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Abstract

Macronutrient quality and composition are important determinants of energy balance and the gut microbiota. Here, we
investigated how changes to protein quality (casein versus whey protein isolate; WPI) and the protein to carbohydrate (P/C)
ratio within a high fat diet (HFD) impacts on these parameters. Mice were fed a low fat diet (10% kJ) or a high fat diet (HFD;
45% kJ) for 21 weeks with either casein (20% kJ, HFD) or WPI at 20%, 30% or 40% kJ. In comparison to casein, WPI at a
similar energy content normalised energy intake, increased lean mass and caused a trend towards a reduction in fat mass
(P = 0.08), but the protein challenge did not alter oxygen consumption or locomotor activity. WPI reduced HFD-induced
plasma leptin and liver triacylglycerol, and partially attenuated the reduction in adipose FASN mRNA in HFD-fed mice. High
throughput sequence-based analysis of faecal microbial populations revealed microbiota in the HFD-20% WPI group
clustering closely with HFD controls, although WPI specifically increased Lactobacillaceae/Lactobacillus and decreased
Clostridiaceae/Clostridium in HFD-fed mice. There was no effect of increasing the P/C ratio on energy intake, but the highest
ratio reduced HFD-induced weight gain, fat mass and plasma triacylglycerol, non-esterified fatty acids, glucose and leptin
levels, while it increased lean mass and oxygen consumption. Similar effects were observed on adipose mRNA expression,
where the highest ratio reduced HFD-associated expression of UCP-2, TNFa and CD68 and increased the diet-associated
expression of b3-AR, LPL, IR, IRS-1 and GLUT4. The P/C ratio also impacted on gut microbiota, with populations in the 30/
40% WPI groups clustering together and away from the 20% WPI group. Taken together, our data show that increasing the
P/C ratio has a dramatic effect on energy balance and the composition of gut microbiota, which is distinct from that caused
by changes to protein quality.
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Introduction

It is widely recognised that levels of obesity and related clinical

conditions such as diabetes, stroke, hyperlipidemia and cardiovas-

cular disease are increasing worldwide [1]. Importantly, the

development of obesity increases the set point at which the body

weight, more specifically body fat, is defended, thus making its

reversal difficult to achieve [2,3]. As such, there is an increased

research interest to develop effective treatments for this disease.

Dairy proteins belonging to the whey fraction (a by-product of

cheese manufacture) have been increasingly tested for their

potential anti-obesity effect, specifically for their ability to reduce

high fat diet (HFD)-associated body weight and fat mass gain [4–

6]. Shi et al., [7] showed that replacing 5%, 50% or 100% of the

dietary casein protein-derived energy content with a lactoperox-

idase and lactoferrin-enriched whey protein isolate (WPI) caused a

proportional suppression of body weight gain in HFD fed mice.

We have previously demonstrated that a WPI-related reduction in

body weight and fat mass gain in HFD fed mice was accompanied

by a normalisation of energy intake and complete or partial

reversal of energy balance-related gene expression in the adipose

tissue and the hypothalamus [8]. While these data suggest that

whey proteins have specific-effects on energy balance, such effects

appear be modified by the macronutrient composition in the diet

[9]. In the latter study, it was shown that increasing the lipid to

carbohydrate ratio within a whey protein-rich diet significantly

reduced energy intake and bodyweight gain in rats. Collectively,

these data suggest that protein quality and macronutrient

composition are important determinants of energy balance.

Interestingly, diet is also an important factor in determining the

composition of the gut microbiota [10,11] and specific gut

microbiota signatures are associated with obesity phenotypes in

animals and humans [12–14]. Notably, studies have shown specific

whey proteins to possess anti-microbial activity [15–17], and that
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the digestive process itself facilitates the formation of potent

antimicrobial whey-derived peptides, such as pepsin catalysed

lactoferrin to lactoferricin [18]. A study by Sprong et al., [19]

demonstrated that in comparison to casein, whey protein intake

increased levels of lactobacilli and bifidobacteria in a rat model of

colitis. However, in a more recent study, whey protein intake was

found to have no influence on gut microbiota composition in mice

fed a HFD for 7 or 13 weeks [20]. Several key unanswered

questions are; could whey proteins specifically influence the gut

microbiota composition associated with prolonged high fat

feeding, and would any changes relate to energy balance? Could

changes to protein to carbohydrate ratio within a HFD vary the

gut microbiota profile and energy balance in a different way to

changes to protein quality?

To assess WPI specific effects on above parameters, we

subjected male C57BL/6J mice to 21 weeks of either a low fat

diet (LFD) with 20% kJ casein or a HFD with 20% kJ casein or

WPI. In addition, using two additional HFD dietary groups on 30

or 40% kJ WPI, we evaluated the impact of increasing the protein

to carbohydrate (P/C) ratio within the HFD on parameters of

interest. Our data show that WPI has a specific effect on energy

balance and gut microbiota, while increasing the P/C ratio within

the HFD leads to dramatic alterations in energy balance, body

composition, metabolic health and the composition of the gut

microbiota.

Materials and Methods

Ethics Statement
All research involving mice was licensed under the Cruelty to

Animal Act 1876 and received ethical approval from the

University College Cork Animal Ethics Review Committee

(#2011/005).

Animals
Male 3–4 week old C57BL/6J mice (Harlan, Oxon, UK) were

group housed either 5 per cage (Study 1) or 4 per cage (Study 2) in

individually ventilated cages and acclimatised for four weeks in a

light (06:00–18:00), temperature (2161uC) and humidity (45–

65%) controlled environment with free access to water and a low

fat diet (LFD; 10% kJ fat and 20% kJ casein; #D12450, Research

diets; New Brunswick, NJ, USA).

Experimental protocol
Two studies were performed to assess how the WPI-derived

energy content within a HFD (study 1) or LFD (study 2) impacts

on energy balance-related parameters in mice over a 21 week

(study 1) or 7 week period (study 2).

Study 1: Following the acclimatisation period, weight-matched

dietary groups were maintained on the LFD or switched to either a

HFD (45% kJ fat and 20% kJ casein; #D12451) or a HFD with

WPI (Alacentm 895 NZMP, New Zealand) at an energy content of

20% kJ (HFD-20% WPI), 30% kJ (HFD-30% WPI) or 40% kJ

(HFD-40% WPI) (Table S1) (n = 10) for a total of 21 weeks. Body

weights were measured weekly. Energy intake in group housed

mice was measured by weighing the food hopper each week until

week 16. During weeks 17–20, energy intake and metabolic

activity in individual mice was measured using TSE Phenomaster

cages (TSE systems, Bad Homburg, Germany). Following this

analysis and prior to re-housing the mice in home cages, faecal

pellets were collected from individual mice for examination of

microbial composition via pyrosequencing and subsequent

bioinformatic analysis. At the end of the experimental period,

mice were fasted for 6 hours and the body composition was

measured using the Bruker minispec LF50H (Bruker optics,

Ettlingen, Germany). Mice were then anesthetised using ketamine

(65 mg/kg bodyweight) and xylazine (13 mg/kg bodyweight).

Blood was collected from anesthetised mice into vacutinater

EDTA tubes (BD, USA) and treated with Aprotinin

(500,000 KIU/L final concentration; Sigma, Ireland) and Dipro-

tin A (0.1 mM final concentration; Sigma, Ireland) to protect

plasma peptides from proteolytic degradation. Plasma was isolated

from blood by centrifugation at 2000 rpm at 4uC for 15 mins.

Mice were sacrificed by cervical dislocation, and tissues of interest

were dissected and snap frozen in liquid nitrogen (liver, adipose

and stomach) or on dry ice (brain). Plasma and tissue samples were

stored at 280uC until analysis.

Study 2: Weight matched mice were provided for 7 weeks with

either the LFD or a LFD with WPI replacing the casein protein

(LFD-WPI; 10% kJ fat and 20% kJ WPI) (n = 8). Body weights

were measured weekly. Energy intake and metabolic activity in

individual mice was measured during weeks 5 and 6 using the TSE

Phenomaster system. After the analysis, mice were re-housed, as

before, in the home cages and the experiment was terminated at

the end of week 7.

Analysis of metabolic parameters
The TSE Phenomaster cages comprised an open-circuit indirect

calorimetry system with gas sensing units to measure oxygen

consumption (ml/h/kg) (VO2) and CO2 production (ml/h/kg)

(VCO2). The cages also contained high precision sensor associat-

ed-feeding baskets to accurately measure food intake (g), with a

meal defined as intake over 0.01 g. A multi-dimensional infrared

beam system allowed the measurement of locomotor activity,

which was defined as the total number of infrared beam breaks in

the X and Y axis. Mice were singly housed in TSE Phenomaster

cages for a total of 3 days, with data collected during the final

24 hours, following a 2 day acclimatisation to the new cage

environment. The acclimatisation period was established based on

the data from our previous study [8]. Heat production (kcal/h/kg)

in individual mice was calculated using the Weir equation

(3.9416VO2 + 1.1066VCO2)[21]), and this was converted to

kJ/h/kg using 1kcal = 4.184 kJ. The respiratory exchange ratio

(RER) was calculated by VCO2/VO2. Energy intake was

calculated from food intake measurements using the energy

content of the diets supplied by the manufacturer.

Microbial DNA extraction, amplification and high
throughput DNA sequencing

Total metagenomic DNA was extracted from individual faecal

samples using QIamp DNA Stool Mini Kit (Qiagen, Hilden,

Germany), after an additional bead-beating step. Bacterial

composition was determined by sequencing of 16s rRNA

amplicons (V4-V5 region; 408nt long) generated by a separate

PCR reaction for each sample (in triplicate) using universal 16S

primers, where, the forward primer (59-AYTGGGYD-

TAAAGNG), with attached molecular identifier tags between

454 adapter sequence and target-specific primer sequence, and

reverse primer V5 (59-CCGTCAATTYYTTTRAGTTT) [22],

were used along with Biomix Red (Bioline, London UK). The

template DNA was amplified under the following PCR conditions

for a total of 35 cycles: 94uC for 2 minutes and 1 minute

respectively (initialization and denaturation), 56uC for 60 seconds

(annealing) and 72uC for 60 seconds (elongation), proceeded by a

final elongation stage of 2 minutes. Negative control reactions with

PCR grade water in place of template DNA were used to confirm

a lack of contamination. Amplicons were pooled and cleaned using

the AMPure XP purification system (Beckman and Coulter,

WPI Influences Energy Balance and Gut Microbiota
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Takeley, UK) and DNA concentration was determined using the

NANODROP 3300 Fluorospectrometer (Thermo Scientific, USA)

coupled with the Quant-itTM PicogreenH dsDNA Assay Kit

(Invitrogen, Paisley, UK). Equal volumes of each sample were then

pooled together and underwent a final cleaning and quantification

stage. Amplicons were sequenced in-house on a Roche GS FLX

Titanium platform.

Bioinformatics
Raw sequencing reads were ‘de-noised’ using traditional

techniques implemented in the Ribosomal Database Project

Pyrosequencing (RDP) Pipeline with ambiguous bases, non exact

primer matches and reads shorter than 150 bp being excluded.

Trimmed FASTA files were then BLASTed against a previously

published 16S-specific database using default parameters. The

resulting files were then parsed using the MEGAN software

package, which assigns reads to the National Centre for

Biotechnology Information (NCBI) taxonomies via the lowest

common ancestor algorithm. Results were filtered prior to tree

construction and summarization by the use of bit scores from

within MEGAN where a cut-off bit score of 86 was employed

[23,24]. The QIIME software suite was employed to achieve

clustering of sequence reads into operational taxonomic units

(OTUs) [25]. Chimeric OTUs were removed using the Chimer-

aSlayer program [26] and phylogenetic trees constructed using the

FastTreeMP tool [27]. Beta diversity values were calculated based

on Bray Curtis, weighted and unweighted UniFrac distances, and

the KING viewer was used to visualise resulting PCoA plots

[28,29]. Sequence reads were deposited in the European

Nucleotide Archive (EHA) under the accession number

PRJEB4636.

Plasma analysis
Colorimetric assays were used to measure plasma levels of

glucose (Calibochem, Darmstadt, Germany), triacylglycerol (TAG;

Wako Chemicals, Richmond, VI, USA) and non-esterified fatty

acids (NEFA; Abcam, Cambridge, UK). Commercially available

ELISA kits were used to analyse plasma levels of insulin, leptin

(Crystal Chem, Downers Grove, IL, USA), glucagon-like peptide 1

(GLP-1; Millipore, St. Charles, MO, USA) and corticosterone

(Enzo Life sciences, Farmingdale, NY, USA). The homeostasis

model assessment of insulin resistance (HOMA-IR) was deter-

mined using the formula: fasting plasma insulin (mU/ml) 6 fasting

plasma glucose (mmol/L)/22.5 [30]. To measure plasma amino

acid levels, samples were first deproteinised by mixing with equal

volumes of 24% (w/v) tri-chloroacetic acid. The samples were

then allowed to stand for 10 minutes before been centrifuged at

144006g (Microcentaur, MSE, UK) for 10 minutes. Supernatants

were mixed with 0.2 M sodium citrate buffer, pH 2.2, and the

plasma concentration of amino acids were quantified using a Jeol

JLC-500/V amino acid analyser (Jeol Ltd., Garden city, UK)

fitted with a Jeol Na+ high performance cation exchange column.

Liver TAG analysis
Total lipids from liver samples (approx. 50 mg) were extracted

as described previously [8] using the Folch extraction method [31].

Briefly, total lipids were extracted using 2:1 (v/v) chloroform:

methanol solution, into which a 0.88% NaCl solution was added

before centrifugation at 2000 rpm and 4uC for 30 mins. Aliquots

of the organic phase were collected, dried and re-suspended in the

LabAssay TAG reagent (Wako Chemicals, Richmond, VI, USA)

to measure TAG levels using LabAssay TAG kit according to the

manufacturer’s protocol.

Real-Time PCR analysis
Total RNA was isolated from tissues using RNeasy mini (liver

and stomach) or RNeasy lipid mini (adipose and hypothalamus)

kits (Qiagen, Hilden, Germany) according to manufacturers’

instructions. RNA was treated with DNase (Qiagen, Hilden,

Germany) during RNA isolation to eliminate any possible genomic

DNA contamination. Reverse transcription of 1 mg of RNA was

performed using 2.5 ng/ml random hexamer primers (Bioline,

London, UK), 0.5 mM dNTP (Promega, Madison, VI, USA),

2 U/ml RNase inhibitor (Promega, Madison, VI, USA), and the

Superscript II first stand system (Invitrogen, Carlsbad, CA, USA)

according to manufactures’ instructions. Gene expression was

measured by the Roche Lightcycler 480 system (Rotkreuz,

Switzerland) via amplification of 1 ml complementary DNA using

the Lightcycler SYBR Green I Mastermix kit (Roche, Penzberg,

Germany) and 2.5 mM gene specific primers (Eurofins MWG

operon, Ebersberg, Germany) in a 10 ml total reaction volume.

Primer sequences used are listed in Table S2. PCR conditions

were; 10 mins at 95uC, followed by 50 cycles of 95uC for 10 s, 58–

65uC for 5 s and 72uC for 15 s. Authenticity of PCR products was

determined by melting curve analysis and by automated sequenc-

ing. Crossing point (Cp) of fluorescence signals were used to

calculate target gene expression by 22DDCp, following normalisa-

tion against housekeeping gene according to DDCp = DCp target

gene – DCp housekeeping gene. Housekeeping genes used were b-

actin (liver, stomach and hypothalamus), YWHAZ (liver and

hypothalamus), 18-S (adipose) and glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) (adipose and stomach). Relative gene

expression is shown compared to the LFD group.

Statistical analysis
Data are expressed as means 6 standard error of the mean

(SEM). Differences between experimental dietary groups were

analysed by one-way or two-way ANOVA followed by pairwise

comparisons using tukey or bonferroni post hoc tests, respectively.

Body weight trajectories were analysed by two-way repeated

measures ANOVA with bonferroni post hoc tests. Non-parametric

data was compared by Kruskal-Wallis ANOVA followed by Dunn’s

pairwise comparisons. Significance levels were set at P#0.05, and

statistical analysis was performed using Graphpad prism (ver. 5.04;

San Diego, CA, USA) and Minitab (ver.15; State College, PA,

USA).

Results

WPI inclusion or increasing the P/C ratio within a HFD
alters body composition and plasma amino acids

Fig. 1A–B demonstrates that body weight gain of HFD-

20%WPI fed mice was similar to HFD controls. However, intake

of WPI was seen to have a specific effect on body composition,

with HFD-20% WPI fed mice having an increased lean mass (%)

(P,0.05), and a trend towards a reduction in fat mass (%)

(P = 0.08) compared to the HFD control group. Increasing the

WPI derived energy content in the HFD to 40% and proportion-

ally reducing the carbohydrate energy content led to a significant

reduction in body weight gain compared to all other HFD-WPI

groups (P,0.001), with observed values similar to that seen for the

LFD group. This was accompanied by significantly reduced body

fat mass and increased lean mass levels in the HFD-40% WPI fed

mice compared to HFD control and other WPI diets groups (P,

0.001), while the body composition of HFD-30% WPI group did

not differ from that of the HFD-20% WPI group (Fig. 1C).

Comparison of the plasma amino acid profiles including those

that could influence lean and fat mass, revealed an impact of WPI

WPI Influences Energy Balance and Gut Microbiota
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and the P/C ratio (Table 1). WPI specific effects were observed on

glutamic acid, aspartic acid and glycine, which either decreased

(glutamic acid and aspartic acid) or increased (glycine) compared

to HFD fed mice (P,0.05) (Table 1). Changes in macronutrient

ratio in HFD-40%WPI, decreased plasma histidine, phenylala-

nine, serine and threonine levels compared to the lowest P/C ratio

(20% WPI) (P,0.01) (Table 1).

WPI-enriched HFD normalised energy intake, while
increasing the P/C ratio accentuated metabolism

The cumulative energy intake (MJ) for the dietary groups

(2 cages/group, all with n = 5 mice), measured over the first 16

weeks did not differ between LFD, HFD and HFD-20% WPI

groups (24.7362.70 vs. 27.6961.54 vs. 29.4060.31, respectively).

In contrast, data gathered by individually housing the mice in TSE

Phenomaster cages in weeks 17–20 demonstrated that the energy

intake of the HFD-WPI groups was greater than that of the HFD

control group during both the light and dark phases (P,0.05),

while being similar to that of the LFD group (Fig. 2A). Increasing

the P/C ratio had no significant effect on cumulative energy intake

(MJ) in HFD fed mice up to week 16 (20%WPI, 29.4060.31 vs.

30%WPI, 30.0160.62 vs. 40%WPI, 26.7160.15). Energy intake

measurements from TSE Phenomaster cages corroborated this

data (Fig 2A). There was also no significant effect on meal number

or meal size of altering the P/C ratio (i.e. between WPI groups;

Fig 2B–C).

The HFD-20% WPI diet had no impact on VO2, heat

production, locomotor activity or respiratory exchange ratio

(RER) when compared to HFD fed mice (Fig. 3A–D). Increasing

the P/C ratio was found to impact on energy expenditure with

HFD-40% WPI fed mice having significantly increased levels of

dark phase VO2 compared to HFD-20 and 30% WPI fed mice

(P,0.001) (Fig 3A). A similar change in heat production was

observed between the groups, albeit data was only significant

between HFD-40% and HFD-30% WPI groups (P,0.05) (Fig 3B).

There was no effect of WPI or P/C ratio on locomotor activity

(Fig 3C). RER values of all HFD groups were lower than the LFD

group in both the light and dark phases, consistent with increased

fat metabolism (P,0.001) (Fig 3D).

Investigation of the above parameters in mice fed a LFD with

WPI or casein for 7 weeks (study 2) revealed that WPI does not

influence body weight, energy intake, VO2, locomotor activity or

RER in a low fat background (Figure S1A–D).

Increasing the protein to carbohydrate ratio attenuated
adverse metabolic impact of HFD

Specific effects of WPI and the P/C ratio were observed on lipid

metabolism-related gene expression and on tissue lipid deposition.

Firstly, the decrease in epididymal adipose tissue fatty acid

synthase (FASN) mRNA expression with HFD feeding, was

somewhat attenuated by WPI challenge (P,0.05), with no added

benefit of increasing the P/C ratio on expression of this gene

(Fig 4A). Notably, the epididymal mRNA expression of a number

of other genes were altered by the P/C ratio, specifically, fatty acid

transporter 1 (FATP1), beta-3 adrenergic receptor (b3-AR),

peroxisome proliferator-activated receptor gamma (PPARc),

uncoupling protein 2 (UCP-2) and lipoprotein lipase (LPL) (P#

0.05) (Fig 4). In the liver, WPI specifically reduced TAG levels

(Table 2) and the mRNA expression of fatty acid binding protein 1

(FABP1) compared to HFD fed mice (Table 3). The highest P/C

ratio (40% WPI) significantly decreased mRNA levels of cluster of

differentiation 36 (CD36) and PPARc (P,0.05) (Table 3),

dramatically reduced liver TAG levels compared to 20/30%

WPI fed mice (Table 2), and normalised the elevated plasma levels

of TAG and NEFA observed with HFD feeding (P#0.05)

(Table 2). Finally, the mRNA level of lipid metabolism-related

Figure 1. Impact of whey protein isolate and protein to
carbohydrate ratio on body weight and composition. (A) shows
the body weight trajectories of mice during 21 weeks of dietary
treatment with a 10% kJ low fat diet (LFD), 45% kJ high fat diet (HFD) or
a HFD with 20, 30 or 40% kJ whey protein isolate (WPI). Body weight
gain (B) and body composition (C) of mice after 21 weeks on
experimental diets are also shown. Data represent mean values 6
S.E.M. (n = 10 per group). Groups that do not share a common letter are
significantly different at P,0.05.
doi:10.1371/journal.pone.0088904.g001
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carnitine palmitoyltransferase 1a-c (CPT1a-c), fatty acid transport

protein 5 (FATP5) and PPARa, in tissues of interest, was not

influenced by the dietary challenges (Tables 3–4).

Increasing the P/C ratio reduced plasma glucose levels,

particularly in the 40% WPI group (P,0.05) (Table 2). In parallel

HOMA-IR values were also reduced (P,0.05), but the change in

plasma insulin concentration did not reach statistical significance

(Table 2). At a cellular level, the highest P/C ratio normalised the

HFD-induced reduction in adipose expression of insulin receptor

(IR) and insulin receptor substrate 1 (IRS-1), and partially

prevented the HFD-induced reduction in glucose transporter 4

(GLUT4) (Fig. 4B) (P,0.001). In the hypothalamus, WPI

specifically increased IR mRNA expression (P,0.05), as did P/

C ratio, with the highest P/C ratio having the greatest impact

(Table 4). Epididymal adipose tissue mRNA expression of

inflammatory markers, namely tumour necrosis factor (TNF)-a
and cluster of differentiation (CD) 68 only responded to the highest

P/C ratio, which significantly reduced the expression of both in a

HF background (Fig. 4B) (P,0.001). In the hypothalamus, whilst

TNFa mRNA was elevated by HFD feeding, neither WPI nor the

P/C ratio influenced its levels, although there was a trend towards

a decrease for the highest P/C ratio (40% WPI) (Table 4). None of

the dietary challenges influenced hepatic glucose transporter 2

(GLUT2), IRS-1 and TNF-a mRNA expression (Table 3) or

hypothalamic IRS-1 mRNA expression (Table 4).

The increased plasma leptin concentration in response to the

HFD was significantly blunted by WPI intake with dramatic

reductions seen at the highest P/C ratio (P,0.001) (Table 2). Yet,

the hypothalamic expression of genes known to be responsive to

plasma leptin levels were unaffected, specifically mRNA levels of

leptin receptor (ObR), pro-opiomelanocortin (POMC), neuropep-

tide Y (NPY) and growth hormone secretagogue receptor (GHS-R)

(Table 4). In addition, gastric mRNA expression for the orexigenic

hormone ghrelin was not found to significantly differ between all

dietary treatment groups (1.0060.37, LFD vs. 1.1160.40, HFD

vs. 0.7360.35, 20%-WPI vs. 0.2960.28, 30%-WPI vs. 1.0760.45,

40%-WPI). Plasma corticosterone levels were also elevated with

HF feeding, but were not influenced by protein source (WPI or

casein) or P/C ratio (Table 2). Similarly, there was no effect of

WPI on the HFD-associated suppression of adipose 11b-hydroxy-

steroid dehydrogenase type 1 (11bHSD1) (Fig 4B), or the HFD-

induced increase in glucocorticoid receptor (GCCR) in the

hypothalamus (Table 4).

WPI inclusion or increasing the P/C ratio within a HFD
altered the composition of gut microbiota

A total of 251,395 V4–V5 16s rRNA sequence reads were

generated which corresponded to an average of 50,279 reads per

diet group or 5,130 reads per animal. a-diversity values were

calculated for biodiversity (Shannon index), species richness

(Chao1) and the number of species relative to the abundance in

the sample (Simpson diversity index). When a-diversity values

were compared by diet group, the only difference observed was a

significantly higher microbial richness (Chao1) within the HFD

microbiota compared to the HFD-30% WPI (P = 0.028). Principal

coordinate analysis (based on unweighted UniFrac distances)

(Fig. 5) of the sequence data highlighted a clustering of the LFD,

HFD and HFD-20% WPI group microbial populations, while

HFD-30% and 40% WPI groups clustered in close proximity to

each other and distinctly from the LFD, HFD and HFD-20% WPI

group clusters. Indeed, the LFD diet with casein as a protein

source clustered most closely with the HFD containing the casein

protein.

Phylogenetic analysis revealed several significant microbial

population shifts between the HFD control and WPI groups

(Table 5). At the family level, all WPI diet groups had significantly

increased proportions of Lactobacillaceae and significantly decreased

proportions of Clostridiaceae compared to the HFD control group.

Bifidobacteriaceae populations were increased in both the HFD-20%

Table 1. Plasma amino acid levels (mmol/L) in mice fed a 45%kJ high fat diet (HFD) or HFD with 20%, 30% or 40% kJ whey protein
isolate (WPI) for 21 weeks1.

HFD 20% WPI 30% WPI 40% WPI P value

Alanine 170.9168.82a 163.83611.59ab 137.4469.72ab 127.1568.46b ,.05

Arginine 41.7464.82 38.4167.16 56.3967.60 39.0864.34 NS

Aspartic acid 7.4761.25a 3.6360.51b 3.4960.51b 4.8561.02ab ,.05

Cyteine 11.9561.34 8.8761.37 8.9361.33 7.8661.72 NS

Glutamic acid 90.7663.42a 74.7461.89b 75.2561.86b 71.2562.69b ,.001

Glycine 106.2264.28a 131.4363.57b 116.4564.52ab 131.9262.69b ,.001

Histidine 75.4362.12a 74.9362.98a 68.2163.35ab 64.2162.51b ,.05

Isoleucine 213.8168.87 207.8769.09 195.2765.74 186.78610.17 NS

Leucine 91.8669.66 81.3666.65 66.9366.69 69.71610.21 NS

Lysine 113.8165.88 108.1868.30 102.5768.39 88.2964.07 NS

Methionine 23.9461.77 23.6560.75 21.0560.97 20.4061.08 NS

Phenylalanine 46.9261.70a 41.1361.13ab 38.2361.52bc 33.3062.35c ,.001

Proline 118.26610.14 127.6369.63 106.04611.02 104.39611.93 NS

Serine 68.1865.69ab 74.9862.29a 62.4262.57ab 55.7362.12b ,.01

Threonine 92.7162.93a 87.6362.49a 78.2962.95ab 69.2863.96b ,.01

Tyrosine 40.2962.47a 36.3761.12ab 33.7661.54ab 29.6362.77b ,.01

Valine 154.5168.65a 130.5965.99ab 118.4066.69b 113.1669.49b ,.01

1Data are means 6 SEM (n = 7–10). In each row values without a common letter significantly differ, P,0.05;NS, non-significant.
doi:10.1371/journal.pone.0088904.t001
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WPI and HFD-30% WPI diet groups compared to the HFD

control, while in contrast they were significantly lower in the

HFD-40% WPI group compared to the HFD control. The

aforementioned patterns were also observed with respect to the

corresponding genera (Lactobacillus, Clostridium and Bifidobacterium

respectively) (Table 5). Also at genus level, proportions of Rikenella

Figure 2. Impact of whey protein isolate and protein to
carbohydrate ratio on energy intake. Energy intake (A) and
feeding behaviour (meal size & meal number) (B–C) was measured
using TSE Phenomaster cages at 17–20 weeks for mice on either a 10%
kJ low fat diet (LFD), 45% kJ high fat diet (HFD) or a HFD with 20, 30 or
40% kJ whey protein isolate (WPI). Experimental data collected from
individual mice at 9 minute intervals over a 24 hour period are shown
as mean values 6 SEM (n = 8–10 per group) for light and dark phases. In
light and dark phase, groups that do not share a common letter are
significantly different at P,0.05.
doi:10.1371/journal.pone.0088904.g002

Figure 3. Impact of whey protein isolate and protein to
carbohydrate ratio on metabolic activity. Metabolic activity was
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were significantly higher in the HFD-40% WPI group compared

to HFD-20/30% WPI groups, while proportions of Peptostrepto-

coccus were significantly higher in the HFD-40% WPI group than

in any other diet group (Table 5). Specific comparison of the

microbiota of the HFD-20% WPI and HFD control was deemed

particularly important given that the changes occurring here

reflected changes resulting specifically from the presence of whey

protein, rather than casein, in the diet, and not simply a change in

the P/C ratio in the diet. In addition to the changes in the

Lactobacillus, Clostridium and Bifidobacterium populations (and associ-

ated families) referred to above, it was also noted that proportions

of Desulfovibrio and Mucisprillum (genus) were increased in the HFD-

20% WPI relative to HFD control animals.

Discussion

The key findings of this study are that WPI has a specific effect

on HFD-induced energy intake, metabolic health and gut

microbiota composition. Additionally, with the exception of

energy intake, increasing the P/C ratio, by increasing WPI

dietary content, was seen to dramatically alter the above

parameters.

Energy intake
Cumulative energy intake measured up to week 16 did not

significantly differ between LFD and HFD fed mice. While this is

consistent with data reported elsewhere [20], HF feeding has also

been shown to increase or decrease energy intake in rodents

[32,33]. Differences between data reported may relate to variances

in diet composition including fat source/composition, or it may be

measured using TSE Phenomaster cages at 17–20 weeks for mice on
either a 10% kJ low fat diet (LFD), 45% kJ high fat diet (HFD) or a HFD
with 20, 30 or 40% kJ whey protein isolate (WPI). Experimental data for
(A) oxygen consumption (VO2), (B) heat production, (C) locomotor
activity and (D) respiratory exchange ratio (RER), collected from
individual mice at 9 minute intervals over a 24 hour period, are shown
as mean values 6 SEM (n = 8–10 per group) for light and dark phases. In
light and dark phase, groups that do not share a common letter are
significantly different at P,0.05.
doi:10.1371/journal.pone.0088904.g003

Figure 4. Impact of whey protein isolate and protein to carbohydrate ratio on adipose cellular activity. Epididymal adipose tissue gene
expression was investigated in mice after 21 weeks on a 10% kJ low fat diet (LFD), 45% kJ high fat diet (HFD), or HFD with 20, 30 or 40% kJ whey
protein isolate (WPI). Relative mRNA expression is shown for (A) fatty acid synthase (FASN), fatty acid transporter 1 (FATP1), cluster of differentiation
36 (CD36), beta-3 adrenergenic receptor (b3-AR), uncoupling protein 2 (UCP-2), lipoprotein lipase (LPL) and carnitine palmitolytransferase 1b (CPT1b),
and (B) for peroxisome proliferator activated receptor gamma (PPARc), insulin receptor (IR), insulin receptor substrate 1 (IRS-1), glucose transporter 4
(GLUT4), 11b-hydroxysteroid dehydrogenase type 1 (11b-HSD1), tumour necrosis factor alpha (TNF-a) and cluster of differentiation 68 (CD68). Data
represent mean values 6 SEM (n = 9–10 per group). Gene expression is shown relative to the LFD control group set at 1.00. Groups that do not share
a common letter are significantly different at P,0.05.
doi:10.1371/journal.pone.0088904.g004
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due to differences in the palatability of the LFD used as the control

[33,34].

In this study, there was a discrepancy in energy intake in HFD

fed mice depending on the housing environment (single or group

housed). In contrast to the group house environment up to week

16, HFD fed mice when individually housed in metabolic cages

during weeks 17–20 showed a hypophagic response compared to

LFD fed mice. It is possible that these differences may be related to

the accuracy of the method used to measure food intake in group

versus single housed mice, although if this was an error due to

methodology, then it would likely to have influenced all dietary

groups equally and not just the HFD group. Alternatively, the

different behavioural responses could be result of social isolation,

which has been shown to decrease energy intake and elevate

plasma corticosterone levels [35,36]. However, socially isolated

mice adapt to the new environment and consume similar amounts

of food as pre-adapted singularly housed mice 6 hr post-novelty

stress, but interestingly 24hr later, their food intake reduces

significantly once again in the new environment, suggesting that

stress of social isolation could extend up to 24 h [36]. We showed

that group housed mice on a LFD when placed in isolation adapt

to the new environment and continue to consume similar amounts

of food by day 2 and 3 in the new location [8] and consequently

used the day 3 time point to measure energy intake in this study.

Rodents on a HFD have been shown to display increased anxiety

[37], and have an over-active hypothalamic-pituitary-adrenal axis

[38,39] resulting in elevated plasma corticosterone levels, as

demonstrated here. This could explain why HFD fed mice are

more susceptible to stress stimuli with more pronounced reduc-

tions in energy intake compared LFD fed counterparts subjected

to the same stress levels [40–42]. Consequently, in a HFD

background, it’s possible that social isolation-induced stress

responses could have had a greater impact on energy intake with

effects lasting up to the 3 day housing period as used in this study.

Given the finding that whey proteins such as lactoferrin and a-

lactalbumin and native whey protein itself reduce stress [43–47], it

is possible that replacing the casein protein with an equivalent

WPI content caused normalisation of energy intake in HFD-fed

mice by affecting a specific feeding behaviour related mecha-

nism(s), with increasing the WPI protein-derived bioactives having

no further effect. This WPI effect on energy intake appeared be

specific to the HFD-induced neuroendocrine state because mice

on the LFD with WPI showed similar energy intake to casein diet-

fed controls. Since neither WPI nor increasing the P/C ratio

influenced plasma corticosterone levels, adipose expression of 11b-

HSD1 or hypothalamic expression of GCCR in HFD fed mice, it

is possible that WPI may have affected other central mechanisms

mediating stress responses not investigated in this study [48–50]

either independently or in combination with key mechanisms

regulating energy balance. Given that leptin decreases meal size

and number [51–53], and WPI reduced the HFD-induced

increase in plasma leptin levels, it’s possible that WPI-derived

bioactives could have specifically influenced circadian rhythm of

leptin production and/or action within the neuroendocrine state

of HFD-fed mice in a socially isolated environment. Additionally,

the reduction in plasma amino acids associated with WPI intake

(see below), could also have acted as a possible central trigger to

increase energy intake in WPI groups compared to HFD control in

the single house environment.

HFD feeding has been shown to cause a gain of weight in rats

up to the duration of a test period lasting 76 weeks, with animal’s

body weight gain responding to changes to the dietary fat content

introduced at various time points [54]. Lin et al., [32] demon-

strated that mice on a HFD for 19 weeks are responsive to

intracerebroventricular administration of leptin. These data

suggest that energy balance related mechanisms are able to

respond to energetic challenges even after prolonged high fat

intake. High protein intake within a HFD suppresses energy intake

[55,56] albeit not consistently [4,57], and in our study, the P/C

ratio did not alter energy intake in either housing environment.

This could be a result of the quantity or composition of the

macronutrient used in the test diets. Indeed, data from human

trials showed that increasing protein dietary content (10/15% to

30%) only decreased energy intake when the carbohydrate

content was kept constant [58,59]. This further highlights the

importance of designing appropriate experimental diets with

the correct macronutrient composition for uncovering the

energy balance related impact of the dietary component under

investigation.

Metabolic health
Replacement of the casein protein with an equivalent energy

content of WPI (i.e. 20%) did not specifically alter metabolic

activity, heat production or locomotor activity in HFD or LFD fed

mice. In contrast, Acheson et al., [60] showed that whey has a

greater thermic effect than casein or soy in humans. These

Table 2. Tissue lipid parameters and plasma levels of hormones and metabolites in mice fed a 10%kJ low fat diet (LFD), 45%kJ
high fat diet (HFD) or HFD with 20%, 30% or 40% kJ whey protein isolate (WPI) for 21 weeks1.

LFD HFD 20% WPI 30% WPI 40%WPI P value

Liver TAG (mg/g tissue) 71.4769.17a 139.0366.92b 104.9465.88c 107.2168.83c 70.8267.64a ,.001

Leptin (ng/ml) 4.4160.75a 84.6963.17b 53.7865.67c 51.1264.69c 15.0164.07a ,.001

TAG (mg/dl) 39.8562.91a 56.9066.31b 45.1564.32ab 52.3663.91ab 40.1963.96a ,.05

NEFA (mmol/L) 0.3760.09a 0.6760.07b 0.6460.05b 0.6360.06b 0.3660.05a ,.01

Corticosterone (ng/ml) 150.0621.7a 319.0648.6b 286.8631.9ab 334.1636.7b 277.1635.5ab ,.01

GLP-1 (pM) 25.0362.47 33.1562.83 28.0762.3 27.8861.98 24.0362.25 NS

Glucose (mmol/L) 9.1461.24a 15.6860.83b 13.9260.95b 14.0861.05b 9.2560.77a ,.001

Insulin (ng/ml) 0.2960.05 0.5560.08 0.4060.10 0.3760.04 0.3160.06 NS

HOMA-IR 2.4860.67a 9.7961.07b 6.8162.58ab 6.2060.95ab 3.0460.64a ,.01

1Data are means 6 SEM (n = 5–10). In each row results without a common letter significantly differ, P#0.05 NS, non-significant. TAG, triacylglycerol. NEFA, non-esterified
fatty acids. GLP-1, glucagon-like peptide 1. HOMA-IR, homeostasis model assessment of insulin resistance.
doi:10.1371/journal.pone.0088904.t002
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differences in data may be related to the fact that the latter study

only investigated an acute post-prandial response to a defined test

meal, or it may relate to how different species (humans versus

mice) digest and metabolise dietary proteins. Shetzer et al, found

that mice consuming a HFD and WPI-supplemented drinking

water have enhanced oxygen consumption compared to mice

drinking unsupplemented water [4]. In this instance, the increased

metabolic activity may have arisen due to the increased protein

intake (proteins from diet and from WPI supplemented water). In

fact, this corroborates with the data presented here, which show

that increasing the P/C ratio resulted in increased energy

expenditure (VO2 and heat production) and dark phase locomo-

tors activity, resulting presumably from the increased catabolism of

ingested dietary protein, coupled with thermic effects of WPI

compared to casein [60] and/or due to increased deposition of

lean mass with WPI content [61–63]. Interestingly, Zhang et al.

[64] showed that HFD fed mice on leucine-supplemented drinking

water have reduced fasting plasma levels of aspartic acid, glutamic

acid, and phenylalanine, as well as increased VO2 and reduced

adiposity compared to HFD controls. Given the influence of

leucine on WPI-induced muscle hypertrophy [65,66] and its

unique ability to regulate the translation of protein synthesis [67],

it is possible that the elevated leucine content found normally in

the WPI diets may have enhanced muscle protein synthesis by

directing other amino acids towards protein synthesis and/or

catabolism [68,69], with the required energy been derived possibly

from fat catabolism [70]. Consistent with the latter suggestion,

we found an increased lean mass and a trend towards a reduc-

tion in fat mass with decreased plasma levels of several amino

acids, but not leucine, when the casein protein in a HFD

was replaced with WPI or when the P/C ratio in the HFD was

increased.

WPI intake appeared to cause a trend towards a reduction in fat

mass, and in the liver this manifested as a WPI specific reduction

Table 3. Relative hepatic gene expression in mice fed a 10%kJ low fat diet (LFD), 45%kJ high fat diet (HFD) or HFD with 20%, 30%
or 40% kJ whey protein isolate (WPI) for 21 weeks1.

LFD HFD 20% WPI 30% WPI 40% WPI P value

CD36 1.0060.20a 2.8560.34b 2.9860.45b 2.1760.25ab 1.5060.25a ,.05

PPARc 1.0060.12a 3.0060.57b 2.3060.49b 1.8860.46b 0.8560.13a ,.001

FABP1 1.0060.09ab 1.2760.10b 0.8660.06ac 1.2760.17bc 0.7160.09a ,.001

IRS-1 1.0060.15a 0.5860.04b 0.6960.05ab 0.6860.06ab 0.7960.06ab ,.01

CPT1a 1.0060.08 0.8560.08 0.9760.06 0.9060.13 0.8660.10 NS

GLUT2 1.0060.09 0.7660.04 1.0260.08 0.9760.09 0.8960.05 NS

FATP5 1.0060.21 0.8960.07 0.8860.07 1.1660.07 1.2460.12 NS

FASN 1.0060.36 0.4660.14 0.5460.19 0.4060.06 0.3260.04 NS

PPARa 1.0060.04 1.1360.05 1.2160.05 1.1760.10 1.2860.11 NS

TNFa 1.0060.26 0.8460.15 1.1260.18 0.8060.09 0.7160.10 NS

1Data are means 6 SEM (n = 7–10). In each row results without a common letter significantly differ, P,0.05; NS, non-significant. Gene expression shown relative to the
LFD control group set at 1.00.CD36, cluster of differentiation 36; PPARc, peroxisome proliferator activated receptor gamma; FABP1, Fatty acid binding protein 1; IRS-1,
Insulin receptor substrate 1; CPT1a, carnitine palmitoyltransferase 1a; GLUT2, Glucose transporter 2; FATP5, Fatty acid transporter 5; FASN, Fatty acid synthase; TNF-a,
Tumour necrosis factor alpha.
doi:10.1371/journal.pone.0088904.t003

Table 4. Relative hypothalamic gene expression in mice fed a 10%kJ low fat diet (LFD), 45%kJ high fat diet (HFD) or HFD with 20%,
30% or 40% kJ whey protein isolate (WPI) for 21 weeks1.

LFD HFD 20% WPI 30% WPI 40% WPI P value

IR 1.0060.03ab 0.9760.07a 1.2260.04bc 1.3760.04cd 1.5560.08d ,.05

GCCR 1.0060.09a 1.4060.10b 1.3460.07ab 1.3060.08ab 1.4260.09b ,.05

TNFa 1.0060.05a 1.7660.09b 1.5760.13b 1.4760.14ab 1.4060.25ab ,.01

POMC 1.0060.08 0.9960.06 1.0160.06 0.9860.06 1.0060.08 NS

NPY 1.0060.04 1.0260.09 0.9060.06 0.8860.05 0.9260.08 NS

ObR 1.0060.11 0.9260.05 0.9960.05 1.0760.07 0.9560.05 NS

GHS-R 1.0060.07 0.9860.06 0.9860.08 1.0260.11 1.0460.09 NS

PPARc 1.0060.36 1.0760.04 0.9560.05 0.9960.05 0.9860.07 NS

CPT1c 1.0060.09 0.9260.04 0.9160.01 0.9760.06 0.8660.04 NS

IRS-1 1.0060.04 0.9960.04 0.9760.02 1.0660.08 1.0060.06 NS

1Data are means 6 SEM (n = 5–10). In each row values without a common letter significantly differ, P,0.05; NS, non-significant. Gene expression shown relative to the
LFD control group set at 1.00. IR, Insulin receptor; GCCR, Glucorticoid receptor; TNF-a, Tumour necrosis factor alpha; POMC, Pro-opiomelancortin; NPY, Neuropeptide Y;
ObR, Leptin receptor; GHS-R, Growth hormone secretatgogue receptor; PPARc, peroxisome proliferator activated receptor gamma; CPT1c, carnitine palmitoyltransferase
1c; IRS-1, Insulin receptor substrate 1.
doi:10.1371/journal.pone.0088904.t004
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in TAG levels, which was accompanied by the suppression of

FABP1 mRNA expression, similar to previous findings [4,6,71,72].

In the epididymal adipose tissue, WPI prevented the HFD-

induced FASN gene expression, albeit a recent study reported that

WPI does not affect the weight of the epididymal tissue in HFD fed

mice, but instead causes a reduction in subcutaneous fat pad

weight [20]. These data suggest that WPI affects cellular activity in

the liver and in specific adipose tissue depots. While it has been

suggested that whey protein may facilitate enhanced postprandial

chylomicron clearance via an alteration in LPL expression/activity

[73,74], here we did not find a WPI specific effect on LPL

expression or plasma TAG levels, but we did observe that intake of

the highest P/C ratio (40%-WPI) led to an increase adipose tissue

LPL mRNA expression which was accompanied by significant

reduction in plasma TAG levels, and a complete reversal of genes

involved in lipid accumulation (PPARc), fatty acid transport

(FATP1), and lipolysis (b3-AR). Given that HF feeding/obesity

down-regulates b3-AR mRNA expression [75], our data suggests

an increased adipocyte lipolysis, and reduction in adipose TAG

storage in HFD-40%WPI fed mice. Yet the endogenous CPT1b-

associated b-oxidation pathway and the UCP-2-associated path-

way in epididymal adipose tissue seem to be unaffected (CTP1b) or

suppressed (UCP-2) by raising the P/C ratio. This data raises the

possibility that the free fatty acids generated from the potentially

increased availability of b3-AR in the adipose may have been re-

directed for utilisation by other physiological processes active in

HFD-40% group, possibly leading to the increased metabolic

activity (VO2) observed in the animals. It is also noteworthy that

WPI has been shown to increase faecal fat excretion compared to

casein [5], which may have also contributed to the decreased

plasma TAG and NEFA seen here with intake of the highest P/C

ratio diet (HFD-40%WPI).

Given the link between HFD-induced obesity, low-grade

inflammation and insulin resistance [76,77], one could argue that

the dramatic reduction in fat mass observed with the highest P/C

ratio may underlie the effects on inflammatory markers in the

adipose tissue (TNFa and CD68) and the hypothalamus (TNFa),

along with simultaneous changes in expression of genes involved in

insulin signalling (IR, IRS-1 and GLUT4 in the adipose, IRS-1 in

liver and IR in the hypothalamus), and the reduction in plasma

glucose in these mice. Improvements to insulin sensitivity with

WPI have been reported previously [9,78], but our data suggested

that only an increased P/C ratio in the HFD facilitated

improvements to insulin signalling pathway associated gene

expression, particularly in the adipose, in parallel with reduced

HOMA-IR values.

Composition of gut microbiota
While many of the effects described above may be due to direct

WPI or P/C ratio-host interactions, the effect of WPI and P/C

ratio on the composition of the gut microbiota may also play an

important role in adiposity and weight gain in these animals. Here,

high throughput sequencing based analyses of faecal microbial

populations revealed the clustering of the microbiota from animals

in receipt of 30 and 40% WPI diets away from those in receipt of

20% kJ WPI or HFD-casein diets. Tranberg et al [20] recently

suggested that the efficient absorption of dairy whey proteins in the

small intestine may explain the absence of changes in the faecal

microbiota. This may explain the clustering of the microbiota from

animals fed 20% WPI or HFD-casein diets in our study. However,

it is apparent that the high concentrations of WPI present in the 30

and 40% WPI diets employed in our study had a more profound

effect, possibly due to additional whey proteins finding their way to

the large intestine and/or the overall change in the P/C ratio in

the diet. Consumption of the 30 and 40% WPI diets did not result

in a shift in the microbiota toward that of the LFD animals and

thus the effects on weight gain are not simply due to an overall

Figure 5. Impact of whey protein isolate and protein to carbohydrate ratio on the gut microbiota composition. Principal Coordinate
analysis (PCoA) of unweighted Unifrac distances of the 16srRNA sequences, demonstrating where sequences cluster according to diet group. Data
were generated from analysis of faecal samples collected from mice on 10% kJ low fat diet (LFD, D) or 45% kJ high fat diet (HFD, ¤) or a HFD with
20% kJ whey protein isolate (HFD-20% WPI, #), 30% kJ WPI (HFD-30% WPI, e) or 40% kJ WPI (HFD-40% WPI, N)(n = 10).
doi:10.1371/journal.pone.0088904.g005
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conversion to a LFD-like microbiota. Specific taxonomic changes

were also noted in response to the different diets. In all cases

dietary WPI resulted in significant increases in Lactobacillaceae/

Lactobacillus and decreases in Clostridiaceae/Clostridium. Increased

proportions of Lactobacillus have previously also been observed in a

study of individuals following a regime of calorie restriction and

exercise [79]. However, in contrast, increased proportions of

Lactobacillus have also been noted in HFD fed rats [80] and diet-

induced obese mice [81]. While specific species of Lactobacillus have

been associated with both lean and obese gut microbiota profiles

and also to play a role in obesity and immune response regulation

[82–84], due to the length of the 16S sequences generated and the

high degree of sequence homology, we cannot assess changes in

proportions of Lactobacillus at the species level. An increase in the

proportions of Bifidobacteriaceae/Bifidobacterium was also observed in

both the HFD-20% WPI and HFD-30% WPI compared to the

HFD group. This result, combined with the aforementioned

increases in Lactobacillaceae/Lactobacillus, mirror those reported by

Sprong et al who suggest that whey proteins act as grow factors for

certain species of bacteria by an amino acid composition mediated

mechanism [19]. This pattern did not extend to the HFD-40%

WPI group suggesting that, at these high protein levels, other

factors are at play. Our observations are also consistent with

previous findings that high proportions of the class Clostridiales are

associated with the gut microbiota of animals fed a HFD [85],

while fasting reduces the levels of Clostridium [86]. Notably,

Clostridiaceae can produce short chain fatty acids as a product of

their metabolism [87], which can play an important role in the

regulation of immune cells and has been associated with

inflammation and obesity [88]. These differences, as well as

others in the Proteobacteria Actinobacteria Deferribacteres (phylum),

Desulfovibrionaceae Deferribacteraceae Veillonellaceae (family), Desulfovibrio

and Mucispirillum taxa in the HFD-20% whey protein relative to

HFD controls (20% casein) are particularly notable as these reflect

changes resulting from the specific presence of whey proteins in

the diet, in place of casein, rather than changes in the P/C ratio.

Changes in relative proportions may be attributed to (a) the ability

of bacteria to utilise whey proteins as a growth medium, (b) the

anti-microbial activity of whey protein/peptide components, (c)

decreased competition as a result of the whey proteins/peptides

antimicrobial activity or (d) whey protein mediated changes in the

host. Ultimately, the question of cause versus effect remains

unanswered, and so while the changes to the microbiota observed

may contribute to the mechanisms involved in controlling weight

gain, further studies with, for example germ free animals, will be

required to determine this definitively.

WPI effects on energy balance from a whole animal
context

Focusing on the experimental data gathered between weeks 17–

21, during which we measured metabolic parameters, faecal

microbial population, body composition and tissue and plasma

level of energy balance related parameters, it is clear that WPI

intake increased energy intake associated with the HFD, without

altering energy expenditure, as measured by VO2 and locomotor

activity. However, the body composition and body weight in the

HFD-WPI group does not appear to reflect a positive energy

balance, as animals showed a trend towards a reduction in fat mass

and increased lean mass. It is noteworthy in this regards that WPI

has been shown to increase faecal fat excretion [5] and we also

observed some subtle changes in the gut microbiota at a

phylogenic level that are associated with non-obese states, raising

the possibility of a reduced intestinal TAG absorption in the HFD-

WPI groups with increased energy intake, leading to similar body

weight trajectories as HFD controls. Increasing the P/C ratio by

changing WPI from 30 to 40% did not alter energy intake but

significantly accentuated energy expenditure with a concurrent

dramatic change in physiology.

In summary, our results show that WPI specifically normalises

energy intake, increases lean mass and causes a trend towards a

reduction in fat mass associated with prolonged high fat feeding.

Raising the P/C ratio had no effect on energy intake but

augmented metabolic activity and beneficially altered gene

expression profiles for lipid metabolism, inflammation and insulin

signalling, particularly in the adipose tissue. High throughput

analysis of gut microbiota revealed distinct changes in microbial

populations with increased P/C ratio causing clustering of 30/

40% WPI groups together and distinct from those of HFD and

20% WPI groups, but with specific phylogenetic differences

existing between the latter groups. These data indicate that

changes to P/C ratio have a dramatic effect on energy balance and

the composition of gut microbiota distinct from that seen with

Table 5. Gut microbiota composition as % of reads in mice
fed a 45%kJ high fat diet (HFD) or HFD with 20%, 30% or 40%
kJ whey protein isolate (WPI) for 21 weeks1.

HFD 20% WPI 30% WPI 40% WPI

Phylum

Proteobacteria 0.36a 0.63b 0.34ab 0.32a

Actinobacteria 0.63a 1.82b 3.79b 0.36c

Deferribacteres 0.57a 1.61b 1.56ab 2.03b

Family

Desulfovibrionaceae 0.12a 0.31b 0.21ab 0.23ab

Rikenellaceae 6.71ab 7.54b 3.9a 6.4ab

Bacteroidaceae 0.44a 0.42a 0.16b 0.21b

Lactobacillaceae 0.21a 3.03b 4.6b 2.14b

Bifidobacteriaceae 0.43a 1.71b 3.66b 0.22c

Deferribacteraceae 0.57a 1.59b 1.32ab 2.03ab

Peptostreptococcaceae 0.62a 1.79a 1.54a 8.01b

Succinivibrionaceae 0.13a 0.15a 0b 0b

Clostridiaceae 1.31a 0b 0b 0b

Veillonellaceae 0.02a 0.12b 0a 0a

Genus

Anaerobiospirillum 0.13a 0.15a 0b 0b

Desulfovibrio 0.07a 0.22b 0.17ab 0.15ab

Alistipes 4.33ab 4.41a 2.24b 3.76ab

Rikenella 1.04ab 0.49b 0.68b 1.08b

Bacteroides 0.44a 0.4a 0.16b 0.21ab

Oscillibacter 0.24a 0.67ab 0.42ab 0.52b

Lactobacillus 0.2a 3.03b 4.6b 2.39b

Bifidobacterium 0.43a 1.71b 3.66b 0.22c

Mucispirillum 0.57a 1.61b 1.56ab 1.92ab

Coprococcus 0.11ab 0.23b 0.06a 0.06ab

Turicibacter 0.56a 0.35a 0.15ab 0b

Clostridium 1.3a 0b 0b 0b

Peptostreptococus 0.1a 0.14a 0.12a 0.78b

1Data are means 6 SEM (n = 10). Statistically significant differences generated
using the Kruskal-Wallis algorithm. In each row values without a common letter
significantly differ, P#0.05.
doi:10.1371/journal.pone.0088904.t005
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changes to protein source. Future studies should focus on

determining whether the effects demonstrated for highest P/C

ratio are specific to the WPI content, a consequence of

macronutrient change, or both.
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