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Abstract – Spatial statistics is a specialized branch of 
statistics aimed to provide information about the locations of 
randomly distributed objects in 1, 2 or 3 dimensions. The analysis 
involves data exploration, parameter estimation, model fitting and 
hypothesis formulation. In particular, in this work, we present 
some recent advances in the characterization of the spatial 
distribution of breakdown spots over the gate electrode of Metal-
Insulator-Semiconductor and Metal-Insulator-Metal structures. 
The spots are regarded as a two-dimensional point pattern, which 
is analyzed using intensity plots, spatial counting methods, inter-
event distance histograms and functional summary estimators. 
The methods reported here are general so that they can be applied 
to many different research fields. 
 
 

I. INTRODUCTION 
 

Spatial statistics is a specific branch of statistics aimed 
to describe and characterize the locations of randomly 
distributed objects in 1, 2 or 3D [1]. The objects can be 
trees in a forest, stars in the sky, cells in biological tissue, 
point-like defects in a silicon crystal wafer, etc., which 
from the mathematical viewpoint are regarded as a spatial 
point pattern. If any inherent or attributed property of the 
objects, such as size, color, type, status, etc., is considered, 
we have what is called a marked point pattern, and this 
information m can appear as one or more additional 
coordinates in the point location vector (x,y,z,m). A number 
of scientific disciplines such as archaeology, biology, 
astronomy, ecology, medicine, epidemiology and materials 
science have long made extensive use of the techniques 
developed to analyze marked point patterns [1,2]. 
Moreover, thanks to the aid of new technologies for 
collecting data and the availability of specialized software, 
the number of applications in other areas such as image 
analysis and geographical information systems is rapidly 
increasing. As in other branches of statistics, spatial 
statistics basically deals with exploratory data analysis, 
parameter estimation, model fitting and hypothesis 
formulation. In this work, we will focus the attention 
exclusively on exploratory data issues, and to this end we 
will make use of a number of numerical and functional 
characteristics able to summarize 2D data sets. 

The main objectives of spatial statistics are to detect 
whether or not a point pattern exhibits some kind of 
interaction among the points, and if possible to determine 
its origin. The interaction can be reflected in the inter-point 
distances (repulsion or attraction) or can somehow affect 
the mark values. Correlation between distances and mark 
values may also occur, which largely increases the 
complexity of the problem to be analyzed. A very central 
issue in spatial statistics is that not only the locations of the 
points are important but also the size of the observation 
window since this can seriously affect the conclusions 
drawn from the statistical analysis. The observation 
window can be artificial or natural depending on the 
selected boundaries. As shown in Fig. 1, an improperly 
chosen observation window can lead us to spuriously 
conclude that a given point pattern suffers from some kind 
of aggregation effect. In our case, the observation window 
always coincides with the device area but in some cases a 
particular region of the device could require special 
attention. This is called a “zoomed” approach. 
 
 
 
 
 
 
 
 
 
 

Fig. 1- The same point pattern with two different observation windows 

 
It is worth mentioning that the standard reference 

model of a point process is the homogeneous Poisson point 
process with intensity , where  is the expected number of 
points per unit area. This process is referred to as the 
Complete Spatial Randomness (CSR) process and is 
commonly regarded as the null hypothesis model in spatial 
statistics [1,2]. Even though the literature often refers to a 
point process as a stochastic model for a point pattern, it 
should be kept in mind that in most cases time-independent 
problems are assumed (even if it is not the case). As will be 
shown in this work, exploratory analysis of a spatial point 
process involves a number of statistical tools such as 
intensity plots, empirical and theoretical distance 
histograms and functional summary estimators. These 
methods will be discussed in Section III. 
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This paper mainly focuses on the spatial distribution 
of breakdown (BD) spots over the gate electrode area of 
Metal-Insulator-Semiconductor (MIS) and Metal-Insulator-
Metal (MIM) devices. This represents a good example of 
point pattern analysis with natural boundaries. Some years 
ago, Alam et al [3] raised the question whether the BD spot 
locations in MIS devices were spatially correlated or they 
truly followed a CSR model. The issue has major reliability 
implications since the transistor lifetime is expected to be 
sensitive to the degree of spatial and temporal correlations 
among BD spots. Even though the temporal correlation had 
received extensive attention in the past [4,5], the problem 
of the 2D spatial distribution was at that time an open 
subject. To our knowledge, the first study about the BD 
spots distribution in MIS devices using spatial statistics 
was reported in [6].  

 
It has been suggested that the interaction among spots 

may arise because of local variations of the potential 
distribution in the semiconductor substrate in the vicinity of 
the leakage sites [4], or by local enhancements of the trap 
generation rate during the dielectric wearout phase [5]. 
However, as discussed in [2], even in the absence of actual 
interactions, some deviation from CSR may arise as a 
consequence of “environmental” variations (in our case 
oxide thickness, permittivity, extrinsic defects, etc.) leading 
to local patches with relatively high or low concentrations 
of events. Of course, as occurs in other branches of 
statistics, this limits the conclusions which can be drawn, 
consequently, factors like these should always be taken into 
account. On the contrary, the observation of CSR can help 
us to rule out such environmental variations. 

 
In principle, in order to assess whether the BD spot 

locations follow a CSR process or not, two approaches are 
possible: firstly, one can infer the spatial distribution from 
the first BD event statistics in many devices (this is the 
standard approach), or alternatively, one can analyze the 
distribution of a large number of BD spots in a single 
device. Concerning the first method, the experimental fact 
that the Weibull slopes  corresponding to different gate 
areas are independent of the area is well known to be a 
consequence of the Poisson area scaling [7]. However, this 
approach often relies on the detection of a single BD event 
per device, which precludes the possibility of exploring the 
interaction between spots. Successive breakdown statistics 
is also consistent with CSR but the analysis is again limited 
in practice to a few events per device [5]. In connection 
with the second method, in [1], the correlation among spots 
was evaluated using simulated data compatible with the 
current distribution in a four-terminal device fabricated to 
that aim. The results obtained led the authors to conclude 
that the BD spots do not exhibit spatial correlation and 
therefore that they are well represented by a CSR process. 
As we can see, CSR seems to be the rule for BD spots 
generation so that it would be of interest to know and to 
have the analytical tools to check if this is always the case. 

As will be shown in Section III, this hypothesis may 
sometimes fail so that it should be considered with caution. 

 
 
II. DEVICES AND EXPERIMENTAL DETAILS 

 
Two types of samples are analyzed in this work. The 

first set of devices consists of MgO films with nominal 
oxide thickness tox=20 nm deposited by e-beam 
evaporation on n-type Si and n-type InP substrates. The 
MgO/Si and MgO/InP samples were capped in-situ with 
100 nm of amorphous silicon (-Si) using a second e-beam 
source. For the NiSi gate process, nickel was deposited by 
e-beam evaporation (~80 nm) through a patterned resist 
mask followed by a lift-off process. The area of the devices 
(squares) tested ranges from 9.0x10-6 to 1.0x10-4 cm2. The 
second set of devices discussed here consists of Pt/HfO2/Pt 
capacitors formed on a 200 nm-thick thermal SiO2 grown 
on n-type Si substrates. HfO2 (10 nm) is grown by atomic 
layer deposition. Then, lithography and a lift-off process 
are used to form arrays of circular area MIM devices. 
Access to the bottom Pt metal is enabled via a dry etching 
technique using a mask/resist process that removes the 
HfO2 to the bottom Pt metal while at the same time 
protecting the top Pt metal of the patterned devices. This 
process also protects an oxide region that extends 25 µm 
beyond the perimeter edge of the top metal, which is 
supposed to eliminate edge effects on the electrical 
properties of the devices. 
 

 
 

Fig. 2 -  BD spots distribution in NiSi/MgO/Si and NiSi/MgO/InP devices. 
 
 

 
 

 
Fig. 3 -  Pt/HfO2/Pt capacitors without and with BD spots. 

 
 

In order to generate the spots, the devices were 
subjected to ramped voltage stresses (positive or negative). 
The thermal effects associated with the oxide BD events 



are so important that permanent localized damaged areas 
can be observed as black dots distributed over the gate 
electrode area (see Figs. 2 and 3). The spots were 
photographed using a standard microscope and the images 
were digitalized for statistical processing. For the sake of 
simplicity, we will confine our attention to unmarked point 
patterns, i.e. the size of the BD spots will not be considered 
here. The statistical analysis is carried out using the 
Spatstat package for R language [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 - Typical intensity plots for a) MIS and b) MIM structures. The 

scales show the number of points (locally weighted) per unit area.   
 
 

III. POINT PATTERN ANALYSIS METHODS APPLIED 

TO BD SPOTS CHARACTERIZATION 
 

In order to summarize a point pattern structure, 
numerical and functional characteristics can be used. As for 
any estimate computed from a set of observations, two 
interpretations are possible: firstly, estimates are used to 
make inferences about the process from which the data set 
was chosen at random (inferential statistics) and secondly, 
estimates can be viewed as descriptive of the particular 
data set used to compute the estimate (descriptive 
statistics). In spatial statistics, we can adopt either of the 
two viewpoints. The most important numerical summary 
characteristic for a point process is the intensity  , i.e. the 
average density of points. Additional insight on the 
distribution of the spots  can be achieved using the quadrat 

count method in combination with the Morishita index. 
Distance methods involve analyzing the distance 
distribution among all points and comparing to the 
corresponding theoretical distributions. Concerning the 
functional summary characteristics, a number of estimators 
called F, G, J, K and g have been proposed, which provide 
complementary statistical information on the point pattern 
distribution. The central idea of using these functions is 
that they can be explicitly calculated for a CSR process. 
The resulting expressions are then compared with the 
empirical curves directly computed from the experimental 
point locations. These methods are now discussed in detail. 
 
A. Intensity plots 
 
The very basic analysis tool in spatial statistics is the 
intensity plot. Figure 4 shows typical intensity plots for 
MIS and MIM devices with different shapes. In both cases 
the actual dimensions were normalized to unity. The local 
intensity (r) is defined as the density of points in an area 
A(r), where r is some radius. The plots are obtained using 
an isotropic Gaussian kernel with a bandwidth parameter, 
which determines the degree of smoothing. Notice that the 
intensity varies from location to location, but this is 
consistent with CSR, in which the points are not uniformly 
spread but there are empty gaps and clusters of points. 
 
B. Quadrat counts method (QCM) 
 
In this method, the window containing the point pattern is 
divided into a grid of rectangular tiles or “quadrats”, and 
the number of points falling in each quadrat is counted. The 
quadrats are square by default but may have arbitrary shape 
as well. One major drawback of QCM is that the choice of 
the quadrat size is strongly linked to the spatial scale of the 
problem, which establishes a limit to the applicability of 
the method. The basic idea behind the QCM test is to find 
evidence against the null hypothesis of a CSR process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 -  QCM plot for the data shown in Fig. 4.a including the observed 
spots (upper left), the expected number of spots using a Poisson model 
(upper right) and the Pearson residuals (second row). 
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As mentioned above, the device area is partitioned into Q 
quadrats and the number of spots falling in the i-th quadrat 
n[i] is counted. Assuming that the n[i] are independent and 
identically-distributed Poisson random variables with the 
same expected value, the Pearson 2 test can be evaluated, 
which in turn can be used to reject or accept the CSR 
model. In the example illustrated in Fig. 5, the observed 
data, the expected data and the Pearson residuals 
(=[(observed)-(expected)]/expected) are shown. A small 
Pearson residual indicates good agreement with CSR. A 
major problem with this approach is that the final 
conclusion may depend on the quadrats number. 
Fortunately, the question can be overcome by considering 
the Morishita index MI, which is defined as [9]: 
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where N is the total number of spots. Figure 6 shows MI as 
a function of the quadrat size. The pattern can be 
considered completely random when MI1. For our 
example, Q4x4=16 quadrats are recommended for 
carrying out the analysis. 
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Fig. 6 -  Morishita index (1) as a function of the quadrat size. 

 
 
C. Distance methods 
 
A totally different approach is to examine the distance 
distribution among all points. Figure 7 shows the empirical 
distribution (data from Fig. 4.a) as well as the 
corresponding theoretical probability density (solid line) 
given by the following expression [10]: 
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(2) is reached under the hypothesis that the x- and y-
coordinates of each data point are uniformly distributed in 
the range [0,1]. From Fig. 7, it must be noted that the 
agreement between the histogram and the solid curve is 
very good, which seems to indicate that the points follow a 
CSR process. However, the main problem with this method 
is that the details of the tails of the distribution are 
sometimes lost. 
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Fig. 7 -  Distance histogram for the points shown in Fig. 4.a. The solid 

lines is calculated using (2). 
 

 
D. Functional summary characteristics 
 
Several functional summary characteristics have been 
proposed to characterize a point pattern. These are called F, 
G, J, K and g and they are defined as follows:  
 
D.1 The F-test  
The empty space function, the contact distribution or the 
“point-to-event” distribution F, is the cumulative 
distribution of the distance from a fixed point in space to 
the nearest point. F is a useful statistic summarizing the 
sizes of gaps in the pattern. Another interpretation of F is 
the probability that a randomly located disc of radius r 
contains at least one point. For a CSR process with 
intensity : 
 

FCSR(r) = 1 - exp(-r2)                         (3) 
 

While F>FCSR suggests that empty space distances are 
shorter than for a CSR process (regularly space pattern), 
F<FCSR suggests a clustered pattern.  In Fig. 8.a. the dashed 
line is computed using (3) and the solid line is found using 
the point locations from Fig. 4.a. The same applies for Figs. 
8b-8d and expressions (4)-(7). 
 



 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 -  Functional summary estimators for the data shown in Fig. 4.a.  

D.2 The G-test 
The nearest neighbour distance distribution function or the 
“event-to-event” distribution G is the cumulative 
distribution of the distance from a typical random point to 
the nearest other point. G has the same expression as F for 
a CSR process: 
 

GCSR(r) = 1 - exp(-r2)                        (4) 
 
While G>GCSR suggests that nearest neighbour distances 
are shorter than for a CSR process (clustered pattern), 
G<GCSR suggests a regular pattern. See Fig. 8.b. 
 
D.3 The J-test 
 J is the Van Lieshout-Baddeley function and is a measure 
of the deviations from F and G . J is defined as: 
 

J = (1-G)/(1-F)                               (5) 
 

JCSR=1 corresponds to a CSR process, while J>1 suggests 
regularity and J<1 suggests clustering. See Fig. 8.c. 
 
D.4 The K-test 
The Ripley’s K function is defined so that K(r) equals the 
expected number of random points within a radius r of a 
typical random point. For a CSR process:  
 

KCSR(r)=r2                                                     (6) 
 

While K>KCSR suggests clustering, K<KCSR suggests a 
regular pattern. See Fig. 8.d. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 -  Pair correlation function for the data shown in Fig. 4.a. 
 
 
D.5 The g-test 
Perhaps, the most important functional summary statistics 
available for point patterns is the pair correlation function 
g. This is also known as the reduced second moment 
function of the point process and is considered the best 
estimator for inferential purposes. g(r) is the probability of 
observing a pair of points separated by a distance r divided 
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by the corresponding probability for a Poisson process and 
can be found as: 
 

g(r) = [dK(r)/dr]/(2r)                          (7) 
 

gCSR(r)=1 corresponds to a CSR process, g>1 suggests 
clustering or attraction, while g<1 suggests inhibition or 
regularity. The estimator fails for r values close to 0. In 
practice g is not calculated from (7) but a different 
numerical approach is used (compare Figs. 8.d and 9).  As 
shown in Fig. 9, g1 for the realization under analysis, 
which indicates that the generation of spots follows a CSR 
process. This is what is expected for an oxide layer with a 
uniform generation of defects, which in turn is an indicator 
of the quality of the dielectric film. No particularly weak 
region is detected.  
  
 
   
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 -  Pt/HfO2/Pt capacitor with a lower density of spots in the 
periphery.  
 
 
 Interestingly, Fig. 10 shows a case in which the BD 
spots’ spatial distribution clearly departs from CSR. Even 
though a large number of spots were detected, close to the 
periphery of the device the density of spots is lower than 
expected. The origin of this deviation is not yet clear and it 
is not related to the circular shape since rectangular devices 
exhibit the same deviation. It is possible that the electric 
field at the edge is lower than in the center of the structure 
because of some process-related effect. A zoomed analysis, 
far from the periphery of the device, reveals that the spots 
follow a CSR process. Anomalies in the distribution of BD 
events in MOS devices were also reported in Refs. [11,12] 
 
 
 

IV. FURTHER APPLICATIONS IN THE FIELDS OF 

NANOTECHNOLOGY AND MATERIALS SCIENCE 
 

      Some of the methods reported above have been widely 
used in microelectronics (defects metrology in wafers) [13] 
and materials science (corrosion patterns, random packing, 
structure factor, coordination shells, etc.) [14-15]. In this 
Section we just want to highlight the power of the pair 

correlation function g as a characterization tool for spatial 
point patterns. Importantly, as mentioned earlier, a 
complete study on this subject would require the analysis 
of marked point processes where, for example, the size of 
the objects under consideration is included the treatment. 
As will be demonstrated next, occasionally the 
interpretation of the g plot is not straightforward and 
requires some expertise. For a complete discussion see [1].   
 
       As a first example, Fig. 11.a shows the spatial 
distribution of Co/Pt nanodots on a SiO2 substrate. The data 
was obtained from Prof. Oepen’s group webpage [16]. 
According to the authors, the nanodots are 18 nm-diameter 
and the picture size is 0.8 m x 0.8 m. The circles in Fig. 
11.a correspond to the location of the centers of the 
nanodots. A minimum interpoint distance of 15-20 nm is 
detected from Fig. 11.b in agreement with the reported spot 
sizes. 294 points were counted with =4.69x10-4 
points/nm2 and a mean nearest neighbour distance of 32 
nm. It is worth mentioning that in this case there is no real 
repulsion effect at short scale and that the size of the 
nanodots (not shown here) establishes a minimum 
separation distance between the points.  
   

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 11-  Distribution of Co/Pt nanodots on a SiO2 substrate [16], a) 
intensity plot, b) pair correlation function g. 
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      The second case study corresponds to a SEM image of 
ferromagnetic dots with domain walls in the nanometer 
range (see Fig. 12.a). According to the information 
provided by the authors the average dot size is about 636 
nm (data taken from Schuller's nanoscience group webpage 
[17]), which is totally consistent with the g0 region in 
Fig.12.b. This is a highly ordered structure with a range of 
most frequent short interpoint distances of 94 nm 
(maximum of g) and a distance from a typical point to 
regions with a small number of points beyond the nearest 
neighbours of 135 nm (first minimum of g). Notice from 
Fig. 12.b the important deviations from CSR occurring at 
these two length scales, which is an indication of the 
existence of short-range order in the point process. 122 
points were counted with =1.25x10-4 points/nm2 and a 
mean nearest neighbour distance of 86 nm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12- Distribution of ferromagnetic dots [17], a) intensity plot, b) pair 
correlation function g. 
 
 
      Finally, the last example (see Fig. 13.a) shows the 
nucleation of colloidal Pt nanocrystals in solution (data 
taken from Ref. [18]). This is a typical aggregation process. 
The first maximum in Fig. 13.b reveals that the most 
frequent short interpoint distance is around 3 nm. The 
second maximum at 6 nm corresponds to the most frequent 

longer inter-point distance (distance from typical point to 
regions with further neighbours). In this case, 495 points 
were counted with =4.22x10-2 points/nm2 and a mean 
nearest neighbour distance of 2.74 nm.  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13- Distribution of colloidal Pt nanocrystals in solution [18], a) 
intensity plot, b) pair correlation function g. 
 
 

V. CONCLUSION 
 

In summary, in this paper we have examined some of 
the methods used in spatial statistics to characterize 2D 
point patterns. In particular, the breakdown spots 
distribution in MIS and MIM devices was thoroughly 
analysed. In addition, we have shown some examples from 
nanoscience reported in the literature. Further investigation 
is required to identify why the breakdown spots are 
sometimes visible and sometimes not, and what connection 
exists with the materials that the structure is comprised of. 
According to our observations, it is not an exclusive matter 
of the semiconductor substrate (Si and InP), the oxide 
material (MgO and HfO2) or the gate electrode (Pt and 
NiSi). Other issues to be addressed that will help to 
increase our understanding about the formation of the point 
pattern are the following: Are all the breakdown events 
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observable or only those associated with hard breakdown? 
Does the spatial-temporal nature of the phenomenon play 
any role? What is the material of the filamentary path 
running across the oxide layer? We hope all these questions 
can be solved in the near future.   
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