rejected item will be recommended in the next
cycle; and three policies (Relaxed, Mean and Max) lie somewhere between these
two extremes. The details are given in Table 7.1.

7.2.2 Neighbour-based n-by-c-p

Navigation-by-Immediate-Preference ignores feedback that the user gives in all
but the most recent cycle of the dialog. This means that the current set of rec-
ommended items may contain items that are not related to ones that the user se-
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Algorithm 6 Neighbour-based n-by-c-p
Input: s: seed item, chosen by the user

L: candidate items that are neighbours of items in P
ρ: re-weighting policy
n: number of recommendations per cycle

Output: i ∈ I, a candidate item to consume
1: S ← Ns

2: Tabu ← ∅
3: Reweight(s,∅, ρ)
4: while |S| > n do
5: R← Recommend(S, L, n,Tabu)
6: s, a← user chooses s ∈ R and a ∈ {STOP,CONTINUE}
7: if a = STOP then
8: return s
9: S ← Update(s, R \ {s}, π = Open)
10: Reweight(s, R \ {s}, ρ)
11: Tabu ← Tabu ∪R

lected earlier, or items that are related to ones that the user rejected earlier. This
may confuse the user or prolong the dialog. To better utilize user feedback, we
formalize Navigation-by-Cumulative-Preference (n-by-c-p): each candidate item
i ∈ I has a weight wi; weights are initially zero; but items are re-weighted based
on the user’s feedback; and, when scoring items for recommendation, overlap is
weight-sensitive.

n-by-c-p (Algorithm 6) is very similar to n-by-i-p (Algorithm 4). There are two
main differences. The first is that, when it calls Update, it always uses the Open
update policy. This means that the selection-consistent candidates for the next
cycle are all candidates that are neighbours of the most recently selected item: no
item is discarded. The second difference is that the algorithm calls Reweight.
It calls it at the start, so that item weights reflect the user’s choice of seed; and
it calls it after the user has given feedback, so that weights reflect the user’s
most recent selection. We will explain recommendation and re-weighting in more
detail.

7.2.2.1 Recommending

Recommendation in n-by-c-p is almost identical to recommendation in n-by-i-
p (shown earlier as Algorithm 5). The only difference is that in line 5, n-by-
c-p selects the item using a different scoring function. Line 5 becomes i∗ ←
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Algorithm 7 Neighbour-based n-by-c-p’s Greedy Recommender
Input: S: selection-consistent candidates

L: candidate items that are neighbours of items in P
n: number of recommendations per cycle

Output: R, a list of n recommendations
1: function Recommend(S, L, n,Tabu)
2: Candidates ← S \ Tabu
3: R← [ ]
4: while |R| < n and |Candidates| > 0 do
5: i∗ ← arg max

i∈Candidates
wscore (i, S, L,R)

6: append i∗ to R
7: Candidates ← Candidates \ {i∗}
8: return R

arg max
i∈Candidates

wscore (i, S, L,R). Complete pseudocode is presented in Algorithm 7.
The weighted score, wscore(i, S, L,R), is given by:

wscore(i, S, L,R) = (1− η) · wovrlp(i, S,R) + η · wovrlp(i, L \ S,R) (7.3)

We define wovrlp(i,X,R) as follows:

wovrlp(i,X,R) =
2 ·∑j∈(Ni\cov(X,R))∩X wj

|Ni \ cov(X,R)|+ |X \ cov(X,R)| (7.4)

This is very similar to Eq. 7.2 except that overlap between an item j in Ni \
cov(X,R) and X now counts for wj, whereas in Eq. 7.2 it is as if wj = 1 for all
j. The weights will give prominence to items that are more important, based on
user feedback during the dialog. So we turn now to how the weights are modified.

7.2.2.2 Re-weighting

In each cycle, n-by-c-p updates the weight wi of each candidate item i to incor-
porate the most recent feedback:

wi ← wi + ∆wi ∀i ∈ I (7.5)

We have seven different policies ρ for computing ∆wi, and they are given in
Table 7.2. In the policies in Table 7.2, we use a binary indicator Cij, whose value
indicates whether items i and j are related. Specifically, they are related if i is
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Table 7.2: Re-weighting policies: Reweight(s, R \ {s}, ρ)
Here, s is the selected item; for brevity we write R′ for the set of rejected items,
R′ = R \ {s}; and d is the depth of the tree.

ρ = Directional (Direc):
∆wi = Cis −

∑
j∈R′ Cij

Only considers whether i is a neighbour of s or members of R′.

ρ = Similarity (Sim):
∆wi = Cis · sim(i, s)−∑j∈R′ Cij · sim(i, j)

Considers similarities when i is a neighbour of s or members of R′.

ρ = Similarity-Mean (Smean):
∆wi = Cis · sim(i, s)−mean({Cij · sim(i, j) : j ∈ R′})

Considers similarity when i is a neighbour of s, and the mean similarity
when i is a neighbour of members of R′.

ρ = Similarity-Max (Smax):
∆wi = Cis · sim(i, s)−max({Cij · sim(i, j) : j ∈ R′})

Considers similarity when i is a neighbour of s, and the maximum similarity
when i is a neighbour of members of R′.

ρ = Recency (Rcy):
∆wi = Cis · sim(i, s)1/d −∑j∈R′ Cij · sim(i, j)1/d

As per Sim above, but with updates counting more for later recommenda-
tions.

ρ = Recency-Mean (Rmean):
∆wi = Cis · sim(i, s)1/d −mean({Cij · sim(i, j)1/d : j ∈ R′})

As per Smean above, but with updates counting more for later recommen-
dations.

ρ = Recency-Max (Rmax):
∆wi = Cis · sim(i, s)1/d −max({Cij · sim(i, j)1/d : j ∈ R′})

As per Smax above, but with updates counting more for later recommenda-
tions.

one of the candidate items that are neighbours of j: Cij = 1 if i ∈ Nj and 0
otherwise.

The policies differ in the ways they increase ∆wi when i is related to the item that
the user has just selected (given by Cis) and decrease ∆wi when i is related to
items that the user has just rejected (given by Cij for j ∈ R \ {s}). In all policies
except Direc, the amounts added or subtracted are based on the similarities of i
to s and to the members of R \ {s}. In three of the policies (Rcy, Rmean and
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Rmax), updates that come later in the dialog count for more.

7.2.2.3 Restoring

We have implied that, in every cycle, the user must select an item s from the
current set of recommendations R. In fact, in our implementation, we display all
the previous recommendations on the screen also (see Figure 7.1). This affords
an option that we have not explained so far. We allow a user to ‘jump’ back to
a previous recommendation. In other words, she can decide that no member of
R suits her but that some item that was recommended earlier is more suitable.
She can select that earlier item, either to consume (a = STOP) or as the basis
for a new round of recommendations (a = CONTINUE). We have excluded this
from the pseudocode shown in this chapter (Algorithms 4 and 6) in order to keep
the pseudocode simple and intelligible. In n-by-i-p, ‘jumps’ are straightforward
because updates are based only on the most recent selection. In n-by-c-p, ‘jumps’
are more complicated because the weights must be restored to previous values.
This can be achieved either by storing the weights for all items on every cycle or,
as in our implementation, through a form of backtracking that reverses changes
in weights by multiplying them by -1.

7.3 Feature-Based n-by-p

In this section, we will describe versions of n-by-p that use the item features more
directly.

Each item i has a set of features (e.g. keywords or tags), denoted Fi. When
reasoning about an item i, this version of n-by-p uses i’s features, Fi, rather than
its neighbouring items, Ni. Now, symbol S denotes the set of selection-consistent
features in place of selection-consistent candidates. The set of selection-consistent
features is a subset of Fs, i.e. S ⊆ Fs. Similarly, the user’s long-term preferences L
are now represented by the features of the items in the user’s profile: L = ∪i∈PFi.

Feature-based n-by-p works on item features but still recommends items. There-
fore, we need a function that will map features to items. For this, we define
a function τ which takes a set of features, say F , as an input and returns
a set of candidate items that have at least one feature in common with F :
τ(F ) = {i ∈ I | Fi ∩ F 6= φ}.
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Algorithm 8 Feature-based n-by-i-p
Input: s: seed item, chosen by the user

L: set of features of items in P
π: update policy
n: number of recommendations per cycle

Output: i ∈ I, a candidate item to consume
1: S ← Fs

2: Tabu ← ∅
3: while |S| > n do
4: R← Recommend(S, L, n,Tabu)
5: s, a← user chooses s ∈ R and a ∈ {STOP,CONTINUE}
6: if a = STOP then
7: return s
8: S ← Update(s, R \ {s}, π)
9: Tabu ← Tabu ∪R

Algorithm 9 Feature-based n-by-i-p’s Greedy Recommender
Input: S: selection-consistent features

L: set of features of items in P
Tabu: set of already recommended items
n: number of recommendations per cycle

Output: R, a list of n recommendations
1: function Recommend(S, L, n,Tabu)
2: Candidates ← τ(S) \ Tabu
3: R← [ ]
4: while |R| < n and |Candidates| > 0 do
5: i∗ ← arg max

i∈Candidates
score (i, S, L,R)

6: append i∗ to R
7: Candidates ← Candidates \ {i∗}
8: return R

7.3.1 Feature-based n-by-i-p

Feature-based n-by-i-p is shown as Algorithm 8. It is very similar to neighbour-
based n-by-i-p. The only difference is that it initializes the selection-consistent
features, S, to the features of the user-provided seed, Fs, in place of its neighbours,
Ns.

We will look at recommendation and update in more detail.
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7.3.1.1 Recommending

Recommendation in feature-based n-by-i-p (Algorithm 9) greedily selects the n
members of τ(S) that have highest score. In scoring an item i, score(i, S, L,R)
looks the same as in Eq. 7.1 except that, in feature-based n-by-i-p, S denotes the
selection-consistent features (to capture short-term preferences), L is the set of
features of the items in the user profile (to capture long-term preferences), and
R is the incrementally-constructed set of recommendations.

ovrlp(i,X,R) measures the overlap between i’s features (excluding any that are
already covered by R) and a set of features X (where X is either S or L \ S; see
Eq. 7.1):

ovrlp(i,X,R) = 2 · |(Fi \ cov(X,R)) ∩X|
|Fi|+ |X|

(7.6)

In essence, the numerator is the size of the intersection of the features of i (Fi)
and the set X, Fi ∩X.

Notice that the denominator in feature-based overlap (above) is slightly different
from the denominator in neighbour-based overlap (Eq. 7.2). It does not remove
already covered features from the size of the sets Fi and X. This is because
we found in experiments that covering an item’s features results in less diverse
recommendations than covering its set of neighbours; removing already-covered
features from the size of the respective sets causes even more similar recommen-
dations and so we chose not to do this here.

7.3.1.2 Updating

When a user selects an item s ∈ R and chooses action CONTINUE, the set of
selection-consistent features S is updated.

Feature-based update policies differ from neighbour-based ones (see Table 7.1) in
two ways: i) these policies are defined on features (e.g. Fs); and ii) they operate
on item-specific feature weights (e.g. wfs), as defined in Eq. 5.2.

For instance, for feature-based n-by-i-p, the Max update policy becomes:

π = Max : S ← Fs \ {f ∈ Fs : wfs < max(wfR′)}.

In this way, Fs replaces Ns and wfs replaces sim(j, s) in all neighbour-based
n-by-i-p update policies to become feature-based n-by-i-p ones.
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Algorithm 10 Feature-based n-by-c-p
Input: s: seed item, chosen by the user

L: set of features of items in P
ρ: re-weighting policy
n: number of recommendations per cycle

Output: i ∈ I, a candidate item to consume
1: S ← Fs

2: Tabu ← ∅
3: Reweight(s,∅, ρ)
4: while |S| > n do
5: R← Recommend(S, L, n,Tabu)
6: s, a← user chooses s ∈ R and a ∈ {STOP,CONTINUE}
7: if a = STOP then
8: return s
9: S ← Update(s, R \ {s}, π = Open)
10: Reweight(s, R \ {s}, ρ)
11: Tabu ← Tabu ∪R

7.3.2 Feature-based n-by-c-p

Feature-based n-by-c-p (Algorithm 10) is very similar to neighbour-based n-by-
c-p (shown earlier as Algorithm 6). The main difference is that feature-based
n-by-c-p assigns item specific weights to the features simply by calculating their
TF-IDF values as mentioned in Eq. 5.2.

7.3.2.1 Recommending

Recommendation in feature-based n-by-c-p is almost identical to recommenda-
tion in feature-based n-by-i-p (shown earlier as Algorithm 9). The only differ-
ence is that in line 5, n-by-c-p selects the item using a different scoring func-
tion. Line 5 becomes i∗ ← arg max

i∈Candidates
wscore (i, S, L,R). The weighted score,

wscore(i, S, L,R), is given by Eq 7.1.

For feature-based n-by-c-p, we define wovrlp(i,X,R) as follows:

wovrlp(i,X,R) =
2 ·∑f∈(Fi\cov(X,R))∩X wf

|Fi|+ |X|
(7.7)

This is very similar to Eq. 7.6 except that overlap between a feature f in Fi \
cov(X,R) and X now counts for wf , whereas in Eq. 7.6 it is as if wf = 1 for all f .
The weights will give prominence to features that are more important, based on
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user feedback during the dialog. So we turn now to how the weights are modified.

7.3.2.2 Re-weighting

In each cycle, feature-based n-by-c-p updates the weight wf of each feature f to
incorporate the most recent feedback:

wf ← wf + ∆wf ∀f ∈ F (7.8)

As with neighbour-based n-by-c-p, we define seven different policies ρ for com-
puting ∆wf in feature-based n-by-c-p. In their formulation, they are the same as
the policies defined in Table 7.1 except wfj replaces sim(i, j).

7.3.2.3 Restoring

Feature-based restoring is identical to neighbour-based restoring except the fact
that here weights are assigned to item features instead of item neighbours.

7.4 Offline Experiments

We designed an offline experiment, with simulated users, to evaluate the different
approaches to n-by-p. We wanted the experiment to reveal the effect of the
differences between the following:

• neighbour-based versus feature-based: The former represents an item as a
set of its neighbours (similar items) in which the features are used only
indirectly, while the latter represents an item as a set of its features (e.g.
keywords or tags) which makes use of the item features more directly.

• immediate versus cumulative: The former takes into account only the most
recent user feedback and the latter takes into account the feedback across
all cycles of the dialog so far.

• immediate’s five update policies (Table 7.1) and cumulative’s seven re-
weighting policies (Table 7.2). The update / re-weighting policies represent
different ways of taking negative feedback into account. In all cases, once
the user selects item s ∈ R, the next set of recommendations will be drawn
from the selection consistent candidates (Ns) or features (or Fs). But the
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policies afford different ways of handling the rejected items R \ {s} or their
features.

• The influence of η: η controls the balance between short-term and long-term
preferences (Eqs. 7.1 and 7.3). We vary η from 0 (short-term preferences
only) to 1 (long-term preferences only) in steps of 0.25. When η = 0,
overlap with selection-consistent neighbours (or features) S contributes to
the score but overlap with profile neighbours (or features) L does not, hence
only short-term preferences are taken into account. Increasing η (up to 1)
shows the effect of taking long-term preferences into account and, indeed,
when η = 1, short-term preferences are ignored.

We also considered different values (0.03, 0.06, 0.09) for the threshold θ in the
definition of Ni. However, we found that values for θ ∈ {0.06, 0.09} result in
recommendations with very low hit-rates. Therefore, we only show results for
θ = 0.03.

Twelve variations of n-by-p with five values of η gives 60 configurations for each of
the two representations. This justifies the use of an offline experiment: we could
not recruit enough participants to compare so many configurations in a user trial.
Instead, we use the offline experiment to help us decide which configurations to
use in a user trial.

7.4.1 Experiment settings

We used the hetrec2011-movielens-2k dataset that was described in Section 2.4.

We randomly selected 500 users from the dataset to use in the experiments. In
n-by-p, user profiles simply contain items that the user likes (Section 7.2). We
treated ratings in the dataset of 4 and 5 as ‘likes’, so active user u’s profile P is
given by {i : ru,i ≥ 4}. Ratings are otherwise not used in our experiments.

We want to simulate dialogs between each of these users and each of the different
configurations of n-by-p. The initial seed is chosen at random from the user’s
profile. But there comes a problem in modeling the simulated user’s preferences.
Her long-term preferences are obvious: they are given by her profile P . But how
do we simulate her short-term preferences? Given a set of n = 3 recommendations
in each cycle, how do we simulate her preference for one of these over the others?
We cannot have her choose the s ∈ R randomly: that is not the same as exhibiting
a short-term preference. Neither can we have her choose the one that is most
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Figure 7.2: Distribution of targets for different strategies by their similarity with
seeds.

similar to the items in her profile P because this would make her short-term
preferences the same as her long-term preferences. We follow, e.g., [MGS02a]: in
advance, we choose at random a target item t from Ns. In each cycle, from the
current set of n = 3 recommendations, the user will select the one that is most
similar to the target: arg maxi∈R sim(i, t). The simulated dialog stops when the
target is one of the recommendations, t ∈ R, or after 15 cycles in the case where
t itself does not get recommended.

We take three approaches to selecting the target item, in order to simulate dialogs
with different ‘difficulty’ levels. In one set of dialogs, the target item is the
candidate item that is least similar to the initial seed and thus represents the
most difficult case. In another set of dialogs, the target item is the candidate that
is most similar to the seed, and thus represents the easiest case. Finally, we have
a set of dialogs where the target item is chosen at random from the candidates
with uniform probabilities. Figure 7.2 contains histograms that show how similar
the targets are to the initial seeds under these three different ‘difficulty’ levels.
In principle, random targets are intermediate in difficulty, although in practice
random targets are not very similar to the initial seeds and so the distributions
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in Figures 7.2a and 7.2c have similar skew.

In each cycle, we measure hit-rate up to that cycle (i.e. the proportion of users who
have been recommended their target item) and the Jaccard similarity between
the item that the simulated user selects in that cycle and her target (sim(s, t)),
which we average over all users. We have also measured the diversity of the
n = 3 recommendations in that cycle, again averaged over all users; and the
average surprise of the recommendations in that cycle, averaged over all users.
For diversity and surprise, we used definitions given in Section 7 of [KB16].
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7.4.2 Experiment results

Table 7.3 and Table 7.4 show the results for hit-rate. The columns of the table
are the different versions of n-by-p. The rows are divided into blocks, one block
per strategy for choosing the target item. Rows within blocks are for different
values of η.

Neighbour-based n-by-p. For n-by-i-p, the highest hit-rate for each target
type is obtained by using the Open update policy and with η = 0. The Open
policy is the one that does not take the negative feedback into account; and using
η = 0 means that long-term preferences are ignored. We see that, for n-by-i-p,
increasing the value of η nearly always reduces hit-rates. But there are exceptions
where values of η other than 0 give better hit-rates. We also see that policies,
such as Relaxed, that make most use of the negative feedback, have among the
lowest hit-rates.

n-by-c-p for the most part has higher hit-rates than n-by-i-p, which means that
taking previous feedback into account is advantageous. For several of the n-by-c-p
re-weighting policies, η = 0 again gives the best results, with hit-rates decreasing
as η is increased, but again with exceptions. Of the seven different re-weighting
policies, Smean is clearly the best. Smean with η = 0.5 attains the highest hit-
rates among all twelve approaches for all three target types (values in bold in the
Table 7.3). Since it is a clear winner, we plot further results for this approach
only.

Feature-based n-by-p. Different update policies attain the highest hit-rate
for different target types. In n-by-i-p, for ‘least similar’ targets, the Max update
policy attains the highest hit-rate at η = 0.25; for ‘random’ targets, the Relaxed
update policy attains the highest hit-rate at η = 0.25. However, for ‘most similar’
targets, the highest hit-rate is obtained by nearly all the five update policies with
η = 0. It indicates that in the ‘most similar’ case, targets are easily reached and
indeed they can be reached without taking the user’s long-term preferences into
account.

We also see that n-by-i-p nearly always attains higher hit-rates for low values of η
(i.e. η ∈ {0, 0.25}). We also see that policies such as Strict, that make most use of
the negative feedback, have among the lowest hit-rates. But there are exceptions
where the target type is ‘most similar’ and η ∈ {0, 0.25}.
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Here again, n-by-c-p for the most part has higher hit-rates than n-by-i-p,
which means that taking previous feedback into account is advantageous. All
seven of the different re-weighting policies tend to attain higher hit-rates for
η ∈ {0.25, 0.5, 0.75}, but their differences with their corresponding η = 0 versions
are not statistically significant. Of the seven re-weighting policies, Smean with
η = 0.75 is clearly the best for ‘least similar’ and ‘random’ targets, while Direc
with η = 0.75 attains 100% hit-rate for ‘most similar’ target types. In the case
of feature-based n-by-p, the results show that ‘most similar’ targets are easily
reached. Hence, we will focus on ‘least similar’ and ‘random’ target types.

Among all twelve approaches, we find that Smean with η = 0.75 attains the
highest hit-rate for ‘least similar’ and ‘random’ target types. (However, this is
not statistically significant with respect to Smean at η = 0.) Since Smean with
η = 0.75 is a clear winner, we plot further results for this approach only.

Neighbour-based vs. feature-based n-by-p. For reasons given earlier, we
now focus on the Smean re-weighting strategy in n-by-c-p. For random targets,
Figure 7.3 shows how neighbour-based and feature-based n-by-c-p perform over
15 cycles for different values of η. The different graphs show the different metrics
that we presented in Section 7.4.1. As explained, a dialog stops when the target
item is one of the recommendations, therefore not all dialogs run for the full 15
cycles. In Figure 7.3, if a dialog stops before the 15th cycle, we forward fill the
value of the metric to subsequent cycles. For example if a dialog stops at cycle
8 then, when computing the mean similarity, etc. in cycles 9 to 15, we include
that dialog’s values from cycle 8. This ensures that each value that we plot is
an average over 500 users. If we did not do this then, in later cycles, we would
be plotting an average for a smaller number of users than in the earlier cycles.
Plotting over a smaller number of users makes it harder to see trends: differences
arise simply by the extra variation that comes from averaging over fewer users.

In Figures 7.3(a) and (b), we see that similarity with the target increases near
linearly: as the interaction proceeds, the system leads the user ever closer to her
target. The slope of neighbour-based n-by-c-p is steeper than its feature-based
equivalent: it gets closer to the target more quickly.

Figures 7.3(c) and (d) show recommendation diversity. For all configurations, it
mostly decreases up to 4 cycles (but by only a small amount) and then remains
almost the same. Decreasing diversity implies convergence on the item of interest.
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Figure 7.3: Results per cycle for neighbour-based and feature-based n-by-c-p with
ρ = Smean and η ranges in [0.0− 1.0] for random targets.
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Figures 7.3(e) and (f) show values for surprise. For all configurations, surprise
increases very slightly, which indicates that the process takes the user away from
her profile.

7.5 User Trial

RQ-1: Does neighbour-based n-by-p generate more diverse, serendipitous, and
relevant recommendations than feature-based n-by-p?

RQ-2: How beneficial is it to exploit a user’s long-term preferences along with
her short-term preferences?

We built a web-based system in order to conduct a user trial. In this trial, we
wanted to reveal the effect of using: i) neighbour-based and feature-based item
representations; and ii) long-term preferences along with short-term preferences.
Hence, for both the representations, we chose to use a system with η not equal
to 0.0. The obvious choice was the best-performing configuration from our offline
experiment, namely n-by-c-p with ρ = Smean as its re-weighting policy and
η = 0.5 for neighbour-based and η = 0.75 for feature-based. We compare it
with a baseline system that is as similar as possible but which does not take
long-term preferences into account, namely n-by-c-p with ρ = Smean but with
η = 0.0. In this section, we will designate these systems by nb-smean@0.5 and
nb-smean@0.0 for neighbour-based, and fb-smean@0.75 and fb-smean@0.0 for
feature-based representations, respectively.

We recruited participants through personal email lists and Twitter. In total, 278
people attempted the trial, of whom 204 completed it and have their results re-
ported here. Participants were fully anonymized and we collected no demographic
data. However, our method of recruiting participants leads us to speculate that
our participants are predominantly young, educated males. They were not re-
warded for participation in any way.

We use the movie dataset that we used for the offline experiments. However,
to increase the chances of user familiarity with the movies, we use only movies
released between the years 2000 and 2011 inclusive: 1851 (≈ 30%) of the 5992
movies in the whole dataset.

The user trial is a between-subject trial: participants are assigned at random to
interact with one of the four recommenders. Of those who completed the trial,
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Figure 7.4: Parts of screenshots showing selection of a companion and a seed
movie.

exactly 51 interacted with each of them.

7.5.1 User trial protocol

Each participant began by creating a user profile containing 10 movies. The
instructions were that the movies should be ones that the user likes. The user
interface offers both a scrollable grid of movies and a search box to enable the
user to find these movies.

The user profile captures a user’s long-term preferences. The challenge in design-
ing an experiment of this kind is to create the conditions under which a user also
has ephemeral (short-term) preferences that she wants to satisfy [PK04]. Most
likely, because of these ephemeral preferences, the user should be dissatisfied to
some extent with recommendations based purely on her profile, because these will
satisfy only her long-term preferences. We rejected the idea of picking a target
item and showing it to the user. We felt that this would lead to an approximation
to the offline experiments that we have already described, where in every cycle
the (simulated) user always selects the recommended item that is most similar
to the target. What we wanted was a scenario in which a user would have an
ephemeral goal, but where she would not know exactly what movie she wanted to
watch, and yet where she would be able to make reasonably consistent judgments
about a set of recommendations on the basis of that ephemeral goal.

The strategies for doing this in [PK04] rely on having structured item descriptions
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(e.g. sets of attribute-value pairs), which we do not have. In the end, we designed
a novel protocol, which we believe is one of the contributions of our work. The
scenario is that the user is trying to find a movie to watch with another person,
hence she has to find one that she thinks both she and her putative companion
will enjoy watching together. From a list of eight people (Mother, Father, Brother,
Sister, Aunt, Uncle, Nephew, Niece), we ask her to select a person she knows but
whose movie preferences differ from her own (see the top third of Figure 7.4).
We did not include options such as Partner or Friend to make it more likely that
her putative companion’s preferences would differ from her own. We tell her that
she must find a movie to watch with this person and we ask her to choose from
her profile the movie that she thinks is the least worst movie to watch together
with this person (see the middle third of Figure 7.4). We ask her how much she
thinks they will enjoy watching the movie together (Not at all, Barely at all, Fair,
Somewhat, A lot) (see the lower third of Figure 7.4). If she thinks they will enjoy
watching the movie Somewhat or A lot, we ask her to repeat the whole process
(selecting a different person) in the hope of finding a scenario where short-term
preferences will differ from long-term preferences. At most, a user goes through
this process a total of three times. The movie that she has selected from her
profile at this point becomes the initial seed in the dialog.

We believe this scenario satisfies the criteria above: the user has an ephemeral
goal, does not know exactly what movie she wants, but can make judgments when
faced with descriptions of movies that we recommend. We emphasize that this
protocol is simply a way of creating a scenario in which a user has an ephemeral
goal. We are not building a group recommender system. In most work on group
recommender systems, the recommender has representations of the tastes of each
member of the group (e.g. a user profile for each group member) and it must
reconcile these possibly conflicting tastes, which it does using one or more of a
variety aggregation methods [JS07]. That is not the situation here: in our user
trial, the recommender does not have any explicit representation of the other
person’s tastes.

Now that the scenario has been established and the seed has been chosen, a
dialog of eight cycles begins. In each cycle, the system displays the next n = 3
recommendations, building a tree from left to right on the screen (Figure 7.5).
The user can mouse-over the nodes and edges to find out movie details and
keywords that connect movies, respectively. She must choose the recommendation
that she thinks she and her putative companion will most enjoy watching together.
If none of the three recommendations seem right, the user can choose a movie
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Figure 7.5: A screenshot showing a completed dialog with the system.

from earlier in the tree, in which case the system reverts to an earlier state (see
Section 7.2.2.3). We require every user to run the system for a full eight cycles, so
that the tree has a depth of eight, even if she sees a movie earlier that she thinks
is ideal, so that every participant’s responses are based on the same number of
movies on the screen.

At the end of the dialog, the screen will be displaying a tree, rooted by the seed
and containing 24 recommended movies (see Figure 7.5). We ask the user to select
one of the 24 movies, the one that she thinks she and her putative companion
will most enjoy watching together. Then we ask her five questions:

• Familiarity: Have you actually seen the movie <selected movie> before?

• Relevance (Rel.): How much do you think you and your <selected person>
will enjoy watching <selected movie> together?

• Serendipity (Srdp.): Is <selected movie> a pleasantly surprising recommen-
dation?

• Effectiveness (Effc.): Did you find the recommendations helpful?

• Satisfaction (Sats.): Did you enjoy using the system?

The user chooses between Yes and No in answer to the question about Familiarity.
For the other questions, she chooses from a 5-point scale: Not at all; Barely at
all; Fair ; Somewhat; and A lot.
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7.5.2 User trial results

204 participants completed the trial, 51 per system. Table 7.5 and Table 7.6
summarize their responses for the two representations. We describe them below
separately.

Neighbour-based n-by-p

• Familiarity: 62.8% of users of nb-smean@0.5 have actually seen their se-
lected movie compared with 54.9% of users of nb-smean@0.0.

• Relevance (Rel.): 76.5% of the users of nb-smean@0.5 judged their selected
movie to be one that they and their putative companion would enjoy Some-
what or A lot; in the case of nb-smean@0.0, this was just 49.0% of the users.

• Serendipity (Srdp.): 64.7% of users of nb-smean@0.5 thought their selected
movie was pleasantly surprising (Somewhat or A lot); for nb-smean@0.0,
this was just 41.2% of the users.

• Effectiveness (Effc.): 62.7% of the users of nb-smean@0.5 found the recom-
mendations to be helpful (Somewhat or A lot); in the case of nb-smean@0.0,
this was just 49.0% of the users.

• Satisfaction (Sats.): 64.7% of the users of nb-smean@0.5 enjoyed using the
system (Somewhat or A lot); in the case of nb-smean@0.0, this was just
58.9% of the users.

On all criteria, nb-smean@0.5 produced better recommendations. However, the
difference was statistically significant only for the Relevance and Serendipity
questions. (We used a one-sided Z-test for proportions, with significance level
p < 0.05. The null hypothesis was that those preferring nb-smean@0.0 are greater
than or equal to those preferring nb-smean@0.5, ignoring those who were neutral
i.e. who answered Fair.)

Feature-based n-by-p

• Familiarity: 52.9% of users of fb-smean@0.75 have actually seen their se-
lected movie; the percentage was the same for the users of fb-smean@0.0.
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Table 7.5: Users’ responses for neighbour-based systems to survey questions.

User’s nb-smean@0.5 nb-smean@0.0
Response Rel. Srdp. Effc. Sats. Rel. Srdp. Effc. Sats.
Not at all 0 2 0 1 3 5 5 2

Barely at all 1 4 5 5 7 4 4 5
Fair 11 12 14 12 16 21 17 14

Somewhat 18 19 21 20 12 12 16 18
A lot 21 14 11 13 13 9 9 12

Table 7.6: Users’ responses for feature-based systems to survey questions.

User’s fb-smean@0.75 fb-smean@0.0
Response Rel. Srdp. Effc. Sats. Rel. Srdp. Effc. Sats.
Not at all 2 7 4 3 1 6 4 1

Barely at all 1 9 7 5 3 8 9 6
Fair 13 13 14 11 17 18 14 14

Somewhat 16 14 16 14 18 14 15 18
A lot 19 8 10 18 12 5 9 12

• Relevance (Rel.): 68.6% of the users of fb-smean@0.75 judged their selected
movie to be one that they and their putative companion would enjoy Some-
what or A lot; in the case of fb-smean@0.0, this was 58.8% of the users.

• Serendipity (Srdp.): 43.1% of users of fb-smean@0.75 thought their selected
movie was pleasantly surprising (Somewhat or A lot); for fb-smean@0.0, this
was just 37.3% of the users.

• Effectiveness (Effc.): 51.0% of the users of fb-smean@0.75 found the recom-
mendations to be helpful (Somewhat or A lot); in the case of fb-smean@0.0,
this was just 47.0% of the users.

• Satisfaction (Sats.): 62.7% of the users of fb-smean@0.75 enjoyed using the
system (Somewhat or A lot); in the case of fb-smean@0.0, this was just
58.8% of the users.

On all criteria except familiarity, fb-smean@0.75 produced better recommenda-
tions. However, the differences were not statistically significant for any of the five
questions. (We used a one-sided Z-test for proportions, with significance level
p < 0.05. The null hypothesis was that those preferring fb-smean@0.0 are greater
than or equal to those preferring fb-smean@0.75, ignoring those who were neutral
i.e. who answered Fair.)
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Neighbour-based vs. feature-based. We have found that nb-smean@0.5 and
fb-smean@0.75 performed better with respect to their corresponding baselines.
It confirms that user’s long-term preferences should be combined with her short-
term preferences. Now, we compare the winning neighbour-based and feature-
based systems.

• Familiarity: 62.8% of users of nb-smean@0.5 have actually seen their se-
lected movie compared with 52.9% of users of fb-smean@0.75.

• Relevance (Rel.): 76.5% of the users of nb-smean@0.5 judged their selected
movie to be relevant; in the case of fb-smean@0.75, this was just 68.6% of
the users.

• Serendipity (Srdp.): 64.7% of users of nb-smean@0.5 thought their selected
movie was pleasantly surprising; for fb-smean@0.75, this was just 43.1% of
users.

• Effectiveness (Effc.): 62.7% of the users of nb-smean@0.5 found the recom-
mendations to be helpful; in the case of fb-smean@0.75, this was just 51.0%
of the users.

• Satisfaction (Sats.): 64.7% of the users of nb-smean@0.5 enjoyed using the
system; in the case of fb-smean@0.75, this was just 62.7% of the users.

Thus, it can be seen that nb-smean@0.5 produced better recommendations. How-
ever, the difference was statistically significant only for the Serendipity and Effec-
tiveness questions. (We used a one-sided Z-test for proportions, with significance
level p < 0.05. The null hypothesis was that those preferring fb-smean@0.75 are
greater than or equal to those preferring nb-smean@0.5, ignoring those who were
neutral i.e. who answered Fair).

7.5.2.1 Change in relevance

As we have reported, participants in the user trial who used nb-smean@0.5 judged
their selected movie to be more relevant than did users of the other three recom-
menders. However, this result ignores the user’s opinion of the initial seed: do the
systems improve upon the initial seed? Figure 7.6 shows the data. For example,
in the top-left diagram (nb-smean@0.5 ), the first bar shows that there were 2
people who judged the initial seed to be Not at all relevant; and, of these two
people, one judged their final selection to be Fair and the other judged their final
selection to be one that they would enjoy A lot. Similarly, the second bar shows
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Figure 7.6: Distribution of users’ opinions of their final selection with respect to
their opinions of the initial seed.

that 9 people chose Barely at all when asked about the seed; and, of these, when
asked about their final selected movie, 3 answered Fair, 4 answered Somewhat
and one answered A lot, and so on.

We have designed a statistic that allows us to summarize all this data. We assign
integers in [1, 5] to the responses, 1 = Not at all, 2 = Barely at all, etc. We let αv

be the number of participants who assigned a value of v to the initial seed, i.e. α1

is the number of people who judged the seed to be 1 (= Not at all) suitable, α2 is
the number who judged the seed to be 2 (= Barely at all) suitable. Similarly, let
ωv be the number of participants who assigned a value of v to the final selected
movie. Then, we can compute the improvement that the system makes by taking
the difference in the responses divided by the maximum improvement that could
be made:

improvement =
∑5

v=1 v · ωv −
∑5

v=1 v · αv∑5
v=1 5 · ωv −

∑5
v=1 v · αv

(7.9)

For nb-smean@0.5, improvement = 0.5114, whereas for nb-smean@0.0,
improvement = 0.0723. Similarly, for fb-smean@0.75 improvement = 0.4045,
whereas for fb-smean@0.0, improvement = 0.2614. It is clear that in terms of
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expected movie enjoyment, nb-smean@0.5 does a better job of taking users from
their initial seeds to a final movie selection.

We further analyze this data by recomputing the improvement, this time exclud-
ing those cases where there is little or no scope for improvement. For example,
in those cases where the user thinks that she and her putative companion would
enjoy watching the seed movie Somewhat or A lot, then there is not much the rec-
ommender can do to improve on this. Another way of thinking about this is that
this time we are considering only the first three bars for each of the four recom-
menders in Figure 7.6. Now, there are only 34 users of interest for nb-smean@0.5
and 33 for nb-smean@0.0. For these users only, we obtain improvement = 0.6049
for nb-smean@0.5 and improvement = 0.2533 for nb-smean@0.0. Again, there
are 35 users of interest for fb-smean@0.75 and 37 for fb-smean@0.0 which re-
sults in improvement = 0.4756 for fb-smean@0.75 and improvement = 0.3012 for
fb-smean@0.0. This gives a fairer picture of the baselines (nb-smean@0.0 and fb-
smean@0.0 ), but it also shows that nb-smean@0.5 performs even better in these
more difficult cases.

7.5.2.2 Popularity bias

We also measure the popularity of the accepted movies in order to know whether
their selection was biased towards more popular movies. To answer this question,
we measured popularity of both the seed and the accepted movies. We define the
popularity of a movie i to be the ratio of IMDB votes given to the movie i and
the maximum IMDB votes given to a movie among those used for the user-trial.

Popularity(i) = IMDBV otes(i)
IMDBV otesmax

(7.10)

Figure 7.7(a) and 7.7(b) show the distribution of the popularity of the users’
selected seed and their final accepted movies respectively. Over 60% of the
seed movies are popular (i.e. popularity > 0.25). Nearly 20% of accepted
movies are popular. Most of the accepted movies have low popularity (i.e.
0 ≤ popularity ≤ 0.05). This suggests that n-by-p systems are not especially
susceptible to popularity bias.
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Figure 7.7: Popularity distribution for all four recommenders for user selected
seed and accepted movies in the trial.

7.5.2.3 User effort

Finally, we consider how much effort users expended. Table 7.7 summarizes the
effort for users whose final selected movie was one they thought that they and
their putative companions would like Somewhat or A lot. (We excluded other
users because, in some sense, their dialog is incomplete since they have not found
a satisfactory movie. Since this gives only 25 users for nb-smean@0.0, we used
a one-sided t-test, with p < 0.05, with null hypothesis that nb-smean@0.0 needs
less or equal effort.)
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Neighbour-based n-by-p

• Nodes displayed: As described before, we required users to explore for eight
cycles. In these eight cycles, every user is shown 25 nodes (1 seed and 24
recommended movies). But a user can jump (reverting to an earlier set of
recommendations), which leads to more recommendations being made. In
both systems, the average is a little above 25, which shows that there was
some jumping. But the average was higher for nb-smean@0.0, which implies
a greater need for jumping (p = 0.022, which is statistically significant).

• Node mouse-overs: This refers to the average number of movies whose
descriptions were viewed by mousing-over the node. More movies were
examined by users of nb-smean@0.0 (p = 0.016, which is statistically sig-
nificant).

• Edge mouse-overs: Mousing over an edge reveals keywords that the movies
at each end have in common. On average, more of this information was
viewed by users of nb-smean@0.0 (p = 0.077, which is not statistically
significant).

• Cycles: This refers to the average number of cycles needed in order for
the final selected movie to be shown. Outside of a user trial, this is the
point at which the user should, in principle, stop the dialog, having found
a satisfactory movie. It was slightly higher for users of nb-smean@0.5 (p =
0.021, which is statistically significant). But it must be remembered that
users of nb-smean@0.5 find movies that they regard as better final choices.

• Time taken: This is the average task completion time in seconds. It was
higher for users of nb-smean@0.0 (p = 0.211, which is not statistically
significant).

It can be seen that both systems require quite similar effort from users. There
seems to be a little more effort in the case of nb-smean@0.0 (more jumps and
more time spent making sense of the recommendations by mousing-over their
details). On the other hand, the final movie is found around the 5th or 6th
cycle on average for users of nb-smean@0.5 and around the 4th cycle for users of
nb-smean@0.0, but it is a less satisfactory movie in the latter case.

Feature-based n-by-p

• Nodes displayed: In both systems, the average is a little above 25, which
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Table 7.7: Comparison of decision effort for neighbour-based n-by-p. All values
are averaged over participants who liked their final selected movie Somewhat or
A lot.

Measure of effort nb-smean@0.5 nb-smean@0.0
Nodes displayed 26.85 29.56
Node mouse-overs 19.28 22.84
Edge mouse-overs 10.03 11.92

Cycles 5.36 4.12
Time taken (secs.) 251.93 300.58

Table 7.8: Comparison of decision effort for feature-based n-by-p. All values are
averaged over participants who liked their final selected movie Somewhat or A
lot.

Measure of effort fb-smean@0.75 fb-smean@0.0
Nodes displayed 29.46 27.00
Node mouse-overs 22.40 18.70
Edge mouse-overs 11.91 9.97

Cycles 4.60 5.00
Time taken (secs.) 271.67 183.07

shows that there was some jumping. But the average was higher for fb-
smean@0.75, which implies a greater need for jumping (p = 0.089, which is
not statistically significant).

• Node mouse-overs: More movies were examined by users of fb-smean@0.75
(p = 0.008, which is statistically significant).

• Edge mouse-overs: On average, more of this information was viewed by
users of fb-smean@0.75 (p = 0.062, which is not statistically significant).

• Cycles: This was slightly higher for users of fb-smean@0.0 (p = 0.267, which
is not statistically significant). It must also be remembered that users of
fb-smean@0.75 find movies that they regard as better final choices.

• Time taken: This was higher for users of fb-smean@0.75 (p = 0.029, which
is statistically significant).

It can be seen that both systems require quite similar effort from users. There
seems to be a little more effort in the case of fb-smean@0.75 (more jumps and
more time spent making sense of the recommendations by mousing-over their
details). On the other hand, the final movie is found around the 4th or 5th
cycle on average for users of fb-smean@0.75 and around the 5th cycle for users
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of fb-smean@0.0, but it is a less satisfactory movie in the latter case.

Neighbour-based vs. feature-based n-by-p. Here, we are comparing nb-
smean@0.5 with fb-smean@0.75. We found that fb-smean@0.75 seemed to re-
quire a little more effort (more jumps and more time spent making sense of the
recommendations by mousing-over their details), but this is not statistically sig-
nificant. On the other hand, the final movie is found around the 5th or 6th cycle
on average for users of nb-smean@0.5 and around the 4th or 5th cycle for users
of fb-smean@0.75, but it is a less satisfactory movie in the latter case.

7.6 Conclusion

Navigation-by-Preference (n-by-p) is a conversational recommender system that
works on unstructured item descriptions to help a user construct and articulate
her short-term preferences, while aiming to minimize the effort of reaching an
item of interest. We believe that n-by-p has the following characteristics:

• Preference-based feedback: Preference-based feedback (where the user sim-
ply selects one of the current recommendations) is the simplest form of
feedback. It does not require the user to articulate which features of the
item she likes or dislikes or how she wants to change them. This simplicity
for the user means ambiguity for the system: there is no explicit feedback
about the features [MS06].

• Configurability: n-by-p is highly configurable. We have described two vari-
ants, the first with five update policies; the second with seven re-weighting
policies. These allow us to choose how to combine the user’s preferences in
ways that are best suited to the domain of application.

• Interpretability: n-by-p is a content-based approach based on keywords or
tags that items have in common, which makes it easy to understand the
relationship between pairs of consecutive items in a preference chain.

We presented an offline experiment, with simulated users, that selected the best
of 60 different configurations of n-by-p for each of the two representations. Then
we used a web-based system to conduct a user trial with a novel protocol. For
neighbour-based n-by-p, the trial showed with statistical significance that the nb-
smean@0.5 configuration, which combines short-term preferences with long-term
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preferences, produces more accurate and serendipitous recommendations with-
out greater effort from its users than its baseline nb-smean@0.0 configuration.
Similarly, for feature-based n-by-p, the trial confirmed that the fb-smean@0.75
configuration, which also combines short-term preferences with long-term prefer-
ences, produces more accurate and serendipitous recommendations (but only for
difficult cases) without greater effort from its users than its baseline fb-smean@0.0
configuration. However, the difference was not statistically significant.

We also compared the winning configurations of the two representations. We
found with statistical significance that nb-smean@0.5 produces more serendipi-
tous and effective recommendations than fb-smean@0.75, while both achieve al-
most similar accuracy with roughly equal efforts from their users. On the whole,
nb-smean@0.5 provides much greater improvement over the initial seed.
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Chapter 8

Conclusions & Future Work

In this dissertation, we introduced a new recommendation framework, chain-
based recommendations. This framework models the recommendation problem
as a path search problem in the item-item similarity graph using coverage-based
heuristics. We instantiated the chain-based framework in two recommendation
engines under the two different themes with different motivations: i) the role of
explanation in the recommendation process; and ii) the role of conversational
recommendation to help the user reveal her ephemeral needs.

We evaluated both the systems using offline experiments and user trials. We note
in particular that user responses in the trials were mostly positive: the proposed
systems helped them understand the complex item-space, make better decisions,
and find an item of interest in an efficient and informed manner.

In this chapter, we present the conclusions derived from the main contributions
of this dissertation and we give some ideas for future work.

8.1 Summary of Contributions

In this section, we summarize the main contribution of this dissertation.

8.1.1 Recommendation-by-Explanation

In Chapter 4, we have proposed Recommendation-by-Explanation (r-by-e), a
novel approach that unifies recommendation and explanations and finds rele-
vant recommendations with explanations that have a high degree of fidelity. We
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presented a basic form of r-by-e, where items are represented as a set of their fea-
tures (e.g. keywords). The empirical comparison of 25 configurations on a movie
recommendation dataset showed that r-by-e attains higher precision than a cus-
tomized version of classic content-based system, while remaining competitive on
measures of diversity and surprise. Our user trial also confirmed that r-by-e’s
recommendations are relevant, more diverse and surprising; and that their expla-
nations are more helpful in making accurate judgements about recommendation
quality.

In Chapter 5, we further extended r-by-e by carrying out experiments using fea-
ture weighting as well as with a more indirect item representation (i.e. neighbour-
based), where an item is represented by a set of its neighbours (i.e. similar items)
in place of its features. We defined a normalized overlap function for obtaining
these extended representations. We also generalized r-by-e’s chain selection by
redefining its chain scoring function.

Experimental results on a movie recommendation dataset showed that, from all
four of our approaches, the weighted feature-based approach provides more rel-
evant sets of recommendations, while remaining competitive on measures of di-
versity and serendipity. We also found that overall neighbour-based approaches
provide more serendipitous recommendations than feature-based ones.

We then extended r-by-e so that it could apply to datasets where item features are
concepts extracted from user-generated reviews and assigned sentiment score as
weights to generate sentiment-aware explanation chains. We conducted another
user trial in which we found that the weighted feature-based approach provides
more relevant recommendations that are also diverse and serendipitous. The
explanations that it provides are also more effective than the baseline.

8.1.2 Navigation-by-Preference

In Chapter 7, we proposed Navigation-by-Preference (n-by-p), a new preference-
based conversational recommender that works on unstructured item represen-
tations to help a user construct and articulate her short-term preferences, while
aiming to minimize the effort of reaching an item of interest. We presented n-by-p
for both neighbour-based and feature-based representations. For each represen-
tation, we described two variants: immediate and cumulative, based on how to
combine the user’s long- and short-term preferences. We defined twelve tech-
niques, five for the former and seven for the latter.
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We reported results of offline experiments with simulated users that found that,
out of 120 configurations (60 configurations for each approach), a configuration
that includes long-term preferences, that uses both positive and negative feed-
back, and that uses previous rounds of feedback is the one with highest hit-rate.
It also obtains the best survey responses and lowest measures of effort in a trial
with real users that we conducted with a web-based system. It is noteworthy that
the user trial has a novel protocol for experimenting with short-term preferences.

8.2 Future Work

Our contributions in this dissertation have introduced recommendation tools to
offer a better user experience without compromising the quality of the recom-
mendations. Mainly, we have focused on the issues of explanations and recom-
mendation feedback. We believe that we have covered many angles on the main
research topic. But our findings open lines of future work that we briefly describe
in this section.

8.2.1 Explanation chain length vs. surprise

In our offline experiments for r-by-e, we have found a correlation between sur-
prise and chain length for a top-n recommendation. For higher values of α, r-by-e
generates longer chains, which, on the whole, results in more surprising recom-
mendations.

It would be valuable to conduct user trials to measure how users perceive the
surprise of the recommendations generated, for example, on different values of α.

8.2.2 Actionable explanation chains

If a system incorrectly infers preferences, then it may make poor recommenda-
tions. In most recommender systems, there is a little a user can do in this case.
In principle, the user could remove items from her profile or modify their rat-
ings in the hope of getting better recommendations. But it is not easy to know
which items to remove or which ratings to modify. It is especially cumbersome
to exclude an entire set of items (such as those that have specific genre in movie
recommendations) when, for example, a user’s interests shift.
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An interesting avenue for future work would be to allow a user to interact with
explanation chains to tell the system where it is going wrong. For example,
removing an inappropriate chain member may result in instant revision of rec-
ommendations. Such actionable explanation chains may make the system more
correctable.

8.2.3 Collaborative r-by-e

Another interesting research direction would be to extend the explanation chains
from content-based setting to collaborative settings. In principle, chains can still
be constructed using coverage heuristics but now coverage would be of ratings
rather than of features. However, explaining item-item relationships among chain
members will become more challenging especially if we do not want to compromise
the fidelity of the recommender.

8.2.4 Parameter free n-by-p

Our conversational recommender n-by-p uses a hyperparameter to balance short-
and long- term preferences of user while measuring overlap between the seed
and the candidates. There is a possibility of learning this parameter using her
feedback within the current session. One way of doing this is to think about how
to combine work on n-by-p with work in recommender systems on reinforcement
learning and multi-armed bandits.

8.2.5 Sequence recommendation using n-by-p

Short-term preferences can also be inferred from browsing behaviour, as well as
the kind of feedback that we have explored in our work. Recommender systems
that infer preferences and make recommendations from temporally ordered inter-
action events are referred to as sequence-aware recommender systems [QCJ18].
We could try situate n-by-p also within this body of work. As a special case,
we also could explore domains in which the recommendations themselves are se-
quences of items (e.g. music playlists, tours of art galleries). Implicit feedback
on early items in the sequence might trigger updates to the remainder of the
sequence.
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8.2.6 Applications to other domains

Chain-based recommendation relies on content-based principles. It can be easily
extended to domains other than movie recommendations where there unstruc-
tured item descriptions are available such as news, blogs, and research papers.
More challenging, and in need of further research, is the question of how easily
chain-based recommendation can be extended to domains with structured item
descriptions, such as e-commerce. But particularly interesting are domains where
users already interact with sequences of items. In fact, e-commerce is one such
example, since users tend to browse through sequences of items before making
purchase decision. In entertainment and perhaps education, it is common to
recommend whole sequences, such as a music playlist or a sequence of lesson.
Sequence recommendation is common too in the culture and tourism domains;
for example, a tour of an art gallery, museum or historic city.

Taken all together, we believe that we have motivated a new way of thinking about
content-based systems that addresses several challenges (e.g. over-specialization,
concentration bias) and improves the overall user experience. We have shown how
chains of items, where each item reinforces its successor, can lead to more diverse
and serendipitous recommendations. We hope that this work will stimulate more
research into recommender systems that whose explanations achieve a higher
degree of fidelity while giving more control to the user without requiring much
more effort from her.
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