
Title MILP-based local search procedures for minimizing total
tardiness in the No-idle Permutation Flowshop Problem

Authors Balogh, Andrea;Garraffa, Michele;O'Sullivan, Barry;Salassa, Fabio

Publication date 2022-05-17

Original Citation Balogh, A., Garraffa, M., O'Sullivan, B. and Salassa, F. (2022)
'MILP-based local search procedures for minimizing total
tardiness in the No-idle Permutation Flowshop Problem',
Computers & Operations Research, 146, 105862 (15 pp). doi:
10.1016/j.cor.2022.105862

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://doi.org/10.1016/j.cor.2022.105862 - 10.1016/
j.cor.2022.105862

Rights © 2022 The Author(s). Published by Elsevier Ltd. This is
an open access article under the CC BY license - http://
creativecommons.org/licenses/by/4.0/

Download date 2024-04-20 01:24:59

Item downloaded
from

https://hdl.handle.net/10468/13294

https://hdl.handle.net/10468/13294

Computers & Operations Research 146 (2022) 105862

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

MILP-based local search procedures for minimizing total tardiness in the
No-idle Permutation Flowshop Problem
Andrea Balogh a, Michele Garraffa a,b,∗, Barry O’Sullivan a,b, Fabio Salassa c

a Confirm Centre for Smart Manufacturing, School of Computer Science and IT, University College Cork, Ireland
b Insight SFI Research Centre for Data Analytics, School of Computer Science and IT, University College Cork, Ireland
c Dipartimento di Ingegneria Gestionale e della Produzione (DIGEP), Politecnico di Torino, Torino, Italy

A R T I C L E I N F O

Keywords:
Scheduling
Flowshop
No-idle
MILP
Hybrid heuristics

A B S T R A C T

We consider the No-idle Permutation Flowshop Scheduling Problem (NPFSP) with a total tardiness criterion.
We present two Mixed Integer Linear Programming (MILP) formulations based on positional and precedence
variables, respectively. We study six local search procedures that explore two different neighborhoods by
exploiting the MILP formulations. Our computational experiments show that two of the proposed procedures
strongly outperform the state-of-the-art metaheuristic. We update 63% of the best known solutions of the
instances in Taillards’ benchmark, and 77% if we exclude those instances for which we proved that the previous
best known solutions are optimal.
1. Introduction

Flowshop problems are a well-studied class of scheduling problems,
where each job in a certain set must be processed by an ordered
sequence of machines. A member of the above-mentioned class is the
so called No-idle Permutation Flowshop Scheduling Problem (NPFSP),
where two additional constraints are included. First, the jobs are pro-
cessed by all the machines in the same order. This is usually motivated
by the structure of the production floor, where the different pieces,
or materials, share the same production route. Second, each machine
must process the full set of jobs without interruption (the no-idle
constraint) once it starts processing the first job. This constraint can
arise in practice for many reasons. For example, it can be motivated by
physical constraints on the production process that preclude machines
from stopping and resuming their work, in which cases schedules that
contain idle times are simply unfeasible. On the other hand, machines
may be expensive resources that generate significant costs from the
time they begin to the time they end a set of jobs. In this latter
case, schedules with idle-time can be prohibitively costly and the
decision-maker might wish to exclude them entirely.

The earliest research on the NPFSP dates back to 1982 when (Adiri
and Pohoryles, 1982) focused on the case involving two machines and
the minimization of the sum of completion times. Numerous other
studies have been conducted since then, in particular the NPFSP with
makespan minimization has received the greatest attention. The prob-
lems can be denoted as 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥 using Graham’s three-field

∗ Corresponding author.
E-mail addresses: a.balogh@cs.ucc.ie (A. Balogh), michele.garraffa@cs.ucc.ie (M. Garraffa), b.osullivan@cs.ucc.ie (B. O’Sullivan), fabio.salassa@polito.it

(F. Salassa).

notation (Graham et al., 1979). Detailed surveys of 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|
𝐶𝑚𝑎𝑥 appear in the literature (Goncharov and Sevastyanov, 2009; Ruiz
et al., 1970). The problem is solvable in polynomial time in the two-
machine case (Adiri and Pohoryles, 1982), while it is NP-hard for
three or more machines (Baptiste and Hguny, 1997). Other polynomial-
time solvable cases arise whenever certain dominance relationships
among machines hold (Wang and Xia, 2005). A variety of solution
approaches have been developed to tackle this problem, including
both exact approaches and heuristics. The range of exact approaches
is limited. Some initial studies (Vachajitpan, 1982) and Baptiste and
Hguny (1997) described branch-and-bound algorithms, which were
able to solve small instances to optimality. Only recently, a Benders
decomposition (Bektaş et al., 2020) improved those results. It is de-
signed to tackle a generalization of the NPFSP, called the MNPFSP,
where each machine may or may not respect the no-idle constraint.
This approach was able to solve instances with up to 500 jobs and 5
machines to optimality.

Metaheuristic approaches for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥 are more numer-
ous. The first heuristic study was performed in 1986 (Woollam, 1986).
Subsequent approaches were developed such as Saadani et al. (1999),
Kalczynski and Kamburowski (2005) and Baraz and Mosheiov (2008). A
hybrid discrete particle-swarm optimization (HDPSO) and a differential
evolution (DE) metaheuristic were presented in Pan and Wang (2008b)
and Pan and Wang (2008a), respectively. A comprehensive computa-
tional assessment of fourteen different heuristic approaches, developed
vailable online 17 May 2022
305-0548/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.cor.2022.105862
Received 20 July 2021; Received in revised form 28 February 2022; Accepted 28 A
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

pril 2022

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:a.balogh@cs.ucc.ie
mailto:michele.garraffa@cs.ucc.ie
mailto:b.osullivan@cs.ucc.ie
mailto:fabio.salassa@polito.it
https://doi.org/10.1016/j.cor.2022.105862
https://doi.org/10.1016/j.cor.2022.105862
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2022.105862&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 146 (2022) 105862A. Balogh et al.

m
d
t
d
o
W
i
l
a
a
t
h
a
b
b
t
w

2

𝐽
l
i
r
d
S
m
m
c
o
i
T
j
a
w
s
o
t
𝑇
t

b

2

b
t .
T
i

p

prior to 2009, was performed in Ruiz et al. (1970). The results revealed
that the best performing metaheuristics at that time were (Ruiz et al.,
1970) and Rad et al. (2009), which are iterated-greedy approaches
(IGAs). In subsequent work a hybrid discrete differential evolution
algorithm (Deng and Gu, 2012), a variable iterated greedy algorithm
with differential evolution (Fatih Tasgetiren et al., 2013), and an inva-
sive weed algorithm (Zhou et al., 2014) achieved better performance
than the previous approaches. In 2017, Shao et al. (2017) proposed
a memetic algorithm with a hybrid node and edge histogram that
improved the results obtained on 89 instances of the dataset used
in Ruiz et al. (1970). Subsequently, two general variable neighborhood
search algorithms were proposed (Shen et al., 2019) and Öztop et al.
(2020). Both approaches used simple operators like one-job insertion
and swap for shaking purposes, while more advanced metaheuristics,
such as IGA, were used to intensify the search. The approach in Öztop
et al. (2020) also includes a Q-learning mechanism to determine the
parameters of the algorithm and was able to improve 104 best known
solutions out of 250 instances. Very recently, another work (Öztop
et al., 2022) by the authors of Öztop et al. (2020) tackled the same
problem. The goal of that work was twofold. First, the authors propose
two MILP formulations and a CP formulation of the problem. The
computational experiments show that the CP formulation, based on
the CP optimizer global constraints and structures, outperforms the
MILP formulations on the small instances of Ruiz’s dataset. Second,
the authors propose an iterated greedy and an iterated local search
algorithm with restart and learning mechanisms, which are currently
best performing heuristics for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥.

Some recent studies focus on the NPFSP in which total tardiness is
minimized, denoted as 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|∑𝑗 𝑇𝑗 , where 𝑇𝑗 is the tardiness
of job 𝑗. To the best of our knowledge, the studies about this problem
have focused on the development of efficient metaheuristics, while
there are no ad-hoc exact approaches (Tasgetiren et al., 2011, 2013). A
bi-population-based approach combining a population-based strategy
and a local search procedure based on a one-insertion neighborhood
has been introduced (Shen et al., 2014). The approach dominated pre-
viously available heuristics reported in Tasgetiren et al. (2011, 2013).
Later, a hybrid discrete teaching-learning-based meta-heuristic was pro-
posed (Shao et al., 2018) that outperformed previous approaches on the
main two benchmark instance sets (Taillard’s set (Taillard, 1993) and
Ruiz’s set (Ruiz et al., 1970)). Recently, an iterated greedy approach
has been proposed (Riahi et al., 2020), which enabled better solutions
to be found for approximately 50% of the best known results related
to Taillard’s set, as well as outperforming all previous approaches on
the same data set. The main two ingredients of such an approach are
a new local search procedure based on an insertion move and a new
destruction–construction phase.

Other versions of the NPFSP have been studied recently. Total flow
time as the problem objective has been considered (Fatih Tasgetiren
et al., 2013; Rossi and Nagano, 2019). The impact of sequence depen-
dent setup times has been considered (Rossi and Nagano, 2019, 2020).
Tasgetiren et al. (2019) deals with an energy efficient version of the
problem, where two objectives are considered: the makespan and the
total energy consumption. A distributed version of the problem has
been considered (Ying et al., 2017; fang Chen et al., 2019).

The objective of this paper is to propose local search procedures
based on Mixed Integer Linear Programming (MILP) for 𝐹𝑚|𝑝𝑟𝑚𝑢,
𝑛𝑜𝑖𝑑𝑙𝑒|

∑

𝑗 𝑇𝑗 and demonstrate their effectiveness. MILP-based heuris-
tics, or matheuristics, have been successfully applied to efficiently solve
a variety of combinatorial problems, including scheduling problems
such as project scheduling (Toffolo et al., 2016), energy schedul-
ing (Della Croce et al., 2017), flowshop scheduling (Della Croce et al.,
2019; Ta et al., 2018). We consider a matheuristic framework where
half of the runtime is spent on executing the state-of-the-art metaheuris-
tic approach (Riahi et al., 2020) and the other half is devoted to run
2

one of the MILP-based local search procedures on the best solution
found at the previous step. These heuristics are compared with the
state-of-the-art (Riahi et al., 2020) over Taillard’s dataset.

The remainder of the paper is organized as follows. Section 2 de-
scribes two MILP formulations for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|∑𝑗 𝑇𝑗 : one is a slight

odification of the one proposed in Pan and Ruiz (2014), originally
esigned for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥, while the other is a contribution of
his work. Section 3 describes a fast procedure to compute the total tar-
iness in the exploration of the one-opt neighborhood, which is based
n the speed up proposed in Ding et al. (2015) for 𝐹𝑚|𝑛𝑜𝑤𝑎𝑖𝑡|∑𝑗 𝑇𝑗 .
e encoded such a procedure in our reimplementation of the approach

n Riahi et al. (2020). Section 4 presents six different MILP-based
ocal search procedures and the overall structure of the proposed
pproach. Section 5 is divided in three subsections. First, we perform
computational assessment of the MILP models when they are used

o solve small instances to optimality. Second, we compare our hybrid
euristic procedures with the reimplementation of the state-of-the-
rt metaheuristic. Finally, we use the MILP solver to compute lower
ounds, we compare the solutions obtained in our experiments with the
est known solutions reported in Riahi et al. (2020), and we provide
he corresponding optimality gaps. The paper is concluded by Section 6,
hich provides some conclusions and future research directions.

. Problem formulations

We first provide a detailed definition of 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|∑𝑗 𝑇𝑗 . Let
be a set of jobs that are all available at the initial time instant, and

et 𝑀 be an ordered set of machines. The cardinality of these sets are
ndicated with 𝑛 = |𝐽 | and 𝑚 = |𝑀|, respectively. Each job 𝑗 ∈ 𝐽
equires a time 𝑝𝑞,𝑗 to be processed by a machine 𝑞 ∈ 𝑀 and has a
ue date 𝑑𝑗 with respect to its completion time on the last machine.
ince it is a flowshop problem, each job can start being processed by a
achine 𝑞 ∈𝑀 when completed by the previous one 𝑞−1 ∈𝑀 . All the
achines process the jobs one at a time, in the same order, and work

ontinuously without idle intervals. We assume that there is a one-to-
ne correspondence between a feasible solution and a jobs permutation,
ndicating the order in which the jobs are processed by each machine.
his means that, given a jobs permutation, the starting time of the first

ob on each machine is adjusted such that no-idle times are required
nd the jobs are scheduled as early as possible. The set of positions
here a job can be scheduled is indicated with 𝑃 and 𝑛 = |𝐽 | = |𝑃 |,

ince the number of positions in a permutation is equal to the number
f jobs. The problem involves scheduling the jobs such that the total
ardiness ∑

𝑗∈𝐽 𝑇𝑗 is minimized. The tardiness of each job is defined as
𝑗 = max{0, 𝐶𝑗 −𝑑𝑗}, where 𝐶𝑗 is the completion time of a job 𝑗 ∈ 𝐽 on
he last machine.

Sections 2.1 and 2.2 present two MILP formulations for the problem,
ased on two different types of decision variables.

.1. A MILP formulation based on positional variables

The first formulation is denoted as MILP_Form_Pos, since it is
ased on positional variables. This formulation is a slight adaptation of
he one in Pan and Ruiz (2014), which is related to 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥
he minor changes introduced relate to the different objective, which

s different in this case.
The decision variables in MILP_Form_Pos are as follows:

• 𝑥𝑗,𝑘 ∈ {0, 1} is equal to 1 if job 𝑗 ∈ 𝐽 is scheduled at position
𝑘 ∈ 𝑃 , 0 otherwise;

• 𝑐𝑞,𝑘 ∈ R+ indicates the completion time of the job at position
𝑘 ∈ 𝑃 in machine 𝑞 ∈𝑀 ;

• 𝑇𝑘 ∈ R+ indicates the tardiness of the job at position 𝑘 ∈ 𝑃 .

The formulation MILP_Form_Pos of the 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|∑𝑗 𝑇𝑗 is
resented below.

min
∑

𝑇𝑘 (1)

𝑘∈𝑃

Computers and Operations Research 146 (2022) 105862A. Balogh et al.
subject to:
∑

𝑗∈𝐽
𝑥𝑗,𝑘 = 1 ∀𝑘 ∈ 𝑃 (2)

∑

𝑘∈𝑃
𝑥𝑗,𝑘 = 1 ∀𝑗 ∈ 𝐽 (3)

𝑐1,𝑘 ≥
∑

𝑗∈𝐽
𝑝1,𝑗𝑥𝑗,1 ∀𝑘 ∈ 𝑃 (4)

𝑐𝑞,𝑘 ≥ 𝑐𝑞−1,𝑘 +
∑

𝑗∈𝐽
𝑝𝑞,𝑗𝑥𝑗,𝑘 ∀𝑞 ∈𝑀 − {1},∀𝑘 ∈ 𝑃 (5)

𝑐𝑞,𝑘 = 𝑐𝑞,𝑘−1 +
∑

𝑗∈𝐽
𝑝𝑞,𝑗𝑥𝑗,𝑘 ∀𝑞 ∈𝑀,∀𝑘 ∈ 𝑃 − {1} (6)

𝑇𝑘 ≥ 𝑐𝑚,𝑘 −
∑

𝑗∈𝐽
𝑑𝑗𝑥𝑗,𝑘 ∀𝑘 ∈ 𝑃 (7)

𝑥𝑗,𝑘 ∈ {0, 1} ∀𝑗 ∈ 𝐽 ,∀𝑘 ∈ 𝑃 (8)

𝑐𝑞,𝑘 ∈ R+ ∀𝑞 ∈𝑀,∀𝑘 ∈ 𝑃 (9)

𝑇𝑘 ∈ R+ ∀𝑘 ∈ 𝑃 (10)

The objective (1) is the minimization of the total tardiness. Con-
straint (2) ensures that each position is assigned to a unique job, while
Constraint (3) ensures that each job is assigned to a unique position.
Constraint (4) sets a lower bound on the completion time of each job
in the first machine. Constraint (5) ensures that a job is completed
on the 𝑞th machine, after being completed on the (𝑞 − 1)th machine
and processed by machine 𝑞. Constraint (6) ensures that the no-idle
requirement is enforced. Constraint (7) computes the total tardiness of
the job in the 𝑘th position, expressed as the difference between the
job completion time in the last machine and the job due date. Finally,
(8)–(10) specify the domains of each of the decision variables in the
formulation.

The number of variables in the model is (𝑛2 + 𝑛𝑚), due to the
variables 𝑥𝑗,𝑘 and 𝑐𝑞,𝑘 defined in (8) and (9). The number of constraints
is (𝑛𝑚).

2.2. A MILP formulation based on precedence variables

An alternative formulation of the problem is based on precedence
variables. We denote this formulation as MILP_Form_Ins. To the best
of our knowledge, this formulation is novel for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|∑𝑗 𝑇𝑗
and it can be easily modified to model 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥 as well.

The decision variables considered in MILP_Form_Ins are:

• 𝑥𝑖,𝑗 ∈ {0, 1} is equal to 1 if job 𝑖 ∈ 𝐽 is scheduled before another
job 𝑗 ∈ 𝐽 , 0 otherwise;

• 𝑦𝑗,𝑞 ∈ R+ is the sum of the duration of job 𝑗 ∈ 𝐽 and the ones
preceding it, on machine 𝑞 ∈𝑀 ;

• 𝛥𝑞 ∈ R+ with 𝑞 ∈ 𝑀 is the difference between the starting time
of the first job in the 𝑞th machine and the (𝑞 − 1)th machine if
𝑞 ≥ 2, while 𝛥1 is imposed to be equal to 0;

• 𝑇𝑗 ∈ R+ indicates the tardiness of the job 𝑗.

The formulation of MILP_Form_Ins for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|∑𝑗 𝑇𝑗 is as
follows:

min
∑

𝑗∈𝐽
𝑇𝑗 (11)

subject to:

𝑥𝑖,𝑗 + 𝑥𝑗,𝑖 = 1 ∀𝑖 ≠ 𝑗 ∈ 𝐽 (12)

𝑥𝑖,𝑗 + 𝑥𝑗,𝑘 + 𝑥𝑘,𝑖 ≤ 2 ∀𝑖 ≠ 𝑗 ≠ 𝑘 ∈ 𝐽 (13)

𝑦𝑗,𝑞 = 𝑝𝑞,𝑗 +
∑

𝑖∈𝐽
𝑝𝑞,𝑖𝑥𝑖,𝑗 ∀𝑗 ∈ 𝐽 ,∀𝑞 ∈𝑀 (14)

𝑇𝑗 ≥ 𝑦𝑗,𝑚 +
∑

𝑞∈𝑀
𝛥𝑞 − 𝑑𝑗 ∀𝑗 ∈ 𝐽 (15)
3

𝛥1 = 0 (16)
𝛥𝑞 ≥ 𝑦𝑗,𝑞−1 −
∑

𝑖∈𝐽
𝑝𝑞,𝑖𝑥𝑖,𝑗 ∀𝑗 ∈ 𝐽 ,∀𝑞 ∈𝑀 − {1} (17)

𝑥𝑖,𝑗 ∈ {0, 1} ∀𝑖 ≠ 𝑗 ∈ 𝐽 (18)

𝑦𝑗,𝑞 ∈ R+ ∀𝑗 ∈ 𝐽 ,∀𝑞 ∈𝑀 (19)

𝛥𝑞 ∈ R+ ∀𝑞 ∈𝑀 (20)

𝑇𝑗 ∈ R+ ∀𝑗 ∈ 𝐽 (21)

The objective (11) is again the minimization of the sum of the
tardiness of the jobs. Constraint (12) ensures that 𝑖 ∈ 𝐽 precedes 𝑗 ∈ 𝐽
or vice-versa. Constraint (13) enforces that there are no precedence
loops. Constraints (14) and (15) impose that the variables 𝑦𝑗,𝑞 and 𝑇𝑗
are computed as per their definitions. Constraints (16) and (17) ensure
that 𝛥𝑞 is adjusted such that each job starts by being processed by a
certain machine after completing the work on the previous one. Finally,
(18)–(21) state the domains of the decision variables.

Similar to MILP_Form_Pos, the number of variables in the model
is (𝑛2 + 𝑛𝑚), due to the variables 𝑥𝑖,𝑗 defined in (18) and the variables
𝑦𝑗,𝑞 defined in (19). The number of constraints is (𝑛3 + 𝑛𝑚).

3. Fast computation of total tardiness

This section proposes a fast procedure to compute the total tar-
diness for the NPFP, based on Ding et al. (2015), where a similar
procedure was proposed for another flowshop problem, i.e. 𝐹𝑚|𝑛𝑜𝑤𝑎𝑖𝑡|
∑

𝑗 𝑇𝑗 . State-of-the-art metaheuristic approaches for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|
∑

𝑗 𝑇𝑗 are based on the fast exploration of the one-opt insertion neigh-
borhood, tuned for the total tardiness objective.

Such a speed up is presented in Tasgetiren et al. (2013), but there
seems to be a mistake in the computational complexity of the local
search procedure described at Section 2.3 of that paper. Specifically,
the main loop requires 𝑛 iterations of Step 2 and Step 3, and Step 2
can be performed in (𝑚𝑛). However, Step 3 has a time complexity
of ((𝑚 + 𝑛)𝑛) = (𝑛2 + 𝑚𝑛), instead of (𝑚𝑛) as wrongly reported.
Step 3 consists of Steps 3a, 3b, 3c, 3d and 3e, which are iterated over
all the 𝑂(𝑛) insertion positions. Step 3a requires the computation of
𝐹 (𝛥𝜋𝐸ℎ , 𝑘, 𝑘 + 1) for 𝑘 = 1,… , 𝑚 − 1, which can be done in 𝑂(𝑚), since
each 𝐹 (𝛥𝜋𝐸ℎ , 𝑘, 𝑘+1) can be computed in 𝑂(1). Similarly, Step 3b can be
performed in 𝑂(𝑚) operations, which are required for the computation
of 𝐹 (𝑐𝜋, 𝑘, 𝑘 + 1) for 𝑘 = 1,… , 𝑚 − 1. Step 3c requires summing up
𝑚 − 1 values and its complexity is 𝑂(𝑚). In fact, the second sum over
𝑛 is the sum of the processing times over the first machine and can be
computed a-priori. Both Step 3d and Step 3e perform an elementary
operation by scanning the jobs, and their computational cost is 𝑂(𝑛). In
conclusion, the complexity of Step 3 is 𝑂(𝑛) × (𝑂(𝑚) + 𝑂(𝑚) + 𝑂(𝑚) +
𝑂(𝑛) + 𝑂(𝑛)) = 𝑂(𝑛(𝑛 + 𝑚)). It seems like the complexity of Step 3e
and Step 3d, which are necessary for the total tardiness computation
and require (𝑛) additions, is ignored in Tasgetiren et al. (2013). Since
Step 3 is repeated 𝑛 times, the complexity of the procedure in Section
2.3 of Tasgetiren et al. (2013) is ((𝑚 + 𝑛)𝑛2).

However, the procedure defined in Ding et al. (2015) can be adapted
to speed up the total tardiness computation, by requiring less than
(𝑛) additions in practice. The main idea is to separate jobs into three
categories: early, late and sensitive. These categories are defined after
removing the selected job from the initial solution, when we seek for
the best insertion position. Early jobs are completed before or at their
due dates no matter where the removed job is inserted. On the contrary,
late jobs are always completed after their due dates. Sensitive jobs
may, or may not, be completed before their due dates, depending on
the position chosen for the removed job. The rationale behind the fast
tardiness computation is that the tardiness of the jobs in the early
category can be excluded from the total tardiness computation, while
the tardiness of the jobs in the late category can be computed in
constant time. Hence, only the jobs in the sensitive category need to

be scanned for the computation of the total tardiness.

Computers and Operations Research 146 (2022) 105862A. Balogh et al.

a
s
o
l
a
p
6
p
c
i
P
a
(
w
3
v
m
d
t
o
f
w
j
p
a
a
t
t
s

i
t
t

F

f
w

d
t
d
n
m
r
d
A
f

p
e

F

Algorithm 1 describes the improved version of the procedure de-
scribed in Section 2.3 of Tasgetiren et al. (2013), where the local
search is performed by exploiting the fast total tardiness computation.
The input arguments of this procedure are the initial solution 𝜋 and

random or greedy jobs permutation 𝜋𝑟𝑒𝑓 . The output is the best
olution found in the local search, 𝜋𝑏𝑒𝑠𝑡. The first loop at line 3 iterates
ver all the positions of the reference permutation 𝜋𝑟𝑒𝑓 . Inside such
oop, we indicate with 𝑗 the selected job in the reference permutation,
s indicated in line 4. Moreover, we indicate with 𝜋′ the partial
ermutation obtained by eliminating the job 𝑗 from 𝜋 (line 5). Lines
–8 compute all the 𝐶𝑚𝑎𝑥 values associated with the different insertion
ositions, by exploiting the forward backward pass procedure for 𝐶𝑚𝑎𝑥
alculation. We indicate with 𝐶𝑘𝑚𝑎𝑥 the makespan value when insertion
s performed at the 𝑘th position. The function ForwardBackward-
assInitialize(𝜋, j) computes the values of 𝐸(⋅, ⋅, ⋅) and 𝐹 (⋅, ⋅, ⋅)
s indicated in Step 2a and Step 2b at page 6767 of Tasgetiren et al.
2013). These data are indicated with  in our pseudocode. For-
ardBackwardPassInsertion(k, j, 𝜋′, ) corresponds to Steps
a–3d of Tasgetiren et al. (2013), with the only difference that all the
alues {𝐶𝑘𝑚𝑎𝑥}𝑘∈𝑃 are stored. The maximum and minimum values of the
akespans are indicated with 𝐶LB

𝑚𝑎𝑥 and 𝐶UB
𝑚𝑎𝑥 (lines 9–10). Lines 11–15

erive the bounds 𝐶LB
𝑘 and 𝐶UB

𝑘 on the completion times of the job at
he 𝑘th position in 𝜋′. They are computed by considering the bounds
n the makespan 𝐶LB

𝑚𝑎𝑥 and 𝐶UB
𝑚𝑎𝑥 and the best/worst insertion positions

or the job 𝑗. Lines 16–25 classify the jobs in categories. We indicate
ith ,  and  the set of positions with late, early and sensitive

obs, respectively. First, bounds on the tardiness of the job at the 𝑘th
osition are derived at lines 18–19. Hence, we evaluate these bounds
nd put the job in the related category (lines 20–25). Finally, the loop
t line 26 is devoted to determine the best total tardiness value and
he corresponding insertion position. For each insertion position, the
otal tardiness is decomposed in the contributions of late jobs (𝑇), of
ensitive jobs (𝑇) and of the job to be inserted (𝑇𝑖𝑛𝑠). The value of
𝑇 is computed w.r.t. the lowest total tardiness value of the late jobs,
indicated with ∑

𝑙∈ 𝑇
LB
𝑙 . The increase w.r.t. that value, is proportional

to the gap 𝛿 between the makespan 𝐶𝑘𝑚𝑎𝑥 obtained when the job 𝑗 is
nserted at position 𝑘 and the lowest makespan 𝐶LB

𝑚𝑎𝑥. Such delay needs
o be added for all the late jobs. Hence, we need to add the processing
ime of j for all the jobs with positions in 𝑘, which are the late

jobs from position 𝑘 onwards. The formula used for the computation
of 𝑇 is reported at line 28. The tardiness 𝑇𝑖𝑛𝑠 of the inserted job is
computed at line 29. The computation of 𝑇 is performed by following
a similar rationale followed for 𝑇, but here we need to iterate over
all the jobs whose position belongs to  and sum up their tardiness.
or each sensitive job at position 𝑠, we compute its completion time 𝐶𝑠

by summing the lower bound of the completion time 𝐶𝐿𝐵𝑠 , the gap 𝛿
and the processing time of job 𝑗 in case that the insertion position 𝑘 is
before or at position 𝑠. The tardiness of the job at position 𝑠 is obtained
by computing the maximum between 𝐶𝑠 − 𝑑𝜋′𝑠 and 0. The previous
steps allow to compute the total tardiness at line 34. The best insertion
position is found after scanning all the positions and the solution with
the lowest total tardiness 𝜋𝑏𝑒𝑠𝑡 is updated. Finally, the best solution 𝜋𝑏𝑒𝑠𝑡
ound during the execution of the procedure is provided as an output
hen the reference permutation 𝜋𝑟𝑒𝑓 is fully scanned.

In the following, an iteration of the fast tardiness computation is
escribed through an example with 4 jobs and 4 machines. Note that
his is only for presentation purposes, since the proposed procedure is
esigned to achieve a significant speed up for instances with a large
umber of jobs. The instance considered is denoted as 𝐼0. The set of
achines and jobs of 𝐼0 is 𝑀 = {𝑞1, 𝑞2, 𝑞3, 𝑞4} and 𝐽 = {𝑗1, 𝑗2, 𝑗3, 𝑗4},

espectively. The processing times are reported in Table 1, while the
ue dates are 𝑑𝑗2 = 𝑑𝑗4 = 13, 𝑑𝑗1 = 14, 𝑑𝑗3 = 15. An iteration of
lgorithm 1 is described in the case where 𝜋 = [𝑗1, 𝑗2, 𝑗3, 𝑗4] and the

irst job of 𝜋𝑟𝑒𝑓 is 𝑗 . This means that 𝑗 has to be re-inserted at position
4

4 4 d
Algorithm 1: Exploration of the one-opt neighborhood with fast
computation of ∑𝑗 𝑇𝑗

1 Function Fast_one_opt is
Input: Solution 𝜋 , reference permutation 𝜋𝑟𝑒𝑓

Output: Solution 𝜋𝑏𝑒𝑠𝑡

2 𝜋𝑏𝑒𝑠𝑡 ← 𝜋 ;
3 for 𝑖 = 1⋯ 𝑛 do
4 𝑗 ← 𝜋𝑟𝑒𝑓𝑖 ;
5 𝜋′ ← delete 𝑗 from 𝜋 ;
6  ← ForwardBackwardPassInitialize(𝜋, j) ;
7 for 𝑘 = 1⋯ 𝑛 do
8 𝐶𝑘𝑚𝑎𝑥 ← ForwardBackwardPassInsertion(k,

j, 𝜋′, ) ;
9 𝐶LB

𝑚𝑎𝑥 ← min{𝐶𝑘𝑚𝑎𝑥}𝑘∈𝑃 ;
10 𝐶UB

𝑚𝑎𝑥 ← max{𝐶𝑘𝑚𝑎𝑥}𝑘∈𝑃 ;
11 𝐶LB

𝑛−1 ← 𝐶LB
𝑚𝑎𝑥 − 𝑝𝑚,𝑗 ;

12 𝐶UB
𝑛−1 ← 𝐶UB

𝑚𝑎𝑥 + 𝑝𝑚,𝑗 ;
13 for 𝑘 = 𝑛 − 1⋯ 1 do
14 𝐶LB

𝑘−1 ← 𝐶LB
𝑘 − 𝑝𝑚,𝜋′𝑘 ;

15 𝐶UB
𝑘−1 ← 𝐶UB

𝑘 − 𝑝𝑚,𝜋′𝑘 ;
16  ←  ←  ← ∅ ;
17 for 𝑘 = 1⋯ 𝑛 − 1 do
18 𝑇 LB

𝑘 ← 𝐶LB
𝑘 − 𝑑𝜋′𝑘 ;

19 𝑇UB
𝑘 ← 𝐶UB

𝑘 − 𝑑𝜋′𝑘 ;
20 if 𝑇 UB𝑘 > 0 and 𝑇 LB𝑘 ≥ 0 then
21  ←  ∪ {𝑘} ;
22 else if 𝑇 UB𝑘 ≤ 0 and 𝑇 LB𝑘 ≤ 0 then
23  ←  ∪ {𝑘} ;
24 else
25  ←  ∪ {𝑘} ;
26 for 𝑘 = 1⋯ 𝑛 do
27 𝛿 ← 𝐶𝑘𝑚𝑎𝑥 − 𝐶

LB
𝑚𝑎𝑥 ;

28 𝑇 ←
∑

𝑙∈ 𝑇
LB
𝑙 + || × 𝛿 + |𝑘| × 𝑝𝑚,𝑗 ;

29 𝑇𝑖𝑛𝑠 ← max{𝐶𝑘𝑚𝑎𝑥 −
∑𝑛
𝑣=𝑘 𝑝𝑚,𝜋′𝑣 − 𝑑𝑗 , 0} ;

30 for 𝑠 ∈  do

31 𝐶𝑠 ← 𝐶𝐿𝐵𝑠 + 𝛿 +

{

𝑝𝑚,𝑗 if 𝑠 ≥ 𝑘
0 otherwise

;

32 𝑇𝑠 ← max{𝐶𝑠 − 𝑑𝜋′𝑠 , 0} ;
33 𝑇 ←

∑

𝑠∈ 𝑇𝑠
34 𝑇𝑇 ← 𝑇 + 𝑇𝑖𝑛𝑠 + 𝑇 ;
35 if 𝑇𝑇 < 𝑇𝑇𝑏𝑒𝑠𝑡 then
36 𝑇𝑇𝑏𝑒𝑠𝑡 ← 𝑇𝑇 ;
37 𝜋𝑏𝑒𝑠𝑡 ← insert job 𝑗 to position 𝑘 in 𝜋′ ;
38 return 𝜋𝑏𝑒𝑠𝑡

Table 1
Processing times of instance 𝐼0.

𝑗1 𝑗2 𝑗3 𝑗4
𝑞1 2 2 1 1
𝑞2 1 3 2 2
𝑞3 3 1 3 3
𝑞4 1 3 4 1

1,2 and 3 of 𝜋′ = [𝑗1, 𝑗2, 𝑗3]. First, the makespan is computed for each
ossible insertion position by following the approach in Tasgetiren
t al. (2013). The values obtained are 𝐶1

𝑚𝑎𝑥 = 18, 𝐶2
𝑚𝑎𝑥 = 17 and

𝐶3
𝑚𝑎𝑥 = 19, hence 𝐶𝑈𝐵𝑚𝑎𝑥 and 𝐶𝐿𝐵𝑚𝑎𝑥 are set to 19 and 17, respectively (see
ig. 1).

The bounds on the completion time and tardiness of each job are
𝑈𝐵 𝐿𝐵 . The first job considered is 𝑗 , which
erived from 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑎𝑥 3

Computers and Operations Research 146 (2022) 105862A. Balogh et al.
Fig. 1. Initial solution 𝜋 = [𝑗1 , 𝑗2 , 𝑗3 , 𝑗4] and solutions 𝜋1, 𝜋2, 𝜋3, obtained by re-inserting job 𝑗4 at position 1,2,3.
occupies the third position of 𝜋′:

𝐶𝐿𝐵3 = 𝐶𝐿𝐵𝑚𝑎𝑥 − 𝑝𝑚,𝑗4 = 17 − 1 = 16

𝐶𝑈𝐵3 = 𝐶𝑈𝐵𝑚𝑎𝑥 + 𝑝𝑚,𝑗4 = 19 + 1 = 20

𝑇 𝐿𝐵3 = 𝐶𝐿𝐵3 − 𝑑𝑗3 = 16 − 15 = 1

𝑇 𝑈𝐵3 = 𝐶𝑈𝐵3 − 𝑑𝑗3 = 20 − 15 = 5

Since both bounds of the tardiness are greater than or equal to 0,
𝑗3 is a late job and  = {3}. The following computations are related to
the job 𝑗2, which is at the second position of 𝜋′:

𝐶𝐿𝐵2 = 𝐶𝐿𝐵3 − 𝑝𝑚,𝑗3 = 16 − 4 = 12

𝐶𝑈𝐵2 = 𝐶𝑈𝐵3 − 𝑝𝑚,𝑗3 = 20 − 4 = 16

𝑇 𝐿𝐵2 = 𝐶𝐿𝐵2 − 𝑑𝑗2 = 12 − 13 = −1

𝑇 𝑈𝐵2 = 𝐶𝑈𝐵2 − 𝑑𝑗2 = 16 − 13 = 3

In this case, 𝑇 𝐿𝐵2 is negative, while 𝑇 𝑈𝐵2 is positive. This means that
𝑗 is a sensitive job, then  = {2}. Finally, we consider job 𝑗 at the
5

2 1
first position of 𝜋′:

𝐶𝐿𝐵1 = 𝐶𝐿𝐵2 − 𝑝𝑚,𝑗2 = 12 − 3 = 9

𝐶𝑈𝐵1 = 𝐶𝐿𝐵2 − 𝑝𝑚,𝑗2 = 16 − 3 = 13

𝑇 𝐿𝐵1 = 𝐶𝐿𝐵1 − 𝑑𝑗1 = 9 − 14 = −5

𝑇 𝑈𝐵1 = 𝐶𝑈𝐵1 − 𝑑𝑗1 = 13 − 14 = −1

𝑇 𝐿𝐵1 and 𝑇 𝑈𝐵1 are both negative, hence 𝑗1 is an early job and  = {1}.
At this point, the total tardiness is calculated for each possible insertion
position. If we insert 𝑗4 at the first position, we obtain:

𝑇 = 𝑇 LB
3 + || × (𝐶1

𝑚𝑎𝑥 − 𝐶
LB
𝑚𝑎𝑥) + |1| × 𝑝𝑚,𝑗4 = 3

𝑇𝑖𝑛𝑠 = max{𝐶1
𝑚𝑎𝑥 −

𝑛
∑

𝑣=1
𝑝𝑚,𝜋′𝑣 − 𝑑𝑗4 , 0} = 0

𝑇 = 𝑇2 = max{𝐶𝐿𝐵2 + (𝐶1
𝑚𝑎𝑥 − 𝐶

LB
𝑚𝑎𝑥) + 𝑝𝑚,𝑗 − 𝑑𝜋′ , 0} = 1
4 2

Computers and Operations Research 146 (2022) 105862A. Balogh et al.


o
a
j
f
c
s
n
|

s

L

P
a
T
w
t

T
i
𝑠
s
i
n
c
j
p
n
𝑠
a

E
i

Hence, the total tardiness 𝑇𝑇 is equal to 4 in this case. In the case
where 𝑗4 is inserted at the second position:

𝑇 = 𝑇 LB
3 + || × (𝐶2

𝑚𝑎𝑥 − 𝐶
LB
𝑚𝑎𝑥) + |2| × 𝑝𝑚,𝑗4 = 2

𝑇𝑖𝑛𝑠 = max{𝐶2
𝑚𝑎𝑥 −

𝑛
∑

𝑣=1
𝑝𝑚,𝜋′𝑣 − 𝑑𝑗4 , 0} = 0

𝑇 = 𝑇2 = max{𝐶𝐿𝐵2 + (𝐶2
𝑚𝑎𝑥 − 𝐶

LB
𝑚𝑎𝑥) + 𝑝𝑚,𝑗4 − 𝑑𝜋′2 , 0} = 0

This implies that the total tardiness is equal to 2 in this case. Finally,
when we insert 𝑗4 at the last position:

𝑇 = 𝑇 LB
3 + || × (𝐶3

𝑚𝑎𝑥 − 𝐶
LB
𝑚𝑎𝑥) + |3| × 𝑝𝑚,𝑗4 = 4

𝑇𝑖𝑛𝑠 = max{𝐶3
𝑚𝑎𝑥 −

𝑛
∑

𝑣=1
𝑝𝑚,𝜋′𝑣 − 𝑑𝑗4 , 0} = 2

𝑇 = 𝑇2 = max{𝐶𝐿𝐵2 + (𝐶3
𝑚𝑎𝑥 − 𝐶

LB
𝑚𝑎𝑥) + 𝑝𝑚,𝑗4 − 𝑑𝜋′2 , 0} = 1

This implies that the total tardiness is equal to 7. In conclusion, the
best insertion position is the second position, since it leads to the best
total tardiness value.

The complexity of the proposed procedure is equal to (𝑚𝑛2+𝑛2||),
hence it depends on the number of sensitive jobs ||. The term 𝑚𝑛2

is due to the procedure ForwardBackwardPassInsertion(k, j,
𝜋′, ) since it has a complexity of (𝑚) and it runs for 𝑛2 times. The
term 𝑛2|| is due to the loop at line 30 over the sensitive jobs, which
is run for all the insertion positions and for all the positions in the
reference permutation. The value of || is equal to 𝑛 in the worst case,
leading again to the same complexity of the procedure in Tasgetiren
et al. (2013). However, Ding et al. (2015) show that the number of
sensitive jobs is very low with respect to the overall number of jobs.
We performed some preliminary test running the reimplementation of
the state-of-the-art algorithm with the improved one-opt insertion over
the 120 instances of Taillards’ dataset with tight(𝜏 = 1), medium(𝜏 = 2)
and loose(𝜏 = 3) due dates. Summing up all the observations of jobs
belonging to a category, for 𝜏 = 1 only 5 instances out of 120 have
some sensitive jobs, the rest are late jobs. For 𝜏 = 2, a looser set of due
dates, around 0.08% of the jobs inspected are early, 1.1% are sensitive
and 98.82% late. As for 𝜏 = 3 around 5.37% of the jobs are early, 9.73%
are sensitive and 84.90% are late. Hence we obtain significant speed up
since the number of the sensitive jobs is very small.

4. MILP-Based local search procedures

We first describe two neighborhoods and the corresponding prop-
erties in Section 4.1. We then propose six MILP-based local search
procedures in Section 4.2. They are based on exploring the neigh-
borhoods by means of a MILP solver, which uses the formulations
MILP_Form_Pos and MILP_Form_Ins, presented in Section 2. Fi-
nally, Section 4.3 describes the general framework in which the local
search procedures are embedded.

4.1. Definition of the neighborhoods

We define two neighborhoods of a given initial permutation 𝜋 over
the jobset 𝐽 . Please note that we indicate with 𝜋𝑘 the job at the 𝑘th
position of 𝜋.

Definition 1. Let 𝑃 ⊆ 𝑃 be a set of positions.  1
𝜋,𝑃

is the set of all
the feasible solutions such that the 𝑘th position of the permutation is
occupied by 𝜋𝑘 for each 𝑘 ∈ 𝑃 − 𝑃 .

Definition 2. Let 𝐽 ⊆ 𝐽 be a set of jobs.  2
𝜋,𝐽

is the set of all the
feasible solutions such that the precedence relationships in 𝜋, between

̂

6

couples of jobs (𝑖, 𝑗) such that 𝑖, 𝑗 ∈ 𝐽 − 𝐽 , are verified. 𝐽
 1
𝜋,𝑃

refers to all the solutions obtained by fixing all the positions
that are not in 𝑃 to their corresponding job in 𝜋. Finding the best
solution in  1

𝜋,𝑃
involves rearranging the jobs at the positions in 𝑃 to

optimality. On the contrary,  2
𝜋,𝐽

refers to all the solutions obtained by
fixing all the jobs’ precedence relationships in 𝜋 that are not involving
jobs in 𝐽 . Hence, finding the best solution in  2

𝜋,𝐽
is equivalent to

reinserting the jobs of 𝐽 in the best possible positions.
Given an initial solution 𝜋, the definitions of  1

𝜋,𝑃
and  2

𝜋,𝐽
depend

on the set of positions 𝑃 and the set of jobs 𝐽 , respectively. The
following proposition characterizes the size of both neighborhoods
when the cardinality of 𝑃 and 𝐽 are the same (𝑤 = |𝑃 | = |𝐽 |). Recall
that 𝑛 = |𝐽 | = |𝑃 |.

Proposition 1. | 2
𝜋,𝐽

| = (𝑛−𝑤+1)⋯ 𝑛 and | 1
𝜋,𝑃

| = 𝑤! if 𝑤 = |𝑃 | = |𝐽 |.

Proof. Each solution included in  1
𝜋,𝑃

is a rearrangement of the
jobs in the positions 𝑃 , hence each element of the set is identified
by a permutation of these 𝑤 jobs and | 1

𝜋,𝑃
| = 𝑤!. Each solution in

2
𝜋,𝐽

corresponds to inserting the jobs in 𝐽 in the partial sequence 𝜋′,
btained by removing from 𝜋 the jobs in 𝐽 . We need to enumerate
ll the possible permutations that can be created by inserting all the
obs one by one, given a certain order of the jobs. In fact, when the
irst job is inserted, there are 𝑛 − 𝑤 + 1 possible positions where it
an be inserted, including the first and the last positions. When the
econd job is inserted, the possible choices are 𝑛 − 𝑤 + 2, and this
umber increases by one unit each time we insert one more job. Hence,
 2
𝜋,𝐽

| = (𝑛 −𝑤 + 1)⋯ 𝑛. □

Therefore, we can state the following relationship between the
tructure of the two neighborhoods:

emma 1. | 2
𝜋,𝐽

| > | 1
𝜋,𝑃

| if 𝑤 = |𝑃 | = |𝐽 | and 𝑤 < 𝑛.

roof. In the extreme case where 𝑛 = 𝑤, both neighborhoods  1
𝜋,𝑃

nd  2
𝜋,𝐽

refer to the whole solution space, formed by 𝑛! permutations.
his case is excluded by the condition 𝑤 < 𝑛. In the case where 𝑤 < 𝑛,
e have that (𝑛 −𝑤 + 1)⋯ 𝑛 > 𝑤!. In fact, this inequality is equivalent

o (𝑛−𝑤+1)⋯𝑛
1⋯𝑤 > 1. The fraction in the left is always greater than 1 since

each term at the numerator is greater than the corresponding term in
the denominator, as a consequence of 𝑤 < 𝑛. □

In the case where the set 𝐽 is formed by the jobs of 𝜋 assigned to the
positions in the set 𝑃 , we can derive a stronger relationship between
the two neighborhoods.

Proposition 2.  1
𝜋,𝑃

⊂ 2
𝜋,𝐽

if 𝜋𝑘 ∈ 𝐽 ∀𝑘 ∈ 𝑃 and 𝑃 − 𝑃 ≠ ∅.

Proof. We show that each solution 𝑠 ∈  1
𝜋,𝑃

is also included in  2
𝜋,𝐽

.
he only difference between the permutation 𝑠 and the initial solution 𝜋

s how the jobs at the positions in 𝑃 are assigned. In order to prove that
∈  2

𝜋,𝐽
, we show that it can be obtained by considering the partial

equence 𝜋′, obtained by removing from 𝜋 the jobs belonging to 𝐽 , and
nserting the jobs in 𝐽 one by one. In fact, any insertion operation does
ot change the jobs precedence in 𝜋′, which implies that the solution
onstructed belongs to  2

𝜋,𝐽
(see Definition 2). First, we consider the

ob 𝑠𝑘 at the smallest position 𝑘 ∈ 𝑃 , and we insert it in the same
osition of 𝜋′. Afterward, we proceed with inserting the job of 𝑠 at the
ext smallest position of 𝑃 in 𝜋′. In this way, we are able to recreate
, which means that it belongs to  2

𝜋,𝐽
. Lemma 1 shows that  2

𝜋,𝐽
has

greater size than  1
𝜋,𝑃

, which concludes the proof. □

xample 1. Let us consider an instance with 𝐽 = {𝑗1, 𝑗2, 𝑗3, 𝑗4} and an
nitial solution 𝜋 = [𝑗1, 𝑗2, 𝑗3, 𝑗4]. Let the set 𝑃 be equal to {1, 2} and let
̂ ̂ ̂ ̂
be equal to {𝑗1, 𝑗2}, hence 𝜋𝑘 ∈ 𝐽 ∀𝑘 ∈ 𝑃 and 𝑃 − 𝑃 = {3, 4}.

Computers and Operations Research 146 (2022) 105862A. Balogh et al.

a
S
M
a
𝜓

r
(

o
p
N
t

Table 2
Sets  1

𝜋,𝑃
and  2

𝜋,𝐽
of Example 1.

 1
𝜋,𝑃

 2
𝜋,𝐽

[𝑗1 , 𝑗2 , 𝑗3 , 𝑗4] [𝑗1 , 𝑗2 , 𝑗3 , 𝑗4] [𝑗2 , 𝑗3 , 𝑗1 , 𝑗4] [𝑗3 , 𝑗2 , 𝑗1 , 𝑗4]
[𝑗2 , 𝑗1 , 𝑗3 , 𝑗4] [𝑗2 , 𝑗1 , 𝑗3 , 𝑗4] [𝑗3 , 𝑗2 , 𝑗4 , 𝑗1] [𝑗2 , 𝑗3 , 𝑗4 , 𝑗1]

[𝑗3 , 𝑗1 , 𝑗2 , 𝑗4] [𝑗3 , 𝑗4 , 𝑗2 , 𝑗1] [𝑗3 , 𝑗4 , 𝑗1 , 𝑗2]
[𝑗1 , 𝑗3 , 𝑗2 , 𝑗4] [𝑗1 , 𝑗3 , 𝑗4 , 𝑗2] [𝑗3 , 𝑗1 , 𝑗4 , 𝑗2]

The sets  1
𝜋,𝑃

and  2
𝜋,𝐽

are enumerated in Table 2.  1
𝜋,𝑃

contains
two permutations obtained by swapping 𝑗1 and 𝑗2, while  2

𝜋,𝐽
contains

all the permutations of the jobs 𝑗1, 𝑗2, 𝑗3, 𝑗4 such that 𝑗3 precedes 𝑗4. As
stated by the previous propositions, we can observe that | 2

𝜋,𝐽
| = 12

and | 1
𝜋,𝑃

| = 2, hence | 1
𝜋,𝑃

| < | 2
𝜋,𝐽

|. Finally, the two solutions of
 1
𝜋,𝑃

are included in  2
𝜋,𝐽

, thus  1
𝜋,𝑃

⊂ 2
𝜋,𝐽

.

4.2. Structure of the local search procedures

The exploration of both neighborhoods can be done by enumera-
tion, but this is very time consuming even for small values of 𝑤. How-
ever,  1

𝜋,𝑃
can be explored efficiently by solving a model MILP_Form

_Pos where the variables 𝑥𝜋𝑘 ,𝑘 are fixed to 1 for each 𝑘 ∈ 𝑃 − 𝑃 .
Analogously,  2

𝜋,𝐽
can be explored efficiently by solving a model

MILP_Form_Ins where the variables 𝑥𝑖,𝑗 are fixed to 1 if 𝑖, 𝑗 ∉ 𝐽 and
𝑖 precedes 𝑗 in 𝜋. The effectiveness of such neighborhood explorations
depends on the quality of the linear relaxations yielded by such models,
which determine different performances in solving small instances of
the NPFSP, as will be shown in Section 5.1.

Different strategies to select sets of positions/jobs can be used to
define  1

𝜋,𝑃
and  2

𝜋,𝐽
. Let us consider the following two strategies:

1. Select 𝑤 ∈ {1,… , 𝑛−1} positions randomly (or the corresponding
jobs);

2. Select all the positions from a certain value 𝜓 to a subsequent
value 𝜓 +𝑤 (or the corresponding jobs).

We define six local search procedures based on the exploration
of such neighborhoods. The first three procedures are described in
Algorithm 2 and are based on the exploration of  1

𝜋,𝑃
by means of

MILP_Form_Pos. The first one is denoted as Random Positional Local
Search (RPLS). It keeps selecting random positions to define 𝑃 , finds
the best solution in  1

𝜋,𝑃
and updates 𝜋. The second one and the

third one are indicated with Sliding Window Positional Local Search
(SWPLS) and Random Window Positional Local Search (RWPLS), re-
spectively. Both procedures share the same steps to be done at each
iteration. First, the positions from a 𝜓 to 𝜓 + 𝑤𝑝 are selected to
construct the set 𝑃 in both procedures, where 𝜓 ∈ [1, |𝑃 | − 𝑤𝑝] is
n integer value and 𝑤𝑝 ∈ [1, |𝑃 | − 1] is a given integer parameter.
econd, the best solution in  1

𝜋,𝑃
is computed by using the formulation

ILP_Form_Pos and 𝜋 is updated. The difference between SWPLS
nd RWPLS is how 𝜓 changes in the various iterations. In the first case,
starts from 1 and is increased by 𝛾 at each iteration. The value of 𝜓

is set again to 1 whenever it exceeds |𝑃 | − 𝑤𝑝. In the second case, 𝜓
takes a values from 𝛽1 to 𝛽

|𝑃 |−𝑤𝑝 , where 𝛽 is a random permutation of
1,… , |𝑃 | −𝑤𝑝. These first three procedures are iterated until a certain
time limit 𝜃 is reached and the best solution found is provided as an
output.

The other three local search procedures are presented in Algo-
ithm 3. They are indicated with Random Insertion Local Search
RILS), Sliding Window Insertion Local Search (SWILS) and Random

Window Insertion Local Search (RWILS), respectively. They are very
similar to the first three procedures (RPLS, SWPLS and RWPLS). Each
of them, after the computation of 𝑃 , does not explore the neighborhood
 1 . Instead, it computes a set of jobs 𝐽 as the set of the jobs
7

𝜋,𝑃
𝜋𝑝 such that 𝑝 ∈ 𝑃 , and finds the best solution in  2
𝜋,𝐽

by means
f MILP_Form_Ins. The other operations in each of these three
rocedures are the same of RPLS, SWPLS and RWPLS, respectively.
ote that we use another parameter 𝑤𝑖 instead of 𝑤𝑝, in order to allow

he possibility to regulate the size of both neighborhoods differently.
Algorithm 2: Local search procedures relying on
MILP_Form_Pos
1 Random Positional Local Search (RPLS) ;
2 Function RPLS is

Input: Solution 𝜋, time limit 𝜃
Output: Solution 𝜋𝑏𝑒𝑠𝑡

3 while 𝜃 is not reached do
4 𝑃 ← 𝑤𝑝 random positions ;
5 𝜋 ← best sol. in  1

𝜋,𝑃
computed by means of

MILP_Form_Pos ;
6 𝜋𝑏𝑒𝑠𝑡 ← 𝜋 ;
7 return 𝜋𝑏𝑒𝑠𝑡

8 Sliding Window Positional Local Search (SWPLS) ;
9 Function SWPLS is

Input: Solution 𝜋, time limit 𝜃
Output: Solution 𝜋𝑏𝑒𝑠𝑡

10 𝜓 ← 0 ;
11 while 𝜃 is not reached do
12 𝑃 ← all the positions from 𝜓 to 𝜓 +𝑤𝑝 ;
13 𝜋 ← best sol. in  1

𝜋,𝑃
computed by means of

MILP_Form_Pos ;
14 𝜓 ← 𝜓 + 𝛾 ;
15 if (𝜓 > |𝑃 | −𝑤𝑝) then 𝜓 ← 1 ;
16 𝜋𝑏𝑒𝑠𝑡 ← 𝜋 ;
17 return 𝜋𝑏𝑒𝑠𝑡

18 Random Window Positional Local Search (RWPLS) ;
19 Function RWPLS is

Input: Solution 𝜋, time limit 𝜃
Output: Solution 𝜋𝑏𝑒𝑠𝑡

20 𝑘 ← 1 ;
21 𝛽 ← random permutation of 1,⋯ , |𝑃 | ;
22 while 𝜃 is not reached do
23 𝜓 ← 𝛽𝑘 ;
24 𝑃 ← all the positions from 𝜓 to 𝜓 +𝑤𝑝 ;
25 𝜋 ← best sol. in  1

𝜋,𝑃
computed by means of

MILP_Form_Pos ;
26 𝑘 ← 𝑘 + 1 ;
27 if (𝑘 = |𝑃 | + 1) then 𝑘 ← 1 ;
28 𝜋𝑏𝑒𝑠𝑡 ← 𝜋 ;
29 return 𝜋𝑏𝑒𝑠𝑡

The approaches proposed in this section require finding good values
for the parameters 𝑤𝑝, 𝑤𝑖 and 𝛾. The parameters 𝑤𝑝 and 𝑤𝑖 determine
the size of the neighborhoods. These parameters need to be set to a
value for which the corresponding neighborhood can be explored in
a small amount of time. The parameter 𝛾 is used only in SWPLS and
SWILS and provides the increment of the start of the positions to be
considered unfixed. This parameter needs to be set to a value that
enables the full scan of the positions’ range within the given time limit.

4.3. Matheuristic framework

The MILP-based local search procedures introduced in the previous
section can be embedded in a matheuristic framework. In the last
decades, combinatorial optimization problems have been tackled by
two main types of approaches. On the one hand, mathematical solvers
have been relying on a formulation of the problem and provide an out-
of-the-shelf approach taking advantage of many years of algorithmic
developments. Despite the fact that mathematical solvers allow to

Computers and Operations Research 146 (2022) 105862A. Balogh et al.

M

i
s
r
2
s
I
l
p
𝑁
a
f
c
w

Algorithm 3: Local search procedures relying on
ILP_Form_Ins
1 Random Insertion Local Search (RILS) ;
2 Function RILS is

Input: Solution 𝜋, time limit 𝜃
Output: Solution 𝜋𝑏𝑒𝑠𝑡

3 while 𝜃 is not reached do
4 𝑃 ← 𝑤𝑖 random positions ;
5 𝐽 ← {𝜋𝑝 ∶ 𝑝 ∈ 𝑃 } ;
6 𝜋 ← best sol. in  2

𝜋,𝐽
computed by means of

MILP_Form_Ins ;
7 𝜋𝑏𝑒𝑠𝑡 ← 𝜋 ;
8 return 𝜋𝑏𝑒𝑠𝑡

9 Sliding Window Insertion Local Search (SWILS);
10 Function SWILS is

Input: Solution 𝜋, time limit 𝜃
Output: Solution 𝜋𝑏𝑒𝑠𝑡

11 𝜓 ← 1 ;
12 while 𝜃 is not reached do
13 𝑃 ← all the positions from 𝜓 to 𝜓 +𝑤𝑖 ;
14 𝐽 ← {𝜋𝑝 ∶ 𝑝 ∈ 𝑃 } ;
15 𝜋 ← best sol. in  2

𝜋,𝐽
computed by means of

MILP_Form_Ins ;
16 𝜓 ← 𝜓 + 𝛾 ;
17 if (𝜓 > |𝑃 | −𝑤𝑖) then 𝜓 ← 1 ;
18 𝜋𝑏𝑒𝑠𝑡 ← 𝜋 ;
19 return 𝜋𝑏𝑒𝑠𝑡

20 Random Window Insertion Local Search (RWILS);
21 Function RWILS is

Input: Solution 𝜋, time limit 𝜃
Output: Solution 𝜋𝑏𝑒𝑠𝑡

22 𝑘 ← 1 ;
23 𝛽 ← random permutation of 1,⋯ , |𝑃 | ;
24 while 𝜃 is not reached do
25 𝜓 ← 𝛽𝑘 ;
26 𝑃 ← all the positions from 𝜓 to 𝜓 +𝑤𝑖 ;
27 𝐽 ← {𝜋𝑝 ∶ 𝑝 ∈ 𝑃 } ;
28 𝜋 ← best sol. in  2

𝜋,𝐽
computed by means of

MILP_Form_Ins ;
29 𝑘 ← 𝑘 + 1 ;
30 if (𝑘 = |𝑃 | + 1) then 𝑘← 1 ;
31 𝜋𝑏𝑒𝑠𝑡 ← 𝜋 ;
32 return 𝜋𝑏𝑒𝑠𝑡

easily obtain a solution method for a combinatorial problem, they
usually do not scale well. On the other hand, metaheuristic approaches
provide a much more scalable approach, but usually require a high
development time due to the design and implementation of specific
problem-dependent optimization routines. Matheuristics combine the
advantages of both approaches by using mathematical solvers to de-
sign efficient and scalable heuristics. As an example, the local search
procedures described in Section 4.2 can take advantage of the use
of well-performing MILP solvers, while controlling the size of the
subproblem by tuning the parameters 𝑤𝑝 and 𝑤𝑖.

The performances of the MILP-based local search procedures depend
on the quality of the initial solution. Hence, we take advantage of a
matheuristic framework, depicted in Fig. 2, whose general structure
has been used by a few previous works (such as Della Croce and
Salassa (2014)). First, a metaheuristic algorithm is used to compute
a good initial solution. Second, one of the MILP-based local search
procedures described in Section 4.2 is applied to improve the initial
solution. Please note that only one of the MILP-based local search
8

procedures is applied. In fact, our preliminary experiments showed that d
Fig. 2. Matheuristic framework based on using a metaheuristic and a MILP-based local
search in a sequence.

the use of multiple MILP-based local search heuristics in a sequence,
did not improve significantly the performances of the framework. This
framework is used in Section 5 to evaluate the performances of the
proposed procedures.

5. Computational experiments

We evaluate the performance of the MILP models and the proposed
local search heuristics, presented in Sections 2 and 4.2, respectively.
The experiments are conducted on Taillard’s dataset (Taillard, 1993),
comprising 120 instances with 𝑛 ∈ {20, 50, 100, 200, 500} and 𝑚 ∈
{5, 10, 20}. The due date of each job 𝑗 ∈ 𝐽 is chosen as a function of a
tightness factor 𝜏, by using the formula 𝑑𝑗 = 𝜏×

∑

𝑞∈𝑀 𝑝𝑞,𝑗 . Each instance
in the dataset is taken into account three times, corresponding to the
cases where 𝜏 is equal to 1, 2 and 3. The idea behind this choice is to
evaluate the cases with tight, medium and loose due dates, similarly
to Riahi et al. (2020).

In these experiments, the proposed approaches are compared with
the best performing heuristic in the state-of-the-art, denoted by EIGA
(Riahi et al., 2020). Such an approach was compared to four iter-
ated greedy algorithms developed for other scheduling problems in
the literature, and adapted to address 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|

∑

𝑗 𝑇𝑗 . These
algorithms are denoted as 𝐼𝐺𝐴𝑅𝑆1, 𝐼𝐺𝐴𝑅𝑆2, 𝐼𝐺𝐴𝑃𝑇𝐿 and 𝐼𝐺𝐴𝑃𝑅
n Riahi et al. (2020). 𝐼𝐺𝐴𝑅𝑆1 (Ruiz and Stützle, 2007) is a ba-
ic iterated greedy approach with a loop including a destruction–
econstruction procedure and a local search. 𝐼𝐺𝐴𝑅𝑆2 (Ruiz and Stützle,
008) was developed for flowshop problem with sequence-dependent
etup times, both for the makespan and weighted tardiness objectives.
t uses a different constructive algorithm to generate the initial so-
ution. 𝐼𝐺𝐴𝑃𝑇𝐿 (Pan et al., 2008) was developed for the flowshop
roblem with total flowtime objective. It relies on the constructive
𝐸𝐻 procedure to generate the initial solution, with the addition of
greedy local search. 𝐼𝐺𝐴𝑃𝑅 (Pan and Ruiz, 2014) was introduced

or the mixed no-idle flowshop scheduling problem, where the no-idle
onstraint is imposed on a subset of the machines. Moreover, EIGA
as compared to the following state-of-the-art heuristics specifically

∑
esigned for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒| 𝑗 𝑇𝑗 : the genetic algorithm proposed

Computers and Operations Research 146 (2022) 105862A. Balogh et al.

S
m
r
s
t

C
a
h
w
f
r
t
C
a

m
t
r
S
r
t
t
o
l

5

i

l
s
t
4
W
w
T
t

l
a
o
𝐹

5

c
T
a
R

P
b

in Tasgetiren et al. (2013), which consists of multiple crossover strate-
gies, the discrete artificial bee colony algorithm in Tasgetiren et al.
(2013), which uses six insertion and swap operations to diversify
explored neighborhoods, and the effective bi-population estimation of
distribution algorithm (Shen et al., 2014), which combines a global and
a local probability model.

Recently, the authors in Riahi et al. (2020) reimplemented all the
approaches mentioned above and tested them on the same machine.
The results of their experiments reveal that EIGA outperforms all the
other approaches. For this reason, we solely compare our results to
EIGA. Thus, this heuristic was reimplemented with the fast tardiness
computation discussed in Section 3. The time limit used for EIGA is
𝜃 = 𝜌 × 𝑛𝑚

1000 seconds. We indicate with RPH, SWPH, RWPH, RIH,
WIH and RWIH the heuristics that are obtained by using EIGA as a
etaheuristic, and RPLS, SWPLS, RWPLS, RILS, SWILS, RWILS,

espectively, as a MILP-based local search procedure in the general
cheme described in Section 4.3. A time limit of 𝜃 seconds is assigned
o each of the two phases of the hybrid heuristic framework.

All the approaches discussed are implemented in Java 8, while
PLEX 12.10 is the MILP solver used for testing both the MILP models
nd the MILP-based local search heuristics. Two different machines
ave been used for the experiments. An Intel Core i5-3550 3.30 GHz
ith 4 GB of RAM was used to test the MILP models (see Section 5.1

or the corresponding results), to compute the lower bounds considered
eported in Section 5.3, and to evaluate the impact of using different
ime limits for the two phases of the hybrid heuristic scheme. An Intel
ore i7-4712HQ 2.30 GHz×8 CPU with 16 GB of RAM was used to run
ll the heuristics (see Sections 5.2 and 5.3).

Section 5.1 is devoted to assessing the performances of the MILP
odels, in order to evaluate computationally the effectiveness of the

wo formulations proposed. Section 5.2 provides a comparison of the
esults obtained with the hybrid heuristics RPH, SWPH, RWPH, RIH,
WIH and RWIH, which are compared to each other and with the
eimplementation of the approach in Riahi et al. (2020). Finally, Sec-
ion 5.3 discusses the performances of the proposed approaches w.r.t.
he results published in the state-of-the-art, by analyzing the amount
f best known solutions updated and comparing them to the calculated
ower bounds.

.1. Computational assessment of the MILP models

This section assesses the performance of the MILP models described
n Section 2 by testing them on Taillard’s instances with 𝑛 = 20 and 𝜏 =
1. As discussed in the introduction, there are no ad-hoc exact algorithms
to solve the NPFSP with total tardiness as an objective. A time limit
of 1 h was set for each of the runs both for MILP_Form_Pos and
MILP_Form_Ins. The results obtained are shown in Table 3, where
we report the lower bounds computed by the solver, the percentage
relative gap between the upper bound and the lower bound, and the
computational time, for each model. The values reported in bold are
referring to runs where optimality was proven by the MILP solver
within the time limit.

We first consider the results related to the instances with 𝑚 = 5.
The model MILP_Form_Ins was not able to compute the optimal
solutions in 2 cases out of 10 and required a much longer time in
average with respect to MILP_Form_Pos, which was able to compute
all the optima within 5 min. Analogously, MILP_Form_Pos was able
to solve all the instances with 𝑚 = 10 to optimality within the time
imit, while MILP_Form_Ins was not able to compute the optimal
olutions in 8 cases out of 10. Finally, both models struggled to solve
he instances with 20 machines: MILP_Form_Pos proved optimality
times out of 10, while MILP_Form_Ins did not in any of the runs.
e also note that MILP_Form_Pos computed better lower bounds
ith respect to MILP_Form_Ins in the great majority of our runs.
he values reported in the last row of Table 3 represent the average of
9

he gap and computational time.
Table 3
Results obtained by the MILP models over Taillard’s instances with 𝜏 = 1 and 𝑛 = 20.
The values in bold refer to the runs where optimality was reached.

m Index MILP_Form_Pos MILP_Form_Ins

LB Gap (%) Time (s) LB Gap (%) Time (s)

5

1 11967 0.00% 13 11967 0.00% 205
2 10752 0.00% 99 10752 0.00% 756
3 12041 0.00% 274 11 662 3.41% 3600
4 11163 0.00% 173 11163 0.00% 3107
5 12812 0.00% 34 12812 0.00% 604
6 13264 0.00% 66 13264 0.00% 139
7 9017 0.00% 41 9017 0.00% 1542
8 10564 0.00% 109 10 316 2.35% 3600
9 11887 0.00% 178 11887 0.00% 725
10 10057 0.00% 97 10057 0.00% 1961

10

1 22317 0.00% 73 22317 0.00% 3039
2 17657 0.00% 412 16 271 10.71% 3600
3 18568 0.00% 274 18568 0.00% 2072
4 19259 0.00% 60 18 872 2.11% 3600
5 14414 0.00% 422 13 456 7.97% 3600
6 19029 0.00% 453 18 488 2.93% 3600
7 16091 0.00% 1294 14 523 11.74% 3600
8 18196 0.00% 400 17 221 5.79% 3600
9 17898 0.00% 420 17 307 3.30% 3600
10 16051 0.00% 1832 14 567 9.25% 3600

20

1 33 889 5.01% 3600 29 875 19.48% 3600
2 30 516 7.31% 3600 25 773 22.99% 3600
3 32 946 6.65% 3600 30 305 15.45% 3600
4 29 601 8.13% 3600 25 739 20.46% 3600
5 34 736 2.52% 3600 30 928 17.61% 3600
6 37514 0.00% 513 34 998 6.71% 3600
7 33469 0.00% 1494 30 095 10.53% 3600
8 36358 0.00% 1656 31 488 15.74% 3600
9 32 893 5.29% 3600 27 427 21.30% 3600
10 42405 0.00% 1369 39 201 9.11% 3600

Average 1.16% 1111.86 7.30% 2871.66

In conclusion, MILP_Form_Pos strongly outperformed the model
MILP_Form_Ins in our computational test. This is not just due to
the smaller number of constraints, which is (𝑛𝑚) for the first model
and (𝑛3 + 𝑛𝑚) for the second one. In fact, the values of 𝑛 and 𝑚 are
ow in our experiments and it is likely that MILP_Form_Pos yields

much tighter relaxation. We leave to future works the development
f new mathematical models and/or effective exact algorithms to solve
𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|

∑

𝑗 𝑇𝑗 .

.2. Computational assessment of the local search procedures

Although MILP_Form_Pos outperformed MILP_Form_Ins, we
ompare their behavior when used in the local search procedures.
his section compares the performances of the six hybrid heuristic
pproaches discussed before (RPH, SWPH, RWPH and RIH, SWIH,
WIH) with the reimplementation of EIGA.

arameters used. The time limits used for each run were computed
y considering the formula 2𝜃 = 𝜌 × 𝑛𝑚

2000 , which provides the overall
time limit in seconds, as a function of 𝜌, that is a given parameter,
the number of jobs 𝑛 and the number of machines 𝑚. Two sets of
experiments were performed, one with a shorter time limit (𝜌 = 60)
and another with a longer time limit (𝜌 = 600), whose results are
shown in Tables 4 and 5, respectively. In the tables EIGA𝜃 and EIGA2𝜃,
respectively, present our reimplementation of the approach in Riahi
et al. (2020) with the improved one-opt insertion, when it is run for
a time limit of 𝜃 and 2𝜃. The parameters of the MILP-based approaches
for the number of positions/job to unfix, 𝑤𝑝, 𝑤𝑖 and the number of
positions shifted, 𝛾 were chosen after some preliminary computational
experiments.

The two neighborhoods described in Section 4.1 have different

cardinalities, if the amount of free positions/jobs is fixed to the same

Computers and Operations Research 146 (2022) 105862A. Balogh et al.

w
v
i
l
M
i

w
d
(
c

t
R
b

i

Table 4
Relative percentage deviation (RPD) gaps w.r.t the best objective for 𝜌 = 60. The values in bold highlight the best performing approach per
instance.
𝜏 n m EIGA𝜃 EIGA2𝜃 SWPH RWPH RPH SWIH RWIH RIH

𝜏 = 1

20
5 0.57 0.36 0.32 0.30 0.49 0.56 0.52 0.56
10 0.52 0.48 0.36 0.33 0.49 0.52 0.51 0.52
20 0.89 0.86 0.64 0.61 0.73 0.89 0.87 0.89

50
5 1.65 1.38 0.93 0.38 1.39 1.63 1.55 1.64
10 1.92 1.55 1.21 0.78 1.73 1.92 1.92 1.92
20 1.58 1.15 1.13 0.99 1.50 1.58 1.58 1.58

100
5 1.71 1.49 1.11 0.51 1.58 1.70 1.71 1.70
10 1.62 1.30 1.09 0.54 1.54 1.62 1.62 1.62
20 1.53 0.91 1.01 0.59 1.47 1.53 1.53 1.53

200 10 1.43 1.03 1.01 0.52 1.40 1.43 1.43 1.43
20 1.57 0.91 1.17 0.77 1.55 1.57 1.57 1.57

500 20 1.02 0.49 0.88 0.88 1.02 1.02 1.02 1.02

𝜏 = 2

20
5 0.74 0.42 0.40 0.30 0.63 0.74 0.68 0.71
10 0.92 0.64 0.81 0.58 0.91 0.92 0.92 0.92
20 1.19 1.17 1.02 1.00 1.08 1.19 1.19 1.19

50
5 2.03 1.74 1.12 0.53 1.76 2.02 1.93 2.02
10 2.59 2.16 1.81 1.16 2.46 2.59 2.58 2.59
20 1.88 1.51 1.30 0.94 1.79 1.88 1.88 1.88

100
5 1.98 1.59 1.32 0.57 1.80 1.98 1.98 1.98
10 1.91 1.48 1.31 0.68 1.81 1.91 1.91 1.91
20 1.98 1.36 1.35 0.89 1.91 1.98 1.98 1.98

200 10 1.85 1.34 1.42 0.89 1.82 1.85 1.85 1.85
20 1.63 0.93 1.17 0.69 1.61 1.63 1.63 1.63

500 20 0.82 0.45 0.66 0.68 0.82 0.82 0.82 0.82

𝜏 = 3

20
5 0.96 0.46 0.86 0.89 0.91 0.96 0.91 0.96
10 0.39 0.15 0.33 0.31 0.39 0.39 0.39 0.39
20 0.41 0.36 0.41 0.41 0.41 0.41 0.41 0.41

50
5 2.41 2.06 1.48 0.57 2.08 2.40 2.31 2.41
10 4.02 3.36 2.89 1.78 3.68 4.01 3.98 4.02
20 3.52 2.33 2.69 1.89 3.35 3.52 3.52 3.52

100
5 2.20 1.80 1.47 0.72 2.04 2.20 2.20 2.20
10 2.31 1.87 1.50 0.86 2.18 2.31 2.31 2.31
20 2.42 1.65 1.65 0.96 2.33 2.42 2.42 2.42

200 10 1.81 1.23 1.33 0.76 1.77 1.81 1.81 1.81
20 2.04 1.22 1.52 1.00 2.01 2.04 2.04 2.04

500 20 0.97 0.44 0.79 0.81 0.96 0.97 0.97 0.97

Average 1.63 1.21 1.15 0.75 1.54 1.64 1.62 1.64
a

p
f

i
O

value. We decided to set 𝑤𝑖 = 𝑤𝑝
2 , since such configuration yielded

the best results in our preliminary tests. This takes into account the
properties in Section 4.1 and the different performances of the two
MILP models (Section 5.1). The value of 𝑤𝑝 was then chosen in order to
allow the neighborhood explorations to be completed in a short amount
of time. We set 𝑤𝑝 = 10 for all the instances, but the largest ones with
𝑛 = 500, where 𝑤𝑝 = 20. This is due to the fact that the creation of
the model is much more expensive in the case where 𝑛 = 500 and

e prefer to focus on fewer, but larger neighborhood explorations. The
alue of 𝛾 used by SWPH and RWPH was chosen equal to 1 for all the
nstances, but the ones with 𝑛 = 500 where 𝛾 is set to 10, where a much
arger shift was beneficial. Finally, we set a time limit of 5 s for all the
ILP-based neighborhood explorations, with the only exception of the

nstances with 𝑛 = 500 where the time limit was set to 20 s.
We performed five experiments per instance, each one associated

ith a different seed. In order to compare the performance of the
ifferent approaches, we consider the relative percentage deviation
RPD). Given a certain instance 𝑖, an approach 𝑎 and a seed 𝑠, we
ompute this measure as 𝑅𝑃𝐷 = 𝑜𝑏𝑗𝑖,𝑎,𝑠−𝑚𝑖𝑛𝑖

𝑚𝑖𝑛𝑖
× 100, where 𝑜𝑏𝑗𝑖,𝑎,𝑠 is the

objective computed by approach 𝑎 running on instance 𝑖 with seed 𝑠,
and 𝑚𝑖𝑛𝑖 is the best objective found among all the approaches and all
he seeds for instance 𝑖. Each entry of Tables 4 and 5 reports the average
PD of each approach over instances with the same value of 𝑛 and 𝑚,
y considering all seeds.

In Table 4, the values in bold denote the minimum gaps per row,
n order to highlight the best performing approach on average. The
10
pproaches RWPH and SWPH based on MILP_Form_Pos achieved the
best results for almost all the instances, but the ones with 𝑛 = 500,
for which the time limit used was too short to perform the MILP-based
search effectively. Moreover, RWPH achieved usually better results than
SWPH. This is due to the fact that we increase by one unit the beginning
of the window of unfixed positions in SWLS, which leads to re-including
𝑤 − 1 positions in two subsequent neighborhood explorations. This
strategy is poor in the case where the time limit is too short for reaching
the last position. The procedure RPH yielded worse performances than
RWPH and SWPH, because the strategy to select non-adjacent random
positions seems to be not adequate.

The local search procedures based on MILP_Form_Ins performed
oorly. This is mainly due to two reasons. On the one hand, the
ormulation MILP_Form_Ins is weaker than MILP_Form_Pos, as

shown computationally in Section 5.1. This leads to performing the
search inefficiently. On the other hand, the initial solutions used by
all the procedures are local minima w.r.t. the one-opt neighborhood,
which is contained in the neighborhoods used in such procedures.
This is clearly evidenced by the results. In fact, RIH, RWIH and SWIH
mproved the initial solution only in 22% 42% and 19% of the cases.
n the contrary, RWPH, SWPH and RPH improved the initial solution in

97%, 97%, 94% of the runs, respectively.
Table 5 shows results for the two best approaches from Table 4

(RWPH, SWPH) and the reimplementation of EIGA run for a larger time
limit. In here we can see that EIGA2𝜃 is outperformed in almost all

Computers and Operations Research 146 (2022) 105862A. Balogh et al.

b

Table 5
Relative percentage deviation (RPD) w.r.t best objective per row, 𝑚𝑖𝑛𝑖 for 𝜌 = 600. In
bold values denote the best approach for the specific instances.
𝜏 n m EIGA𝜃 EIGA2𝜃 SWPH RWPH

𝜏 = 1

20
5 0.08 0.06 0.05 0.05
10 0.44 0.44 0.31 0.32
20 0.81 0.81 0.42 0.42

50
5 1.67 1.55 0.31 0.36
10 2.18 1.98 0.63 0.74
20 1.14 1.01 0.58 0.53

100
5 2.89 2.70 0.49 0.45
10 2.03 1.91 0.42 0.41
20 1.63 1.43 0.43 0.49

200 10 2.61 2.43 0.66 0.41
20 2.15 1.89 0.66 0.45

500 20 1.22 0.81 0.40 0.45

𝜏 = 2

20
5 0.06 0.03 0.01 0.01
10 0.57 0.57 0.31 0.31
20 1.15 1.15 0.97 0.84

50
5 2.10 1.93 0.50 0.54
10 3.02 2.73 1.11 1.15
20 1.93 1.75 0.94 0.97

100
5 3.19 2.97 0.66 0.49
10 2.48 2.32 0.57 0.56
20 1.99 1.85 0.56 0.55

200 10 2.84 2.64 0.63 0.48
20 2.38 2.09 0.65 0.52

500 20 1.30 0.95 0.38 0.44

𝜏 = 3

20
5 0.05 0.00 0.03 0.03
10 0.00 0.00 0.00 0.00
20 0.18 0.18 0.18 0.18

50
5 2.46 2.28 0.56 0.49
10 4.52 4.13 1.66 1.56
20 3.30 2.90 1.34 1.52

100
5 3.34 3.13 0.47 0.42
10 2.84 2.70 0.63 0.58
20 2.65 2.29 0.77 0.80

200 10 3.05 2.79 0.68 0.48
20 2.95 2.61 0.87 0.64

500 20 1.43 0.99 0.43 0.51

Average 1.90 1.72 0.56 0.53

cases by either RWPH or SWPH. The larger time limit allows the MILP-
ased local search procedures to find better objectives than EIGA. In

Table 4 RWPH clearly outperformed SWPH, whereas here results are
mixed, with only slight deviations. Looking at the overall average per-
formance RWPH performs slightly better then SWPH. Both approaches
improved the initial solution given by 𝙴𝙸𝙶𝙰𝜃 in all the cases and 91% of
the time they outperformed 𝙴𝙸𝙶𝙰2𝜃. On average RWPH achieved 0.53%
RPD w.r.t the best objective given by all approaches, whereas SWPH
achieved 0.56%.

In all the experiments described above, the time available was split
fairly between the two phases of the hybrid approaches. An interesting
aspect is related to the possibility of evaluating the performances when
splitting the computational budget 2𝜃 in a different fashion. With this
aim in mind, we run a set of experiments where the heuristic RWPH
was considered, with a change in the time assigned to the two different
phases. More specifically, a time 𝛼2𝜃 is assigned to EIGA, while the
remaining time 2(1 − 𝛼)𝜃 is assigned to RWPLS, with 𝛼 ∈ [0, 1]. We run
experiments by considering all the instances with 𝑛 = 50 and 𝑛 = 100,
by using 3 seeds, setting 𝜌 = 600 and varying 𝛼 from 0 to 1 with a step
increase of 0.1. Fig. 3 depicts two plots of the average RPD obtained
in the experiments versus 𝛼. When 𝛼 is equal to 0 only RWPH runs,
while only EIGA is considered when 𝛼 = 1. These two choices are
discouraged by the results, because the corresponding points have a
high value of average RPD. Moreover, there is a sharp improvement
11
when we consider the values of 𝛼 in the range [0.2, 0.8]. Indeed, there
does not seem to be a relevant difference among the performances
obtained in that wide interval. In conclusion, the choice of splitting
the time fairly between the two phases of the approaches seems to be
reasonable.

5.3. Best known solutions and optimality gaps

We compare our results with the ones presented in Table 14 of Riahi
et al. (2020) by providing an updated list of best known solutions and
the optimality gaps. Furthermore, Riahi et al. (2020) provides a table
with the best known solutions found during their computational cam-
paign, where a variety of state-of-the-art approaches were considered.
The time limits used in Section 5.2, 𝜌 = 600 is larger than the ones used
in Riahi et al. (2020), 𝜌 = 20, 40 and 60. However, there is a remarkable
difference between the two machines used to perform the experiments.
Moreover, the time limits used in this paper are much lower than the
ones used in Tasgetiren et al. (2013).

Table 6 provides the objective value of the best known solutions.
In addition to these, we computed a lower bound for each instance, by
running MILP_Form_Pos for a time limit of 1 hour on all the instances
but the ones with 𝑛 = 200 and 𝑚 = 20, for which we needed to run the
solver for 2 hours to obtain meaningful bounds. We did not compute the
bounds for the instances with 𝑛 = 500, since it was computationally too
expensive. Each instance is identified by its id, as in Table 14 of Riahi
et al. (2020).

For each instance, we report the best known objective value (Bks),
the source (Src) and the percentage optimality gap (Gap) between the
best known objective value and the lower bound. Dash values for the
gap denote instances where optimality was reached with respect to the
calculated lower bound. The absolute values of the lower bounds are
accessible in the supplementary material. For two instances, 𝜏 = 3, id
= 24 and id = 29 the lower bound obtained was 0, thus we denote this
with a dash. For instances with 𝜏 = 3 and id ∈ {21, 22, 23, 25, 26, 28, 30}
the lower bounds obtained were much lower then objectives from any
of the approaches. In Table 14 of Riahi et al. (2020) there are four
values reported that were incorrect: for 𝜏 = 1, 𝐼𝑑 = 17 the value
reported was 16 089 instead of 16 091; for 𝜏 = 2, 𝐼𝑑 = 15 5289 instead
of 5301; for 𝜏 = 3, 𝐼𝑑 = 15 44 instead of 48 and for 𝜏 = 3, 𝐼𝑑 = 17 825
was reported instead of 836. These values are smaller than the lower
bounds computed by the MILP model and also we did not find any
other reference to these values. In fact, Tasgetiren et al. (2013) report
the same values that we computed. The entries in the column reporting
the source follow the following notation:

0: Reimplementation of EIGA with the improved one-opt method
defined in Section 3;

1: The results reported in Riahi et al. (2020);

2: The SWPH procedure;

3: The RWPH procedure.

In Table 6 we notice that most of the instances with 𝑛 = 20
(around 72%) were solved to optimality by the solver within the time
limit, hence we can report the optimal objective function value. Two
optimal objectives were calculated only by Riahi et al. (2020) and two
calculated only by the reimplementation of EIGA with the one-opt
speed up, SWPH and RWPH. For the remainder of the instances usually
a single source achieves the best result, except in four cases where
both SWPH and RWPH obtain the best values. The exact counts of how
many times only SWPH, only RWPH and both of them obtain the best
objectives can be found in Table 7. Here we notice that we improve
solutions for all values of 𝑛 and 𝑚, especially when 𝑛 = 100 and 200.

Considering instances with 𝑛 = 50 in Table 7 and corresponding
instances with ids 30 − 60 in Table 6 we observe that for 30% of

Computers and Operations Research 146 (2022) 105862A. Balogh et al.
Table 6
Best known values from all approaches.

Id 𝜏 = 1 𝜏 = 2 𝜏 = 3

Bks Src Gap Bks Src Gap Bks Src Gap

1 11 967 0,1,2,3 – 6941 0,1,2,3 – 2543 0,1,2,3 –
2 10 752 0,1,2,3 – 6042 0,1,2,3 – 2423 0,1,2,3 –
3 12 041 1,2,3 – 7463 0,1,2,3 – 3637 0,1,2,3 –
4 11 163 0,1,2,3 – 5784 0,1,2,3 – 1901 0,1,2,3 –
5 12 812 0,1,2,3 – 7844 0,1,2,3 – 3174 0,1,2,3 –
6 13 264 0,1,2,3 – 8209 0,1,2,3 – 3592 0,1,2,3 –
7 9017 0,1,2,3 – 4395 0,1,2,3 – 1036 0,1,2,3 –
8 10 564 0,1,2,3 – 5542 0,1,2,3 – 1657 0,1,2,3 –
9 11 887 0,1,2,3 – 6645 0,1,2,3 – 2618 0,1,2,3 –
10 10 057 0,1,2,3 – 5341 0,1,2,3 – 1670 0,1,2,3 –
11 22 317 0,1,2,3 – 11 988 0,1,2,3 – 2993 0,1,2,3 –
12 17 657 0,1,2,3 – 7321 1 – 1026 0,1,2,3 –
13 18 568 0,1,2,3 – 8863 0,1,2,3 – 1430 0,1,2,3 34.91
14 19 259 0,1,2,3 – 10 329 0,1,2,3 – 2754 0,1,2,3 –
15 14 414 0,1,2,3 – 5301 0,2,3 – 48 0,2,3 –
16 19 029 1 – 9889 0,1,2,3 – 2305 0,1,2,3 5.11
17 16 091 0,2,3 – 6879 0,1,2,3 – 836 0,2,3 –
18 18 196 0,1,2,3 – 8294 0,1,2,3 – 993 0,1,2,3 –
19 17 898 0,1,2,3 – 8053 0,1,2,3 – 800 0,1,2,3 –
20 16 051 0,1,2,3 – 5881 0,1,2,3 2.28 522 0,1,2,3 –
21 34 821 0,1,2,3 2.74 14 548 0,1,2,3 4.28 989 0,1,2,3 2435.90
22 32 635 0,1,2,3 6.94 13 863 0,1,2,3 18.13 630 0,1,2,3 201.44
23 34 341 1 4.22 14 114 1 9.89 336 1 510.91
24 31 682 0,1,2,3 7.02 12 020 0,2,3 18.18 233 0,1,2,3 inf
25 35 635 0,1,2,3 2.56 15 168 0,1,2,3 4.30 888 0,1,2,3 69.47
26 37 514 1,2,3 – 17 813 1,2,3 – 1978 0,1,2,3 70.37
27 33 469 1 – 13 378 0,1,2,3 27.37 119 0,1,2,3 –
28 36 358 0,1,2,3 – 16 601 0,1,2,3 – 920 0,1,2,3 144.68
29 34 532 1 4.97 14 331 0,1,2,3 11.67 642 0,1,2,3 inf
30 42 405 0,2,3 – 23 067 0,2,3 – 4659 0,1,2,3 18.67

31 74 541 2 1.06 62 494 1 1.40 50 387 2,3 1.67
32 63 760 3 1.83 50 731 2 2.40 37 421 1 1.94
33 60 721 3 2.92 48 628 3 3.53 36 982 3 4.69
34 63 731 2 3.01 50 814 2 3.68 38 429 2 5.00
35 75 703 2 2.15 62 738 2 2.24 50 191 3 3.20
36 63 127 3 1.41 50 138 2 1.81 37 445 3 2.36
37 68 228 3 1.79 55 870 3 2.00 43 987 3 3.28
38 64 953 2 1.79 52 524 2 2.17 40 358 3 3.16
39 62 487 2 1.77 50 882 3 2.20 39 133 2 2.46
40 61 063 3 4.34 48 120 2 5.25 36 017 3 6.11
41 81 900 1 5.75 57 108 2,3 9.38 32 774 3 16.07
42 79 129 1 9.80 55 386 1 15.39 30 994 1 21.41
43 79 910 2 2.66 55 769 3 3.56 32 680 1 8.29
44 86 073 3 3.17 60 735 2 4.54 35 801 3 8.18
45 72 261 1 14.50 47 384 3 29.27 25 118 1 35.92
46 101 016 2 2.41 75 915 2 3.08 51 049 3 5.03
47 87 530 1 9.75 61 896 1 14.36 37 392 1 27.57
48 100 118 1 1.13 75 706 1 1.64 51 141 2 4.20
49 87 320 1 4.31 63 424 1 6.83 39 623 3 12.60
50 87 030 1 12.50 61 396 1 18.09 35 829 1 29.98
51 148 793 1 4.85 97 060 1 7.80 45 628 3 19.63
52 176 401 3 7.30 126 955 3 10.04 77 923 1 11.77
53 131 053 1 13.94 82 986 1 21.50 35 849 1 78.35
54 162 768 1 4.94 113 747 1 8.03 65 049 1 15.37
55 132 781 1 9.00 84 159 2 16.38 38 149 2,3 49.61
56 172 416 3 4.38 123 341 3 6.14 74 605 3 11.23
57 165 312 1 4.45 115 439 2,3 5.70 65 989 2 10.48
58 144 215 1 7.67 95 333 2 17.24 46 638 2 30.07
59 145 411 3 6.96 94 775 1 10.25 45 378 1 26.70
60 159 676 3 4.21 109 197 2,3 5.97 58 575 1 12.97

(continued on next page)
o
w
u
1

S

the instances SWPH achieves the best objectives and for 32% of the
instances RWPH does. By taking into account instances where both of
these achieve the best objective, 66.78% of the instances get updated
by either SWPH or RWPH. Furthermore, the average gap between best
known solutions and corresponding lower bounds has been reduced
from 9.94% to 9.63% in case of 𝑛 = 50.

Similarly, looking at instances with 𝑛 = 100 with ids 60 − 90
in Table 6, we observe that SWPH achieves the best objectives over
35.56% of the instances and RWPH outperforms all other approaches
12
for 60% of the instances. In total the two approaches update 95.56% of
the best known solutions and the gap is reduced from 5.79% to 4.57%.

Considering instances with 𝑛 = 200 with ids 90 − 110 in Table 6, we
bserve that SWPH outperforms all other approaches 13.3% of the time
hereas RWPH does so 85% of the time. In total the two approaches
pdate 98.3% of the best known solutions and the gap is reduced from
1.36% to 9.23%.

At last, for instances with 𝑛 = 500 with ids 110 − 120 in Table 6,
WPH outperforms all other approaches 56.67% of the time but in this

Computers and Operations Research 146 (2022) 105862A. Balogh et al.
Table 6 (continued).
Id 𝜏 = 1 𝜏 = 2 𝜏 = 3

Bks Src Gap Bks Src Gap Bks Src Gap

61 267 568 3 3.06 242 639 3 3.76 216 195 2 3.91
62 226 506 3 3.56 200 768 3 3.74 175 924 2 4.06
63 223 895 3 2.82 199 215 3 3.19 174 984 3 3.64
64 228 977 3 2.82 205 388 3 3.39 181 400 3 3.87
65 253 082 2 1.60 227 607 3 1.60 202 526 3 1.82
66 224 899 3 3.99 200 147 3 4.35 176 698 2 5.54
67 275 192 2 1.28 250 982 3 1.64 224 922 3 1.22
68 215 408 2 3.80 191 576 3 4.51 166 888 3 4.61
69 232 823 3 3.59 207 032 3 4.05 182 035 3 4.82
70 234 786 3 3.31 208 858 2 3.55 184 144 3 4.65
71 332 645 2 4.63 278 605 3 4.31 226 799 3 5.76
72 286 264 2 2.98 237 911 2 3.66 189 503 3 4.86
73 353 928 2 0.78 303 661 2 1.02 253 643 3 1.36
74 307 918 2 5.37 253 189 3 5.76 202 971 3 8.41
75 314 698 1 4.02 267 006 3 5.83 216 478 3 7.31
76 321 480 3 2.77 274 811 3 4.12 226 965 2 4.54
77 367 726 2 1.32 317 752 3 1.22 269 513 2 1.76
78 356 692 2 1.21 306 780 3 1.46 256 401 3 1.48
79 364 683 2 2.44 312 439 3 2.57 260 076 1 2.73
80 349 742 3 2.80 299 824 3 3.77 248 616 3 4.24
81 531 624 2 3.20 431 624 3 3.52 333 113 3 4.69
82 464 597 3 5.87 363 177 3 7.34 264 811 3 10.65
83 497 296 3 3.63 397 892 2 4.47 298 183 2 5.95
84 562 720 2 3.15 465 244 3 4.04 366 476 3 5.20
85 577 634 2 5.10 477 736 2 6.08 379 757 3 8.16
86 450 889 2 5.07 352 424 2 6.89 253 122 2 10.54
87 485 126 3 5.30 384 345 2 6.59 283 455 3 8.81
88 458 026 1 7.35 356 825 3 9.85 255 342 1 14.40
89 515 888 3 2.29 416 425 2 3.02 316 150 2 4.14
90 465 192 3 9.87 361 663 2 12.07 262 570 2 18.41

91 1 165 345 3 6.83 1 063 466 1 7.38 962 038 3 8.09
92 1 321 868 3 4.96 1 224 035 2 5.51 1 123 236 3 5.88
93 1 285 145 3 3.17 1 188 449 3 3.84 1 087 884 3 4.27
94 1 049 740 3 8.58 949 618 3 9.57 852 810 2 11.17
95 1 165 360 3 5.58 1 066 539 3 6.24 970 042 3 7.31
96 1 223 276 3 4.28 1 126 315 3 4.70 1 023 445 3 4.61
97 1 038 159 3 8.12 939 295 3 9.45 837 171 3 10.59
98 1 258 674 3 4.87 1 156 433 2 5.22 1 052 982 2 5.52
99 1 029 757 3 7.99 928 935 3 8.70 830 552 3 9.90
100 1 235 415 3 5.48 1 133 591 3 5.84 1 032 048 3 6.31
101 1 698 502 3 19.92 1 499 299 3 5.86 1 300 936 3 6.59
102 1 608 342 3 19.09 1 406 950 3 4.17 1 206 945 3 4.92
103 1 573 104 3 22.39 1 375 888 3 7.04 1 168 077 3 7.70
104 1 496 860 2 26.00 1 300 233 2 9.45 1 094 058 3 10.76
105 1 693 136 3 20.95 1 491 360 3 6.54 1 291 342 3 7.45
106 1 651 972 3 24.19 1 451 214 2 9.10 1 256 967 3 11.24
107 1 741 548 3 21.57 1 533 745 3 7.07 1 334 230 2 8.38
108 1 698 926 3 17.79 1 492 582 3 3.49 1 292 142 3 3.99
109 1 523 665 3 23.59 1 333 876 3 8.20 1 129 245 3 9.32
110 1 544 178 3 19.20 1 343 156 3 3.68 1 142 323 3 4.24

111 8 051 419 2 inf 7 564 765 3 inf 7 068 870 3 inf
112 8 207 466 2 inf 7 694 540 1 inf 7 192 935 2 inf
113 9 056 723 2 inf 8 463 618 3 inf 8 000 797 2 inf
114 7 886 351 2 inf 7 390 342 2 inf 6 902 134 2 inf
115 8 893 900 2 inf 8 395 506 3 inf 7 893 921 2 inf
116 8 205 656 3 inf 7 691 993 2 inf 7 157 162 2 inf
117 8 862 049 1 inf 8 344 824 1 inf 7 832 861 2 inf
118 9 181 333 1 inf 8 634 395 1 inf 8 171 015 2 inf
119 7 795 109 1 inf 7 336 217 2 inf 6 816 062 1 inf
120 8 938 644 1 inf 8 419 274 2 inf 7 904 686 2 inf
case RWPH outperforms a smaller amount of instances, only 16% of it.
This leads to 73.3% of an update of all instances with 𝑛 = 500 by either
SWPH or RWPH.

In summary, 63% of all instances have been updated by either SWPH
or RWPH, which corresponds to 77% if we disregard instances where
optimality has been achieved already by previous approaches. The
average gap between best known solutions and corresponding lower
bounds has been reduced from 8.74% to 7.63%, if we consider instances
with 𝑛 = 50, 𝑛 = 100 and 𝑛 = 200. The two proposed methods SWPH
and RWPH perform particularly well for instances where 𝑛 = 100 and
13
200 both in terms of number of best known solutions updated and gap
w.r.t the lower bounds closed.

Next we look at these two methods separately and compare their
results independently of each other to the state-of-the-art results pub-
lished in Riahi et al. (2020). By comparing SWPH and the state-of-the-
art, SWPH managed to update 212 out of 360 best known solutions,
which corresponds to 58%. Similarly, comparing RWPH to only the
state-of-the-art, RWPH updated 213 best known solutions, which cor-
responds to 59%. If we disregard instances for which optimality was
proven, both SWPH and RWPH managed to update 72% of the best
known solutions separately.

Computers and Operations Research 146 (2022) 105862A. Balogh et al.
Fig. 3. Plot of the average RPD w.r.t. the parameter 𝛼 (all the instances with n = 50 and n = 100, 3 seeds).
Table 7
Number of best known values updated.
𝜏 n m SWPH RWPH SWPH and RWPH

𝜏 = 1

50
5 5 5 –
10 2 1 –
20 – 4 –

100
5 3 7 –
10 7 2 –
20 4 5 –

200 10 – 10 –
20 1 9 –

500 20 5 1 –

𝜏 = 2

50
5 6 3 –
10 3 2 1
20 4 2 2

100
5 1 9 –
10 2 8 –
20 6 4 –

200 10 2 7 –
20 2 8 –

500 20 4 3 –

𝜏 = 3

50
5 3 6 1
10 1 4 –
20 3 2 1

100
5 3 7 –
10 2 7 –
20 4 5 –

200 10 2 8 –
20 1 9 –

500 20 8 1 –

Sum 84 139 5

6. Conclusions

We have presented six local search procedures for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|
∑

𝑗 𝑇𝑗 that are based on two different neighborhoods and explore the
search space by means of a MILP solver. We have shown that two hy-
brid approaches based on these procedures, denoted SWPH and RWPH,
are able to significantly improve the results provided by the state-
of-the-art metaheuristic, based on the fast exploration of the one-opt
neighborhood. These results are achieved because of the effectiveness
of the MILP-based search and on the different neighborhoods used, de-
noted as  1

𝜋,𝑃
in Section 4.1. Such neighborhoods consider a different

part of the search space with respect to the one-opt neighborhood. In
our computational experiments we updated around 63% of all the best
14
known solutions, and around 77% if we exclude the instances for which
we proved that the previous best known solution is optimal.

We believe that future studies should be devoted to the design
of hybrid heuristics for other permutation flowshop problems, with a
similar structure to SWPH and RWPH, where high quality one-opt local
minima are improved by means of a MILP-based search, performed on
a different neighborhood.

Another interesting future research direction is the study of lower
bounds and dominances for 𝐹𝑚|𝑝𝑟𝑚𝑢, 𝑛𝑜𝑖𝑑𝑙𝑒|

∑

𝑗 𝑇𝑗 , which may lead
to the definition of efficient exact approaches, improving the perfor-
mances of the MILP models described in this work.

CRediT authorship contribution statement

Andrea Balogh: Visualization, Data curation, Software, Writing
– original draft. Michele Garraffa: Conceptualization, Investigation,
Methodology, Software, Writing – original draft. Barry O’Sullivan:
Conceptualization, Methodology, Funding acquisition, Writing – review
& editing. Fabio Salassa: Conceptualization, Investigation, Methodol-
ogy, Writing – review & editing.

Acknowledgments

This work was supported by Science Foundation Ireland (SFI) under
grant number 16/RC/3918 (Confirm) and 12/RC/2289-P2 (Insight),
and co-funded under the European Regional Development Fund.

Appendix A. Supplementary data

The lower bounds obtained in all the experiments conducted are
available for future studies, as well as in bold values that our approach
obtained as well.

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cor.2022.105862.

References

Adiri, I., Pohoryles, D., 1982. Flowshop/no-idle or no-wait scheduling to minimize the
sum of completion times. Nav. Res. Logist. Q. 29 (3), 495–504.

Baptiste, P., Hguny, L.K., 1997. A branch and bound algorithm for the 𝐹 |𝑛𝑜− 𝑖𝑑𝑙𝑒|𝐶𝑚𝑎𝑥.
In Proceedings of the International Conference on Industrial Engineering and
Production Management, IEPM, Vol. 97. pp. 429–438.

Baraz, Daniel, Mosheiov, Gur, 2008. A note on a greedy heuristic for flow-shop
makespan minimization with no machine idle-time. European J. Oper. Res. 184
(2), 810–813.

Bektaş, Tolga, Hamzadayı, Alper, Ruiz, Rubén, 2020. Benders decomposition for the

mixed no-idle permutation flowshop scheduling problem. J. Sched. 23 (4), 513–523.

https://doi.org/10.1016/j.cor.2022.105862
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb1
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb1
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb1
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb3
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb3
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb3
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb3
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb3
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb4
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb4
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb4

Computers and Operations Research 146 (2022) 105862A. Balogh et al.
fang Chen, Jing, Wang, Ling, ping Peng, Zhi, 2019. A collaborative optimization algo-
rithm for energy-efficient multi-objective distributed no-idle flow-shop scheduling.
Swarm Evol. Comput. 50, 100557.

Della Croce, Federico, Garraffa, Michele, Salassa, Fabio, Borean, Claudio, Di
Bella, Giuseppe, Grasso, Ennio, 2017. Heuristic approaches for a domestic energy
management system. Comput. Ind. Eng. 109, 169–178.

Della Croce, Federico, Grosso, Andrea, Salassa, Fabio, 2019. Minimizing total
completion time in the two-machine no-idle no-wait flow shop problem. J.
Heuristics.

Della Croce, Federico, Salassa, Fabio, 2014. A variable neighborhood search based
matheuristic for nurse rostering problems. Ann. Oper. Res. 218 (1), 185–199.

Deng, Guanlong, Gu, Xingsheng, 2012. A hybrid discrete differential evolution algo-
rithm for the no-idle permutation flow shop scheduling problem with makespan
criterion. Comput. Oper. Res. 39 (9), 2152–2160.

Ding, Jianya, Song, Shiji, Zhang, Rui, Gupta, Jatinder N.D., Wu, Cheng, 2015.
Accelerated methods for total tardiness minimisation in no-wait flowshops. Int.
J. Prod. Res. 53 (4), 1002–1018.

Fatih Tasgetiren, M., Pan, Quan-Ke, Suganthan, P.N., Buyukdagli, Ozge, 2013. A
variable iterated greedy algorithm with differential evolution for the no-idle
permutation flowshop scheduling problem. Comput. Oper. Res. 40 (7), 1729–1743.

Goncharov, Yaroslav, Sevastyanov, Sergey, 2009. The flow shop problem with no-idle
constraints: A review and approximation. European J. Oper. Res. 196 (2), 450–456.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G. Rinnooy, 1979. Optimization and
approximation in deterministic sequencing and scheduling: a survey. In: Discrete
Optimization II, Vol. 5. Elsevier, pp. 287–326.

Kalczynski, Pawel Jan, Kamburowski, Jerzy, 2005. A heuristic for minimizing the
makespan in no-idle permutation flow shops. Comput. Ind. Eng. 49 (1), 146–154.

Öztop, Hande, Tasgetiren, Mehmet Fatih, Kandiller, Levent, Pan, Quan-Ke, 2020. A
novel general variable neighborhood search through Q-learning for no-idle flowshop
scheduling. In: 2020 IEEE Congress on Evolutionary Computation (CEC). pp. 1–8.

Öztop, Hande, Tasgetiren, M. Fatih, Kandiller, Levent, Pan, Quan-Ke, 2022. Metaheuris-
tics with restart and learning mechanisms for the no-idle flowshop scheduling
problem with makespan criterion. Comput. Oper. Res. 138, 105616.

Pan, Quan-Ke, Ruiz, Rubén, 2014. An effective iterated greedy algorithm for the mixed
no-idle permutation flowshop scheduling problem. Omega 44, 41–50.

Pan, Quan-Ke, Tasgetiren, Mehmet Fatih, Liang, Yun-Chia, 2008. A discrete differential
evolution algorithm for the permutation flowshop scheduling problem. Comput.
Ind. Eng. 55 (4), 795–816.

Pan, Quan-Ke, Wang, Ling, 2008a. A novel differential evolution algorithm for no-idle
permutation flow-shop scheduling problems. Eur. J. Ind. Eng. 2, 279–297.

Pan, Quan-Ke, Wang, Ling, 2008b. No-idle permutation flow shop scheduling based
on a hybrid discrete particle swarm optimization algorithm. Int. J. Adv. Manuf.
Technol. 39 (7), 796–807.

Rad, Shahriar Farahmand, Ruiz, Rubén, Boroojerdian, Naser, 2009. New high perform-
ing heuristics for minimizing makespan in permutation flowshops. Omega 37 (2),
331–345.

Riahi, Vahid, Chiong, Raymond, Zhang, Yuli, 2020. A new iterated greedy algorithm for
no-idle permutation flowshop scheduling with the total tardiness criterion. Comput.
Oper. Res. 117, 104839.

Rossi, Fernando Luis, Nagano, Marcelo Seido, 2019. Heuristics for the mixed no-idle
flowshop with sequence-dependent setup times and total flowtime criterion. Expert
Syst. Appl. 125, 40–54.

Rossi, Fernando Luis, Nagano, Marcelo Seido, 2020. Heuristics and metaheuristics for
the mixed no-idle flowshop with sequence-dependent setup times and total tardiness
minimisation. Swarm Evol. Comput. 55, 100689.

Ruiz, Rubén, Stützle, Thomas, 2007. A simple and effective iterated greedy algorithm
for the permutation flowshop scheduling problem. European J. Oper. Res. 177 (3),
2033–2049.
15
Ruiz, Rubén, Stützle, Thomas, 2008. An iterated greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted tardiness
objectives. European J. Oper. Res. 187 (3), 1143–1159.

Ruiz, Rubén, Vallada, Eva, Fernández-Martínez, Carlos, 1970. Scheduling in flowshops
with no-idle machines. 230, pp. 21–51,

Saadani, Nour El Houda, Guinet, Alain, Moalla, Mohamed, 1999. A travelling salesman
approach to solve the f/no-idle/cmax problem. European J. Oper. Res. 161 (1),
11–20.

Shao, Weishi, Pi, Dechang, Shao, Zhongshi, 2017. Memetic algorithm with node and
edge histogram for no-idle flow shop scheduling problem to minimize the makespan
criterion. Appl. Soft Comput. 54, 164–182.

Shao, Weishi, Pi, Dechang, Shao, Zhongshi, 2018. A hybrid discrete teaching-learning
based meta-heuristic for solving no-idle flow shop scheduling problem with total
tardiness criterion. Comput. Oper. Res. 94, 89–105.

Shen, Liangshan, Tasgetiren, Mehmet Fatih, Öztop, Hande, Kandiller, Levent,
Gao, Liang, 2019. A general variable neighborhood search for the NoIdle flowshop
scheduling problem with makespan criterion. In: 2019 IEEE Symposium Series on
Computational Intelligence (SSCI). pp. 1684–1691.

Shen, Jing-nan, Wang, Ling, Wang, Sheng-yao, 2014. A bi-population EDA for solving
the no-idle permutation flow-shop scheduling problem with the total tardiness
criterion. Knowl.-Based Syst. 74.

Ta, Quang Chieu, Billaut, Jean-Charles, Bouquard, Jean-Louis, 2018. Matheuristic
algorithms for minimizing total tardiness in the m-machine flow-shop scheduling
problem. J. Intell. Manuf. 29 (3), 617–628.

Taillard, E., 1993. Benchmarks for basic scheduling problems. European J. Oper. Res.
64 (2), 278–285, Project Management and Scheduling.

Tasgetiren, M. Fatih, Öztop, Hande, Gao, Liang, Pan, Quan-Ke, Li, Xinyu, 2019.
A variable iterated local search algorithm for energy-efficient no-idle flowshop
scheduling problem. Procedia Manuf. 39, 1185–1193, 25th International Conference
on Production Research Manufacturing Innovation: Cyber Physical Manufacturing
August 9-14, 2019 | Chicago, Illinois (USA).

Tasgetiren, M. Fatih, Pan, Quan-Ke, Suganthan, P.N., Chua, Tay Jin, 2011. A differ-
ential evolution algorithm for the no-idle flowshop scheduling problem with total
tardiness criterion. Int. J. Prod. Res. 49 (16), 5033–5050.

Tasgetiren, M. Fatih, Pan, Quan-Ke, Suganthan, P.N., Oner, Adalet, 2013. A discrete
artificial bee colony algorithm for the no-idle permutation flowshop scheduling
problem with the total tardiness criterion. Appl. Math. Model. 37 (10), 6758–6779.

Toffolo, Túlio A.M., Santos, Haroldo G., Carvalho, Marco A.M., Soares, Janniele A.,
2016. An integer programming approach to the multimode resource-constrained
multiproject scheduling problem. J. Sched. 19 (3), 295–307.

Vachajitpan, Porpan, 1982. Job sequencing with continuous machine operation.
Comput. Ind. Eng. 6 (3), 255–259.

Wang, Ji-Bo, Xia, Zun-Quan, 2005. No-wait or no-idle permutation flowshop scheduling
with dominating machines. J. Appl. Math. Comput. 17 (1), 419.

Woollam, C.R., 1986. Flowshop with no idle machine time allowed. Comput. Ind. Eng.
10 (1), 69–76.

Ying, Kuo-Ching, Lin, Shih-Wei, Cheng, Chen-Yang, He, Cheng-Ding, 2017. Iterated
reference greedy algorithm for solving distributed no-idle permutation flowshop
scheduling problems. Comput. Ind. Eng. 110, 413–423.

Zhou, Yongquan, Chen, Huan, Zhou, Guo, 2014. Invasive weed optimization algorithm
for optimization no-idle flow shop scheduling problem. Neurocomputing 137,
285–292, Advanced Intelligent Computing Theories and Methodologies.

http://refhub.elsevier.com/S0305-0548(22)00136-8/sb5
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb5
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb5
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb5
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb5
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb6
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb6
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb6
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb6
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb6
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb7
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb7
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb7
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb7
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb7
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb8
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb8
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb8
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb9
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb9
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb9
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb9
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb9
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb10
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb10
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb10
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb10
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb10
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb11
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb11
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb11
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb11
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb11
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb12
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb12
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb12
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb13
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb13
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb13
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb13
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb13
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb14
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb14
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb14
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb15
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb15
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb15
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb15
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb15
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb16
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb16
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb16
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb16
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb16
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb17
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb17
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb17
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb18
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb18
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb18
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb18
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb18
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb19
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb19
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb19
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb20
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb20
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb20
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb20
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb20
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb21
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb21
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb21
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb21
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb21
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb22
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb22
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb22
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb22
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb22
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb23
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb23
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb23
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb23
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb23
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb24
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb24
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb24
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb24
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb24
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb25
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb25
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb25
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb25
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb25
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb26
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb26
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb26
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb26
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb26
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb27
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb27
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb27
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb28
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb28
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb28
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb28
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb28
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb29
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb29
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb29
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb29
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb29
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb30
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb30
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb30
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb30
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb30
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb31
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb31
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb31
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb31
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb31
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb31
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb31
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb32
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb32
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb32
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb32
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb32
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb33
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb33
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb33
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb33
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb33
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb34
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb34
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb34
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb35
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb36
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb36
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb36
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb36
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb36
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb37
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb37
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb37
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb37
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb37
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb38
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb38
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb38
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb38
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb38
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb39
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb39
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb39
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb40
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb40
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb40
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb41
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb41
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb41
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb42
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb42
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb42
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb42
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb42
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb43
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb43
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb43
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb43
http://refhub.elsevier.com/S0305-0548(22)00136-8/sb43

	MILP-based local search procedures for minimizing total tardiness in the No-idle Permutation Flowshop Problem
	Introduction
	Problem formulations
	A MILP formulation based on positional variables
	A MILP formulation based on precedence variables

	Fast computation of total tardiness
	MILP-Based local search procedures
	Definition of the neighborhoods
	Structure of the local search procedures
	Matheuristic framework

	Computational experiments
	Computational assessment of the MILP models
	Computational assessment of the local search procedures
	Best known solutions and optimality gaps

	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. Supplementary data
	References

