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1 Abstract 
 

Objective: Gestational diabetes mellitus (GDM) is defined as any degree of glucose 

intolerance which is diagnosed during pregnancy and poses considerable health risks for 

mother and child. Maternal body mass index (BMI) correlates with GDM diagnosis and the 

pathophysiology of this link may be explained through oxidative stress and mitochondrial 

dysfunction. In this study we investigate if mitochondrial dysfunction is evident in GDM by 

measuring cell free mitochondrial DNA concentration and determine if a potential 

relationship exists between maternal mitochondrial function and GDM diagnosis.  

Study design: Plasma samples were taken at 20 weeks’ gestation from women who 

subsequently developed GDM (n=44) and matched with women with uncomplicated 

pregnancies (n=85) as controls. Control group 1 was matched by maternal age and BMI 

(n=41) to GDM cases, while control group 2 was matched by maternal age alone (n=44). 

Prediction potential was determined by binary regression analysis. Statistical analysis was 

performed on SPSS Statistics v25.  

Results: Binary regression analysis showed a statistically significant association between 

mtDNA concentration and GDM diagnosis ( p = 0.032) in GDM cases versus control group 2, 

indicating that GDM patients have higher circulating mtDNA concentrations relative to 

healthy control patients. The lack of statistical significance in control group 1 suggests that 

BMI may be linked to mitochondrial function in GDM patients. 

Conclusion: These results demonstrate a potential pathogenic role for mitochondrial 

dysfunction in GDM, with BMI presenting as a likely physiological mediator.  

 

 

 

 

 

 



2 Introduction 
 

Gestational diabetes mellitus (GDM) can be defined as any degree of glucose intolerance 

which is diagnosed during pregnancy (1). GDM is one of the most prevalent illnesses to 

develop during pregnancy, affecting approximately 1- 28% of antenatal mothers (2, 3).  

GDM is associated with an elevated risk of maternal and neonatal morbidity and mortality, 

with an increased risk of adverse perinatal complications such as macrosomia, respiratory 

distress syndrome and fetal hyperinsulinaemia (2). Established risk factors for GDM include 

ethnicity, obesity, micronutrient deficiencies, advanced maternal age and family history of 

diabetes (4, 5). GDM itself is an independent risk factor for the development of future 

health conditions in both the mother and the child. The nature of the relationship between 

obesity and GDM may result in a vicious cycle of intergenerational obesity and subsequent 

diabetes diagnosis. However, as a result of the increase in global prevalence of diabetes and 

obesity, two recognised risk factors for GDM, the numbers of cases of GDM have increased 

exponentially in the last decade (6).  

Currently, the exact pathophysiology of GDM is not fully understood and the molecular 

mechanisms are yet to be fully elucidated (4). One origin of the insulin resistance associated 

with GDM is proposed to be that of placental insufficiency and altered placental function 

(7). Certain physiological changes are at least partly coordinated by hormones and other 

mediators secreted by placenta including estradiol, progesterone, prolactin, cortisol, human 

placental lactogen (hPL), and human placental growth hormone (hPGH), which are proposed 

to facilitate the overall physiological condition of peripheral insulin resistance (7, 8). 

Maternal hyperglycaemia, whether from pre-existing diabetes or from gestational diabetes, 

will often lead to fetal hyperglycaemia because glucose is easily transferred across the 

placenta (9), therefore maintaining optimal blood glucose levels is crucial to reducing these 

risks for mother and fetus.  

During pregnancy, placental development requires an increased mitochondrial capacity to 

adequately meet the metabolic requirements of the developing fetus. In this way, placental 

mitochondria may play a vital role in the maintenance of pregnancy and neonatal 

development through regulation of metabolic activity and ATP production, hormone 



synthesis and trophoblast oxygen sensing (10). Mitochondria have their own genome with  

multiple copies of small circular mitochondrial DNA (mtDNA) molecules, whose number is 

regulated through the processes of biogenesis and mitophagy (11). MtDNA is particularly 

susceptible to oxidative damage because of its proximity to the electron transport chain 

(ETC) and its deficiency of protective histones (12) . It has been postulated that 

mitochondrial dysfunction may activate a feedback loop which results in increased 

mitochondria biogenesis (13) and previous studies have suggested that cf-mtDNA copy 

number increases with mtDNA damage or mitochondrial dysfunction (14).  Oxidative stress, 

a potential pathogenic mediator of GDM, is thereby believed to increase the quantity of cell-

free circulating mtDNA (cf-mtDNA) by the instigation of mitochondrial dysfunction (15). 

Although the majority of circulating cf-mtDNA in the maternal circulation is of maternal 

origin, approximately 5-20% of this cf-mtDNA is of fetal/placental origin, implicating 

placental dysfunction in the regulation of maternal cf-mtDNA copy number (16). Further to 

this, recent cohort studies have found significant correlations between mitochondrial DNA 

heteroplasmy, an important factor in mitochondrial disease, and a higher incidence of 

pregnancy losses, gestational diabetes, intrauterine growth restriction and post postpartum 

haemorrhage (17).  

Currently, risk prediction for GDM is largely based on the mother’s medical history and 

other clinical risk factors. Risk factor consideration before GDM screening involves the 

assessment of maternal characteristics, such as family history of diabetes; ethnicity with a 

high prevalence of diabetes (i.e. non-white ethnicity: including Asian, black Caribbean or 

Middle Eastern); history of having GDM or a macrosomic infant and/or maternal obesity 

(18). This study aims to further characterise the role that mitochondrial dysfunction may 

play in the pathophysiology of GDM and to elucidate if maternal BMI may be a causative 

mediator in this pathway. We also examined if various lifestyle factors affected cf-mtDNA 

levels in GDM pregnancies, including exercise, ethnicity, medical history and smoking habits. 

 

 

 

 



3 Materials and Methods 
 

3.1 Study design  
Study subjects were recruited from the Screening for Pregnancy Endpoints (SCOPE) study 

group in Ireland. SCOPE is an international multi-centre prospective cohort study of 

nulliparous singleton pregnancies aimed to develop a screening test to predict adverse 

pregnancy outcomes (19). This nested case-control study within SCOPE was conducted to 

include all GDM cases in SCOPE Cork, Ireland and matched controls with a case-to-control 

ratio of 1:2.  Of the 1774 participants who were recruited and completed follow-up, 44 

cases of GDM were diagnosed and are included for the purpose of this study’s analysis. A 

retrospective case-control analysis was designed and performed and the diagnosed cases 

were matched with 88 participants as controls. These controls included two groups. Control 

group 1 was matched by maternal age and BMI (n=41), whereas control group 2 was 

matched by maternal age alone (n=44). GDM cases were diagnosed based on the Oral 

Glucose Tolerance Test (OGTT) at 24 weeks with locally employed diagnostic criteria. 

 

3.2 Sample collection and DNA extraction  
Plasma samples were collected from study participants at the 20 ± 1 weeks’ gestation time-

point. These samples were collected in BD Citrate Vacutainer tubes, placed on ice and 

centrifuged at 2400g for 10 minutes at 4˚C. This method was performed according to a 

standardised lab protocol. These plasma samples were then stored at -80˚C until analysis 

was performed. Total DNA was extracted from 200µl of plasma with a QIAamp DNA mini kit 

(Qiagen) as per standardised manufacturer guidelines. DNA was sonicated at 38 kHz ± 10% 

for 10 minutes to optimise DNA yield. All sample analysis was blinded. 

 

3.3 cf-mtDNA quantification  
Mitochondrial DNA was analysed by real-time PCR using a StepOne Plus Detection system. 

Taqman assays were performed for mitochondrial DNA (hMitoF5, hMitoR5) and nuclear β₂-

microglobulin (β2MF2, β2MR2). Absolute quantification of cf-mtDNA concentration was 

then determined by standard curve analysis and presented as mtDNA copies/ml. 



3.4 Statistical analysis  
Statistical analysis was performed using SPSS v25. Statistical significance was accepted at p < 

0.05. The groups were divided into cases (n = 44), controls matched by maternal BMI and 

age (control group 1) (n = 41) and controls matched by maternal age only (control group 2) 

(n = 44). The controls matched by age and BMI have missing data for cf-mtDNA 

concentrations (n=3) due to unavailability of peripheral blood samples for these 

participants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 Results 
 

4.1 Patient characteristics in the study cohort 
Of the total SCOPE study cohort that were recruited and completed follow-up, 44 women 

(2.5%) were diagnosed with GDM at 24 weeks’ gestation. Our results were grouped and 

analysed as defined by the three study groups. The variables we included for analysis were 

maternal age, maternal BMI, recent exercise exertion (vigorous, moderate and 

recreational), ethnicity, family history of diabetes diagnosis and recent smoking habits. We 

compared study groups for each variable by using one-way ANOVA for continuous outcomes 

and McNemar’s test for dichotomous outcomes. There were no significant differences 

found between groups except for that of maternal BMI, where GDM cases and control 

group 1 had a significantly higher BMI mean when compared to the control group 2 

(p=0.002 and p=0.004 respectively) and family history of type 2 diabetes, where the cases 

had a significantly higher incidence of a family history of type 2 diabetes relative to both 

control group 1 and control group 2 (p=0.0004 and p= 0.0022 respectively) (see Table 1). 

 

4.2 Significantly higher BMI in GDM cases relative to control participants 
An initial descriptive statistical analysis was performed to define the distributions of 

maternal BMI values across the study groups (Figure 1). A one-way ANOVA followed by 

Tukey’s multiple comparison analysis was applied to look for any difference in mean 

maternal BMI value between the study groups. This analysis established that the GDM cases 

and the control group 1 had a significantly higher mean BMI compared to control group 2 

(p=0.002 and p=0.004 respectively). It was expected that there would be no significant 

difference in maternal BMI values between cases and control group 1 as BMI was a 

matching criteria for these groups.  

 

 

Figure 1 - Distributions of maternal BMI across study groups.  GDM cases and control group 

1 had a significantly higher BMI mean when compared to the control group 2 using one-way 



ANOVA followed by Tukey’s multiple comparison analysis (p=0.002 and p=0.004 

respectively). 

 

4.3 Significantly higher cf-mtDNA concentration in GDM cases relative to healthy 
uncomplicated pregnancy controls 

We then performed descriptive analysis to compare cf-mtDNA concentration (copies/ml) in 

maternal circulation across the study groups (see Figure 2). A one-way ANOVA followed by 

Tukey’s multiple comparison analysis was applied to look for any significant differences in 

cf-mtDNA concentrations between the study groups. This analysis established that GDM 

case participants had a significantly higher mean cf-mtDNA concentration compared to 

control group 2 but not when compared to control group 1 (p=0.037 and p=0.149 

respectively). 

 

Figure 2 - Distribution of cf-mtDNA concentration  (copies/ml) across study groups. GDM 

case participants had a significantly higher mean cf-mtDNA concentration compared to 

control group 2 but not to control group 1 using one-way ANOVA followed by Tukey’s 

multiple comparison analysis (p=0.037 and p=0.149 respectively). 

 

4.4 Increased cf-mtDNA significantly predicts an increased incidence of GDM 
diagnosis 

Binary regression analysis was performed to further investigate the relationship between 

variables of BMI and cf-mtDNA concentration in identifying a GDM diagnosis. Initially, GDM 

diagnosis was analysed using data from the cases and the control group 2 to investigate the 

relationship between BMI and GDM diagnosis. This analysis showed a statistically significant 

increase GDM diagnosis with increasing maternal cf-mtDNA concentration (p = 0.032) in the 

analysis of GDM cases against control group 2. These results showed that as cf-mtDNA 

concentration increases, the likelihood of GDM diagnosis increases (Figure 3). 

 



Figure 3 - Increased cf- mtDNA concentrations significantly predicts an increase in GDM 

diagnosis when cases were compared to control group 2  (p = 0.032). 

 

4.5 Matching of GDM cases with controls for maternal BMI eliminates any evidence 
of elevated cf-mtDNA 

Binary regression analysis was then performed on cf-mtDNA concentration in the cases 

against the control group 1. These results did not detect a significant difference in cf-mtDNA 

concentrations between the two groups (p = 0.697) (Figure 4). 

 

 

Figure 4 - No significant prediction was found between an increase in cf-mtDNA 

concentrations with an increase in GDM diagnosis when cases were matched bases on both 

maternal age and BMI (p = 0.697). 

 

 

 

 

 

 

 

 

 

 

 

 



5 Discussion 
 

With increasing visceral adipose tissue mass, adipocyte dysfunction increases which results 

in an upregulation of reactive oxyen species (ROS) production. This deleterious ROS 

generation has been correlated with an increase in insulin resistance in both the adipose 

and other peripheral tissues (20). Mitochondrial activity is critical for maintenance of 

glucose homeostasis and alteration in mitochondrial content or function may further lead to 

the development of systemic insulin resistance (21). The impact of this ROS cascade on 

mitochondrial dysfunction has been linked to that of mtDNA alteration and damage, leading 

to diminished oxidative phosphorylation capacity, mtDNA fragment release and further ROS 

production, all components of metabolic disease states (22). Mitochondrial dysfunction is 

also hypothesized to play a pivotal role in a compensatory increase in mitochondrial 

biogenesis (23). Hence, we initially examined the causative relationship between maternal 

BMI and GDM. Both GDM cases and control group 1 respectively had a significantly higher 

BMI distribution compared to the control group 2. The significantly lower concentration of 

cf-mtDNA in the maternal circulation in the control group 2 relative to the case participants, 

which is not evident in control group 1 participants, supports the suggestion that an 

individual’s BMI may be a key component in modifying cf-mtDNA concentration.  

Previous research has already shown links between visceral obesity and cf-mtDNA copy 

number, specifically that the deleterious state of obesity is linked to increased cf-mtDNA 

concentrations (24) and our results complement this understanding of the physiology of 

adipose dysregulation. In obesity, intracellular lipid overload can induce an oxidative stress 

response. This response is in part due to the impact of high levels of free fatty acids on the 

mitochondrial membrane structure, instigating a release of reactive oxygen species (ROS). In 

addition to being a major producer of ROS, mitochondria are equally a target for cellular 

ROS which may lead to further oxidative damage to the mitochondrial membrane and 

mtDNA (25). This increase in ROS production can instigate a homeostatic increase in 

mitochondrial biogenesis and this described cycle of mitochondrial damage and ROS 

production may play a key role in cellular dysfunction and disease conditions (26).  

There is emerging evidence that the described dysfunctional mitochondrial activity in the 

adipocytes, itself, has a detrimental effect on the metabolism of fatty acids, altering their 



storage in the cell in the form of triacylglycerol and determining their release into the blood 

stream. Upon reaching the circulation, these fatty acids may deposit in ectopic sites such 

skeletal muscles and liver and thereby progressively display their potent capacity to induce 

insulin resistance (21). In addition, research investigating the physiology of human 

subcutaneous adipocytes has established that an increase in BMI is inversely related to 

mitochondrial oxidative phosphorylation capacity (27). This evidence strongly suggests that  

BMI is a clinical variable which can certainly be used to counsel regarding the risk of 

developing GDM, but alone it is not a sufficient screening tool (28). 

To further define the predictive nature of cf-mtDNA on GDM diagnosis, we used binary 

regression analysis to investigate the relationship between the shift in maternal cf-mtDNA 

concentration and GDM diagnosis in the GDM cases. By selectively analysing our cases 

against control groups 1 and 2, matched and unmatched by maternal BMI respectively, we 

investigated the confounding effect that BMI may have on the relationship between 

maternal cf-mtDNA and GDM diagnosis. Here we found that cf-mtDNA concentration was a 

significant predictor for GDM diagnosis in the cases and the control group 2, with the GDM 

diagnosed participants having a higher cf-mtDNA blood concentration relative to the control 

group 2. Repeated regression analysis on cases against control group 1 did not elude to any 

clinical predictive nature of cf-mtDNA in these participants.  

We also compared other demographic characteristics in our study cohort, to elucidate any 

other possible confounding variables. From this data, the only other finding of interest was 

that of a significantly higher incidence in a family history of type 2 diabetes in GDM case 

participants relative to their control counterparts. This is unsurprising considering the 

established pathological link between GDM and type 2 diabetes, as women diagnosed with 

GDM have a 3-7 fold increased risk of developing type 2 diabetes within 10 years and their 

child from this pregnancy also has a higher risk of diabetes diagnosis (29, 30). Other studies 

have similarly established a family history of type 2 diabetes as a significant risk factor for 

GDM (31-33). Considering our cohort characteristics, it is unlikely that we would have been 

able to capture any significant effects of ethnicity or smoking habits on GDM diagnosis, as 

both characteristics had very low variation within the cohort.  

Our results suggest that cf-mtDNA concentration may be a potential clinical predictor of 

GDM development, independent of maternal age but dependent on maternal BMI. Recent 



research that suggested that not only is mitochondrial dysfunction related to increased ROS 

production, but that this ROS production, which may be further induced by the 

hyperglycaemic state associated with GDM, could contribute to the development and 

progression of diabetes-related complications (34). This theory suggests the presence of a 

feed-forward relationship between ROS production stimulated by hyperglycaemia and 

concurrent GDM disease progression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 Conclusion 
 

In this study, we provide evidence that an increased maternal peripheral concentration of 

cf-mtDNA strongly predicts GDM diagnosis, with maternal BMI suspected to regulate this 

pathophysiological link. BMI is therefore a useful guide as a GDM risk factor but is not 

sufficient as a stand-alone biomarker for the condition. Our findings support a pathological 

link between mitochondrial dysfunction and insulin resistance in pregnancy, and suggest 

that targeting oxidative stress responses may ameliorate the deleterious effects of 

increased visceral adiposity on GDM diagnosis risk. Longitudinal studies are, however, 

needed to further define the potential cause–effect relationship between changes in cf-

mtDNA and GDM pathophysiology in order to elucidate its potential as a clinical biomarker 

of GDM.  

 

 

 

 

 

 

 

 

 

 

 

 

 



7 List of abbreviations 
 
BMI – body mass index 

GDM – gestational diabetes mellitus 

DNA - deoxyribonucleic acid 

mtDNA – mitochondrial DNA 

cf-mtDNA – cell-free mtDNA 

hPL – human placental lactogen 

hPGH – human placental growth hormone 

ATP – adenosine triphosphate 

OGTT – oral glucose tolerance test 

ROS – reactive oxygen species 
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9 Tables and figures 
 Cases (n=44) Control group 1 

(n=41) 

Control group 2 

(n=44) 

Maternal age (years) (mean 

±SD) 

31.14 ±5.1 30.55 ±4.53 31.3 ±3.22 

Maternal BMI (mean ±SD) 

 

28.33 ±5.32 28.07 ±5.32 24.64 ±3.94 

Vigorous exercise 

in the last month 

 

Never 

Once/week 

2-3x/week 

4-6x/week 

Daily 

>once/day 

38 (86%) 

3 (7%) 

2 (5%) 

1 (2%) 

0 

0 

27 (66%) 

6 (15%) 

6 (15%) 

0 

1 (2%) 

1 (2%) 

33 (75%) 

8 (18%) 

2 (5%) 

0 

0 

1 (2%) 

Moderate exercise 

in the last month 

Never 

Once/week 

2-3x/week 

4-6x/week 

Daily 

>once/day 

12 (27%) 

13 (30%) 

10 (23%) 

3 (7%) 

5 (11%) 

1 (2%) 

9 (22%) 

10 (25%) 

16 (39%) 

1 (2%) 

4 (10%) 

1 (2%) 

15 (34%) 

8 (18%) 

7 (16%) 

7 (16%) 

7 (16%) 

0 

Recreational walk 

in the last month 

Never 

Once/week 

2-3x/week 

4-6x/week 

Daily 

>once/day 

6 (14%) 

21 (48%) 

12 (26%) 

2 (5%) 

3 (7%) 

0 

6 (15%) 

15 (36%) 

14 (34%) 

2 (5%) 

4 (10%) 

0 

10 (23%) 

10 (23%) 

18 (40%) 

3 (7%) 

3 (7%) 

0 

Ethnicity Caucasian 

Other 

(Indian) 

42 (95%) 

2 (5%) 

41 (100%) 

0 

44 (100%) 

0 



Family history of 

type 1 diabetes 

Yes 

No 

4 (9%) 

40 (91%) 

0 

41 (100%) 

1 (2%) 

43 (98%) 

Family history of 

type 2 diabetes 

Yes 

No 

18 (41%) 

26 (59%) 

2 (5%) 

39 (95%) 

4 (9%) 

40 (91%) 

Family history of 

GDM 

Yes 

No 

4 (9%) 

40 (91%) 

1 (2%) 

40 (98%) 

2 (5%) 

42 (95%) 

Smoking during 

the first trimester 

Yes 

No 

12 (27%) 

32 (73%) 

16 (39%) 

25 (61%) 

9 (20%) 

35 (80%) 

 

Table 1 – Participant characteristics in the study cohort, distributed by cases (patients 

diagnosed with GDM), control group 1 (control patients matched by age and BMI) and 

control group 2 (control patients matched by age only). Data is represented as mean ± 

standard deviation or percentage of the group cohort.  
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