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Abstract

Abstract

Bilevel optimisation problems contain several decision makers, each with different
objectives and constraints, arranged in a hierarchical structure. One type of
bilevel problem is the single-leader, multiple-follower problem, which has been
used in applications like toll-setting, resource management, conflict resolution,
and many others. This hierarchical structure allows for the reformulation of the
forest harvesting problem as a multiple-follower bilevel problem.

In the forest harvesting problem of Chapter 4, trees are cut into different log types,
some of which are more valuable than others. Due to the fact that harvesting
machines are designed to prioritise the production of these higher-value log types,
over-production and waste of the high-value logs, as well as unfulfilled demand
for the low-value logs is seen. Additionally, the discrepancy between amounts of
log types expected pre-harvest and the actual amounts seen post-harvest leads to
the inefficient harvesting of the forest.

Despite the many approaches for solving multiple-follower problems, they are
either not applicable in cases in which the follower problems are not traditional
optimisation problems, or do not scale up appropriately. An example of this
case occurs with the forest harvesting problem, where the follower problems are
dynamic programming problems. Another example is the case where the follower
problems are black-box functions. In such cases, replacing the follower problems
with reformulations or optimality conditions are not applicable. Evolutionary
algorithms can be used, but these are computationally-intensive schemes which
do not scale up effectively.

For this reason, an analytics-based approach, which is better able to sample
the solution space is needed. The thesis defended throughout this dissertation
is that an analytics-based decomposition approach can be used to solve large-
scale multiple-follower bilevel problems more efficiently than the other approa-
ches. Specifically, the contributions of this thesis are: (i) a new class of multiple-
follower bilevel problems is proposed; (ii) a novel analytics-based decomposition
approach for solving this class of large-scale bilevel multiple-follower problems is
given; (iii) the forest harvesting problem is reformulated as a bilevel optimisa-
tion problem to take into the account operation of harvester, and (iv) a reactive
harvesting approach is developed to mitigate the effects of the uncertainty in the
data .
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Chapter 1

Introduction

1.1 Context

Mathematical Optimisation is the science of selecting the optimal solution to a
problem from a larger set of possible solutions. Such a problem is known as an
optimisation problem and usually contain an objective function, which is usually
minimised or maximised, constraints which limit the scope of the solutions, and
variables, the values of which determine the value of the objective function. In
cases in which the objectives and constraints are linear, the optimisation problem
is known as a linear programming (LP) problem. When some or all of the variables
are confined to being integers, it is known as an integer linear programme (ILP).
Since being made popular in the early 20th century by researchers like George
B. Dantzig, Leonid Kantorovich and John von Neumann, linear programming
has been used to solve practical problems in areas such as scheduling, planning,
cutting, transportation as well as other fields [Van07, Kan60, BJS10].

In practical application however, optimisation problems are rarely straightfor-
ward as non-linearities abound. Bilevel optimisation is such a case. In contrast
to standard linear programming where there is only one decision maker, bilevel
problems contain several decision makers, each with different objectives and con-
straints. Several approaches have been developed to solve this class of problems,
from reformulation and using classical algorithms like the Kth-best algorithm, to
evolutionary algorithms. These approaches are sometimes either not applicable,
or do not scale up efficiently for large-scale bilevel problems.

An alternative approach is to use data-driven or analytics-based methods. In

1



1. Introduction
1.2 Bilevel Optimisation and the Forest

Harvesting Problem

data-driven optimisation, the goal is to use insights from any available data to
improve the quality of the decisions made or the solution approaches taken. Ana-
lytics techniques can therefore be used to enhance decision making either by
learning useful features from the data, or using data to simplify mathematical
models, thus reducing the complexity and/or solution times of the models.

1.2 Bilevel Optimisation and the Forest Harves-
ting Problem

A bilevel optimisation problem is one in which there are two levels in the opti-
misation problem. This is achieved by having one optimisation problem nested
inside another. Consequently, there is an outer (or leader) problem and an inner
(or follower) problem. These problems affect on each other, as the outer problem
reacts to the decisions made in the inner problem. This makes the solution of
bilevel problems difficult [CMS07]. In certain cases, there may be multiple inner
(i.e. multiple-follower) problems. These problems are known as Stackelberg pro-
blems after Heinrich Freiherr von Stackelberg who first described the problems in
1934 [Sta34]. These models are generally used when decision makers have a hier-
archy to them, and have been used in applications such as toll setting [DBMS06],
resource distribution [CKR71], conflict resolution [AA91] and so on. More on
bilevel optimisation is given in Chapter 2.

The wood procurement problem [Uus05] is concerned with the harvesting and
delivery of wood products from various forest sources to different customers,
while minimising the harvesting and distribution costs. Aside from the problem
of efficiently bucking the trees, the tree stems need to be delivered in a cost-
effective way to the customers which may be sawmills, paper mills, power plants
and so on. An illustration of this is given in figure 1.1. The focus of this thesis is
the efficient harvesting of the forest.

In the forest harvesting problem, trees are cut into different log types, with each
log type having its own monetary value. Figure 1.2 gives a simple illustration
of this. Some log types are more valuable than others, consequently resulting in
the desire of the forest owners to produce these valuable log types. For example,
in the figure, log type A may be sold at a much higher price than log type D,
which induces the forest owners to prioritise its production. Modern harvesting
machines are designed to produce these high-value logs at the expense of the

An Analytics-Based Decomposition Approach
to Large-Scale Bilevel Optimisation
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Harvesting Problem

Figure 1.1: An illustration of the wood procurement problem

other log types. This method of operation does not take demand into account,
consequently resulting in the over-production and waste of the high-value logs,
as well as unfulfilled demand for the low-value logs. Due to the semi-autonomous
nature of the harvesting machines, there is only indirect control over their ope-
rations. Additionally, their algorithms are complex and non-linear, which makes
them not easily manipulated by workers in the field.

Figure 1.2: An example of different bucking patterns

In order to get an estimate of the capacity of the forest for the different wood

An Analytics-Based Decomposition Approach
to Large-Scale Bilevel Optimisation
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Harvesting Problem

products, a Terrestrial Laser Scanning (TLS) system is used. For each tree in
its coverage area, the TLS system takes measurements of the diameter at several
heights above the ground (figure 1.3). This enables the system to create a digital
representation of the forest (see figure 1.4), which allows the harvest planners to
estimate the forest capacity.

Figure 1.3: TLS measurement

Figure 1.4: A TLS scan

In practice, forests are also subdivided into areas called blocks, and one of the
goals of this thesis is to select blocks to harvest such that demand for logs is met,
while also taking into account the method of operation of the harvesters. Also,
it is preferred that blocks with a lower value are selected for harvesting, as this

An Analytics-Based Decomposition Approach
to Large-Scale Bilevel Optimisation
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1. Introduction 1.3 Limitations of Current Approaches

will ensure that the higher quality trees are left intact, thus conserving natural
resources. As bilevel optimisation is used in problems in which there are two
(or more) decision makers arranged in a hierarchy, this problem can be modelled
as a bilevel problem with multiple followers. At the upper level, the goal is to
select mostly low-value blocks to harvest in order to fulfil demand. At the lower
levels, the goal is to select inputs to the harvester for each block such that the
logs produced by them fit the demand. This leads to a single-leader, multiple-
follower problem. Due to the size of the problem, with multiple trees per block
and multiple blocks per forest, this results in a large-scale bilevel optimisation
problem.

1.3 Limitations of Current Approaches

Several methods for solving bilevel problems exist. The most common approach
involves reducing the bilevel problem to a single level by replacing the inner pro-
blem with its optimality conditions. This reduced problem is then solved using a
classical algorithm like the Kth-best algorithm. The limitations of this approach
is illustrated in cases where the follower problem is not a standard optimisation
problem. If the follower problem is, for example, a black-box function, it cannot
be replaced by its optimality conditions, leading to this method being inapplica-
ble. Other methods such as Benders’ Decomposition have been used. Here, the
problem is first of all reduced to a single-level problem by replacing the follower
problem with its Karush-Kuhn-Tucker (KKT) optimality conditions. Then, Ben-
ders’ Decomposition is applied. In some other cases, the leader problem is treated
as the master problem while the follower problem is treated as the sub-problem.
This approach also fails in cases where the follower problem is non-standard, as
Benders’ decomposition is applicable to problems which either have a particular
structure, or can be reduced to a single level using the KKT approach. Evolutio-
nary approaches have also been used to solve bilevel problems. These approaches
have the advantage of not needing to consider the convexity or linearity of the
problem. They are however computationally-intensive approaches, and as such
do not scale up well.

For the forest harvesting problem, there are several approaches designed to im-
prove the fit between the demand, and the logs produced by the harvester. These
approaches include the use of a measure called the apportionment degree (AD)
index [DS12]. Here, logs with higher values are still prioritised, which sometimes

An Analytics-Based Decomposition Approach
to Large-Scale Bilevel Optimisation
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1. Introduction 1.4 Dissertation Overview

results in the demand not being fulfilled. Some approaches have the machines
only consider a few cutting patterns, from which one that best fits the demand
is selected [DRF15]. This small number of patterns is assumed to be sufficient
for all cases, however this is not always so. Another approach varies the prices of
the logs in order to produce only the desired logs, but this is done using only a
small set of prices [SOG89], thus not covering as many cases as possible.

An additional aspect to the forest harvesting problem is that of reactive harves-
ting. Forest inventory is taken using sampling, as it is impractical to measure all
trees in the forest. These samples are sometimes not representative of the reality,
leading to a discrepancy between the amounts expected from a harvest, and the
amounts actually obtained. In the forestry industry, the popular algorithm used
for this case is the Threshold Accepting (TA) meta-heuristic algorithm [MAA06].
There, demands are recomputed after each stage of the harvesting, however, the
blocks selected for the next stage are randomly chosen. This approach fails to
find solutions in certain cases, and does not take into consideration the fact that
there are considerable costs associated with with moving harvesting equipment
from one block to another.

1.4 Dissertation Overview

In summary, while there are several very good methods for solving bilevel pro-
blems, they fail for certain cases. Cases where the follower problem is non-
standard do not allow for the use of classical methods. Evolutionary approaches
can be used in these cases, however they are computationally intensive and do
not perform well on large-scale problems. With regards to the forest harvesting
problem, the approaches used either do not improve the fit between the demand
and the harvesters’ outputs, or they only use a small set of cutting patterns.
Additionally for reactive harvesting, the algorithm popularly used in industry
sometimes fails to find solutions, and also does not take into account location
constraints.

The thesis that will be defended in this dissertation is that an analytics-based
decomposition approach can be used to solve large-scale multiple-follower bilevel
problems in which the follower problems are black-box functions. Although evo-
lutionary approaches can be used in these cases, they can be time-consuming and
for large problems, unable to efficiently search the whole solution space. The-
refore, an analytics-based approach, which is better able to sample the solution
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space is needed. An application in the forestry industry is also given. For the
forest harvesting problem, this thesis formulates the problem as a bilevel multiple-
follower problem. This is a natural fit as it considers the harvester’s operation for
each block as an optimisation problem (which it is). A reactive harvesting algo-
rithm which handles cases in which the sample data is not representative of the
real forest is also presented. Using this bilevel multiple-follower approach allows
the problem to be modelled more accurately, and solved using the decomposition
approach.

The main contributions of this thesis are enumerated below:

1. A new class of multiple-follower bilevel problems is proposed in Chapter 2.
This class is different from the others in that the leader variable are parti-
tioned amongst the followers so that none of the followers share variables
with each other. Also, while the other classes only consider linear programs,
this new class also allows integer as well as non-linear problems.

2. A novel analytics-based decomposition approach for bilevel problems is
presented in Chapter 3. This approach uses analytics techniques such as
Monte Carlo sampling and clustering to reduce large-scale bilevel problems
to single-level problems.

3. Reformulation of the forest harvesting problem as a bilevel optimisation
problem to take into the account operation of harvester in Chapter 4.

4. A reactive harvesting approach which also combines the cutting stock and
vehicle routing problems is presented in Chapter 5. It is used to mitigate
the effects of the uncertainty in the data by selecting the next best block
to harvest based on the yields already obtained, as well as the blocks neig-
hbourhood information.

1.5 Outline

This dissertation consists of 6 chapters structured as follows:

• Chapter 1, Introduction: A general overview of the thesis is given in
this chapter, including a short background on the problems to be considered
and the main contributions and outline of the thesis.

• Chapter 2, Bilevel Optimisation: Here, an overview of bilevel optimisa-
tion is first given. Multiple-follower problems are also explained, and then a
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new class of bilevel problems is proposed. A literature review on the current
approaches for solving bilevel problems is also given. Finally, motivation
for using an analytics-based approach for solving bilevel problems is stated.

• Chapter 3, An Analytics-Based Decomposition Approach: In this
chapter, the decomposition technique is explained. Background on distribu-
tion learning, generating uniformly distributed random vectors, k-medoids
clustering and self organising maps is then given. Two numerical examples
of bilevel problems are then solved using the proposed decomposition ap-
proach. The first example is a small problem and is used to show that even
for small instances, the proposed decomposition approach is competitive. A
large-scale example problem is also solved using the decomposition appro-
ach, and the solutions obtained are compared with the solutions obtained
from using two different genetic algorithms.

• Chapter 4, A Large-Scale Bilevel Cutting Stock Problem: Back-
ground on the forest harvesting problem is first of all given in this chapter,
including some literature on the current approaches. The problem is then
reformulated as a multiple-follower bilevel problem, and then both a small-
scale and a large scale-evaluation are carried out. Additional data analysis
is then done which reveals the existence of natural clusters in the data.

• Chapter 5, Combining the Cutting Stock Problem with Dynamic
Vehicle Routing: In order to deal with the problem of the sample data
sometimes differing from the real data in the forest harvesting problem, a
reactive harvesting algorithm is proposed. A review of the literature on
reactive harvesting, as well as the use of vehicle routing problem in agricul-
ture is first given here. Two integer programming models are proposed for
reactive harvesting - a simple integer linear program, and one in which the
cutting stock problem was combined with the vehicle routing problem. Ex-
periments comparing the approach used in the industry with the proposed
reactive approach are carried out.

• Chapter 6, Conclusions: Finally, the contents and contributions of the
thesis are summarised here, and possible avenues for future work are given.

An Analytics-Based Decomposition Approach
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Chapter 2

Bilevel Optimisation

2.1 Overview of Bilevel Optimisation

A bilevel optimisation problem is one in which one optimisation problem is em-
bedded within another. There is a leader (or outer/upper-level) problem, and a
follower (or inner/lower-level) problem. The variables are split into leader va-
riables and follower variables. The leader’s solution must optimise an objective,
under the constraint that the follower optimises a different objective. Though the
relationship is asymmetric, the leader and follower influence each other: the fol-
lower reacts to the leader’s decisions, while the leader makes decisions taking the
follower’s objective into account. Bilevel optimisation originated in game theory
(Stackelberg problems) and mathematical programming. A standard mathema-
tical formulation is:

min~x,~y F (~x, ~y)
s.t. ~y ∈ argmin~y{f(~x, ~y) | g(~x, ~y) ≤ 0}

G(~x, ~y) ≤ 0
~x ∈ X, ~y ∈ Y

(2.1)

where ~x represents the leader decision vector and ~y the follower decision vector.
The objective functions at the upper- and lower-level are represented by F and f
respectively. Inequality constraints at the upper- and lower-levels are represented
by G and g respectively. Equality constraints may also exist. X and Y are the
bound constraints for the upper-level decision vector and lower-level decision
vector respectively. The condition ~y ∈ argmin~y forces ~y to be an optimal solution
to the follower problem, and can be considered as a computationally expensive

9



2. Bilevel Optimisation 2.2 Multiple-Follower Bilevel Problems

constraint.

The constraint region of the bilevel problem is:

Ω = {(~x, ~y) ∈ X × Y : G(~x, ~y) ≤ 0, g(~x, ~y) ≤ 0} (2.2)

For a given leader decision vector ~x, the feasible set for the follower is:

Ω(~x) = {~y ∈ Y : g(~x, ~y) ≤ 0} (2.3)

The set of feasible solutions for the follower problem given ~x is called the rational
reaction set and is given as

Ψ(~x) = {~y ∈ Y : ~y ∈ argminf(~x, ~y) | ~y ∈ Ω(~x)} (2.4)

Finally, the feasible set of the bilevel problem, also known as the inducible region
IR, is:

IR = {(~x, ~y) : (~x, ~y) ∈ Ω, ~y ∈ Ψ(~x)} (2.5)

Problems with a hierarchical decision structure can be modelled using bilevel op-
timisation, and applications include toll setting, structural optimization, defence
applications, road network planning, optimal chemical equilibria, environmental
economics, and water resource management.

Some applications have multiple followers and/or leaders, are multi-objective,
or take uncertainty into account. In the case of the toll setting problem for
instance, the highway management authority (the leader) must choose a set of
roads to impose tolls on. On a lower level, the road users (the followers) seek
to choose the shortest distance between their respective origins and destinations.
The presence of multiple road users extends the simple bilevel problem with one
leader and one follower, to a multiple-follower bilevel problem.

2.2 Multiple-Follower Bilevel Problems

In a generalised Stackelberg competition model [SMFD14] there are multiple le-
aders and followers. Leaders make their decisions independently of each other,
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2. Bilevel Optimisation 2.2 Multiple-Follower Bilevel Problems

then followers make their decisions independently of each other. Leaders are in
a Stackelberg competition with their followers: they make their decisions with
complete knowledge of how the followers will react, which gives them an advan-
tage.

For the Bilevel Multiple-Follower (BLMF) problem with a single leader and Q

multiple followers, let ~x represent the leader decision vector, and ~yq the decision
vector for follower q, (q = 1 . . . Q). The leader chooses a strategy ~x, following
which every follower selects its own strategy corresponding to ~x. The multiple-
follower problem can then be formulated as:

min~x,~y1...~yQ
F (~x, ~y1, . . . , ~yQ)

s.t.
G(~x, ~y1, . . . , ~yQ) ≤ 0

where each ~yq (q = 1, . . . , Q) solves

min~yq f(~x, ~y1, . . . , ~yQ)
s.t.

g(~x, ~y1, . . . , ~yQ) ≤ 0

(2.6)

The constraint region of the BLMF is:

Ω = {(~x, ~y1, . . . , ~yQ) ∈X × Y1 × . . .× YQ : G(~x, ~y1, . . . , ~yQ) ≤ 0,
g(~x, ~yq) ≤ 0, q = 1, . . . , Q} (2.7)

The projection of Ω onto the leader’s decision space is:

Ω(X) = {~x ∈ X :∃~yq ∈ Yq : G(~x, ~y1, . . . , ~yQ) ≤ 0,
g(~x, ~yq) ≤ 0, q = 1, . . . , Q} (2.8)

The feasible set for follower q is affected by a given leader decision vector ~x so
that:

Ωq(~x) = {~yq ∈ Yq : (~x, ~y1, . . . , ~yQ) ∈ Ω} (2.9)

and allowable choices for each follower are elements of Ω.
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2. Bilevel Optimisation 2.2 Multiple-Follower Bilevel Problems

Table 2.1: Classes of Bilevel Multiple-Follower Problems Identified in [LSZ06]

Kind of Situations
relationship Decision variables Objectives Constraints (Si)

Uncooperative Individual Individual Individual S1

Cooperative Sharing Sharing Sharing S2
Individual S3

Individual Sharing S4
Individual S5

Partial Partial individual Sharing Sharing S6
cooperative & partial sharing Individual S7

Individual Sharing S8
Individual S9

Each follower’s rational reaction set is given as:

Ψq(~x) = {~yq ∈ Yq : ~yq ∈ argminfq(~x, ~yq) | ~yq ∈ Ωq(~x)} (2.10)

Finally, the inducible region (IR) is:

IR = {(~x, ~y1, . . . , ~yq) : (~x, ~y1, . . . , ~yq) ∈ Ω, ~yq ∈ Ψq(~x), q = 1, . . . , Q} (2.11)

Depending on how much the problem’s decision variables, objectives and con-
straints are shared among the followers, the multiple-follower bilevel problem
may be either cooperative, partially cooperative or uncooperative. Based on the
type of interaction among the followers, nine classes of linear bilevel multiple-
follower problems have been identified in [LSZ06], and are listed in Table 2.1 and
given below.

S1: Uncooperative Followers with Individual Variables, Objectives and Con-
straints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, F : X × Y1 × . . .×
YQ → R, fq : X × Yq → R, and q = 1, 2, . . . Q, S1 is defined as:

minx∈X F (x, y1, . . . , yq) = cx+ ∑Q
q=1 dqyq

s.t.: Ax+ ∑Q
q=1 Bqyq ≤ b

An Analytics-Based Decomposition Approach
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2. Bilevel Optimisation 2.2 Multiple-Follower Bilevel Problems

where each yq solves the lower level problem:

minyq fq(x, yq) = cqx+ eqyq

s.t.: Aqx+ Cqyq ≤ bq
(2.12)

where c ∈ Rn, cq ∈ Rn, dq ∈ Rmq , eq ∈ Rmq , b ∈ Rp, bq ∈ Rlq , A ∈ Rp×n,
Bq ∈ Rp×mq , Aq ∈ Rlq×n, Cq ∈ Rlq×mq , q = 1, 2, . . . Q. The superscript
t means transposition. With this class of problems, none of the followers
share decision variables, objectives or constraints. They are completely
insulated from each other.

S2: Cooperative Followers with Shared Variables, Objectives and Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, F : X × Y1 × . . .×
YQ → R, f : X × Yq → R, and q = 1, 2, . . . Q, S2 is defined as:

minx∈X F (x, y1, . . . , yq) = cx+ ∑Q
q=1 dqyq

s.t.: Ax+ ∑Q
q=1 Bqyq ≤ b

where each yq solves the lower level problem:

miny1,...,yq f(x, y1, . . . , yq) = c′x+ ∑Q
q=1 eqyq

s.t.: A′x+ ∑Q
q=1 Cqyq ≤ b′

(2.13)

where c ∈ Rn, c′ ∈ Rn, dq ∈ Rmq , eq ∈ Rmq , b ∈ Rp, b′ ∈ Rl, A ∈ Rp×n,
Bq ∈ Rp×mq , A′ ∈ Rl×n, Cq ∈ Rl×mq , q = 1, 2, . . . Q. Here, all decision
variables, objectives and constraints are shared between the followers.

S3: Cooperative Followers with Shared Variables and Objectives, and Individual
Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, F : X × Y1 × . . .×
YQ → R, f : X × Yq → R, and q = 1, 2, . . . Q, S3 is defined as:

minx∈X F (x, y1, . . . , yq) = cx+ ∑Q
q=1 dqyq

s.t.: Ax+ ∑Q
q=1 Bqyq ≤ b

where each yq solves the lower level problem:

miny1,...,yq f(x, y1, . . . , yq) = c′x+ ∑Q
q=1 eqyq

s.t.: Aqx+ ∑Q
j=1 Cqjyj ≤ bq

(2.14)
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2. Bilevel Optimisation 2.2 Multiple-Follower Bilevel Problems

where c ∈ Rn, c′ ∈ Rn, dq ∈ Rmq , eq ∈ Rmq , b ∈ Rp, bq ∈ Rlq , A ∈ Rp×n,
Bq ∈ Rp×mq , Aq ∈ Rlq×n, Cqj ∈ Rlq×mq , q = 1, 2, . . . Q. Only the decision
variables and objectives are shared among the followers in this class. The
constraints are individual to the followers.

S4: Cooperative Followers with Shared Variables, Individual Objectives, and
Shared Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, F : X × Y1 × . . .×
YQ → R, fq : X × Yq → R, and q = 1, 2, . . . Q, S4 is defined as:

minx∈X F (x, y1, . . . , yq) = cx+ ∑Q
q=1 dqyq

s.t.: Ax+ ∑Q
q=1 Bqyq ≤ b

where each yq solves the lower level problem:

miny1,...,yq fq(x, y1, . . . , yq) = cqx+ ∑Q
j=1 eqjyj

s.t.: A′x+ ∑Q
j=1 Cjyj ≤ b′

(2.15)

where c ∈ Rn, c′ ∈ Rn, dq ∈ Rmq , eqj ∈ Rmj , b ∈ Rp, b′ ∈ Rl, A ∈
Rp×n, Bq ∈ Rp×mq , A′ ∈ Rl×n, Cq ∈ Rl×mq , j, q = 1, 2, . . . Q. With this
class of problems, while the variables and constraints are shared among the
followers, the objectives are not.

S5: Cooperative Followers with Shared Variables, and Individual Objectives and
Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, F : X × Y1 × . . .×
YQ → R, fq : X × Yq → R, and q = 1, 2, . . . Q, S5 is defined as:

minx∈X F (x, y1, . . . , yq) = cx+ ∑Q
q=1 dqyq

s.t.: Ax+ ∑Q
q=1 Bqyq ≤ b

where each yq solves the lower level problem:

miny1,...,yq fq(x, y1, . . . , yq) = cqx+ ∑Q
j=1 eqjyj

s.t.: Aqx+ ∑Q
j=1 Cqjyj ≤ bq

(2.16)

where c ∈ Rn, cq ∈ Rn, dq ∈ Rmq , eqj ∈ Rmj , b ∈ Rp, bq ∈ Rlq , A ∈ Rp×n,
Bq ∈ Rp×mq , Aq ∈ Rlq×n, Cqj ∈ Rlq×mq , j, q = 1, 2, . . . Q. In this case,
the followers only have common decision variables. The objectives and
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constraints are unique to each follower.

S6: Partially Cooperative Followers with Partially Shared Variables, and Shared
Objectives and Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, z ∈ Z ⊂ Rm,
F : X × Y1 × . . . × YQ × Z → R, f : X × Y1 × . . . × YQ × Z → R, and
q = 1, 2, . . . Q, S6 is defined as:

minx∈X F (x, y1, . . . , yq, z) = cx+ ∑Q
q=1 dqyq + dz

s.t.: Ax+ ∑Q
q=1 Bqyq +Bz ≤ b

where each yq and z, for each value of x, solves the lower level problem:

minyq ,z f(x, y1, . . . , yq, z) = c′x+ ∑Q
j=1 eqyj + ez

s.t.: A′x+ ∑Q
q=1 Cqyq + C ′z ≤ b′

(2.17)

where c ∈ Rn, c′ ∈ Rn, dq ∈ Rmq , d ∈ Rm, eq ∈ Rmj , e ∈ Rm, b ∈ Rp, b′ ∈ Rl,
A ∈ Rp×n, B ∈ Rp×m, Bq ∈ Rp×mq , Aq ∈ Rl×n, Cq ∈ Rlq×mq , C ′ ∈ Rl×m,
j, q = 1, 2, . . . Q. Here the followers share objectives and constraints, but
the decision variables are only partially shared.

S7: Partially Cooperative Followers with Partially Shared Variables, Shared Ob-
jectives and Individual Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, z ∈ Z ⊂ Rm,
F : X × Y1 × . . . × YQ × Z → R, f : X × Y1 × . . . × YQ × Z → R, and
q = 1, 2, . . . Q, S7 is defined as:

minx∈X F (x, y1, . . . , yq, z) = cx+ ∑Q
q=1 dqyq + dz

s.t.: Ax+ ∑Q
q=1 Bqyq +Bz ≤ b

where each yq and z, for each value of x, solves the lower level problem:

minyq ,z f(x, y1, . . . , yq, z) = c′x+ ∑Q
q=1 eqyy + ez

s.t.: Aix+ ∑Q
j=1 Cqjyj + Cqz ≤ bq

(2.18)

where c ∈ Rn, c′ ∈ Rn, dq ∈ Rmq , d ∈ Rm, eq ∈ Rmj , e ∈ Rm, b ∈ Rp,
bq ∈ Rlq , A ∈ Rp×n, B ∈ Rp×m, Bq ∈ Rp×mq , Aq ∈ Rlq×n, Cqj ∈ Rlq×mj ,
Cq ∈ Rlq×m, j, q = 1, 2, . . . Q. The variables here are partially shared,
while the objectives are completely shared among the followers. Only the
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constraints are individual.

S8: Partially Cooperative Followers with Partially Shared Variables, Individual
Objectives and Shared Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, z ∈ Z ⊂ Rm,
F : X × Y1 × . . . × YQ × Z → R, fq : X × Y1 × . . . × YQ × Z → R, and
q = 1, 2, . . . Q, S8 is defined as:

minx∈X F (x, y1, . . . , yq, z) = cx+ ∑Q
q=1 dqyq + dz

s.t.: Ax+ ∑Q
q=1 Bqyq +Bz ≤ b

where each yq and z, for each value of x, solves the lower level problem:

minyq ,z fq(x, y1, . . . , yq, z) = cqx+ ∑Q
j=1 eqjyj + eqz

s.t.: A′x+ ∑Q
q=1 Cqyq ≤ b′

(2.19)

where c ∈ Rn, c′ ∈ Rn, dq ∈ Rmq , d ∈ Rm, eqj ∈ Rmj , e ∈ Rm, b ∈ Rp,
b′ ∈ Rl, A ∈ Rp×n, B ∈ Rp×m, Bq ∈ Rp×mq , A′ ∈ Rl×n, Cq ∈ Rl×mq ,
C ′ ∈ Rl×m, j, q = 1, 2, . . . Q. Here, only the constraints are fully shared
among the followers. The variables are partially shared while the objective
functions are individual.

S9: Partially Cooperative Followers with Partially Shared Variables, and Indi-
vidual Objectives and Constraints

For x ∈ X ⊂ Rn, yq ∈ Yq ⊂ Rmq , Y = (Y1, Y2, . . . , YQ)t, z ∈ Z ⊂ Rm,
F : X × Y1 × . . . × YQ × Z → R, fq : X × Y1 × . . . × YQ × Z → R, and
q = 1, 2, . . . Q, S9 is defined as:

minx∈X F (x, y1, . . . , yq, z) = cx+ ∑Q
q=1 dqyq + dz

s.t.: Ax+ ∑Q
q=1 Bqyq +Bz ≤ b

where each yq and z, for each value of x, solves the lower level problem:

minyq ,z fq(x, y1, . . . , yq, z) = cqx+ ∑Q
j=1 eqjyj + eqz

s.t.: Aqx+ ∑Q
j=1 Cqjyj ≤ bq

(2.20)

where c ∈ Rn, cq ∈ Rn, dq ∈ Rmq , d ∈ Rm, eqj ∈ Rmj , e ∈ Rm, b ∈ Rp,
bq ∈ Rlq , A ∈ Rp×n, B ∈ Rp×m, Bq ∈ Rp×mq , Aq ∈ Rlq×n, Cqj ∈ Rlq×mj ,
C ′ ∈ Rl×m, j, q = 1, 2, . . . Q. Finally, this class has variables which are
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partially shared, but objectives and constraints which are individual.

Problems with independent followers (situation S1) do not share objectives or
constraints so that they can be written as:

min~x,~y1...~yQ
F (~x, ~y1, . . . , ~yQ)

s.t.
G(~x, ~y1, . . . , ~yQ) ≤ 0

where each ~yq (q = 1, . . . , Q) solves

min~yq f(~x, ~yq)
s.t.

g(~x, ~yq) ≤ 0

(2.21)

2.3 Solution Approaches for Bilevel Problems

The following sections provide an overview of the current solution approaches for
bilevel problems.

2.3.1 Decomposition Approaches

As bilevel problems are known to be non-convex, non-differentiable and strongly
NP-hard even in the simplest cases [CMS07], most approaches for solving them
involve some form of decomposition of the problem into more tractable forms. A
classic decomposition approach is to reduce the problems to a single-level problem
which can then be solved using existing solution algorithms.

The most common method for single-level reduction is to replace the lower-level
problem with its Karush-Kuhn-Tucker (KKT) [Ber99] conditions [Bar84, DZ12].
[VFIP96] present a decomposition approach for solving linear and quadratic bi-
level problems. They transform the problem into a single-level one by replacing
the inner problem with its KKT conditions. The problem is then decomposed
into a series of primal and relaxed-dual sub-problems, whose solutions are used
as lower and upper bounds. This procedure is run iteratively until a global op-
timum is found. This method is similar to that in [ZA14], where the problem is
first reformulated into a single-level problem using KKT conditions and strong
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duality. Then, a similar iterative process is carried out until an optimal solution
is found.

More complex approaches combine the use of the KKT conditions with other
techniques. For example in [KHJ13] the stochastic bilevel problem is reduced
to a single level using KKT conditions, and is then solved using Benders’ de-
composition. Related approaches include [SI09], where an algorithm for solving
mixed-integer bilevel linear problems based on Benders’ decomposition is presen-
ted. Similarly, [RBH14] uses logic-based Benders’ decomposition to solve a bilevel
vehicle routing problem, which is combined with a variable neighbourhood search
heuristic to speed up search time and improve scalability. To address the pro-
blem of weak Benders’ cuts, [NHG11] uses a Langrangian relaxation method to
generate stronger cuts for a simultaneous scheduling and routing problem for
automated guided vehicles.

In [DF16] lower-level problems are replaced with their Fritz-John conditions, and
an algorithm is presented for solving problems with fully convex lower-levels. This
method is applied in [DF14] to solve a bilevel road pricing problem. [NMMea04]
show a relationship between one bilevel decomposition algorithm and a direct
interior-point method based on Newton’s method. A second contribution is that
they bridge the gap between the convergence theories of bilevel decomposition
algorithms and direct interior point methods. [IG98] present a decomposition
algorithm for solving a network planning problem. The upper level is solved to
get an upper bound, which is then used to get solution for the lower level problem
which provides a lower bound. The process occurs iteratively, adding integer cuts
along the way, until a small enough gap between the bounds is achieved.

[SNI+12] solve a railway crew rostering problem. Their decomposition is in the
form of cuts to reduce the feasible region of the master problem. Local search
is also incorporated to improve the upper bound generated by solving the sub-
problems. In [CM16] the decomposition algorithm proposed consists of solving
the single-level relaxation (SLR) of the Bilevel Facility Location (BFL) problem,
solving the slave problem (SVP) which is the BFL for a given fixed set of open
facilities, generating cuts based on the structure of the problem, and repeating
until a stopping criterion is reached.

Decomposition approaches which also incorporate evolutionary approaches exist.
In [CBS15] a Co-Evolutionary Decomposition based Bi-level Algorithm (CODBA)
is presented, in which an algorithm is first used to generate a set of points from
a discrete solution space. This allows them to generate a population of solutions
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for the lower-level problem. Several sub-populations of the lower-level problem
are generated, and the best individuals in the sub-populations are allowed to
co-evolve. CODBA II [CBSA15] is an improvement in which parallelism and co-
evolution are implemented at both levels of the bilevel problem. Evolutionary
approaches also exist where iterative approximation of the reaction set is used to
approximate the lower-level problem [SMD13, SMD17b, SMD14]. Additionally,
decomposition approaches involving evolutionary approaches are given in [LW10,
LZC+16]. A survey of metaheuristic approaches for bilevel optimisation is given
in [Tal13].

2.3.2 Multiple-Follower Problems

As with single-follower bilevel problems, both classical and evolutionary appro-
aches have been used for solving BLMF problems. [LSZ06] presents a general
framework and solutions for these problems. Nine classes of multiple-follower
problems are presented (none of which include the problem class proposed in
Section 3.1) with corresponding models presented for each class. Also, an ex-
tended Kuhn-Tucker approach is presented for solving the uncooperative model
to optimality. A practical example in the form of a road network problem is
given. Similarly, [LSZR05] uses a Kuhn-Tucker (KT) approach for BLMF pro-
blems in which the followers may or may not have shared variables. [SLZZ05]
and [LSZD07] use extended KT approaches. In [LSZR07] a branch-and-bound
algorithm is used to solve the problems with referential-uncooperative followers.
[CG07] reformulate a problem with multiple followers into one with one leader
and one follower by replacing the lower levels with an equivalent objective and
constraint region. This method cannot be applied to the BPMSIF, as neither its
objectives nor its inducible region are equivalent to those of the problem class
addressed in [CG07].

There is also literature on applying the Kth-best approach to problems with
multiple followers. [SZL05] presents the theoretical properties of BLMFs andKth-
best approach for solving such problems, while [SZL+07] uses the approach for
problems with shared variables among followers. Similarly, [ZSL08] presents an
extended Kth-best approach for solving referential-uncooperative BLMF decision
problems, and provides an application in the form of a logistics planning problem.

Fuzzy approaches to solving BLMFs include [WWW09] which uses a fuzzy inte-
ractive algorithm to solve problems with partially shared variables among the
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followers. [ZL10] combines fuzzy models and a Kth-best algorithm to solve
cooperative multiple-follower problems. Fuzzy models combined with a branch-
and-bound algorithm have also been used in [ZLG08b, ZLG08a, ZLD07] to solve
problems with shared decision variables among the followers.

Literature on evolutionary approaches to solving BLMFs include [AB15], where
a differential evolution method is used to solve cases in which there is infor-
mation shared between the followers. [Liu98] presents a genetic algorithm for
solving non-linear multilevel problems with multiple followers. Also, [ISR16] ex-
tend their bilevel memetic algorithm to solve problems with multiple followers
using a combination of global and local search. The global search algorithm
is an ε−constrained differential evolution algorithm, while the local search al-
gorithm is an interior point algorithm incorporating both Sequential Quadratic
Programming (SQP) and Trust Region (TR) methods. [KHRW16] combine fuzzy
programming with an evolutionary algorithm, as well as neural networks to solve
a multi-follower problem with non-cooperative followers. A good review of evo-
lutionary approaches for solving BLMFs is also given in [SMD17a].
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Chapter 3

A New Class of Bilevel Problems
and An Analytics-Based
Decomposition Approach

3.1 A Class of Bilevel Problems

The interest of this thesis is in problems with one leader and multiple followers
q = 1 . . . Q, where Q is large (i.e. hundreds or even thousands). As in evolutio-
nary approaches, the decomposition approach used in this thesis is not restricted
by conditions such as differentiability or convexity, but a different restriction is
imposed. Several researchers (e.g. [LSZ06, ZL10]) have worked on bilevel optimi-
sation with multiple independent followers, where independence means that the
followers do not share variables other than leader variables (independence and
other properties allow the use of a reduction technique).

This condition is now strengthened to one called strong independence and is one
of the contributions of this thesis:

Definition 1 A Bilevel Problem with Multiple Strongly-Independent Followers
(BPMSIF) is one in which:

(i) the followers do not share each others’ follower or leader variables, so that
~x can be partitioned into ~xq (q = 1 . . . Q).

(ii) follower problems fq(~xq, ~yq) are allowed to be integer or non-linear.

(iii) variables from different follower problems are not tightly mutually constrai-
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ned (though weak constraints such as a weighted sum of the variables are
allowed).

All leader and follower variables may however appear in the leader’s objective
function. Thus the BPMSIF has the form:

min~x1...~xQ,~y1...~yQ
F (~x1, . . . , ~xQ, ~y1, . . . , ~yQ)

s.t.
G(~x1, . . . , ~xQ, ~y1, . . . , ~yQ) ≤ 0

where each ~yq (q = 1, . . . , Q) solves

min~yq fq(~xq, ~yq)
s.t.

gq(~xq, ~yq) ≤ 0
~xq ∈ Xq, ~yq ∈ Yq

(3.1)

where F, fq may be any (possibly non-linear) objective functions, G, gq may be
any set of (possibly non-linear) constraints, the G constraints are weak, and
Xq, Yq may be vectors of any variable domains (real, integer, binary, or richer
Constraint Programming domains such as set variables). The BPMSIF is shown
to be different from the 9 classes of multiple-follower problems in section 3.2.

(3.1) satisfies the features of a BPMSIF in that:

• Each follower problem here can be seen to be a function of only its variables
~yq and a portion of the the leader’s variables ~xq.

• G(~x1, . . . , ~xQ, ~y1, . . . , ~yQ) ≤ 0 is weak and may, for example, take the form
of a simple weighted sum such as ∑Q

q Bqyq ≤ b, where the Bq and b are
constants.

This problem is different from multiple-leader problems such as those in [RBA+16,
LHHZ16], and [DX09] in that those problems have multiple leader objectives and
solutions, whereas this problem has only a single leader with its single objective
function.
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The constraint region of the BPMSIF is:

Ω = {(~x1, . . . , ~xQ,~y1, . . . , ~yQ) ∈ X1 . . .×XQ × Y1 × . . .× YQ :
G(~x1, . . . , ~xQ, ~y1, . . . , ~yQ) ≤ 0, g(~xq, ~yq) ≤ 0, q = 1, . . . , Q}

(3.2)

The projection of Ω onto the leader’s decision space is:

Ω(X) = {~xq ∈ Xq :∃~yq ∈ Yq : G(~x1, . . . , ~xQ, ~y1, . . . , ~yQ) ≤ 0,
g(~xq, ~yq) ≤ 0, q = 1, . . . , Q} (3.3)

The feasible set for follower q is affected by a corresponding part ~xq of a given
leader decision vector so that:

Ωq(~xq) = {~yq : (~xq, ~yq) ∈ Ω} (3.4)

Each follower’s rational reaction set is given as:

Ψq(~xq) = {~yq ∈ Yq : ~yq ∈ argminfq(~xq, ~yq) | ~yq ∈ Ωq(~xq)} (3.5)

Finally, the inducible region (IR) is:

IR = {(~x1, . . . , ~xQ, ~y1, . . . , ~yq) :(~x1, . . . , ~xQ, ~y1, . . . , ~yq)
∈ Ω, ~yq ∈ Ψq(~x), q = 1, . . . , Q} (3.6)

As in standard bilevel programming min and argmin have been used without
loss of generality: either problem or both could involve maximisation. In fact
for all intents and purposes, the follower problems need not be linear, or even
optimisation problems at all: follower q can be any algorithm that computes ~yq
from ~xq.
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3.2 Motivation for an Analytics-Based Decom-
position Approach

Consider the following example of a BPMSIF withQ non-linear follower problems.

min
x1,...,xQ,y1,...,yQ

Q∑
q=1

ctqxq +
Q∑
q=1

dtqyq (3.7)

s.t.:
Q∑
q=1

Atqxq +
Q∑
q=1

Bt
qyq ≤ b0, (3.8)

where yq, q = 1, . . . , Q solves:

min
yq

vtqxq × wtqyq (3.9)

s.t.: Eqxq +Dqyq ≤ bq, (3.10)

where xq ∈ Rnq , q = 1, . . . , Q are the leader’s variables partitioned among the
q followers and yq ∈ Rnq , q = 1, . . . , Q are the variables controlled by the qth
follower. cq, dq, vq, wq ∈ Rnq , b0 ∈ Rm0 , bq ∈ Rmq , Aq, Bq ∈ Rm0×nq , Eq, Dq ∈
Rmq×nq . The superscript t means transposition.

The constraint set of the BPMSIF is:

S = {(x1, . . . , xQ, y1, . . . , yQ) :
Q∑
q=1

Atqxq +
Q∑
q=1

Bt
qyq ≤ b0,

Eqxq +Dqyq ≤ bq, q = 1, . . . , Q} (3.11)

where S is assumed to be non-empty and compact.

The feasible set for the qth follower given corresponding xq is:

Sq(xq) = {yq : Dqyq ≤ bq − Eqxq} (3.12)

The projection of S onto the leader’s decision space is:

S(X) = {(x1, . . . , xQ) :∃(y1, . . . , yQ) :
Q∑
q

Atqxq +
Q∑
q

Bt
qyq ≤ b0,

Eqxq +Dqyq ≤ bq, q = 1, . . . , Q} (3.13)
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The rational reaction set for the qth follower for xq ∈ S(X) is:

Pq(xq) = argminyq
{vtqxq × wtqyq : yq ∈ Sq(xq)} (3.14)

Finally, the inducible region or feasible region of the leader is:

IRBPMSIF = {(x1, . . . , xQ, y1, . . . , yQ) : (x1, . . . , xQ, y1, . . . , yQ) ∈ S,
yq ∈ Pq(xq), q = 1, . . . , Q} (3.15)

Using the above definitions, the BPMSIF with linear follower problems can now
be written as:

min
x1,...,xQ,y1,...,yQ

Q∑
q=1

ctqxq +
Q∑
q=1

dtqyq

s.t.: (3.16)
(x1, . . . , xQ, y1, . . . , yQ) ∈ IRBPMSIF

Comparing equations (1a) and (2) in [CG07] with (3.7) and (3.16) respectively,
it can be seen that the BPMSIF is different from the problem in [CG07] and
cannot therefore be solved using their method. Also, comparing (3.7) to (3.16)
with situations S1 to S9 in [LSZ06] shows that the problems in addressed in this
thesis belong to a different class. Additionally, the methods proposed in [CG07]
and [LSZ06] function on the condition that the follower problems are linear. In
fact, most classical methods for handling bilevel problems require assumptions
of smoothness, linearity or convexity. An alternative approach not restricted by
conditions of linearity or convexity will therefore be a useful contribution to the
literature. The problems considered in this thesis are not restricted to being linear
or having linear follower problems. The follower problems may be non-linear, or
may be any function that computes a ~yq given an ~xq. These non-standard cases
preclude the use of traditional optimisation approaches such as replacing the
follower problems with their KKT conditions, or using Benders’ decomposition.

A number of evolutionary and meta-heuristic techniques have been developed
which do not require assumptions of linearity or convexity, but most of these are
computationally intensive nested strategies. Consequently, while these strategies
may be efficient at solving smaller problems, they do not lend themselves to the
efficient solution of large-scale problems.
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In addition to being able to handle non-linear objectives and constraints, the
decomposition approach proposed in this thesis is very suitable for solving large-
scale problems faster and more efficiently than evolutionary approaches (see
section 3.5.3 for examples).

3.3 A Decomposition Technique

The industrial problem modelled in Chapter 4, is a large-scale, mixed-integer,
non-linear bilevel optimisation problem with tens of thousands of followers. Such
problems cannot be solved using classical methods. Evolutionary methods can
be applied but much better results were found using the decomposition technique
described here.

Recall that the general form of the strongly-independent multiple-follower bilevel
problem is:

min~x1...~xQ,~y1...~yQ
F (~x1, . . . , ~xQ, ~y1, . . . , ~yQ)

s.t.
G(~x1, . . . , ~xQ, ~y1, . . . , ~yQ) ≤ 0

where each ~yq (q = 1, . . . , Q) solves

min~yq fq(~xq, ~yq)
s.t.

gq(~xq, ~yq) ≤ 0
~xq ∈ Xq, ~yq ∈ Yq

(3.17)

The first step in the decomposition is to generate a reasonably large number of
assignments for each set ~xq (see Section 3.4.2 for details). For simplicity it will be
assumed that the same number of assignments S is generated for each set, and the
assignments are denoted by ~Xsq (s = 1 . . . S, q = 1 . . . Q). Next, the associated
follower problems are solved to obtain assignments ~Ysq. An illustration of the
approach is shown in figure 3.1.

In scatter plot (a) the circle represents the hypersphere of possible assignments
of ~xq, with a small random number of them selected shown as dots. Plot (b)
shows the result of solving the associated follower problems to obtain a small set
of ~yq vectors. The space of the ~yq vectors is unknown and might have a very
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(c) (d)

(e) (f)

Figure 3.1: Illustration of the analytics-based approach for a single follower

different shape to that of the ~xq, as shown. As a consequence, a small random
set of ~xq might correspond to a very non-random small set of ~yq vectors, showing
the inadequacy of merely sampling a few leader vectors.

Instead a large number of ~xq is sampled, as shown in plot (c), with their corre-
sponding ~yq shown in plot (d): this represents the use of Monte Carlo simulation
to approximate the distribution of the ~yq.

A small number K of the ~yq is then selected via a k-medoids algorithm, or a self-
organising map, to approximately cover the estimated distribution, highlighted
in plot (f). Finally, a record of which ~xq corresponds to which ~yq is used to derive
the non-random set of ~xq highlighted in plot (e). This results in a smaller but
representative set of assignments ~Xkq and ~Ykq.

Figure 3.1 shows the decomposition process for a single follower. This process is
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applied to all followers, and the results are used to reduce the problem from a
multi-level one into a single level.

The original bilevel problem can now be transformed into a standard optimisation
problem:

min~x1...~xQ
F (~x1 . . . ~xQ, ~y1 . . . ~yQ)

s.t. ~xq = ~Xkq → ~yq = ~Ykq (q = 1 . . . Q, k = 1 . . . K)
~xq ∈ { ~Xkq | k = 1 . . . K} (q = 1 . . . Q)
~yq ∈ {~Ykq | k = 1 . . . K} (q = 1 . . . Q)
G(~x1 . . . ~xQ, ~y1 . . . ~yQ) ≤ 0

(3.18)

Constraint ~xq = ~Xkq → ~yq = ~Ykq says that if the variables in ~xq are assigned the
values in ~Xkq then the variables in ~yq must be assigned the values in ~Ykq. This
model can be implemented directly in many Constraint Programming systems,
and it can easily be linearised (assuming appropriate objective F ) for solution by
ILP by introducing binary variables xkqi, ykqi to denote that component i of ~xq is
assigned to component i of ~Xkq and component i of ~yq is assigned to component
i of ~Ykq, and posting constraints of the form

xkqi ≤ ykqi
∑
k

xkqi ≥ 1
∑
k

ykqi ≤ 1 (3.19)

The motivation behind this decomposition is that ILP (or other technologies) can
be used to find a global optimum from a vast number of possibilities: KQ possible
combinations of assignments to the ~xq, which in the application of Chapter 4 can
be of the order of 10450. Of course the result is almost certainly not an optimal
solution to the original problem, but if the Q×K assignments are chosen to cover
all possibilities reasonably well (which involves analytics methods) then it should
be near-optimal.

Note that relaxing strong independence (for example by using tight constraints
G) reduces the number of combinations covered: in the extreme case where all
followers use the same leader variables and have exactly one optimal solution
each, only S different assignments are obtained, and the approach reduces to the
trivial method of finding S random solutions then choosing the best.
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3.4 Analytics Approaches

The analytics approaches used in this thesis are laid out in this section.

3.4.1 Distribution Learning

Given a number of samples drawn from a distribution, the goal of distribution
learning is to find the distribution from which the samples have been drawn
with a high degree of certainty. Let Dn be a particular distribution class, and
let D ∈ Dn be a distribution which has a support S, i.e. S is the range over
which D is defined. To represent the probability distribution D over S, let GD

be a generator for D [KMR+94]. GD is called a generator because, given a
random input y, GD simulates sampling from the distribution D and outputs an
observation GD[y] ∈ S.

Given independent random samples from D, as well as confidence and approxi-
mation parameters δ and ε respectively, the goal of any learning algorithm is to
output an approximate distribution D′ with a probability δ in polynomial time.
The distance between this approximate distribution and the original distribution
is d(D,D′), and can be measured in several ways. These include the Kolmogorov
distance (from the Kolmogorov-Smirnoff test) [CLR67], the Total Variation dis-
tance [CA33], and the Kullback-Leibler divergence [KL51]. When d(D,D′) ≤ ε,
GD is called an ε-good generator.

For the multiple-follower bilevel problem, it is necessary to understand the rela-
tionship between the leader decision vectors ~xq and the corresponding follower
vectors ~yq. Once this is known, given a set of leader decision vectors, the optimal
follower decision vectors can be determined. This can be achieved by applying
the principles of distribution learning. The distributions of the the leader and
follower vectors are approximated by using Monte Carlo sampling, by generating
a large number of random ~xq and solving the follower problems to obtain cor-
responding ~yq. This process can be thought of as the generator GD. To avoid
bias, the ~xq are generated by uniform sampling from a vector space, as opposed
to simply randomising each component of ~xq.
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3.4.2 Generating Uniformly Distributed Random Vectors

To generate a random vector ~Y that is uniformly distributed over an irregular
n-dimensional region G, an acceptance-rejection method may be used [RK16].

For a regular region W , where W may be multidimensional in nature, a random
vector ~X, which is uniformly distributed in W , is first of all generated. If ~X ∈ G,
accept ~Y = X as the random vector uniformly distributed over G. Otherwise,
reject ~X, and generate a new random vector. In the case when G is an n-
dimensional unit ball, i.e.

G =
{
x :

∑
i

x2
i ≤ 1

}
(3.20)

a uniformly distributed random vector ~X = (X1, X2, . . . , Xn)T is generated, and
accepted if it falls inside the n-ball. The algorithm used for this is taken from
[KTB13] and is described below.

Algorithm 1 Random Vector Generation
1: Generate n random variables U1, . . . , Un as iid variables from U(0, 1).
2: Set X1 = 1− 2U1, . . . , Xn = 1− 2Un and R = ∑n

i=1 X
2
i

3: If R ≤ 1, accept ~X = (X1, . . . , Xn)T as the desired vector; otherwise go to
Step 1.

The efficiency of the acceptance-rejection method rapidly reduces as the number
of dimensions n increases, with an efficiency of 0.016 for n = 8 [RK16]. Conse-
quently, for dealing with problems with n > 8, a more efficient algorithm (the
Hypersphere Point Picking method [Mul59, Mar72]) is used. For instance in
Section 4.5, the problem solved has n = 11 and the efficiency of Algorithm 1 for
such n is only = 0.0009 . This has motivated the use of Algorithm 2 for problems
with n > 8.

Algorithm 2 Hypersphere Point Picking
1: Generate n random variables x1, . . . , xn as iid variables from N(0, 1).

2: Return 1√
x2

1+x2
2+...+x2

n


x1
x2
...
xn

 as the desired random vector.

By using Algorithm 1 or Algorithm 2 (depending on the size of n), a large number
of leader vectors ~Xsq can be generated, which can then be used to solve the re-
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spective follower problems to obtain a corresponding large set of follower decision
vectors ~Ysq. In order to then solve the bilevel problem, this large number of vec-
tors must be reduced to a smaller number. To do this, two well-known machine
learning techniques - k-medoids clustering and self-organising maps - are used.

3.4.3 k-Medoids Clustering

The k-medoids algorithm is a clustering algorithm used for partitioning a data
set X into K homogeneous groups or clusters, i.e. C = {C1, C2, ..., CK} [dAF12].
Unlike the k-means algorithm, partitioning is done aroundmedoids (or exemplars)
rather than centroids. A medoid mk is a data point in a cluster Ck which is most
similar to all other points in that cluster. This is vital, as a small set of ~yq that
are each generated from some known ~xq is required.

A k-medoids algorithm seeks to minimize the function

f =
K∑
k=1

∑
i∈Ck

d (xi,mk) (3.21)

where d (xi,mk) is a distance metric measuring the dissimilarity between data
entity xi and the medoid mk of the cluster [dAF12]. Commonly used distance
metrics are the Manhattan distance or Euclidean distance [MRS+15] and the
latter is used in this thesis. The most common algorithm for k-medoid clustering
is the Partitioning Around Medoids (PAM) algorithm [dAF12], presented at a
high level in Algorithm 3.

Nevertheless, PAM is not very efficient with very large datasets. In such cases,
the CLARA algorithm, which is a combination of PAM and random sampling, is
commonly used [KR09, WLH00]. The speed-up by CLARA over PAM is achieved
by analysing data subsets of fixed size, which has the effect of making both
computational and storage complexity linear, as opposed to quadratic [KR09,
Nag15]. The mean of the dissimilarities of the observations to their closest medoid
is:

MeanDistance(M,X) =
∑n
i=1 d (xi, rep (M,xi))

|X|
(3.22)

where d(xi, xj) is the dissimilarity between two data points xi and xj, rep(M,xi)
returns the closest medoid mk to xi from the set M , and |X| is the number of
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Algorithm 3 Partitioning Around Medoids (PAM)
1: Input: Input data X = {x1, x2, x3, . . . , xn}, number of desired clusters K
2: Output: A set of clusters C
3: Arbitrarily select k out of n data entities as initial medoids m1,m2, ...mk

4: Calculate the initial distance fik = d (xi,mk)
5: Repeat:
6: for each yi not a medoid do:
7: for each medoid mk do:
8: Calculate the distance fik = d (xi,mk)
9: If fik < current fik then:
10: swap yi for mk

11: end if
12: end for
13: until fik ≥ current fik
14: end for
15: for each xi ∈ X do:
16: Assign xi to Ck where d(xi,mk) is the smallest over all medoids;
17: end for
18: Return clusters C with final medoids m′1,m′2, ...m′k

items in X. The steps for CLARA are outlined in Algorithm 4 below.

Algorithm 4 Clustering LARge Applications (CLARA)
1: Input: Input data X = {x1, x2, x3, . . . , xn}, number of desired clusters K, t
2: Output: A set of clusters C
3: Repeat t times:
4: Randomly choose p sub-datasets of fixed size from the large dataset X.
5: Partition each sub-dataset into k clusters using PAM, getting a set
M = {m1,m2, ...,mk} of k medoids.

6: Associate each xi to its nearest medoid mk.
7: Calculate MeanDistance(M,X)
8: Return the set of medoids M ′ = {m′1,m′2, ...m′k} with the minimum
MeanDistance(M,X).

Once the large set of follower decision vectors ~Ysq has been reduced to a much
smaller representative set ~Ykq, the bilevel problem can subsequently be modelled
and solved as an ILP (see Section 3.5 for numerical examples).
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3.4.4 Self-Organising Maps

As an alternative to k-medoids clustering (which can be time consuming), a neural
network approach is also considered. Self-organising maps (SOMs) [Koh82], also
known as Kohonen Maps after their developer Teuvo Kohonen, are a type of
artificial neural network in which, given a set of input data vectors, individual
neurons in the map compete to align themselves with the vectors they are best
matched with. The operation of SOMs is based on the idea of Competitive
Learning, and is described briefly below.

Consider a dataset X in which the observations ~xi (i = 1 . . . |X|) are n-dimens-
ional vectors, i.e. ~xi ∈ Rn. Let these observations be known as the input vectors.
Also consider a neural network with neurons arranged in a 2D lattice (see Figure
3.2). This arrangement is known as a rectangular topology, but others exist (e.g.
hexagonal) and may be of any dimension (e.g. 1D, 3D, etc.). Let J be a set
comprising of all neurons in the map, with the total number of neurons J equal
to |J |. Each input vector is connected to every neuron in the network, and each
neuron has a weight vector ~wj associated with it. The dimensions of the weight
vector equals that of the input vectors, i.e. ~wj ∈ Rn, (j = 1 . . . J).

Figure 3.2: Example of a self-organising map topology [Bul04a]

Each neuron has a neighbourhood comprising of neurons within a particular ra-
dius, and this is illustrated in figure 3.3.

For example, in the left panel of figure 3.3, neuron 13 has a neighbourhood of
radius 1, and a neighbourhood N13(1) = {8, 12, 13, 14, 18}. On the right, neuron
13 has a neighbourhood radius of 2, with

N13(2) = {3, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 23}.
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Figure 3.3: Neighbourhoods in SOMs

SOMs operate in two phases - a training phase in which the map is built using
sample data, and a mapping phase in which new data is automatically classified
based on the map built in the previous phase. An algorithm for the training
phase is given below.

Algorithm 5 Self-Organising Map training procedure
1: procedure SOM Training
2: s← 1
3: smax ← maximum number of iterations
4: σ0 ← radius of the map
5: L0 ← initial learning rate
6: λ← time constant
7: Randomise ~wj, ∀j ∈ J
8: while s < smax do
9: for each ~xi ∈ X do
10: for each neuron j ∈ J do
11: Calculate the distances ||~xi − ~wj||2
12: Select BMU: the neuron for which
13: ||~xi − ~wc||2 = min

j
{||~xi − ~wj||2}

14: σ(s)← σ0e
−s/λ

15: L(s)← L0e
−s/λ

16: d2 ← ||~rj − ~rc||2
17: θ(s)← e−d

2/2σ(s)2

18: ~wj ← ~wj + θ(s)L(s)[~xi − ~wj]
19: end for
20: end for
21: s← s+ 1
22: end while
23: end procedure

To begin, the weights of all neurons are randomised. Then, for every input vector
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~xi, the squared Euclidean distance between that vector and all neurons in the
map is calculated. The best-matching neuron (BMU) is the neuron whose weight
vector is closest to the input vector. The subscript c in ~wc is the index of the
neuron for which the distance measure is minimised. Once the BMU has been
found, all the neurons in the neighbourhood of the BMU (as well as the BMU)
are updated using the update formula (line 18). This formula is a function of the
radius σ(s) of the neighbourhood as well as the learning rate L(s). σ(s) is an
exponential decay function so that as the number of iterations s increases, the
radius of the neighbourhood decreases, until the BMU is the only neuron affected.
L(s) also decays exponentially which ensures that the SOM converges.

θ(s) is the neighbourhood function and it ensures that neurons closer to the BMU
learn (or are modified) more than nodes farther away. d is the Euclidean distance
between the current neuron under consideration j and the BMU, where the vector
rj defines the position of the node j in the lattice, and the vector rc defines the
position of the BMU. In this way, the map gets trained over several iterations,
using only the competition between neurons, and without any external influence.
This lack of influence is the reason why neural networks of this type are called
“self-organising".

Once trained, the SOM can be used for the classification of new data points
(a new input vector is automatically classified by the “mapping”). Hence, the
number of neurons of the SOM determines the number of classes. In this thesis
however, the intention is not to use SOMs for classifying new data. Instead, the
map generated by the SOM trained over the large data set is used to select a
smaller but highly representative subset of the data. Note that the size of the
reduced set is equal to the number of neurons. This reduced dataset is then
used to solve the bilevel optimisation problem. Figures 3.4 3.5 and 3.6 give an
illustration of this approach.

Starting with a 2-D lattice of neurons, figure 3.4, the map is trained on the
underlying data. After several iterations, the map will have aligned itself with
the underlying distribution, as shown in figure 3.5. Once the map is aligned, the
data points closest to each neuron is selected, one data point for each neuron.
Figure 3.6 shows a zoomed in section of figure 3.5, with the selected data points
in red. This reduced dataset can then be used to solve the transformed multiple-
follower bilevel problem.

Following, four particularly useful properties of SOMs that make them ideal for
this application are analysed.

An Analytics-Based Decomposition Approach
to Large-Scale Bilevel Optimisation

35 Adejuyigbe Fajemisin



3. A New Class of Bilevel Problems
and An Analytics-Based
Decomposition Approach 3.4 Analytics Approaches

Figure 3.4: SOM lattice over data

Figure 3.5: Map aligned with data
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Figure 3.6: Selection of points closest to neurons

Property 1 Approximation of the Input Space: The feature map Φ gene-
rated during training, and defined by the set of weight vectors ~wj in the output (or
map) space, provides a good approximation to the input (or data) space [Bul04b].

This property means that given a set of input vectors x which have a probability
density function p(x), the weight vectors ~wj approximate to p(x) with minimal
residual error. To illustrate this, a brief look at Vector Quantization (VQ) theory
will be taken, since SOMs belong to the class of VQ algorithms [Bul04a, Koh90].
VQ aims to encode a large set of vectors into a smaller, representative set (called
a codebook) to achieve (historically) data compression. This is done by dividing
the dataset into groups having a number of data points and then selecting the
centroid of each group as the representative or code vector, resulting in a Voronoi
tessellation of the input space.

For a code vector ~ck, (k = 1, . . . , K), the VQ approximation or distortion error
D is given as

D =
∫
p(x)||x− ~ck||2dx (3.23)

If, as is the case in practical applications, there is some noise ν which has a
distribution π(ν) during the encoding procedure, then D has the form

Dν =
∫
p(x)

∫
π(ν)||x− ~ck||2dνdx (3.24)

For a finite number of code vectors, Dν may be rewritten as
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Dν =
∑
i

∫
Vi

∑
k

π(i, k)||x− ~ck||2p(x)dx (3.25)

where Vi is the Voronoi region of polygon i. Clearly, in order to produce an
encoding of the highest quality, VQ aims to minimize Dν , and this may be done
using iterative procedure such as stochastic gradient descent. For example, for a
code vector ~cj, the gradient is

∂
∑
k π(i, k)||x− ~ck||2

∂~cj
= 2π(i, k)||x− ~cj|| (3.26)

Thus it can be seen that the update formula (line 18) corresponds to equation
3.26, with probability density function π(i, k) analogous to the neighbourhood
function θ(s) and ||x− ~ck|| analogous to ||x− ~wj||.

Similarly, SOMs can be thought of as reducing the distortion error at each step
of the algorithm, thus producing a good approximation of to the input space.

Property 2 Topological Ordering: Φ preserves the topological order of the
data space in that the position of a neuron in the map corresponds to a particular
domain or attribute of the input patterns [Bul04a].

This occurs because at each iteration, the update formula causes the weight vector
~wc of the BMU to move closer to the input vector ~xi. Additionally, the update
of neurons in the neighbourhood of the BMU results in the entire output space
becoming suitably ordered.

Property 3 Density Matching: Variations in the statistics of the input dis-
tribution are reflected in the feature map Φ. Regions in the data space from which
the input vectors xi are drawn with high probability of occurrence are mapped onto
larger domains of the map space. These regions therefore have better resolution
than those in the input space from which the ~xi are drawn with low probability.

It has been shown for one-dimensional maps, that the point density of the code
vectors Q(x) is proportional to the probability density of the input vectors P (x)
[Bul04b, LO92].
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Q(x) ∝ P (x)2/3 (3.27)

The difference in resolution is due to the fact that the exponent is 2/3 and not
1, so that low input density regions end up being marginally over-represented.

Property 4 Feature Selection: Given data from an input space with a non-
linear distribution, the self-organising map is able to select a set of best features
for approximating the underlying distribution.

Given the fact that the SOM provides a good approximation to the input space
(Property 1), preserves the topological order (Property 2) and reflects the density
of the input data (Property 3), it follows that the feature map Φ is able to select
a set of features which best approximate the underlying distribution.

To use the SOM for clustering, i.e. reducing ~Ysq to ~Ykq, the number of neurons
in the lattice is first set to K. The SOM is then trained on the ~Ysq over several
iterations. Once the training phase is complete, the closest follower vector to
each neuron is selected, resulting in a set ~Ykq. Finally, the leader vectors ~Xkq

corresponding to the ~Ykq are selected, resulting in a clustered set.

3.5 Numerical Examples

In order to illustrate and evaluate the decomposition approach, some example pro-
blems are considered below. Monte Carlo simulation and clustering were done in
Java and R (using the CLARA package [MRS+17]) respectively. The CPLEX 12.6
solver was also used on a 3.0GHz Intel Xeon Processor with 8GB of RAM.

3.5.1 Benefits of Using Clustering

In order to illustrate the benefits of using clustering, consider the following simple
example with one leader and two followers 1. The variables x1,x2,y,z are real in
(0, 1). The problem is considered for the optimistic case in which the followers’
solutions lead to the best objective function value for the leader.

1The example is being used to show the benefits of clustering, but this problem could
actually be solved analytically by the leader: given any single value of x1, there is exactly one
value of x2 that would result in the optimal solution.
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min~x h(y, z) = |y − z|
s.t.

miny f(x1, y) = |y − x0.01
1 |

minz g(x2, z) = |z − (1− x2)0.01|
x1, x2, y, z ∈ (0, 1)

(3.28)

The leader chooses x1, x2 to minimise h(y, z), follower 1 chooses y to minimise
f(x1, y), and follower 2 chooses z to minimise g(x2, z). For most values of x1, the
first follower will choose a value of y close to 1, while the second will choose values
of z close to 0 for most values of x2. This is illustrated in figures 3.7 and 3.8.
1, 000 random ~x variables were generated, and both f(x1, y) and g(x2, z) were
evaluated using these ~x values. Figure 3.7 is a histogram for f(x1, y) showing
that for the given x1’s, most values of y are close to 1. The histogram in figure
3.8 similarly shows that most values of g(x2, z) are close to 0.

Figure 3.7: Histogram showing the distribution of the y’s

In order to minimise h(y, z) however, the leader must select a value for ~x that
gives similar y and z values. These values can be anywhere between 0 and 1, but
must be similar. This means that the leader must generate a large number of ~x
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Figure 3.8: Histogram showing the distribution of the z’s

values in order to find such cases with reasonable probability. This however results
in a large h-optimisation problem (especially in problems with many followers).
In order to be able to solve such a problem in a reasonable time frame, it is
therefore essential that the large samples be reduced to a smaller but diverse set
that includes values of y and z which are close to each other. This is achieved by
using clustering.

First, the variables U , V andW are introduced to reformulate the absolute values
as:
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min W

s.t.
−y + z ≤ W

y − z ≤ W

minU
s.t.
−y + x0.01

1 ≤ U

y − x0.01
1 ≤ U

min V
s.t.
−z + (1− x2)0.01 ≤ V

z − (1− x2)0.01 ≤ V

(3.29)

The decomposition technique can now be applied to this problem. S = 10, 000
random ~x vectors were generated, and f and g were solved using these vectors
to get a large set of possible solutions Ys and Zs (s = 1, . . . , S) for y and z

respectively. These solutions were then clustered using K = 100 to get a smaller
set of possible solutions. Problem (3.29) can then be reformulated as a single-level
linear programme:

min W

s.t.
−y + z ≤ W

y − z ≤ W

tk = 1→ y = Yk k = 1, . . . , K
tk = 1→ z = Zk k = 1, . . . , K∑
k tk = 1

tk ∈ {0, 1}

(3.30)

where the binary variable tk indicates which of the potentialK solutions is chosen.
Solving (3.30) gives an objective function value of 0.0456, with ~x = (0.746, 4.98×
10−5), y = 0.9971 and z = 0.9514. In order to show that simply increasing the
number of samples does not lead to an appreciable increase in solution quality,
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the problem was solved using an increasing number of samples S. For each value
of S, the problem was solved 10 times and the average solution recorded in order
to account for the variability in the randomly generated samples.
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Figure 3.9: Benefits of Clustering

Figure 3.9 shows that as the number of samples increase, the objective value
decreases, but not in an appreciable manner. Using increasingly larger samples
without clustering also leads to an increase in the size of the problem, along with
unreasonable solution times. For instance, attempting to solve the problem using
10, 000 samples did not produce a solution before the time cut-off of 3600 seconds.
In contrast, using clustering (red dashed line) gives the lowest objective function
value in a short amount of time (88.72 seconds).
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3.5.2 A Benchmark Problem

The second problem considered is Example 2 from [Bar88], and is a two-follower
problem:

max F (~x, ~y1, ~y2) = (200− y11 − y21)(y11 + y21)
+(160− y12 − y22)(y12 + y22)

s.t.
x1 + x2 + x3 + x4 ≤ 40
0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 15, 0 ≤ x4 ≤ 20

min f1(~y1) = (y11 − 4)2 + (y12 − 13)2

s.t.
0.4y11 + 0.7y12 ≤ x1

0.6y11 + 0.3y12 ≤ x2

0 ≤ y11, y12 ≤ 20

min f2(~y2) = (y21 − 35)2 + (y22 − 2)2

s.t.
0.4y21 + 0.7y22 ≤ x3

0.6y21 + 0.3y22 ≤ x4

0 ≤ y21, y22 ≤ 40

(3.31)

This problem fits the problem class proposed in section 3.1 as the followers are
strongly independent. The followers do not share each others’ follower or leader
variables, and the follower problem variables are not mutually constrained. The
leader vector ~x = (x1, x2, x3, x4) is partitioned among the followers with variables
(x1, x2) occurring in follower 1 and (x3, x4) in follower 2. The variables ~y1 =
(y11, y12) and ~y2 = (y21, y22) are also computed by followers 1 and 2 respectively.

To solve this problem using the analytics-based decomposition method, denote
(x1, x2) by a vector ~λ1 and (x3, x4) by a vector ~λ2. A large number S of assign-
ments for ~λ1 and ~λ2 which satisfy the bounds of the ~x’s are generated (Section
3.4.2), and denoted by ~Λs1 and ~Λs2 (s = 1 . . . S) respectively. For each ~λ1 in ~Λs1

the corresponding follower problem ~f1 is solved as an ILP, obtaining assignments
~Ys1; similarly for ~Ys2. Next, the ~Ys1 vectors are clustered using k-medoids to get
the most diverse set of assignments ~Yk1, (k = 1 . . . K). The ~Λk1 vectors that
correspond to the ~Yk1 are then selected. The same is done for ~Ys2 to obtain ~Yk2

along with its corresponding ~Λk2. Using this decomposition, problem (3.31) can
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now be rewritten as a standard optimisation problem:

max ~F (~x, ~y1 . . . ~y2) = (200− y11 − y21)(y11 + y21)
+(160− y12 − y22)(y12 + y22)

s.t.
λ11 + λ12 + λ21 + λ22 ≤ 40
uk = 1→ ~λ1 = ~Λk1 k = 1 . . . K
uk = 1→ ~y1 = ~Yk1 k = 1 . . . K∑K
k uk = 1

vk = 1→ ~λ2 = ~Λk2 k = 1 . . . K
vk = 1→ ~y2 = ~Yk2 k = 1 . . . K∑K
k vk = 1

(3.32)

where λ11 = x1, λ12 = x2, λ21 = x3 and λ22 = x4. This model can be linearised
using the big-M approach, however this ILP is solved faster when CPLEX’s indi-
cator constraints are used 2. The binary variables uk and vk ensure that only one
assignment each is selected from ~Λk1 and ~Yk1, and from ~Λk2 and ~Yk2 respectively.
The λ11 + λ12 + λ21 + λ22 ≤ 40 constraint ensures that an (x1, x2) and an (x3, x4)
that satisfy the original constraints on the ~x’s are selected.

Using S = 10, 000, figure 3.10 shows how the objective value varies with K. The
red line shows the optimal value of 6600. AsK increases, the value of the objective
trends upwards, with the highest value of 6594.05 obtained when K = 160 giving
~x = (8.13, 3.80, 11.23, 16.82), ~y1 = (0.74, 11.20) and ~y2 = (28.04, 0.00) (rounded
to 2 decimal places).

The clustering time when K = 160 is 234.53 seconds. This solution is only 0.09%
less than the optimal, but the strength of this approach is in its ability to handle
large-scale problems. This is demonstrated next.

3.5.3 A Large-Scale Problem

In this experiment, a problem with arbitrarily many followers is evaluated. The
problem is also evaluated for the optimistic case in which the followers’ solutions

2Indicator constraints are a way of expressing if-else relationships among variables [IBM17].
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Figure 3.10: Objective value as K increases

lead to the best objective function value for the leader.

max ∑Q
q ~aq~xq + ∑Q

q
~bq~yq

s.t. ~xq ∈ RN ∀q
xqn ≤ xmaxqn ∀q, n

q = 1 . . . Q



~yq ∈ argmin ~cq~xq + ~dq~yq

s.t.
N∑
n

yqn ≤
N∑
n

xqn

yqn ≥ eqnxqn n = 1 . . . N
yq ∈ Rn

yqn ≤ ymaxqn n = 1 . . . N

(3.33)

where ~x and ~y are the variables controlled by the leader and followers respectively,
and Q is the total number of followers. Both the ~x and ~y are vectors of real
numbers. The leader variables are partitioned among the followers such that
each follower contains one ~xq each, and each ~xq is of size n. Each component of
the vector xqi is constrained to be ≤ a given upper bound xmaxqi . ~a, ~b, ~c, ~d and ~e
are vectors of constants. (Where ∑

q ~aq~xq = ∑
q

∑
n aqnxqn)

3.5.3.1 Decomposition

For each ~xq, a number S of feasible solutions, i.e. ~Xsq are generated satisfying the
constraint xqn ≤ xmaxqn . The follower problems are then solved exactly using an
ILP solver to find corresponding ~Ysq. Then, k-medoids clustering is applied to the
~Ysq for each follower q ∈ Q to obtain a small but diverse set of assignments ~Ykq,
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(k = 1 . . . K). The ~Xkq that correspond to the selected ~Ykq are then also selected.
Using ~Xkq as the domain of ~xq, and ~Ykq as the domain of ~yq, the problem is
now formulated and solved as an ILP. The binary variable ukq is used to indicate
that components n of ~xq and ~yq are assigned to components n of ~Xkq and ~Ykq

respectively. The problem can now be written as:

max ∑Q
q

∑N
n aqnxqn + ∑Q

q

∑N
n bqnyqn

s.t. ukq = 1→ xqn = Xkqn k = 1 . . . K, q = 1 . . . Q, n = 1 . . . N
ukq = 1→ yqn = Ykqn k = 1 . . . K, q = 1 . . . Q, n = 1 . . . N∑K
k ukq = 1 q = 1 . . . Q

ukq ∈ {0, 1} k = 1 . . . K, q = 1 . . . Q
(3.34)

It can also be written in a more standard form using standard big-M notation,
where M is a sufficiently large constant:

max ∑Q
q

∑N
n aqnxqn + ∑Q

q

∑N
n bqnyqn

s.t. xqn −Xkqn ≤M(1− ukq) k = 1 . . . K, q = 1 . . . Q, n = 1 . . . N
Xkqn − xqn ≤M(1− ukq) k = 1 . . . K, q = 1 . . . Q, n = 1 . . . N
yqn − Ykqn ≤M(1− ukq) k = 1 . . . K, q = 1 . . . Q, n = 1 . . . N
Ykqn − yqn ≤M(1− ukq) k = 1 . . . K, q = 1 . . . Q, n = 1 . . . N∑K
k ukq = 1 q = 1 . . . Q

ukq ∈ {0, 1} k = 1 . . . K, q = 1 . . . Q
(3.35)

3.5.3.2 Evaluation

The values used for the problem are N = 6, xminqn = 0, xmaxqn = 10, ymaxqn = 10,
(∀q, n). aqn, bqn, cqn, and dqn are Gaussian random real variables in [0.0, 15.0),
[0.0, 20.0), [−10.0, 10.0) and [−12.0, 12.0) respectively. eqn is a uniform random
real variable in [0.0, 1.0). The number of followers Q was varied between 10–
1000, and the problem was solved using both the decomposition approach (using
S = 1000, K = 30 for each follower) and two genetic algorithms, and the re-
sults are shown in 3.16 to 3.19. The first genetic algorithm is the Nested Bi-
level Evolutionary Algorithm (N-BLEA) used in [SMFD14]. The second is the
Multiple-Follower Genetic Algorithm (MFGA) described in Algorithm 6, and was
custom-built for this problem.
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Algorithm 6 Genetic Algorithm for multiple follower bilevel problems
1: Generate initial population of size popSize of leader individuals xq ∀Q
2: for each follower q:
3: for each leader individual in population:
4: Solve follower problem to get a population of follower solutions
5: end for
6: end for
7: Calculate fitnessFunction for each member of the population
8: while g < maxGens:
9: Evolve Population:
10: Get elite leader individuals from population
11: Generate new leader individuals using selection, crossover, mutation
12: Add elite and newly generated individuals to create new population
13: for each follower q:
14: for each leader individual in new population:
15: Solve follower problem to get a population of follower solutions
16: end for
17: end for
18: Evaluate fitness of new population
19: g ← g + 1
20: end while
21: Return xq ∀Q with best fitness

N-BLEA Parameters In order to select the parameters to use, the problem
with 100 followers (Q = 100) was first solved while varying some algorithm para-
meters. The number of parents µ and number of offspring λ (µ = λ) were varied
from 3 to 8. For each of these values, the number of generations (maxGens) was
also varied from 50 to 200 in steps of 50. This operation was run 10 times for
each value of µ, λ and maxGens, and the average objective value was recorded.
It was seen that the settings where µ = λ = 8, produced the highest objective
function value on average (table 3.1, figure 3.11). The number of generations cor-
responding to this highest value was 150. Also, on average, using 150 generations
produced the highest objective value regardless of what µ and λ were (rightmost
column of table 3.1).

Tournament selection was used to select the parents, with a tournament size
of 5. The number of random individuals to add to the pool was r = 2, the
crossover probability was fixed at 0.9 and the mutation probability at 0.1. The
constraint handling method used by the algorithm is given in [Deb00]. For both
the upper and lower levels of the bilevel problem, the sum of the violations of
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Table 3.1: N-BLEA tuning.
µ = λ

maxGens 3 4 5 6 7 8 9 Average
50 4311.465 4203.471 4620.746 3437.061 3808.777 4189.745 3186.241 3965.358
100 4224.603 2351.168 3626.946 4918.847 4194.442 5625.257 4594.144 4219.343
150 4157.886 4792.996 4255.045 4322.606 6024.241 5688.582 3693.932 4705.041
200 4170.737 4372.070 4265.723 5936.813 3985.628 4823.669 4659.901 4602.077

Average 4216.173 3929.926 4192.115 4653.832 4503.272 5081.813 4033.554
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Figure 3.11: N-BLEA tuning for Q = 100

all the constraints for any point makes up a constraint violation. If a member
has no constraint violation, it is judged feasible and is preferred over infeasible
members. Population members with smaller constraint violations are preferred
by the algorithm over members with higher constraint violations.

N-BLEA uses a variance-based termination criteria, which was set to 0.000001.
Once the improvement in solution reaches this value, the algorithm terminates.

MFGA Parameters To generate a new offspring, uniform crossover, with a
crossover rate of 0.5 (50%) was used. For each gene, if the crossover rate is less
than 0.5, the offspring’s gene is taken from parent 1. Otherwise it is taken from
parent 2. For mutation, we go through genes and mutate a gene (by generating
a new vector) if a random generated value is less than the mutation rate. Since
vector generation is done using Algorithm 2 with the appropriate boundaries,
MFGA always produces feasible offspring.

In order to select the parameters to use, the problem with 100 followers (Q = 100)
was also first solved while varying some algorithm parameters. The population
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size (popSize) was varied from 30 to 90, while also varying the maximum number
of generations maxGens from 50 to 500.
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Figure 3.12: MFGA tuning for Q = 100 (Objective values)
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Figure 3.13: MFGA tuning for Q = 100 (Solution time (sec))

Figures 3.12 and 3.13 show the objective values and timing respectively for tuning
MFGA. It can be seen that the objective value tends to increase as the number of
generations and the population size increase. In terms of solution time, the larger
the population size, the more time was taken. The MFGA parameters selected
were therefore: maxGens = 500, popSize = 50. This population size was selected
because although there is not much of a difference between its objective value
and the best objective at popSize = 80, the difference in time taken is almost
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50% less. Other parameters are elitePercentage = 0.20, tournamentSize = 5,
mutationRate = 0.015 and fitnessFunction = ∑Q

q

∑N
n aqnxqn + ∑Q

q

∑N
n bqnyqn.

Selection of K for the Decomposition Approach In order to choose an
appropriate value of K, the 100-follower problem (Q = 100) was solved using
decompositions where the value of K varied from 10 to 80 in steps of 10. The
objective function value with K = 10 (θK=10) was taken as the base value, and
the percentage increase in solution quality as K increased was plotted in figure
3.14. For example, the percentage increase seen when using K = 40 instead of
K = 10 is:

θK=40 − θK=10

θK=10
× 100 = 19.49% (3.36)

and the percentage increase seen when using K = 80 instead of K = 10 is:

θK=80 − θK=10

θK=10
× 100 = 31.69% (3.37)

Using θK=10 as the base value is a heuristic lower bound, as such a small number
of clusters is not likely to adequately represent the data. It can be seen that incre-
asing the number of clusters (and thus medoids) initially results in an increase in
the quality of the solution. The best solution is seen when K = 30. At this point,
further increasing K gives solutions which are not as good, as the increase in the
number of clusters means that different medoids are selected. These medoids at
other values of K are not as representative of the dataset as those of K = 30,
and therefore do not provide the best inputs to the ILP. This pattern is also seen
for the 90 follower problem (Q = 90) in figure 3.15, as well as in figure 3.10 for
the benchmark problem.

Comparing all 3 approaches For both N-BLEA and MFGA, each problem
size was solved 10 times, and the average objective values and solution times were
recorded. It should be noted that the poor performance of N-BLEA is due to
the operation of its crossover operator which is additive in nature, and frequently
violates the bounds of the vectors. This crossover operator results in offspring
which are frequently infeasible, and are thus heavily penalised by the constraint
handling scheme. For this reason, MFGA was custom-made for this problem to
avoid the heavy penalties seen with N-BLEA.
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Figure 3.14: Selection of K for Q = 100
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Figure 3.15: Selection of K for Q = 90

For 10–100 followers, the solution found by the MFGA was better in 7 out of
10 of the cases, though the decomposition approach finds a close solution in a
fraction of the time (figures 3.16, 3.17). However, as the problems get larger, (Q
from 100–1000) the decomposition approach is much better in terms of both the
solution quality and the runtime (figures 3.18, 3.19), especially as Q gets larger.

This experiment demonstrates the usefulness of the analytics-based decomposi-
tion approach for large-scale problems. Reduction of the very large set of potential
solutions to a much smaller, but highly representative set using medoids allows
the ILP to choose the best solution from a vast number of possibilities.

An Analytics-Based Decomposition Approach
to Large-Scale Bilevel Optimisation

52 Adejuyigbe Fajemisin



3. A New Class of Bilevel Problems
and An Analytics-Based
Decomposition Approach 3.5 Numerical Examples

10 20 30 40 50 60 70 80 90 1000

0.6

1.2

1.8

2.4
·104

Number of followers (Q)

O
bj
ec
tiv

e
N-BLEA
MFGA

Decomposition

Figure 3.16: Comparing Approaches: Objectives for Q = 10 to 100
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Figure 3.17: Comparing Approaches: Timing for Q = 10 to 100
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Figure 3.18: Comparing Approaches: Objectives for Q = 100 to 1000
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Figure 3.19: Comparing Approaches: Timing for Q = 100 to 1000
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3.6 Conclusions

An analytics-based decomposition approach which uses random vector generation,
k-medoids clustering or self-organising maps to reduce large multiple-follower bi-
level problems to a single-level ILP has been proposed. A two-follower benchmark
problem was solved using this approach, and the solution obtained was only about
0.09% less than optimal. As the hypothesis of the approach is that large-scale
problems will benefit from this approach, a large problem with up to 1000 follo-
wers was also solved. The solutions obtained were compared to those obtained
using two different genetic algorithms, and it was seen that the decomposition
approach obtained better solutions, especially when the size of the problem incre-
ased. Regardless of problem size, the decomposition approach produced solutions
in a much shorter time. As the clustering times for the example problems were
reasonable, self-organising maps were not used here. They are however used in
Section 4.5 for a large-scale problem.

Although the problems featured in this chapter were artificial problems, this
approach can also be used on real-life problems such as in Chapter 4.
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Chapter 4

A Large-Scale Bilevel Cutting
Stock Problem

4.1 The Cutting Stock Problem

The Cutting Stock Problem (CSP) [GG61] is a well-known NP-hard optimisation
problem in Operations Research, and is of interest in many industries because
of the perennial problem of dividing large pieces of stock material into smaller
pieces with minimal waste. It is often modelled as an ILP:

min ∑n
i=1 cixi

s.t. ∑n
i=1 aijxi ≥ dj ∀j = 1, . . . ,m

xi ≥ 0, integer
(4.1)

where there are m different types of smaller pieces, and dj is the demand for
piece-type j. There are n cutting patterns and xi is a decision variable which
states how many times pattern i is used. The number of small pieces of type j
generated by pattern i is aij. The objective is to minimize the total cost, where
ci is the cost (usually the waste) associated with using pattern i.

Variants of the CSP have been studied. The above problem is one-dimensional but
two or three dimensions might be necessary [GG65]. The problem might be multi-
stage, involving further processing after cutting [FM13], or might be combined
with other problems, e.g. [HFS96]. Additional constraints might be imposed
because of user requirements. Widths might be continuous though restricted to
certain ranges of values. Please see [DIM16] for a recent literature review of the
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CSP.

4.2 A Multiple Stock Size Cutting Stock Pro-
blem

In the classic CSP, all stock items have the same known dimensions, which makes
it easier to compute the possible cutting patterns. In certain problems however,
stock items come in several different dimensions and these types of problems are
known as Multiple Stock Size Cutting Stock Problems (MSSCSP) [WHS07].

An example of such a problem is the forest harvesting problem, as the trees
differ in size from each other, sometimes significantly. In this problem, a forest is
subdivided into areas called “blocks”, with each block having a number of trees
to harvest. This partitioning is illustrated in figure 4.1.

Figure 4.1: Schematic view of a forest partitioned into blocks

There are Q blocks each with market value Vq (q = 1 . . . Q). Each block has R
trees, with tree r (r = 1 . . . R) in block q having dimensions ~σqr. Each tree can
be cut into L different log types, with each log type having a particular monetary
value.
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This problem was classified in [COP16] as ∗/V/D/R (see Dyckoff’s typology
[Dyc90]), where ∗ means any dimensionality, V means that the total amount of
items in stock (i.e. the total number of trees) is sufficient to accommodate all the
demanded products (hence, only some of the stock will be cut), D means that all
large pieces (stock items) are different (in terms of shape) and R indicates many
products of few different types are demanded. The feature V (any demand can be
fulfilled) requires that the stock items to be cut need to first be selected. Using
the more recent typology presented in [WHS07], the problem can be classified as
a variant of the MSSCSP in which there is a heterogeneous assortment of large
pieces.

In practice, a semi-autonomous harvesting machine (figure 4.2) cuts a tree into
logs in order to maximise its total value using an algorithm A, which is typi-
cally based on a Dynamic Programming (DP) algorithm. DP is an approach
that enables the solution of complex problems by dividing them into a collection
of simpler sub-problems (see [ASW+15, BD15] for example). The sub-problems
must be sequential and independent, and the problem of cutting a tree stem sa-
tisfies these properties since it is recursive (maximize by cutting the first product
and then maximizing the cutting of the remainder). Let L be the length of a
section of a tree stem measured from the base of the stem, and Lmax be the total
usable length of the stem. If yk is the length of a short log of type k cut at a
distance L−yk from the base of the stem, and (r(yk, L) is the associated product
value, this recursive relationship can be represented as

f(L) = maximumk,yk∈Y (L)(r(yk, L) + f(L− yk)) (4.2)

where f(0) = 0 and 0 ≤ L ≤ Lmax [EDW86].

The semi-autonomous nature of the harvesting machines is due to their con-
struction, as they are hard-coded to produce log types with the highest possible
monetary value wherever possible. Thus, we only have indirect control over the
cutting of trees via a set of L continuous variables called a weight vector ~w ∈ N+

L.
Each wl represents the weight (usually the price in e/m3) associated with product
type l.

Blocks are sold wholesale, i.e. either a block’s trees are completely cut or none
of its trees are cut. For each block q, a set of product types L, a vector of tree
dimensions ~σqr in the block, and a weight vector ~wq is passed to A. The result is a
product vector ~pq ∈ N+

L showing the total amount of each log type obtained from
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Figure 4.2: Semi-autonomous harvesting machine

the block whose trees are cut, denoted by ~pq = 〈a1, . . . , aL〉 where al represents
the volume in m3 of units of log type l, (l = 1 . . . L) obtained. Consequently, A
can be represented by the following mapping function for block q:

A(L, 〈~σq1, . . . , ~σqR〉, ~wq)→ ~pq (4.3)

Solving A with fixed ~wq assigns values to the ~pq variables, and the value obtained
from the piece is ~wq ·~pq. In some applications actual market prices are used as the
weights. For this problem however, the ~wq are manipulated to obtain the desired
product yields. This is the only control we have over how tree stems are cut due
to the hard-coding of the harvesting machines.

Given a demand vector ~D denoting the desired yield Dl for each product type
l ∈ L, the problem is to determine which blocks should be selected for harvesting,
as well as the weight vector to use for each such block, in order to meet the
demands while minimising the total value of the harvested blocks to conserve
natural resources. There are no restrictions on which subsets of blocks can be
chosen, and the trees in a block are either all cut, or none of them are.

There are several approaches that aim to achieve the desired yield Dl in the li-
terature. [Kiv04] and [Kiv06] use genetic algorithms to try to improve the fit
between the yields obtained by the harvester and the demand with varying levels
of success. [DS12] uses a price-weighted apportionment degree (AD) index to try
to improve the fit between output and demand. This approach still prioritises
logs with higher value and may not fulfil demand, leading to overproduction of
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unwanted logs and consequently waste. [MP04] uses flexible variations on the
AD to improve the fit between demand and supply, however their approach is
not guaranteed to be optimal. [MMB06] provides three mathematical models
for bucking to order using a small set of market prices, targeting certain cutting
patterns, and using the AD index respectively. [KUN05] compares four different
measures to determine the similarity between the demand and output log distri-
butions. None of the four are shown to be superior, even though they can be used
in the industry to some extent. [DRF15, DRF17] use the priority list approach
where higher value log types are prioritised. This approach also only considers
a few cutting patterns which are assumed to be sufficient, although this is not
always the case. [SOG89] adjusts the price iteratively, but using only a small set
of prices. [Duf80] also vary price but how they do this is not stated.

The analytics-based decomposition approach used in this thesis is a good fit for
this problem since a much larger number of prices can be evaluated, thus creating
a good approximation of the distribution relating the prices to the products (recall
figure 3.1). Also, separating the harvester operation (A) from the rest of the
linear program using bilevel formulation allows for the more efficient solution
of problems with a large number of blocks. Additionally, the use of analytics
approaches presents a new way of solving a real-world bilevel problem.

4.3 Bilevel Reformulation

The above problem can be naturally modelled as a multiple-follower bilevel opti-
misation problem. This reformulation of the forest harvesting problem as a bilevel
problem is novel, and is one of the contributions of this thesis to the literature.
Here, the leader’s objective is to select a set of blocks to harvest to fulfil demand,
while each follower q seeks to harvest its block to get the optimal product vector
~pq, given a price input ~wq.

Define binary variables hq = 1 if block q cuts its raw stock of trees, and product
vectors of integers ~pqr to describe the product yields from raw r in block q’s stock.
Vq is the monetary value of block q estimated by the forest providers. ~σqr are the
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dimensions of an uncut tree stem r in block q. The problem is thus:

minh1...hQ, ~w1... ~wQ

∑Q
q=1 Vqhq

s.t. ∑Q
q=1

∑R
r=1 hq~pqr ≥ ~D

where each ~pqr (q = 1, . . . , Q) solves:
~pqr ∈ argmax~pqr

A(L, ~σqr, ~wq) r = 1, . . . , R
s.t.
hq ∈ {0, 1} q = 1, . . . , Q
~pqr ∈ NL q = 1, . . . , Q, ∀r
~wq ∈ [0, 1]L q = 1, . . . , Q

(4.4)

This is a non-linear, mixed-integer, bilevel optimisation problem with multiple
followers which we call the Bilevel Cutting Stock Problem with Multiple stock si-
zes (BCSPM). It is also large: there might be hundreds of blocks and hundreds
of (sampled) trees per block, hence tens of thousands or more follower problems
(since A is evaluated for each r), as well as a large number of product types. It
cannot be solved by classical bilevel methods but it could be tackled by evoluti-
onary methods. Metaheuristic approaches (popularly used in industry) such as
[MMB04] and [DS90] have been tried, with very poor results obtained.

The model above does not have the strong independence property because all
the follower problems corresponding to a block share the same variables. It
can however be transformed so that it does, by grouping each block’s follower
problems into a single problem via new vectors of integer variables ~pq, which
model the total yield from each block:

minh1...hQ, ~w1... ~wQ

∑Q
q=1 Vqhq

s.t. ∑Q
q=1

∑R
r=1 hq~pqr ≥ ~D

where each ~pq (q = 1, . . . , Q) solves:
~pq ∈

∑R
r=1 argmax~pqr

A(L, ~σqr, ~wq)
s.t.
hq ∈ {0, 1} q = 1, . . . , Q
~pq ∈ NL q = 1, . . . , Q
~wq ∈ [0, 1]L q = 1, . . . , Q

(4.5)
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Now the followers are strongly independent: each uses a unique set of variables
~wq, ~pq and none of the follower variables are mutually constrained. The decom-
position method detailed in Section 3.3 can now be applied.

For each ~wq a number of feasible solutions ( ~Wsq) are generated. Each follower
problem is then solved for the ~Wsq using the cutting simulatorA, to get correspon-
ding ~Psq. Next, k-medoids clustering is applied for each follower q, resulting in
the selection of a diverse set of assignments ~Pkq, together with the corresponding
~Wkq. The problem can now be formulated as an ILP:

minh1...hQ, ~w1... ~wQ

∑Q
q=1 Vqhq

s.t. ∑Q
q=1

∑K
k=1 Pkqlxqk ≥ D1 l = 1, . . . , L∑K

k=1 xqk = hq q = 1, . . . , Q
hq ∈ {0, 1} q = 1, . . . , Q
xqk ∈ {0, 1} q = 1, . . . , Q, k = 1, . . . , K

(4.6)

where hq = 1 indicates that all block q’s trees are cut, and xqk = 1 indicates that
they are cut using weights with index k. If block q is not selected then hq = 0
which forces xqk = 0 for k = 1 . . . K.

4.4 Small-Scale Evaluation

To empirically study the performance of the decomposition approach, real data
from an industrial partner was used. The application is commercially sensitive
so the identity of this partner will be kept confidential. The total volume of the
raw material analysed was 1191.3m3 for 8 blocks (Q = 8) with each block’s trees
partitioned into a maximum of 4 different types of products.

20 instances of random demands were generated and solved. Monte Carlo si-
mulation and clustering (Algorithm 4) were done in Java and R (using the
CLARA package) [MRS+17] respectively on a 3.0GHz Intel Xeon Processor with
8GB of RAM. To solve the decomposed integer linear programming model, the
CPLEX 12.6 solver was used with a time cut-off of 1 hour.

To approximate the unknown multivariate distribution of the follower problems,
10, 000 random weight vectors ( ~Wsq, S = 10, 000) were generated for each block.
The same number of corresponding cutting patterns (~Psq) was obtained by ap-
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Table 4.1: Clustering times.
Time (sec)

Block k = 25 k = 50 k = 75 k = 100 k = 125 k = 150 k = 175 k = 200
0 5.13 14.47 31.40 56.80 107.00 158.85 229.90 310.47
1 4.94 15.68 35.66 59.88 95.85 156.30 234.19 313.49
2 4.99 14.62 27.59 56.59 94.38 154.96 235.22 313.99
3 5.06 17.59 36.63 62.06 102.29 167.75 266.71 356.86
4 5.17 16.04 33.82 60.64 99.78 164.89 240.40 331.72
5 5.43 16.83 33.04 63.48 95.85 171.37 255.47 351.97
6 4.99 15.77 33.21 61.18 98.10 163.63 241.04 327.87
7 4.83 16.27 34.37 67.03 95.04 168.46 251.94 344.71

Total 40.54 127.27 265.72 487.66 788.29 1306.23 1954.87 2651.08
Time

plying the algorithm A. For 8 blocks, this process resulted in total of 80, 000
cutting patterns. The total time required for generating all the cutting patterns
was 2 hours and 30 minutes. Next, k-medoids clustering was applied to cover the
distribution.

To evaluate the effect of the number of medoids used to cover the distribution,
k was varied from 25 to 200 in steps of 25. The clustering times can be found
in Table 4.1. Figure 4.3 also shows the total clustering times (for all blocks) as
k increases. It can be seen that the clustering times increase exponentially from
40.54 seconds for k = 25, to 2, 651.08 seconds (∼ 44 minutes) for k = 200. Thus
for real-life problems it is very important to select an appropriate value of k,
especially for on-line applications.

0 25 50 75 100 125 150 175 200

0

500

1,000

1,500

2,000

2,500

3,000

k

T
im

e
(s
ec
)

Figure 4.3: Total clustering times

Once all the medoids were obtained, (4.6) was solved for 20 instances of random
demands. To study the effect of k on the decomposed model, a relaxed ILP model
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with the objective of calculating the lower bound of optimality of the instances was
also implemented. In this variation, any linear combination of cutting patterns
is considered feasible, however the combination selected may not be feasible for
the real life problem. For this reason, this measurement is a lower bound of
optimality since the solutions obtained from equation (4.6) are greater than this
bound. The lower optimality bound is very useful since it allows the search for a
better solution to be stopped once the bound has been reached.

Figure 4.4 shows the percentage difference between the solutions obtained and the
lower optimality bound. It can be observed that as k increases, the percentage
difference decays exponentially. After a “saturation” point (located approxima-
tely at k = 125) an increase in the value of k does not improve the solution
quality. At this point, the percentage difference between the solutions and the
lower optimality bound was ∼ 0.4%, which indicates that close-optimal solutions
were found.

Economically speaking, the amount of raw material that was required to satisfy
the demand instances when using k = 25 was on average almost e 800 more
expensive than when using k = 125.
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Figure 4.4: Percentage Optimality Difference

Table 4.2 and figure 4.5 (log scale) show the mean times for solving the 20 instan-
ces for the values of k used. Note that these times also increase in a non-linear
fashion, from a solution time of 1.506 seconds for k = 25 to 407.475 seconds (∼ 7
minutes) for k = 200. It can also be seen that there is a correlation with the
saturation point above with the computation times for solving the ILP model.
For higher values of k = 125, there is very little increase in the computation time.
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Table 4.2: Mean ILP solution times.

k Mean Time (sec)
25 1.506
50 188.454
75 369.16
100 240.120
125 410.091
150 398.914
175 411.180
200 407.475
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Figure 4.5: Mean ILP solution times

4.5 Large-Scale Evaluation and Comparison of
Analytics Approaches

A larger evaluation was carried out on a different forest with 263 blocks (Q = 263)
and the stock partitioned into a maximum of 11 product types. The total volume
of raw material was 6149.781m3, with the data obtained from the industrial
partner. 1, 000 random weight vectors ~Wsq, (S = 1000) were generated for each
block, giving a total of 263, 000 cutting pattern vectors ~Psq. The total time for
generating these was approximately 18 hours and 17 minutes. The total clustering
time for all blocks with k = 125 was 31 hours. 12 different instances of random
demands were solved. In 6 of these instances, the demand for product types was
in the range [0, 300]m3 (low demand), while the remaining 6 had demands in the
range [300, 600]m3 (high demand). ILP solution times were nominal, taking less
than 5 seconds for all instances evaluated.
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Due to the high clustering times, self-organising maps (SOM) (Algorithm 5) were
used an alternative to k-medoids. The SOM experiments were done using the Java
Kohonen Neural Network Library (JKNNL) [RHW06]. For the small problem
(Q = 8), the SOM was trained on the 80, 000 cutting pattern vectors ~Psq, using
a varying number of neurons N ∈ {25, 50, 75, 100, 125, 150, 175, 200} arranged in
a grid topology.

A chart comparing the increase in clustering times for both k-medoids and SOM
approaches is shown in figure 4.6.
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Figure 4.6: Scalability of clustering approaches for one block
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Figure 4.7: Comparing clustering times for a small problem instance (Q = 8),
k = N = 125

In terms of scalability, it can be seen in figure 4.6 that using the SOM approach
offers a significant improvement in data reduction time, which makes it more
useful than k-medoids for large problems. In figure 4.7, when k = N = 125 for
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4.5 Large-Scale Evaluation and Comparison
of Analytics Approaches

Q = 8, the total clustering times are 788.29 and 45.51 seconds for the k-medoids
and SOM respectively. When Q = 263, the difference in clustering and map
training times is even more striking and is better visualised using a logarithmic
scale (figure 4.8). Here, the the total times taken are 111898.35 seconds (31 days)
and 226.72 seconds (4 minutes) for the k-medoids and SOM respectively.
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Figure 4.8: Comparing clustering times for a large problem instance (Q = 263),
k = N = 125

A third approach, pure Monte Carlo sampling (MC) (Algorithm 2) was also used.
In this case, instead of generating, for example, 10, 000 random patterns and then
clustering them to get (e.g.) 125 representative cutting patterns, only the exact
number of patterns needed , i.e. 125 are generated. The model (4.6) was then
solved using this random set of patterns, and the solution times and qualities of
all 3 methods – k-medoids, SOM and MC – were compared.

4.5.1 Comparing Solution Quality

The 12 different instances of random demands above and two criteria (the value of
the objective function and the number of blocks harvested) were used to evaluate
the effectiveness of each of these methods. For both criteria the smaller these
values are, the better the solutions.

Figures 4.9 and 4.10 show the average solutions for the low demand instances for
the case where Q = 8. In terms of the value of the objective function, it can be
seen that both the k-medoids and the SOM give the lowest objective functions.
Considering the number of blocks harvested, the performances of the k-medoids
and SOM approaches are once again similar, with both selecting the least number
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Figure 4.9: Comparison of Approaches - Average Objective Function Value
(Q = 8, low demands)
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Figure 4.10: Comparison of Approaches - Average Number of Blocks Harvested
(Q = 8, low demands)

of blocks to harvest. As expected, with both of these criteria, pure MC performs
the worst.

For the high-demand instances, the difference between the objective values is
small, but k-medoids and SOM are still better than pure MC (figure 4.11). As
above, a smaller number of blocks is harvested when using k-medoids and SOM
(figure 4.12). In these cases, it is beneficial to generate a large set of patterns
and cluster them, even in cases where the improvements are small.

For the larger problem where Q = 263, figure 4.13 shows a comparison of the
approaches for the low-demand instances. In this case, in terms of the objectives,
all methods perform equally, with only a little difference (∼ 0.5%) between them
on average. Considering the number of blocks harvested 4.14, the SOM method
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Figure 4.11: Comparison of Approaches - Average Objective Function Value
(Q = 8, high demands)
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Figure 4.12: Comparison of Approaches - Average Number of Blocks Harvested
(Q = 8, high demands)

performs better, with k-medoids being the worst. For the high-demand instances,
there is again only a little difference between all three approaches in terms of the
objectives (figure 4.15). Concerning the number of blocks harvested however,
the SOM approach is the clear winner with 5 less blocks selected (4.16). This
is because it produces a set of cutting patterns which allow the ILP to choose a
different (and smaller) selection of blocks to meet the demands. In most cases,
the MC approach does not perform as well as the others in terms of solution
quality.
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Figure 4.13: Comparison of Approaches - Average Objective Function Value
(Q = 263, low demands)
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Figure 4.14: Comparison of Approaches - Average Number of Blocks Harvested
(Q = 263, low demands)
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Figure 4.15: Comparison of Approaches - Average Objective Function Value
(Q = 263, high demands)
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Figure 4.16: Comparison of Approaches - Average Number of Blocks Harvested
(Q = 263, high demands)
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Figure 4.17: Comparison of Decomposition Times
(Monte Carlo Sampling + Clustering), Q = 8

4.5.2 Comparing Decomposition Times

Figure 4.17 shows the total decomposition times (i.e. sampling time + data
reduction time) taken by each of the three approaches to generate the number
of cutting patterns needed (i.e. 125) when Q = 8. It can be seen that MC
takes much less time (only 109.24 seconds). Obviously, the fact that only a small
number of patterns are generated and there is no data reduction step speeds it up
considerably. This is also the case for Q = 263 (figure 4.18). It can again be seen
that the MC approach takes only about 6 hours in total, while the k-medoids and
the SOM approaches take about 80 and 49 hours respectively.
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Figure 4.18: Comparison of Decomposition Times
(Monte Carlo Sampling + Clustering), Q = 263

4.6 Data Analysis

In most cases, although there is an advantage in sampling a large amount of
patterns and clustering them to get a small but highly representative set, the
benefits are not commensurate with the time and effort spent. In several cases,
using the MC approach produced results very close to those of the other two
approaches. In order to find out why this is the case, some analysis was done on
the data produced by sampling, i.e the ~Psq.

This data analysis was in the form of hierarchical clustering using the hclust
functions in the R stats package. Hierarchical clustering is a cluster analysis
method that seeks to build a hierarchy of clusters within clusters. The results
of hierarchical clustering are often represented as a dendrogram, which is a tree
diagram that represents the individual observations (in this case, the cutting pat-
terns) on the horizontal axis, and the distance/dissimilarity between the merged
clusters on the vertical axis. Agglomerative hierarchical clustering (which starts
at the bottom by considering each observation as its own cluster (height 0) and
merges clusters as it ascends the hierarchy) was applied.

4 blocks each from each problem size were selected, and hierarchical clustering
was applied in order to visualise the data. For the small problem (Q = 8) the
blocks selected were blocks 1, 3, 5 and 7. Blocks 0, 39, 173 and 253 were selected
for the large problem (Q = 263). In the case of the large problem, blocks that
were as different from each other as possible were selected.
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Figures 4.19 to 4.22 show the dendrograms of blocks 1, 5, 39 and 253. It can be
seen from the figures that there is a relationship between the number of log types
(L) and the number of clusters, with the clusters becoming less well defined as
the number of log types increases. There are n large natural clusters for instances
with n types of logs, i.e. 4 large clusters for 4 log types, and 11 large clusters for
11 log types.

Figure 4.19: Block 1 dendrogram showing natural clusters (Q = 8, L = 4)

Figure 4.20: Block 5 dendrogram showing natural clusters (Q = 8, L = 4)

All of the 8 blocks analysed showed this pattern. The occurrence of such a small
number of natural clusters implies for this problem, that it may not be necessary
to generate a very high number of random cutting patterns in order to represent
all the clusters. Note that the likelihood that all the clusters are represented tends
to converge to 100% when the number of randomly generated cutting patterns
increases.
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Figure 4.21: Block 39 dendrogram showing natural clusters (Q = 263, L = 11)

Figure 4.22: Block 253 dendrogram showing natural clusters (Q = 263, L = 11)

4.7 Conclusions

In this chapter, a large-scale MSSCSP with applications in the forestry industry
was considered. This problem was reformulated as a large-scale multiple-follower
bilevel problem and solved using the decomposition method. Evaluation on a
small-scale problem showed that up to a point, increasing the number of clusters
got the solution to about 0.4% from the optimal.

For the large-scale problem, an inordinate amount of time was required using
k-medoids, so self-organising maps and pure Monte Carlo sampling were used
in the decomposition step. Results showed that although the solutions using k-
medoids were slightly better than the other two approaches, this improvement
was not commensurate with the amount of time taken. Some analytics using
hierarchical clustering revealed the occurrence of natural clusters in the data,
leading to the conclusion that for this particular application, the time-intensive
step of clustering may not be necessary, especially in time-sensitive cases.
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Due to the presence of natural clusters in the data, as well as the fact that
there were only a few log types, it was seen that there was no real need to
apply clustering. However, applications in which there are many non-uniformly
distributed local optima will benefit from taking a large number of samples and
clustering.
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Chapter 5

Combining the Cutting Stock
Problem with Dynamic
Harvester Routing

5.1 Introduction

As stated in Chapter 4, the forest harvesting problem is a Multiple Stock Size
Cutting Stock Problem (MSSCSP). In the typology of [WHS07], this problem is
classified as a variant of the MSSCSP in which there is a heterogeneous assortment
of large pieces. An additional factor with this MSSCSP is that there is some
uncertainty present. This case, in which there is a heterogeneous assortment of
large pieces of possibly unknown dimensions, occurs in population harvesting (see
[GH89]), as it is impossible to measure all possible members of the population,
and the size of the members change with time.

The forest harvesting problem, is an example of such a case due to the large
number of trees of varied sizes, combined with the continuous growth of the
trees. It is also impractical to measure the dimensions of every tree in each block
in the forest, so in practice, only a sample of each block is measured, and this
measurement is extrapolated to the whole forest. These measurements (~σqr in
Chapter 4) are then used to harvest the forest. Even if the sampled stock is
a good representation of the whole population (which is not always the case),
the results of the harvesting in real life will not be the same as those from the
simulation phase.

76
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5.2 Data Description and Analysis

An example of the above discrepancy is shown in figures 5.1 to 5.8. Data from 8
blocks was obtained pre- and post-harvest. The following plots show the density
distributions of the diameters of the trees at different heights from the ground
for these 8 blocks. The first height at which the diameters are measured is
13 decimetres (or 1.3 metres) above the ground. This height is known in the
industry as Diameter at Breast Height (DBH). Subsequent measurements are
taken every 70 decimetres above this height. The second measurements are thus
taken at DBH+70, the third are taken 140 decimetres higher than the DBH (at
DBH+70×2), and finally, the last measurements are taken 210 decimetres higher
than the DBH (at DBH+70 × 3). Few trees are greater than (DBH+70 × 3) in
height. For all plots, the black lines represent the sample data (pre-harvesting)
while the red lines represent the real data (post-harvesting).

Figure 5.1: Block 1 density plots

In order to numerically measure the differences between the pre- and post-harvest
distributions, the Kolmogorov-Smirnov test was applied to each plot. This test
makes a null hypothesis that the distributions are equal, with the similarity de-
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Figure 5.2: Block 2 density plots

termined by the p-value. Table 5.1 shows the p-values. If the p-value is lower
than 0.05, the null hypothesis is rejected (values in red). Thus, higher p-values
indicate higher similarity.

Table 5.1: p-values

Block DBH DBH+70 DBH+70× 2 DBH+70× 3 Average
1 0.6470 0.3929 0.2146 0.0137 0.4182
2 0.0360 0.2921 0.4361 0.6092 0.2547
3 0.3800 0.2921 0.4361 0.6092 0.3694
4 0.6760 0.9989 0.0092 0.0003 0.5614
5 0.4410 0.5943 0.4576 0.9188 0.4976
6 0.0087 0.0016 0.0002 3.75E-14 0.0035
7 0.3620 0.5816 0.0119 0.0119 0.3185
8 0.2050 0.1717 0.0684 0.0003 0.1484

This is the motivation for presenting a dynamic and reactive approach in which
the amounts of log products targeted for harvesting are re-calculated after har-
vesting each block. This ensures that the obtained solutions reflect the reality
of the forest. In the literature, ILP approaches for such problems are “static”
since they only compute a single solution and do not consider that the expected
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Figure 5.3: Block 3 density plots

and obtained amounts will differ in practice. As far as is known, there are no
dynamic approaches in the literature that use ILP for addressing this uncertain
problem, only meta-heuristic algorithms. Additionally, the cutting stock problem
and vehicle routing problem (VRP) are combined in order to take into account
the routing of the harvesters from one block to another, based on the amount of
demand still to be fulfilled.

This dynamic approach was evaluated for a forestry instance provided by an
industrial partner, and results show that given a cut-off time, the approach leads
to a more efficient harvesting of the forest than standard approaches.
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Figure 5.4: Block 4 density plots
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Figure 5.5: Block 5 density plots
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Figure 5.6: Block 6 density plots
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Figure 5.7: Block 7 density plots
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Figure 5.8: Block 8 density plots
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5.3 Literature Review

A selection of the literature associated with MSSCSP, and the VRP in agriculture
are given in sections 5.3.1 and 5.3.2 respectively.

5.3.1 MSSCSPs

There are several approaches in the literature for solving MSSCSPs using either
exact methods such as those in [BS02] and [AdC08], heuristic methods in [PA09],
or a combination of the two in [HSB12]. When looking at MSSCSPs related to
the problem in Chapter 4, some of the methods are Linear Programming (LP)
approaches but do not address the uncertainty of the MSSCSPs. There are meta-
heuristic approaches that deal with this uncertainty, and they are discussed in
Section 5.6.

The importance of considering uncertainties regarding the stock dimensions and
dealing dynamically with them is evinced by the authors of [HCL12]. There,
the authors deal with uncertain amounts of products types. However, in the
MSSCSP under consideration, the uncertainty comes from the real dimensions of
the stock (since only a sample of them is available). This fact, precludes the use
of the technique in [HCL12] (precomputing patterns and on-line selecting them)
because patterns cannot be computed for raw materials whose dimensions are
unknown.

In [DRF17], the authors also present an LP approach for solving a similar
MSSCSP but without dynamism. They also use a different algorithm, which
uses a priority list of product types instead of weight vectors, to generate the
cutting patterns. This is a disadvantage because most of the cutting machines in
the industry work with the aforementioned cutting algorithm A (equation 4.3)
that cuts the materials according to the weight vector. While the stock items
are sometimes cut to maximize the market value of the products, at other times
the goal is to satisfy the demand for the products (which sometimes comes at
the expense of their market values). Furthermore, [DRF17] only handle 16 glo-
bal cutting patterns, while the decomposition approach of Chapter 4 can handle
hundreds of cutting patterns. The other improvement of the decomposition ap-
proach over [DRF17] and also [PFCO15] is that it can be used to address the
dynamic on-line cutting process, i.e. targeted amounts are re-calculated and so-
lutions are re-computed at the end of each cutting stage. Moreover, these two
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previous works do not compare themselves with a previous and popular meta-
heuristic approach. A comparison of the proposed reactive algorithm with the
meta-heuristic is carried out, and the results are presented in Section 5.6.

[CWOF16] presents a different approach since it is proactive. It considers the
uncertainty in the amounts of products that are expected to be obtained. In
order to apply such a technique however, it is necessary to know the range of
values for each of the amounts expected. Experience with the industry shows
that these data might be unknown, thus leading to the development of a reactive
approach, which does not need to take this information into account.

Another way of addressing a CSP (without considering dynamism) is to use some
form of column generation. In this approach, the CSP is first solved using a sub-
set of the global product patterns for a fixed number of raw material pieces with
similar dimensions. New patterns are then introduced by solving an auxiliary
optimisation problem, and the process is repeated iteratively until completion.
The column generation approach was originally applied to the standard CSP in
[GG61] and [GG63], and was used in the forest harvesting problem by [EDW86],
[LG97], and [MB86]. However, this technique cannot be applied since, as previ-
ously mentioned, for this problem it is not possible to pre-compute the patterns
of stock with unknown dimensions.

Another disadvantage is that in real-life applications, applying a specific pattern
to each raw material piece results in an increase in time and costs due to the
frequent switching of patterns. This frequent switching also creates an additional
difficulty for workers, whether human or mechanical. As a result of this, the
solutions produced by column generation are usually not useful in practice, as
noted by [SOG89] and [Lar99]. The above reasons preclude the use of column
generation for the problem under consideration.

Besides the LP approaches mentioned earlier, a meta-heuristic approach was also
developed earlier for MSSCSPs (see [MMB04] and [COW16]). The meta-heuristic
approach is a Simulated Annealing Like Algorithm (SALA) called Threshold
Accepting Algorithm (TA) [DS90]. This meta-heuristic algorithm iteratively ge-
nerates new weight vectors (by making local changes) that are mapped by A
into global cutting patterns. Its objective is to reduce the difference between the
percentages of product types obtained by a pattern, and the percentages deman-
ded. In [MAA06] a dynamic version of the meta-heuristic is presented, in which
the targeted demands are re-calculated after cutting each stock subset. Their
algorithm however randomly selects the next stock subset to be cut, while the
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proposed algorithm selects the most suitable stock subsets to be cut and their
order by combining the CSP with the VRP. It is believed that this is one of the
key reasons that the proposed reactive approach out-performs the algorithm in
[MAA06].

5.3.2 VRP in Agriculture

The classic VRP is well known and, at its simplest, consists of finding the optimal
route (or set of routes) from one or more source nodes (or depots) through a set of
destination nodes, depending on certain constraints [Lap92]. A practical example
of this is the routing of courier/delivery vehicles through locations in a city in
order to deliver packages to customers. There are several variations of the VRP.
For example, in cases where a return to the depot is not required, the VRP is
known as an open VRP [MA11]. Also, each vehicle may or may not have a limit
on its package carrying capacity. These cases are known as Capacitated [CLSV07]
and Uncapacitated [EVR09] VRPs respectively. In cases where packages have to
be delivered within specific time windows, the problem is known as VRP with
Time Windows (VRPTW) [Sol84]. A good reference on the many vehicle routing
problem variants and applications is given in [TV14]. A taxonomic review of the
VRP, including variants and methods of solution is also given in [BRVN15].

The VRP also finds application in agriculture, and has been used for example,
in scheduling the collection and transportation of livestock [OL08, SPS04], in
managing the operation of farm machinery in separated fields in [Boc08], for
the planning of autonomous tractor operations in [BVG09, BVG+08], and also
for determining the optimal routes for combine harvesters in [AVVO09]. A de-
dicated classification of agricultural field operations (AFO) with respect to the
VRP is given in [BS09, BS10]. In [BBV15], the authors try to minimize working
time (including travel time) of grape harvesters, which gives the problem some
resemblance to routing problems.

While [BFW06], similar to [Boc08], use the VRP for farm-to-farm path determi-
nation for scheduling crop harvesting in multi-farm operations, they do not have
the added problem of the MSSCSP. In Section 5.4.2, the MSSCSP is combined
with vehicle routing in order to select contiguous blocks for harvesting, and at
the same time decide how to harvest them. This combination of the VRP and
the MSSCP is similar to the routing problem with loading constraints reviewed in
[IM10], as cutting and packing problems are analogous. In this chapter however,
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there are several differences.

First of all, unlike the standard routing and loading problems, e.g. [DFH+07,
FDHI10, JOCM13, MRWR12], there is no consideration for the transportation
of the cut logs, as vehicles different from the harvester are responsible for this.
The primary concern in this chapter is with selecting the right weight vector to
be used by the harvester in each block of the forest so that the amounts of the
different types of log products obtained are enough to satisfy the demand for these
products. In addition to selecting the right weight vector, the secondary goal is to
select neighbouring or contiguous blocks to harvest such that the harvester follows
a path as short as possible in order to minimise harvesting costs. Additionally,
the selection of mostly low-value blocks is of importance, as this ensures that
the best trees of the forest are left intact. Finally, there is some uncertainty in
this combined cutting and routing problem, as the expected yields differ from the
actual yields obtained.

5.4 Models for Reactive Harvesting

To consider the uncertainty in the problem, two models (and a reactive algorithm
which incorporates these models) are introduced. The first model is a simple
cutting stock ILP which, when used with the reactive algorithm, is applicable to
MSSCSPs for which there is uncertainty in the stock dimensions, and the order
of selection of the stock for cutting is not important. The second model combines
the cutting and routing problems and is of specific interest to the forest harvesting
problem as the order of block selection is relatively important.

These models use the weights ~wq and corresponding patterns ~pq generated in 4
using Monte Carlo simulation. Monte Carlo simulation was used without cluste-
ring due to the prevalence of natural clusters in the data, as seen in Section 4.6.
~wq and ~pq are then provided as an input of Algorithm 7. Other input parameters
are: the set of types of products L and the demands Dl for each product type
l, the set of stock subsets (or blocks) Q, the cost Vq of each subset q, and the
dimensions of the stock items ~σqr. To evaluate the performance of the reactive
approach, the stock dimensions data was randomly split into two sets, with one
set (25% of the original data) used as the sample data (i.e. the data on which
the harvesting operation is planned), and the other set (75% of the original data)
used as the real data (i.e. the data seen when actual harvesting of the forest has
been carried out).
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5.4.1 Simple ILP

This cutting stock model is the bilevel cutting stock problem introduced in Section
4.3 and decomposed to a single-level ILP in equation (4.6). It is used in ca-
ses in which the order of selection of blocks is not important. It is denoted as
f( ~D, ~P , ~V ,Q) and defined as follows:

argmin ∑Q
q=1

∑K
k=1 Vqxqk

s.t. ∑Q
q=1

∑K
k=1 Pkqlxqk ≥ Dl l = 1, . . . , L∑K

k=1 xqk ≤ 1 q = 1, . . . , Q
xqk ∈ {0, 1} q = 1, . . . , Q, k = 1, . . . , K

(5.1)

This ILP model has as decision variables xqk, which indicate if the stock subset
q is cut with the global cutting pattern k. The objective function minimizes the
total cost of the raw materials subsets used in the cutting process for satisfying
the demands. Note that if a subset of raw materials pieces q is not used for
satisfying the demands (and therefore it is not cut), then all its decision variables
(xqk ∀q) are zero. The first constraint ensures that all demands are fulfilled, while
the second prevents the use of more than one cutting pattern for a subset of raw
material pieces.

5.4.2 Combined Vehicle Routing Problem ILP

In Section 5.4.1 the stock subsets are selected randomly, without regard of the
location of the subsets. However, in certain situations, some neighbourhood con-
straints on the subsets to be selected may exist. For example, in forestry har-
vesting, there are substantial costs associated with moving harvesting machines
from one block to a non-neighbouring block. It is therefore important that during
harvesting, contiguous blocks are selected in order to create a continuous path for
the harvester to follow through the whole area. In order to do this, f( ~D, ~P , ~V ,Q)
is modified to include neighbourhood and routing constraints, and this combined
Cutting Stock and Vehicle Routing Problem is denoted as f( ~D, ~P , ~V ,Q, E):
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min
Q∑
q=1

K∑
k=1

Vqxqk +
Q∑
q=0

Q∑
t=0

eqtyqt (5.2)

s.t.
Q∑
q=1

K∑
k=1

Pkqlxqk ≥ Dl ∀l ∈ L (5.3)

Q∑
q=0

yqt =
K∑
k=1

xtk ∀t ∈ Q \ {0} (5.4)

Q∑
t=0

yqt =
K∑
k=1

xqk ∀q ∈ Q \ {0} (5.5)

Q∑
q=0

yqt ≤ 1 ∀t ∈ Q \ {0} (5.6)

Q∑
t=1

yqt ≤ 1 ∀q ∈ Q (5.7)

Q∑
q=0

yqu −
Q∑
t=1

yut ≤ 1 ∀u ∈ |Q| \ {0} (5.8)

Q∑
t=1

y0t = 1 (5.9)

zq − zt + |Q| × yqt ≤ |Q| − 1 ∀q, t ∈ Q \ {0} (5.10)
zq, zt ≥ 0 ∀q ∈ Q (5.11)
yqq = 0 ∀q ∈ Q (5.12)
xqk ∈ {0, 1} ∀q ∈ Q, k = 1, . . . , K (5.13)
yqt ∈ {0, 1} ∀q, t ∈ Q (5.14)

where E is a matrix denoting the cost eqt of going from block q to block t. Blocks
which are contiguous have a minimal cost of traversal, while non-contiguous
blocks have a high travel cost between them. This problem also contains the
additional decision variable yqt which indicates whether the harvester moves from
block q to block t. Also included is a dummy block to the set Q (at q = 0), which
acts as the depot in the classic VRP. The objective function of f( ~D, ~P , ~V ,Q, E)
minimizes the value of the blocks selected as well as the cost of the path followed
while selecting the blocks.

Constraint (5.3) is the original demand constraint, while the rest of the constraints
differ from the original ILP model. Constraints (5.4) and (5.5) are the bridging
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constraints that link the CSP to the VRP. They ensure the consistency between
the decision variables of the blocks selected for cutting and the decision variables
of their cutting order. Constraints (5.6) and (5.7) state that there is only a single
entrance and a single departure from a block so that blocks cannot be re-visited.
Constraint (5.8) is a flow conservation constraint that ensures the continuity of
the path. Since it is allowed that the path may not have complete continuity, ≤ 1
is used instead of = 0. Constraint (5.9) ensures that the harvester only leaves the
depot once. Although more effective formulations such as those in [Lap92] exist,
the Miller-Tucker-Zemlin subtour elimination constraints in (5.10) have been used
for simplicity. Constraint (5.12) eliminates trips from a block to itself. Finally,
in lines (5.13) and (5.14) the binary decision variables are defined. This version
of the VRP is uncapacitated, as there is no limit to how much the harvester can
cut.

In order to reduce the computational time, a Rolling Horizon approach [PM95]
was used to solve the problem. A rolling horizon approach divides the problem
into a series of time-periods. The current time-period is modelled precisely, while
the rest of the time-periods are aggregated and solved using a relaxed model.
This has the effect of speeding up computation, with only a modest effect on
the optimality of the solution. For this combined cutting and routing problem,
blocks directly connected to the depot were considered as being in the current
time-period, while the rest of the blocks were in the aggregated time-period.
(5.13) was relaxed so that xqk ∈ [0, 1] for the blocks that are not connected to the
depot. On the other hand, the variables xqk of the blocks connected to the depot
were kept as they were originally: as binary variables. In order to achieve this,
define binary variables bqk, so that when there is a connection from the depot to
a block q, i.e. when e0q = 1, xqk is constrained to be equal to bqk. In this way, the
full integer problem is solved for blocks connected to the depot, while the rest
of the blocks, (i.e. those not connected to the depot) are solved using a relaxed
version of the problem. The optimisation problem is therefore modified as:

xqk ∈ [0, 1] ∀q ∈ Q, k = 1, . . . , K (5.15)
bqk ∈ {0, 1} ∀q ∈ Q, k = 1, . . . , K (5.16)
xqk = bqk if e0q = 1 ∀q ∈ Q, k = 1, . . . , K (5.17)
K∑
k=1

bqk = 1 ∀q ∈ Q (5.18)
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where (5.13) has been replaced by (5.15) to (5.18).

5.5 Reactive Cutting Algorithm

The reactive cutting algorithm re-calculates the product amounts Dl targeted
after cutting each real block, and re-computes new solutions for the rest of the
cutting process. This algorithm works both with the simple ILP, as well as
with the combined cutting and routing problem. It is an on-line algorithm, as
the dimensions of most of the raw material pieces are only known once the real
cutting process is being performed. Also, the real amounts of types of products
obtained from each block are only known after a block is harvested.

Algorithm 7 Reactive Cutting for the MSSCSP
1: Data: L,Q, ~V , 〈~σq1, . . . , ~σqr〉 (∀q ∈ Q), q0, E, ~Pkq, ~Wkq, ~D
2: Result: U , tc
3: U ← ∅;
4: tc← 0;
5: while ~D 6= ~0:
6: if without VRP (Section 5.4.1):
7: ~x← f( ~D, ~P , ~V ,Q); Cutting simulation
8: Select a random q and k: xqk = 1;
9: else if with VRP (Section 5.4.2):
10: ~x← f( ~D, ~P , ~V ,Q, E); Cutting simulation
11: For y0q = 1, select k : xqk = 1; Next subset selected is q
12: q0 ← q; Update the depot for next iteration
13: ~pkq ← A(L, 〈~σq1, . . . , ~σqr〉, ~wkq); Cut the q real subset
14: Dl ← max(Dl − pkql, 0); Update demands
15: Q ← Q \ {q}; Remove q from uncut blocks
16: U ← U ∪ {q}; Add q to the cut blocks
17: tc← tc+ Vq; Update the total cost of the cutting
18: end while

Algorithm 7 first initializes the variables U and tc, which store the blocks cut to
satisfy the demands, and their total cost respectively. These data are returned
by the algorithm once all the demands are fully satisfied (the stopping condition
of the loop). In each iteration, the algorithm first solves the ILP model using the
sample data. This provides the optimal blocks to cut together with the cutting
patterns to use (based on the sample data). After this simulation process, the
stock selected in the simulation phase is cut for real, and the leftover demands
are calculated. The status of the selected block is also changed from uncut to
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cut, and the total cost so far tc is updated. The algorithm then selects one of
those blocks either randomly (without VRP), or it selects a neighbouring stock
subset (with VRP). In the latter case, the depot for the next iteration is updated
to the stock subset harvested in the current iteration. In real-life applications,
customers might change their demands over the time or there might be new
demands from other customers. This dynamic algorithm can accommodate these
additional demands while the static LP approaches cannot. This can be done by
updating ~D at any step of Algorithm 7.

5.6 Evaluation

In this section, the reactive algorithm (with and without vehicle routing) is com-
pared with another dynamic approach - the Simulated Annealing Like Algorithm
(SALA) meta-heuristic from [MAA06] - to dynamically solve the MSSCSP trea-
ted in this chapter. This meta-heuristic is popularly used in the forestry industry.
Data for the experiments was provided by the industrial partner. As previously
mentioned, the objective is to minimize the total cost of the blocks harvested.
The first forest under consideration is composed of 26 blocks whose volumes are
in the interval [84.3, 293]m3. The costs of the individual blocks are in the interval
e[4, 315.25, 20, 422.16] and the total cost of them all is e306, 295.23. The total
volume of the logs in the forest is 4, 640.66m3.

Both the original meta-heuristic algorithm of [MAA06] and the reactive cutting
algorithm were implemented in Java. The evaluation was done on a 2.3 GHz In-
tel Core i7 processor. An industrial partner also provided the black box software
that carries out the dynamic-programming-based simulation that implements A
(see Equation 4.3), which is used by the two approaches. Since DP is a complete
algorithm, other DP implementations, such as the one in [PM72], could have been
used for A, with equivalent results. Therefore, these experiments are reproduci-
ble. The ILP models of Algorithm 7 were solved with CPLEX solver with a time
cut-off of 90 seconds and an optimality gap of 2.5%.

5.6.1 Reactive Approach without Vehicle Routing

Figure 5.9 shows the mean results of 20 runs for each experiment performed with
seven log types (|L| = 7). The demands of each log type were randomly selected
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in the interval [200, 600]m3. Several runs were performed because both approa-
ches stochastically select the next block to cut. For Algorithm 7 the next block
to cut is randomly selected from the best uncut blocks selected by solving the
current ILP model. However, for [MAA06] the next block to be cut is randomly
selected from all the uncut blocks. Because the global cutting patterns are also
randomly generated, they are also re-computed in each of the 20 runs. In the
meta-heuristic approach of [MAA06] the local changes in the weight vector are
iteratively randomly made for each run as well.

Figure 5.9: Comparing the solutions of the reactive approaches

Figure 5.9 shows the quality of the solutions obtained in the vertical axis. This
is the mean relative percentage of total cost of the harvested stock subsets:

mean relative percentage = cost of harvested subsets
total cost of all subsets × 100 (5.19)

Note that this total cost is averaged for each of the twenty instances with rand-
omly generated demands. It should be noted that the lower this percentage is,
the greater the solution quality. The horizontal axis shows the mean solving time
in minutes. For the approach of this thesis, this means the sum of the time for
generating the global cutting patterns and the time consumed by Algorithm 7.

The three lines from top to bottom correspond to the solutions obtained by
the meta-heuristic approach (star markers), the reactive ILP approach (square
markers), and the “static” scenario (dotted-dashed line) in which there is no
uncertainty in the dimensions of the stock. This scenario answers the question
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“What would be the harvesting cost if the dimensions of the whole population
are known?”. For calculating this value, the ILP model was run only once with
the sampled data. It should also be noted that this “static” way of solving the
problem is very similar to those in [PFCO15] and [DRF17]. However, in real life
applications the uncertainty is patent, and it is unrealistic to not consider it.

For the reactive approach (square markers), each number associated with a mar-
ker represents the number of generated cutting patterns for each block (e.g. for
the number 100, 100 cutting patterns were generated for each of the 26 blocks,
resulting in a total of 2600 cutting patterns). For the meta-heuristic, each number
associated with a marker represents its cut-off time (in seconds) for each block
(e.g. for each block, local changes were made during 80 seconds and the best
combination is kept).

In Figure 5.9 it can be observed that the meta-heuristic algorithm behaves poorly
for low cut-off times. This suggests that it needs a significant amount of time to
find good solutions (this is even more prominent when the number of log types
grows). The ∗ sign over the 30s and 80s cut-offs indicates that the meta-heuristic
could not find a solution for some instances (all the forest was harvested but
the demands were not satisfied). Specifically, for 30s no solution was found for
any of the runs). Note that the quality of the solutions increases for greater
cut-offs. Nevertheless, the difference between the percentage costs for both ap-
proaches is greater than 6.4% even when the reactive approach takes 66 minutes.
This represents a monetary increase of at least e19, 602.9. One reason for such
out-performance is that the reactive approach considers the block selection as
an optimality criterion, while the meta-heuristic does not. The other reason is
that meta-heuristics are incomplete algorithms. Figure 5.9 also suggests that the
quality of the reactive approach solutions barely improves when the number of
generated cutting patterns increases from 50 to 100. For this reason, generating
a high number of cutting patterns is not recommended in time-sensitive applica-
tions. The economical benefits of the reactive approach over the meta-heuristic
are seen to be significant, especially considering that in real-life applications,
decisions must be made quickly (on-line cutting processes).
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No uncertainty Uncertainty scenario

Figure 5.10: Path of harvester through forest.

5.6.2 Reactive Approach with Vehicle Routing

5.6.2.1 Routing through 26 Blocks

In this section, the reactive algorithm is tested with the ILP model that considers
vehicle routing. Note that the same instance (volume, types of logs, demands,
etc.) as in Section 5.6.1 was analysed. The cost of moving the harvesting machi-
nes between neighbouring blocks was set to e0, while the moving cost between
non-neighbouring blocks was set to e10, 000. However, the costs could also de-
pend on the distance between blocks or other criteria given by the real application.
Figure 5.10 shows a map of the forest. It should be noted that since the real neig-
hbourhood information was not provided by the industrial partners, neighbours
were randomly assigned. The dark coloured blocks are those which are connected
to the road, which is the only point of access to the forest. Thus, the depot is
connected to blocks 6, 7, 15, 16 and 17.

30 cutting patterns were generated for each of the following two scenarios: with
and without uncertainty (Figure 5.10). For the scenario without uncertainty it
was assumed that the characteristics of all the stock are known a priori. For the
scenario with uncertainty, only a sample (about 25%) of the real stock is known.
Therefore, it is expected that this uncertainty will have an effect on the routing
of the harvester. The route taken by the harvester is shown by the arrows. Each
solution was found in less than 2 minutes, which is mainly due to the relaxations
in rolling-horizon approach (see Section 5.4.2).

For the scenario without uncertainty (left panel of Figure 5.10), a percentage mean
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relative total harvesting cost of 70.85% was obtained. While this percentage is
more than the one obtained by the reactive approach without VRP, it is still less
than the one obtained by the meta-heuristic of [MAA06] (see Figure 5.9). This
increase in the percentage of blocks harvested over the approach without VRP
is due to the fact that routing restricts the freedom with which the blocks can
be selected. Even so, this scenario is the most realistic for many industries, such
as in forestry. It can be seen that in this case of no uncertainty, the harvester
mostly follows one path (more than one path is allowed), with a jump to block
24 at the end. The reason block 24 is selected is because it is the block with the
least cost that has not yet been harvested.

The right panel of Figure 5.10 shows the uncertainty case, i.e. the case in which
the sample data differs from the real data. Here, the percentage mean relative
total harvesting cost is 86%. Due to the uncertainty, the algorithm has a difficult
time selecting a single path to follow through the forest, resulting in 3 different
paths (with the associated penalties for non-contiguous blocks traversal). Even
so, the algorithm performed better than the meta-heuristic algorithm with a
solving time up to 45 min. (see Figure 5.9). (Note that the solving time of the
reactive approach was less than 2 min.).

5.6.2.2 Routing through 100 Blocks

A larger problem instance with 100 blocks was also solved for 3 different sets of
demands in order to evaluate the routing constraints. For this large instance, a
“search window” was implemented so that the algorithm only looked at most 30
blocks ahead in each iteration. As before, the dark coloured block is connected
to the depot, and the hashed blocks are those selected for harvesting.

In Table 5.2, three types of demands (low, medium and high) for each log type
are shown. Table 5.3 shows the results of the three types of demands, where Case
A corresponds to the standard case in which there is some uncertainty in the
amounts obtained from the real forest. The amounts expected from the sample
data differ from what are actually obtained after harvesting. In case B there is
no uncertainty; what is obtained after harvesting is exactly what was expected
from the sample data. In general, the blocks selected are seen to be contiguous
and mostly of low value, leaving the better areas of the forest intact.

Figure 5.11 shows the blocks selected for Demand 1 for both cases. Since the
demands are low, contiguous blocks are easily selected. As expected, when there
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is uncertainty, more blocks are harvested (Case A). In figure 5.12, the demands are
much larger, leading to more blocks being selected for harvesting. The reactive
approach does route the harvester through contiguous blocks, however in Case
B, there are two groups of blocks selected for harvesting. Although there are two
groups of blocks, the selected blocks are of low-value, and are enough to satisfy the
demand, thus keeping the harvesting cost lower than that of the uncertain case.
The results for Demand 3 are shown in figure 5.13. While the demands are fulfilled
and the costs kept low, it comes at the cost of having a single-path through the
forest. The larger demands cause three and two groups of contiguous blocks to be
selected for Cases A and B respectively. Although multiple paths are allowed by
the model (5.2 to 5.14), a larger movement penalty or more restrictive constraint
could be used in cases in which the harvesting operators want to stringently
enforce the single-path scenario.

Table 5.2: Demands (m3).
Log type 1 2 3 4 5 6 7
Demand 1 50.4566 34.1831 25.4884 51.4319 23.6414 51.5178 59.8344
Demand 2 353.1962 239.2817 178.4188 360.0233 165.4898 360.6246 418.8408
Demand 3 432.721 572.215 369.114 357.69 489.617 332.468 477.978

Table 5.3: Results for routing through 100 blocks

Demand 1 Demand 2 Demand 3
Case A B A B A B
Total Cost (e) 58265 49361 325133 110532 276491 158011
Number of Blocks Harvested 7 6 34 11 20 18
Total Solution Time (sec) 38 3 661 130 728 361

As expected, when there is uncertainty, more blocks are harvested, as the sam-
ples do not always accurately reflect the capacity of the forest. Table 5.3 also
shows that the discrepancy between the amounts expected from sampling and the
amounts actually obtained leads to an increase in the number of blocks harvested,
as well as the total harvesting cost. This illustrates the negative effect of having
bad samples.
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Case A Case B

Figure 5.11: Block selection from 100 blocks for Demand 1
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Case A Case B

Figure 5.12: Block selection from 100 blocks for Demand 2
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Case A Case B

Figure 5.13: Block selection from 100 blocks for Demand 3
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5.7 Conclusions

In Multiple Stock Size Cutting Stock Problems (MSSCSPs) some sets of stock
of different sizes must be cut following certain patterns to meet customers’ de-
mand for certain products types. The additional difficulty of the MSSCSP under
consideration lies in the fact that estimates of the stock sizes differ (sometimes
significantly) from real stock sizes. This creates two complications: (i) the cut-
ting patterns of stock items with unknown dimensions can not be computed, and
(ii) even if they are computed for the sampled stock, the amounts obtained from
cutting the real stock will differ from what is expected.

A reactive approach, which re-computes cutting solutions after each stage of the
cutting process, was presented to tackle this uncertain MSSCSP. The difference
between expected and obtained amounts was first computed, then the “targeted”
amounts were updated as the cutting process progresses. For the forest harvesting
problem, an Integer Linear Program (ILP) that combines the dynamic MSSCSP
with the Vehicle Routing Problem (VRP) was also presented in order to decide the
path that the harvesting machines should follow. In the evaluation, it was shown
that the proposed reactive approach out-performed the meta-heuristic algorithm
[MAA06] popularly used in the forestry industry, especially for low cut-off times.

For both the 26-block and 100-block examples, when there is no uncertainty in
the stock dimensions (case B), fewer blocks are harvested. The cost of harvesting
is also less. As expected, the uncertainty has a negative effect on the amount of
the forest harvested as more blocks are harvested resulting in a higher cost.

As future work, obtaining real location and neighbourhood data for the blocks
will enable the travel costs to be based on the real distances between all blocks. It
is also important to investigate means of improving the accuracy of the sampled
data, which should have a positive effect on the results in cases in which the
sample data is not representative enough.
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Chapter 6

Conclusions

6.1 Thesis Defence

The thesis defended throughout this dissertation is that an analytics-based de-
composition approach can be used to solve large-scale multiple-follower bilevel
problems more efficiently than standard approaches. While good for certain
cases, existing methods for solving these problems are not applicable in cases
where the follower problems are black-box functions. Although evolutionary ap-
proaches can be used in these cases, they can be time-consuming and for large
problems, unable to efficiently search the whole solution space. For this reason,
an analytics-based approach, which is better able to sample the solution space
is needed. Regarding the forest harvesting problem, the focus of this thesis has
been to formulate the problem as a bilevel multiple-follower problem. This is a
natural fit as it considers the harvester’s operation for each block as an optimi-
sation problem (which it is). Using this bilevel multiple-follower approach allows
the problem to be modelled more accurately, and solved using the decomposi-
tion approach. Additionally, a reactive harvesting approach was developed. This
approach takes into consideration the difference in the expected and harvested
amounts, as well as the location of the blocks to guide the harvesting process.
Specifically, the thesis contributions are presented below.

Contribution 1 A new class of multiple-follower bilevel problems is proposed.

The first contribution of this dissertation is the formalisation of a new class of bi-
level problems not listed in [LSZ06]. In Chapter 2, a new class of bilevel multiple-
follower bilevel problems was proposed. In this class, the followers do not share
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each others’ variables, so that the leader variables can be partitioned among the
followers. The followers are also allowed to be integer or non-linear, and variables
from different follower problems are only connected through weak constraints.

Contribution 2 A novel analytics-based decomposition approach for large-scale
bilevel multiple-follower problems is given.

In Chapter 3, a novel analytics-based decomposition approach for bilevel multiple-
follower problems is presented. The first numerical example was given to show
the benefit of using clustering. Two other numerical examples were solved using
this approach, and the results compared to those obtained by using evolutionary
algorithms (which is a standard approach). For the second example, a small-sized
problem with only two followers is solved to within 0.09% of the optimal. This
shows that even for small-scale problems, the analytics approach is competitive
as it is able to cover the space of the follower problems adequately. The third
example was an arbitrarily large problem evaluated for up to a thousand followers.
The results were compared with those from two evolutionary approaches and it
was seen that as the size of the problem increased, the decomposition approach
produced significantly better results than the standard approaches.

Contribution 3 Reformulation of the forest harvesting problem as a bilevel
optimisation problem to take into the account operation of harvester.

In Chapter 4, the forest harvesting problem is reformulated as a multiple-follower
bilevel problem, which allows for the operation of the harvester to be incorporated
into the optimisation problem as non-standard follower problems. This bilevel
formulation combined with the decomposition approach results in the selection
of the best weights to apply to the harvesting machines. These machines in turn
produce the best cutting patterns to be used to harvest each block in order to
satisfy demand and reduce waste. Evaluations showed that the results obtained
were close optimal, with the 8 block problem getting to within 0.4% of the optimal.

Contribution 4 A reactive harvesting approach to mitigate the effects of the
uncertainty in the data.

In Chapter 5, a reactive harvesting approach is introduced in order to diminish the
effects of data uncertainty on the harvesting process. Two integer programming
models are proposed for reactive harvesting - a simple integer linear program,
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and one in which the cutting stock problem was combined with the vehicle rou-
ting problem. These models are used in conjunction with a reactive harvesting
algorithm to select the next best blocks to harvest based on the amounts already
harvested, the demand yet to be fulfilled, the estimated capacity of the unhar-
vested blocks, and, in the case of the VRP, the neighbourhood information of the
unharvested blocks. Evaluations comparing the approach used in the industry
with the proposed reactive approach were carried out, and it was seen that the
proposed reactive approach out-performed the meta-heuristic algorithm widely
used in the forestry industry, particularly for low cut-off times.

6.2 Directions for Future Work

There are a few possible lines of work that can be explored as an extension of
this dissertation. These are outlined below.

Extending the Decomposition Method to Non-Independent Followers.
The analytics-based decomposition approach depends on the follower problems
being independent, i.e. not sharing any variables amongst themselves. It would be
of benefit to be able to apply the approach to multi-follower problems which have
shared variables. This would entail finding methods of decoupling the variables
which are shared amongst the followers.

Analytics-Based Reaction Set Mapping In the literature, evolutionary ap-
proaches which use iterative approximations of the reaction set to guide the po-
pulations’ evolution can be seen [SMD17b]. The decomposition approach of this
thesis is similar to reaction set mapping in that both approaches seek to un-
derstand how the lower levels behave in order to essentially remove the need for
solving the lower level problems. While the reaction set mapping approach is car-
ried out iteratively (i.e. for each generation), an analytics-based approach could
be quicker and easier way to map the reaction set of the follower, as it not itera-
tive, and a relationship between leader and follower variables can be determined
using Monte Carlo sampling and clustering.

Real Location and Neighbourhood Information for Reactive Harves-
ting. In Chapter 5, no neighbourhood information was provided by the in-
dustrial partner so blocks were randomly assigned neighbours. Obtaining real
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location and neighbourhood information for blocks will allow the travel costs to
be based on the actual distances between the blocks. It is expected that this will
also improve the performance of the reactive algorithm, as blocks of a similar
value tend to be grouped together in real life.

Data Accuracy Improvement. Finally, as a result of the method of esti-
mating forest capacity (i.e. sampling), the sample data is sometimes not very
representative of reality. Although the proposed reactive approach helps to miti-
gate the effect of the uncertainty, it would be useful to also investigate means of
improving the accuracy of the sample data.
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