
Title Navigation-by-preference: A new conversational recommender
with preference-based feedback

Authors Rana, Arpit;Bridge, Derek G.

Publication date 2020-03-17

Original Citation Rana, A. and Bridge, D. 'Navigation-by-preference: a new
conversational recommender with preference-based feedback',
Proceedings of the 25th International Conference on Intelligent
User Interfaces, Cagliari, Italy, 17-20 March, Association for
Computing Machinery, pp. 155–165. doi: 10.1145/3377325.3377496

Type of publication Conference item

Link to publisher's
version

https://dl.acm.org/doi/proceedings/10.1145/3377325 -
10.1145/3377325.3377496

Rights © 2020 Association for Computing Machinery.

Download date 2024-05-05 00:02:16

Item downloaded
from

https://hdl.handle.net/10468/11110

https://hdl.handle.net/10468/11110

Navigation-by-Preference: A New Conversational Recommender
with Preference-Based Feedback

Arpit Rana

Insight Centre for Data Analytics

arpit.rana@insight-centre.org

Derek Bridge

Insight Centre for Data Analytics

derek.bridge@insight-centre.org

ABSTRACT

We present Navigation-by-Preference, n-by-p, a new conversational

recommender that uses what the literature calls preference-based

feedback. Given a seed item, the recommender helps the user navi-

gate through item space to find an item that aligns with her long-

term preferences (revealed by her user profile) but also satisfies

her ephemeral, short-term preferences (revealed by the feedback

she gives during the dialog). Different from previous work on

preference-based feedback, n-by-p does not assume structured item

descriptions (such as sets of attribute-value pairs) but works in-

stead in the case of unstructured item descriptions (such as sets

of keywords or tags), thus extending preference-based feedback

to new domains where structured item descriptions are not avail-

able. Different too is that it can be configured to ignore long-term

preferences or to take them into account, to work only on positive

feedback or to also use negative feedback, and to take previous

rounds of feedback into account or to use just the most recent

feedback.

We use an offline experiment with simulated users to compare

60 configurations of n-by-p. We find that a configuration that in-

cludes long-term preferences, that uses both positive and negative

feedback, and that uses previous rounds of feedback is the one with

highest hit-rate. It also obtains the best survey responses and lowest

measures of effort in a trial with real users that we conducted with

a web-based system. Notable too is that the user trial has a novel

protocol for experimenting with short-term preferences.

CCS CONCEPTS

• Information systems → Users and interactive retrieval.

KEYWORDS

Conversational recommender system, Preference-based feedback,

Short-term preferences, User trial

ACM Reference Format:

Arpit Rana and Derek Bridge. 2020. Navigation-by-Preference: A New Con-

versational Recommender with Preference-Based Feedback. In 25th Interna-
tional Conference on Intelligent User Interfaces (IUI ’20), March 17–20, 2020,
Cagliari, Italy. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3377325.3377496

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IUI ’20, March 17–20, 2020, Cagliari, Italy
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7118-6/20/03. . . $15.00

https://doi.org/10.1145/3377325.3377496

1 INTRODUCTION

Recommender Systems help their users discover novel content

(‘items’) in a personalized manner [20]. These systems infer the

user’s long-term preferences from a user profile, which records her

past interactions (e.g. ratings, etc.) with the items. Recommendation

algorithms often assume single-shot recommendation: the recom-

mender ranks the candidate items and allows the user to explore

the top-n items from this ranking. The problem comes when the

user is not fully satisfied by the recommended items. Other things

being equal, the recommender cannot offer her a fresh set of recom-

mendations unless she changes her profile, e.g. by consuming and

rating an item. In conversational recommendation, by contrast, the

user is invited to provide feedback on the current top-n recommen-

dations, even without consuming them; for example, the user might

simply indicate which one of the top-n recommendations comes

closest to the kind of item she wants to consume on this occasion.

The recommender takes account of the feedback in generating a

fresh top-n recommendations. It may take several recommendation

cycles before the user finds a suitable item, which is why these

systems are called conversational recommender systems and why

the interaction is referred to as a dialog.

The conversational recommender terminology dates back ten

years, e.g. [3, 33]. More recently, the word “conversational” has

implied not just a dialog, as before, but a dialog in natural language,

e.g. [12]. In this paper, we continue to use the word in its earlier,

broader sense; indeed, the research we describe in this paper uses

a graphical user interface and not a natural language interface.

Conversational recommender systems cater for a user who is not

satisfied with the initial top-n recommendations. This is particularly

useful where the user has an ephemeral goal, so she has short-term

preferences that differ from her long-term preferences. For example,

a user might usually watch documentaries but this evening she is

not in the mood for something so serious. Or, perhaps, this evening

she wants something to watch with her mother, so she should

accommodate her mother’s tastes as well as her own. Conversa-

tional recommendation is therefore one approach to context-aware

[1] and context-driven [25] recommendation: the user can give

feedback to steer the recommendations toward ones that best suit

the context [15]. However, most context-aware recommender sys-

tems are single-shot systems: they confine their contextual factors

to ones that are observable at the start of the session [15]. The

advantage of conversational systems is that they handle the case

where requirements (e.g. context, the user’s mood, her ephemeral

goals, etc.) are uncertain, or even erroneous, and may be refined by

exposure to the items that the system presents [26].

In this paper, we present a new conversational recommender

system, which we call Navigation-by-Preference (n-by-p). As we
will explain in more detail, it works in a content-based way on

155

https://doi.org/10.1145/3377325.3377496
https://doi.org/10.1145/3377325.3377496
https://doi.org/10.1145/3377325.3377496

IUI ’20, March 17–20, 2020, Cagliari, Italy Arpit Rana and Derek Bridge

Figure 1: An example of navigation-by-preference, showing

a preference chain.

unstructured item descriptions such as sets of keywords or tags.

It uses what the literature calls preference-based feedback [35], in

which a user simply selects from the currentn recommendations the

one that comes closest to the kind of item she wants to consume.

It combines short-term preferences (from the feedback the user

provides during the dialog) with long-term preferences (from the

user profile). But it can be configured in a variety of ways including:

how much it weights the long-term preferences; whether it takes

account of feedback given only in the most recent cycle or feedback

given throughout the dialog; whether it uses only the positive

feedback revealed by the item that the user selects in a cycle or

whether it also takes into account the negative feedback revealed

by the items that the user does not select.

Figure 1 shows an example of an n-by-p conversation in the form

of a tree of recommendations. In the example, the user provides a

seed movie, in this case, A Beautiful Mind. The system recommends

three movies (My Big Fat Greek Wedding, The Best of Youth, and
Antitrust). The user indicates that, of these three, My Big Fat Greek
Wedding comes closest to the kind of movie she wants to watch.

From this feedback, in the next cycle, the system recommends

a further three movies. This continues for several more cycles,

forming a sequence of selected movies that we call a preference
chain, which is highlighted in the diagram.

This paper makes the following contributions:

• The past work on preference-based feedback [35], and most

past work on conversational recommender systems, assumes

that items have structured descriptions, usually in the form of

sets of attribute-value pairs. Recommending laptops (where

attributes include price, screen dimensions and hard-drive

size) and rental apartments (where attributes include number

of bedrooms and distance to the supermarket) are examples

of domains whose items have structured descriptions. n-by-
p works on unstructured item descriptions, such as sets of

keywords or tags. Hence, the paper extends preference-based

feedback to domains where structured item descriptions

are not available or less applicable. These domains include

movies, music, art and news.

• Past work on preference-based feedback, and most past work

on conversational recommender systems, takes into account

only the most recent round of feedback: long-term prefer-

ences and feedback revealed in earlier cycles are ignored.

n-by-p can be configured to also take into account long-term

preferences, or feedback from earlier in the dialog, or both.

• Past work on preference-based feedback, and most past work

on conversational recommender systems, has been evaluated

only in offline experiments. In this paper, as well as offline ex-

periments, we report the results of a user trial. Furthermore,

our trial adopts a novel protocol for exploring short-term

preferences in recommender system evaluation.

In Section 2, we describe the related work on conversational

recommender systems; Section 3 presents n-by-p in detail. Section

4 reports the results of offline experiments, and Section 5 reports

the results of a user trial.

2 RELATEDWORK

The distinction between single-shot and conversational recom-

mender systems is explained in, e.g., [3, 33]. Conversational recom-

mendation is common in knowledge-based recommender systems

[4], where the recommender reasons about which items best satisfy

the user’s goals and preferences. n-by-p is a form of navigation-

by-proposing, where the conversational recommender elicits the

user’s short-term preferences by showing her items [32]. n-by-p
uses what the conversational recommender literature refers to as

preference-based feedback [35]: the user expresses preferences at

the item level (rather than, for example at the level of features or at-

tributes), indicating simply which of the current recommendations

she prefers (“more like this”). This is attractive in domains where

users might struggle to articulate their preferences in more detail

[34]. It avoids issues about the accuracy and stability of explicit rat-

ings [2] and aligns with evidence that users prefer to compare items

rather than to rate them [18]. But if preference-based feedback is

to result in efficient dialogs, account needs to be taken too of the

ways in which the rejected items differ from the selected one, as is

done in comparison-based recommendation [22]. Extensions to the

work reveal, for example, the usefulness of controlling the diversity

of the recommendations in each cycle of the dialog [23, 24, 35].

Preference-based feedback is not the only way to obtain a user’s

preferences during a dialog. A recommender can also use navigation-

by-asking [32], in which the recommender asks questions about the

preferred values of attributes, chosen for example in an heuristic

manner [10, 31] or using a model obtained by deep reinforcement

learning [37]; and in the context of navigation-by-proposing there

is critiquing, where users propose ‘tweaks’ to attribute values that

would improve a recommended item (e.g. “like this but cheaper”)

[5]. The sizable body of critiquing work is surveyed in [6]. There is

a small amount of work that combines question-answering with

critiquing, e.g. [32].

One characteristic of the work we have surveyed so far is that it

requires structured item descriptions, usually in the form of sets

of attribute-value pairs: it is at attribute-level that the comparison-

based recommendation, the question selection or critiquing take

place. We are aware of only one exception: in [38], Vig et al. extend

156

Navigation-by-Preference IUI ’20, March 17–20, 2020, Cagliari, Italy

the critiquing idea to items whose descriptions are sets of tags. Sim-

ilarly, one of the contributions of our work is that we extend the

preference-based feedback idea to domains whose items have de-

scriptions that are sets of features such as keywords or tags. There

is a relationship here with the large body of work on relevance
feedback in information retrieval, surveyed in, e.g., [30]. This work

often involves modification of a query (e.g. adding terms or modi-

fying weights), whereas we work at the level of items (see Section

3.1.1). There is also recent work on exploratory search that allows

users to dynamically influence document ranking by interacting

with summaries of their keywords or tags [8, 9].

An alternative is presented in [21], where a latent factor model

is learned from user ratings (thus requiring no item descriptions);

during a dialog, the user is repeatedly presented with, and may

select between, a set of items each of which score low on a system-

chosen latent factor and another set whose members score high on

that factor, resulting in updates to a vector that captures the user’s

choices. Similar work is reported in [13] and [7], but with a focus

on cold-start users.

An amount of work considers the user’s short-term goals both

in information retrieval, e.g. [36], and in recommender systems,

e.g. [29], where there is sometimes also consideration of long-term

preferences [11, 14, 17, 39]. Typically, the short-term preferences

are inferred from browsing behaviour, rather than the kind of feed-

back that we explore in our work, which situates this work also

within research into sequence-aware recommender systems [28].

Our approach differs too in that it does not involve learning models

from training sets of within-session data.

3 NAVIGATION-BY-PREFERENCE

Navigation-by-Preference (n-by-p) is a conversational recommender

system that uses preference-based feedback. It is novel in that it is

desinged for domains that have unstructured item representations.

In high-level terms, n-by-p works as follows. The user selects a

seed item, s , typically from her user profile. n-by-p recommends n
candidate items to the user. Let’s call the set of recommendations

R. From R, the user selects one item — the one which comes closest

to what she wants to consume on this occasion (e.g. the movie that

is closest to the kind of movie she wants to watch tonight). Her

choice, s , becomes the ‘query’ item for the next cycle. This repeats

until she finds a recommendation s ∈ R that she wants to consume.

Let I be the set of all items. n-by-p works in a scenario of implicit

ratings, where the user profile of the active user P is simply a set

of items that the active user likes, P ⊆ I. Candidate items for the

active useru, I , are items that might be recommended tou; these are
simply the items that are not in the user’s profile: I = {i : i ∈ I \ P}.

Each item i has a set of features (e.g. keywords or tags), denoted
fi . The similarity of two items, sim(i, j), is given by the Jaccard

similarity of their features,

|fi∩fj |
|fi∪fj |

. However, in the version of n-by-
p that we are describing in this paper, the features are used only

indirectly. When reasoning about an item i , this version of n-by-p
uses a set of related items, Ni , which are candidate items that are

neighbours of i , i.e. whose similarity to i exceeds a threshold θ :
Ni = {j ∈ I , j , i : sim(i, j) > θ }.

Suppose, during the dialog, the user selects an item s from the

latest set of recommendationsR. Which itemsmight we recommend

in the next interaction cycle? The obvious answer is: candidates

that are similar to s , i.e. Ns . This is the essence of navigation-by-

proposing when it uses preference-based feedback: recommending

items that are like the one that the user selected (“more like this”).

But, not every member of Ns should be a candidate for recommen-

dation in the next cycle. We exclude any previously recommended

items, for example, since we choose not to recommend an itemmore

than once in a dialog. Furthermore, we might take into account

the ‘negative’ feedback that we have received. We know that the

user’s most recent choice, s ∈ R, is preferred to the other members

of R (R \ {s}). We might discard some members of Ns to reflect this

fact. We postpone the details of ways of doing this to subsequent

sections. But, by way of notation, let’s refer to this subset of Ns as

the selection-consistent candidates and denote it by S , S ⊆ Ns .

The next question is: how do we choose n items from S to recom-

mend to the user? We want to ensure that the set of recommenda-

tions R on each cycle (a) reflect the user’s long-term preferences, as

revealed by the user’s profile; (b) reflect her short-term preferences,

as revealed by the items she has chosen (and not chosen) during

the dialog, especially her most recent selection; and (c) are different

from each other, to ensure diversity.

A user’s long-term preferences L are represented by the candi-

date items that are neighbours of each item in the user’s profile:

L = ∪i ∈P Ni . For (a) above, for each candidate i ∈ S , we can mea-

sure how much Ni overlaps with L. Her short-term preferences are

given by S itself, so for (b) above, we can measure how much Ni
overlaps with S as a whole. For (c), diversity, we can make sure that

Ni covers parts of S that were not covered by other recommenda-

tions. Again, we postpone the details to subsequent sections.

In this paper, we propose two versions of n-by-p: Navigation-
by-Immediate-Preference (n-by-i-p) and Navigation-by-Cumulative-
Preference (n-by-c-p). Both make use of the user’s long-term pref-

erences (given by L); they differ in how they handle short-term

preferences. In n-by-i-p, only feedback from the most recent cycle

affects the next cycle; in n-by-c-p, we allow feedback from earlier

cycles to also affect the next cycle. We now present each in detail.

3.1 Navigation-by-Immediate-Preference

n-by-i-p is shown asAlgorithm 1. It initializes the selection-consistent

candidates, S , to candidate items that are neighbours of the user-

provided seed, Ns . It repeatedly makes a set of n recommendations,

R, drawn from S . In each cycle, the user makes a selection, s ∈ R.
She also chooses an action, a. In the case that a = STOP , the di-
alog is over; the user has chosen to consume s; in the case that

a = CONTINUE, s is not ideal but it is the member of R that comes

closest to satisfying the user, and the dialog continues. In the latter

case, S is updated based on the item that the user selected (s), the
ones she did not select (R \ s) and an update policy (π), yet to be

explained. We choose not to recommend an item more than once in

a given dialog. We do this by keeping track of all recommendations

made so far (Tabu) and then excluding these from S .
We will look at recommendation and update in more detail.

3.1.1 Recommending. Recommendation in n-by-i-p (Algorithm

2) greedily selects the n members of S that have highest score.

The score for an item i , score(i, S, L,R), depends on the selection-

consistent candidates S (to capture short-term preferences), the

157

IUI ’20, March 17–20, 2020, Cagliari, Italy Arpit Rana and Derek Bridge

Algorithm 1 Navigation-by-Immediate-Preference (n-by-i-p)

Input: s: seed item, chosen by the user

L: candidate items that are neighbours of items in P
π : update policy
n: number of recommendations per cycle

Output: i ∈ I , a candidate item to consume

1: S ← Ns
2: Tabu← ∅
3: while |S | > n do

4: R ← Recommend(S, L,n)
5: s,a ← user chooses s ∈ R and a ∈ {STOP,CONTINUE}
6: if a = STOP then

7: return s
8: S ← Update(s,R \ {s}, π)
9: Tabu← Tabu ∪ R
10: S ← S \ Tabu

Algorithm 2 n-by-i-p’s Greedy Recommender

Input: S : selection-consistent candidates
L: candidate items that are neighbours of items in P
n: number of recommendations per cycle

Output: R, a list of n recommendations

1: function Recommend(S, L,n)
2: Candidates← S
3: R ← []
4: while |R | < n and |Candidates | > 0 do

5: i∗ ← argmax

i ∈Candidates
score (i, S, L,R)

6: append i∗ to R
7: Candidates← Candidates \ {i∗}
8: return R

candidates that are neighbours of items in the user profile L (to

capture long-term preferences), and the incrementally-constructed

set of recommendations R (so that the next item to be added to R
can be different from the ones that have already been added, thus

ensuring a level of diversity to the final set of recommendations).

More formally, the score for inserting a candidate i into a (partial)
recommendation listR given S and L is a linear combination of short-

and long-term scores:

score(i, S, L,R) = (1 − η) · ovrlp(i, S,R) + η · ovrlp(i, L \ S,R) (1)

η in [0, 1] controls the balance between the short- and long-term

scores. In the second term, we pass in L \ S instead of L, to ensure

that members of S do not get double-counted in the scoring.

ovrlp(i,X ,R) simply measures the overlap between i’s neigh-
bours (excluding any that are already covered by R) and a set of

items X (where X is either S or L \ S ; see Eq. 1):

ovrlp(i,X ,R) =
2 · |(Ni \ cov(X ,R)) ∩ X |

|Ni \ cov(X ,R)| + |X \ cov(X ,R)|
(2)

In essence, the numerator is the size of the intersection of the

candidate items that are neighbours of i (Ni) and the set X , Ni ∩

X . However, we do not want to reward i with a high score if it

is similar to items that we have already decided to recommend,

R. This might result in a set of recommendations R that would

Table 1: Update policies: Update(s,R \ {s}, π)
Here, s is the selected item; for brevity we write R′ for the
set of rejected items, R′ = R \ {s}; and we write Sims(j) for the
set {sim(j, j ′) : j ′ ∈ R′}.

π = Strict: S ← Ns \
⋃
j ∈R′ Nj

Discard a member of Ns if it is a neighbour of any member

of R′.
π = Relaxed: S ← Ns \

⋂
j ∈R′ Nj

Discard a member of Ns if it is a neighbour of every member

of R′.
π = Open: S ← Ns
Do not discard any members of Ns (i.e. ignore R

′
).

π = Mean: S ← Ns \ {j ∈ Ns : sim(j, s) < mean(Sims(j))}
Discard a member of Ns if its similarity to s is less than the

mean of its similarities to the members of R′.
π = Max: S ← Ns \ {j ∈ Ns : sim(j, s) < max(Sims(j))}
Discard a member of Ns if its similarity to s is less than the

greatest of its similarities to the members of R′.

lack diversity. Hence, instead of simply computing Ni ∩ X , we
compute (Ni \ cov(X ,R)) ∩ X . We define cov(X ,R) to be the items

in X that are already covered by neighbours of items in the partial

recommendation list R, i.e. cov(X ,R) =
⋃
j ∈R Nj ∩ X .

The denominator in Eq. 2 is the sum of the sizes of both Ni and

X (excluding cov(X ,R)). If we divided only by the size of X , we
would not penalize items that have high overlap simply by virtue

of having more neighbours (large Ni). Since we divide by both,

we also double the numerator in compensation, resulting also in a

Harmonic mean.

Notice how the definition of ovrlp makes no explicit reference

to features. We are reasoning about items through their neighbours

(Ni) and considering how the set of neighbours covers the set of

items X . Features are being used, but only implicitly: the set Ni
contains candidate item that have high feature similarity with i .

3.1.2 Updating. Suppose a user selects an item s ∈ R and chooses

action CONTINUE. Then we must update the selection-consistent

candidates S . Remember that, in n-by-i-p, previous rounds of feed-
back are forgotten. In essence, S becomes Ns , candidate items that

are neighbours of the most recently selected item, s . But, we might

also take into account the negative feedback: the rejected items

R \ {s}. We have defined five different update policies π , which
differ in how they make use of the members of R \ {s}. One policy
(Open) ignores the rejected item entirely; another (Strict) ensures
that no rejected item will be recommended in the next cycle; and

three policies (Relaxed, Mean and Max) lie somewhere between

these two extremes. The details are given in Table 1.

3.2 Navigation-by-Cumulative-Preference

Navigation-by-Immediate-Preference ignores feedback that the user

gives in all but the most recent cycle of the dialog. This means that

the current set of recommended items may contain items that are

not related to ones that the user selected earlier, or items that are

related to ones that the user rejected earlier. This may confuse

the user or prolong the dialog. To better utilize user feedback, we

158

Navigation-by-Preference IUI ’20, March 17–20, 2020, Cagliari, Italy

Algorithm 3 Navigation-by-Cumulative-Preference (n-by-c-p)

Input: s: seed item, chosen by the user

L: candidate items that are neighbours of items in P
ρ: re-weighting policy

n: number of recommendations per cycle

Output: i ∈ I , a candidate item to consume

1: S ← Ns
2: Tabu← ∅
3: Reweight(s,∅, ρ)
4: while |S | > n do

5: R ← Recommend(S, L,n)
6: s,a ← user chooses s ∈ R and a ∈ {STOP,CONTINUE}
7: if a = STOP then

8: return s
9: S ← Update(s,R \ {s}, π = Open)
10: Reweight(s,R \ {s}, ρ)
11: Tabu← Tabu ∪ R
12: S ← S \ Tabu

formaliseNavigation-by-Cumulative-Preference (n-by-c-p): each can-
didate item i ∈ I has a weight wi ; weights are initially zero; but

items are re-weighted based on the user’s feedback; and, when

scoring items for recommendation, overlap is weight-sensitive.

n-by-c-p (Algorithm 3) is very similar to n-by-i-p (Algorithm

1). There are two main differences. The first is that, when it calls

Update, it always uses the Open update policy. This means that the

selection-consistent candidates for the next cycle are all candidates

that are neighbours of the most recently selected item (Table 1):

no item is discarded. The second difference is that the algorithm

calls Reweight. It calls it at the start, so that item weights reflect

the user’s choice of seed; and it calls it after the user has given

feedback, so that weights reflect the user’s most recent selection.

We will explain recommendation and re-weighting in more detail.

3.2.1 Recommending. Recommendation in n-by-c-p is almost iden-

tical to recommendation in n-by-i-p (shown earlier as Algorithm 2).

To save space, we do not present the pseudocode. The only differ-

ence is that in line 5, n-by-c-p selects the item using a different scor-

ing function. Line 5 becomes i∗ ← argmax

i ∈Candidates
wscore (i, S, L,R).

The weighted score, wscore(i, S, L,R), is given by:

wscore(i, S, L,R) = (1 − η) · wovrlp(i, S,R) + η · wovrlp(i, L \ S,R)
(3)

We define wovrlp(i,X ,R) as follows:

wovrlp(i,X ,R) =
2 ·

∑
j ∈(Ni \cov(X ,R))∩X w j

|Ni \ cov(X ,R)| + |X \ cov(X ,R)|
(4)

This is very similar to Eq. 2 except that overlap between an item j
in Ni \ cov(X ,R) and X now counts forw j , whereas in Eq. 2 it is as

ifw j = 1 for all j.
We now explain how the weights get modified during the dialog.

3.2.2 Re-weighting. In each cycle, n-by-c-p updates the weightwi
of each candidate item i to incorporate the most recent feedback:

wi ← wi + ∆wi ∀i ∈ I (5)

Table 2: Re-weighting policies: Reweight(s,R \ {s}, ρ)
Here, s is the selected item; for brevity wewrite R′ for the set
of rejected items,R′ = R\{s}; andd is the depth of the tree, i.e.

the number of interaction cycles between the original seed

and this set of recommendations R.

ρ = Directional (Direc):
∆wi = Cis −

∑
j ∈R′ Ci j

Only considers whether i is a neighbour of s or members of R′.

ρ = Similarity (Sim):
∆wi = Cis · sim(i, s) −

∑
j ∈R′ Ci j · sim(i, j)

Considers similarities when i is a neighbour of s or members of

R′.
ρ = Similarity-Mean (Smean):

∆wi = Cis · sim(i, s) −mean({Ci j · sim(i, j) : j ∈ R
′})

Considers similarity when i is a neighbour of s , and the mean

similarity when i is a neighbour of members of R′.

ρ = Similarity-Max (Smax):
∆wi = Cis · sim(i, s) −max({Ci j · sim(i, j) : j ∈ R

′})

Considers similarity when i is a neighbour of s , and the maxi-

mum similarity when i is a neighbour of members of R′.

ρ = Recency (Rcy):
∆wi = Cis · sim(i, s)

1/d −
∑
j ∈R′ Ci j · sim(i, j)

1/d

As per Sim above, but with updates counting more for later

recommendations.

ρ = Recency-Mean (Rmean):
∆wi = Cis · sim(i, s)

1/d −mean({Ci j · sim(i, j)
1/d

: j ∈ R′})

As per Smean above, but with updates counting more for later

recommendations.

ρ = Recency-Max (Rmax):
∆wi = Cis · sim(i, s)

1/d −max({Ci j · sim(i, j)
1/d

: j ∈ R′})

As per Smax above, but with updates counting more for later

recommendations.

We have seven different policies ρ for computing ∆wi , and they

are given in Table 2. In the policies in Table 2, we use a binary

indicator Ci j , whose value indicates whether items i and j are
related. Specifically, they are related if i is one of the candidate

items that are neighbours of j: Ci j = 1 if i ∈ Nj and 0 otherwise.

The policies differ in the ways they increase∆wi when i is related
to the item that the user has just selected (given byCis) and decrease
∆wi when i is related to items that the user has just rejected (given

by Ci j for j ∈ R \ {s}). In all policies except Direc, the amounts

added or subtracted are based on the similarities of i to s and to the
members of R \ {s}. In three of the policies (Rcy, Rmean and Rmax),
updates that come later in the dialog count for more.

3.2.3 Restoring. We have implied that, in every cycle, the user

must select an item s from the current set of recommendations

R. In fact, in our implementation, we display all the previous rec-

ommendations on the screen also (see Figure 1). This affords an

option that we have not explained so far. We allow a user to ‘jump’

back to a previous recommendation. In other words, she can decide

159

IUI ’20, March 17–20, 2020, Cagliari, Italy Arpit Rana and Derek Bridge

that no member of R suits her but that some item that was recom-

mended earlier is more suitable. She can select that earlier item,

either to consume (a = STOP) or as the basis for a new round of

recommendations (a = CONTINUE). We have excluded this from

the pseudocode shown in this paper (Algorithms 1 and 3) in order

to keep the pseudocode simple and intelligible. In n-by-i-p, ‘jumps’

are straightforward because updates are based only on the most

recent selection. In n-by-c-p, ‘jumps’ are more complicated because

the weights must be restored to previous values. This can be is

achieved either by storing the weights for all items on every cycle

or, as in our implementation, through a form of backtracking that

reverses changes in weights by multiplying them by -1.

4 OFFLINE EXPERIMENTS

Wedesigned an offline experiment, with simulated users, to evaluate

the different approaches to n-by-p. We wanted the experiment to

reveal the effect of the differences between the following:

• n-by-i-p versus n-by-c-p: The former takes into account only

the most recent user feedback and the latter takes into ac-

count the feedback across all cycles of the dialog so far.

• n-by-i-p’s five update policies (Table 1) and n-by-c-p’s seven
re-weighting policies (Table 2). These represent different

ways of taking negative feedback into account. In all cases,

once the user selects item s ∈ R, the next set of recommen-

dations will be drawn from Ns , the candidate items that are

neighbours of s . But the policies afford different ways of

handling the rejected items R \ {s}.
• The influence ofη:η controls the balance between short-term
and long-term preferences (Eqs. 1 and 3). When η = 0, over-

lap with selection-consistent neighbours S contributes to the

score but overlap with profile neighbours L does not, hence

only short-term preferences are taken into account. When

η = 1, short-term preferences are ignored. We vary η from

0 (short-term preferences only) to 1 (long-term preferences

only) in steps of 0.25.

We also considered different values (0.03, 0.06, 0.09) for the threshold

θ in the definition of Ni . However, due to space limitations we only

show results for θ = 0.03.

Twelve variations of n-by-p with five values of η gives 60 config-

urations. This justifies the use of an offline experiment: we could

not recruit enough participants to compare so many configurations

in a user trial. Instead, we use the offline experiment to help us

decide which configurations to use in a user trial.

4.1 Experiment settings

We used the hetrec2011-movielens-2k dataset
1
but, in place of the

tags given in that dataset, we assigned each movie its keywords

from IMDb
2
. We do not modify these keywords in any way, e.g. we

do not lemmatize them, nor add their synonyms.

The dataset comprises 2113 users, 5992 movies, 80639 keywords,

and over half a million ratings. On average, each movie has 107

keywords (ranging from 2 to 626) and has non-zero similarity with

77% of the other movies. This is quite high, which explains why we

did not choose to lemmatize or to add synonyms.

1
https://grouplens.org/datasets/hetrec-2011/

2
http://www.imdb.com

We randomly selected 500 users from the dataset to use in the

experiments. In n-by-p, user profiles simply contain items that the

user likes (Section 3). We treated ratings in the dataset of 4 and 5 as

‘likes’, so active user u’s profile P is given by

{
i : ru ,i ≥ 4

}
. Ratings

are otherwise not used in our experiments.

We want to simulate dialogs between each of these users and

each of the different configurations of n-by-p. The initial seed is

chosen at random from the user’s profile. But there comes a prob-

lem in modeling the simulated user’s preferences. Her long-term

preferences are obvious: they are given by her profile P . But how
do we simulate her short-term preferences? Given a set of n = 3

recommendations in each cycle, how do we simulate her preference

for one of these over the others? We cannot have her choose the

s ∈ R randomly: that is not the same as exhibiting a short-term

preference. Neither can we have her choose the one that is most

similar to the items in her profile P because this would make her

short-term preferences the same as her long-term preferences. We

follow, e.g., [22]: in advance, we choose at random a target item t
from Ns . In each cycle, from the current set of n = 3 recommenda-

tions, the user will select the one that is most similar to the target:

argmaxi ∈R sim(i, t). The simulated dialog stops when the target is

one of the recommendations, t ∈ R, or after 15 cycles in the case

where t itself does not get recommended.

In each cycle, we measure hit-rate up to that cycle (i.e. the pro-

portion of users who have been recommended their target item)

and the Jaccard similarity between the item that the simulated user

selects in that cycle and her target (sim(s, t)), which we average

over all users. We have also measured the diversity of the n = 3

recommendations in that cycle, again averaged over all users; and

the average surprise of the recommendations in that cycle, aver-

aged over all users. In the case of diversity, we use the measure

that [19] denotes by Divcont , which is the average all-pairs distance

between items in the recommendation list; for distance, we use the

complement of Jaccard similarity. For surprise, we use the measure

that [19] denotes by Scont , which is the minimum of the distances

between recommended items and items in the user’s profile.

4.2 Experiment results

Table 3 shows the results for hit-rate. The columns of the table are

the different versions of n-by-p. Rows are for different values of η.
For n-by-i-p, the highest hit-rate (underlined in the table) is

obtained by using the Open update policy and with η = 0. The

Open policy is the one that does not take the negative feedback

into account; and using η = 0means that long-term preferences are

ignored. We see that, for n-by-i-p, increasing the value of η nearly

always reduces hit-rates. But there are exceptions where values of η
other than 0 give better hit-rates. We also see that policies, such as

Relaxed, that make most use of the negative feedback, have among

the lowest hit-rates.

n-by-c-p for the most part has higher hit-rates than n-by-i-p,
which means that taking previous feedback into account is advanta-

geous. For several of the n-by-c-p re-weighting policies, η = 0 again

gives the best results, with hit-rates decreasing as η is increased, but
again with exceptions. Of the seven different re-weighting policies,

Smean is clearly the best. Smean with η = 0.5 attains the highest

160

Navigation-by-Preference IUI ’20, March 17–20, 2020, Cagliari, Italy

Table 3: Offline experiment. The table shows the hit-rate, i.e. the proportion of the 500 simulated users who find their target

item within 15 cycles. All systems use θ = 0.03. All differences except those shown in italics are statistically significant with

respect to the corresponding version for η = 0.0 (two-sample Z -test, with p < 0.05). The best-performing configurations of

n-by-i-p and n-by-c-p are underlined; the overall best-performing configuration is shown in bold.

n-by-i-p n-by-c-p
η Strict Relaxed Open Mean Max Direc Sim Smean Smax Rcy Rmean Rmax

0.00 0.102 0.042 0.204 0.146 0.098 0.112 0.070 0.308 0.282 0.028 0.204 0.174

0.25 0.058 0.034 0.152 0.072 0.044 0.112 0.040 0.338 0.270 0.016 0.196 0.158
0.50 0.032 0.046 0.036 0.038 0.050 0.084 0.040 0.390 0.250 0.018 0.222 0.154
0.75 0.016 0.038 0.014 0.014 0.042 0.072 0.042 0.388 0.266 0.018 0.162 0.134
1.00 0.012 0.030 0.010 0.024 0.042 0.070 0.040 0.230 0.220 0.020 0.112 0.122

(a) Hit-rate in each cycle

(b) Mean Jaccard similarity in each cycle between the user’s selected

item and their target item

Figure 2: Results per cycle for n-by-c-p with ρ = Smean and different values of η for random targets.

hit-rate among all twelve approaches (shown in bold). Since it is a

clear winner, we plot further results for this approach only.

Figure 2 shows how Smean with different values of η performs

over 15 cycles for two of the metrics that we presented in Section

4.1. As explained, a dialog stops when the target item is one of

the recommendations. In Figure 2, if a dialog stops before the 15th

cycle, we forward fill the value of the metric to subsequent cycles.

For example if a dialog stops at cycle 8 then, when computing the

results in cycles 9 to 15, we include that dialog’s values from cycle

8. This ensures that each value that we plot is an average over

500 users. If we did not do this then, in later cycles, we would be

plotting an average for a smaller number of users than in the earlier

cycles. Plotting over a smaller number of users makes it harder

to see trends: differences arise simply by the extra variation that

comes from averaging over fewer users.

In Figures 2a and 2b, we see that hit-rate and similarity with

the target increase near linearly: as the interaction proceeds, the

system leads the user ever closer to her target. We do not have space

to show graphs for diversity and surprise but we can summarize

them, as follows. Diversity starts at about 0.96 and then mostly

decreases for up to 4 cycles (but by only a small amount) and then

remains almost the same at about 0.94. Decreasing diversity implies

convergence on the item of interest. Surprise starts at about 0.91 and

increases very, very slightly to just short of 0.92, which indicates

that the process takes the user away from her profile.

5 USER TRIAL

We built a web-based system in order to conduct a user trial. In this

trial, we wanted to reveal the effect of using long-term preferences

along with short-term preferences, hence we chose to use a system

with η not equal to 0.0. The obvious choice was the best-performing

configuration from our offline experiment, namely n-by-c-p with

ρ = Smean as its re-weighting policy and η = 0.5. In this section,

we will designate this system by Smean@0.5.

We compare Smean@0.5 with a baseline system. The baseline

has to be a version of n-by-p since we do not have other conversa-

tional recommenders for domains whose items have unstructured

representations. For our baseline, we choose a configuration of

161

IUI ’20, March 17–20, 2020, Cagliari, Italy Arpit Rana and Derek Bridge

n-by-p that is as similar as possible to Smean@0.5 but which does

not take long-term preferences into account, namely n-by-c-p with

ρ = Smean but with η = 0.0, whch we will designate by Smean@0.0.

We recruited participants through personal email lists and Twit-

ter. In total, 139 people attempted the trial, of whom 102 com-

pleted it and have their results reported here. Participants were

fully anonymized and we collected no demographic data.

We use the dataset that we used for the offline experiments.

However, to increase the chances of user familiarity with themovies,

we use only movies released between the years 2000 and 2011

inclusive: 1851 (≈ 30%) of the 5992 movies in the whole dataset.

The user trial is a between-subject trial: participants are assigned

at random to interact either with the Smean@0.5 recommender or

the Smean@0.0 recommender.

5.1 User trial protocol

Each participant began by creating a user profile containing 10

movies. The instructions were that the movies should be ones that

the user likes. The user interface offers both a scrollable grid of

movies and a search box to enable the user to find these movies.

The user profile captures a user’s long-term preferences. The

challenge in designing an experiment of this kind is to create the

conditions under which a user also has ephemeral (short-term)

preferences that she wants to satisfy [27]. Most likely, because of

these ephemeral preferences, the user should be dissatisfied to some

extent with recommendations based purely on her profile, because

these will satisfy only her long-term preferences. We rejected the

idea of picking a target item and showing it to the user. We felt that

this would lead to an approximation to the offline experiments that

we have already described, where in every cycle the (simulated)

user always selects the recommended item that is most similar

to the target. What we wanted was a scenario in which a user

would have an ephemeral goal, but where she would not know

exactly what movie she wanted to watch, and yet where she would

be able to make reasonably consistent judgements about a set of

recommendations on the basis of that ephemeral goal.

The strategies for doing this in [27] rely on having structured

item descriptions (e.g. sets of attribute-value pairs), which we do not

have. In the end, we designed a novel protocol, which we believe is

one of the contributions of our work. The scenario is that the user is

trying to find a movie to watch with another person, hence she has

to find one that she thinks both she and her putative companion

will enjoy watching together. From a list of eight people (Mother,

Father, Brother, Sister, Aunt, Uncle, Nephew, Niece), we ask her to

select a person she knows but whose movie preferences differ from

her own (see the top third of Figure 3). We tell her to choose from

her profile the movie that she thinks is the best movie to watch

together with this person (middle third of Figure 3). We ask her how

much she thinks they will enjoy watching the movie together (Not
at all, Barely at all, etc.) (lower third of Figure 3). If she thinks they

will enjoy watching the movie Somewhat or A lot, we ask her to

repeat the whole process (selecting a different person) in the hope

of finding a scenario where short-term preferences will differ from

long-term preferences. At most, a user goes through this process

a total of three times. The movie that she has selected from her

profile at this point becomes the initial seed in the dialog. (We do

make sure to include results that distinguish between ‘easy’ and

‘difficult’ dialogs, depending on how much room for improvement

on the seed is possible: Section 5.2.1.)

We believe this scenario satisfies the criteria above: the user has

an ephemeral goal, does not know exactly what movie she wants,

but can make judgments when faced with descriptions of movies

that we recommend. We emphasize that this protocol is simply a

way of creating a scenario in which a user has an ephemeral goal.

We are not building a group recommender system. [16]. In our user

trial, the recommender does not have any explicit representation

of the other person’s tastes.

Now that the scenario has been established and the seed has

been chosen, a dialog of eight cycles begins. In each cycle, the

system displays the next n = 3 recommendations, building a tree

from left to right on the screen (Figure 1). The user can mouse-over

the nodes and edges to find out movie details and keywords that

connect movies, respectively. She must choose the recommendation

that she thinks she and her putative companion will most enjoy

watching together. If none of the three recommendations seem

right, the user can choose a movie from earlier in the tree, in which

case the system reverts to an earlier state (see Section 3.2.3). We

require every user to run the system for a full eight cycles, so that

the tree has a depth of eight, even if she sees a movie earlier that

she thinks is ideal. The advantage of this is that every participant’s

responses are based on the same number of movies on the screen,

which makes for fair comparisons. We think this outweighs the

possible disadvantage that, if a user has seen a ‘perfect’ item, she

must nevertheless continue with the dialog, presumably receiving

suboptimal recommendations until she has completed eight cycles,

which may negatively affect her opinion of the system.

At the end of the dialog, the screen will be displaying a tree,

rooted by the seed and containing 24 recommended movies (see

Figure 1). We ask the user to select one of the 24 movies, the one

that she thinks she and her putative companion will most enjoy

watching together. Then we ask her five questions:

• Familiarity: Have you actually seen themovie <selectedmovie>
before?

• Relevance: How much do you think you and your <selected
person> will enjoy watching <selected movie> together?
• Serendipity: Is <selected movie> a pleasantly surprising rec-

ommendation?

• Effectiveness: Did you find the recommendations helpful?

• Satisfaction: Did you enjoy using the system?

The user chooses between Yes and No in answer to the question

about Familiarity. For the other questions, she chooses from a 5-

point scale: Not at all; Barely at all; Fair ; Somewhat; and A lot.

5.2 User trial results

102 participants completed the trial, 51 per system. Table 4 summa-

rizes their responses.

• Familiarity: 62.8% of users of Smean@0.5 have actually seen

their selectedmovie comparedwith 54.9%of users of Smean@0.0.

• Relevance: 76.5% of the users of Smean@0.5 judged their

selected movie to be one that they and their putative compan-

ionwould enjoy Somewhat orA lot; in the case of Smean@0.0,

this was just 49.0% of the users.

162

Navigation-by-Preference IUI ’20, March 17–20, 2020, Cagliari, Italy

Figure 3: Parts of screenshots showing selection of a companion and a seed movie.

Table 4: Responses to survey questions in the user trial.

User’s Smean@0.5 Smean@0.0

Response Relevance Serendipity Effectiveness Satisfaction Relevance Serendipity Effectiveness Satisfaction

Not at all 0 2 0 1 3 5 5 2

Barely at all 1 4 5 5 7 4 4 5

Fair 11 12 14 12 16 21 17 14

Somewhat 18 19 21 20 12 12 16 18

A lot 21 14 11 13 13 9 9 12

• Serendipity: 64.7% of users of Smean@0.5 thought their se-

lected movie was pleasantly surprising (Somewhat or A lot);
for Smean@0.0, this was just 41.2% of the users.

• Effectiveness: 62.7% of the users of Smean@0.5 found the

recommendations to be helpful (Somewhat or A lot); in the

case of Smean@0.0, this was just 49.0% of the users.

• Satisfaction: 64.7% of the users of Smean@0.5 enjoyed us-

ing the system (Somewhat or A lot); in the case of Smean@
0.0, this was just 58.9% of the users.

On all criteria, Smean@0.5 produced better recommendations. How-

ever, the difference was statistically significant only for the Rele-
vance and Serendipity questions. (We used a one-sided Z -test for
proportions, with significance level p < 0.05. The null hypothesis

was that those preferring Smean@0.0 are greater than or equal to

those preferring Smean@0.5, ignoring those who were neutral i.e.

who answered Fair.)

5.2.1 Change in relevance. The results we have given so far ignore

the user’s opinion of the initial seed: do the systems improve upon
the initial seed? We designed a statistic to answer this question. We

assign integers in [1, 5] to the responses, 1 = Not at all, 2 = Barely
at all, etc. We let αv be the number of participants who assigned a

value of v to the initial seed, i.e. α1 is the number of people who

judged the seed to be 1 (= Not at all) suitable, α2 is the number who

judged the seed to be 2 (= Barely at all) suitable. Similarly, let ωv be

the number of participants who assigned a value of v to the final

selected movie. Then, we can compute the improvement that the

system makes by taking the difference in the responses divided by

the maximum improvement that could be made:

improvement =

∑
5

v=1v · ωv −
∑
5

v=1v · αv∑
5

v=1 5 · ωv −
∑
5

v=1v · αv
(6)

For Smean@0.5, improvement = 0.5114, whereas for Smean@0.0,

improvement = 0.0723. It is clear that in terms of expected movie

163

IUI ’20, March 17–20, 2020, Cagliari, Italy Arpit Rana and Derek Bridge

Table 5: Comparison of decision effort. All values are aver-

aged over participants who liked their final selected movie

Somewhat or A lot.

Measure of effort Smean@0.5 Smean@0.0

Nodes displayed 26.85 29.56

Node mouse-overs 19.28 22.84

Edge mouse-overs 10.03 11.92

Cycles 5.36 4.12

Time taken (secs.) 251.93 300.58

enjoyment, Smean@0.5 does a better job of taking users from their

initial seeds to a final movie selection.

We have also re-computed the improvement, this time excluding

those cases where there is little or no scope for improvement, i.e.

those cases where the user thinks that she and her putative com-

panion would enjoy watching the seed movie Somewhat or A lot.
Now, there are only 34 users of interest for Smean@0.5 and 33 for

Smean@0.0. For these users only, we obtain improvement = 0.6049

for Smean@0.5 and improvement = 0.2533 for Smean@0.0. This

gives a fairer picture of Smean@0.0, but Smean@0.5 performs even

better in these more difficult cases.

5.2.2 User effort. Finally, we consider how much effort users ex-

pended. Table 5 summarizes the effort for users whose final se-

lected movie was one they thought that they and their putative

companions would like Somewhat or A lot. (We excluded other

users because, in some sense, their dialog is incomplete since they

have not found a satisfactory movie. Since this gives only 25 users

for Smean@0.0, we used a one-sided t-test, with p < 0.05, with null

hypothesis that Smean@0.0 needs less or equal effort.)

• Nodes displayed: As described before, we required users to

explore for eight cycles. In these eight cycles, every user is

shown 25 nodes (1 seed and 24 recommended movies). But

a user can jump (reverting to an earlier set of recommenda-

tions), which leads to more recommendations being made. In

both systems, the average is a little above 25, which shows

that there was some jumping. But the average was higher

for Smean@0.0, which implies a greater need for jumping

(p = 0.022, which is statistically significant).

• Node mouse-overs: This refers to the average number of

movies whose descriptions were viewed by mousing-over

the node. More movies were examined by users of Smean@
0.0 (p = 0.016, which is statistically significant).

• Edge mouse-overs: Mousing over an edge reveals keywords

that the movies at each end have in common. On average,

more of this was viewed by users of Smean@0.0 (p = 0.077,

which is not statistically significant).

• Cycles: This refers to the average number of cycles needed

in order for the final selected movie to be shown. It was

slightly higher for users of Smean@0.5 (p = 0.021, which

is statistically significant). But it must be remembered that

users of Smean@0.5 find movies that they regard as better

final choices.

• Time taken: This is the average task completion time in sec-

onds. It was higher for users of Smean@0.0 (p = 0.211, which

is not statistically significant).

It can be seen that both systems require quite similar effort from

users. There seems to be a littlemore effort in the case of Smean@0.0

(more jumps and more time spent making sense of the recommen-

dations by mousing-over their details). On the other hand, the final

movie is found around the 5th or 6th cycle on average for users of

Smean@0.5 and around the 4th cycle for users of Smean@0.0, but

is a less satisfactory movie in the latter case.

6 CONCLUSIONS

Navigation-by-Preference (n-by-p) is a conversational recommender

system that works on unstructured item descriptions to help a user

construct and articulate her short-term preferences, while aiming

to minimize the effort of reaching an item of interest. We believe

that n-by-p has the following characteristics:

• Preference-based feedback: Preference-based feedback (where
the user simply selects one of the current recommendations)

is the simplest form of feedback. It does not require the user

to articulate which features of the item she likes or dislikes

or how she wants to change them. This simplicity for the

user means ambiguity for the system: there is no explicit

feedback about the features [24].

• Configurability: n-by-p is highly configurable. We have de-

scribed two variants, the first with five update policies; the

second with seven re-weighting policies. These allow us to

choose how to combine the user’s preferences in ways that

are best suited to the domain of application.

• Interpretability: n-by-p is a content-based approach based

on keywords or tags that items have in common, which

makes it easy to understand the relationship between pairs

of consecutive items in a preference chain.

We presented an offline experiment, with simulated users, that

selected the best of 60 different configurations of n-by-p. Then
we used a web-based system to conduct a user trial with a novel

protocol. The trial showed with statistical significance that this con-

figuration, which combines short-term preferences with long-term

preferences, produces more accurate and serendipitous recommen-

dations without greater effort from its users.

In future work, we will investigate versions of n-by-p that use

the item features more directly and compare these versions with

the ones described in this paper.

ACKNOWLEDGMENTS

We thank Arpit Jain for help with web design. This paper emanates

from research supported by a grant from Science Foundation Ireland

(SFI) under Grant Number SFI/12/RC/2289 which is co-funded under

the European Regional Development Fund.

164

Navigation-by-Preference IUI ’20, March 17–20, 2020, Cagliari, Italy

REFERENCES

[1] Gediminas Adomavicius, Bamshad Mobasher, Francesco Ricci, and Alexander

Tuzhilin. 2011. Context-aware recommender systems. AI Magazine 32, 3 (2011),
67–80.

[2] Xavier Amatriain, Josep M. Pujol, Nava Tintarev, and Nuria Oliver. 2009. Rate

it again: Increasing recommendation accuracy by user re-rating. In Procs. of the
Third ACM Conference on Recommender SSystems. 173–180.

[3] Derek Bridge, Mehmet H. Göker, Lorraine McGinty, and Barry Smyth. 2005.

Case-based recommender systems. Knowledge Engineering Review 20, 3 (2005),

315–320.

[4] Robin Burke. 2000. Knowledge-based recommender systems. In Encyclopedia of
Library and Information Systems, vol.60, no.32. Marcel Dekker, 180–200.

[5] Robin D. Burke, Kristian J. Hammond, and Benjamin C. Young. 1997. The FindMe

approach to assisted browsing. IEEE Expert: Intelligent Systems and Their Appli-
cations 12, 4 (1997), 32–40.

[6] Li Chen and Pearl Pu. 2012. Critiquing-based recommenders: survey and emerg-

ing trends. User Modeling and User-Adapted Interaction 22, 1 (2012), 125–150.

[7] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. 2016. To-

wards conversational recommender systems. In Procs. of the Twenty-second ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 815–
824.

[8] Cecilia di Sciascio, Peter Brusilovsky, and Eduardo Veas. 2018. A study on user-

controllable social exploratory search. In Procs. of the Twenty-third International
Conference on Intelligent User Interfaces. 353–364.

[9] Cecilia di Sciascio, Vedran Sabol, and Eduardo E. Veas. 2016. Rank as you go:

User-driven exploration of search results. In Procs. of the Twenty-first International
Conference on Intelligent User Interfaces. 118–129.

[10] Michelle Doyle and Pádraig Cunningham. 2000. A dynamic approach to reducing

dialog in on-line decision guides. In Procs. of the Fifth European Workshop on
Case-Based Reasoning. 49–60.

[11] Yingpeng Du, Hongzhi Liu, Yuanhang Qu, and Zhonghai Wu. 2018. Online

personalized next-item recommendation via long short term preference learning.

In Procs. of the Pacific Rim International Conference on Artificial Intelligence. 915–
927.

[12] Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neural approaches to conver-

sational AI. In Procs. of the 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval. 1371–1374.

[13] Mark P. Graus and Martijn C. Willemsen. 2015. Improving the user experience

during cold start through choice-based preference elicitation. In Procs. of the
Ninth ACM Conference on Recommender Systems. 273–276.

[14] Yangyang Guo, Zhiyong Cheng, Liqiang Nie, Yinglong Wang, Jun Ma, and Mo-

han S. Kankanhalli. 2018. Attentive long short-term preference modeling for

personalized product search. CoRR abs/1811.10155 (2018).

[15] Negar Hariri, Bamshad Mobasher, and Robin Burke. 2014. Context adaptation

in interactive recommender systems. In Procs. of the Eighth ACM Conference on
Recommender Systems. 41–48.

[16] Anthony Jameson and Barry Smyth. 2007. Recommendation to groups. In

The Adaptive Web, Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl (Eds.).

Springer-Verlag, 596–627.

[17] Dietmar Jannach, Lukas Lerche, and Michael Jugovac. 2015. Adaptation and

evaluation of recommendations for short-term shopping goals. In Procs. of the
Ninth ACM Conference on Recommender Systems. 211–218.

[18] Nicolas Jones, Armelle Brun, and Anne Boyer. 2011. Comparisons instead of

ratings: Towards more stable preferences. In Procs. of the IEEE/WIC/ACM Inter-
national Conferences on Web Intelligence and Intelligent Agent Technology, Vol. 1.
451–456.

[19] Marius Kaminskas and Derek Bridge. 2016. Diversity, serendipity, novelty, and

coverage: A survey and empirical analysis of beyond-accuracy objectives in

recommender systems. ACM Transactions on Interactive Intelligent Systems 7, 1
(2016), 2:1–2:42.

[20] Joseph A. Konstan and John Riedl. 2012. Recommender systems: From algorithms

to user experience. User Modeling and User-Adapted Interaction 22, 1-2 (2012),

101–123.

[21] Benedikt Loepp, TimHussein, and Jüergen Ziegler. 2014. Choice-based preference

elicitation for collaborative filtering recommender systems. In Procs. of the SIGCHI
Conference on Human Factors in Computing Systems. 3085–3094.

[22] Lorraine Mc Ginty and Barry Smyth. 2002. Comparison-based recommendation.

In Procs. of the Sixth European Conference on Case-Based Reasoning. Springer,
575–589.

[23] Lorraine Mc Ginty and Barry Smyth. 2003. On the role of diversity in conver-

sational recommender systems. In Procs. of the Fifth International Conference on
Case-Based Reasoning. Springer, 276–290.

[24] Lorraine Mcginty and Barry Smyth. 2006. Adaptive selection: An analysis of cri-

tiquing and preference-based feedback in conversational recommender systems.

International Journal of Electronic Commerce 11, 2 (2006), 35–57.
[25] Roberto Pagano, Paolo Cremonesi, Martha Larson, Balázs Hidasi, Domonkos

Tikk, Alexandros Karatzoglou, and Massimo Quadrana. 2016. The contextual

turn: From context-aware to context-driven recommender systems. In Procs. of
the Tenth ACM Conference on Recommender Systems. 249–252.

[26] Pearl Pu and Li Chen. 2008. User-involved preference elicitation for product

search and recommender systems. AI Magazine 29, 4 (2008), 93–103.
[27] Pearl Huan Z Pu and Pratyush Kumar. 2004. Evaluating example-based search

tools. In Procs. of the Fifth ACM Conference on Electronic Commerce. 208–217.
[28] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. 2018. Sequence-

aware recommender systems. ACM Comput. Surv. 51, 4 (2018), 66:1–66:36.
[29] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cremonesi.

2017. Personalizing session-based recommendations with hierarchical recurrent

neural networks. In Procs. of the Eleventh ACM Conference on Recommender
Systems. 130–137.

[30] Ian Ruthven and Mounia Lalmas. 2003. A survey on the use of relevance feedback

for information access systems. Knowl. Eng. Rev. 18, 2 (2003), 95–145.
[31] Sascha Schmitt. 2002. simVar : A similarity-influences question selection criterion

or e-sales dialogs. Artificial Intelligence Review 18, 3–4 (2002), 195–221.

[32] Hideo Shimazu. 2002. ExpertClerk: A conversational case-cased reasoning tool

for developing salesclerk agents in e-commerce webshops. Artificial Intelligence
Review 18, 3-4 (2002), 223–244.

[33] Barry Smyth. 2007. Case-based recommendation. In The Adaptive Web, Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl (Eds.). Springer-Verlag, 342–376.

[34] Barry Smyth and Lorraine McGinty. 2003. An analysis of feedback strategies in

conversational recommenders. In Procs. of the Fourteenth Irish Artificial Intelli-
gence and Cognitive Science Conference.

[35] Barry Smyth and Lorraine McGinty. 2003. The power of suggestion. In Procs. of
the International Joint Conference on Artificial Intelligence, Vol. 3. 127–132.

[36] Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa. 2004. Adaptive

web search based on user profile constructed without any effort from users. In

Procs. of the Thirteenth International Conference on the World Wide Web. 675–684.
[37] Yueming Sun and Yi Zhang. 2018. Conversational recommender system. In Procs.

of the 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 235–244.

[38] Jesse Vig, Shilad Sen, and John Riedl. 2011. Navigating the tag genome. In Procs.
of the 16th International Conference on Intelligent User Interfaces. 93–102.

[39] Chao-Yuan Wu, Christopher V. Alvino, Alexander J. Smola, and Justin Basilico.

2016. Using navigation to improve recommendations in real-time. In Procs. of the
10th ACM Conference on Recommender Systems. 341–348.

165

	Abstract
	1 Introduction
	2 Related Work
	3 Navigation-by-Preference
	3.1 Navigation-by-Immediate-Preference
	3.2 Navigation-by-Cumulative-Preference

	4 Offline Experiments
	4.1 Experiment settings
	4.2 Experiment results

	5 User Trial
	5.1 User trial protocol
	5.2 User trial results

	6 Conclusions
	Acknowledgments
	References

