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One sentence summary: This study supports a specific preliminary platform to characterize 

Lactobacillus plantarum intended for fermentation purposes and for probiotic consumption on the 

basis of genotype and phenotype.  

 

ABSTRACT  

Lactic acid bacterium, Lactobacillus plantarum, has been applied, for centuries, for food and drink 

fermentations. Given the benefits associated with fermented products, Lb. plantarum strains have 

captured considerable industrial and scientific interest, so that they are included as fundamental 

components of functional foods.  Indeed, some strains are marketed as probiotics. In the present 
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study, food and gut associated Lb. plantarum isolates were genetically characterized by Multilocus 

Sequence Typing (MLST) and phenotypically characterized for properties that could influence their 

probiotic potential. MLST and phylogenetic analysis stratified 22 Lb. plantarum isolates into six 

lineages. The isolates were further phenotypically characterized by in vitro assay to assess their 

potential gut community influence via a limited number of assays including acidification activity, 

strain displacement activity and their intrinsic range of antibiotic resistance.  Given growing 

recognition of the benefits of fermented foods, and the prevalence of Lb. plantarum in these 

applications, this study highlights analysis of a subset of preliminary important strain specific 

features. These features are of interest to all stakeholders, to inform isolate comparison and 

selection for current functional food associations and that can serve as a basis for future strain and 

food-microbe fermentation product development.  

 

INTRODUCTION 

Lactobacillus plantarum, a natural inhabitant of the human gastro-intestinal tract (GIT) is a highly 

versatile species of lactic acid bacteria (LAB) that is encountered in a wide range of different 

ecological niches including food (Siezen et al. 2011; Corsetti et al. 2018). Recognition of their 

importance in food fermentation processes has led to their use as starter cultures to support a wide 

range of fermented food products, including those obtained from vegetable fermentations (Gardner 

et al. 2001; Wouters et al. 2013; Zago et al. 2013, Benincasa et al. 2015), fermented dairy products 

(Pisano et al. 2011; Zago et al. 2011) and fermented meat products (Rubio et al. 2013; Zhang et al. 

2013). In many of these fermentations, Lb. plantarum appears to be dominant, particularly in the 

later stages of fermentation. This enrichment may well be due to its ability to tolerate low pH 

(Luxananil et al. 2009) as well as the metabolic capability to ferment a broad spectrum of 

carbohydrates (Xu et al. 2015).  

Indeed, the ecological flexibility and environmental adaptation of Lb. plantarum could be 

related to its genome size (average 3.3 Mb). It represents one of the largest detected within the 

Lactobacillus genus (Kleerebezem et al. 2003; Molenaar et al. 2005).  These considerations along 

with their ease of culture, genetic malleability and their relative representation in different niches 

including the human gut (de Vries 2006; Molin et al. 2014) further support Lb plantarum for 

probiotic applications. Accordingly, the diverse range of properties associated with individual Lb. 

plantarum strains and an expanded interest in Lb. plantarum strain application as probiotics 

necessitates a reliable molecular method to delimit Lb. plantarum to the strain level.  Relating strain 

specific molecular identification combined with beneficial strain properties could inform and 

optimize LAB selection for functional foods and fermentations. Multilocus sequence typing 

(MLST) represents a reliable molecular method for both identification and typing of closely related 

isolates and strains within and outside a species (Maiden et al. 1998).  This method is widely used 

to investigate relatedness in predicting degree of pathogenicity among important human and food 

borne pathogens (Ragon et al. 2008; Achtman et al. 2012). More recently, it has gained credence 

for typing LAB, facilitating precise comparative identification to strain level (de Las Riva et al. 

2006; Oh et al. 2010; Xu et al. 2015).  
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In selecting bacterial strains intended for use in the food industry, identification and safety 

for use are of the utmost importance in establishing Generally Recognized as Safe (GRAS) or 

Qualified Presumption of Safety (QPS) status. Guidelines issued by both the Food and Agriculture 

Organization and the World Health Organization (FAO/WHO) and the European Food Safety 

Authority (EFSA) have recommended a range of criteria that should be examined for any potential 

probiotic strain in respect of this. One criterion includes assessment of inherent antibiotic 

resistances.  Genetic resistance to antibiotics could be transferred from LAB to other commensal 

microorganisms on plasmids or through conjugative transposons, thereby increasing opportunities 

for transmission of antibiotic resistance.  Such transmission has the potential to increase virulence 

and resistance to other strains, including pathogens with the added possibility to increase antibiotic 

resistance through the food chain (Teuber et al. 1999). Therefore, assessing Lb. plantarum isolate 

specific antibiotic susceptibility and resistance is recognized as an important consideration for 

putative probiotic strains. Moreover, it is universally recognized that probiotics should be capable 

of transit to the digestive tract to elicit their beneficial effects (Papadimitriou et al. 2015). In doing 

so, inherent gut health and microbial populations should be preserved, if not enhanced.  

The current study was initiated to provide preliminary characterization of new probiotic 

candidates among a collection of Lb. plantarum isolates of fermented food origin.  Applying genetic 

and phenotypic approaches, this work provides a preliminary platform that may be applied for strain 

specific identification and characterization in order to initially characterize and optimize strain 

selection, to facilitate recognition of redundancy in fermentation processes and in probiotic 

selection for human consumption. 

 

MATERIALS AND METHODS 

 

Bacterial isolates applied in this study 

Food-borne Lb. plantarum isolates investigated in this study were originally isolated from 

fermented foods or are of human origin and are part of the University of Teramo collection (Table 

S1). All the isolates were identified as Lb. plantarum species and characterized by this group for 

other functional properties (Prete et al. 2017; Garcia et al. 2018; Prete et al. 2020). Type strain Lb. 

plantarum ATCC14917
TM

, WCFS1 and two probiotics IMC510
 
and IMC513

 
(Synbiotec srl, 

Camerino, Italy) were included in the study as reference strains (Table 3).  

 

DNA isolation and genetic characterization 

Total DNA was prepared individually for all isolates following overnight bacterial MRS broth 

cultures using GenElute
TM

 Bacterial Genomic DNA kit (Sigma-Aldrich) following their 

instructions. 

Six housekeeping genes were chosen for MLST analysis: pgm (encodes phosphoglucomutase), ddl 

(encodes for D-alanine-D-alanine ligase), gyrB (encodes the B subunit of DNA gyrase), purK1 
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(encodes the ATPase subunit of phosphoribosylaminoimidazole carboxylase), gdh (encodes 

glutamate dehydrogenase) and mutS (encodes one DNA mismatch repair protein). Homologous 

DNA sequences of these candidate loci are available from GenBank. These candidate genes were 

selected based on MLST performed by de las Rivas et al. (2006) and on the criterion that they are 

widely separated on the chromosome, with the smallest distance recorded for purK1 and gdh which 

are 28.5 kb apart (Kleerebezem et al. 2003). Primer sequences are indicated in Table S2 and PCR 

was performed as described by de las Rivas et al. 2006.  

 

MLST data analysis 

Sequence alignment, analysis and the identification of polymorphic sites were performed using the 

MEGA 7.0 software package (http://www.megasoftware.net). For each of the six loci, the 

sequences obtained for all isolates were compared and unique nucleotide sequences defined on the 

basis of deviation in sequence for each allele. Each isolate was defined by a unique allele profile or 

sequence type (ST) derived from the combination of alleles obtained at each locus. Isolates that 

shared the same allelic profile could belong to the same ST, while sequences with deviations, at a 

single nucleotide site or more were considered distinct alleles. The sequences of the six 

housekeeping genes of 22 Lb. plantarum isolates were concatenated. A phylogenetic tree based on 

concatenated sequences were constructed using the Neighbor-Joining method, with a Kimura two-

parameter distance model in the MEGA 7.0 software package. The percentage of bootstrap 

confidence levels, for internal branches, was calculated from 1000 random resamplings as defined 

by the MEGA program (Kumar et al. 2016). The tree was rooted using Bacillus subtilis as an 

outgroup and an optimal tree was constructed.  

 

In vitro antimicrobial susceptibility assay 

The degree of susceptibility of Lb. plantarum isolates to a range of antibiotics was assessed and 

taken as a readout of antibiotic resistance for each isolate. Each isolate was exposed to a range of 

different classes of antibiotics following the EFSA guidelines (EFSA 2008). Antimicrobial 

susceptibility was determined by disc diffusion using the agar overlay diffusion assay described by 

the National Committee for Clinical Laboratory Standards (Figure 1S). MRS agar was used for 

testing Lb. plantarum isolates and TSA medium was applied for benchmarking strains: Escherichia 

coli (Migula) Castellani and Chalmers (ATCC
®
25922™) and Staphylococcus aureus subsp. aureus 

Rosenbach (ATCC
®
25923™).  Briefly, overnight cultures were inoculated into soft agar media, 

which was applied to overlay solid agar embedded with antibiotic containing discs at recommended 

concentrations (Table S3).  Assays were incubated anaerobically at 37°C for 48 hours (Figure 1S). 

Growth inhibition zone diameter was calculated using sliding callipers for each disc and any zone 

of growth inhibition.  The average from three independent applications were expressed in terms of 

resistance, moderate susceptibility, or susceptibility, according to interpretative standards described 

by Charteris et al. 2008 (see Table S3).  
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Lb. plantarum isolate specific influence on GI resident bacteria 

An in vitro growth-inhibition assessment was applied to examine food-borne Lb. plantarum isolates 

interaction with each and with gut isolated Lb. microbes (Figure 1) including representative species 

isolated from the human microbiota, including as Lb. reuteri Cardioviva
TM

 and Lb. rhamnosus GG, 

from UCC collection (Table S4).  

 

Acidification activity 

Acidification is an important consideration regionally in GI tract. Strain specific acidification 

activity was assessed by monitoring the pH at 37°C during growth in MRS broth media. The pH 

was monitored at 0, 12, 24 and 48 hours and in triplicate at each time point. 

 

Data analysis 

Each experiment was performed independently and in triplicate and the data are reported as average 

± standard deviation (SD). Acidification activity was analyzed using one-way analysis of variance. 

Differences between strain means were tested for significance by Bonferroni's multiple comparison 

test using Prism 5.0 (GraphPad Software Inc., La Jolla, CA). 

 

RESULTS 

 

MLST  

MLST loci selection and genetic diversity among Lb. plantarum isolates 

Six widely distributed housekeeping gene loci were selected from Lb. plantarum genome following 

the system established by de las Rivas et al. (2006) see Table 1 and Table S2. For each locus: pgm 

(656 bp), ddl (702 bp), gyrB (626 bp), purK1 (525 bp), gdh (441 bp), mutS (594) sequence 

variation is presented in Table 1 below. For each locus comparisons were made relative to type 

strain  Lb. plantarum WCFS1 genome sequence (Kleerebezem et al. 2003), allele numbers were 

assigned to each unique sequence and sequence type (ST) was assigned to each strain. The genetic 

diversity within each of the six housekeeping genes for each isolate is reported in Table 2. The 

MLST analysis revealed between 5 (purK1) and 74 (gyrB) polymorphic sites for each gene totalling 

170 small nuclear polymorphisms (SNPs) among the loci. The DNA G+C percentage content of the 

different gene fragments ranged from 41.9 (ddl) to 48.3 (gdh) percentage. Each isolate examined 

showed a different sequence type (ST) so that 22 unique STs with different allelic combinations 

were resolved (Table 2). 
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Genetic relationships among food borne Lb. plantarum isolates based on MLST analysis 

The allelic profile of all 22 isolates and type strain WCFS1 was applied for phylogenetic clustering 

analysis to uncover genetic relationship among Lb. plantarum isolates investigated in this study 

(Figure 2). The evolutionary distance was established using MEGA 7.0 (Kumar et al. 2016) by the 

Neighbor-Joining method (Saitou and Nei 1987). The percentage of replicate trees in which the 

associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the 

branches in Figure 2 (Felsenstein et al. 1985). The evolutionary distances were computed using the 

Maximum Composite Likelihood method (Tamura et al. 2004). Gaps and missing data were 

eliminated from analysis. Although all 22 isolates showed unique STs, they could be assigned to 

one of six different clades or clusters (Table 2, Figure 2). Clade 4 (specifically LT53, LAB49, 

LAB62 and LT100) clade 5 (LT52 and LAB40) and Clade 6 (LT99, LAB30 and LT21) represented 

the majority of Lb. plantarum isolates of raw cheese origin.  Clade 3 included reference strains Lb. 

plantarum ATCC14917
TM 

and Lb. plantarum WCFS1 and isolates of all origins with the exception 

of those isolated from raw cheeses.  Clade 1 was dominated by Lb. plantarum isolates of table 

olives origin.  

 

Phenotypic tests 

Lb. plantarum isolate antibiotic resistance and susceptibility  

Antibiotic disc and isolate overlay assay performed and analysed according to proposed EFSA 

guidelines (EFSA 2008) revealed that all isolates were susceptible to ampicillin, erythromycin, 

chloramphenicol and the streptogramins (quinopristin/dalfopristin). Partial or moderate 

susceptibility was evident in the presence of each of tetracycline, clindamycin, rifampicin and 

novobiocin. All of the isolates tested showed resistance to vancomycin and ciprofloxacin; 

streptomycin and kanamycin could not inhibit the growth of any Lb. plantarum isolates tested. The 

majority of isolates proved resistant to gentamycin, with the exception of four isolates (O5, O13 

both from table olives; LT99 and LT100 both from raw cheeses), only partially inhibited by the 

tested concentrations. Nine isolates were resistant to Penicillin (2 units), whereas the others were 

moderately susceptible with the exception of Lb. plantarum WCFS1, this strain showed complete 

susceptibility to this antibiotic.  Overall, irrespective of isolate origin and clade assignment, 

antibiotic resistance and susceptibility appears sporadic among isolates and is not related to origin 

or clade genetic assignment.  

 

Influence of Lb. plantarum isolates on growth in vitro 

In vitro growth assessment to assess Lb. plantarum inter-isolate influence on growth in vitro was 

applied.  The aim was to determine the potential of food-borne Lb. plantarum isolates to act against 

other microbes as displacement strains. The isolates were benchmarked against a background of 

known beneficial probiotic strains, including representative species isolated from the human 

microbiota, including Lb. reuteri Cardioviva
TM

 and Lb. rhamnosus GG. Cross-compatibility for 
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growth indicated that all Lb. plantarum isolates permitted growth of each other over 48 hours 

without any inhibition (data not shown). Moreover, when tests were performed against 9 established 

probiotic strains representing different species, including two Lb. plantarum strains (299v and 

CSUR P691), no growth inhibition of probiotics was detected (Table S5). These results indicate, in 

vitro, that food-borne isolates of Lb. plantarum may not disturb the Lb. representative species of the 

human microbiota en route through the GIT.  

  

Lb. plantarum isolates acidification activity 

Acidification activity was assessed in order to indirectly assess lactic acid production and potential 

environment pH alteration during growth in MRS broth over a 48-hour time frame (Table S6). All 

isolates produced detectible lactic acid within 12 hours, with pH changes detected from an initial 

pH of 6.18 ± 0.01 to within a range from 4.30 ± 0.02 (21B) to 3.74 ± 0.01 (WCFS1) (see Figure 3). 

The media acidification continued to reach an average value of 3.55 ± 0.02 after 48 h of growth. All 

the isolates showed similar pH range and acidification behaviour with no significant differences 

between isolates (p>0.05) by ANOVA Bonferroni’s test. 

 

DISCUSSION 

Here, a collection of food-associated Lb. plantarum isolates were characterized genetically and 

phenotypically to include potential probiotic properties. According to the FAO/WHO guidelines in 

evaluating potential probiotic isolates for food applications, the genus and species of any potential 

probiotic bacteria must be established. Following from this, current evidence suggests that strain-

specific effects should also be considered among bacterial isolates (FAO/WHO 2002). Intraspecific 

and interspecific discrimination is considered a fundamental preliminary step in the selection 

process of probiotics candidates, in order to link isolates both to species and to the strain levels.  

These efforts would allow monitoring of specific strain associated health effects and enable 

accurate surveillance and epidemiological studies (EFSA 2008).  

The current taxonomy of the Lb. plantarum group identifies five closely related species 

among Lactobacillus: Lb. plantarum (subsp. plantarum and subsp. argentoratensis), Lb. 

paraplantarum, Lb. pentosus, Lb. fabifermentans and Lb. xiangfangensis (Siezen et al. 2011; 

Miyashita et al. 2015). In order to discriminate very closely related species of  Lb. plantarum 

isolates and strains, several molecular methods have been developed combining comparative 

analysis based on phylogenetic molecular markers (16S rRNA, recA) and with molecular typing 

techniques such as RAPD-PCR, RFLP-PFGE, 16S ARDRA, ribotyping and repetitive element PCR 

(Corsetti et al. 2018). While discriminatory, these techniques have not delimited relative 

phylogenetic relationships among strains within the same species. We therefore investigated 

whether such relationships could be inferred from MLST analysis, a system based on differential 

molecular clock (or rate of mutation accumulation) of multiple loci, was developed for Lb. 

plantarum according to de la Rivas et al. (2006). We had previously identified all 18 isolates of 

food origin as Lb. plantarum species by performing molecular analysis such as 16S rRNA gene 
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sequencing (Corsetti et al. 2008), recA gene multiplex PCR and RAPD-PCR (Prete et al. 2017), but 

this data did not infer phylogenetic analysis among the isolates.   

The internal fragments of six loci (pgm, ddl, gyrB, purK1, gdh and mutS) were amplified 

from the DNA isolated from 22 Lb. plantarum isolates (Table 2).  Analysis of the primary sequence 

confirmed the genetic heterogeneity of all isolates within this species. Each isolate represented a 

different sequence type (ST). Phylogenetic analysis recognized six ancestral sources of 

polymorphism within the Lb. plantarum isolates (Figure 2).  However, only half groups or clades 

could be related to the different food sources of origin. Indeed three clades (Clade 4, Clade 5 and 

Clade 6) were dominated by isolates of raw cheese origin while those of table olive origin, were 

spread within three different clades (Clade 1, Clade 2, and Clade 3). Curiously, the type strain of 

Lb. plantarum, ATCC14917
TM

 originally isolated from pickled cabbage, clustered with both 

sourdough and human-associated isolates and type strains within clade 3. Xu et al. (2015) reported 

a similar food origin relationship among their food borne isolates (179 in total) relative to reference 

strains (7 in total) analysed in their study. Our findings were not similar to that reported by de las 

Rivas and co-workers (2006), where they observed little relationship with the sources of just 16 

isolates. Molenaar et al. (2005) substantiated our data; the relatively high level of genetic diversity 

among their 20 Lb. plantarum strains using microarray analysis was attributed to increased genome 

plasticity and integral rearrangements. The absence of an association to origin was proposed due to 

the versatility of individual Lb. plantarum strain, which can survive or even grow in different 

environments.  However, it may be that the diverse range and origin of isolates applied to their 

study may not have held sufficient power to uncover these relationships. In this study, the vast 

majority of isolates were of raw cheese origin and they clustered into three different clades (Figure 

2).  

FAO/WHO recommendations support preliminary assessment of the safety and functionality 

of putative probiotic strains (FAO/WHO, 2006). Phenotypical in vitro assays provide a fundamental 

basis in preliminary evaluation of probiotic candidate features (including antibiotic resistance, 

physico-chemical properties, potential displacement of gut flora), particularly when new strains 

and/or species are considered (Cozzolino et al. 2020). These data may align with genetic distance 

when considered in conjunction with MLST analysis. In applying these recommendations, in this 

study, all Lb. plantarum isolates were phenotypically assessed via a limited number of in vitro 

assays; including acidification activity, susceptibility to different antibiotic classes (Charteris et al. 

1998), and their potential gut community influence. All isolates tested were similar in their 

acidification abilities or lactic acid production at the different time points examined (Figure 3). In 

vitro growth-inhibition assessment showed an overall lack of strain displacement potential in vitro 

indicating that beneficial gut microbes of the same species may not be altered through their 

introduction to the human GIT microbiota (Figure 1, Table S5).  

Of paramount importance in the selection of probiotic strains is the level and classes of 

antibiotic resistances carried by particular isolates.  The genus Lactobacillus is the largest group 

among LAB and likely, represents the most widely applied probiotic bacteria (Marco and Golomb, 

2016). The antibiotic susceptibility of Lactobacillus species has received little attention and this 

reflects their status as nonpathogenic, commensal bacteria with a time-honored reputation as health 

promoters. However, greater caution should be exercised in the selection and characterization of 

potential probiotic bacteria, particularly in light of the current drive by the global food industry to 
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apply them, for use in functional foods. Therefore, while antibiotic resistance per se is not a safety 

issue; it becomes such when the risk of resistance transfer (plasmidic or transposable) is present. 

With this perspective, all Lb. plantarum isolates were assayed for their susceptibility to 

different class of antibiotics. The resistance levels detected for the selected isolates are reported in 

Table 3. All isolates examined showed susceptibility to inhibitors of cell wall synthesis (ampicillin) 

and to the broad-spectrum antibiotics (tetracycline, chloramphenicol, clindamycin), including 

streptogramins and inhibitors of nucleic acid synthesis (rifampicin, novobiocin). In addition, 

complete growth  inhibition was evident for all isolates in response to erythromycin, a Gram-

positive spectrum antibiotic, known for its effective inhibition of LAB (Zhou et al,  2005) (see 

Table 3). On the other hand, all Lb. plantarum isolates were resistant to five antibiotics: 

vancomycin, gentamycin, streptomycin, kanamycin and ciprofloxacin (Table 3). Interestingly, the 

vancomycin-resistant phenotype widespread in Lactobacillus is perhaps the best-characterized 

intrinsic resistance in LAB (Hollimann et al. 1988; Ruoff et al. 1988; Nicas et al. 1989) and is due 

to the presence of D-alanine: D-alanine ligase-related enzymes (Elisha and Courvalin 1995). 

Indeed, lactobacilli, Pediococcus spp. and Leuconostoc spp. have a high natural resistance to 

vancomycin, a property that proves useful to separate them from other Gram-positive bacteria 

(Hamilton-Miller and Shah, 1998; Simpson et al. 1988). In addition, resistance to aminoglycoside 

antibiotics, such as kanamycin and gentamicin had already been observed for Lb. plantarum strains 

isolated from fermented vegetables (Petrovic et al. 2012; Botta et al. 2014), this resistance could be 

considered as an intrinsic feature of LAB, lacking cytochrome-mediated electron transport, a system 

which normally mediates drug uptake in bacteria (Hummel et al. 2007). Our data show that little 

differences exist and that any difference detected was not clade or food origin related. Some 

probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota 

after antibiotic treatment (Gueimonde et al. 2013). However, specific antibiotic resistance 

determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often 

detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or 

gut pathogens, thus representing a serious safety issue (Gueimonde et al. 2013). Indeed, in a QPS 

system the safety assessment of food LAB could be limited to the presence of transmissible 

antibiotic resistance markers as other tests are not relevant for LAB (Marthur et al. 2005). This 

study did not examine whether resistance detected was plasmidic or chromosomal in origin and 

therefore we did not determine potential transmissibility.  It would be interesting to perform whole 

genome and DNA sequencing for these isolates in order to decipher antibiotic transmissibility as 

well as their genetic and metabolic potential.  In doing so, isolate and strain-specific properties 

might be revealed.  

Finally, this study did not confirm any evident correlation between phenotypic features and 

isolation source among the limited range of 22 isolates applied to this study.  This lack of 

correlation may be due to the versatility of individual Lb. plantarum strains, they can persist and 

proliferate in a diverse range of different environments. The power of the study could be increased 

by expanding the range and number of isolates associated with these diverse food environments. In 

support of this, an association between food sources and bacteria functionality has been reported 

with larger isolate numbers (Cao et al. 2013; Tremonte et al. 2017). While probiotic features 

(genetic and phenotypic) are recognized as strain-specific (Morelli et al. 2007), collating 
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commonalities to identify important features that correlate with specific food fermentation ability 

would provide a valuable resource for purpose driven future strain and isolate selection. 

 

CONCLUSIONS 

This study highlights the importance of preliminary characterization of new probiotic strains by 

combining phenotypic and genotyping methods. Overall, our data support previously recognized 

plasticity of Lb. plantarum species, but among our range of isolates genetic correlation with food 

source was evident only for dairy strains.  Phenotyping testing indicated similar promising 

properties and antibiotic resistance patterns among all Lb. plantarum isolates.  The applied 

combined approach may be applied as a useful tool for the precise and unambiguous 

characterization of Lb. plantarum isolates.  It also considers the safety features of the isolates. This 

study constitutes a preliminary screen of food-borne Lb. plantarum isolates for important strain 

specific features that can be expanded for future strain and food fermentation product development.  
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Figure 1. Interaction assessment of Lb. plantarum.  Here, shown ATCC14917
TM 

(1) and Lb. plantarum 

WCFS1 (2) are applied as donor strains (centre line in each agar plate) against A. Lb. reuteri 

CARDIOVIVA
TM

, Lb. rhamnosus GG. B. Lb. casei NCDO161, Lb. salivarius UCC118. C. Lb. rhamnosus 

CSUR PS67, Lb. sakei CSURP1130 and Lb. rhamnosus CSUR P994 represented as perpendicular to the 

donor strain and in parallel to each other.  Inhibition of growth was represented by a lack of growth in the 

region of strain crossover.  
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Figure 2. Genetic relationship of the Lb. plantarum isolates characterized in this study. Neighbor-joining 

phylogenetic tree infers evolutionary distance using the Neighbor-Joining method, computed based on the 

concatenated nucleotide sequence of six MLST housekeeping loci. Bar scale indicates phylogenetic 

distances. Bootstrap values are reported for 1000 replicates. The tree was rooted using Bacillus subtilis as 

outgroup. Shaded colour-based blocks indicate the different Lb. plantarum phylogenetic clusters.  
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Figure 3. Acidification activity, over time, of Lb. plantarum isolates. A. Reference strains, B. Isolates from 

table olives, C. Isolates from sourdough, D. Isolates from raw-milk cheeses. Mean values from three 

biological replicates. All the isolates showed significant differences (p<0.05) compared to the control (MRS 

broth), but no significance were found among them, by ANOVA Bonferroni’s test. 
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Table 1. Sequence variation detected was at six different loci among Lb. plantarum strains and 

isolates. 

Gene Fragment size  

(bp) 

Mean GC content  

(%) 

No. of alleles No. of polymorphic sites 

pgm 656 42.0 7 16 

ddl 702 41.9 10 8 

gyrB 626 44.3 4 74 

purK1 525 46.5 5 5 

gdh 441 48.3 19 38 

mutS 594 46.7 21 29 
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Table 2. Genetic properties of Lb. plantarum strains and isolates characterized in the study. 

 

      

 

Allele no. at locus 

Isolates/Strains Origin 
MLST 

cluster 
ST pgm ddl gyrB purK1 gdh mutS 

WCFS1 Human saliva CL3 1 1 1 1 1 1 1 

ATCC14917TM Pickled cabbage CL3 2 2 2 1 2 2 2 

IMC510 Human gut CL3 3 3 1 1 3 3 3 

IMC513 Human gut CL1 4 2 3 1 2 2 4 

O5 Table olives CL1 5 4 3 1 2 4 5 

O13 Table olives CL3 6 3 1 1 3 5 6 

N14 Table olives CLI 7 5 3 1 2 6 7 

C9O4 Table olives CLI 8 6 3 1 2 7 8 

C9S2 Table olives CL2 9 2 3 1 2 2 9 

21B Sourdough CL1 10 7 3 1 2 8 10 

CF1 Sourdough CL3 11 3 4 1 3 9 11 

LAB1 Raw-milk cheeses CL1 12 2 5 1 2 10 12 

LAB30 Raw-milk cheeses CL6 13 1 6 2 3 11 13 

LAB32 Raw-milk cheeses CL2 14 2 3 1 2 12 14 

LAB40 Raw-milk cheeses CL5 15 2 7 3 3 13 15 

LAB49 Raw-milk cheeses CL4 16 2 7 3 1 14 16 

LAB62 Raw-milk cheeses CL4 17 2 8 1 3 15 17 

LT21 Raw-milk cheeses CL6 18 3 6 2 3 16 18 

LT52 Raw-milk cheeses CL5 19 2 9 4 3 17 19 

LT53 Raw-milk cheeses CL4 20 2 10 1 4 13 20 

LT99 Raw-milk cheeses CL6 21 1 6 2 5 18 18 

LT100 Raw-milk cheeses CL4 22 2 7 1 3 19 21 
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Table 3. Antimicrobial susceptibility and resistance of 22 Lb. plantarum strains and isolates. 

Antimicrobial agents Antimicrobial susceptibility of L. plantarum isolated strainsa 

    

ATCC 

14917T 

WCSF1 

IMC 

510 

IMC 

513 

O5 O13 N14 C9O4 C9S2 21B CF1 LAB1 

LAB 

30 

LAB 

32 

LAB 

40 

LAB 

49 

LAB 

62 

LT 

21 

LT 

52 

LT 

53 

LT 

99 

LT 

100 

Group Name                                             

Group 1  Penicillin MS S MS R MS MS MS MS R R MS R MS R MS MS R MS R R MS R 

Inhibitors of 

cell wall 

synthesis 

Vancomycin R R R R R R R R R R R R R R R R R R R R R R 

  Ampicillin S S S S S S S S S S S S S S S S S S S S S S 

                                                

Group 2  Tetracycline MS MS MS MS S MS MS MS MS MS MS S S MS S MS MS MS S MS MS S 

Inhibitors of 

protein 

synthesis 

Chloramphenicol S S S S S S S S S S S S S S S S S S S S S S 

  Erytromycin S S S S S S S S S S S S S S S S S S S S S S 

  Clindamycin S S MS S S MS S S S S MS MS MS S MS MS MS S S MS S MS 

  Gentamycin R R R R MS MS S R R R R R R R R R R S R R MS RS 

  Kanamycin R R R R R R R R R R R R R R R R R R R R R R 

  Streptomycin R R R R R R R R R R R R R R R R R R R R R R 

                                                

other: 

Streptogramins 
Quinopristin/Dalfopristin S S S S S S S S S S S S S S S S S S S S S S 

                                                

Group 3  Ciprofloxacin R R R R R R R R R R R R R R R R R R R R R R 

Inhibitors of 

nucleic acid 

synthesis 

Rifampicin MS MS MS MS S MS S MS MS MS MS MS R S S S S S S S MS MS 

  Novobiocin MS S MS MS S MS S MS MS S MS S S S S S S S S MS MS MS 

 

*Susceptibility and resistance is expressed as R: resistant; MS: moderately susceptible; or S: susceptible. 
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