<table>
<thead>
<tr>
<th>Title</th>
<th>Copper-catalyzed asymmetric oxidation of sulfides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>O'Mahony, Graham E.; Ford, Alan; Maguire, Anita R.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2012-02-24</td>
</tr>
<tr>
<td>Type of publication</td>
<td>Article (peer-reviewed)</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://pubs.acs.org/doi/abs/10.1021/jo2026178</td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.1021/jo2026178</td>
</tr>
<tr>
<td></td>
<td>Access to the full text of the published version may require a subscription.</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of Organic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/jo2026178</td>
</tr>
<tr>
<td>Item downloaded from</td>
<td>http://hdl.handle.net/10468/988</td>
</tr>
</tbody>
</table>

Downloaded on 2018-11-13T20:27:06Z
Copper-catalyzed asymmetric oxidation of sulfides

Graham E. O’Mahony¹, Alan Ford¹ and Anita R. Maguire²*

¹Department of Chemistry, ²Department of Chemistry and School of Pharmacy,
Analytical and Biological Chemistry Research Facility, University College Cork, Cork,
Ireland.

a.maguire@ucc.ie

Abstract

Copper-catalyzed asymmetric sulfoxidation of aryl benzyl and aryl alkyl sulfides, using aqueous hydrogen peroxide as oxidant, has been investigated. A relationship between the steric effects of the sulfide substituents and the enantioselectivity of the oxidation has been observed, with up to 93% ee for 2-naphthylmethyl phenyl sulfoxide, in modest yield in this instance (up to 30%). The influence of variation of solvent and ligand structure were examined and the optimised conditions were then used to oxidise a number of aryl alkyl and aryl benzyl sulfides, producing sulfoxides in excellent yields in most cases (up to 92%), and good enantiopurities in certain cases (up to 84% ee).
Introduction

Optically pure sulfoxides are widely used as building blocks and chiral auxiliaries in asymmetric synthesis. The sulfinyl group has been shown to be an effective chiral auxiliary in a broad range of synthetic reactions from carbon-carbon bond forming reactions to cycloaddition reactions. Enantiopure sulfoxides have also found use in the pharmaceutical industry due to their important biological activity, for example esomeprazole, the (S)-enantiomer of omeprazole, has been one of the world’s best-selling drugs since its launch in 2001. Modafinil is a psychostimulant agent that has been used for the treatment of narcolepsy; it is manufactured by Cephalon and is marketed in the racemic form as Provigil. Since the 1980s, metal-catalyzed asymmetric sulfide oxidation employing titanium, vanadium and a number of other metal based systems has developed rapidly as a route to enantiopure sulfoxides. The initial breakthrough came in 1984 when the research groups of Kagan and Modena independently reported an efficient titanium-mediated sulfide oxidation based on the Sharpless asymmetric epoxidation procedure. In 1995, Bolm reported a robust vanadium sulfoxidation procedure using a vanadium Schiff base complex. The oxidation was carried out under mild conditions using hydrogen peroxide as the oxidant. A number of other metals such as iron, manganese, aluminium, niobium, zirconium, tungsten, molybdenum and osmium have also been used to catalyse asymmetric oxidation of sulfides. However, there are disadvantages associated with the Kagan and Bolm procedures for asymmetric oxidation. The Kagan system is limited by its sensitivity to atmospheric moisture, low turnover numbers and it utilises a complex and expensive catalytic system. Although the Bolm procedure is robust and operationally straightforward the use of vanadium is not
advantageous since vanadium is known to exert toxic, mutagenic and genotoxic effects on a variety of biological systems.14

Copper has received relatively little attention in metal-catalyzed asymmetric sulfoxidation. The research groups of Cross,15 Kraemer,16 Zhu,17 Alcon18 have all used copper-based systems to asymmetrically oxidise sulfides, but with limited success (enantioselectivities of 0-30\% ee). In an initial study we demonstrated good enantiocontrol in copper-catalyzed asymmetric oxidation of aryl benzyl sulfides with up to 81\% ee albeit with modest yields (typically 20-30\%, \textbf{Scheme 1}).19 Herein, we wish to describe the expansion of this early investigation resulting in improved yields, while retaining good enantioselectivity through variation of reaction conditions. The influence of variation of solvent, ligand and substrate structure have been examined rendering this oxidation synthetically useful.

\textbf{Scheme 1. Copper-catalyzed asymmetric oxidation of sulfides}

\begin{center}
\includegraphics[width=\textwidth]{scheme1.png}
\end{center}

\textbf{Results and Discussion}
The effects of varying sulfide substituents, Schiff base ligand and solvent were investigated in an attempt to optimise the asymmetric oxidation and in particular to improve the efficiency of the transformation. An initial solvent study demonstrated that CCl$_4$ could be replaced with toluene as solvent for copper-catalyzed asymmetric sulfoxidation with no significant loss in yield or enantioselectivity as shown in Table 1. An important feature of this oxidation system is that the Schiff base ligand can be recovered after chromatography and can be re-used without loss of activity.

Table 1. Investigation of Solvent

<table>
<thead>
<tr>
<th>Entry</th>
<th>1</th>
<th>Ar</th>
<th>Ar'</th>
<th>Toluene</th>
<th>CCl$_4$</th>
<th>1 : 2'</th>
<th>% Yielda</th>
<th>% ee (R')</th>
<th>1 : 2'</th>
<th>% Yielda</th>
<th>% ee (R')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>Ph</td>
<td>Ph</td>
<td>73 : 27</td>
<td>2a</td>
<td>21</td>
<td>58</td>
<td></td>
<td>74 : 26</td>
<td>27</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>2-MeOC$_6$H$_4$</td>
<td>Ph</td>
<td>74 : 26</td>
<td>2b</td>
<td>19</td>
<td>77</td>
<td></td>
<td>57 : 43</td>
<td>29</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>3-MeOC$_6$H$_4$</td>
<td>Ph</td>
<td>74 : 26</td>
<td>2c</td>
<td>18</td>
<td>73</td>
<td></td>
<td>68 : 32</td>
<td>24</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>4-MeOC$_6$H$_4$</td>
<td>Ph</td>
<td>54 : 46</td>
<td>2d</td>
<td>33</td>
<td>54</td>
<td></td>
<td>63 : 37</td>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>1e</td>
<td>4-MeC$_6$H$_4$</td>
<td>Ph</td>
<td>78 : 22</td>
<td>2e</td>
<td>15</td>
<td>51</td>
<td></td>
<td>46 : 54</td>
<td>38</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td>4-MeC$_6$H$_4$</td>
<td>4'-MeOC$_6$H$_4$</td>
<td>55 : 45</td>
<td>2f</td>
<td>30</td>
<td>46</td>
<td></td>
<td>47 : 53</td>
<td>42</td>
<td>27</td>
</tr>
<tr>
<td>7</td>
<td>1g</td>
<td>4-FC$_6$H$_4$</td>
<td>Ph</td>
<td>75 : 25</td>
<td>2g</td>
<td>18</td>
<td>34</td>
<td></td>
<td>71 : 29</td>
<td>13</td>
<td>39</td>
</tr>
</tbody>
</table>

a Ratio of 1:2 determined by 1H NMR analysis of the crude product, no sulfone produced.

b Yield of 2 after purification by column chromatography.
c) Determined by HPLC analysis on chiral column (Daicel Chiracel OD-H); absolute configuration determined by comparison of specific rotation values for 2a, 2e to known literature values; for 2b, 2c, 2d, 2f, 2g proposed configuration based on HPLC elution order and the direction of the specific rotations.

d) Results obtained by Kelly et al.19

We next examined the influence of steric and electronic effects on the efficiency and enantioselectivity of the oxidation. Since Schiff base ligands 3 and 4 had produced the best results in preliminary studies, these used in this investigation as shown in Table 2. The results indicate that the steric effect (Table 2, Entries 5 and 9) of the R’ substituent has a much stronger influence on the enantioselectivity of the oxidation than the electronic effect (Table 2, Entries 3 and 7). There is a direct trend between the size of R’ and the enantioselectivity of the oxidation for example substitution of a methyl group with an ethyl group in the R’ position results in a large increase in enantioselectivity (22% to 40% ee, Table 2, Entries 2 and 4). A similar increase in enantioselectivity is observed on replacing an isobutyl with a neopentyl group in the R’ position (Table 2, Entries 12 and 13). The oxidation of 2-naphthylmethyl phenyl sulfide produced the corresponding sulfoxide in 93% ee, the highest to date in copper-catalyzed asymmetric sulfide oxidation. We have previously shown that carrying out copper-catalyzed oxidations in the presence of NMO results in an improvement in the yield of sulfoxide.19 Thus, the above experiments were repeated using NMO as an additive and the results are shown in Table 2. We found that the addition of NMO (2.5 mol%) resulted in an improvement in yield in nearly all cases. The poor yields obtained were attributed to product inhibition of the oxidation, presumably through complexation of the sulfoxide to the copper catalyst. It is believed that NMO co-ordinates to the copper catalyst, removing sulfoxide which results in an improvement in yield. Entries 10 and 12 demonstrate that the presence of a CH₂ group between the sulfur and the isopropyl
group results in improved enantioselection. However, the opposite trend was observed when the oxidation was carried out in the presence of NMO.

Table 2. Influence of Steric and Electronic Effects

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sulfide 5</th>
<th>R</th>
<th>R’</th>
<th>Sulfoxide 6</th>
<th>Ligand</th>
<th>No NMO</th>
<th>NMO<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5:6<sup>′</sup></td>
<td>% Yield<sup>′</sup></td>
</tr>
<tr>
<td>1</td>
<td>5a</td>
<td>Ph</td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>6a</td>
<td>3</td>
<td>79 : 21</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>5b</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>Me</td>
<td>6b</td>
<td>3</td>
<td>79 : 21</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>5c</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C≡CH</td>
<td>6c</td>
<td>3</td>
<td>84 : 16</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5d</td>
<td>Ph</td>
<td>Et</td>
<td>6d</td>
<td>3</td>
<td>80 : 20</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>5e</td>
<td>Ph</td>
<td>-CH<sub>2</sub>-cyclohexyl</td>
<td>6e</td>
<td>3</td>
<td>86 : 14</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>5b</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>Me</td>
<td>6b</td>
<td>4</td>
<td>81 : 19</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>5c</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C≡CH</td>
<td>6c</td>
<td>4</td>
<td>81 : 19</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>5d</td>
<td>Ph</td>
<td>Et</td>
<td>6d</td>
<td>4</td>
<td>72 : 28</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>5e</td>
<td>Ph</td>
<td>-CH<sub>2</sub>-cyclohexyl</td>
<td>6e</td>
<td>4</td>
<td>70 : 30</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>5f</td>
<td>Ph</td>
<td>i-Pr</td>
<td>6f</td>
<td>4</td>
<td>72 : 28</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>5g</td>
<td>Ph</td>
<td>-CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>6g</td>
<td>3</td>
<td>82 : 18</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>5g</td>
<td>Ph</td>
<td>-CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>6g</td>
<td>4</td>
<td>71 : 29</td>
<td>15</td>
</tr>
<tr>
<td>13</td>
<td>5h</td>
<td>Ph</td>
<td>-CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>3</sub></td>
<td>6h</td>
<td>4</td>
<td>80 : 20</td>
<td>15</td>
</tr>
</tbody>
</table>
The results of the NMO study indicated that the use of more polar solvents or solvent mixtures may overcome product inhibition by co-ordinating to the copper catalyst. Katsuki reported an enhancement in the enantioselectivity of the vanadium Schiff base-catalyzed oxidation of thioanisole in the presence of a small amount of methanol.20 An initial solvent study indicated that low polarity solvents such as toluene, benzene and CCl\textsubscript{4} produced the best results in terms of enantioselectivity as we had described previously (\textbf{Table 3}).19

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Entry} & \textbf{Solvent} & \textbf{7 : 8 : 9} & \textbf{Yield, 8 (%)} & \textbf{\% ee (R)} \\
\hline
1 & Ether & 85 : 15 : 0 & 8 & 10 \\
\hline
2 & Dioxane & 69 : 31 : 0 & 25 & 1 \\
\hline
3 & Toluene & 79 : 21 : 0 & 17 & 58 \\
\hline
\end{tabular}
\caption{Investigation of Solvent}
\end{table}
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>CCl₄</td>
<td>65 : 35 : 0</td>
<td>27</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Benzene</td>
<td>66 : 34 : 0</td>
<td>26</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hexane</td>
<td>100 : 0 : 0</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MeOH</td>
<td>40 : 60 : 0</td>
<td>50</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MeOH⁺</td>
<td>19 : 81 : 0</td>
<td>73</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>50:50 toluene : MeOH</td>
<td>47 : 53 : 0</td>
<td>48</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>75:25 toluene : MeOH</td>
<td>46 : 54 : 0</td>
<td>47</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>90:10 toluene : MeOH</td>
<td>42 : 58 : trace</td>
<td>52</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>95:5 toluene : MeOH</td>
<td>48 : 52 : 0</td>
<td>45</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>90:10 hexane : MeOH</td>
<td>3 : 96 : 1</td>
<td>87</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>90:10 hexane : EtOH</td>
<td>1 : 98 : 1</td>
<td>90</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>90:10 cyclohexane : MeOH</td>
<td>8 : 91 : 1</td>
<td>85</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>90:10 hexane : IPA</td>
<td>7 : 92 : 1</td>
<td>83</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>90:10 CCl₄ : MeOH</td>
<td>21 : 76 : 3</td>
<td>70</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>90:10 CCl₄ : MeOH⁺</td>
<td>9 : 89 : 2</td>
<td>82</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>90:10 hexane : benzyl alcohol</td>
<td>4 : 94 : 2</td>
<td>87</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>90:10 hexane : t-BuOH</td>
<td>45 : 55 : trace</td>
<td>46</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>90:10 hexane : 2-butanol</td>
<td>57 : 43 : 0</td>
<td>38</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

a) Ratio of 7:8:9 determined by ¹H NMR analysis of the crude product.

b) Yield of 8 after purification by column chromatography.

c) Determined by HPLC analysis on chiral column (Daicel Chiracel OD-H); Absolute configuration determined by comparison of rotation values to literature values.

d) Oxidation was carried out in the presence of 2.5 mol% NMO.
Depending on the solvent employed the oxidation system was either monophasic or biphasic (Table 3). When the oxidation was carried out in methanol there was a large increase in yield but a decrease in enantioselectivity (Table 3, Entry 7) in comparison to the low polarity solvents. There was no sulfoxide produced when the oxidation was carried out in hexane (Table 3, Entry 6). Carrying out the oxidation in a mixed solvent system of toluene-methanol resulted in improved yield but with a reduced enantioselectivity (Table 3, Entries 9-12). However, using a 90:10 hexane-methanol solvent mixture produced benzyl phenyl sulfoxide in excellent yield and good enantioselectivity (Table 3, Entry 13). Similar results were achieved using solvent mixtures of hexane and ethanol, and cyclohexane and methanol (Table 3, Entries 14 and 15). Interestingly, the use of a mixture of hexane and the bulky alcohol IPA afforded practically racemic sulfoxide (Table 3, Entry 16). The use of hexane-methanol (partially miscible) and hexane-ethanol (miscible) solvent mixtures afforded sulfoxide in almost identical yield and enantioselectivity (Table 3, Entries 13 and 14). The dramatic improvements in yields using solvent mixtures of methanol is further evidence for sulfoxide inhibition. Presumably, methanol can co-ordinate to the copper catalyst, thereby displacing the sulfoxide, which results in improved yields.

An extensive ligand study was then undertaken in an attempt to find the optimum ligand for this system (Table 4). The results indicate that ligands 3, 4 and 15 perform much better than the other Schiff bases in the oxidation of benzyl phenyl sulfide. Ligand 4 performed the best producing the sulfoxide in 90% yield and 79% ee. Replacement of the tert-butyl with an isopropyl in the R³ position of the ligand results in a significant reduction in yield and enantioselectivity (Table 4, Entries 1 and 6). This indicates that the steric bulk at the R³ position is crucial to maintain the enantioselectivity of the oxidation. Interestingly, the diiodo and difluoro ligands 10 and 14 perform poorly both in terms of yield and enantioselectivity (Table 4, Entries 3 and 7).
Table 4. Investigation of Effect of Ligand Structure

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>7 : 8 : 9(^a)</th>
<th>Yield, 8 (%)(^b)</th>
<th>% ee ((R))(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1 : 97 : 2</td>
<td>86</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1 : 98 : 1</td>
<td>90</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>68 : 32 : 0</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>73 : 27 : 0</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>74 : 36 : 0</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>50 : 50 : 0</td>
<td>44</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>45 : 55 : trace</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>3 : 96 : 1</td>
<td>87</td>
<td>58</td>
</tr>
</tbody>
</table>

\(a\) Ratio of 7:8:9 determined by \(^1\)H NMR analysis of the crude product.

\(b\) Yield of 8 after purification by column chromatography.

\(c\) Determined by HPLC analysis on chiral column (Daicel Chiracel OD-H); Absolute configuration determined by comparison of rotation values to literature values.

Having established the optimum ligand (ligand 4) and solvent system (90:10 hexane:methanol), these conditions were then used in the asymmetric oxidation of a range of aryl benzyl and aryl
alkyl sulfides as shown in Table 5. Excellent yields and modest to good enantiopurities were obtained, for example benzyl phenyl sulfoxide was obtained in 90% yield and 79% ee (Table 5, Entry 1). Over-oxidation to sulfone is either entirely absent or very minimal (no more than 2%) despite the dramatic improvements in oxidation efficiency using the optimised conditions. The formation of significant amounts of sulfone would have a detrimental effect on sulfoxide yield and would lead to difficulties in isolation of the desired product. A relationship between the steric bulk of the R' substituent of the sulfide and the enantioselectivity of the oxidation was observed again. As R' is changed from a methyl group to an ethyl group and then to an isopropyl and neopentyl group there is an increase in enantioselectivity (Table 5, Entries 3-7). Interestingly, in Table 5 it is evident that with the different substrates, in some instances the enantiopurity achieved was higher with ligand 4, while in others it was higher with ligand 15, although differences are relatively modest in most cases. Thus, the optimum ligand appears to be substrate specific. Sulfide 5i did not fully dissolve in 1 mL of 90:10 hexane:methanol and, as a result, an increased amount of solvent was used. This may have resulted in reduced enantioselectivity, as previous work in the group had demonstrated that increasing dilution had a detrimental effect on the enantioselectivity of the oxidation. Sulfide 5i was insoluble in 9:1 hexane:methanol and hence no oxidation was observed.

Table 5. Asymmetric oxidation of sulfides using optimised conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R'</th>
<th>Ligand</th>
<th>5 : 6 : 16</th>
<th>6</th>
<th>% Yield</th>
<th>% ee (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>Ph</td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>4</td>
<td>1 : 98 : 1</td>
<td>6a</td>
<td>90</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>2</td>
<td>5a</td>
<td>Ph</td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>15</td>
<td>2 : 98 : 0</td>
<td>6a</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>5b</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>Me</td>
<td>4</td>
<td>4 : 96 : trace</td>
<td>6b</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>5d</td>
<td>Ph</td>
<td>Et</td>
<td>4</td>
<td>2 : 98 : trace</td>
<td>6d</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>5f</td>
<td>Ph</td>
<td>i-Pr</td>
<td>4</td>
<td>19 : 81 : trace</td>
<td>6f</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>5g</td>
<td>Ph</td>
<td>-CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>4</td>
<td>10 : 90 : trace</td>
<td>6g</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>5h</td>
<td>Ph</td>
<td>-CH<sub>2</sub>C(CH<sub>3</sub>)<sub>3</sub></td>
<td>4</td>
<td>15 : 85 : 0</td>
<td>6h</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>5i</td>
<td>Ph</td>
<td>-CH<sub>2</sub>-2'-naphthyl</td>
<td>4</td>
<td>100 : 0 : 0</td>
<td>6i</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>5j</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>4</td>
<td>2 : 97 : 1</td>
<td>6j</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>5j</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>15</td>
<td>4 : 96 : 0</td>
<td>6j</td>
<td>90</td>
</tr>
<tr>
<td>11</td>
<td>5k</td>
<td>4-MeC<sub>6</sub>H<sub>4</sub></td>
<td>4-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>4</td>
<td>2 : 97 : 1</td>
<td>6k</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>5l</td>
<td>2-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>4</td>
<td>8 : 92 : trace</td>
<td>6l</td>
<td>85</td>
</tr>
<tr>
<td>13</td>
<td>5m</td>
<td>3-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>4</td>
<td>46 : 54 : 0</td>
<td>6m</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>5n</td>
<td>2-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>4</td>
<td>1 : 98 : 1</td>
<td>6n</td>
<td>91</td>
</tr>
<tr>
<td>15</td>
<td>5n</td>
<td>2-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>15</td>
<td>6 : 94 : 0</td>
<td>6n</td>
<td>88</td>
</tr>
<tr>
<td>16</td>
<td>5o</td>
<td>3-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>4</td>
<td>11 : 89 : 0</td>
<td>6o</td>
<td>84</td>
</tr>
<tr>
<td>17</td>
<td>5o</td>
<td>3-MeOC<sub>6</sub>H<sub>4</sub></td>
<td>-CH<sub>2</sub>C<sub>6</sub>H<sub>4</sub></td>
<td>15</td>
<td>10 : 88 : 2</td>
<td>6o</td>
<td>83</td>
</tr>
<tr>
<td>18</td>
<td>5p</td>
<td>Ph</td>
<td>-CH<sub>2</sub>-p-Tol</td>
<td>4</td>
<td>1 : 97 : 2</td>
<td>6p</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>5q</td>
<td>Ph</td>
<td>-CH<sub>2</sub>-m-Tol</td>
<td>4</td>
<td>7 : 92 : 1</td>
<td>6q</td>
<td>83</td>
</tr>
<tr>
<td>20</td>
<td>5q</td>
<td>Ph</td>
<td>-CH<sub>2</sub>-m-Tol</td>
<td>15</td>
<td>4 : 95 : 1</td>
<td>6q</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>5r</td>
<td>Ph</td>
<td>-CH<sub>2</sub>-o-Tol</td>
<td>4</td>
<td>12 : 85 : 2</td>
<td>6r</td>
<td>80</td>
</tr>
</tbody>
</table>

a) Ratio of 5:6:16 determined by ¹H NMR analysis of the crude product.

b) Yield of 6 after purification by column chromatography.

c) Determined by HPLC analysis on chiral column (Daicel Chiracel OD-H for 6a-6q, Chiracel As-H for 6r); Absolute configuration determined by comparison of rotation values for 6a, 6b, 6d, 6f, 6g to known literature values; for 6h, 6k.
proposed configuration based on HPLC elution order and direction of specific rotations.

d) Configuration of 6r not determined.

Conclusion

Efficient enantioselective sulfide oxidation is effected using copper-Schiff base catalysis. The procedure employed is clean, inexpensive and is not air sensitive, utilising aqueous hydrogen peroxide as the oxidant. The use of copper as the transition metal offers significant safety benefits over other established methods, employing other toxic metals. Another important feature of this system is the absence or very limited amount of over-oxidation to produce sulfones. Use of a hexane-methanol solvent mixture overcomes catalyst inhibition by the sulfoxide and thereby leads to excellent yields. Steric effects are significant in determining the enantioselectivity of the oxidation.

Experimental Section

General: Sulfides 5a, 5b, 5d were commercially available. For thin-layer chromatography (TLC), silica gel plates were used and compounds were visualised using UV. Solvents were distilled prior to use. 1H (300 MHz), 1H (400 MHz) and 13C NMR (75 MHz) were recorded with spectrometers at 20 °C using CDCl$_3$ as solvent. Chemical shifts are given in ppm relative to TMS as the internal standard. Coupling constants (J) are reported in Hz. Chiral HPLC was performed using Chiralpak OD-H, OJ-H and AS-H columns; eluting with n-hexane and 2-propanol. Specific rotations were recorded at 20 °C in the solvents indicated. The Sodium D line (589 nm) was used unless otherwise indicated. Samples were analysed in a 1 mL dual-walled thermostatted glass cell of pathlength 10 cm. Sample temperature control was maintained using an immersion circulator. Absolute configurations were assigned by comparison of the specific rotations with the literature data for 6a, 6b, 6d-g. Notably, the direction of the specific rotations were in complete agreement with literature values, however
the magnitudes varied somewhat. Racemic sulfoxides were prepared by treatment of the sulfide with 0.6 equivalents of Oxone® in acetone at 0 °C. All reactions are carried out at room temperature unless otherwise indicated. Sulfoxides 6a, 6b, 6c, 6d, 6f, 6g, 6j, 6k, 6l, 6m, 6p have been reported in enantioenriched form. Sulfoxides 6e, 6n, 6q, 6r have been reported in racemic form only. Sulfoxides 6h, 6i, 6o have not been previously reported.

Experimental procedure for asymmetric sulfide oxidation

Copper(II) acetylacetonate (5.2 mg, 2.0 mol%) was added to a round bottomed flask containing Schiff base ligand 4 (11.6 mg, 4.0 mol%), and 9:1 hexane : MeOH (1 mL). The resulting solution was stirred at room temperature for 5 min, and then a solution of sulfide (1 mmol) in 9:1 hexane : MeOH (1 mL) was added. After 5 min stirring at r.t. H2O2 (0.130 mL, 30%, 1.1 mmol) was added in one portion, dropwise to the solution. The reaction mixture was stirred at room temperature for a further 16 h. Then H2O (1 mL) and CH2Cl2 (1 mL) were added and the phases separated; the organic layer was washed with water (2 x 5 mL) and brine (5 mL), dried and concentrated under reduced pressure to give the crude product. The ratio of sulfide-sulfoxide-sulfone in the crude product was determined by 1H NMR. The product was purified by column chromatography on silica gel (6:4 hexane:ethyl acetate). Schiff base ligand can be recovered after chromatography and can be re-used.

In experiments in which NMO was used (Table 2), NMO (2.5 mol%) was added 5 min after addition of the sulfide. The reaction mixture was then stirred for 5 min followed by addition of H2O2 (0.130 mL, 30%, 1.1 mmol).
(R)-(+-)Benzyl phenyl sulfoxide (6a, Table 5, Entry 1)22

Crude product contained a mixture of sulfide, sulfoxide and sulfone (1:98:1). Purification by chromatography afforded the product as a white solid (194 mg, 90%, 79% ee).

\(^1 \text{H} \text{NMR} \delta_H (300 \text{ MHz}) 4.00 \text{ (1H, A of AB system, J 12.5 Hz), 4.10 \text{ (1H, B of AB system, J 12.5 Hz), 6.90–7.04 \text{ (2H, m), 7.19–7.32 \text{ (3H, m), 7.33–7.52 \text{ (5H, m); m.p. 125–126 °C (Lit. m.p. 127 °C)30; IR (KBr): v = 2961, 1455, 1442, 1084, 1033, 746 cm}^{-1}; HPLC: t_R (R) = 17.1 \text{ min, t_R (S) = 21.3 min \text{ [Chiracel OD-H; flow rate 1mL min}^{-1}; \text{hexane-2-PrOH (90:10); 40 °C]; [\alpha]_{D}^{20} = + 146.5^\circ \text{ (c 1.0, acetone) \{ref.22 [\alpha]_{D}^{20} = - 169.8 \text{ (c 1.0, acetone) for (S) 79% ee}.}}22\)

(R)-(+-)Methyl \textit{p}-tolyl sulfoxide (6b, Table 5, Entry 3)23

Crude product contained a mixture of sulfide, sulfoxide and sulfone (4:96:trace). Purification by chromatography afforded the product as a clear oil (138 mg, 90%, 23% ee).

\(^1 \text{H} \text{NMR} \delta_H (400 \text{ MHz}) 2.42 \text{ (3H, s), 2.71 \text{ (3H, s), 7.34 \text{ (2H, d, J 8.4 Hz), 7.54 \text{ (2H, d, J 8.4 Hz); HRMS (ESI): Exact mass calculated for C_{8}H_{10}OS [(M+H)^+] 155.0531, Found 155.0526; HPLC: t_R (R) = 20.1 \text{ min, t_R (S) = 23.8 min \text{ [Chiracel OD-H; flow rate 1mL min}^{-1}; \text{hexane-2-PrOH (95:5); 20 °C]; [\alpha]_{D}^{20} = + 43.6^\circ \text{ (c 1.0, acetone) \{ref.23 [\alpha]_{D}^{20} = + 150.4 \text{ (c 1.17, acetone) for (R) > 99 %ee}.}}23\)

(R)-(+-)Ethyl phenyl sulfoxide (6d, Table 5, Entry 4)25

Crude product contained a mixture of sulfide, sulfoxide and sulfone (2:98:trace). Purification by chromatography afforded the product as a clear oil (142 mg, 92%, 44% ee).

\(^1 \text{H} \text{NMR} \delta_H (400 \text{ MHz}) 1.20 \text{ (3H, t, J 3.5 Hz), 2.70–3.00 \text{ (2H, m), 7.46–7.57 \text{ (3H, m), 7.58–7.66 \text{ (2H, m); IR (film): v = 2935, 1479, 1444, 1087, 1021, 749 cm}^{-1}; HRMS (ESI): Exact} 25\)
mass calculated for C₈H₁₀OS [(M+H)⁺] 155.0531, Found 155.0532; HPLC: \(t_R (R) = 8.1 \) min, \(t_R (S) = 9.8 \) min [Chiracel OD-H; flow rate 1mL min⁻¹; hexane-2-PrOH (90:10); 40 °C]; 96.1° (c 1.0, acetone) \([\alpha]_D^{20} = +185.6 \) (c 0.71, acetone) for \((R) > 99 \% \text{ ee} \).

\((R)-(+)\)-Isopropyl phenyl sulfoxide (6f, Table 5, Entry 5)\(^{26}\)

Crude product contained a mixture of sulfide, sulfoxide and sulfone (19:81:trace).

Purification by chromatography afforded the product as a clear oil (124 mg, 74%, 60% ee).

\(^1\)H NMR \(\delta_H (400 \text{ MHz}) \) 1.15 (3H, d, \(J 6.6 \) Hz), 1.23 (3H, d, \(J 6.6 \) Hz), 2.75–2.91 (1H, m), 7.44–7.62 (5H, m); \(^{13}\)C NMR \(\delta_C \) (75 MHz) 14.0, 15.9, 54.6, 125.0, 128.9, 131.0, 141.7; IR (KBr): \(v = 2970, 1464, 1444, 1088, 1023 \text{ cm}^{-1} \); HPLC: \(t_R (R) = 6.6 \) min, \(t_R (S) = 7.5 \) min [Chiracel OD-H; flow rate 1mL min⁻¹; hexane-2-PrOH (90:10); 40 °C]; \([\alpha]_D^{20} = +112.8 \) (c 1.0, CHCl₃).

\((R)-(+)\)-Isobutyl phenyl sulfoxide (6g, Table 5, Entry 6)\(^{27}\)

Crude product contained a mixture of sulfide, sulfoxide and sulfone (10:90:trace).

Purification by chromatography afforded the product as a clear oil (149 mg, 82%, 48% ee).

\(^1\)H NMR \(\delta_H (400 \text{ MHz}) \) 1.07 (3H, d, \(J 6.6 \) Hz), 1.17 (3H, d, \(J 6.6 \) Hz), 2.14–2.33 (1H, m), 2.45 (1H, A of ABX system, \(J 12.0 \) Hz and 4.8 Hz), 2.82 (1H, B of ABX system, \(J 12.0 \) Hz and 4.8 Hz), 7.43–7.58 (3H, m), 7.59–7.69 (2H, m); \(^{13}\)C NMR \(\delta_C \) (75 MHz) 21.7, 22.8, 24.2, 67.6, 123.9, 129.3, 130.9, 144.7; HRMS (ESI): Exact mass calculated for C₁₀H₁₄SO [(M+H)⁺] 183.0844, Found 183.0850; IR (KBr): \(v = 2960, 1465, 1444, 1090, 1038, 750 \text{ cm}^{-1} \); HPLC: \(t_R (R) = 5.9 \) min, \(t_R (S) = 6.7 \) min [Chiracel OD-H; flow rate 1mL min⁻¹; hexane-2-PrOH (90:10); 40 °C]; \([\alpha]_D^{20} = +129.0 \) (c 1.0, CHCl₃).

\((R)-(+)\)-Neopentyl phenyl sulfoxide (6h, Table 5, Entry 7)
Crude product contained a mixture of sulfide and sulfoxide (15:85). Purification by chromatography afforded the product as a clear oil (155 mg, 79%, 71% ee).

\(^1\)H NMR \(\delta_H (300 \text{ MHz})\) 1.21 (9H, s), 2.54 (1H, A of AB system, \(J\) 13.5 Hz), 2.81 (1H, B of AB system, \(J\) 13.8 Hz), 7.43–7.56 (3H, m), 7.59–7.66 (2H, m); \(^{13}\)C NMR \(\delta_C (75 \text{ MHz})\) 29.8, 32.0, 73.9, 123.8, 129.2, 130.7, 145.6; (Found C, 67.10; H, 8.37; S, 16.29; \(\text{C}_{11}\text{H}_{16}\text{OS}\) requires C, 67.30; H, 8.22; S 16.33); IR (film): v = 2958, 1474, 1448, 1084, 1045, 709 cm\(^{-1}\); HPLC: \(t_R (R) = 6.6\) min, \(t_R (S) = 7.6\) min [Chiracel OD-H; flow rate 1mL min\(^{-1}\); hexane-2-PrOH (90:10); 40 °C]; \([\alpha]^{20}_D = +87.9\) (c 1.0, CHCl\(_3\)).

(R)-(+)-Benzyl \(p\)-tolyl sulfoxide (6j, Table 5, Entry 8)\(^{28}\)

Crude product contained a mixture of sulfide, sulfoxide and sulfone (2:97:1). Purification by chromatography afforded the product as a white solid (209 mg, 91%, 81% ee).

\(^1\)H NMR \(\delta_H (300 \text{ MHz})\) 2.40 (3H, s), 3.97 (1H, A of AB system, \(J\) 12.6 Hz), 4.09 (1H, B of AB system, \(J\) 12.6 Hz), 7.00 (2H, dd, \(J\) 7.5 Hz and \(J\) 1.5 Hz), 7.17–7.37 (7H, m); HRMS (ESI): Exact mass calculated for \(\text{C}_{14}\text{H}_{14}\text{SO} [(\text{M+H})^+]\) 231.0844, Found 231.0839; IR (KBr): v = 2912, 1494, 1456, 1083, 1014, 768 cm\(^{-1}\); HPLC: \(t_R (R) = 16.3\) min, \(t_R (S) = 19.9\) min [Chiracel OD-H; flow rate 1mL min\(^{-1}\); hexane-2-PrOH (90:10); 40 °C]; \([\alpha]^{20}_D = + 106.0\) (c 1.0, acetone), \{ref.\(^{30}\) \([\alpha]^{20}_D = - 254.0\) (c 0.7, acetone) for (S) >99% ee\}.

(R)-(+)\-4-Methoxybenzyl 4’-methylphenyl sulfoxide (6k, Table 5, Entry 10)\(^{29}\)

Crude product contained a mixture of sulfide, sulfoxide and sulfone (2:97:1). Purification by chromatography afforded the product as a white solid (234 mg, 90%, 47% ee).

m.p. 123–124 °C; \(^1\)H NMR \(\delta_H (300 \text{ MHz})\) 2.40 (3H, s), 3.79 (3H, s), 3.93 (1H, A of AB system, \(J\) 12.6 Hz), 4.03 (1H, B of AB system, \(J\) 12.6 Hz), 6.75–6.81 (2H, m), 6.87–6.94 (2H, m), 7.19–7.32 (4H, m); \(^{13}\)C NMR \(\delta_C (75.5 \text{ MHz})\) 21.5, 55.3, 63.0, 113.9, 121.2, 124.5, 129.6,
131.6, 139.6, 141.5, 159.6; IR (KBr): ν = 2961, 1610, 1514, 1036, 809 cm⁻¹; HRMS (ESI): Exact mass calculated for C₁₅H₁₆SO₂ [(M+H)⁺] 261.0949, Found 261.0947; HPLC: tᵣ (R) = 12.7 min, tᵣ (S) = 15.9 min [Chiracel OD-H; flow rate 1mL min⁻¹; hexane-2-PrOH (90:10); 40 °C]; [α]D²⁰ = + 37.9 (c 1.0, CHCl₃), {ref.²⁹ [α]D²⁰ = - 87 (c 0.2, CHCl₃) for (S) >99% ee}.

(R)-(+)-Benzyl 2-methoxyphenyl sulfoxide (6l, Table 5, Entry 11)⁰⁹

Crude product contained a mixture of sulfide, sulfoxide and sulfone (8:92:trace). Purification by chromatography afforded the product as a white solid (209 mg, 85%, 29% ee).

m.p. 31-33 °C; ¹H NMR δH (300 MHz) 3.87 (3H, s), 3.98 (1H, A of AB system, J 12.0 Hz), 4.24 (1H, B of AB system, J 12.0 Hz), 6.90 (1H, d, J 7.8 Hz), 6.99–7.11 (3H, m), 7.17–7.30 (3H, m), 7.36-7.49 (2H, m); ¹³C NMR δC (75.5 MHz) 55.8, 59.7, 110.3, 121.5, 125.8, 127.9, 128.2, 130.2, 130.3, 130.4, 132.0, 155.1; IR (KBr): ν = 2959, 1596, 1496, 1086, 1032, 697 cm⁻¹; HRMS (ESI): Exact mass calculated for C₁₄H₁₄SO₂ [(M+H)⁺] 247.0793, Found 247.0789; HPLC: tᵣ (R) = 16.2 min, tᵣ (S) = 18.6 min [Chiracel OD-H; flow rate 1mL min⁻¹; hexane-2-PrOH (90:10); 40 °C]; [α]D²⁰ = + 60.3 (c 1.0, acetone), {ref.¹⁹ [α]D²⁰ = + 351 (c 0.32, CHCl₃) for (R) = 81% ee}.

(R)-(+)-Benzyl 3-methoxyphenyl sulfoxide (6m, Table 5, Entry 12)⁰⁹

Crude product contained a mixture of sulfide and sulfoxide (46:54). Purification by chromatography afforded the product as a clear oil (115 mg, 47%, 21% ee).

¹H NMR δH (300 MHz) 3.72 (3H, s), 4.00 (1H, A of AB system, J 12.5 Hz), 4.07 (1H, B of AB system, J 12.5 Hz) 6.87–7.03 (5H, m), 7.20–7.37 (4H, m); ¹³C NMR δC (75 MHz) 55.5, 63.5, 108.4, 116.5, 118.1, 128.3, 128.5, 129.1, 129.8, 130.4, 144.0, 160.1; IR (KBr): ν = 2907, 1594, 1481, 1248, 1031, 697 cm⁻¹; HRMS (ESI): Exact mass calculated for C₁₄H₁₄SO₂ [(M+H)⁺] 247.0793, Found 247.0789; HPLC: tᵣ (R) = 12.2 min, tᵣ (S) = 14.0 min [Chiracel
OD-H; flow rate 1mL min\(^{-1}\); hexane-2-PrOH (90:10); 40 °C\]; \([\alpha]_{D}^{20} = + 68.5\) (c 1.0, acetone),
\{ref.\(^{19}\) \([\alpha]_{D}^{20} = + 73.5\) (c 0.17, acetone) for \((R) = 69\%\) ee\}.

\((R)-(+)\)-Benzyl \(o\)-tolyl sulfoxide (6n, Table 5, Entry 13)

Crude product contained a mixture of sulfide, sulfoxide and sulfone (1:98:1). Purification by chromatography afforded the product as a white solid (209 mg, 91%, 64% ee).

m.p. 69-71 °C; \(^1\)H NMR \(\delta_H\) (300 MHz) 2.06 (3H, s), 4.00 (1H, A of AB system, \(J\) 12.3 Hz), 4.10 (1H, B of AB system, \(J\) 12.6 Hz), 6.97 (2H, dd, \(J\) 7.8 Hz and \(J\) 1.3 Hz), 7.06–7.16 (1H, m), 7.19–7.41 (5H, m), 7.67–7.78 (1H, m); \(^{13}\)C NMR \(\delta_C\) (75.5 MHz) 18.0, 62.3, 124.2, 127.1, 128.3, 128.5, 129.3, 130.2, 130.4, 130.9, 135.6, 141.3; ESI-HRMS: calcd for C\(_{14}\)H\(_{14}\)OS [(M+H)\(^+\)]: 231.0844; found: 231.0855; (Found C, 73.06; H, 6.12; S, 14.20; C\(_{14}\)H\(_{14}\)OS requires C, 73.01; H, 6.13; S 13.92); HPLC: \(t_R\) (\(R\)) = 11.2 min, \(t_R\) (\(S\)) = 13.2 min [Chiracel OD-H; flow rate 1mL min\(^{-1}\); hexane-2-PrOH (90:10); 40 °C\]; \([\alpha]_{D}^{20} = +18.5\) (c 1.0, CHCl\(_3\)).

\((R)-(+)\)-Benzyl \(m\)-tolyl sulfoxide (6o, Table 5, Entry 15)

Crude product contained a mixture of sulfide, sulfoxide and sulfone (11:89:0). Purification by chromatography afforded the product as a clear oil (193 mg, 84%, 62% ee).

\(^1\)H NMR \(\delta_H\) (300 MHz) 2.34 (3H, s) 3.97 (1H, A of AB system, \(J\) 12.6 Hz), 4.08 (1H, B of AB system, \(J\) 12.3 Hz), 7.00 (2H, dd, \(J\) 7.8 Hz and \(J\) 2.1 Hz), 7.10–7.34 (7H, m); \(^{13}\)C NMR \(\delta_C\) (75.5 MHz) 21.3, 63.7, 121.5, 124.7, 128.2, 128.4, 128.6, 129.3, 130.4, 131.9, 139.1, 142.7; IR (film): \(v = 2919, 1454, 1038, 766\) cm\(^{-1}\); ESI-HRMS: calcd for C\(_{14}\)H\(_{14}\)OS [(M+H)\(^+\)]: 231.0844; found: 231.0840; (Found C, 72.96; H, 6.28; S, 14.0; C\(_{14}\)H\(_{14}\)OS requires C, 73.01; H, 6.13; S 13.92); HPLC: \(t_R\) (\(R\)) = 15.1 min, \(t_R\) (\(S\)) = 18.9 min [Chiracel OD-H; flow rate 1mL min\(^{-1}\); hexane-2-PrOH (90:10); 40 °C\]; \([\alpha]_{D}^{20} = + 48.6\) (c 1.0, CHCl\(_3\)).
(R)-(+) -4-Methylbenzyl phenyl sulfoxide (6p, Table 5, Entry 17)30

Crude product contained a mixture of sulfide, sulfoxide and sulfone (1:97:2). Purification by chromatography afforded the product as a white solid (205 mg, 89\%, 55\% ee).

1H NMR δ_H (300 MHz) 2.32 (3H, s), 3.96 (1H, A of AB system, J 12.6 Hz), 4.07 (1H, B of AB system, J 12.6 Hz), 6.87 (2H, d, J 7.8 Hz), 7.06 (2H, d, J 7.8 Hz), 7.36–7.51 (5H, m); IR (KBr): v = 2959, 1512, 1442, 1043, 687 cm$^{-1}$; (Found C, 73.12; H, 6.33; S, 13.94; C\textsubscript{14}H\textsubscript{14}OS requires C, 73.01; H, 6.13; S 13.92); HPLC: t_R (R) = 12.7 min, t_R (S) = 14.3 min [Chiracel OD-H; flow rate 1mL min$^{-1}$; hexane-2-PrOH (90:10); 40 °C]; $[\alpha]_{D}^{20} = +42.2$ (c 1.0, CHCl\textsubscript{3}).

(R)-(+) -3-Methylbenzyl phenyl sulfoxide (6q, Table 5, Entry 18)33

Crude product contained a mixture of sulfide, sulfoxide and sulfone (7:92:1). Purification by chromatography afforded the product as a clear oil (191 mg, 83\%, 50\% ee).

1H NMR δ_H (300 MHz) 2.27 (3H, s), 3.94 (1H, A of AB system, J 12.3 Hz), 4.08 (1H, B of AB system, J 12.6 Hz), 6.80 (2H, d, J 5.7 Hz), 7.06–7.19 (2H, m), 7.36–7.51 (5H, m); 13C NMR δ_C (75 MHz) 21.3, 63.9, 124.5, 127.4, 128.4, 128.8, 129.0, 129.1, 131.1, 131.2, 138.2, 143.0; IR (KBr): v = 2967, 1604, 1444, 1040, 736 cm$^{-1}$; ESI-HRMS: calcd for C\textsubscript{14}H\textsubscript{14}OS [(M+H)$^+$]: 231.0844; found: 231.0846; (Found C, 73.42; H, 6.13; S, 13.97; C\textsubscript{14}H\textsubscript{14}OS requires C, 73.01; H, 6.13; S, 13.92); HPLC: t_R (R) = 16.2 min, t_R (S) = 18.7 min [Chiracel OD-H; flow rate 1mL min$^{-1}$; hexane-2-PrOH (90:10); 40 °C]; $[\alpha]_{D}^{20} = +36.8$ (c 1.0, CHCl\textsubscript{3}).

(-)-2-Methylbenzyl phenyl sulfoxide (6r, Table 5, Entry 20)34

Crude product contained a mixture of sulfide, sulfoxide and sulfone (12:85:2). Purification by chromatography afforded the product as a clear oil (184 mg, 80\%, 47\% ee).

1H NMR δ_H (300 MHz) 2.18 (3H, s), 3.99 (1H, A of AB system, J 12.3 Hz), 4.27 (1H, B of AB system, J 12.3 Hz), 6.85 (1H, d, J 6.6 Hz), 7.02–7.25 (3H, m), 7.35–7.52 (5H, m); IR
Crude product contained a mixture of sulfide and sulfoxide (78:22). Purification by chromatography afforded the product as a white solid (23 mg, 14%, 4% ee).

\[^1H \text{NMR} \delta_H (300 \text{ MHz}) 2.33 (1H, t, J = 2.7 \text{ Hz}), 2.44 (3H, s), 3.59 (1H, A of ABX system, \(J_{AB} = 14.2 \text{ Hz}, J_{AX} = 2.6 \text{ Hz}\)), 3.67 (1H, B of ABX system, \(J_{AB} = 14.4 \text{ Hz}, J_{BX} = 2.6 \text{ Hz}\)) 7.35 (2H, d, J = 8.3 Hz), 7.61 (2H, d, J = 8.2 Hz); \text{HPLC:} t_R (R) = 14.6 \text{ min}, t_R (S) = 17.5 \text{ min [Chiracel OD-H; flow rate 1mL min}^{-1}; \text{hexane-2-PrOH (90:10); 20 °C]}; [\alpha]_{D}^{20} = +5.2 \text{ (c 1.0, CHCl}_3)\).

Crude product contained a mixture of sulfide and sulfoxide (45:55). Purification by chromatography afforded the product as a white solid (80 mg, 30%, 93% ee).

\[13C \text{NMR} \delta_C (75 \text{ MHz}) 64.0, 124.5, 126.3, 126.4, 126.7, 127.7, 127.75, 127.9, 128.1, 128.9, 129.8, 131.2, 132.9, 133.1, 142.9; (\text{Found C, 76.43; H, 5.58; S, 12.10; C}_{17}H_{14}OS requires C, 76.66; H, 5.30; S, 12.04}) \text{HPLC:} t_R (R) = 32.1 \text{ min}, t_R (S) = 40.6 \text{ min [Chiracel OD-H; flow rate 1mL min}^{-1}; \text{hexane-2-PrOH (90:10); 20 °C]}; [\alpha]_{D}^{20} = +75.4 \text{ (c 1.0, CHCl}_3)\).

Crude product contained a mixture of sulfide and sulfoxide (54:46). Purification by chromatography afforded the product as a white solid (81 mg, 33%, 54% ee).
\(^1\)H NMR \(\delta_{\text{H}}\) (300 MHz) 3.84 (3H, s), 3.95 (1H, A of AB system, \(J\) 12.0 Hz), 4.11 (1H, B of AB system, \(J\) 12.0 Hz), 6.89–7.02 (4H, m), 7.20–7.33 (5H, m), \(\delta_{\text{C}}\) (75.5 MHz) 55.5, 63.8, 114.4, 126.4, 128.2, 128.5, 129.3, 130.4, 133.6, 162.0; HPLC: \(t_{\text{R}}\) (\(R\)) = 15.5 min, \(t_{\text{R}}\) (\(S\)) = 18.4 min [Chiracel OD-H; flow rate 1mL min\(^{-1}\); hexane-2-PrOH (90:10); 40 °C]; \([\alpha]_{\text{D}}^{20} = +48.2\) (c 1.0, acetone), \{ref.\(^{19}\) \([\alpha]_{\text{D}}^{20} = +31.9\) (c 0.28, acetone) for \((R)\) = 44% ee\}.

\((R)-(+)\)Cyclohexylmethyl phenyl sulfoxide (6e, Table 2, Entry 5)\(^{31}\)
Crude product contained a mixture of sulfide and sulfoxide (71:29). Purification by chromatography afforded the product as a clear oil that solidified to form a white solid (44 mg, 20%, 60% ee).

\(^1\)H NMR \(\delta_{\text{H}}\) (300 MHz) 1.01–1.41 (5H, m), 1.60–1.83 (4H, m), 1.89–2.08 (1H, m), 2.09–2.17 (1H, m) 2.45–2.52 (1H, A of ABX system, \(J\) 12.9 Hz and 9.0 Hz), 2.76–2.82 (1H, B of ABX system, \(J\) 12.9 Hz and 4.8 Hz), 7.42–7.72 (5H, m); IR (KBr): \(\nu = 2920, 1443, 1034, 752\) cm\(^{-1}\); HPLC: \(t_{\text{R}}\) (\(R\)) = 17.3 min, \(t_{\text{R}}\) (\(S\)) = 20.3 min [Chiracel OD-H; flow rate 1mL min\(^{-1}\); hexane-2-PrOH (90:10); 20 °C]; \([\alpha]_{\text{D}}^{20} = +47.8\) (c 1.0, CHCl\(_3\)).

Experimental procedure for Schiff base ligand synthesis
Commercially available salicylaldehyde (1 mmol) and sodium sulfate (0.5 g) were added to a solution of (\(S\))-\textit{tert}-leucinol (1 mmol) or \textit{L}-valinol (1 mmol) in ethanol (20 mL). The reaction mixture was stirred under reflux for 16 h, filtered and concentrated under reduced pressure. The reaction mixture was then dissolved in dichloromethane (10 mL) and washed with water (3 \(\times\) 10 mL) and brine (15 mL). The organic layer was dried and concentrated under reduced pressure to leave the crude product which was purified by column chromatography on silica gel (8 : 2 hexane : ethyl acetate) to yield the pure ligand.
(S)-2-((N-3’,5’-Dibromosalicylidene)-amino-3,3-dimethyl-1-butanol (3, Table 4)36,37

Yellow solid, 73%, m.p. 160-162 °C; 1H NMR \(\delta_H\) (300 MHz) 1.01 (9H, s), 3.10 (1H, dd, J 9.5 Hz and 2.4 Hz), 3.11 (1H, brs), 3.70 (1H, dd, J 11.2 Hz and 9.8 Hz), 3.98–4.08 (1H, brm), 7.35 (1H, d, J 2.5 Hz), 7.58 (1H, d, J 2.4 Hz), 8.12 (1H, s); 13C NMR \(\delta_C\) (75.5 MHz) 27.3, 33.4, 62.2, 79.2, 107.9, 114.8, 118.2, 133.8, 139.1, 162.9, 164.9; m/z (ESI) [(M+H)+] 378; HRMS (ESI): Exact mass calculated for C\textsubscript{13}H\textsubscript{17}Br\textsubscript{2}NO\textsubscript{2} [(M+H)+] 377.9704, Found 377.9710; \([\alpha]_D\)20 = -16.1 (c 1.0, acetone).

(S)-2-((N-3’,5’-Dichlorosalicylidene)-amino-3,3-dimethyl-1-butanol (4, Table 4)

Yellow solid, 72%, m.p. 153–156 °C; 1H NMR \(\delta_H\) (300 MHz) 1.02 (9H, s), 3.11 (1H, dd, J 9.5 Hz and 2.4 Hz), 3.69 (1H, dd, J 11.2 Hz and 9.8 Hz), 3.82–4.10 (1H, brs), 3.96–4.06 (1H, brm), 7.04 (1H, d, J 2.5 Hz), 7.27 (1H, d, J 2.4 Hz), 8.12 (1H, s); 13C NMR \(\delta_C\) (75.5 MHz) 26.9, 32.9, 61.7, 78.5, 116.9, 120.2, 124.5, 129.6, 133.4, 162.3, 164.8; m/z (ESI) [(M+H)+] 290; HRMS (ESI): Exact mass calculated for C\textsubscript{13}H\textsubscript{17}Cl\textsubscript{2}NO\textsubscript{2} [(M+H)+] 290.0715, Found 290.0723; IR \(\nu_{\text{max}}/\text{cm}^{-1}\) (KBr) 3322, 2971, 1645, 1502 1209, 1058; (Found: C, 54.07; H, 5.91; N, 4.64. C\textsubscript{13}H\textsubscript{17}Cl\textsubscript{2}NO\textsubscript{2} Requires C, 53.81; H, 5.90; N, 4.64); \([\alpha]_D\)20 = -23.6 (c 1.0, acetone).

(S)-2-((N-3,5-Diiodosalicylidene)-amino-3,3-dimethyl-1-butanol (10, Table 4)22,36

Yellow solid, 79%, m.p. 164–165 °C (Lit. m.p. 163-164)22, 1H NMR \(\delta_H\) (300 MHz) 1.00 (9H, s), 2.53 (1H, brs), 3.08 (1H, dd, J 9.5 Hz and 2.5 Hz), 3.68 (1H, dd, J 11.1 Hz and 9.8 Hz), 3.93–4.07 (1H, brm), 7.51 (1H, d, J 2.1 Hz), 8.01 (1H, d, J 2.1 Hz), 8.10 (1H, s); IR \(\nu_{\text{max}}/\text{cm}^{-1}\) (KBr) 3320, 2965, 1638, 1479, 1217, 1060; \([\alpha]_D\)20 = -18.5 (c 0.1, acetone), Lit.22 \([\alpha]_D\)20 = -16.6 (c 1.0 for S in acetone).
(S)-2-(N-3’-tert-Butylsalicylidene)-amino-3,3-dimethyl-1-butanol (11, Table 4)\(^{37}\)

Yellow oil, 88%, \(^1\)H NMR \(\delta_H\) (300 MHz) 0.99 (9H, s), 1.44 (9H, s), 2.93 (1H, dd, \(J\) 9.4 Hz and 2.7 Hz), 3.73 (1H, dd, \(J\) 11.0 Hz and 9.7 Hz), 3.90 (1H, dd, \(J\) 11.1 Hz and 2.8 Hz), 6.84 (1H, t, \(J\) 7.5 Hz), 7.15 (1H, dd, \(J\) 7.6 Hz and 1.6 Hz), 7.35 (1H, dd, \(J\) 7.6 and 1.6 Hz), 8.42 (1H, s); IR \(\nu_{\text{max}}/\text{cm}^{-1}\) (film) 3367, 2959, 1633, 1458, 1436; \([\alpha]_{D}^{20} = -54.3\) (c 0.3, acetone).

(S)-2-(N-5’-tert-Butylsalicylidene)-amino-3,3-dimethyl-1-butanol (12, Table 4)\(^{38}\)

Yellow solid, 82%, m.p. 119–120 °C; \(^1\)H NMR \(\delta_H\) (300 MHz) 0.96 (9H, s), 1.31 (9H, s), 1.62 (1H, brs), 2.93 (1H, dd, \(J\) 9.5 Hz and 2.8 Hz), 3.75 (1H, dd, \(J\) 11.0 Hz and 9.6 Hz), 3.92 (1H, dd, \(J\) 11.1 Hz and 2.8 Hz), 6.91 (1H, d, \(J\) 8.6 Hz), 7.26–7.28 (1H, m), 7.36 (1H, dd, \(J\) 8.6 Hz and 2.5 Hz), 8.36 (1H, s); \(^{13}\)C NMR \(\delta_C\) (75.5 MHz) 27.0, 31.4, 33.2, 34.0, 62.5, 81.3, 116.5, 117.8, 128.0, 129.8, 141.5, 158.9, 166.4 (HC=N); IR \(\nu_{\text{max}}/\text{cm}^{-1}\) (KBr) 3422, 2958, 1633, 1493; (Found: C, 73.31; H, 9.89; N, 5.12 C\(_{17}\)H\(_{27}\)NO\(_2\) Requires C, 73.61; H, 9.81; N, 5.05); \([\alpha]_{D}^{20} = -46.8\) (c 0.3, acetone).

(S)-2-(N-3’,5’-Dibromosalicylidene)-amino-3-methyl-1-butanol (13, Table 4)

Yellow solid, 76%, m.p. 136–138 °C, \(^1\)H NMR \(\delta_H\) (300 MHz) 0.99 (3H, d, \(J\) 6.7 Hz), 1.01 (3H, d, \(J\) 6.7 Hz), 1.88–2.07 (1H, m), 3.17–3.30 (1H, m), 3.65–3.80 (1H, m), 3.99 (1H, dd, \(J\) 11.4 Hz and 2.6 Hz), 7.25 (1H, d, \(J\) 2.5 Hz), 7.60 (1H, d, \(J\) 2.5 Hz), 8.14 (1H, s); \(^{13}\)C NMR \(\delta_C\) (75.5 MHz) 18.4, 19.8, 29.6, 64.0, 74.8, 107.2, 114.8, 117.6, 133.5, 138.8, 163.0, 164.6; m/z IR (KBr) \(\nu_{\text{max}}/\text{cm}^{-1}\) 3259, 2965, 1645, 1497, 1212, 1043, 857, 690; (Found: C, 39.73; H, 4.14; N, 3.57. C\(_{12}\)H\(_{15}\)Br\(_2\)NO\(_2\) Requires C, 39.48; H, 4.14; N, 3.84); \([\alpha]_{D}^{20} = -9.1\) (c 1.0, acetone).

(S)-2-(N-3’,5’-Difluorosalicylidene)-amino-3,3-dimethyl-1-butanol (14, Table 4)

(\(S\))-2-(N-3’,5’-Difluorosalicylidene)-amino-3,3-dimethyl-1-butanol (14, Table 4)
Yellow solid, 75%, m.p. 103–105 °C; 1H NMR δH (300 MHz) 1.00 (9H, s), 2.81 (1H, bs), 3.06 (1H, dd, J 9.6 Hz and 2.4 Hz), 3.70 (1H, overlapping dd, J 11.1 Hz and 9.6 Hz), 3.99 (1H, dd, J 11.4 Hz and 2.7 Hz), 6.87 (1H, dd, J 8.1 Hz and 3.0 Hz), 7.14 (1H, dd, J 8.1 Hz and 3.0 Hz), 8.22 (1H, s); 13C NMR δC (75.5 MHz) 26.9, 33.0, 61.9, 79.8, 115.2, 117.0 (d, J_{CF} 8 Hz), 121.0 (d, $^2J_{CF}$ 26 Hz), 122.8 (d, $^3J_{CF}$ 10 Hz) 153.4 (d, $^1J_{CF}$ 239 Hz) 157.0, 164.6 (d, $^4J_{CF}$ 3 Hz, HC=N); m/z (ESI) [(M+H)$^+$] 274; HRMS (ESI): Exact mass calculated for C$_{13}$H$_{17}$FCINO$_2$ [(M+H)$^+$] 274.1010, Found 274.1006; IR (KBr) ν_{max}/cm$^{-1}$ 3288, 2973, 1643, 1471, 1366, 1209, 1063, 803; (Found: C, 57.41; H, 6.30; N, 5.24. C$_{13}$H$_{17}$FCINO$_2$ Requires C, 57.04; H, 6.26; N, 5.12); $[^{\alpha}]_{D}^{20}$ = -27.4 (c 1.0, acetone).

(S)-2-(N-3'-Chloro-5'-fluorosalicylidene)-amino-3,3-dimethyl-1-butanol (15, Table 4)

Experimental procedure for synthesis of sulfides

Method A39

This method was used for the synthesis of sulfides 5e-5g, 5i-5r and 1d.

The thiolate anion was first prepared by treatment of the thiol with an excess of sodium ethoxide. The thiolate anion was then treated with an equimolar amount of aryl or alkyl halide and stirred for 16 h at room temperature. Water (20 mL) and dichloromethane (20 mL)
were added to the flask. The layers were separated and the aqueous layer was extracted with
dichloromethane (10 mL). The combined organic layers were washed with aqueous sodium
hydroxide (2 M, 3 x 20 mL) and brine (20 mL), dried, filtered and concentrated under
reduced pressure to give the sulfides which were purified by column chromatography.

Method B

This method was used for the synthesis of neopentyl phenyl sulfide, 5h

1-Bromo-2,2-dimethyl propane (3.02 g, 20 mmol), aqueous benzenethiolate (20 mmol) and
aliquat 336 (0.033 mole equivalents) were added to a 2-neck round bottomed flask under
nitrogen. The mixture was heated at 70 °C with vigorous stirring for 16 h. After the mixture
had cooled to room temperature, the organic layer was separated and the aqueous phase was
extracted with two 20 mL portions of diethyl ether. The combined organic phases were
washed with 20 mL of 10% aqueous sodium chloride and dried over magnesium sulfate.
After removal of the solvent the resulting residual oil was distilled using a kugelrohr
apparatus to give neopentyl phenyl sulfide, b.p. 145–147° (0.1 mm. Hg).

Method C

This method was used for the synthesis of 4-methylphenyl prop-2’-ynyl sulfide, 5c.

NaH (0.72 g of 67% dispersion in mineral oil, 20 mmol) was added to a two neck flask under
nitrogen. After washing with hexane (3 x 5 mL), dry dimethylformamide (DMF) (15 mL)
was added to the flask and the mixture was stirred for 5 mins. The reaction mixture was
cooled to 0 °C, and 4-methylbenzene thiol (20 mmol, 2.48 g) was added slowly. After stirring
for 5 mins, a solution of propargyl bromide (20 mmol, 1.72 mL) in DMF (10 mL) was added.
The mixture was removed from the ice-bath, allowed to return to room temperature and
stirred for 16 h under nitrogen. HCl (2 M, 20 mL) and dichloromethane (20 mL) were added
to the flask. The layers were separated, and the organic layers were washed with aqueous HCl
(2 M, 3 x 20 mL) and brine (15 mL), dried and concentrated under reduced pressure, to yield
the crude product as yellow oil. This was purified by column chromatography on silica gel (100% hexane) to yield the product.

4-Methylphenyl prop-2'-ynyl sulfide\(^4\) (5c)

Clear oil, 47%, \(^1\)H NMR \(\delta_H\) (400 MHz) 2.23 (1H, t, \(J\ 2.6\) Hz), 2.34 (3H, s), 3.56 (2H, d, \(J\ 2.6\) Hz), 7.14 (2H, d, \(J\ 8.5\) Hz), 7.38 (2H, d, \(J\ 8.5\) Hz); IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 2117, 1231, 643.

Cyclohexylmethyl phenyl sulfide\(^4\) (5e)

Clear oil, 95%, \(^1\)H NMR \(\delta_H\) (400 MHz) 0.89–1.08 (2H, m), 1.10–1.32 (3H, m), 1.45–1.80 (4H, m), 1.82–1.94 (2H, m), 2.80 (2H, d, \(J\ 6.8\) Hz) 7.09–7.18 (1H, m), 7.21–7.38 (4H, m); IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 2924, 1584, 1480, 1448, 736.

Isopropyl phenyl sulfide\(^4\) (5f)

Clear oil, 70%, \(^1\)H NMR \(\delta_H\) (300 MHz) 1.29 (6H, d, \(J\ 6.9\) Hz), 3.30–3.45 (1H, m), 7.18–7.33 (3H, m), 7.38–7.42 (2H, m); \(^13\)C NMR \(\delta_C\) (75 MHz) 23.1, 38.2, 126.7, 128.8, 131.9, 135.5; IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 2962, 2925, 1584, 1480, 1439, 1026, 741, 692.

Isobutyl phenyl sulfide\(^4\) (5g)

Clear oil, 97%, \(^1\)H NMR \(\delta_H\) (300 MHz) 1.03 (6H, d, \(J\ 6.6\) Hz), 1.79–1.94 (1H, m), 2.81 (2H, d, \(J\ 6.6\) Hz), 7.11–7.19 (1H, m), 7.22–7.35 (4H, m); \(^13\)C NMR \(\delta_C\) (75 MHz) 22.1, 28.3, 42.6, 125.6, 128.8, 128.8, 137.4; IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 2958, 2927, 1586, 1481, 1438, 1026, 737, 690.

Neopentyl phenyl sulfide\(^4\) (5h)

Clear oil, 37%, \(^1\)H NMR \(\delta_H\) (300 MHz) 1.04 (9H, s), 2.90 (2H, s), 7.10–7.18 (1H, m), 7.21–7.30 (2H, m), 7.32–7.38 (2H, m); \(^13\)C NMR \(\delta_C\) (75 MHz) 29.1, 32.5, 48.6, 125.5, 128.8, 128.9, 138.5; IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 2958, 2907, 1584, 1480, 1438, 1026, 736, 690.
2-Naphthylmethyl phenyl sulfide45 (5i)

White solid, 82%. 1H NMR \(\delta\) (300 MHz) 4.26 (2H, s), 7.11–7.27 (3H, m), 7.28–7.36 (2H, m), 7.38–7.51 (3H, m), 7.63–7.85 (4H, m); 13C NMR \(\delta\) (75 MHz) 39.5, 125.8, 126.1, 126.5, 127.0, 127.4, 127.7, 127.7, 128.3, 128.9, 130.1, 132.6, 133.3, 134.9, 136.3 (C\textsubscript{Ar(q)}); IR (KBr) \(\nu\)\textsubscript{max}/cm-1 3048, 2917, 1438, 832, 738.

Benzyl-(4-methylphenyl)-sulfide39 (5j)

White solid, 76%, m.p. 42–43 \textdegree C, (Lit. 45 \textdegree C)8; 1H NMR \(\delta\) (300 MHz) 2.30 (3H, s), 4.06 (2H, s), 7.05 (2H, d, \(J\) 8.2 Hz), 7.15–7.32 (7H, m); 13C NMR \(\delta\) (75.5 MHz) 21.0, 39.7, 127.1, 128.4, 128.8, 129.6, 130.7, 132.4, 136.5, 137.8; \(\nu\)\textsubscript{max}/cm-1 (KBr) 2921, 1494, 1454, 1265, 740, 697;

4-Methoxybenzyl-(4'-methylphenyl)-sulfide39 (5k)

White solid, 75%, m.p. 65–67 \textdegree C, (Lit. 67 \textdegree C)46; 1H NMR \(\delta\) (300 MHz) 2.30 (3H, s.), 3.78 (3H, s), 4.03 (2H, s), 6.76–6.84 (2H, m), 7.03–7.11 (2H, m), 7.13–7.28 (4H, m); 13C NMR \(\delta\) (75.5 MHz) 21.0, 39.2, 55.3, 113.9, 129.6, 129.8, 129.9, 130.7, 132.7, 136.5, 158.7; IR \(\nu\)\textsubscript{max}/cm-1 (KBr) 2958, 2833, 1609, 1510, 1492, 1241, 1174, 1030, 799; m/z (ESI) [(M+OH)+] 261; HRMS (ESI): Exact mass calculated for C\textsubscript{15}H\textsubscript{16}OS [(M+OH)+] 261.0949, Found 261.0937.

Benzyl-(2-methoxyphenyl)-sulfide47,48 (5l)

White solid, 55%, m.p. 68–70 \textdegree C, 1H NMR \(\delta\) (300 MHz) 3.88, 4.09 (2H, s), 6.79–6.91 (2H, m), 7.12–7.35 (7H, m); 13C NMR \(\delta\) (75.5 MHz) 37.3, 55.8, 110.5, 121.0, 124.5, 127.0, 127.6, 128.4, 128.9, 130.5, 137.6, 157.6; IR \(\nu\)\textsubscript{max}/cm-1 (KBr) 2934, 1577, 1476, 1245, 1071,
1025, 747; m/z (ESI) [(M+OH)$^+$] 247.; HRMS (ESI): Exact mass calculated for C$_{14}$H$_{14}$OS [(M+OH)$^+$] 247.0793, Found 247.0799.

Benzyl-(3-methoxyphenyl)-sulfide47 (5m)

Clear oil, 83%, 1H NMR δ_H (300 MHz) 3.73 (3H, s,), 4.12 (2H, s), 6.67–6.75 (1H, m), 6.80–6.85 (1H, m), 6.87–6.94 (1H, m), 7.12–7.35 (6H, m); 13C NMR δ_C (75.5 MHz) 38.9, 55.2, 112.2, 114.8, 121.8, 127.2, 128.5, 128.8, 129.7, 137.4, 137.8, 159.7; IR ν_{max}/cm$^{-1}$ (film) 3062, 3029, 2936, 1590, 1479, 1249, 1043, 769; m/z (ESI) [(M+OH)$^+$] 247; HRMS (ESI): Exact mass calculated for C$_{14}$H$_{14}$OS [(M+OH)$^+$] 247.0793, Found 247.0796.

Benzyl o-tolyl sulfide49 (5n)

Clear oil, 90%, 1H NMR δ_H (300 MHz) 2.32 (3H, s,), 4.08 (2H, s), 7.04–7.18 (3H, m), 7.19–7.33 (6H, m); 13C NMR δ_C (75.5 MHz) 20.3, 38.3, 126.1, 126.4, 127.2, 128.5, 128.8, 128.9, 130.1, 135.8, 137.2, 137.9; IR (film) ν_{max}/cm$^{-1}$ 3061, 3029, 2936, 1590, 1479, 1249, 1043, 769; m/z (ESI) [(M+OH)$^+$] 231; HRMS (ESI): Exact mass calculated for C$_{14}$H$_{14}$S [(M+OH)$^+$] 231.0844, Found 231.0848.

Benzyl m-tolyl sulfide (5o)

Clear oil, 91%, 1H NMR δ_H (300 MHz) 2.29 (3H, s,), 4.11 (2H, s), 6.95–7.02 (1H, m), 7.07–7.34 (8H, m); 13C NMR δ_C (75.5 MHz) 21.4, 39.0, 126.7, 127.2, 128.5, 128.8, 128.9, 130.4, 136.2, 137.6, 138.6; IR (film) ν_{max}/cm$^{-1}$ 3029, 2921, 1592, 1495, 1453, 770, 693; (Found C, 78.55; H, 6.62; S, 14.93; C$_{14}$H$_{14}$S requires C, 78.46; H, 6.58); m/z (ESI) [(M+OH)$^+$] 231; HRMS (ESI): Exact mass calculated for C$_{14}$H$_{14}$S [(M+OH)$^+$] 231.0844, Found 231.0843.
4-Methylbenzyl phenyl sulfide50 (5p)

White solid, 87\%, m.p. 69-71 °C, (Lit. 63.5-64.4 °C)50; 1H NMR \(\delta\) (300 MHz) 2.32 (3H, s), 4.09 (2H, s), 7.03–7.36 (9H, m); 13C NMR \(\delta\) (75.5 MHz) 21.1, 38.7, 126.2, 128.7, 128.8, 129.2, 129.6, 134.3, 136.7, 136.8; IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 3058, 2918, 1582, 1479, 1435, 1090, 738, 690; (Found C, 78.13; H, 6.59; S, 15.30; C\textsubscript{14}H\textsubscript{14}S requires C, 78.46; H, 6.58; S 14.96); m/z (ESI) [(M+OH)+] 231; HRMS (ESI): Exact mass calculated for C\textsubscript{14}H\textsubscript{14}S [(M+OH)+] 231.0844, Found 231.0849.

3-Methylbenzyl phenyl sulfide (5q)

Clear oil, 77\%, 1H NMR \(\delta\) (300 MHz) 2.31 (3H, s), 4.09 (2H, s), 7.00–7.37 (9H, m); 13C NMR \(\delta\) (75.5 MHz) 21.3, 39.0, 125.9, 126.3, 128.0, 128.4, 128.8, 129.6, 129.7, 136.6, 137.3, 138.2; IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 3057, 2920, 1584, 1480, 1438, 1089, 738, 690; (Found C, 78.20; H, 6.51; S, 15.3; C\textsubscript{14}H\textsubscript{14}S requires C, 78.46; H, 6.58; S 14.96); m/z (ESI) [(M+OH)+] 231; HRMS (ESI): Exact mass calculated for C\textsubscript{14}H\textsubscript{14}S [(M+OH)+] 231.0844, Found 231.0843.

2-Methylbenzyl phenyl sulfide (5r)

Clear oil, 86\%, 1H NMR \(\delta\) (300 MHz) 2.39 (3H, s), 4.10 (2H, s), 7.02–7.37 (9H, m); 13C NMR \(\delta\) (75.5 MHz) 19.2, 37.4, 126.0, 126.5, 127.5, 128.9, 129.8, 130.3, 130.5, 135.1, 136.7, 136.8; IR (film) \(\nu_{\text{max}}/\text{cm}^{-1}\) 3060, 2929, 1583, 1479, 1438, 737, 690; (Found C, 78.61; H, 6.32; S, 15.02; C\textsubscript{14}H\textsubscript{14}S requires C, 78.46; H, 6.58; S 14.96); m/z (ESI) [(M+OH)+] 231; HRMS (ESI): Exact mass calculated for C\textsubscript{14}H\textsubscript{14}S [(M+OH)+] 231.0844, Found 231.0844.

Benzyl-(4-methoxyphenyl)-sulfide47,48 (1d)
White solid, 95%, m.p. 47–49 °C, (Lit. 48–49 °C); \(^1\)H NMR \(\delta\) (300 MHz) 3.77 (3H, s), 3.98 (2H, s), 6.73–6.83 (2H, m), 7.13–7.31 (7H, m); \(^{13}\)C NMR \(\delta\) (75.5 MHz) 41.2, 55.3, 114.4, 126.1, 127.0, 128.4, 128.9, 134.1, 138.1, 159.2; IR \(\nu_{\text{max}}/\text{cm}^{-1}\) (KBr) 2920, 2834, 1595, 1493, 1288, 1246, 1179, 1026, 810.

Acknowledgements

We are grateful to IRCSET Embark initiative for funding. We would also like to thank the following for their assistance: Cormac Tobin, Aoife Ring and Stephen Stokes.

Supporting Information: \(^1\)H NMR spectra are available for compounds 5o, 5r, 5q, 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h, 6i, 6j, 6k, 6l, 6m, 6n, 6o, 6p, 6q, 6r, 2d, 4, 13, 14 and 15. \(^{13}\)C NMR spectra are available for compounds 5o, 5r, 5q, 6h, 6i, 4, 13, 14 and 15. HPLC data are available for sulfoxides 6i and 6h. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(19) Kelly, P.; Lawrence, S. E.; Maguire, A. R. Synlett 2007, 1501.

(49) Vowinkel, E. *Synthesis* 1974, 430.