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Abstract

Preferences play a crucial part in decision making. When supporting a user in

making a decision, it is important to analyse the user’s preference information

to compute good recommendations or solutions. However, often it is imprac-

tical or impossible to obtain complete knowledge on preferences. Preference

inference aims to exploit given preference information and deduce more pref-

erences. More specifically, the Deduction Problem asks whether another prefer-

ence statement can be deduced from a given set of preference statements. The

closely related Consistency Problem asks whether a given set of user preferences

is consistent, i.e., the statements are not contradicting each other.

We present approaches for preference inference based on qualitative prefer-

ence models that are based on lexicographic and Pareto orders. We consider

user preference statements that are given in the form of comparisons of alter-

natives or alternative sets. For some model types and preference statements we

formulate efficient algorithms; for others we show NP-completeness and coNP-

completeness results. In particular, we find that the Deduction and Consistency

problem are polynomial time solvable for comparative preference statements

for lexicographic and simple Pareto preference models by a detailed analysis of

the problem structures. The computational efficiency for these models makes

them particularly appealing for practical uses. The Deduction and Consistency

Problem are coNP-complete and NP-complete, respectively, for hierarchical and

generalised Pareto models, which make these models less practical even for sim-

ple preference languages. However, we still formulate a quite efficient algorith-

mic approach to solve the Consistency Problem (and implicitly the Deduction)

for hierarchical models.

We also analyse deduction and consistency for preference statements that are

(strongly) compositional under some set of preference models. (Strong) com-

positionality is a property of preference statements in connection with a set

of preference models. It demands inference of preference statements for cer-

tain combinations of preference models. We find many interesting results for

this case, which ultimately leads to a general greedy algorithm to solve the

Consistency Problem for strongly compositional preference statements. This in-

dicates that strong compositionality is an important property that can deliver

immediate algorithmic approaches when present. We find many types of pref-

erence statements, e.g., conjunctions of strongly compositional statements, are

xiii



strongly compositional. The considered comparative preferences statements

are also strongly compositional for many of the discussed preference models -

different lexicographic and hierarchical models.

We can make use of the Deduction Problem to find a set of optimal alternatives,

e.g., to be recommended to a user that are undominated with respect to differ-

ent notions of optimality. We analyse this connection for general lexicographic

models and find computationally efficient solutions.
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Chapter 1

Introduction

The Cambridge English Dictionary’s first definition of the word preference is:

"the fact that you like something or someone more than another thing or per-

son" [Dic18]. Following this definition, preferences play a crucial role in any

decision making process for a user when presented with a choice of items, can-

didates or alternatives. As such, they are used in various fields in computer sci-

ence, philosophy, economics and operations research. In particular, applications

in artificial intelligence can be found: in voting theory for choosing a winner,

in matchings to find stable solutions, in data bases to refine search queries, in

recommender systems to present a user with the most appreciated alternatives,

in human-computer interaction to optimise the use of computer interfaces, in

multi-objective (constraint) decision making to find an optimal solution, and

others [BD09, DHKP11]. Since preferences vary depending on the user’s ori-

gin, religion, taste, social environment, requirements, etc., they are personal

and must be elicited from the user directly when used for supporting a user in

a decision, or learned from previous decisions.

The utilisation of preferences is accompanied by various issues. This PhD work

takes on the task of analysing the structure, determining the complexity and

designing efficient algorithms (where possible) for the following interconnected

problems:

• Given a set of user preference statements Γ, are these statements consis-

tent, i.e., do not contradict each other? (Consistency Problem)

• Given a set of user preference statements Γ and a query preference state-

ment ϕ, can we deduce that ϕ holds true for the user as well? (Deduction

Problem)

1



• Given a set of user preference statements Γ, what are optimal alternatives

to present to the user? (Optimal Alternatives Problem)

We explore these problems for known and newly designed qualitative prefer-

ence models that are based on lexicographic and Pareto orders, and compar-

ative preference statements. While we find that all three problems are coNP-

complete and NP-complete, respectively, for hierarchical and generalised Pareto

models, Deduction and Consistency are solvable in fast polynomial times for

types of lexicographic models and simple Pareto models. Many of our algo-

rithms for the polynomial time cases are greedy approaches and rely on the

underlying structure of the problems and model types. One particularly inter-

esting property that we find is (strong) compositionality. We show that the

Consistency Problem can be solved by a greedy approach for any strongly com-

positional input statements. We consider the Optimal Alternatives Problem for

different notions of optimality for general lexicographic models and find com-

putationally efficient solutions.

An elicitation of the exact preferences of a user is often unrealistic due to the

immense effort required for the user to rank a large amount of alternatives.

Furthermore, a user might not be concious about their exact preferences, e.g.,

due to the lack of information on alternatives or the difficulty of expressing

the importance of features in numerals. It is thus often preferred to ask the

user only few and relatively simple questions about her or his preferences. A

fitting preference language has to be chosen accordingly. Often, a tradeoff be-

tween the expressiveness of the preference language and the convenience for

the user has to be found. It is, for example, much easier for a user to compare

"I prefer hotel A to hotel B" rather than to state "I prefer any hotel close to a

beach 3.5 times more to any 5 star hotel that has a pool and is far from the

beach". However, while the first statement only specifies the relation of two

alternatives, the latter is much more expressive since it orders many pairs of

alternatives and gives a measure of "how much" alternatives are preferred over

others. Apart from choosing an appropriate preference language, one can also

consider which questions to ask to the user in order to obtain maximal informa-

tion. In this dissertation, we mainly focus on problems of preference handling

under different types of comparative preference languages. That is, the user

gives quantitative comparisons of alternatives or alternative sets.

Another problem that needs attention when handling preferences is that elicited

preferences might not be consistent, meaning they contradict each other. If
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preferences are stated over a longer time period, one approach to overcome

inconsistency can be to consider only the latest consistent set of preference

statements. In other applications, it is reasonable to handle inconsistency by

finding an approximation that fits the true preference model for a user best.

This learning of preference models is closely related to preference elicitation.

Under many assumptions on the user’s preference model, deciding consistency

is related to inference of new preferences. Inference of preferences is used to

deduce more preference information from a given set of preferences in order

to overcome a possible gap of knowledge which could, for example, originate

from eliciting only few preferences from the user for her or his convenience.

In order to simplify and strengthen the analysis of consistency and inference

for preferences, assumptions can be made on the user’s preference model,

i.e., assumptions are made on the way the user expresses her or his prefer-

ences. Preference learning techniques focus on finding one preference model

of the assumed type that agrees best with the given preferences [FH10a].

This overcomes the inconsistency problem, but only gives an approxima-

tion of the real user preference model which can lead to wrong deductions.

Other work concentrates on reasoning with the set of all preference model

of the assumed type that satisfy the given preferences, see [Wil14] and our

work [GW16, WGO15, WG17]. This set clearly must include the true user pref-

erence model. Thus, no false deductions can be made (assuming that the true

preference model is of the assumed type). However, in the case of inconsistent

preference statements, the set of all preference models of the assumed type that

satisfy the given preferences is empty, and no meaningful deductions of other

preferences can be made.

In this dissertation, we will concentrate on the latter approach of reasoning with

the set of all preference model of the assumed type that satisfy the given prefer-

ences. We develop characterisations of consistency and deduction for different

assumptions on the type of preference models and for different preference lan-

guages. Furthermore, we develop algorithms and complexity results to solve

these problems and compare some of their running times.

To present users with optimal choices or solutions in a multi-objective frame-

work based on their preferences, one needs to find an appropriate measure of

optimality. One of the simplest methods is to assign an importance parameter

to every objective and use a weighted sum of objectives to identify optimal so-

lutions [FGE05]. However, if preference statements on solutions are given, one

3



1.1 Outline And Contributions

can reason over a set of preference models that satisfy the given preferences.

Every such preference model induces an order relation on the set of solutions.

We can define an optimality operator (an operator on alternative sets that re-

turns a set of "optimal" alternatives) based on a set of order relations. Similarly

as in a voting scenario one needs to decide on a rule by which a winner/set

of winners is selected. In this dissertation, we consider many known notions

of optimality [WO11] for one specific type of preference model and compare

the relations of these operators towards each other. Furthermore, we develop

algorithms to compute these operators and consider their complexity.

1.1 Outline And Contributions

The contribution of this work is a detailed analysis of preference deduction and

preference consistency for some qualitative preference models that are based on

the structures of well-known order relations: Lexicographic and Pareto orders.

The aim is to investigate necessary and sufficient conditions for deduction and

consistency. In the course of this analysis, we develop simple algorithms to

solve consistency and deduction for some cases, and prove NP-completeness

and coNP-completeness results for other cases.

This dissertation is organised in the following way.

Chapter 2: Related Work This chapter gives a brief overview of related work

for preferences in areas of artificial intelligence. We present the general concept

of preference relations. Furthermore, an overview of some preference elicita-

tion and learning techniques is given together with issues that arise in these

approaches. Afterwards, we discuss different representations of preferences.

We present commonly used preference languages and compact representations

(preference models).

Chapter 3: Preliminaries In this chapter, we outline all important prelimi-

naries for the framework used in the remainder of the dissertation. Here, we

formalise the Preference Consistency and Preference Deduction Problem. We

then introduce all specific preference languages and associated notations that

this dissertation is focusing on. The novel ideas of Pareto models and Hierar-

chical models are formally defined together with their induced order relations

4



1.1 Outline And Contributions

on alternatives and other important notions.

Chapter 4: Strong Compositionality This chapter analyses consistency and

deduction of preferences in very general conditions. No specific model type or

preference language is assumed here (although examples are extensively dis-

cussed). Instead we develop characterisations and conditions for deduction and

consistency based on (strongly) compositional preference statements. Here,

(strong) compositionality is a property of preference statements in connection

with preference models that is based on a composition operator by which pref-

erence models can be combined. We show that a greedy approach can be ap-

plied to solve the Consistency Problem for strongly compositional statements

and can be efficiently implemented depending on the type of preference model.

This greedy approach and its complexity is described in more detail in many

other parts of this dissertation for different preference models. Furthermore, we

discuss some interesting examples of strongly compositional preference state-

ments for some types of lexicographic and Pareto models.

Chapter 5: Pareto Model Here, we focus our analysis of deduction and con-

sistency on Pareto models for strict and non-strict comparative statements on

alternatives. In contrast to the hierarchical/lexicographical models considered

in this thesis, deduction and consistency are not mutually expressive for Pareto

models. This means that one problem cannot be solved by solving the other,

and thus, consistency and deduction are considered separately. We first con-

sider the case where Pareto models include only singleton variable sets, i.e.,

alternatives are compared in a Pareto manner based on the variables included

in the model. Here, we design polynomial algorithms based on simple set rela-

tions for both the Deduction and the Consistency Problem. For Pareto models

that can include non-singleton sets of variables, the values of variables within

one set are first aggregated by an operator, and alternatives are then compared

in a Pareto manner based on these aggregated values. For this type of models,

the Deduction and Consistency Problem are proven to be coNP-complete and

NP-complete, respectively.

Chapter 6: FVO Lexicographic Model Fvo lexicographic models are prefer-

ence model in which variables have a strict importance order. Alternatives are

compared lexicographically, i.e., on their values of the most important variable,
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and only if these values are equal are they compared on the second most impor-

tant variable, and so on. The Deduction and Consistency Problems, which are

mutually expressive for the simple form of fvo lexicographic models considered

in this chapter, can be solved in low-order polynomial time. Apart from present-

ing an algorithm to solve these problems for strict and non-strict comparative

preference statements, we also analyse their structure. We describe an inter-

esting concept, inconsistency bases, which lead us to many helpful properties

of models that satisfy preference statements. We can state that the algorithm,

even in the case of inconsistent preference statements, finds the "most satisfy-

ing" preference model and also identifies a maximal set of satisfiable preference

statements. Furthermore, we are able to use the same algorithm to deal with

comparative preference statements on the importance of variables. We also

consider strong consistency, which asks if there exists a model that satisfies the

given user preferences and includes all variables. Finally, we develop a proof

theory and show its completeness. This shows that we are able to consider this

form of preference inference not only from a semantic definition but also from

a logical perspective.

Chapter 7: Hierarchical Model In this chapter, we consider hierarchical pref-

erence models, in which variables are ordered by importance, but can be equally

important as well. The values of variables within one set of equally important

variables are first aggregated by an operator, and alternatives are then com-

pared in a lexicographic manner based on these aggregated values. We show

for strict and non-strict comparative preference statements that the Deduction

and Consistency Problem, while being mutually expressive, are coNP-complete

and NP-complete, respectively. We then concentrate on finding efficient ap-

proaches to solve the Preference Consistency Problem (and thus the Preference

Deduction Problem). We give a Mixed Integer Linear Programming formula-

tion, and then focus on recursive search algorithms that explicitly exploit some

properties of the problem that have been developed. Afterwards, we give a

description of runtime experiments to compare the efficiency of the described

approaches.

Chapter 8: CVO Lexicographic Model Cvo lexicographic models like their

simpler version of fvo lexicographic models, compare alternatives lexicographi-

cally based on a strict importance order of variables. However, here we assume

that the order on the values of variables is not fixed but specified within the
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model. We consider the Deduction and Consistency Problem, which again are

mutually expressive, for these models in connection with preference statements

that are certain comparisons over sets of alternatives. Even in this more gen-

eral case (compared to our considerations on simple lexicographic models), we

can formulate a polynomial time algorithm. We then consider different notions

of optimality for a set of alternatives. Based on the developed algorithm for

consistency, we show how (and how efficient) sets of optimal solutions can be

computed for the different notions of "optimal".

Chapter 9: Conclusion In the conclusion, we summarise the work presented

in this dissertation and point out important results. Furthermore, we outline

possible future work.

1.2 Publications

Parts of Chapters 3- 8 are based on the following published papers, which have

been subject to peer review:

• Nic Wilson, Anne-Marie George, and Barry O’Sullivan. Computation and

complexity of preference inference based on hierarchical models. In Proc.
International Joint Conference on Artificial Intelligence (IJCAI) 2015, pages

3271–3277, 2015.

• Anne-Marie George, Abdul Razak, and Nic Wilson. The comparison of

multi-objective preference inference based on lexicographic and weighted

average models. In Proc. International Conference on Tools with Artificial
Intelligence (ICTAI) 2015, pages 88–95, 2015.

• Anne-Marie George and Nic Wilson. Preference inference based on pareto

models. In Proc. International Conference on Scalable Uncertainty Manage-
ment (SUM) 2016, pages 170–183, 2016.

• Anne-Marie George, Nic Wilson, and Barry O’Sullivan. Towards fast al-

gorithms for the preference consistency problem based on hierarchical

models. In Proc. International Joint Conference on Artificial Intelligence
(IJCAI) 2016, pages 1081–1087, 2016.

• Nic Wilson, Anne-Marie George, and Barry O’Sullivan. Preference infer-

ence based on hierarchical and simple lexicographic models. IfCoLog Jour-
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nal of Logics and their Applications, 4:1997–2038, 2017.

• Nic Wilson and Anne-Marie George. Efficient inference and computation

of optimal alternatives for preference languages based on lexicographic

models. In Proc. International Joint Conference on Artificial Intelligence
(IJCAI) 2017, pages 1311–1317, 2017.
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Chapter 2

Related Work

In this chapter, we give a survey on related work for the problems of preference

consistency and deduction discussed in this dissertation. This includes the use

of preferences in areas of artificial intelligence in general, and single-agent de-

cision problems in particular. Afterwards we give a formalisation of preference

relations. We then discuss related work in preference elicitation and learning.

Several representations of preferences are described by giving details on com-

monly used preference languages and compact representations of preference

models.

2.1 Preferences in Artificial Intelligence

Preferences are considered in different contexts in artificial intelligence. They

usually involve either multiple agents (representing real users/persons), or

multiple criteria over which preferences can be expressed. Preferences of mul-

tiple agents can be conflicting. Similarly, preferences over multiple criteria can

be opposing. It is thus not obvious how to make decisions or find "optimal" so-

lutions in such scenarios. This dissertation focuses (especially in this chapter)

on single-agent decision making. However, in some of the presented work, the

different criteria can be viewed as preferences of multiple agents towards the

alternatives and are treated similarly as in voting scenarios.

Uncertainty in handling preferences can arise from a lack of information on

user preferences, but also from uncertainty in the alternative’s features. For ex-

ample, the actual flight time of different flight options can vary due to delays.
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2.1 Preferences in Artificial Intelligence

Alternatives can then be compared on their expected values due to probabil-

ity distributions [Fis70]. We concentrate our analysis on the former form of

uncertainty, where insufficient preference information is given.

For the assumptions made on preferences in this dissertation, preference sys-

tems are monotonic. This means that a superset of preferences Γ ∪ Φ yields

a more constrained system, and the set of preferred alternatives A′ will be a

subset A′ ⊆ A of the set of preferred alternatives A derived from Γ. In con-

trast, preference handling approaches for non-monotonic systems assume that

some preference information Γ may lead to some set of preferred alternatives

A, while a superset of preferences Γ∪Φ may lead to a different set of preferred

alternatives [DSTW04].

2.1.1 Multi-Agent Decision Problems

Classical examples of multi-agent decision problems can be found in social

choice theory for voting, matching and fair allocation problems [BCE+16].

A voting problem involves several voters that express preferences over several

candidates. Based on some voting rule, a winner is selected among the can-

didates. Many voting rules have been considered in the computational social

choice literature, mostly under the analysis of computational complexity and

desirable properties, such as non-dictatorship, neutrality, unanimity, indepen-

dence, etc. Some impossibility results have been shown for the construction of

voting schemes that satisfy several properties simultaneously. More details on

voting schemes are given later on (Subsection 2.5.1). An extensive introduction

to voting theory can be found in [BCE+16].

Matching problems in general try to find pairings of objects. A bipartite match-

ing problem, considers matching objects of one class to objects of another class.

When considering users that are to be matched to other objects or users, it is

only natural that preferences have to be considered. Considerations of "sta-

bility" often accompany matchings problems including preferences. Stability

means that for a matching no feasible couple can be found which prefers to

be matched to each other rather than with the assignment given by the match-

ing. The Stable Marriage, Stable Rommate and Hospital Residence Problem and

several variants, for example, apply this concept of stability to various applica-

tion problems such as kidney donation schemes [Man13], centrally coordinated

schemes for college admissions, school choice programmes, and allocation of
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2.1 Preferences in Artificial Intelligence

medical residents to hospitals [Bir17]. Here, graph theoretical properties can

be exploited to solve these problems.

Fair allocation problems deal with problems of allocating or dividing divisi-

ble [BCM16] or indivisible [Pro16] goods between users. Indivisible goods are

objects, e.g., houses, cars, paintings, etc. which cannot be divided. Fair allo-

cation problems with divisible goods are often explained with the cake cutting

problem. A cake as to be split among cake eaters, however, a cut can be made

at any position. In this sense, matching problems form a type of allocation

problems over indivisible goods. In general, different users might have strong

preferences for different or the same goods. Here, the question of "fairness"

arises. How can we divide goods in a fair way? Notions of fairness include

Pareto optimality (efficient allocations) and envy-freeness [BCE+16]. Efficient

allocations allocate or divide goods in a way that there exists no other allo-

cation which is equally or more preferred by all agents, and strictly preferred

by at least one agent. Envy-freeness expresses that no agent prefers another

agent’s share. Often fair allocation problems are analysed under the existence

and properties of fair solutions as well as complexity results [Tho16].

Examples of multi-agent decision problems, where agents individual decisions

influence the decisions of other agents, can be found in game theory [Osb04],

planning and scheduling (e.g., in Nurse Roostering [BDCBVL04] and Person-

ell Scheduling [VdBBDB+13]), argumentation theory [KVDT08, MP13], combi-

natorial auctions [DVV03], and others. Here, agents are usually autonomous,

goal-oriented, and pro-active [Bul14], so that their preference usually is to max-

imise/minimise some objective.

2.1.2 Preferences for Single Agents

Many studies, like [BDSS15, HWB+11, IJH04, SS11], report that, if many op-

tions are available, a user’s choice is likely to be poor (in comparison with

objective optimal options). It is thus valuable to support users in their deci-

sion making when faced with a large set of options. This might be because of

the high number of alternatives, but also because of the existence of several

relevant features of the offered alternatives. Single-Agent Decision Problems

usually involve multiple preference criteria or objectives.

Recommender systems are concerned with presenting a user with desirable

available options. Major efforts have been made to understand user preferences
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from a more psychological perspective. Users can be compared based on similar

choices or behaviour [SK09], and a user profile can be constructed [LDGS11]. It

is analysed what kind of recommendations a user values or expects. For exam-

ple, some users might value serendipity, novelty, diversity and other properties

in recommendation sets [KB17]. Furthermore, one can assume that preferences

are not necessarily static, but can change over time [BA09], which raises the

question of which time frame to consider. Furthermore, the same user can have

different preferences over the same alternatives, depending on the situation the

user is in [BA09]. This imposes some conditionality on preferences. Note that

the preference relation on the criteria under which alternatives are considered

can also depend on the user. While users usually prefer low prices to high

prices, it might not be clear whether a user prefers a black phone to a silver

one.

In multi-objective optimisation problems, variables represent the criteria of al-

ternatives and have numerical domains, so that the order relations on the do-

mains are given by natural orders. The set of available/feasible alternatives can

sometimes be specified by a set of constraints on the variable domains. Multiple

objectives/utilities express the overall goals of a user by which alternatives can

be compared. The objective values or variable values for feasible alternatives

can be aggregated into numerical values [FGE05], e.g., by (utility) functions, or

compared by relational orders [FHWW10, Jun04, MRW13], e.g., Pareto fron-

tiers or lexicographic orders. We discuss applicable order relations, by which a

set of "optimal" solutions can be found, in more detail in Section 2.5.

User search queries in databases can be personalised by incorporating prefer-

ences. Research in this area is concerned with the representation of preferences

in a database framework, and the complexity of finding answers to the search

queries based on these preferences. Here, preferences are viewed as soft con-

straints, i.e., do not represent the primary orientation of the search. As such

they help to avoid empty answer sets, and enable a ranking of answers, so that

the user is not overwhelmed with two many answers [LL87]. Within the field of

database systems, various preference representations have been analysed and

implemented. A wide overview can be found in [Kie02] and [SKP11].
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2.2 Binary Preference Relations

2.2 Binary Preference Relations

To understand what preferences are, we consider the definition of a binary

relation � and important associated properties. A preference relation orders

alternatives, i.e., sets alternatives into relation with each other, and can thus be

formally defined as a binary relation on a set of alternatives A.

Definition 2.1: Preference Relation

A preference relation � is a binary relation on a set of alternatives A, that

is, � ⊆ A×A. For (α, β) ∈ �, we say "α is preferred to β".

There are many important properties for preference relations (or more gener-

ally binary relations) that one can assume. The following is a list of the most

common ones. Let � be a binary relation on A.

Reflexive For all α ∈ A, α� α.

Symmetric For all α, β ∈ A, if α� β, then β � α.

Transitive For all α, β, γ ∈ A, if α� β and β � γ, then α� γ.

Complete For all α, β ∈ A, α� β or β � α.

We can define some related negations of properties.

Irreflexive For all α ∈ A, α 6 �α.

Antisymmetric For all α, β ∈ A, if α� β and β � α, then α = β.

Asymmetric For all α, β ∈ A, if α� β, then β 6 �α.

Some binary relations with selected properties are commonly known under spe-

cific names.

Definition 2.2: Order Relations

A preorder is a reflexive and transitive binary relation.

A partial order is a reflexive, transitive and antisymmetric binary relation.

A total preorder or weak order is a complete and transitive binary relation.

A total order is a complete, transitive and antisymmetric binary relation.

In the following, we will consider preference relations that are preorders. As-

sociated with a preorder is a symmetric and an asymmetric part. Furthermore,

a preorder generates three relations: The corresponding equivalence relation,
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strict relation and incomparability relation.

Definition 2.3: Equivalence, Strict and Incomparability Relations

Let � be a preorder on A.

The symmetric part of �, or equivalence relation ≡ is defined by:

For all α, β ∈ A, α ≡ β, if α� β and β � α.

The asymmetric part of �, or strict relation � is defined by:

For all α, β ∈ A, α� β, if α� β and β 6 �α.

The remaining part of �, the incomparability relation ∼ is defined by:

For all α, β ∈ A, α ∼ β, if α 6 �β and β 6 �α.

2.2.1 Relational vs. Cardinal Preference Representations

We can split preference relations into cardinal and relational preference repre-

sentations [Wal07].

Cardinal preference representations assign a score or utility to the alterna-

tives, and subsequently alternatives can be compared based on their scores.

For numerical utilities, this yields a preference relation that is a total pre-

order. Utility functions are functions f : A −→ R that assign every alter-

native a real numbered utility. For alternatives α, β ∈ A, α � β if and only

if f(α) ≥ f(β). Utility functions are well known and studied, and used

as preference representations in many papers concerned with decision mak-

ing [FGE05, Fis70, MD04, WDF+08]. Consider alternatives that are given by

feature vectors, so that they are specified over a set of variables V such that

A ⊆ ΠX∈VX, where X is the domain of variable X ∈ V. In this case, utility

functions assume that the variable domains are commensurable and values can

be combined into a single score. Moreover, often all variable domains are as-

sumed to be subsets of real or rational numbers. We will discuss some compact

representations that rely on additional assumptions on the variables and prop-

erties of the function in Section 2.5, however, the results of this dissertation

only focus on relational preference representations.

Relational preference representations assume a set of variables V by which the

alternatives are described [BDPP10, BD09, Wal07], i.e., A ⊆ ΠX∈VX. However,

in contrast to utility functions, they do not necessarily assume commensurably
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or numerical variable domains. Instead, variables are put into relation with

other variables by, e.g., their importance. On the downside, these order rela-

tions do not always yield total preorder preference relations.

One famous example of relational orders is given by lexicographic orders. For-

mally, a lexicographic order is defined as follows.

Definition 2.4: Lexicographic Order

A lexicographic order �lex of vectors A with variables V, variable domains

X with total order relations ≥X (and strict relation >X), and a total order

X1 > X2 > · · · > X|V| on the variables is given as follows. For alternatives

α, β ∈ A, α�lex β if and only if

1. there exists a variable Xi such that α(Xi) >Xi β(Xi), and α(Xj) =
β(Xj) for all j < i, or

2. α(Xi) = β(Xi) for all i ∈ {1, . . . , |V|}.

The total order of variables associated with a lexicographic order can be viewed

as an importance order of the variables. Alternatives are compared on the most

important variable, and only if the values are equal, are the alternatives com-

pared on the second most important variable, and so on. The order relation �lex

is a total preorder on the set of alternatives A. Lexicographic orders find ap-

plications in many areas, e.g., multi-objective optimisation problems [Fre04],

databases [Ull84], economics [Fis74], mathematics in a broader sense, and

many other fields. We discuss lexicographic orders and more generally hier-

archical models in more detail for the context of preference representations in

Section 2.5.2.

Another example of relational orders is given by Pareto orders, which are de-

fined as follows.

Definition 2.5: Pareto Order

A Pareto order �Pareto of vectors A with variables V and variable domains

X with total order relations ≥X is defined by: For alternatives α, β ∈ A,

α�Pareto β if and only if α(Xi) ≥Xi β(Xi) for all i ∈ {1, . . . , |V|}.

This order relation allows incomparable pairs of alternatives but is transitive, re-
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flexive and antisymmetric. One alternative is only better or equal than another

alternative, if it is better or equal in all values of the variables. Thus �Pareto is

a partial order. Pareto orders are applied in voting scenarios [Wal14], multi-

objective optimisation problems [BDPP10], database queries [BKS01, MLB15],

allocation problems [ACMM05], economics [Sti87, Tia09], and many other

fields. We discuss this relational order in more detail in the context of pref-

erence representations in Section 2.5.2.

Other relational orders on alternatives could include minimum and maximum

operators on the values of variables, or a comparison of value differences where

variable domains are numerical [BD09].

2.3 Acquisition of Preference Information

To support users in a decision, we need to know their preferences to understand

which options they evaluate as "good" options. That is, we need to have an

understating of the user’s preference relation by which alternatives are ordered.

Common methods of gaining preference information include the following.

Looking at historical data of the user We can analyse data that explicitly

or implicitly indicates user preferences. For example, one can extract prefer-

ences over destinations by exploring location aware information obtained from

location-based social networks in order to recommend personalised travel pack-

ages [YXYG16]. Similarly, tracked browsing behaviour and text mining tech-

niques potentially lead to good recommendations of hotels [LLCH15]. Quite

obviously, this requires the existence of historical user data and the consent of

the user to use it; both of which might not always be given. In this approach,

one also has to identify appropriate time frames in the historical data taken into

account, since preferences might change over time.

Considering similar user’s behaviour One can assume that, under some

measure of similarity, similar users have similar preferences. This assumption is

the basis of collaborative filtering methods [SK09]. For example, we can present

a user with videos that similar users liked, and expect a high user satisfac-

tion [LRHW17]. Content based recommender systems that employ this method

thus require a database of user profiles and a similarity metric [LDGS11]; both
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of which might not be realistic in many applications. Furthermore, the resulting

recommendations might not be suitable for "grey sheep", i.e., users that do not

agree or disagree with any group of people [SK09].

Asking the user directly Although this approach seems to promise very accu-

rate user preference information, it also is the most cumbersome for the user.

In contrast to the first two approaches, the users actively spent time and effort

to express their preferences. In order to make this approach worthwhile for a

user, the time and effort has to match the quality of the recommendations. In

the following, we discuss approaches that aim to improve exactly this tradeoff

between effort and recommendation quality.

2.3.1 Eliciting Preferences

Bettman et al state that several factors like chance of making an error, justifi-

ability, and the avoidance of conflict influence the user’s choice of order rela-

tion/preference model when comparing alternatives; however, the (cognitive)

effort associated with making a choice is generally assumed to be a major in-

fluence on the choice of preference model [BJP90]. The effort of a task can be

measured experimentally via completion time of tasks and user self-reported

estimation of effort [BJP90], and electroencephalography (EEG) [APGvG10],

amongst others. In any elicitation approach that directly involves the user, it

is thus crucial to reduce the number and difficulty of questions asked to keep

effort and time in an acceptable range for the user.

We need to decrease the number of questions asked while making every possible

answer to a question most informative. However, highly expressive preference

statements are usually cognitively challenging for a user to express. Thus, an

appropriate tradeoff between expressiveness of statements and cognitive effort

to express them has to be found. Furthermore, to give the user flexibility in how

to express preferences, the chosen approach needs to be as complete as possible,

e.g., include negations, conditions, strict and non-strict statements etc. in the

underlying preference language. Different approaches of preference elicitation

include eliciting relations between outcomes, and eliciting information on the

user’s preference model (e.g., weights, importance order of variables, etc.).

When assuming an underlying user preference model, even one that the user

might not be aware of, it can be beneficial to elicit information on the preference
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model rather than direct relations of outcomes. Assume, for example, that the

users compare alternatives by a weighted sum of variable values (or utilities).

Exact numeric weights, which express the importance or influence of a variable,

are very hard or even impossible to formulate for a user [Dav87, KR93]. In

fact, although it can be convenient and productive to assume this, the user

might not be using, e.g., a weighted sum to compare alternatives. However, by

pairwise comparisons of the importance of variables as in [Har06], the relative

relation of weights can be elicited. This approach could also be used to elicit

a lexicographic or hierarchical model. The number of questions asked in this

approach is quadratic in the number of variables. Under other models, like

CP-nets, variables are not assumed to be (additively) independent. They can

thus not be ordered by importance and the value orders of variables cannot be

elicited separately, which usually makes the elicitation process harder [CP04].

An alternative to eliciting information on the user preference model, is to elicit

information on the relation between alternatives. It is, for exmaple, easier for

a user to express a comparisons between two or more alternatives, than to ex-

press numerical weights [DHKP11]. Thus, while comparative statements usu-

ally give less information on the user’s preference order, this type of preference

information can be preferred for elicitation, to avoid high cognitive efforts for

users.

Some conversational recommender systems tackle the issue of balancing user

effort and recommendation quality by critique based recommendations where

a user is repeatedly presented with a set of options [CP12]. This set of options

is simultaneously a set of recommended alternatives and a query set to elicit

further preferences. The users can identify a preferred alternative under the

presented options in order to further improve the recommendations, or decide

that they are satisfied with the recommended options. If an alternative α is

selected to be preferred amongst a set A of alternatives, this corresponds to a

set of comparative preference statements "α is preferred to β" for all β ∈ A.

This new preference information can be used to compute a new set of "better"

recommendations. Once the users decide further improvement on the recom-

mendations is not worth the effort spent on providing preference information,

they can terminate the elicitation process. The best balance between effort and

quality of recommendation can thus be determined by the user directly and

individually.

However, this approach evokes several different issues:
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• What properties does an optimal recommendation set need to possess?

• What properties does an optimal query set need to possess?

• How can new preference information be processed to compute the next

recommendation/query set?

On the one hand, it is important to define and compute the best query set of

alternatives. That is, to find a set of alternatives that gives the most possible

information (highest possible reduction of the current set of optimal alterna-

tives) no matter which alternative the user evaluates to be the best. On the

other hand, one wants to present the user with the best recommendation set,

i.e., a set of solutions that the user is expected to like best. Reasearch for rec-

ommender systems investigates the benefit of different properties of the alter-

natives in the query set, e.g., popularity (based on other users), controversy /

diversity, novelty and serendipity, for different applications [SRCP06, MRK06].

Often the optimal query and recommendation set differ and a hybrid solution

is found [Bal98]. Some approaches choose to present the user with alternatives

of high entropy in order to speed up the elicitation process [SRCP06]. However,

in some cases one can prove that the optimal query and recommendation set

are the same and no tradeoff has to be found [VB11]. These considerations

strongly depend on the assumed type of preference models and the notion of

"optimality".

Another query type considered in probabilistic models is the standard gamble,

where the users are asked if they prefer an alternative α over a gamble in which

the best alternative occurs with probability l and the worst alternative occurs

with probability 1 − l. In probabilistic models the next query to the user is

chosen to maximise the expected value (utility) of information [Bou02]. In

his partially-observable Markov decision process model, Boutilier incorporates

a cost associated with asking a query that reflects both the user’s effort for

answering the query and the system’s effort for computation. He aims at ex-

ploring the tradeoff between elicitation effort and decision quality and states

that "if the cost of obtaining that information exceeds the benefit it provides,

then this information too can be safely ignored" [Bou02].

A more detailed overview of preference elicitation techniques can be found

in [CL11] and [CP04].
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2.3.2 Learning Preferences

Preference learning tasks, assume that preferences of a user over some alterna-

tives are given, and try to predict the user’s preferences over other alternatives.

This provides a means of overcoming uncertainty (in the sense of a lack of in-

formation) in user preferences. While this approach of acquiring preference

information only gives an approximation to the user’s preferences, it is able to

deal with inconsistent (conflicting or contradicting) input preferences. Many

approaches for preference learning use machine learning techniques, and thus

require training data to learn their prediction models, and some measure to

evaluate their performance. Here, the training data must incorporate labels or

comparisons of instances or objects. Active learning algorithms aim at min-

imizing the labeled data required [Kri07]. They do not assume a full set of

labelled training instances. Instead they strategically select instances/objects

to be labelled by an expert. Depending on assumptions on the form of pref-

erence representation, learning approaches split into learning utility functions

and learning preference relations. One of the most prominent problems that

preference learning work is concerned with, is learning to rank, which can be

categorised in three areas: label ranking, instance ranking, and object rank-

ing [FH10a]. Ranking problems have interesting applications like learning to

rank recommendations [BHK98] or search results [Liu09].

Label ranking, seeks to predict a total order on a set of labels for every instance.

The training data consists of a set of instances, each associated with a set of ob-

servations that give pairwise comparisons of some labels [VG10]. In instance

ranking, given some training instances that are labeled and can be ordered ac-

cording to a given total order on the labels, the goal is to predict a ranking of

new instance (possibly by assigning scores or labels) [FH10a]. Object ranker

"learn to order things" [CSS98], which are not necessarily represented by fea-

tures. The input includes some preferences over tuples of objects. The output

then consists of a ranking for every set of objects [KKA10].

Consider the learning of utility functions, which assigns a utility to each alter-

native (by which the alternatives can then be compared). In instance ranking,

the input training instances comprise labels already, and the problem is to pre-

dict labels for new instances. In contrast, learning methods for label and object

ranking deal with constraints on the rankings given by pairwise comparisons

of labels or objects. Thus, the utilities of the input instances are not explicitly

given. Methods on utility function learning thus vary based on the type of input

20



2.3 Acquisition of Preference Information

data [FH10a].

When learning preference relations, a binary preference relation is sought

which extends the ordered tuples of alternatives specified in the input [FH10b].

The difficulty here is to find a preference relation that maximally agrees with

the input statements, which can be NP-hard [CSS98].

Similar to our approach to preference inference, model-based preference learn-

ing assumes an underlying structure, a preference model, for the wanted pref-

erence relation. Learning problems have, for example, been analysed for lex-

icographic models [BCL+10, YWLdJ10], CP-nets [AD07, GAG13], and general

properties on an aggregation operators [Tor10].

Different solutions to ranking problems, depending on their secific tasks

and inputs, include the use of regression models [ZHC+04], gradient de-

scent [BSR+05], optimisation approaches [PTA+07], neural networks [Tes89],

Bayesian models [HMG07] and others [FH10a].

2.3.3 Inferring Preferences

Because an elicitation process involving the user directly imposes substantial

effort on the user, and because learning approaches only deliver an approxima-

tion on the user’s preference relation, it is only natural to try to make the most

of the available preference information.

The Preference Deduction Problem aims at deducing new preferences from given

ones by using logical deductions. Based on assumptions on the type of prefer-

ence model and preference language used by the user, new preference state-

ments are deduced with certainty. This problem and the related Preference
Consistency Problem will be introduced in Section 3.1 and their consideration

under different preference languages and qualitative preference models form

the main contribution of this dissertation.

Preference inference has previously found applications, e.g., in multi-objective

constraint programming in our paper [GRW15] and recommender sys-

tems [TWBR11]. It could be employed in any decision problem to handle a

lack of preference information.

Papers on deduction and consistency of preferences preceding the work pre-

sented in this dissertation studied the problems for CP-nets [DB02, GLTW08],
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lexicographic model [Wil14], conditional lexicographic orders [Wil09], sorted-

Pareto orders [OW13], linear utility functions [BR07, TWBR11] and preference

logics more generally [BLW10].

2.4 Preference Languages

There are different ways in which preferences can be expressed, formalised and

interpreted. Generally speaking, preference statements are constraints on the

user’s preference relation on the considered alternatives. An order relation on

the set of alternatives A is a binary relation � ⊆ A × A. Such an order rela-

tion satisfies the user’s preference statements, if it satisfies all given constraints.

Typically, assumptions on the structure of the user’s order relation to rank alter-

natives are made. Transitivity, for example, is a very common and realistic prop-

erty for orders on alternaives in decision making scenarios [RDDS11, CDS14].

In the remainder of this dissertation we will only consider order relations that

are transitive, i.e., if the user prefers A to B and B to C, A is also preferred

to C. Different assumptions on the structure of an order relation are discussed

in the next section, while this section focuses on constraints given by relations

between alternatives. A preference language specifies in which manner these

relations between alternatives can be expressed, i.e., which type of statements

the user can give. One can consider preference statements as logical formu-

las [BLW10]. This allows the formulation of conjunctions and disjunctions of

preferences as well as any other boolean operator. In the following, however,

we present more specific forms of preference statements. In this dissertation,

we mainly focus on comparative preference languages, but we also present a

general framework to handle unspecified preference languages in Chapter 4.

In general, preference languages are divided into quantitative and qualitative,

weighted and unweighted preference languages, see p. 4 [Kac11].

When choosing a specific preference language, e.g., for the elicitation of user

preferences, one tries to find a tradeoff of how cognitively challenging it is for

a user to express a statement and how informative a statement is. A user could

for example be asked to provide numeric scores for alternatives, which then

would allow one to compare these alternatives to each other, and thus would

be quite informative. However, a quantitative weighted statement like "I rate

a day-time flight with LAN in business class with 6.75 out of 10" can be very

challenging for a user to formulate and often leads to imprecise scores. Even
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if the user knows properties of the alternatives and is able to compare them

by certain criteria, it is not easy for the user to aggregate this information to

obtain a numeric score. It would be easier, however less informative, for a user

to give a qualitative weighted statement like "I like flying with KLM very much".

Since no scale is provided, it is unclear how much "very much" is especially in

comparison with other flight options. However, because these statements are

more vague, they naturally are less often wrong.

The intention of expressing preferences is mostly to set different alternatives

into a relation, e.g., in order to find the most preferred alternative for a user.

Instead of evaluating alternatives individually and comparing them afterwards

based on the evaluations, the user could directly give comparisons between

alternatives. In this dissertation, the specific preference languages that are con-

sidered are comparative languages. We furthermore assume that a set of vari-

ables V, by which the alternatives can be compared, is known to the user. For

example, flight connections can be compared by the variables airline, time of

day and class. The variable airline could have a binary domain that contains

KLM and LAN. We denote the domain of a variable X ∈ V by Dom(X) or X. To

abbreviate the notation, we also write Q = ΠX∈QX for the domain of a set of

variables Q ⊆ V. The set of alternatives A is thus a subset A ⊆ V of complete

variable assignments. Sometimes we will refer to alternatives as outcomes.

Ordinal statements of the form "I prefer A to B" are usually easier for a user

to express as they allow for a less analytical and more intuitive decision. They

can be comparisons of two completely specified alternatives such as "I prefer a

night-time flight with KLM in economy class to a day-time flight with LAN in

business class", where the only three variables considered are the time of day,

class and airline as described before. This statement gives an ordering of two

alternatives, which has to be satisfied in the user’s preference order on the set of

alternatives. Although being easy to formulate, it gives only little information

about the whole set of alternatives. We denote such statements by α�β, where

α, β ∈ A are two alternatives and � is an order relation on the set of alternatives

A.

For a user it is cognitively slightly more challenging to express a comparative

statement such as "I prefer a flight with KLM to a business class flight with

LAN" where only partial information is given on the alternatives involved. The

user needs to make a comparison over sets of alternatives, and identify crite-

ria that preferred flights have in common over criteria of less preferred flights.
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We denote such statements by p � q, where � is an order relation on sets of

alternatives, and p and q are partial assignments to variables in V, i.e., p ∈ P
and q ∈ Q for variable sets P,Q ⊆ V. Statements like these can imply several

constraints on the user’s preference order, as they involve sets of alternatives

compliant with p and q, and are thus more informative than comparisons of

complete assignments of variables. The question of how to interpret this kind

of statements arises, i.e., which ordering constraints are implied by such a state-

ment. On the one hand, we have the set L of all KLM flights on the other hand

the set R of all business class flights with LAN. The literature discusses different

interpretations: ceteris paribus semantics, strong semantics, optimistic seman-

tics, pessimistic semantics and opportunistic semantics, e.g., see [Kac11], that

will be outlined in the following.

2.4.1 Semantics

In the following, we will describe different semantics, i.e., understandings of

preference statements on the example of the comparative preference statement

"I prefer a flight with KLM to a flight with LAN in business class" on partial

variable assignments. Let L be the set of all alternatives involving a KLM flight

and R the set of of all alternatives involving a business class flights with LAN.

Ceteris Paribus Semantics One of the most common semantics is the "ce-

teris paribus" (Latin for "all else being equal") semantics, see for example

[BBHP99, MD04, RNL+15]. Our example statement will be interpreted as "I

prefer a flight with KLM to a flight with LAN in business class given that all

other features are equal". We thus only include the tuples in L×R in the user’s

preference order in which assignments to all by p and q unspecified variables

are equal. This semantics differs from the others by selecting ordering tuples

not by ranking within the sets L and R but by specific values of the variables.

However, this interpretation is natural in many scenarios [BBD+04a]. We de-

note order relations � under ceteris paribus semantics by �cp.

Strong Semantics In strong semantics, it is assumed that all tuples in L × R
belong to the user’s preference order. Thus the previous preference statement

is interpreted as: "I prefer any flight with KLM to any flight with LAN in busi-

ness class". Order relations � under strong semantics are written as �str. An
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example of a type of preference statement under strong semantics is analysed

in [BK01]

Optimistic and Pessimistic Semantics Optimistic semantics interpret the

statement in a way that any of the best-ranked alternatives in L has to be pre-

ferred to any of the best-ranked alternatives in R. In other words, there has

to be an alternative in L that is preferred to all alternatives in R. (This relies

on transitivity of order relations, which we assume throughout the whole dis-

sertation, as mentioned earlier.) The statement is thus interpreted as: "There

is at least one flight with KLM that is better than any flight with LAN in busi-

ness class". The pessimistic semantics build the counter part of the optimistic

semantics. It is assumed that all worst-ranked alternatives in L are preferred

to all worst-ranked alternatives in R, i.e., there has to exist at least one alter-

native in R that is less preferred that any alternative in L. The statement can

thus be formulated as: "There is at least one flight with LAN in business class

that is worse than any flight with KLM". We denote order relations � under

optimistic and pessimistic semantics by �opt and �pes, respectively. [BHK14]

shows an example of how to employ optimistic semantics in a multi-objective

optimization scenario. They argue that pessimistic and opportunistic semantics

could be used in a similar way.

Opportunistic Semantics The opportunistic semantics impose a hybrid be-

tween optimistic and pessimistic semantics. We interpret a statement in a way

that the best ranked alternatives in L are preferred to the worst ranked alter-

natives in R. This means at least one alternative in L has to be preferred to at

least one alternative in R, i.e., "There exists a flight with KLM that is preferred

to some flight with LAN in business class". Order relations � under opportunis-

tic semantics are denoted by �opp.

The opportunistic semantics are weaker than the optimistic or pessimistic se-

mantics in the sense that they impose less constraints on the user’s preference

order on the set of alternatives. Any ordering on a tuple of alternatives that

is implied by the opportunistic semantics is also implied by optimistic and pes-

simistic semantics. Furthermore, any ordering on a tuple that is implied by the

ceteris paribus semantics, optimistic semantics, pessimistic semantics or oppor-

tunistic semantics is also implied by the strong semantics.

In the following example, we demonstrate the five discussed possible interpre-
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tations.

Example 2.1

We consider flight connections which feature the two variables class (busi-

ness/economy) and airline (KLM/LAN). We consider the four alternatives

listed in the following table.

Name class airline

α1 economy LAN

α2 economy KLM

α3 business LAN

α4 business KLM

The statement ϕ1 "I prefer a flight with KLM to a flight with LAN" expresses

preference of one set of alternatives L1 = {α2, α4} over another set of

alternatives R1 = {α1, α3}. Similarly, the statement ϕ2 "I prefer a business

class flight to an economy class flight" expresses preference of one set of

alternatives L2 = {α3, α4} over another set of alternatives R2 = {α1, α2}.
Let the binary relation "preferred to" be denoted by �.

In ceteris paribus semantics, the two statements together yield the partial

order given by (the transitive closure of) α4 �cp α3 �cp α1 and α4 �cp α2

�cp α1.

In strong semantics, the two statements together could be inconsistent, i.e.,

contradicting each other, if the expression "preferred to" is interpreted in a

strict way (�str is asymmetric): ϕ1 implies that α2 �str α3, while ϕ2 implies

that α3 �str α2. However, if "preferred to" is interpreted in a non-strict way

so that equivalences are allowed (α ≡str β if α �str β and β �str α), then

the two statements yield the following total preorder: α4 �str (α3 ≡str α2)

�str α1.

In optimistic semantics, under strict order relations ϕ1 and ϕ2 imply that

α4 is preferred to α3, α2 and α1. However, the order of α3, α2 and α1 is not

clear. Similarly, in pessimistic semantics under strict order relations ϕ1 and

ϕ2 imply that α4, α3 and α2 are preferred to α1. However, the order of α4,

α3 and α2 is not clear here. In the case of a non-strict order, we cannot con-

clude any order of the alternatives for optimistic or pessimistic semantics.

In the opportunistic semantics, no explicit order on tuple of alternatives is
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given. However, by ϕ1 the user’s preference order cannot prefer both α3

and α1 to both α4 and α2. Similarly, by ϕ2 the user’s preference order

cannot prefer both α1 and α2 to both α4 and α3.

2.4.2 Types of Comparative Statements

Next, we will outline different important types of comparative statements.

Strict and Non-Strict Preferences In the previous example, we can not only

see that the strong semantics implies the most constraints on the user’s pref-

erence order, but also that it makes a difference whether the statement was

interpreted in a strict or in a non-strict way, i.e., if equivalences between alter-

natives are admitted or not. This is an important classification of comparative

preference statements. Allowing indifferences, as in non-strict preferences, and

explicitly stating strict preferences are both realistic requirements for the user.

We will thus in the following chapters consider languages that allow both types

of statements. A non-strict preference statement like "I prefer an economy flight

with KLM to a business class flight with LAN" will be formalised as (economy,

KLM) ≥ (business, LAN). The strict statement "I strictly prefer a business flight

with KLM to an economy flight with KLM" is denoted by (business, KLM) >

(economy, KLM).

Sometimes, we want to consider the non-strict version ϕ(≥) of a preference

statement ϕ. This simply means replacing the type of relation between the

alternatives in a preference statement by a non-strict relation. If ϕ is a strict

preference statement ϕ : α > β, for example, then we define ϕ(≥) as α ≥ β.

Conditional Preferences An important generalisation of the so far discussed

preference statements is given by conditional preferences. The user can ex-

press that some value order of a variable depends on the values of some other

variables. Usually, conditional statements are only considered for unweighted

languages [BCL+10, BBD+04a, BEL09, Kac11, Wil04a, Wil11]. However, a

weighted statement could also be conditioned. Consider for example the quali-

tatively weighted statement "I like night-time flights vary much, given that I fly

business class". This indeed corresponds to a set of unconditioned qualitatively

weighted statements that involve all night-time business class flights.
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Conditional unweighted comparative preference statements, like "I prefer a

business class flight to a KLM flight, given that the flight is during the night",

are restricted to a specific assignment for one or more variables, but might not

give detail on preferences involving other assignments for the same variables.

It could for example also be the case that KLM flights are preferred to busi-

ness class flights given that the flight is during the day. Note that unweighted

conditional statements can also be expressed by a set of unconditional compar-

ative statements. It is common to denote a statement like "I prefer a business

class flight to a KLM flight, given that the flight is during the night" by (night):

(business) � (KLM). Depending on the semantics, the same statement can be

expressed by (business, night) � (KLM, night). Conditional statements are chal-

lenging to handle, however, it is realistic to assume that a user might want to

express such conditions. Because of this, some representations of preference or-

ders over alternatives are specifically designed to capture conditionality which

are outlined in Section 2.5.2.

Another form of conditionality can be expressed by ceteris paribus statements.

In this case, the condition restricts the tuples of ordered alternatives to those

with alternatives that have the same (but not a specific) value for some vari-

ables.

Negative and Negated Preferences The types of preference statements dis-

cussed so far were positive expressions of what a user likes (over something

else). It is also possible for the user to express negative preferences that state

what they do not tolerate, e.g., "I don’t like flying during the night" or "I do not

prefer a flight with KLM to a business class flight, given that all other criteria

are equal". Bipolar preference languages are languages that include positive

and negative preference statements together. Some efforts have been made to

find models and operators for bipolar languages [BPRV05, GL10, Kac12].

Similarly, but not equally, we can consider negated statements. A user could

express, for example, "It is not true that I prefer flights with KLM to business

class flights". This statement under strong semantics could be interpreted as:

There exists at least one flight with KLM that is not preferred to some flight in

business class. Note that in contrast, the negative statement "I do not prefer

flights with KLM to business class flights", under strong semantics, states that

all KLM flights are not preferred to business class flights. In this dissertation,

we lay a focus on unweighted ordinal comparative preference statements and
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in this context also consider negated statements. While negative statements

are not considered in the specified preference languages in this dissertation,

Chapter 4 provides a general framework for unspecified preference languages,

which thus may include negated or negative preferences.

If the assumed preference order can be incomplete, the negation of a statement

cannot necessarily be expressed by a positive statement. However, if the prefer-

ence order is complete, then negated statements can be substituted by different

positive statements. Assume in the following that the preference order � on the

alternativesA is complete, i.e., for all alternatives α, β ∈ A either α�β or β�α.

The negation of a non-strict comparative statement α ≥ β on complete alterna-

tives α, β ∈ A is simply the strict preference statement β > α, since ¬(α ≥ β)
expresses that α is not preferred or equal to β, and thus, by completeness of the

order, β is strictly preferred to α. Similarly, the negation of a strict statement

α > β is the non-strict preference statement β ≥ α.

For comparative statements on partial assignments of the variables, the nega-

tion of a statement depends on the chosen semantics. For example, under

strong semantics the negated statement ¬(p ≥str q) expresses that there ex-

ist alternatives α and β that extend p and q, respectively, such that β > α.

This corresponds to the opportunistic statement q >opp p. Similarly, negated

strict statements under strong semantics can be expressed by non-strict state-

ments under opportunistic semantics. Hence, it is also true that the statement

¬(p ≥opp q) is equivalent to q >str p, and ¬(p >opp q) is equivalent to q ≥str p.

The statement ¬(p ≥opt q) under optimistic semantics expresses that there exists

an alternative that extends q that is strictly preferred to the most preferred

alternative that extends p and is thus strictly preferred to all alternatives that

extend p. Hence, the statement ¬(p ≥opt q) is equivalent to q >opt p. Thus,

¬(p >opt q) is equivalent to q ≥opt p. For pessimistic semantics, we can show by

a similar analysis that ¬(p ≥pes q) is equivalent to q >pes p and ¬(p >pes q) is

equivalent to q ≥pes p.
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2.5 Compact Representations of Preference Rela-

tions

Often constraints on the structure of the user’s preference relation on the alter-

natives are imposed in order to enable a simpler or more efficient analysis. We

call the structural representation of an order relation a preference model. One

example is given by lexicographic orders, for which the required structure is

given by a total order on the variables. In the following, we present preference

models and typical properties of preference relations that can be demanded

depending on the application.

As argued before, it is reasonable to demand preferences to be transitive, i.e.,

if α � β and β � γ for alternatives α, β, γ ∈ A and order relation � on the al-

ternatives then also α� γ holds. One example of a preference model, in which

some form of non-transitivity is considered, is given when alternatives are rep-

resented as intervals, e.g., a time interval, and one alternative is preferred to

another if its interval lies completely to the right of the other alternatives inter-

val [Fis85, ÖT06]. Here, the incompatibility of alternatives is not transitive. All

preference models presented in the following induce transitive order relations

on the alternatives.

An order relation � is called antisymmetric when for any two alternatives α, β ∈
A with α � β and α 6= β, we have β 7 α. One example of an antisymmetric

order relation is the strict order discussed in the previous section, in which it is

not possible that two alternatives are equally preferred.

A common differentiation is made in the completeness of order relations. If

an order relation � on the alternatives satisfies α � β or β � α for all pairs of

alternatives α, β ∈ A, then � is complete (see Section 2.2). For example, total

orders or total preorders are complete order relations, whereas a partial order

is not complete.

A partial order induces an incomparability relation ∼ on the alternatives, i.e.,

α ∼ β if and only if α 7 β and β 7 α for α, β ∈ A. In some applications it might

make sense that the user could express that he cannot make a statement about

the relation of two alternatives. For example a user could express that he finds

the film "Titanic" neither better nor worse nor equally good as the film "Scary

Movie" as they are two completely different genre, and thus incomparable. This

concept of incomparability manifests itself in the English language as the idiom
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of "comparing apples and oranges". An important example of an order rela-

tion that is a partial order is a Pareto order. We will discuss Pareto models,

preference models based on Pareto orders, in detail later in this dissertation

(Section 2.5.2, 3.3, 4.3.3 and Chapter 5).

When the variable values of alternatives are aggregated into one numerical

score by which the alternatives can be compared, all properties of the natural

relation ≥ on the rational numbers hold, e.g., completeness, transitivity and

reflexivity.

From the viewpoint of voting theory, the alternatives can be seen as candidates,

variables correspond to voters and the value orders for variables are used to

imply a preferences relation over the candidates. A number of properties of

the preference relation over alternatives are natural to consider to establish

fair or democratic votes, e.g., non-dictatorship, anonymity, weak Paretianity,

and independence of irrelevant alternatives (see details under Social Choice

Functions in Section 2.5.1).

The user is typically assumed to express her or his preferences by a prefer-

ence model, which means that the user’s order relation on alternatives can be

expressed compactly. Thus, instead of listing all tuples in the order relation

(which can be exponentially many depending on the number of alternatives in

A), we can state rules on the variables and their value domains by which the

order of alternatives can be determined.

Compact representations often allow to handle preferences more efficiently, but

also reflect the nature of the alternatives in the eyes of the user. Variables can

be independent, or the value orders of some variables might depend on the

assignment of other variables. All variables can be considered as equally impor-

tant, or assigned different importance values / levels. The domains of variables

can be non-commensurable, or variable values can be combined so that they

allow tradeoffs. Some preference models imply complete orders, whereas oth-

ers allow incomparable pairs. Furthermore, the implied order relations on the

alternatives have different properties, such as symmetric, antisymmetric, tran-

sitive or intransitive.

More differentiations arise when we consider preference models in connection

with given preference statements that have to be satisfied. Possiblistic logic,

for example, can handle inconsistent preferences because it provide a mea-

sure for the degree of inconsistency [DLP94]. Many other models discussed
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in this dissertation, cannot express inconsistent preferences. Some models are

restricted to particular preference languages. Not every preference model can

satisfy conditional preference statements for example. Properties, algorithms

and complexity results that are connected to specific languages and problems

are discussed separately in the following chapters for some of the presented

preference models.

In the remainder of this section, we give an overview of popular and important

types of preference models. We point out further properties, advantages and

disadvantages in our description.

2.5.1 Aggregation Functions

When alternatives have multiple features, i.e., are represented as vectors on

several variables, then one idea to compare alternatives is to aggregate the val-

ues assigned to the variables. We discuss the most common aggregation func-

tions that have been developed in economics, operations research and social

choice. A broader presentation of these can, for example, be found in Chap-

ter 17 in [BDPP10]. The general idea is to assign a numerical value to every

alternative so that alternatives can be compared on a global scale. This auto-

matically provides a ranking of all alternatives, which enables us to find optimal

alternatives or determine the order of two alternatives. However, one drawback

is that variable domains need to be commensurable.

The introduced aggregation functions are developed for complete assignments

of variables and commensurable variables which typically have domains in Q or

R. We will assume that the variable domains for variables X ∈ V are given by

the real numbers X = [0, 1]. For better readability, we denote the assignment

α(Xi) of an alternative α ∈ A to a variable Xi ∈ V by αi. Thus every alternative

α can be represented by a tuple (α1, . . . , αn), where n is the number of variables

V.

Naturally, aggregation functions imply total preorders on alternatives, as they

assign every alternative a single value which is comparable to every other al-

ternative. This aggregated value however, can only be computed if complete

information on an alternative is given. This means, aggregation functions only

allow to compare complete variable assignments, and not partial assignments

to variables. There are different other properties that characterise aggregation
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functions, such as independence, associativity, commutativity of variables and

stability under linear transformation.

Averaging Operators

There are several general definitions of operators that are able to express av-

erages, minimum and maximum. In the averaging operators described next,

variables are implicitly assumed to be independent, i.e., their values do not

depend on other variables assignments.

The general definition of the quasi-arithmetic mean of an alternative α ∈ A is

given by Mf (α) = f−1( 1
n

∑
i=1,...,n f(αi)), where f is a continuous strictly mono-

tonic function. When f simply is the identity, then Mf is the usual arithmetic

mean. Similarly, the quadratic, geometric, harmonic, root-mean-power and ex-

ponential mean can be constructed by choosing appropriate functions f , see

pp. 684 in [BDPP10]. We can consider a weighted version of quasi-arithmetic

means, defined as Mf,w(α) = f−1(∑i=1,...,nwif(αi)), which gives every variable

an importance factor wi. As before, f is assumed to be a continuous strictly

monotonic function.

Both variants are not stable under linear transformation, i.e., for operator Ω =
Mf or Ω = Mf,w and numbers c, r ∈ R, Ω(c ∗ α1 + r, . . . , c ∗ αn + r) is not

necessarily the same as c ∗ Ω(α1, . . . , αn) + r. However, Aczél [Acz48] proves

that in the unweighted case f , is determined up to a linear transformation, i.e.,

Mf = Mrf+s for r, s ∈ R and r 6= 0. While the unweighted quasi-arithmetic

mean is commutative, i.e., variable positions could be swapped, the weighted

version is not since weights are specifically assigned to particular variables.

The common median operator is commutative and invariant under linear trans-

formation. A weighted version of the median operator can be constructed by

extending the variable set by duplicates. Other works explicitly aim to con-

sider simple averaging operators in the form of weighted sums for preference

inference problems, which are invariant under linear transformation [WM16].

An ordered weighted averaging operator OWAw with weights w = (w1, . . . , wn)
is defined on an alternative α = (α1, . . . , αn) as the weighted average of the

ordered sequence α(1), . . . , α(n), where α(1) ≤ · · · ≤ α(n) [Yag88]. Similar

to the median operator, OWAw is commutative and invariant under linear

transformation because it considers the positions of values in an ordered se-
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quence. Formally we define OWAw(α) = ∑
i=1,...,nwiα(i). Note that OWAw

can represent the arithmetic mean (by setting w = (1/n, . . . , 1/n)), the un-

weighted minimum (by setting w = (1, 0, . . . , 0)) and the maximum (by set-

ting w = (0, . . . , 0, 1)). In [DP86], a weighted minimum and weighted max-

imum operator are introduced as minw(α) = maxi=1,...,n min(1 − wi, α(i)) and

maxw(α) = mini=1,...,n max(wi, α(i)), respectively, where maxi=1,...,n αi = 1. These

weighted minimum and maximum operators are commutative and invariant

under linear transformation.

To overcome the independence-requirement of variables, one can consider (dis-

crete) Choquet integrals and (discrete) Sugeno integrals, which are well studied

in the field of multi-criteria decision making [Cho54, DMP+01, Gra96, Gra03,

GL02, GL10, GR00, LG03, Sch86, Sug74]. The discrete Choquet integral is de-

fined similarly to ordered weighted averaging operators, except that the weights

depend on the fuzzy measure of subsets of the ordered sequence of variable val-

ues. A fuzzy measure on the index set N = {1, . . . , n} is a function µ : 2N −→
[0, 1] with µ(∅) = 0 and µ(N) = 1 and µ(A) ≤ µ(B) for A ⊆ B (µ is monotonic).

Formally, the discrete Choquet integral with respect to some fuzzy measure µ is

defined as Cµ(α) = ∑
i=1,...,n α(i)[µ({α(i), . . . , α(n)})−µ({α(i+1), . . . , α(n)})], where

α(1), . . . , α(n) is the ordered sequence for alternative α = (α1, . . . , αn), meaning

α(1) ≤ · · · ≤ α(n). The discrete Sugeno integral uses a fuzzy measure as weights

as well and resembles a weighted maximum operator on the ordered sequence

of variable values. Formally, the discrete Sugeno integral with respect to some

fuzzy measure µ is defined as Sµ(α) = maxi=1,...,n min(α(i), µ({α(i), . . . , α(n)})).

Utility Functions

Among the most common preference models are utility functions. A function

f : A −→ R is used to determine the utility, a numeric value, of every alterna-

tive. Generally, a utility function need not have a compact presentation. In the

following we present cases in which compact presentations are possible.

The maybe simplest form of a utility function is a weighted sum, which be-

longs to the class of the weighted quasi-arithmetic means presented in the last

subsection (where f is the identity). In this case a preference model can be rep-

resented compactly by a weight vector w ∈ Rn. In weighted sum (or weighted

average) models variables are considered to be independent, i.e., variable val-

ues do not influence other variable’s value orders. A set of variables Y ⊆ V is
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preferentially independent of its complement V \Y (for some binary relation <

on the alternatives), if for any y, y′ ∈ Y and z, z′ ∈ V \ Y , we have (y, z) < (y′, z)
implies (y, z′) < (y′, z′).

More generally, if variables are mutually preferential independent, i.e., any set

of variables Y ⊆ V is preferentially independent of its complement V \ Y ,

then we can write the utility function f as a sum of utilities f(X1, . . . , Xn) =
m(∑i=1,...,n ui(Xi)), where m is a monotone function and n ≥ 3 the number of

variables [AS15]. We call such a utility function additive independent.

A more general definition of utility functions allows dependences between vari-

ables. A variable cover with factors Z1, . . . , Zk ⊆ V and V = ⋃
i=1,...,k Zi is defined

to be generalised additive independent (GAI) for utility function f , if there exist

utility functions ui : Zi −→ R such that f(X1, . . . , Xn) = ∑
i=1,...,k ui(Zi). Re-

versely, f is a generalised additive independent utility function over Z1, . . . , Zk,

if it can be additively decomposed by factors Z1, . . . , Zk. A GAI-net is a graph

with nodes representing all factors Z1, . . . , Zk for utility function f . In case

the intersection of factors Zi and Zj is non-empty, the graph contains an edge

{Zi, Zj} that is labelled by Zi ∩ Zj. Thus, the edges reflect the dependency be-

tween factors and independent factors are unconnected nodes. Because of their

acknowledgement of possible dependencies between variables, GAI-nets have

been studied in decision making for efficient ranking and recommendation of

alternatives with multiple attributes [DGP09a, DGP09b, GPQ06].

Social Choice Functions

Social choice theory and more specifically voting theory considers group deci-

sion making scenarios, where every voter is represented by a preference relation

over candidates. In our previous notation, the voters correspond to variables

and the candidates correspond to alternatives. Note that this implies that the

complete set of alternatives is known and that the variable domains are ranks

from 1 to the number of candidates. The preferences of all voters are then ag-

gregated to find one or several winner candidates. These aggregation methods

have been analysed and evaluated for many different criteria most of which are

specifically relevant for the application of democratic elections.

It is, for example, important in a democratic election that all voter’s preferences

are treated as equally important, i.e., that the voters are anonymous. This is

in direct contrast to any kind of weighted or hierarchical models in which each
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variable is of different importance. When one considers variables that represent

features like costs, distances, etc. instead of voters, it might be natural that

some features are more decisive than others. Similarly, non-dictatorship and

neutrality are often desired. Non-dictatorship means that there cannot exist

a voter that decides the vote independently of the other voter’s preferences.

Neutrality expresses that all candidates are treated equally, i.e., in case of a tie

between candidates no candidate is preferred to another because of external

criteria like skills, gender, seniority, etc. Again, this applies specifically to voting

scenarios. For example, when deciding between cars, in case of a tie one specific

color might be preferred (although the color is not crucial to the decision and

therefore not represented as a variable).

Other properties considered in this field can also be transferred to different de-

cision making scenarios. Unanimity, for example, requires that if all preference

relations given by the voters (variables) prefer one outcome over another, then

the aggregated preference relation should agree with this. This corresponds to

strict Pareto dominance. If one alternative is preferred to another in all crite-

ria, the it should be overall preferred. Universality ensures that any ranking of

alternatives is possible in the voter’s preferences. Independence of irrelevant

alternatives is given, if for any two alternatives, their overall relative ranking

only depends on their relative rankings within the voters’ preferences, and not

on the ranking of other alternatives.

One of the most important results in voting theory is Arrow’s proof of the im-

possibility to have an aggregation function that induces a total preorder on the

alternatives, for three or more candidates and a finite number of voters and

simultaneously satisfies: universality, independence of irrelevant alternatives,

unanimity and non-dictatorship [Arr50]. This and many other imposibillity re-

sults (e.g., Gibbard-Satterthwaite’s theorem [Sat75, Gib73], Sen’s theorem of

the paretian liberal [Sen70]) show the need of finding compromises between

properties of the aggregation methods. However, as indicated before, the im-

possibility results are not necessarily relevant to other decision making prob-

lems.

As examples of social choice functions, we consider two of the most studied

ones: the Condorcet and the Borda Count. Under the Condorcet method, an

alternative (or candidate) is preferred to another, following the majority rule,

if it is preferred in more variables than the other. This means, for alternatives

α, β ∈ A, α ≥Condorcet β if |{Xi ∈ V | αi > βi}| ≥ |{Xi ∈ V | βi > αi}|. As
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expected in a democratic voting scenario, under this order relation variables

(voters) are equally important and in particular anonymous [BMP09]. More-

over, a sort of tradeoff between votes is considered; one voter’s preference can

be redeemed by another voter’s reverse preference. The resulting order rela-

tion is known to be respecting unanimity (meaning if one alternative is better

than another in all variables, then it is preferred to the other), independent of

exact ranks (meaning only the relation between variable assignments and not

the exact variable values are important) and non-dictatorial, see e.g., [BMP09].

Furthermore, the resulting order on the alternatives is an important example

of a non-transitive order, which nonetheless seems to be a relevant voting

rule [Fis77]. One consequence of the non-transitivity is that for a set of al-

ternatives and value orders on variable domains, there does not always exist

a winner, i.e., an alternative that is preferred to all other alternatives. This

phenomena is known as the Condorcet Paradox [BCE+16]. Generally, when

considering a decision scenario for a single user, we do not aim to determine

a single alternative that is preferred to all others. Rather, we search for a pre-

sentable set of good options to present to the user. However, in a democratic

election, the existence of a winner can be an inevitable necessity.

By the Borda count, given that we have perfect knowledge of all alternatives

and their variable assignments, we can immediately select an overall winner, by

comparing the sum of ranks of alternatives within the variable domain orders.

The rank of one alternative α for one variable X is computed by the position

of the value α(X) in the total value order ≥X on the variable domain X. More

specifically, rkX(α) := |{d ∈ X | d > α(X)}|. Hence, for alternatives α, β ∈ A,

α ≥Borda β if
∑
X∈V rkX(α) ≤ ∑

X∈V rkX(β). This order relation on alternatives,

as opposed to the Condorcet method, always guarantees a winner. Interestingly,

if a Condorcet-winner exists, it is not necessarily chosen as a winner by the

Borda count. Among other properties, a voting based on the Borda count is

non-dictatorial, anonymous, transitive, respecting unanimity, and neutral with

respect to the order of voters [BMP09].

2.5.2 Qualitative Preference Models

Qualitative models describe a relation between variables V by which the alter-

natives are described. In contrast to aggregation functions, they do not assign

a numerical value to alternatives and thus do not necessarily assume commen-
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surably or numerical variable domains. In the following we describe important

examples.

Pareto Models

Pareto orders give a natural way of comparing alternatives; one alternative is

preferred to another if it is better in all (relevant) variables. This order rela-

tion is widely studied in many fields concerning preferences, sometimes under

the terms of unanimity, Pareto efficiency or Pareto optimality. In voting scenar-

ios, the concept of unanimity [Wal14] makes for complicated decisions, since

all voters (variables) have to agree upon preferring one alternative to another.

Reversely, if the goal is to rule out alternatives that are worse than others,

Pareto dominance makes for a very cautious rule. Only alternatives, which are

worse in at least one variable than another alternative and equal in all remain-

ing variables, i.e., Pareto dominated by another alternative, are discarded. A

Pareto frontier is a set of alternatives, which are not Pareto dominated by any

other alternative. These sets are sometimes computed as "optimal solutions" to

multi-objective optimisation problems [BDPP10]. In database queries the sky-

line operator reflects the same principle [BKS01, MLB15]. Other application

can be found in allocation problems (Pareto optimality) [ACMM05] and more

generally in economics (Pareto efficiency) [Sti87, Tia09].

The simplest form of a Pareto model is a set P = {{X1}, . . . , {Xk}} of singleton

variable sets. An alternative α ∈ A is preferred to β ∈ A under P , written

α <P β, if and only if α(X) ≥X β(X) for all variables X in P . α ∈ A is strictly

preferred to β ∈ A, written α �P β, if and only if α <P β and there exists a

variable X in P such that α(X) >X β(X).

This can be interpreted as unanimity on features. For example, based on Pareto

orders, a flight connection A is preferred to a flight connection B, if A is better

in all aspects: the class, the travel time and the airline. The involved variables

are thus equally important and there is no compromise or tradeoff between

different variables possible. We will discuss these models in more detail in

Section 3.3 and outline important generalisations.
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Variable Hierarchies

Lexicographic orders are widely known and often used as order relations on tu-

ples. The order corresponds to the way words/articles are sorted alphabetically

in a lexicon or dictionary. The order of two words is determined by consid-

ering the first letter of the words, only if these are equal, the second letter is

considered, and so on. As preference models they assume a hierarchical struc-

ture on the variables. This can be realistic in many scenarios. A user could

for example decide to take the cheapest flight connection possible to go from

New York to Rome. Only if flights are equally cheap, the user might consider

the travel time and prefer a day-time flight to a night-time flight. Although

Keeney and Raiffa [KR93] believe that the use of lexicographic orders is "rarely

appropriate", Bettman et al.’s study in [BJP90] suggests that a comparison of

alternatives by a lexicographic order is relatively effortless and time efficient for

a user. Due to the intuitive nature of this order relation, it is no surprise that

many works consider lexicographic preference models, see [BCL+10, BH12,

DIV07, Fis74, Fis75, FM07, FHWW10, Kno00, KJ07, Wil14, YWLdJ10] and our

works [GRW15, WG17].

A fvo lexicographic model L is given by an ordered tuple (X1, . . . , Xl) of a subset

of all-different variables {X1, . . . , Xl} ⊆ V. The set of fvo lexicographic models

is denoted by H(1). Assuming that for every variable X ∈ V there exists a fixed

associated total value order ≥X on the domain, we can compare alternatives

by such a tuple of variables in the usual lexicographic way (see Definition 2.4:

α ∈ A is strictly preferred to β ∈ A under L, written α �L β, if and only if

there exists 1 ≤ i ≤ l with α(Xi) >Xi β(Xi) and for all j < i, α(Xj) = β(Xj).
α ∈ A is preferred to β ∈ A under L, written α <L β, if and only if α �L β

or α(Xi) = β(Xi) for all 1 ≤ i ≤ l. Given a fvo lexicographic model L ∈ H(1),
we compare alternatives at the first, most important, variable; only if the value

assignments are equal, the second most important variable is considered, and

so on. Thus a fvo lexicographic model L represents a strict importance order on

the variables involved.

However, this condition can be relaxed by considering hierarchical models

which allow ties between the importances of variables. Preference models

with variable hierarchies as we defined them in [WGO15] are called HCLP

models and borrow their name from Hierarchical Constraint Linear Program-

ming [WB93], where feasible solutions are compared by a kind of generalised

lexicographic order. They combine values of variables in the same importance
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level by an operator. Instead of considering an ordered tuple of variables as

in fvo lexicographic models, we consider an ordered tuple of sets of variables.

Thus, instead of considering a strict order on variables, hierarchical models im-

ply a total preorder on a subset of variables that can be represented by level sets
of equally important variables. This allows tradeoffs between variables of the

same level set.

In addition to the just described variable hierarchies, we can also consider a

generalised form of lexicographic model. A cvo lexicographic model again con-

sists of a total order on a subset of variables. Additionally, variables in this tuple

are annotated with a value order. This follows the assumption that value orders

on variable domains are not fixed and specified in the preference model.

The mentioned lexicographic and hierarchical models are discussed in more

detail in Section 3.4.

Conditional Preference Networks

A qualitative counterpart to GAI-nets, which describe conditional preference

relations in a quantitative way, is given by CP-nets. This type of preference

model and several variations have been extensively studied for the last twenty

years, e.g., see [AGJ+17, BBD+04a, BBD+04b, BBHP99, BD02, BD04, DRVW03,

GLTW08, LVK10, PRVW04, Wil04b].

In CP-nets variables can be dependent, i.e., the value order of one variable can

depend on the value assignments of other variables. Let � be the preference

relation on outcomes given by a CP-net. Then a set of variables Y ⊆ V is

preferentially independent (from its complement) if for all y, y′ ∈ Y and z, z′ ∈
V \ Y , yz � y′z if and only if yz′ � y′z′ (which is if and only if y �cp y

′ under

ceteris paribus semantics). Similarly, for condition T ⊆ V \ Y , set of variables

Y ⊆ V is preferentially independent under condition T if for all y, y′ ∈ Y and

z, z′ ∈ (V \ Y ) \ T , yz � y′z | T if and only if yz′ � y′z′ | T (which is if and only

if y �cp y
′ | T under ceteris paribus semantics). Here, the notation yz � y′z | T

means that any alternative α extending yz is preferred to any alternative β

extending y′z, given that α and β have the same values for variables T . This

allows CP-nets to handle conditional preference statements.

As for GAI-nets, we can represent CP-nets in a graphical way. Here, the nodes

represent variables. Directed edges are given by the dependencies of variables,
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i.e., the directed edge (X, Y ) represents that the value assignments for the vari-

able associated with X influencing the value order of the variable associated

with Y . Every node is annotated with a conditional preference table that cap-

tures the conditions on the associated variable given by all its predecessors,

given a ceteris paribus semantics that keeps all successor variables equal.

Example 2.2

Consider the choice between different films in the cinema. Suppose that

the variable company taking values (friends/date) influences the prefer-

ence over the show time (afternoon/evening), and both influence the pref-

erence over the film genre (horror/drama/comedy).

Let the complete preference structure be given by the following CP-net.

company show time

film genre

date > friends evening > afternoon

date, evening:

date, afternoon:

friends, afternoon:

friends, evening:

drama > comedy > horror
comedy > drama > horror
comedy > drama > horror
horror > comedy > drama

The conditional preference tables induce preferences by ceteris paribus se-

mantics that are given in the following table.
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Preference Statement Local Preferences

date > friends date, evening, drama > friends, evening, drama
date, evening, comedy > friends, evening, comedy
date, evening, horror > friends, evening, horror
date, afternoon, drama > friends, afternoon, drama
date, afternoon, comedy > friends, afternoon, comedy
date, afternoon, horror > friends, afternoon, horror

evening > afternoon date, evening, drama > date, afternoon, drama
date, evening, comedy > date, afternoon, comedy
date, evening, horror > date, afternoon, horror
friends, evening, drama > friends, afternoon, drama
friends, evening, comedy > friends, afternoon, comedy
friends, evening, horror > friends, afternoon, horror

date, evening: drama > comedy > horror date, evening, drama > date, evening, comedy
date, evening, comedy > date, evening, horror

date, afternoon: comedy > drama > horror date, afternoon, comedy > date, afternoon, drama
date, afternoon, drama > date, afternoon, horror

friends, evening: comedy > drama > horror friends, evening, comedy > friends, evening, drama
friends, evening, drama > friends, evening, horror

friends, afternoon: horror > comedy > drama friends, afternoon, horror > friends, afternoon, comedy
friends, afternoon, comedy > friends, afternoon, drama

In general, the order relation given by a CP-net is a strict partial order (i.e.,

a transitive irreflexive order relation) [Wil04b]. The resulting partial order

on the set of alternatives (all possible assignments) in our example is given

below. Here, α → β expresses that alternative α is preferred to alternative

β.

date, evening, drama

date, evening, comedy

date, evening, horror

date, afternoon, drama

date, afternoon, comedy

date, afternoon, horror

friends, evening, drama

friends, evening, comedy

friends, evening, horror

friends, afternoon, drama

friends, afternoon, comedy

friends, afternoon, horror
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2.6 Summary

Preferences find many applications in the area of artificial intelligence. When

handling user preferences one has to take various factors into account: user ef-

fort, expressiveness, information value, complexity of representation, computa-

tional complexity. Many combinations of preference languages and preference

models to represent preference relations have been explored in the literature to

handle user preferences. They all carry different properties that can be justified

depending on their application. However, natural additions to the literature

arise when considering qualitative models. In this dissertation, we focus on de-

fining novel preference model types and analysing their properties with respect

to the Consistency and Deduction Problem. Lexicographic models of sorts have

been considered in related work to some extent. In this dissertation, we extend

these promising results to more general lexicographic orders and more com-

plex preference languages. Exploiting the idea of basing a type of preference

model on a common type of qualitative order relation like for lexicographic

models, we design Pareto models which are based on Pareto orders. These are

to the best of our knowledge also novel preference models. Furthermore, we

incorporate the idea of allowing tradeoffs between features by the design of

interesting new semi qualitative preference models: hierarchical models and

general Pareto models.
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Chapter 3

Preliminaries

In this dissertation we analyse the Preference Deduction Problem and the Pref-

erence Consistency Problem for some qualitative preference models that are

based on lexicographic and Pareto orders and for different languages of com-

parative strict and non-strict preference statements on complete and partial

variable assignments. We introduce the considered problems in the first section

of this chapter and then give detailed descriptions and relevant definitions of

the preference languages and models considered in the remainder of the disser-

tation.

3.1 Preference Inference

Because an elicitation process involving the user directly imposes substantial ef-

fort on the user, it is only natural to try to make the most of the elicited informa-

tion. Preference inference aims at deducing new preferences from given ones

by using logical deductions. Based on assumptions on the type of preference

model and preference language used by the user, new preference statements

are deduced with certainty (assuming the correctness of the assumptions).

The Preference Deduction Problem asks, if another preference can be deduced

from a set of given user preferences with "certainty", whereas preference learn-

ing techniques try to find "likely" deductions. We will give a closer explanation

to this approach of preference inference in the following.

Consider a user that needs to make a choice over a set of alternatives A. Let

Γ = {ϕ1, . . . , ϕk} be a set of preference statements ϕi for i = 1, . . . , k, which
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the user regards to be true. In order to help the user decide, we need to find

out which the most preferred alternatives in A are. We can do so, by analysing

which other preferences can be deduced. Then, the user can be presented with

all alternatives that are not "with certainty" less preferred than another alter-

native. For these deductions we make certain (reasonable) assumptions on the

preferences of the user.

Assume the user models preferences in a certain way. For example, the user

could always prefer alternatives in a certain price range, or the user could com-

pare alternatives by a weighted sum of certain criteria. We can then define

a set G of preference models that are representations of order relations on the

set of alternatives, which are compliant with the way the user is assumed to

model preferences. Following the previous examples, the set G could consist of

different price ranges that might be acceptable for the user, or G could include

different weight vectors for the weighted sum of certain criteria the user might

use.

Based on a set of preference statements L and models G we can define a sat-

isfaction relation |=. If a preference model π ∈ G agrees with, or satisfies, a

preference statement ϕ ∈ L, we write π |= ϕ. This expression means that the

order relation on alternatives associated with the preference model π satisfies

all constraints that are specified by the preference statement ϕ. If, for example,

the statement ϕ expresses that an alternative α ∈ A is preferred to another

alternative β ∈ A, then the associated order relation � for preference model π

satisfies α � β. This satisfaction relation can be extended to sets of preference

statements in an obvious way. Let π ∈ G be a preference model and Γ ⊆ L a

subset of preference statements, then we write π |= Γ, if π satisfies all prefer-

ence statements in Γ, i.e., π |= ϕ for all ϕ ∈ Γ.

Among the preference models G, we can identify those that satisfy all of the

user’s preference statements in Γ. These are the preference models that are

consistent with the user’s preferences, and thus are the possible candidates for

the unknown model by which the user compares alternatives. Let us denote

this set of preference models by GΓ. Thus, GΓ = {π ∈ G | π |= Γ}. In the

problems considered in this dissertation, we aim to argue over the whole set

of preference models GΓ. If all of the preference models (order relations) in GΓ

also satisfy another preference statement ϕ, then we know with certainty that

the user agrees with the statement ϕ. In this case, we can deduce ϕ from Γ with

certainty, written Γ |= ϕ.
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3.1 Preference Inference

Let us now formally define the Preference Deduction Problem.

Definition 3.1: Preference Deduction Problem

Let Γ ⊆ L and ϕ ∈ L be preference statements over a set of alternatives

A, and assume that the (unknown) user preference model is included in

the set of preference models G. Can we deduce the preference ϕ? More

specifically, is it true that for all π ∈ G with π |= Γ, we have π |= ϕ?

The Preference Deduction problem thus depends on the set of alternatives A,

the set of preference models G, and on the set of preference statements L that

includes Γ and ϕ.

Alternatives can be specified by different variables (criteria) V, so that an alter-

native is given as a vector of variable assignments. In most parts of this disser-

tation, we will assume that a set of variables V is given (see Chapters 5, 6, 7

and 8). However, in Chapter 4 we will allow alternatives to be abstract objects.

As mentioned before, preference models usually reflect the approach the user

takes to compare or rate alternatives. In Section 2.5, we describe different as-

sumptions that can be made on the user’s preference model. In Chapters 5, 6, 7

and 8, we consider specific types of qualitative preference models. Here, the

variable based view of alternatives allows us to assume preference models

which do not give a preference value to alternatives, but instead compare al-

ternatives on multiple criteria. Again, the exception is Chapter 4 in which only

few assumptions are made on the user’s preference model, which have to do

with properties of the associated order relations rather than rules by which al-

ternatives are compared or rated.

Finally, in this dissertation, we consider preference statements that are ex-

pressed by the user in a certain way, i.e., are included in a specified preference

language L. We discuss different common preference languages and semantics

in Section 3.2 and define the comparative languages used in Chapters 5, 6, 7

and 8. Chapter 4 considers preference languages of (strongly) compositional

statements. Here, (strong) compositionality is a property that is defined in con-

nection with a set of preference models and can thus hold for many different

types of preference statements.

Note that under the assumptions on preference language and preference model

set, the Deduction Problem aims at making purely logic inferences. If the
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assumptions are accurate, then the deduced preferences must hold. In con-

trast, preference learning approaches focus on learning one model in G that

fits best with the given preferences and use it to make further deductions on

the user’s preferences [AD07, BCL+10, BH12, CSS98, DIV07, FH10a, HFCB08,

KZ10, LM09, SM06, YWLdJ10].

The Preference Deduction Problem does not aim to find an approximating

model that best fits the user’s preference statements, but argues over the whole

set GΓ. It is thus crucial, to check if the set GΓ is empty. That is, it is im-

portant to check if the given user statements are consistent, so that there

exists a preference model that satisfies them. Otherwise, it would be pos-

sible to deduce any arbitrary preference statement. The Preference Consis-

tency Problem decides if a set of given user preference statements is consistent,

i.e., the statements do not contradict each other. It is strongly related to the

Preference Deduction Problem, as under many assumptions of preference lan-

guages and models, the two problems are mutually expressive, see for exam-

ple [BR07, MRW13, Wil09, Wil14] and our papers [GRW15, WGO17]. Here,

by mutually expressiveness, we mean that an instance of the one problem can

be solved by solving an instance of the other problem, and vice versa.

Formally the Preference Consistency Problem is defined as follows.

Definition 3.2: Preference Consistency Problem

Let Γ ⊆ L be a set of preference statements over a set of alternatives A,

and assume that the (unknown) user preference model is included in the

set of preference models G. Are the preference statements Γ consistent?

More specifically, does there exist a preference model π ∈ G with π |= Γ?

The Preference Deduction and Preference Consistency Problem have been stud-

ied under different preference models, such as lexicographic models [Wil14],

hierarchical models in our paper [WGO17], conditional lexicographic mod-

els [Wil09], Pareto orders in our paper [GW16], weighted sums in [BR07,

MRW13, MW16, WRM15] and in our paper [GRW15], and on general strict

total orders, as in e.g., work on conditional preference structures such as

[BBD+04a].

Previous work on preference inference based on standard lexicographic models

have considered more restricted preference languages. Wilson [Wil14] consid-
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ered only non-negated non-strict statements, which can only express that one

assignment is at least as good as another (or equivalent). Kohli and Jedidi

[KJ07] considers only non-negated strict statements, which can only express

that one complete assignment is strictly better than another.

In our papers, efficient polynomial time algorithms to solve deduction and con-

sistency have been developed for the cases of lexicographic models, a form

of simple Pareto models and weighted sums, whereas considerations for hier-

archical and more general Pareto models lead to NP-completeness and coNP-

completeness results.

3.2 The Languages LA, LpqT and L′pqT

In some parts of this dissertation, we chose to focus on specific languages.

Sections 4.3.2.1 and 4.3.3.1, as well as Chapters 5, 6 and 7 are mainly con-

cerned with strict and non-strict preference statements on complete assign-

ments of variables (alternatives). We formally define a language over these

statements in the following way.

Definition 3.3: The Language LA

We define the set LA of strict and non-strict preference statements on out-

comes A by LA = {α > β | α, β ∈ A} ∪ {α ≥ β | α, β ∈ A}.

For some results, we need to consider the non-strict version ϕ(≥) of a prefer-

ence statement ϕ. Similarly, we can consider the non-strict version of a set of

preferences Γ.

Definition 3.4: Non-Strict Versions of Statements LA

If ϕ ∈ LA is a non-strict preference statement, then ϕ(≥) is simply the

statement ϕ. If ϕ ∈ LA is a strict preference statement α > β, then we

define ϕ(≥) as α ≥ β. For a set of preferences Γ ⊆ LA, Γ(≥) is defined to be

the set {ϕ(≥) | ϕ ∈ Γ}.

We believe that statements of the language LA are simple to express for a user,

as they do not necessarily require a deep analysis of the value assignments of
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3.2 The Languages LA, LpqT and L′pqT

alternatives, but allow the users to use their intuition. However, one drawback

of the language LA is that conditional dependencies between variables cannot

be expressed compactly, instead a large set of preference statements is needed.

When working with user preferences, one searches for order relations on alter-

natives that satisfy the user’s preferences statements. We define the following

satisfaction relation for the previously described comparative preference state-

ments. An order relation � on A is a binary relation on A, and can thus be seen

as a subset of tuples of A×A. � is said to satisfy a non-strict statement α ≥ β

for outcomes α, β if α� β, i.e., (α, β) ∈ �. � satisfies strict statement α > β for

outcomes α, β if α� β and not β � α, i.e., (α, β) ∈ � and (β, α) /∈ �.

Mainly in Section 4.3 and Chapter 8, we analyse preference problems based

on a relatively general language LpqT of three types of hybrid preference state-

ments p � q | T on partial assignments. These statements are a mix between

ceteris paribus semantics and strong semantics (sometimes in connection with

opportunistic semantics). Here, the ceteris paribus conditions are given by the

set of variables T . If p and q are defined over the same variables U ∪ {X}
and differ only on variable X ∈ V and T = (V \ U \ {X}), then this form of

statements can specify the structure of CP-nets [Wil09].

The non-strict statement p ≥ q | T expresses a non-strict relation under strong

semantics, i.e., that all outcomes α ∈ A that extend p are (non-strictly) pre-

ferred to outcomes β ∈ A that extend q given that α and β agree (i.e., have

the same value assignment) on variables in T . Similarly, a fully-strict statement
p � q | T expresses a strict relation under strong semantics, i.e., that all out-

comes α ∈ A that extend p are strictly preferred to outcomes β ∈ A that extend

q given that α and β agree on variables in T . Weakly strict statements p > q | T
express that p ≥ q | T under strong semantics and p > q | T under something

like an opportunistic semantics, i.e., all outcomes extending p are preferred to

all outcomes extending q given they agree on T and there exists at least one

outcome extending p that is strictly preferred to one outcome extending q and

they agree on T . Note that both weakly strict and fully strict statements are

the same usual strict order relation when p, q are complete assignments to the

variables (and T = ∅).

Sections 4.3.2.1 and 4.3.3.1, as well as Chapter 8 are mainly concerned with

fully strict, weakly strict and non-strict preference statements on partial assign-

ments of variables. We formally define a language over these statements in the

following way.

49



3.2 The Languages LA, LpqT and L′pqT

Definition 3.5: The Language LpqT

We define the set LpqT of fully strict, weakly strict and non-strict preference

statements on partial assignments by LpqT = {p ≥ q | T, p > q | T, p� q |
T such that p ∈ P , q ∈ Q, P ∪Q ⊆ V , T ⊆ V \ (P ∪Q)}.

While expressing preference statements of the language LpqT most likely re-

quires more cognitive effort (than statements in LA), it enables the user to

express more complicated structures like conditionality and also includes state-

ments equivalent to LA. This language consists of hybrids of different seman-

tics: The fully strict statements correspond to a strong semantics on strict state-

ments where a ceteris paribus condition is allowed. Weakly strict statements

are a conjunction of strong semantics on non-strict preference statements and

opportunistic semantics on strict statement — again a ceteris paribus condition

can be expressed. Finally, non-strict statements in LpqT correspond to a strong

semantics on non-strict statements together with a ceteris paribus condition.

In order to simplify argumentations over the set of tuple of extending alterna-

tives for p and q, we make the following definitions.

Definition 3.6: Tuples of Extending Alternatives for Statements in LpqT

For a preference statement ϕ : p� q | T in LpqT with � ∈ {≥, >,�}, p ∈ P
and q ∈ Q, we define the set ϕ∗ = {(α, β) ∈ A2 | α(P ) = p, β(Q) =
q, α(T ) = β(T )}. The set ϕ∗A of all involved alternative tuples of ϕ that are

fixed for A ⊆ V is then defined as ϕ∗A = {(α, β) ∈ ϕ∗ | α(A) = β(A)}.

For order relation � on A and preference statements on partial assignments we

define the following. � satisfies the non-strict statement p ≥ q | T , if ϕ∗ ⊆ �.

The fully strict statement p � q | T is satisfied by �, if for all (α, β) ∈ ϕ∗,

(α, β) ∈ � and (β, α) /∈ �. Similarly, � satisfies the weakly strict statement

p > q | T , if ϕ∗ ⊆ � and there exists a tuple (α, β) ∈ ϕ∗ such that (β, α) /∈ �.

The preference language L′pqT is an extension of LpqT by certain negated state-

ments. These are negations of non-strict preference statements p ≥ q | T on

partial assignments, where P = Q. Note that only this negations is included

in this language, since it has certain desirable properties that can be exploited.
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Definition 3.7: The Language L′pqT

We define the language L′pqT by L′pqT = LpqT ∪ {¬(p ≥ q | T ) | p ∈ P , q ∈
Q,P = Q, T ⊆ V \ P}.

This language is quite expressive and possesses certain properties in connection

with some tuples of compactly expressed order relations � that enable us to

formulate fast and simple algorithms presented in this dissertation.

Languages (similar to) LpqT and L′pqT have also been considered in,

e.g., [BLW10, Wil09, Wil11]. Wilson [Wil04b, Wil04a] shows that such prefer-

ences are able to express CP-nets and TCP-nets. In [BLW10], instead of partial

assignments logical formulas over a propositional language are compared and

the condition can be given by a set of formulas.

Other relevant interpretations of statements on partial assignments p and q un-

der condition T arise when one considers partial order relations on alterna-

tives as opposed to total orders. The incomparability relation on alternatives

α, β ∈ A for the partial order �, denoted by ∼, is given by α ∼ β if and only

if neither α � β nor β � α holds. Then the partial order � satisfies the fully

incomparable statement, denoted p ≈ q | T , if α ∼ β for all (α, β) ∈ ϕ∗. �

satisfies the weakly incomparable statement, denoted p ∼ q | T , if there exists

(α, β) ∈ ϕ∗ such that α ∼ β. The incomparability statement, denoted p× q | T ,

is satisfied if there exists (α, β) ∈ ϕ∗ such that α < β and (α′, β′) ∈ ϕ∗ such that

α′ > β′.

3.3 Pareto Models

In this Section, we extend our discussion of Pareto models from Section 2.5.2.

Even though Pareto orders are widely studied in many fields, the idea of assum-

ing Pareto orders as (unknown) user preference models for preference inference

problems is novel. While we assume in our analysis of Pareto models in Chap-

ter 5, that a fixed total value order is given for every variable, one could also

consider more general Pareto models in which value orders for variables are not

specified as in Section 4.3.3.

The simplest form of a Pareto model is a set P = {{X1}, . . . , {Xk}} of singleton

variable sets.
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Definition 3.8: Fixed-Value-Order (FVO) Singleton Pareto Models

For variables V with fixed total value orders on variable domains, the set of

fvo singleton Pareto models, which are sets of all-different singleton vari-

able sets, is called P(1) and is in one-to-one correspondence to the power

set of V. The set of variables involved in a fvo singleton Pareto model

P = {{X1}, . . . , {Xk}} is denoted by σ(P ) = {X1, . . . , Xk} ⊆ V.

Note that since fvo singleton Pareto models include an arbitrary number of sin-

gleton variable sets, P(1) includes the empty model for which all alternatives

are equivalent.

Formally, we can compare alternatives by these sets of variables in the following

way.

Definition 3.9: FVO Singleton Pareto Order

Let P be a fvo Pareto model P = {{X1}, . . . , {Xk}}, and let ≥X be the fixed

total value order for variable X ∈ V. α ∈ A is preferred to β ∈ A under

P , written α <P β, if and only if α(X) ≥X β(X) for all variables X in P .

α ∈ A is strictly preferred to β ∈ A, written α �P β, if and only if α <P β

and there exists a variable X in P such that α(X) >X β(X).

As mentioned in Section 2.5.2, this order relation treads all variables involved

as equally important and there is no compromise or tradeoff between different

variables.

A generalisation of P(1) Pareto models can be constructed if tradeoffs within

some sets of variables are allowed. Here, we assume that the variables have

a common domain D, i.e., for all X ∈ V, X = D. We assume a commutative

and associative operator ⊕ which acts on the variable’s domain, such as the

usual multiplication or addition on R. With ⊕ we can combine arbitrarily many

values of different variables. Note that this is a strong assumption, as this

means that the variables and more general the features of the alternatives are

commensurable and can be combined with ⊕.
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Definition 3.10: k-bound Pareto Models

We define the set P(k) with k ∈ N to be the set of k-bound Pareto models

that are sets of subsets of variables. More formally, P ∈ P(k) if P =
{C1, . . . , Cl} where C1, . . . , Cl ⊆ V with |Ci| ≤ k for all i = 1, . . . , l are

non-empty, disjoint subsets of at most k variables. As before, the set of

variables involved in a k-bound Pareto model P = {C1, . . . , Cl} is denoted

by σ(P ) = ⋃
i=1,...,l Ci.

Note that for k ≤ c we have P(k) ⊆ P(c). This property will be helpful later in

the analysis for preference inference and consistency.

Definition 3.11: k-bound Pareto Order

Let ⊕ be a commutative and associative operator on the common variable’s

domain D and let ≥ be a fixed order relation on D. We compare alterna-

tives by a k-bound Pareto model P = {C1, . . . , Cl} ∈ P(k) in the following

way: α ∈ A is preferred to β ∈ A under P , written α <P β, if and only if⊕
X∈Ci α(X) ≥ ⊕

X∈Ci β(X) for all i = 1, . . . , l. α ∈ A is strictly preferred

to β ∈ A under P , written α �P β, if and only if α <P β and there exists

Ci ∈ P such that
⊕

X∈Ci α(X) > ⊕
X∈Ci β(X).

These models capture different situations. Imagine a choice between holiday al-

ternatives. Here, different aspects of the alternatives can be put into categories,

e.g., by costs (cost of hotel, flight, etc.), comfort (quality of hotel, transporta-

tion, etc.), time (length of stay, travel dates, season). Within these categories

tradeoffs are allowed. Regarding the cost category, e.g., an expensive flight

might be acceptable, if the hotel is cheap. This tradeoff is guaranteed by com-

bining all values within one category by the operator ⊕. Note that to allow

tradeoffs, variables have to be commensurable.

A holiday alternative is only then preferred to another, if it is preferred in every

category, i.e., it is preferred in every one of the combined values of the variables

within the categories. In a voting scenario, this would mean that voters are

grouped together and aggregate their preferences expressed by combining their

values with the operator ⊕. Then it is agreed that one candidate is preferred to

another, if all groups agree on this unanimously.
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Example 3.1

Consider the big family of Hal and Lois (the grandparents). They decide to

buy and share a summer vacation house together with the families of their

two sons Malcolm and Dewey. Let the preferences of the family be given

by the following table, where 1 represents an acceptable alternative, and 0

a non-preferred alternative.

Name House in Mountains Old Farm House Beach House

Hal 1 1 1

Lois 1 1 0

Malcolm 1 0 1

Malcolm’s Wife 1 0 0

Dewey 0 1 1

Dewey’s Wife 0 1 0

Malcolm’s Son 0 0 1

Dewey’s Daughter 0 0 0

One Pareto model could be given by {{Lois}, {Hal}, {Malcolm}, {Malcolm’s

wife}, {Dewey}, {Dewey’s wife}}. This means all adults in the family get

an equal vote, but the kids are left out of the choice of a holiday home.

Under this model, the family cannot agree on any preference between the

three houses, since for any pair of houses there are two adults with contra-

dictory preferences.

Suppose, the three husbands make the decision on their own. The corre-

sponding fvo Pareto model is given by P ={{Hal}, {Malcolm}, {Dewey}}.

Even though Dewey and Malcolm disagree on the preference between the

house in the mountains and the old farm house, the three men will agree

unanimously that the beach house is better than any of the other houses.

More formally, Beach House <P House in Mountains and Beach House <P
Old Farm House.
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Now consider the scenario where all parties (the grandparents, Malcolm’s

family and Dewey’s family) agree to each take on a third of the costs, but

in return expect an equal vote of their party in the choice of houses. The

members of Malcolm’s family have to aggregate their opinions on the dif-

ferent alternatives. Similarly, the other parties come to agreements on the

rankings of the alternatives among each other. All parties vote with the

goal to reach an unanimous decision. The corresponding k-bound Pareto

model is given by {{Hal, Lois}, {Malcolm, Malcolm’s wife, Malcolm’s son},

{Dewey, Dewey’s wife, Dewey’s daughter}}. Let the operator ⊕, by which

the preferences are aggregated, be the usual addition on the natural num-

bers, and consider the usual order relation on the natural numbers, i.e.,

the higher the number, the better. Then the aggregated preferences of the

different parties are given in the following table.

Name House in Mountains Old Farm House Beach House

The Grandparents 2 2 1

Malcolm’s Family 2 0 2

Dewey’s Family 0 2 1

Under this model, no decision can be made, since for every pair of houses

there are two parties that disagree on their preferences.

Let us now define the aforementioned generalisation of fvo Pareto models to

the case where the total value orders of the variable domains are not given but

instead specified within a model. This implies a subjectivity of the user towards

value orders of the variable domains. This type of models is relevant, where

we are not considering variables with obvious value orders, but value orders

that can differ from user to user. For any kind of purchase, only considering

the price, users usually prefer cheaper options to more expensive ones. We can

thus assume that the value order for costs respect the relation: the cheaper

the better. However, for a visit to the cinema, it is not obvious what a user

prefers for either of the different criteria: play time, genre and company. Is

an afternoon show better than an evening one; does the user prefer comedy,

drama or horror; does the user prefer to be accompanied by friends or a date?

Here, it is reasonable to assume that the value orders vary from user to user,

and should thus be specified in the user’s preference model.
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Definition 3.12: Changeable-Value-Order (CVO) Singleton Pareto Models

A cvo singleton Pareto model is a set of tuples {(X1,≥X1), . . . , ((Xl,≥Xl)},
where {X1, . . . , Xl} ⊆ V and the annotated order relations ≥Xi are total

orders on the variable domains Xi. We denote the set of cvo singleton

Pareto models by P.

The induced order relation on alternatives for a cvo singleton Pareto model P

is similar to the order relation induced by fvo singleton Pareto models P(1).

Definition 3.13: CVO Singleton Pareto Order

Let P = {(X1,≥X1), . . . , ((Xl,≥Xl)} be a cvo singleton Pareto model. Then

P induces the following order relation on alternatives: α ∈ A is preferred

to β ∈ A under P , written α <P β, if and only if α(Xi) ≥i β(Xi) for

all (Xi,≥i) ∈ P . α ∈ A is strictly preferred to β ∈ A under P , written

α �P β, if and only if α <P β and there exists (Xi,≥i) ∈ P such that

α(Xi) >i β(Xi).

Note that for convenience we use the same notation for the induced order of

fvo and cvo singleton Pareto models. Again, we denote the variables involved

in a cvo singleton Pareto model P = {(X1,≥X1), . . . , ((Xl,≥Xl)} by σ(P ) =
{X1, . . . , Xl}.

3.4 Variable Hierarchies

We extend our considerations of lexicographic models from Section 2.5.2 by

introducing three different types of models that rely on lexicographic orders.

Simple lexicographic models as defined in our paper [WGO15] depend on a

subset of variables to be strictly ordered, i.e., no indifferences are allowed.

Here, we assume that fixed value orders on the variable domains are given.
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Definition 3.14: Fixed-Value-Order (FVO) Lexicographic Model

Formally we define a fvo lexicographic model L to be an ordered tuple

(X1, . . . , Xl) of a subset of all-different variables {X1, . . . , Xl} ⊆ V. The set

of fvo lexicographic models is denoted by H(1).

Assuming that for every variable X ∈ V there exists a fixed associated total

value order ≥X on the domain of X, we can compare alternatives by such a

tuple of variables in the following way:

Definition 3.15: FVO Lexicographic Order

Let L = (X1, . . . , Xl) be a fvo lexicographic model, and let ≥X be the fixed

total value order for variable X ∈ V. Then L induces the following order

relation on alternatives: α ∈ A is strictly preferred to β ∈ A under L,

written α �L β, if and only if there exists 1 ≤ i ≤ l with α(Xi) >Xi β(Xi)
and for all j < i, α(Xj) = β(Xj). α ∈ A is preferred to β ∈ A under L,

written α <L β, if and only if α �L β or α(Xi) = β(Xi) for all 1 ≤ i ≤ l.

We denote the variables involved in a fvo lexicographic model L = (X1, . . . , Xl)
by σ(L) = ⋃

i=1,...,lXi. Given a fvo lexicographic model L ∈ H(1), we compare

alternatives lexicographically by following the strict importance order on the

variables σ(L) involved.

We can define models that utilize a lexicographic order, however, only require

a importance order on variables that is a partial order. Thus, these models are

specified by an ordered tuple of sets of variables. The sets are called levels or

level sets and contain variables of equal importance that can be combined by an

operator. As in k-bound Pareto models, this allows tradeoffs between variables

but at the price of enforcing variables to be commensurable and have the same

domain D with a fixed value order ≥.

Definition 3.16: Hierarchical Models

A hierarchical model H is written as H = (C1, . . . , Cl) where C1, . . . , Cl ⊆ V
and the sets Ci are pairwise disjoint.

Similar as for fvo lexicographic models, we denote the variables involved in a
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hierarchical model H = (C1, . . . , Cl) by σ(H) = ⋃
i=1,...,l Ci. Given an associative

and commutative operator ⊕ on the domain D of the variables V with value or-

der≥, a hierarchical model implies an order relation on the alternatives defined

in the following way.

Definition 3.17: Hierarchical Order

Let H = (C1, . . . , Cl) be a hierarchical preference model. Then α ∈ A
is strictly preferred to β ∈ A under H, written α �H β, if and only if

there exists 1 ≤ i ≤ l with
⊕

X∈Ci α(X) > ⊕
X∈Ci β(X) and for all j < i,⊕

X∈Cj α(X) = ⊕
X∈Cj β(X). α ∈ A is preferred to β ∈ A under H, written

α <H β, if and only if α �H β or
⊕

X∈Ci α(X) = ⊕
X∈Ci β(X) for all 1 ≤ i ≤

l.

As before for Pareto models, we can consider classes H(k) of hierarchical mod-

els with bounds on the sizes of level sets.

Definition 3.18: k-bound Hierarchical Models

Let k ∈ N. H(k) is defined as the set {H = (C1, . . . , Cl) |
H is a hierarchical model and |Ci| ≤ k ∀i = 1, . . . , l} which includes all

hierarchical models with level sets of maximal cardinality k.

In this sense, we denote fvo lexicographic models by H(1) despite the slight

abuse of notation, given that fvo lexicographic models are ordered tuples of

variables as opposed to ordered tuples of singleton variable sets. Furthermore,

for k ≤ c we have H(k) ⊆ H(c). Note that in later chapters we explicitly

demand monotonicity or strict monotonicity of the operator ⊕ in order to show

some results.

Example 3.2

Consider the family decision of buying a holiday home as in the previous

section. The Pareto models mentioned before all assume that every par-

ty/person has an equally important vote and thus all decisions have to be

made unanimously. However, it might be that not every party pays an equal

share or that some party spends much more time in the house. We could

for example assume that the men decide amongst each other on the holi-

58



3.4 Variable Hierarchies

day houses as representatives of their families and that the grandparents

pay 70% of the house. Thus the grandfather should have the most impact

in this decision. Only if he is indifferent between two alternatives, Mal-

colm’s preferences are considered, since he will spend most of his time in

this house. Finally, in case both the grandfather and Malcolm are indiffer-

ent under two alternatives, Dewey’s preferences can break the ties. This fvo
lexicographic model is represented by L = (Hal, Malcolm, Dewey). Con-

sidering the table of preferences given in the previous section, L implies

Beach House �L House in Mountains �L Old Farm House.

Now consider the scenario where the preferences of all parties (the grand-

parents, Malcolm’s family and Dewey’s family) are aggregated by the oper-

ator ⊕, the usual addition on the natural numbers. Thus, all parties come

to a decision together instead of having the men representing their prefer-

ences. For the reasons mentioned before, the grandparents have the most

important say in the matter. Only if the grandparents are indifferent un-

der some houses, Malcolm’s family decides. And only if the grandparents

and Malcolm’s family are indifferent under two houses, then Dewey’s fam-

ily breaks the ties. This hierarchical model is given by H = ({Hal, Lois},

{Malcolm, Malcolm’s wife, Malcolm’s son}, {Dewey, Dewey’s wife, Dewey’s

daughter}) and the aggregated preferences are shown in the table below.

Level of Name House in Old Farm Beach House

Importance Mountains House

1 The Grandparents 2 2 1

2 Malcolm’s Family 2 0 2

3 Dewey’s Family 0 2 1

Thus, H implies House in Mountains�H Old Farm House�H Beach House.

In addition to the just described variable hierarchies, we also consider a gen-

eralised form of lexicographic models. Here, a cvo lexicographic model again

consists of a total order on a subset of variables. Additionally, variables in this

tuple are annotated with a value order. This follows the assumption that value

orders on variable domains are unknown and part of the preference model, im-

plying the same subjectivity of value orders as in the models P as presented

before.
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3.4 Variable Hierarchies

Definition 3.19: Changeable-Value-Order (CVO) Lexicographic Models

A cvo lexicographic model π is a sequence of tuples ((X1,≥X1), . . . , (Xl,≥Xl
)), where {X1, . . . , Xl} ⊆ V and the annotated order relations ≥Xi are total

orders on the variable domains Xi. We denote the set of cvo lexicographic

models by L .

We can now define an order relation on alternatives based on cvo lexicographic

models similar to the order relation for fvo lexicographic models in the following

way:

Definition 3.20: CVO Lexicographic Order

Let π = ((X1,≥X1), . . . , (Xl,≥Xl)) be a cvo lexicographic model. Then π

induces the following order relation on alternatives: α ∈ A is strictly pre-

ferred to β ∈ A under π, written α �π β, if and only if there exists 1 ≤ i ≤ l

with α(Xi) >Xi β(Xi) and for all j < i α(Xj) =Xj β(Xj). α ∈ A is preferred

to β ∈ A under π, written α <π β, if and only if α �π β or α(Xi) =Xi β(Xi)
for all 1 ≤ i ≤ l.

While the induced order relations for "simple" and cvo lexicographic models are

very similar, they are not exactly the same as one uses predefined value orders

for variable domains and the other deals with value orders that are specified

by the model. Again, we denote the variables involved in a cvo lexicographic

model π = ((X1,≥X1), . . . , ((Xl,≥Xl)) by σ(π) = ⋃
i=1,...,lXi. As for the fvo

lexicographic models, a cvo lexicographic model π is an ordered tuple and thus

represents a strict importance order on the variables σ(π) involved.
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Chapter 4

Strong Compositionality

In this chapter we introduce a general framework of inference. Here, we con-

sider an arbitrary preference language L and an arbitrary finite set of prefer-

ence models G that consists of order relations on the alternatives A. That is,

every π ∈ G is associated with an order relation <π on A. In this level of ab-

straction, it is not necessary to characterise alternatives by variable assignments

as introduced in the previous chapter; they are simply abstract elements. We

will introduce the property of (strong) compositionality for preference state-

ments based on a set of preference models. This definition is based on the

existence and properties of a composition operator that combines preference

models. (Strong) compositionality then allows many statements about infer-

ence and consistency with very little restrictions on the setting. It is a property

that many natural preference languages and models satisfy. Further statements

about inference and consistency can then be made for strongly compositional

languages considering specific preference model types.

This chapter is based on work in [WG17] where the concept of (strong) com-

positionality of preference statements has been first introduced in the context

of cvo lexicographic models. In this chapter, we show that many of the results

presented in [WG17] hold for the general case of arbitrary sets of preference

models that are only restricted by very few assumptions. The generalised re-

sults rely on basic properties of the composition operator and new or modified

definitions of minimal models, maximal models and minimal extensions.

In the first section, we introduce the definitions of composition operators and

model extensions together with some basic properties. Here, we give exam-

ples of composition operators for lexicographic models and Pareto models to
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which we will refer at a later point. In Section 4.2, we first introduce max-

imal models and the relaxed satisfaction relation |=∗, which expresses that a

model can be extended to satisfy a preference statement. Based on this defini-

tion we are then able to define compositionality and strong compositionality for

preference statement, Section 4.2.2. We describe more properties of (strong)

compositionality and an algorithmic approach to solve the Consistency Problem

for strongly compositional statements which could be efficient in many cases.

In Section 4.3, we analyse the compositionality of statements in connection to

specific types of preference models and give further properties, which lead to

more details for the algorithmic approach. Here, we first consider preference

models that can be associated with sets of variables in a certain way 4.3.1. We

then specify the types of models even further to consider cvo lexicographic mod-

els (Section 4.3.2) and then cvo singleton Pareto models (Section 4.3.3). The

last section concludes.

4.1 Composition and Extension

Compositional preference statements are defined via compositions and exten-

sions of preference models. In this Section we present the necessary prelimi-

naries to define (strong) compositionality of preference statements.

In order to consider compositions of preference models, we define a composi-

tion operator as an operator on a finite set (of preference models) G with three

elementary properties.

Definition 4.1: Composition Operator

A composition operator is an operator ◦ : G ×G −→ G on a finite set G that

satisfies

1) π ◦ (π′ ◦ π′′) = (π ◦ π′) ◦ π′′ (associativity)

2) π ◦ π = π (idempotence)

3) If π1 = π2 ◦ π and π2 = π1 ◦ π′, then π1 = π2. (asymmetry)

for all models π1, π2, π, π
′, π′′ ∈ G.

We define the associated extension relation of preference models for composi-
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tion operators as follows.

Definition 4.2: Extension Relation

Let ◦ be a composition operator on a finite set G. For π, π′ ∈ G we say π′

extends π if π′ 6= π and there exists a model π′′ ∈ G such that π′ = π ◦ π′′.
We then write π′ = π, and write π′ w π to mean that π′ extends or equals

π.

In the following, we show antisymmetry and transitivity properties for associ-

ated extension relations w of composition operators ◦. Using these properties

we can then prove existence of "maximal models", which help us to formulate

an approach to solve the Consistency Problem for strongly compositional pref-

erence statements later in this chapter. The next simple property follows easily

from the definitions.

Lemma 4.1. Let π, π′, π′′ ∈ G be preference models. If π′′ w π′, then π◦π′′ w π◦π′.

Proof. If π′′ = π′, then π ◦ π′′ w π ◦ π′ follows directly. If π′′ = π′, then there

exists a model π1 with π′′ = π′ ◦π1. By applying associativity, we obtain π ◦π′′ =
π ◦ (π′ ◦ π1) = (π ◦ π′) ◦ π1 w π ◦ π′.

The following results show that the extension relation w is antisymmetric and

transitive on models G.

Proposition 4.2. The extension relation w is antisymmetric, i.e., for π1, π2 ∈ G,
if π1 w π2 w π1 then π1 = π2.

Proof. If π1 = π2, the statement trivially holds. Now suppose π1 = π2 = π1.

Then there exists π, π′ ∈ G with π1 = π2 ◦ π and π2 = π1 ◦ π′. By asymmetry of

composition operators, π1 = π2.

Proposition 4.3. The extension relation w is transitive, i.e., for π1, π2, π3 ∈ G, if
π1 w π2 w π3 then π1 w π3.

Proof. If π1 = π2 or π2 = π3, the π1 w π3 obviously holds. Consider the case

π1 = π2 = π3. Then by definition of the extension relation, there exist models

π′1 and π′2 in G with π1 = π2 ◦ π′1 and π2 = π3 ◦ π′2. Thus, using associativity of

◦, π1 = (π3 ◦ π′2) ◦ π′1 = π3 ◦ (π′2 ◦ π′1). Since π′2 ◦ π′1 is by definition of ◦ in G,

π1 w π3.
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Proposition 4.4. The extension relation = is transitive, i.e., for π1, π2, π3 ∈ G, if
π1 = π2 = π3 then π1 = π3.

Proof. Suppose that π1 = π2 = π3. By transitivity of w, we have π1 w π3. It thus

remains to show that π1 6= π3. We can write π1 = π2 ◦ π and π2 = π3 ◦ π′ for

some models π, π′ ∈ G. Suppose π1 = π3. Then π1 = π2 ◦ π and π2 = π1 ◦ π′.
By asymmetry of the composition operator, π1 = π2 which is a contradiction to

π1 = π2. Thus π1 6= π3, i.e., π1 = π3.

Note that, associativity and idempotence of composition operators together

with transitivity of = imply asymmetry. To prove this, suppose there would

exist models π1, π2, π, π
′ ∈ G with π1 6= π2 such that π1 = π2 ◦ π and π2 = π1 ◦ π′.

Then π1 = π2 = π1 and by transitivity π1 = π1, which is a contradiction. Thus,

given associativity and idempotence of a composition operator, transitivity of =

and asymmetry are equivalent.

We can show that the composition with an extension is equal to the extension.

Lemma 4.5. For π, π′ ∈ G, we have π′ w π if and only if π ◦ π′ = π′.

Proof. Suppose that π = π′. Then by idempotence of a composition, π ◦ π′ =
π′ ◦ π′ = π′. Now suppose π′ extends π, i.e., π′ = π, and write π′ as π ◦ π′′.
Then, π ◦ π′ = π ◦ (π ◦ π′′) which by applying associativity and idempotence of

compositions equals π ◦ π′′ = π′. Conversely, suppose that π ◦ π′ = π′. Then by

definition, π′ w π.

We now give examples of composition operators for two important types of

preference models. These will be discussed in more detail at the end of the

chapter.

Composition for Lexicographic Models Consider the set of fvo lexicographic

models H(1) with fixed variable value orders as introduced in Definition 3.14

and 3.18. We can define a composition operator ◦H(1) on H(1) in the following

way. Let π = (X1, . . . , Xk) and π′ = (X ′1, . . . , X ′l) be two fvo lexicographic

models. Let {X ′′1 , . . . , X ′′m} = σ(π′) \ σ(π) be the variables that appear in π′ but

not in π. Then the composition π ◦H(1) π
′ is defined as the sequence X1, . . . , Xk

followed by all variables {X ′′1 , . . . , X ′′m} in the same order as they appear in π′. If

the model π for example is the sequence (airline, time) and the model π′ is the
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sequence (time, class, airline), then the composition π ◦H(1) π
′ is the sequence

(airline, time, class). Also, (airline, time, class) extends (airline, time).

We can show that this operator satisfies properties 1)–3) of compositions.

Proposition 4.6. The operator ◦H(1) as defined above for fvo lexicographic models
H(1) is a composition operator.

Proof. For simplicity, write ◦H(1) as ◦. By definition, π ◦ π′ ∈ H(1) for models

π, π′ ∈ H(1). We now show that ◦ satisfies properties 1)–3) of compositions for

fvo lexicographic models.

Associativity: Let π1 = (X1, . . . , Xk), π2 = (Y1, . . . , Yl) and π3 = (Z1, . . . , Zm)
be three fvo lexicographic models in H(1). Let (Y ′1 , . . . , Y ′l′) be the sequence of

variables in π2 that do not appear in π1, and let (Z ′1, . . . , Z ′m′) be the sequence

of variables in π3 that do not appear in π1 or π2. Similarly, let (Z ′′1 , . . . , Z ′′m′′) be

the sequence of variables in π3 that do not appear in π2. Then (π1 ◦ π2) ◦ π3

= (X1, . . . , Xk, Y
′

1 , . . . , Y
′
l′ , Z

′
1, . . . , Z

′
m′). Also, π1 ◦ (π2 ◦ π3) = (X1, . . . , Xk) ◦

(Y1, . . . , Yl, Z
′′
1 , . . . , Z

′′
m′′) = (X1, . . . , Xk, Y

′
1 , . . . , Y

′
l′ , Z

′
1, . . . , Z

′
m′).

Idempotence: Follows directly from the definition.

Asymmetry: Let π1 = (X1, . . . , Xk), π2 = (Y1, . . . , Yl), and let π and π′ be some

fvo lexicographic models. Suppose, π1 = π2 ◦ π and π2 = π1 ◦ π′. Then π1 begins

with the sequence (Y1, . . . , Yl) of variables in π2. Similarly π2 begins with the

sequence (X1, . . . , Xk) of variables in π1. Thus, X1 = Y1, X2 = Y2, etc. and

l = k. Hence, π1 = π2.

We can define a composition operator for cvo lexicographic models L (see

Definition 3.19) where variable value orders are not fixed (but part of

the model) in the following way. Let π = ((X1,≥1), . . . , (Xk,≥k)) and

π′ = ((X ′1,≥′1), . . . , (X ′l ,≥′l)) be two cvo lexicographic models in L . Let

{X ′′1 , . . . , X ′′m} = σ(π′) \ σ(π) be the variables that appear in π′ but not in π.

Then the composition π ◦L π′ is defined as the sequence of tuples in π followed

by all tuples with variables {X ′′1 , . . . , X ′′m} in the same order as they appear in

π′, i.e., π ◦L π′ = ((X1,≥1), . . . , (Xk,≥k), (X ′′1 ,≥′′1), . . . , (X ′′m,≥′′m)). If the model

π for example is the sequence ((airline, KLM > LAN), (time, day > night)) and

the model π′ is the sequence ((time, night > day), (class, economy > business),

(airline, LAN > KLM)), then the composition π ◦ π′ is the sequence ((airline,

KLM > LAN), (time, day > night), (class, economy > business)). The proof

showing that this is a composition operator for cvo lexicographic models is sim-

ilar to the proof of Proposition 4.6.
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Lemma 4.7. The operator ◦L for cvo lexicographic models L is a composition
operator.

Proof. For simplicity, write ◦L as ◦. By definition, π ◦ π′ ∈ L for π, π′ ∈ L . We

now show that ◦ satisfies properties 1)–3) of compositions for cvo lexicographic

models.

Associativity: Let π1 = ((X1,≥X1), . . . , (Xk,≥Xk)), π2 = ((Y1,≥Y1), . . . , (Yl,≥Yl))
and π3 = ((Z1,≥Z1), . . . , (Zm,≥Zm)) be three cvo lexicographic models. Further-

more, let (Y ′1 , . . . , Y ′l′) be the sequence of variables in π2 that do not appear in

π1 and let (Z ′1, . . . , Z ′m′) be the sequence of variables in π3 that do not appear in

π1 or π2. Similarly, let (Z ′′1 , . . . , Z ′′m′′) be the sequence of variables in π3 that do

not appear in π2. Then (π1 ◦ π2) ◦ π3 = ((X1,≥X1), . . . , (Xk,≥Xk),(Y ′1 ,≥Y ′1 ), . . . ,
(Y ′l′ ,≥Y ′l′ ),(Z

′
1,≥Z′1), . . . , (Z ′m′ ,≥Z′m′ )). Also, we have that π1 ◦ (π2 ◦ π3) =

((X1,≥X1), . . . , (Xk,≥Xk)) ◦ ((Y1,≥Y1), . . . , (Yl,≥Yl), (Z ′′1 ,≥Z′′1 ), . . . , (Z ′′m′′ ,≥Z′′m′′ ))
= ((X1,≥X1), . . . , (Xk,≥Xk),(Y ′1 ,≥Y ′1 ), . . . , (Y ′l′ ,≥Y ′l′ ), (Z

′
1,≥Z′1), . . . , (Z ′m′ ,≥Z′m′ )).

Idempotence: Follows directly from the definition.

Asymmetry: Let π1 = ((X1,≥X1), . . . , (Xk,≥Xk)), π2 = ((Y1,≥Y1), . . . , (Yl,≥Yl)),
π and π′ be some cvo lexicographic models in L . Suppose, π1 = π2 ◦ π and

π2 = π1 ◦π′. Then by definition of composition operators, π1 begins with the se-

quence ((Y1,≥Y1), . . . , (Yl,≥Yl)) of tuples in π2. Similarly, π2 begins with the se-

quence ((X1,≥X1), . . . , (Xk,≥Xk)) of tuples in π1. Thus, (X1,≥X1) = (Y1,≥Y1),
(X2,≥X2) = (Y2,≥Y2), etc. and l = k. Hence, π1 = π2.

Composition for Singleton Pareto Models We consider the set of fvo Pareto

models P(1) as introduced in Section 3.3. A composition operator ◦P(1) on P(1)
can be defined in a similar way to the composition ◦H(1) for fvo lexicographic

models. Let π = {X1, . . . , Xk} and π′ = {X ′1, . . . , X ′l} be two fvo Pareto models.

Then the composition π◦P(1)π
′ is defined as the union of π and π′, {X1, . . . , Xk}∪

{X ′1, . . . , X ′l}.

We can show that this composition operator satisfies properties 1)–3).

Proposition 4.8. The operator ◦P(1) for fvo singleton Pareto models is a composi-
tion operator.

Proof. For simplicity, write ◦P(1) as ◦. By definition, π◦π′ ∈ P(1) for π, π′ ∈ P(1).
We now show that ◦ satisfies the properties of composition operators for fvo
singleton Pareto models.
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Associativity: Let π1 = {X1, . . . , Xk}, π2 = {Y1, . . . , Yl} and π3 = {Z1, . . . , Zm}
be three fvo singleton Pareto models. Then because of associativity of the

set union, (π1 ◦ π2) ◦ π3 = ({X1, . . . , Xk} ∪ {Y1, . . . , Yl}) ∪ {Z1, . . . , Zm} =
{X1, . . . , Xk} ∪ ({Y1, . . . , Yl} ∪ {Z1, . . . , Zm}) = π1 ◦ (π2 ◦ π3).
Idempotence: Follows directly from the definition.

Asymmetry: Let π1 = {X1, . . . , Xk}, π2 = {Y1, . . . , Yl}, π and π′′ be some fvo
singleton Pareto models. Suppose, π1 = π2 ◦π and π2 = π1 ◦π′. Then π1 = π2∪π
and in particular π2 ⊆ π1. Similarly π2 = π1 ∪ π′ and thus π1 ⊆ π2. Hence,

π1 = π2.

As for the fvo lexicographic case, the definition of a composition operator for fvo
singleton Pareto models can be extended to more general cvo singleton models,

where value orders of the variables are part of the models. Here, if the variable

X appears in the tuple (X,≥) in π and in the tuple (X,≥′) in π′, then we

define the composition π ◦P π′ to contain only the tuple (X,≥), not (X,≥′).
More detailed, for cvo singleton Pareto models π = {(X1,≥1), . . . , (Xk,≥k)} and

π′ = {(X ′1,≥′1), . . . , (X ′l ,≥′l)} with {X ′′1 , . . . , X ′′m} = σ(π′)\σ(π), the composition

π ◦P π′ is defined as π ◦P π′ = {(X1,≥1), . . . , (Xk,≥k), (X ′′1 ,≥′′1), . . . , (X ′′m,≥′′m)}.

The proof showing that this is a composition operator for cvo singleton Pareto

models P is similar to the proof of Lemma 4.7 and Proposition 4.8.

Lemma 4.9. The operator ◦P for cvo singleton Pareto models P is a composition
operator.

Proof. For simplicity write the operator ◦P as ◦.
Associativity: Let π1 = {(X1,≥X1), . . . , (Xk,≥Xk)}, π2 = {(Y1,≥Y1), . . . , (Yl,≥Yl)},
and π3 = {(Z1,≥Z1), . . . , (Zm,≥Zm)} be three cvo singleton Pareto mod-

els in P. Let {Y ′1 , . . . , Y ′l′} be the set of variables in π2 that do not

appear in π1 and let {Z ′1, . . . , Z ′m′} be the set of variables in π3 that

do not appear in π1 or π2. Similarly, let {Z ′′1 , . . . , Z ′′m′′} be the set

of variables in π3 that do not appear in π2. Then (π1 ◦ π2) ◦ π3 =
{(X1,≥X1), . . . , (Xk,≥Xk),(Y ′1 ,≥Y ′1 ), . . . , (Y ′l′ ,≥Y ′l′ ),(Z

′
1,≥Z′1), . . . , (Z ′m′ ,≥Z′m′ )}.

Also, π1 ◦ (π2 ◦ π3) = {(X1,≥X1), . . . , (Xk,≥Xk)) ◦ ((Y1,≥Y1), . . . , (Yl,≥Yl),
(Z ′′1 ,≥Z′′1 ), . . . , (Z ′′m′′ ,≥Z′′m′′ )} = {(X1,≥X1), . . . , (Xk,≥Xk),(Y ′1 ,≥Y ′1 ), . . . , (Y ′l′ ,≥Y ′l′ ),
(Z ′1,≥Z′1), . . . , (Z ′m′ ,≥Z′m′ )}.
Idempotence: Follows directly from the definition.

Asymmetry: Let π1, π2, π and π′′ be some cvo singleton Pareto models. Suppose,

π1 = π2 ◦ π and π2 = π1 ◦ π′. Then π2 ⊆ π1 and π1 ⊆ π2. Hence, π1 = π2.
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4.2 Inference and Strong Compositionality

In this section, we use the definitions of a composition operator ◦ and an as-

sociated extension relation w to define a relaxed version of inference and the

notion of maximal and minimal models. We are then finally able to define strong
compositionality, a property of preference statements in connection with a set

of preference models. More specifically, a preference statement ϕ is strongly

compositional if the composition of two models satisfies ϕ whenever the sec-

ond and some extension of the first satisfy ϕ. Strong compositionality induces

many properties for preference inference which are discussed in detail later in

this chapter and can lead to efficient computations.

Throughout this section, we consider some language L, and satisfaction rela-

tion |=⊆ G × L. Thus, L is a set of preference statements and the relation |=
determines when a preference model in G satisfies a statement as introduced in

Section 8.3.

4.2.1 The Induced Relation |=∗ and Maximal Models

Recall from Section 3.1 that the inference relation Γ |=G ϕ holds if for all π ∈ G
such that π |= Γ we have π |= ϕ.

From the relation |= together with a composition operator we define the derived

relation |=∗ as follows.

Definition 4.3: |=∗-Satisfaction Relation

Let π ∈ G and ϕ ∈ L. Then π |=∗ ϕ if and only if there exists π′ ∈ G either

extending or equalling π, i.e., π′ w π, such that π′ |= ϕ.

Thus, π |=∗ ϕ holds either if π satisfies ϕ or some extension of π satisfies ϕ, i.e.,

there exists a model π′′ ∈ G such that π ◦ π′′ |= ϕ. We extend the relation |=∗

to sets of statements in the usual way: for Γ ⊆ L, define π |=∗ Γ if and only

if π |=∗ ϕ holds for every ϕ ∈ Γ. The following lemma follows easily from the

definitions and shows essential properties of |=∗ that will be useful later on.

Lemma 4.10. Let π, π′ ∈ G and Γ ⊆ L.

(i) π |= Γ⇒ π |=∗ Γ.
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(ii) Suppose that π′ extends π. Then π′ |=∗ Γ⇒ π |=∗ Γ.

Proof. (i) follows immediately from the definition of |=∗. Regarding (ii),

π′ |=∗ ϕ for ϕ ∈ Γ implies that there exists π′′ with π′′ w π′ and π′′ |= ϕ. By

the transitivity of w (Proposition 4.3), π′′ w π, and thus, π |=∗ ϕ for every

ϕ ∈ Γ.

We now define maximal models for |= and |=∗, which play a crucial role in

our algorithmic solution for the Preference Consistency problem with strongly

compositional statements. They are furthermore important for many inference

results.

Definition 4.4: Maximal Models

We say that π ∈ G is a maximal model of Γ if π |= Γ and for all extending

models π′ = π we have π′ 6|= Γ.

In particular, if there exists no strict extension π′ = π for π ∈ G, then π is a

maximal model of Γ if and only if π � Γ. Note that the definition of maximal

models depends on an extension relation and thus on a composition operator.

Example 4.1

Consider the set of fvo lexicographic models H(1) that compare flight con-

nections by variables V = {airline, class, time} and fixed value orders KLM

> LAN, business > economy and day > night. Then π = (airline, time,

class) satisfies Γ = { (KLM, economy, night) > (LAN, business, day) } be-

cause airline is the first variable in the sequence of π and KLM > LAN.

Also, π is a maximal model of Γ because there are no variables in V left

to extend the model. For Γ′ ={ (KLM, economy, day) > (LAN, business,

night), (LAN, business, night) ≥ (LAN, business, day)}, the model (airline,

class) is a maximal model as the remaining variable, time, cannot be added

to the model without violating the second preference statement in Γ′ since

day > night.

Under our general assumption that G is a finite set of preference models, we

can show that there always exists a maximal model for consistent Γ ⊆ L.
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Proposition 4.11. Let Γ ⊆ L be a set of consistent preference statements and G
a finite set of preference models. Then for π ∈ G such that π |= Γ, either π is
a maximal model of Γ or there exists a maximal model of Γ that extends π. In
particular, there exists a model π ∈ G that is a maximal model of Γ.

Proof. Let π1 ∈ G be a model of Γ. Assume π1 is not a maximal model of Γ.

Then, there exists a model π2 ∈ G with π2 = π1 and π2 |= Γ. If π2 is not a

maximal model of Γ, the previous argument can be applied again. Thus there

exists a sequence π1 < π2 < π3 < . . . of models in G that satisfy Γ. Since the set

of models G is assumed to be finite, every such sequence of extensions is either

finite and cannot be extended further, or there exist models πi, πj with i < j in

the sequence such that πi = πj. By Proposition 4.4, < is transitive, and thus

πk = πl for all l < k. Thus, there cannot exist πi, πj with i < j and πi = πj.

Hence, there exists a model πk ∈ G of Γ such that π1 < π2 < π3 < · · · < πk

and there exists no extension of πk that is a model of Γ. Then πk is a maximal

model, and π1 < πk (again by transitivity of =).

Since Γ is consistent, there exists a model π of Γ and hence, there exists a

maximal model (extending or equalling π) of Γ.

Analogously to maximal models of Γ, we define maximal |=∗-models of Γ.

Definition 4.5: Maximal |=∗-Models

A maximal |=∗-model of Γ is an element π ∈ G such that π |=∗ Γ and for all

extending models π′ = π we have π′ 6|=∗ Γ.

For any consistent Γ and finite model set G, there always exists a maximal |=∗-
model. The proof is similar to the proof of existence of a maximal model of

Γ, see Proposition 4.11.

Proposition 4.12. Let Γ ⊆ L be a set of consistent preference statements and
assume that G is a finite set of preference models. Then for π ∈ G such that
π |=∗ Γ, either π is a maximal |=∗-model of Γ or there exists a maximal |=∗-model
of Γ that extends π. In particular, there exists a model π ∈ G that is a maximal
|=∗-model of Γ. Furthermore, for any modelsstar-model of Γ, there exists a model
π′ ∈ G with π′ w π that is a maximal model of Γ.

Proof. Let π1 ∈ G with π1 |=∗ Γ. Assume π1 is not a maximal |=∗-model of Γ.
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Then, there exists a model π2 ∈ G with π2 = π1 and π2 |=∗ Γ. If π2 is not a

maximal |=∗-model of Γ, the previous argument can be applied again.

Thus there exists a sequence π1 < π2 < π3 < . . . of models in G that |=∗-satisfy

Γ.

Since the set of models G is assumed to be finite, every such sequence of ex-

tensions is either finite and cannot be extended further, or there exist models

πi, πj with i < j in the sequence such that πi = πj. By Proposition 4.4, < is

transitive, and thus πk = πl for all l < k. Thus, there cannot exist πi, πj with

i < j and πi = πj. Hence, there exists a |=∗-model πk ∈ G of Γ such that

π1 < π2 < π3 < · · · < πk and there exists no extension of πk that is a |=∗-model

of Γ. Then πk is a maximal |=∗-model of Γ, and π1 < πk (again by transitivity of

=).

If πk is a maximal |=∗-model of Γ extending π1, then (by definition of |=∗) there

exists a model π |= Γ with π w πk. By Proposition 4.11, there exists a maximal

model π′ of Γ that extends π. Thus π′ w π w πk w π1 and by transitivity of w,

we have π′ w π1.

4.2.2 (Strongly) Compositional Preference Statements

We are now finally able to define (strong) compositionality, a property of pref-

erence statements that has strong implications regarding inference and consis-

tency.

Definition 4.6: (Strong) Compositionality

Let ϕ ∈ L. We say that ϕ is compositional if for all π, π′ ∈ G, π |= ϕ and

π′ |= ϕ implies π ◦ π′ |= ϕ.

We say that ϕ is strongly compositional if for all π, π′ ∈ G, π |=∗ ϕ and

π′ |= ϕ implies π ◦ π′ |= ϕ.

For Γ ⊆ L, we define Γ to be compositional if every element of Γ is compo-

sitional. Similarly, we say that Γ is strongly compositional if every element

of Γ is strongly compositional.

Note that if ϕ ∈ L is inconsistent, i.e., there exists no π ∈ G with π |= ϕ, then ϕ

is trivially (strongly) compositional.
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Example 4.2

Consider the set of fvo lexicographic models H(1) in the flight connection

example with variables and fixed value orders as before (see Example 4.1).

The preference statements Γ = {(KLM, economy, day) > (LAN, business,

night), (LAN, business, night) ≥ (LAN, business, day)} are strongly com-

positional. A more general proof of the compositionality of strict and non-

strict preference statements for cvo lexicographic models will be given later

in Section 4.3.2.

The definitions immediately imply the following relations for sets of preference

statements which we will use often in later proofs.

Lemma 4.13. Let Γ ⊆ L, and let π, π′ ∈ G.

• If Γ is strongly compositional then it is compositional.

• If Γ is compositional then π |= Γ and π′ |= Γ imply π ◦ π′ |= Γ.

• If Γ is strongly compositional then π |=∗ Γ and π′ |= Γ imply π ◦ π′ |= Γ.

Proof.

• Assume Γ is strongly compositional. Let π |= ϕ and π′ |= ϕ for some

ϕ ∈ Γ. Then also π |=∗ ϕ, by Lemma 4.10. By strong compositionality of

Γ, π ◦ π′ |= ϕ. Thus, every ϕ ∈ Γ is compositional, i.e., Γ is compositional.

• Assume Γ is compositional and π |= Γ and π′ |= Γ. Then for every ϕ ∈ Γ,

π |= ϕ and π′ |= ϕ and thus by compositionality π ◦ π′ |= ϕ. Hence,

π ◦ π′ |= Γ.

• Assume Γ is strongly compositional and π |=∗ Γ and π′ |= Γ. Then for

every ϕ ∈ Γ, π |=∗ ϕ and π′ |= ϕ and thus by strong compositionality

π ◦ π′ |= ϕ. Hence, π ◦ π′ |= Γ.

Although being strongly compositional might appear to be quite a restrictive as-

sumption, it turns out that it is satisfied by many natural preference statements,

as illustrated in Section 4.3. In the following, we give a lemma which, roughly

speaking, states that the property of being [strongly] compositional is closed

under conjunction.
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Lemma 4.14. Let Γ ⊆ L and let ψ ∈ L. Suppose that ψ is such that for all π ∈ G,
π |= ψ ⇐⇒ π |= Γ. If Γ is compositional then ψ is compositional. If Γ is strongly
compositional then ψ is strongly compositional and, for all π ∈ G, [π |=∗ ψ ⇐⇒
π |=∗ Γ and Γ is consistent].

Proof. Suppose that Γ is compositional. Consider any π, π′ ∈ G with π, π′ |= ψ.

Then, π, π′ |= Γ, which, since Γ is compositional, implies π ◦ π′ |= Γ, and thus,

π ◦ π′ |= ψ, showing that ψ is compositional.

Now assume for the remainder of the proof that Γ is strongly compositional.

First suppose also that π |=∗ ψ. Then there exists π′′ such that π′′ w π and

π′′ |= ψ, which implies that ψ is consistent. Also, π′′ |= Γ, and so Γ is consistent.

For all ϕ ∈ Γ we have π′′ |= ϕ and thus π |=∗ ϕ. We have shown that π |=∗ Γ.

For the converse, we assume that π |=∗ Γ and Γ is consistent. Consistency

of Γ implies that there exists π′ ∈ G such that π′ |= Γ. Since Γ is strongly

compositional, π ◦ π′ |= Γ, and so, π ◦ π′ |= ψ which implies that π |=∗ ψ,

because π ◦ π′ w π.

Finally, we show that ψ is strongly compositional. Consider any π, π′ ∈ G with

π |=∗ ψ and π′ |= ψ. We have, by the earlier part, that π |=∗ Γ, and also π′ |= Γ.

Strong compositionality of Γ implies π ◦ π′ |= Γ and thus, π ◦ π′ |= ψ, proving

that ψ is strongly compositional.

When a preference statement ϕ ∈ L is strongly compositional then there is

a further simple composition property just involving |=∗, as expressed by the

following lemma.

Lemma 4.15. Let ϕ ∈ L, and let π, π′ ∈ G. If ϕ is strongly compositional then
π |=∗ ϕ and π′ |=∗ ϕ implies π ◦ π′ |=∗ ϕ. Also, if Γ ⊆ L is strongly compositional
then π |=∗ Γ and π′ |=∗ Γ implies π ◦ π′ |=∗ Γ.

Proof. Assume that π |=∗ ϕ and π′ |=∗ ϕ, so there exists π′′ with π′′ w π′ and

π′′ |= ϕ. If ϕ is strongly compositional then π ◦ π′′ |= ϕ, and thus, π ◦ π′ |=∗ ϕ,

since by Lemma 4.1 π ◦ π′′ w π ◦ π′. The second part follows immediately from

the first.
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4.2.3 Consistency of Strongly Compositional Preferences

We will now consider the consistency of sets of strongly compositional pref-

erence statements and formulate a key theorem that forms the basis for our

algorithmic approach to solve the Consistency Problem.

The last point of Lemma 4.13 implies that, for strongly compositional and con-

sistent Γ, if π |=∗ Γ then there exists a model of Γ either equalling or extending

π. In fact we have:

Lemma 4.16. Suppose that Γ is strongly compositional, and let π be an element
of G. Then [there exists π′ ∈ G with π′ w π and π′ |= Γ] if and only if [Γ is
consistent and π |=∗ Γ].

Proof. ⇒: First assume that there exists π′ ∈ G with π′ w π and π′ |= Γ. Clearly,

Γ is consistent. Consider any ϕ ∈ Γ. We have π′ |= ϕ, which implies π |=∗ ϕ.

Therefore, π |=∗ Γ.

⇐: Assume that Γ is consistent and π |=∗ Γ. Then there exists π′ ∈ G with

π′ |= Γ. Since Γ is strongly compositional, π ◦ π′ |= Γ, by Lemma 4.13, and we

have π ◦ π′ w π.

The following result states that if Γ is strongly compositional the maximal |=∗-
models satisfy exactly the same elements of Γ. Also, for consistent Γ, all maxi-

mal models of Γ are |=∗-maximal models of Γ and vice versa.

Theorem 4.1: Maximal Model Satisfaction of Preferences

Assume that Γ ⊆ L is strongly compositional. Then, the following hold.

(i) For maximal |=∗-models π, π′ of Γ and for ϕ ∈ Γ, π |= ϕ ⇐⇒ π′ |= ϕ.

(ii) If Γ is consistent then the set of maximal models of Γ is equal to the

set of maximal |=∗-models of Γ.

Proof. (i): Assume that π′ |= ϕ. Since π |=∗ Γ we have π |=∗ ϕ, and so π◦π′ |= ϕ,

since ϕ is strongly compositional. Because π ◦ π′ v π and π ◦ π′ |=∗ ϕ and π is

a maximal |=∗-model of Γ, π ◦ π′ = π and thus π |= ϕ. Reversing the roles of π

and π′ in the argument, we have π |= ϕ ⇐⇒ π′ |= ϕ.

(ii): Let Γ be consistent. We first prove that any maximal model π of Γ is also

a maximal |=∗-model of Γ. Let π be a maximal model of Γ and assume that
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π is not a maximal |=∗-model of Γ. Then there exists a model π′ extending π,

π′ = π, that is a |=∗-model of Γ. Let π′ be a maximal model that satisfies this,

i.e., there exists no extension of π′ that is a |=∗-model of Γ (which exists, since

G is assumed to be finite). Then π′ is a maximal |=∗-model of Γ. Since Γ is

strongly compositional, by Lemma 4.13, π′ ◦ π |= Γ, and thus by Lemma 4.10,

π′◦π |=∗ Γ. But since π′◦π w π′ and π′ was chosen to be a maximal |=∗-model of

Γ, π′◦π = π′. Thus, π′ |= Γ and π′ = π. This is a contradiction to the maximality

of π. Hence, π is a maximal |=∗-model of Γ.

We now prove that any maximal |=∗-model of Γ is a maximal model of Γ. Let π

be some maximal |=∗-model of Γ. Then by Proposition 4.12 there exists a model

π′ with π′ w π that is a maximal model of Γ. Then π′ |=∗ Γ by Lemma 4.10, and

π′ w π. Since π is a maximal |=∗-model, π′ = π, and thus π is a maximal model

of Γ.

The following corollary follows immediately from the second part of Theo-

rem 4.1 and together with the next corollary forms the base of our algorithmic

approach to solve the Consistency Problem for strongly compositional state-

ments discussed in the next section.

Corollary 4.17. If Γ ⊆ L is consistent and strongly compositional then every
maximal |=∗-model of Γ satisfies Γ.

Proof. By Theorem 4.1, if Γ is consistent and strongly compositional then every

maximal |=∗-model of Γ is a maximal model of Γ and thus satisfies Γ.

Reformulating this result implies the following corollary.

Corollary 4.18. Let π be any maximal |=∗-model of strongly compositional Γ ⊆ L.
Then Γ is consistent if and only if π |= Γ.

4.2.4 An Algorithmic Approach for the Consistency Problem

with Strongly Compositional Statements

We now aim at formulating an algorithm to solve the Consistency Problem for

strongly compoositional preference statements. Corollary 4.18 shows that we

can test consistency of strongly compositional Γ, by finding any maximal |=∗-
model π of it, and checking if π satisfies Γ. In this section we show how a

maximal |=∗-model of Γ can be constructed iteratively by minimal extensions,
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starting from a minimum model πminG or a minimal model. To this end, we first

define minimum models and minimal extensions and show their connection to

consistency and inference. After formally describing the algorithm, we discuss

how the algorithm can be extended to work for minimal models.

4.2.4.1 Minimum Model and Minimal Extensions

Let us define minimum models, which are the initial models in our greedy ap-

proach to solve the Consistency Problem for strongly compositional preference

statements.

Definition 4.7: Minimum Models

A minimum model in G is a preference model πminG ∈ G such that any other

model π ∈ G is an extension π w πminG.

Note that a minimum model of G is not guaranteed to exist. Also, by definition,

for two minimum models πminG and π′minG, π
′
minG w πminG and πminG w π′minG. Then

by Proposition 4.2, πminG = π′minG. Thus, if there exists a minimum model, then

it is unique. Note also that the definition of a minimum model, as for maximal

models, depends on a composition operator ◦ and an associated extension rela-

tion w. For the examples for composition operators ◦H(1), ◦L , ◦P(1) and ◦P for

lexicographic and singleton Pareto models, the minimum model is the empty

model. If a minimum model exists in G, we can check if πminG |=∗ Γ. The fol-

lowing lemma shows that this is equivalent to Γ being |=∗-consistent, i.e., there

exists some π ∈ G with π |=∗ Γ, which is a very weak property because it just

requires that each element of Γ is (individually) consistent.

Lemma 4.19. Let Γ ⊆ L and suppose that G has a minimum model πminG. Γ is
|=∗-consistent if and only if, for each ϕ ∈ Γ, ϕ is consistent. This also holds if and
only if πminG |=∗ Γ.

Proof. Suppose first that Γ is |=∗-consistent, and that π |=∗ Γ. Then, for any

ϕ ∈ Γ there exists some π′ ∈ G with π′ w π and π′ |= ϕ, which implies that

every ϕ ∈ Γ is consistent.

Now, assume that all ϕ ∈ Γ are consistent. Then for all ϕ ∈ Γ, there exists some

π ∈ G with π |= ϕ. By definition of πminG, this entails that πminG |=∗ ϕ for all

ϕ ∈ Γ. Thus, πminG |=∗ Γ.
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By definition of consistency, πminG |=∗ Γ implies Γ is |=∗-consistent.

The condition in Corollary 4.18, requires a maximal |=∗-model to check con-

sistency of strongly compositional preference statements. In the following we

show that for building a maximal |=∗-model, we only need to consider finding

minimal extensions.

Definition 4.8: Minimal Extensions

We say that π′ minimally extends π if π′ = π and there exists no intermedi-

ate model π′′ ∈ G, i.e., a model such that π′ = π′′ = π.

Lemma 4.20. π is a maximal |=∗-model of Γ if and only if π |=∗ Γ and there exists
no π′ minimally extending π such that π′ |=∗ Γ.

Proof. If π is a maximal |=∗-model of Γ, then by definition there exists no ex-

tension of π that |=∗-satisfies Γ. In particular, there exists no minimal extension

that |=∗-satisfies Γ.

For the converse, let π be a |=∗-model of Γ that is not maximal. Then there

exists a |=∗-model of Γ strictly extending π. Choose such a model π′ ∈ G such

that there exists no intermediate |=∗-model π′′ ∈ G of Γ with π′ = π′′ = π. Note

that such a π′ exists since G is assumed to be finite. Then by definition, π′ is a

minimal extension of π such that π′ |=∗ Γ.

4.2.4.2 The Algorithm

If there exists a minimum model πminG of Γ then we can, starting with πminG,

construct a maximal |=∗-model π of Γ by iteratively replacing the current model

with one minimally extending it and still |=∗-satisfying Γ. If there exists no more

extension, we have found a maximal |=∗-model π of Γ. By Corollary 4.18, we

can test if Γ is consistent by checking π |= Γ.

Algorithm 4.1: Consistency for Strongly Compositional Statements Γ

Input: Set of models G with minimum model πminG,
strongly compositional statements Γ.

Question : Is Γ consistent with respect to G?
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1. IF ( πminG |=∗ Γ ) THEN
2. π ← πminG

3. WHILE ( ∃ min extension π′ = π with π′ |=∗ Γ )
4. π ← π′

5. IF ( π |= Γ ) THEN
6. RETURN "Γ is consistent " and STOP.
7. RETURN "Γ is inconsistent " and STOP.

Proposition 4.21. Algorithm 4.1 is correct.

Proof. The correctness of Algorithm 4.1 is a direct consequence of Lemmas 4.19

and 4.20, and Corollary 4.18.

To analyse the runtime, let us define a satisfaction test as a test of the form

π |= ϕ for some π ∈ G and ϕ ∈ L; a |=∗-satisfaction test is a test of the form

π |=∗ ϕ.

Assuming that a minimum model of G is given, we first check if the minimum

model is a |=∗-model of Γ, which involves a number |Γ| of |=∗-satisfaction tests

using Lemma 4.19. At each iterative step, we have to do at most |Γ| |=∗-
satisfaction tests for every possible minimal extension of the current model.

Finally, we have to check that the produced maximal |=∗-model of Γ satisfies Γ,

which involves |Γ| satisfaction tests. This method can be efficient if a minimum

model of G is given or easy to find, the number of minimal extensions is re-

stricted in every step and easy to compute and satisfaction and |=∗-satisfaction

tests are efficient to compute. We will describe this method and its efficiency in

more detail for (fvo and cvo) lexicographic models in Chapter 6 and Chapter 8,

hierarchical models in Chapter 7, and find alternative approaches for fvo Pareto

models in Chapter 5.

4.2.4.3 Minimal Model

Note that, since existence of a minimum model is not guaranteed, Algorithm 4.1

does not apply to every set of strongly compositional statements Γ. However,

one could relax the definition of minimum models and transfer this method.

Definition 4.9: Minimal Models
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We say a model π ∈ G is a minimal model of a set of models G if there exists

no model π′ ∈ G such that π = π′.

By this definition, a minimal model of G always exists, however is not guaran-

teed to be unique. If there exists a unique minimal model it is also the minimum

model. This follows immediately from the next proposition which expresses a

basic property of minimum elements in partially ordered sets.

Proposition 4.22. Let B be the set of minimal models for the finite set of models
G. Then for any model π ∈ G there exists a model π′ ∈ B such that π w π′.

Proof. If π ∈ B then the result trivially follows. Suppose π is not a minimal

model. Then there exists a model π1 ∈ G such that π = π1. The model π1 is

either a minimal model or there exists another model π2 ∈ G such that π1 =

π2. By repeating this argument, there exists a sequence of model extensions

π = π1 = π2 = . . . . Since the set G is assumed to be finite and = is transitive

(by Proposition 4.4), such a sequence is finite, i.e., there exists πk such that

π = π1 = π2 = · · · = πk and there exists no other model that πk is an extension

of. Then π = πk by transitivity of =, and πk is a minimal model.

We can generalise the statement of Lemma 4.19 as follows.

Lemma 4.23. For the set of all minimal models B, a set of preference statements
Γ is |=∗-consistent if and only if there exists π ∈ B such that π |=∗ Γ.

Proof. By definition of consistency, if there exists π ∈ B such that π |=∗ Γ, then

Γ is |=∗-consistent. Assume Γ is |=∗-consistent. Then there exists a model π ∈ G
such that π |=∗ Γ. By Proposition 4.22, there exists a model π′ ∈ B such that

π w π′ and by Lemma 4.10, π′ |=∗ Γ.

By these results, we can construct a maximal |=∗-model of Γ iteratively as de-

scribed before starting with a minimal |=∗-model of Γ instead of a minimum

|=∗-model of Γ.

4.2.5 Decreasing Preference Statements and Sets of Models

Since there exists a promising algorithmic approach to solve the Consistency

Problem, as shown in the last section, it can be helpful for any new preference

framework with preference models and statements of some types to check for
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strong compositionality. In this section we show some results that are useful in

proving that certain preference statements are strongly compositional.

The first important property that can help us to show strong compositionality is

the one that a statement is decreasing.

Definition 4.10: Decreasing Statements

We say that ϕ ∈ L is decreasing if for all π, π′ ∈ G with π′ extending π, we

have π′ |= ϕ⇒ π |= ϕ.

It follows easily from the definitions that if ϕ is decreasing, then, for all π ∈ G,

π |=∗ ϕ ⇐⇒ π |= ϕ. This leads to the following result.

Lemma 4.24. Let ϕ ∈ L be decreasing. Then ϕ is strongly compositional if and
only if ϕ is compositional.

Proof. ϕ is strongly compositional if and only if for all π, π′ ∈ G with π |=∗ ϕ
and π′ |= ϕ, π ◦ π′ |= ϕ. Since ϕ is decreasing, π |=∗ ϕ is equivalent to π |= ϕ.

Thus, ϕ is strongly compositional if and only if for all π, π′ ∈ G with π |= ϕ and

π′ |= ϕ, π ◦ π′ |= ϕ, which is if and only if ϕ is compositional.

Example 4.3

As before, consider flight connections with variables V = {airline, class,

time} and fixed value orders KLM > LAN, business > economy and day

> night. Let the statement ϕ be given by (KLM, economy, night) ≥ (LAN,

business, day).

As argued in a previous example, the model (airline, time, class) is a max-

imal model of ϕ. The only other maximal model of ϕ is (airline, class,

time). The two maximal models are extending the models (airline, time),

(airline, class), (airline) and (), all of which satisfy the statement as well.

Thus, (KLM, economy, night) ≥ (LAN, business, day) is decreasing.

The statement ϕ′ given by (LAN, business, night) > (LAN, economy, day) is

satisfied by the model (airline, class, time) which also is a maximal model

of ϕ′ and an extension of the model (airline). However, (airline) does not

satisfy ϕ′. Thus, ϕ′ is not decreasing.
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We will show that in general non-strict statements on complete variable assign-

ments in the context of cvo lexicographic models are decreasing, while strict

statements are not, see Section 4.3.2.

We now introduce other criteria by which we can check strong compositionality

of preference statements. These are connected to properties of sets of prefer-

ence models. For this, we first define decreasing sets.

Definition 4.11: Decreasing Sets

For M ⊆ G, we say that M is decreasing if, for any π, π′ ∈ G such that π′

extends π, we have π′ ∈M⇒ π ∈M.

We now define the notion of a set of preference models that contains all models

of a statement.

Definition 4.12: Containing Models of Statements

We say thatM contains all models of ϕ if, for all π ∈ G, π |= ϕ⇒M 3 π.

The following result is helpful for proving that a preference statement ϕ is

strongly compositional.

Proposition 4.25. Let ϕ ∈ L be consistent and let Mϕ be a subset of G. The
following two conditions are equivalent:

(I) Mϕ is decreasing and contains all models of ϕ, and for all π, π′ ∈ G, if
π ∈Mϕ and π′ |= ϕ then π ◦ π′ |= ϕ.

(II) ϕ is strongly compositional, and for all π ∈ G, π |=∗ ϕ ⇐⇒ π ∈Mϕ.

Proof. (I)⇒ (II): Let π ∈Mϕ. Since ϕ is consistent, there exists π′ with π′ |= ϕ,

and so (I) implies that π◦π′ |= ϕ. Thus, π |=∗ ϕ, since π◦π′ w π. For proving the

converse, let us now assume that π |=∗ ϕ, so there exists π′ ∈ G with π′ w π and

π′ |= ϕ. Thus, π′ ∈ Mϕ, and becauseMϕ is decreasing, we then have π ∈ Mϕ.

We have shown that for all π ∈ G, π |=∗ ϕ ⇐⇒ π ∈ Mϕ. (I) then also implies

that ϕ is strongly compositional.

(II) ⇒ (I): Lemma 4.10(i) implies that Mϕ contains all models of ϕ, and

Lemma 4.10(ii) implies thatMϕ is decreasing. The fact that ϕ is strongly com-

positional then implies (I).
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The last criterion in this subsection by which strong compositionality can be

checked, needs the definition of relaxations of statements.

Definition 4.13: Relaxations of Statements

For ϕ, ϕ′ ∈ L, we say that ϕ′ is a relaxation of ϕ if ϕ |= ϕ′, i.e., for all π ∈ G,

π |= ϕ⇒ π |= ϕ′.

We have the following special case of Proposition 4.25.

Proposition 4.26. Let ϕ, ϕ̄ ∈ L, and assume that ϕ is consistent. The following
two conditions are equivalent:

(I) ϕ̄ is a decreasing relaxation of ϕ such that for all π, π′ ∈ G, if π |= ϕ̄ and
π′ |= ϕ then π ◦ π′ |= ϕ.

(II) ϕ is strongly compositional, and for all π ∈ G, π |=∗ ϕ ⇐⇒ π |= ϕ̄.

Proof. Define Mϕ to be all π ∈ G such that π |= ϕ̄. Note that (I) holds if and

only if Mϕ is decreasing and contains all models of ϕ. Also, if π ∈ Mϕ and

π′ |= ϕ then π ◦ π′ |= ϕ. Proposition 4.25 implies that (I) ⇐⇒ (II).

4.3 Examples for Specific Model Types

In the following, we will analyse preference inference for preference languages

under (strong) compositionality as in the previous sections. However, as out-

lined in Chapter 3, many preference models typically involve a set of variables

by which alternatives can be described. We consider some generalised results

for composition operators and preference models that can be mapped to a set

of variables in a specific way. More detailed results are given for the cases of

cvo lexicographic models and cvo Pareto models. Here, the results about cvo
lexicographic models are based on [WG17].

4.3.1 Models and Composition Based on Unions of Variables

In this subsection we consider a set of preference models G that can be mapped

to variables V. That is, every π ∈ G can be associated with a set of variables
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Vπ ⊆ V. We assume that ◦ is a composition operator on G, i.e., ◦ satisfies

associativity, idempotence and asymmetry.

Let us first formally define a variable mapping that maps preference models to

sets of variables.

Definition 4.14: Variable Mappings

Let ◦ be a composition operator on a set of preference models G, and let

V be a set of variables. Then V : G −→ 2V , where 2V is the power set

of variables, is a variable mapping if the following three properties hold.

Here, we abbreviate V (π) to Vπ for models π ∈ G.

(i) The composition π ◦ π′ of models π, π′ ∈ G is mapped to the union of

variables Vπ and Vπ′, i.e., Vπ◦π′ = Vπ ∪ Vπ′.

(ii) For π ∈ G with Vπ 6= ∅, there exists a variable set V ( Vπ and a model

π′ ∈ G with Vπ′ = V and π = π′.

(iii) If Vπ′ ⊆ Vπ for models π and π′, then π = π ◦ π′.

For the remainder of this section, V : G −→ 2V will always denote a variable

mapping.

As described in Section 4.2.4, we can test consistency of strongly compositional

Γ, by finding any maximal |=∗-model π of it, and checking if π satisfies Γ. Start-

ing with any consistent minimal model of G we grow a maximal |=∗-model of

Γ, by (iteratively) replacing the model with one minimally extending it and

still |=∗-satisfying Γ, if such a model exists. Otherwise, we have a maximal

|=∗-model π of Γ. We can prove that for a variable mapping V : G −→ 2V , π′

minimally extending π implies |Vπ′ | = |Vπ|+1, i.e., π′ involves one more variable

than π. Also, we can show that under properties (i)–(iii) for variable mappings,

all maximal |=∗-models of strongly compositional preference statements Γ get

mapped to the same set of variables. This implies that for building a maximal

|=∗-model, we only need to consider adding one variable at a time to the asso-

ciated variable sets. In the following, we prove the necessary results starting

with the property that two maximal models are mapped to the same variable

set.

Proposition 4.27. If Γ is consistent and strongly compositional and π and π′ are
two maximal |=∗-models of Γ, then Vπ = Vπ′.
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Proof. Let π and π′ be two maximal |=∗-models of Γ. Suppose Vπ 6= Vπ′ and

w.l.o.g. assume ∅ 6= Vπ′ \Vπ. Consider the composition π ◦π′. Since Γ is strongly

compositional, by Lemma 4.15, π ◦ π′ |=∗ Γ. Also, π ◦ π′ w π. Since Vπ◦π′ 6= Vπ

and V is a mapping, π◦π′ 6= π, and thus π◦π′ = π. This is a contradiction to the

|=∗-maximality of π. Thus ∅ = Vπ′ \ Vπ. Analogously, we can prove ∅ = Vπ \ Vπ′.
Hence Vπ = Vπ′.

We now prove that the variable set of a minimal extension of a model contains

exactly one more variable.

Proposition 4.28. If π′ is a minimal extension of π, then |Vπ′| = |Vπ|+ 1.

Proof. Suppose π′ is a minimal extension of π (not equalling π) and π′ = π ◦ π1.

By property (i) of variable mappings, Vπ′ = Vπ◦π1 = Vπ ∪ Vπ1, thus, Vπ′ ⊇ Vπ

and |Vπ′ | ≥ |Vπ|. Now assume |Vπ′ \ Vπ| = |Vπ1 \ Vπ| ≥ 2. By property (ii) of

variable mappings, there exists V = {X} for some variable X ∈ Vπ1 \ Vπ and a

model π′′ such that Vπ′′ = V and π1 = π′′. Then π ◦ π′′ w π, and π ◦ π′′ 6= π since

Vπ◦π′′ = Vπ ∪ Vπ′′ 6= Vπ. Thus, π ◦ π′′ = π. Also, by Lemma 4.1, π ◦ π1 w π ◦ π′′.
Furthermore, since Vπ◦π1 6= Vπ◦π′′ and V is a mapping, π ◦ π1 = π ◦ π′′. Hence

π′ = π ◦ π′′ = π which is a contradiction to the minimality of the extension π′ of

π. Thus, |Vπ′ \ Vπ| ≤ 1, i.e., |Vπ′ | ≤ |Vπ|+ 1.

Now assume, |Vπ′| = |Vπ|. Then Vπ′ = Vπ and thus Vπ1 ⊆ Vπ. By property (iii)

of variable mappings, π = π ◦ π1, i.e., π = π′ which is a contradiction to π′ = π.

Thus, |Vπ′| 6= |Vπ|, and hence |Vπ′ | = |Vπ|+ 1.

The next proposition extends the result of Proposition 4.27 and specifies re-

lations between variable sets of Γ-satisfying models further. It states that all

maximal models are mapped to the same variables and that all other models

are mapped to subsets of these variables.

Proposition 4.29. Assume that Γ ⊆ L is consistent and compositional. Let π, π′

be models of Γ with π a maximal model of Γ. Then, Vπ ⊇ Vπ′. Also, Vπ = Vπ′ if
and only if π′ is a maximal model of Γ.

Proof. Let π be a maximal model of Γ and let π′ be any model of Γ. Com-

positionality of Γ implies that π ◦ π′ |= Γ, and thus, π ◦ π′ = π, since π is a

maximal model of Γ and π ◦ π′ w π. Using property (i) of variable mappings,

Vπ◦π′ = Vπ ∪ Vπ′ = Vπ, and hence, Vπ′ ⊆ Vπ. If π′ is a maximal model of Γ then
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the same argument implies that Vπ′ ⊇ Vπ and thus Vπ′ = Vπ. Since the models

π and π′ are arbitrarily chosen, all maximal models contain the same variables.

Let π′′ be a model of Γ with the same variable set as the maximal model π of Γ,

i.e., Vπ′′ = Vπ. Assume π′′ is not a maximal model. Then, by Proposition 4.11,

there exists an extension π̄ = π′′ such that π̄ is a maximal model of Γ. By

Proposition 4.28, |Vπ′′| < |Vπ̄| and thus Vπ = Vπ′′ ( Vπ̄. This is a contradiction,

since both π and π̄ are maximal models of Γ and by the first part Vπ = Vπ̄. Thus,

every model that includes all variables of a maximal model is a maximal model

itself.

Proposition 4.29 justifies the next definition, and implies the following lemma.

Definition 4.15: Maximal Models Variable Set V Γ

For consistent and strongly compositional Γ ⊆ L, we denote the set of

variables appearing in any maximal model of Γ by V Γ, i.e., V Γ = Vπ, for

any maximal model π of Γ.

We can exploit the fact that maximal models are mapped to the same vari-

ables and define a notion of max-model inference, which is characterised by

the lemma below.

Definition 4.16: Maximal Model Inference

We define π |=max Γ if π is a maximal model of Γ. We also define Γ |=max ϕ

if π |= ϕ for every maximal model π of Γ.

Lemma 4.30. Let Γ∪{ϕ,¬ϕ} ⊆ L and suppose that Γ∪{¬ϕ} is compositional. If
Γ |= ϕ then Γ |=max ϕ. Now suppose that Γ 6|= ϕ and let π be any maximal model
of Γ ∪ {¬ϕ}. Then, Γ |=max ϕ⇒ π 6|=max Γ.

Proof. The definitions immediately imply that if Γ |= ϕ then Γ |=max ϕ. Now

assume that Γ 6|= ϕ, and so Γ ∪ {¬ϕ} is consistent, and let π be any maximal

model of Γ ∪ {¬ϕ}. Suppose that Γ |=max ϕ. The fact that π 6|= ϕ implies that

π 6|=max Γ.

We can extend this result in the following way for strongly compositional state-

ments.
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Lemma 4.31. Let Γ ∪ {ϕ,¬ϕ} ⊆ L and suppose that Γ ∪ {¬ϕ} is strongly com-
positional. Suppose Γ 6|= ϕ and let π be any maximal model of Γ ∪ {¬ϕ}. Then,
Γ |=max ϕ ⇐⇒ π 6|=max Γ, which holds if and only if V Γ∪{¬ϕ} 6= V Γ.

Proof. Assume that Γ 6|= ϕ, and so Γ ∪ {¬ϕ} is consistent, and let π be any

maximal model of Γ ∪ {¬ϕ}. Suppose that Γ |=max ϕ. The fact that π 6|= ϕ but

all maximal models of Γ satisfy ϕ implies that π 6|=max Γ. Conversely, assume

that Γ 6|=max ϕ so there exists π′ ∈ G such that π′ |=max Γ and π′ |= ¬ϕ, and thus

π′ |= Γ∪ {¬ϕ}. Since π′ |= Γ∪ {¬ϕ} and π |=max Γ∪ {¬ϕ}, by Proposition 4.29

we have Vπ′ ⊆ Vπ. Since π |= Γ and π′ |=max Γ, by Proposition 4.29 we also

have Vπ ⊆ Vπ′, and thus Vπ′ = Vπ. The second part of Proposition 4.29 then

implies that π |=max Γ.

We have V Γ∪{¬ϕ} = Vπ ⊆ V Γ. Proposition 4.29 implies that π |=max Γ if and

only if Vπ = V Γ, which is if and only if V Γ∪{¬ϕ} = V Γ.

4.3.2 CVO Lexicographic Models

In this section, we consider the composition operator ◦L for cvo lexicographic

models L (see Lemma 4.7) so that all results from Sections 4.1 and 4.2 can

be applied. We develop additional results for inference and strong composi-

tionality based on cvo lexicographic models together with ◦L that cannot be

generalised trivially. For simplicity of notation, we will abbreviate ◦L to ◦.

Recall that cvo lexicographic models L are defined over a set of variables V by

which the alternatives can be described, i.e., A = V. L includes all sequences

of the form (Y1,≥Y1), . . . , (Yk,≥Yk), where Yi, i = 1, . . . , k, are different variables

in V, and each ≥Yi is a total order on the domain Yi.

The associated relation <π ⊆ A × A for a cvo lexicographic model π ∈ L

with π = (Y1,≥Y1), . . . , (Yk,≥Yk) is defined as follows: for alternatives α and β,

α <π β (π |= α ≥ β) if and only if either (i) for all i = 1, . . . , k, α(Yi) = β(Yi);
or (ii) there exists i ∈ {1, . . . , k} such that for all j < i, α(Yj) = β(Yj) and

α(Yi) >Yi β(Yi) (i.e., α(Yi) ≥Yi β(Yi) and α(Yi) 6= β(Yi)). Thus <π is a total

preorder on A, which is a total order if k = |V|.

The corresponding strict relation �π is given by α �π β (π |= α > β) if and

only if there exists i ∈ {1, . . . , k} such that α(Yi) >Yi β(Yi) and for all j < i,

α(Yj) = β(Yj). The corresponding equivalence relation ≡π is given by α ≡π β
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(π |= α ≡ β) if and only if for all i = 1, . . . , k, α(Yi) = β(Yi). Thus, α ≡π β if and

only if α(Vπ) = β(Vπ), where Vπ = {Y1, . . . , Yk} is set of the variables involved

in π.

We say π satisfies α ≥ β, denoted π |= α ≥ β, if α <π β. Similarly, π satisfies

α > β, denoted π |= α ≥ β, if α �π β. We have that π |= α ≥ β ⇐⇒
π 6|= β > α, i.e., π |= ¬(β > α). So α ≥ β and ¬(β > α) are equivalent

preference statements, in that they are satisfied by exactly the same set of lex

models. Similarly, α > β and ¬(β ≥ α) are equivalent preference statements.

As shown in Proposition 4.7 in the beginning of the chapter, there exists an

operator satisfying properties 1)—3) of compositions that is defined as follows.

Let π = (Y1,≥Y1), . . . , (Yk,≥Yk), and π′ = (Z1,≥Z1), . . . , (Zl,≥Zl) be two cvo
lexicographic models. Let π′′ be the sequence π′ but where pairs (Zi,≥Zi) are

omitted if Zi ∈ Vπ. Define lex model π ◦ π′ to be π followed by π′′. Then, any

lex model π can be mapped to the set σ(π) = Vπ ⊆ V of variables involved and

Vπ◦π′ = Vπ ∪ Vπ′. For any initial sequence of variables V in π, we can construct

a model π′ that involves the variables Vπ′ = V in exactly the order as in π, such

that π = π′. Furthermore, if Vπ′ ⊆ Vπ for models π and π′, then π = π ◦ π′.
Thus, Vπ (i.e., σ(π)) is a variable mapping and all results from Section 4.3.1

(Propositions 4.27 — 4.29 and Lemma 4.31) hold.

The next proposition shows that if two alternatives are equivalent in one max-

imal cvo lexicographic model of Γ then they are equivalent in all models of

Γ.

Proposition 4.32. Assume that Γ ⊆ L is consistent and compositional. Let
π, π′ ∈ L be models of Γ and let π be a maximal model of Γ. If, for α, β ∈ A,
we have α ≡π β then we have α ≡π′ β, and in fact Γ |= α ≡ β.

Proof. By Proposition 4.29, Vπ′ ⊆ Vπ. Assume that α ≡π β. Then α(Vπ) =
β(Vπ), and so α(Vπ′) = β(Vπ′) and π′ |= α ≡ β. Since π′ is arbitrary, we have

Γ |= α ≡ β.

4.3.2.1 Statements on Complete Variable Assignments

Let us now consider simple preference statements that are direct comparisons

between alternatives. In the following, we will show that strict and non-strict

statements are strongly compositional, making use of some of the criteria that

were developed in Section 4.2.5.
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We have the following basic monotonicity property for strict statements.

Lemma 4.33. For π, π′ ∈ L , suppose that π′ extends π. If α �π β then α �π′ β.

Proof. If α �π β then α and β differ on some variable in π, and α is better than

β on the first such variable; thus the same holds for π′, since π′ extends π, and

so α �π′ β holds.

We can now show that non-strict statements are decreasing.

Lemma 4.34. α ≥ β is decreasing.

Proof. Let π, π′ ∈ L such that π′ extends π. By Lemma 4.33, if β �π α then

β �π′ α, which, using the fact that �π and �π′ are both weak orders, is equiv-

alent to: if α 6<π β then α 6<π′ β. This implies, if α <π′ β then α <π β. Thus,

α ≥ β is decreasing.

The following lemma shows results of satisfaction for strict and non-strict pref-

erence statements under the composition of preference models. These results

will be used in order to show strong compositionality of strict and non-strict

preference statements.

Lemma 4.35. Let π, π′ ∈ L . If α <π β and α �π′ β, then α �π◦π′ β and
α �π′◦π β. If α ≡π β, then α <π′ β ⇐⇒ α <π◦π′ β; and α �π′ β ⇐⇒ α �π◦π′ β.

Proof. Since π′ ◦π extends π′, we have, by Lemma 4.33, that (i) α �π′ β implies

α �π′◦π β. Similarly, (ii) if α �π β then α �π◦π′ β, and thus also α <π◦π′ β. We

also have (iii) if α ≡π β and α �π′ β then α �π◦π′ β. This is because α and β

differ on some variable in π′, and the first such variable pair (X,≥) that appears

in the sequence of π′ satisfies α(X) > β(X). Since α ≡π β, X is also the earliest

variable in π ◦ π′ that α and β differ on, so α �π◦π′ β.

Suppose that α <π β and α �π′ β. Then, by (i), α �π′◦π β. If α �π β then

α �π◦π′ β by (ii), and if α ≡π β then α �π◦π′ β follows by (iii). Hence, if α <π β

and α �π′ β then α �π′◦π β and α �π◦π′ β.

Assume now that α ≡π β, so that α <π β and β <π α. By the first part, if α �π′ β
then α �π◦π′ β. If α ≡π′ β then α(Vπ′) = β(Vπ′) and thus α(Vπ◦π′) = β(Vπ◦π′),
i.e., α ≡π◦π′ β. Thus we have α <π′ β ⇒ α <π◦π′ β, and α �π′ β ⇒ α �π◦π′ β.

Since β <π α, by the first part we also have if α 6<π′ β, i.e., β �π′ α, then

β �π◦π′ α, i.e., α 6<π◦π′ β. Similarly we have α 6�π′ β implying α 6�π◦π′ β.
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Using the previous lemma and and properties of weak orders we can prove

that non-strict statements are compositional. Since, by Lemma 4.34 non-strict

statements are decreasing, this implies strong compositionality by Lemma 4.24.

Proposition 4.36. α ≥ β is strongly compositional.

Proof. We first prove compositionality of α ≥ β. Suppose that α <π β and

α <π′ β. If α �π β or α �π′ β then, by the first part of Lemma 4.35, we have

α �π◦π′ β, and thus also α <π◦π′ β. It remains to deal with the case where

α ≡π β and α ≡π′ β. Then α <π′ β and by the second part of Lemma 4.35,

α <π◦π′ β. Thus, α ≥ β is compositional. By Lemma 4.34, α ≥ β is decreasing

and thus, Lemma 4.24 implies that α ≥ β is strongly compositional.

The following proposition shows the relation between (|=∗-) inference of strict

and non-strict statements.

Proposition 4.37. For any alternatives α, β ∈ A and for π ∈ L , if α 6= β,
π |=∗ α > β ⇐⇒ π |= α ≥ β ⇐⇒ π |=∗ α ≥ β.

Proof. Suppose α 6= β. Thus, if there exists a model π′ |= α > β, then π′ is not

the empty model and there exists a variable in π′ on which α and β differ. Let

Y be the first such variable. Then since any model π v π′ consists of an initial

sequence of variables in π′, either Y is included in π and thus π |= α > β or

Y is not included and π |= α = β. Thus, π |=∗ α > β implies π |= α ≥ β.

Also, if π |= α ≥ β and there exists a variable Y with α(Y ) 6= β(Y ), then

π ◦ (Y,≥Y ) |= α > β for α(Y ) >Y β(Y ). Hence, π |=∗ α > β.

π |= α ≥ β by definition implies π |=∗ α ≥ β. Conversely, let π |=∗ α ≥ β.

Then there exists a model π′ w π with π′ |= α ≥ β. By Lemma 4.34, α ≥ β is

decreasing and thus π |= α ≥ β.

The strong compositionality of strict preference statements easily follows.

Proposition 4.38. α > β is strongly compositional.

Proof. The first part of Lemma 4.35 together with Proposition 4.37 implies that

α > β is strongly compositional.
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4.3.2.2 Statements ϕR, Strict Versions and Negations

After showing that strict and non-strict comparisons of alternatives are strongly

compositional preference statements, we will now consider conjunctions of

these statements ϕR and their negations. Furthermore, we will define strict

versions of preference statements. Again, we analyse the strong composition-

ality of the considered preference statements using the criteria developed in

Section 4.2.5.

Let R be a subset of A × A, and let ϕR be a statement satisfying: π |= ϕR if

and only if <π⊇ R. If π′ extends π then <π ⊇ <π′ since non-strict statements

are decreasing by Lemma 4.34, which implies that ϕR is decreasing. For any

cvo lexicographic model π we have π |= ϕR if and only if for all (α, β) ∈ R,

π |= α ≥ β, which implies that ϕR is strongly compositional, by Proposition 4.36

and Lemma 4.14. We therefore have:

Proposition 4.39. For any R ⊆ A × A, the preference statement ϕR is strongly
compositional, and for any π ∈ L we have π |=∗ ϕR ⇐⇒ π |= ϕR

We define a model π ∈ L to satisfies ¬ϕR, i.e., π |= ¬ϕR, if π 6|= ϕR. Consider

π ∈ L with π 6|= ϕR and consider any π′ ∈ L . Then, π ◦ π′ extends or equals π,

which implies that π ◦ π′ 6|= ϕR, since ϕR is decreasing. Thus, we have:

Proposition 4.40. Preference statement ¬ϕR is compositional for anyR ⊆ A×A.

The next lemma shows that for some non-strict statements and ϕR satisfaction

under one model is equivalent to satisfaction for an extension.

Lemma 4.41. Let R ⊆ A × A, and let π, π′ ∈ L be such that π′ extends π.
Suppose that for all (α, β) ∈ R there exists X ∈ Vπ such that α(X) 6= β(X).
Then, for any (α, β) ∈ R, α <π β ⇐⇒ α <π′ β. Also, π |= ϕR ⇐⇒ π′ |= ϕR.

Proof. Consider any (α, β) ∈ R. Let Y be the earliest variable in Vπ such that

α(Y ) 6= β(Y ) (this is well-defined, by the hypothesis). Since π′ extends π,

α <π β ⇐⇒ α <π′ β ⇐⇒ α(Y ) >Y β(Y ), where >Y is the strict part of the

ordering for Y in π. We then have π |= ϕR, if and only if for all (α, β) ∈ R,

α <π β, if and only if for all (α, β) ∈ R, α <π′ β, if and only if π′ |= ϕR.

We can also show that the satisfaction of a statement ϕR by some model is

indifferent under composition with a model that is indifferent about all involved

variables.
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Lemma 4.42. Let R ⊆ A×A, and let π, π′ ∈ L . Suppose that for all (α, β) ∈ R
we have α(Vπ) = β(Vπ). Then, <π′ ∩ R = <π◦π′ ∩ R, and thus, π′ |= ϕR ⇐⇒
π ◦ π′ |= ϕR.

Proof. Consider any (α, β) ∈ R. We have α ≡π β. By Lemma 4.35, α <π′ β

⇐⇒ α <π◦π′ β. This implies <π′ ∩ R = <π◦π′ ∩ R, and π′ |= ϕR ⇐⇒
π ◦ π′ |= ϕR.

Strict Versions:

In the following, we consider strict versions of statements and conditions for

their compositionality.

Definition 4.17: Strict Versions of Statements

We say that ψ is a strict version of ϕR, if ϕR is a relaxation of ψ (see Defini-

tion 4.13), and ψ satisfies the following monotonicity property regarding

the strict preferences among R: for all π, π′ ∈ L , if π |= ψ and π′ |= ϕR

and �π′⊇ (�π ∩R) then π′ |= ψ.

There are many strict versions of ϕR (unless R is very small). We give two

simple examples ψ1 and ψ2 of strict versions of ϕR in the following.
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Example 4.4

Let ψ1 be such that π |= ψ1 if and only if �π ⊇ R. Let ψ2 be such that

π |= ψ2 if and only if <π ⊇ R and there exists some (α, β) ∈ R such that

α �π β. Then, ψ1 and ψ2 are strict versions of ϕR.

The next proposition shows that strict versions of ϕR are strongly composi-

tional.

Proposition 4.43. Let R ⊆ A × A, and suppose that ψ is a strict version of ϕR.
Then ψ is strongly compositional, and for π ∈ L , π |=∗ ψ ⇐⇒ π |= ϕR.

Proof. We have that ϕR is a decreasing relaxation of ψ. Using Proposition 4.26,

it is sufficient to prove that for any π, π′ ∈ L , if π |= ϕR and π′ |= ψ then

π ◦ π′ |= ψ. Assume that π |= ϕR and π′ |= ψ. Since ϕR is a relaxation of ψ,

we have π′ |= ϕR, and thus, π ◦ π′ |= ϕR, since ϕR is strongly compositional,

by Proposition 4.39. Consider any (α, β) ∈ R such that α �π′ β. We also have

α <π β, because π |= ϕR, and so, α �π◦π′ β, using Lemma 4.35. We have

shown that �π◦π′ ⊇ (�π′ ∩R), which, since ψ is a strict version of ϕR, implies

π ◦ π′ |= ψ, as required.

Negated Statements ¬ϕR:

We define variable projections as in [Wil14] for preference statements, specific

model sets and the notion of simultaneous decisiveness, which helps us identify

when statements ¬ϕR are strongly compositional and satisfied by cvo lexico-

graphic models.

Definition 4.18: Variable Projections

Let R ⊆ A × A, let Y ∈ V be a variable, and let A ⊆ V − {Y } be a set

of variables not containing Y . Define R↓Y , the projection of R to Y , to be

{(α(Y ), β(Y )) : (α, β) ∈ R}. Also, define, R↓YA , the A-restricted projection

to Y , to be the set of pairs (α(Y ), β(Y )) such that (α, β) ∈ R and α(A) =
β(A).

Note thatR↓YA is the projection to Y of pairs that agree on A. Thus,R↓Y = R↓Y∅ .

From [Wil14] we have (a variation of) the following:
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Lemma 4.44. Consider any cvo lexicographic model π ∈ L , written as
(Y1,≥1), . . . , (Yk,≥k), where Yi ∈ V are variables and ≥Yi are total orders on
the variable domains Yi. For i = 1, . . . , k, define Ai to be the set of earlier vari-
ables than Yi, i.e., Ai = {Y1, . . . , Yi−1}. Let R ⊆ A×A. Then <π⊇ R if and only
if ≥i⊇ R↓YiAi

for all i = 1, . . . , k.

Proof. Consider (α, β) ∈ R.

First, suppose that (α, β) ∈<π, i.e., α <π β. By definition of <π, either (i)

for all i = 1, . . . , k, α(Yi) = β(Yi); or (ii) there exists i ∈ {1, . . . , k} such that

for all j < i, we have α(Yj) = β(Yj) and α(Yi) >Yi β(Yi). This is equivalent

to either =i⊇ {(α(Yi), β(Yi))} = {(α, β)}↓YiAi
for all i = 1, . . . , k; or there exists

i ∈ {1, . . . , k} such that for all j < i, we have =j ⊇ {(α(Yj), β(Yj))} = {(α, β)}↓YjAj

and >i⊇ {(α(Yi), β(Yi))} = {(α, β)}↓YiAi
, i.e., {(α, β)}↓YlAl

= ∅ for l > i. Thus,

≥i⊇ {(α, β)}↓YiAi
for all i = 1, . . . , k.

Conversely, let ≥i⊇ {(α, β)}↓YiAi
for all i = 1, . . . , k. Suppose that there exists i ∈

{1, . . . , k} such that α(Yi) <Yi β(Yi). Since ≥i⊇ {(α, β)}↓YiAi
and (α(Yi), β(Yi)) ∈

{(α, β)}↓Yi, we must have {(α, β)}↓YiAi
= ∅, i.e., α(Ai) 6= β(Ai). Hence, for every

variable Yi with α(Yi) <Yi β(Yi), there exists a variable Yj with j < i and

α(Yj) 6= β(Yj). Considering the first such variable Yi in π, implies that there

exists a variable Yl with l < i and α(Yj) > β(Yj). Thus, either (i) or (ii) holds,

i.e. (α, β) ∈<π.

Since the choice of (α, β) ∈ R was arbitrary, we have shown that for all (α, β) ∈
R, (α, β) ∈<π if and only if ≥i⊇ {(α, β)}↓YiAi

for all i = 1, . . . , k. This implies the

desired result, <π⊇ R if and only if ≥i⊇ R↓YiAi
for all i = 1, . . . , k.

This result helps us to analyse the structure of R↓X for some variables X which

we will need in the following analysis of the compositionality of ¬ϕR.

Lemma 4.45. LetR ⊆ A×A, and let π ∈ L . Suppose that X is the first variable
in π on which some pair in R differs, so that there exists (α, β) ∈ R such that
α(X) 6= β(X), and this does not hold for any earlier variable in π. If π |= ϕR then
R↓X is acyclic.

Proof. Let ≥X be the non-strict relation for X in π. If π |= ϕR then, by

Lemma 4.44, ≥X contains R↓X and thus, since ≥X is antisymmetric, R↓X is

acyclic.
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Next, we define two setsM¬ϕR ,M′
¬ϕR ⊆ L of cvo lexicographic models for a

given statement ϕR that help determine in which cases ¬ϕR is strongly compo-

sitional and when a model (|=∗-) satisfies ¬ϕR.

DefineM¬ϕR to be the set of models π ∈ L such that either (i) π 6|= ϕR or (ii)

for every variable X ∈ Vπ, if R↓X is acyclic then R↓X ⊆ =.

DefineM′
¬ϕR to be the set of models π ∈ L such that either (i) π 6|= ϕR or (ii)

there is no variable X ∈ Vπ such that R↓X is acyclic and irreflexive.

Note thatM¬ϕR ⊆M′
¬ϕR.

The next two lemmas show that the composition of M¬ϕR models with ¬ϕR

satisfying models is again satisfying ¬ϕR, andM′
¬ϕR is decreasing. Both results

are needed to apply Proposition 4.25 to show the strong compositionality of a

class of statements ¬ϕR.

Lemma 4.46. If π ∈M¬ϕR and π′ |= ¬ϕR for π′ ∈ L , then π ◦ π′ |= ¬ϕR.

Proof. Suppose that π ∈ M¬ϕR and π′ |= ¬ϕR. First consider the case

when π 6|= ϕR. The fact that ϕR is decreasing implies that π ◦ π′ 6|= ϕR, i.e.,

π ◦ π′ |= ¬ϕR. Now consider the other case, when π |= ϕR. If for all (α, β) ∈ R
we have α(Vπ) = β(Vπ) then Lemma 4.42 implies that π ◦π′ |= ¬ϕR. Otherwise,

let X be the first variable in π on which some pair in R differs. Then X is the

first such variable in π ◦ π′ as well. The definition ofM¬ϕR implies that R↓X is

not acyclic, and thus, π ◦ π′ |= ¬ϕR, by Lemma 4.45.

Lemma 4.47. M′
¬ϕR is decreasing (see Definition 4.11).

Proof. Suppose that π′ extends π, and that π′ ∈ M′
¬ϕR. We need to show that

π ∈ M′
¬ϕR. Assume that π /∈ M′

¬ϕR. Thus, π |= ϕR and there exists a variable

X ∈ Vπ such that R↓X is acyclic and irreflexive. Since π′ ∈M′
¬ϕR and Vπ′ ⊇ Vπ,

we must have π′ 6|= ϕR. Because R↓X is irreflexive, for all (α, β) ∈ R, α and

β differ on variable X. Thus, by Lemma 4.41, π |= ϕR ⇔ π′ |= ϕR which is a

contradiction.

Let us now define simultaneously decisiveness for sets R ⊆ A × A. The next

proposition shows that under this property statements ¬ϕR are strongly com-

positional.
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Definition 4.19: Simultaneous Decisiveness

For R ⊆ A×A, we say that R is simultaneously decisive if for all X ∈ V: if

R↓X is acyclic then either R↓X is irreflexive or R↓X ⊆ =.

Proposition 4.48. If R ⊆ A×A is simultaneously decisive then ¬ϕR is strongly
compositional, and for all π ∈ L , π |=∗ ¬ϕR ⇐⇒ π ∈M¬ϕR.

Proof. We will first show that M¬ϕR = M′
¬ϕR. Suppose that π ∈ M′

¬ϕR. If

π 6|= ϕR then we clearly have π ∈ M¬ϕR. Assume now that there is no variable

X ∈ Vπ such that R↓X is acyclic and irreflexive. By our assumption on R, if

R↓X is acyclic then R↓X ⊆ =, and thus, π ∈M¬ϕR.

Lemma 4.47 then implies that M¬ϕR is decreasing, and it contains all models

of ¬ϕR. Then, Lemma 4.46 and Proposition 4.25 imply the result.

4.3.2.3 Statements on Partial Variable Assignments

Next, we show that certain relatively expressive compact preference statements

are strongly compositional. This includes forms of the statements ϕR from

Proposition 4.39, where R is a set of pairs of alternatives. In many natural

situations, R can be exponentially large; in the languages discussed here, we

are able to express certain exponentially large sets R compactly.

More specifically, we consider preference statements in the language LpqT as

defined in Section 3.2. Recall that these statements are of the form p � q |
T , where � is either ≥, or � or >, and P , Q and T are subsets of V, with

(P ∪Q) ∩ T = ∅, and p ∈ P is an assignment to P , and q ∈ Q is an assignment

to Q. The set ϕ∗ is defined to include all alternative pairs that the statement ϕ

entails, i.e., (α, β) ∈ ϕ∗ if α extends p, β extends q, and α and β agree on the

values of variables T .

Also, for any statement ϕ ∈ LpqT equalling p� q | T , the non-strict version of ϕ,

ϕ(≥), is defined as the statement p ≥ q | T .

We can write statements LpqT in a unique way as ru � su | T , where ru = p

and su = q and u consists of exactly the variable values that p and q agree on,

i.e., p(X) = q(X) if and only if u(X) = p(X). Define u to be in the domain of
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variables Uϕ ⊆ P ∩ Q, r in the domain of variables Rϕ = P \ Uϕ, and s in the

domain of variables Sϕ = Q \ Uϕ.

Lemma 4.49. Suppose ϕ ∈ LpqT is such that Rϕ = Sϕ. Then ϕ∗ is simultaneously
decisive (see Definition 4.19).

Proof. Let R = ϕ∗ and consider any X ∈ V such that R↓X is acyclic and

R↓X 6⊆ =. X ∈ T ∪ Uϕ would imply R↓X ⊆ = and X ∈ V \ (Rϕ ∪ Sϕ ∪ T ∪ Uϕ)
would imply that R↓X is not acyclic. Thus, X ∈ Rϕ ∪ Sϕ = Rϕ = Sϕ, and so

R↓X equals {(rϕ(X), sϕ(X))}, which is irreflexive since rϕ(X) 6= sϕ(X).

Recall the definition of fully strict statements and weakly strict statements. A

fully strict statement p � q | T is satisfied by a preference model π if α �π β
for all (α, β) ∈ ϕ∗. A weakly strict statement p > q | T is satisfied if α <π β

for all (α, β) ∈ ϕ∗ and there exists (α′, β′) ∈ ϕ∗ such that α′ �π β′. As one

would expect, both kinds of strict statements are strict versions of ϕR. More

specifically, fully strict statements correspond to ψ1, and weakly strict statement

correspond to ψ2 in the example before Proposition 4.43.

Lemma 4.50. Suppose that ϕ ∈ LpqT is either a fully strict statement or a weakly
strict statement. Then ϕ is a strict version of ϕR (see Definition 4.17), where
R = ϕ∗.

Proof. Let ϕ ∈ LpqT be a fully strict statement. If π |= ϕ for π ∈ L , then α �π β
for all (α, β) ∈ ϕ∗. In particular, α �π β for all (α, β) ∈ ϕ∗, i.e., π |= ϕR.

Thus, ϕR is a relaxation of ϕ. Also, if π |= ϕ then �π= R. So if π′ |= ϕR and

�π′⊇ (�π ∩R) for some π′ ∈ L , then �π′⊇ R and thus π′ |= ϕ. Hence, a fully

strict statement ϕ is a strict version of ϕR.

Now, let ϕ ∈ LpqT be a weakly strict statement. If π |= ϕ for π ∈ L , then α �π β
for all (α, β) ∈ ϕ∗, i.e., π |= ϕR. Thus, ϕR is a relaxation of ϕ. Also, if π |= ϕ

then �π ∩R 6= ∅. So if for π′ ∈ L π′ |= ϕR, i.e., α �π β for all (α, β) ∈ ϕ∗,

and �π′⊇ (�π ∩R), then π′ |= ϕ. Hence, a weakly strict statement ϕ is a strict

version of ϕR.

Proposition 4.39 can be seen to imply that the non-strict elements of the lan-

guage LpqT are strongly compositional. In fact, this also holds for both kinds of

strict statements and certain negations.
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Theorem 4.2: (Strong) Compositionality of LpqT and Negations

Consider any ϕ ∈ LpqT . Then ϕ is strongly compositional and π |=∗ ϕ if and

only if π |= ϕ(≥). If ϕ is non-strict, then ¬ϕ is compositional. If ϕ is non-

strict and also Rϕ = Sϕ, then ¬ϕ is strongly compositional, and [π |=∗ ¬ϕ
if and only if either π |= ¬ϕ or Vπ ∩ Sϕ = ∅].

Proof. Let R = ϕ∗. First suppose that ϕ is either a fully strict statement or a

weakly strict statement. For all π ∈ L we have π |= ϕ(≥) ⇐⇒ π |= ϕR.

By Lemma 4.50, ϕ is a strict version of ϕR. Proposition 4.43 implies that ϕ is

strongly compositional and, for π ∈ L , π |=∗ ϕ if and only if π |= ϕR, which is

if and only if π |= ϕ(≥).

Now suppose that ϕ is non-strict. Then for all π ∈ L we have π |= ϕ ⇐⇒
π |= ϕR, and thus also, π |=∗ ϕ ⇐⇒ π |=∗ ϕR. Proposition 4.39 implies that

ϕR is strongly compositional, and π |=∗ ϕR ⇐⇒ π |= ϕR for any π ∈ L . Thus,

ϕ is strongly compositional, and, for all π ∈ L we have π |=∗ ϕ ⇐⇒ π |= ϕ(≥),

since ϕ(≥) = ϕ. Proposition 4.40 implies that ¬ϕ is compositional.

Now, assume also that Rϕ = Sϕ. Then R = ϕ∗ is simultaneously decisive,

by Lemma 4.49. Proposition 4.48 implies that ¬ϕR and thus ¬ϕ is strongly

compositional and for all π ∈ L , π |=∗ ¬ϕ ⇐⇒ π ∈ M¬ϕR. We have:

π ∈ M¬ϕR ⇐⇒ either (i) π 6|= ϕR or (ii) for every variable X ∈ Vπ, either

R↓X is not acyclic or R↓X ⊆ =. (ii) holds if and only if for every X ∈ Vπ, we

have X /∈ Rϕ ∪ Sϕ (i.e., X /∈ Sϕ, since Rϕ = Sϕ), so (ii) holds if and only if

Vπ∩Sϕ = ∅. Thus, π |=∗ ¬ϕ holds if and only if either π |= ¬ϕ or Vπ∩Sϕ = ∅.

Theorem 4.2 suggests the feasibility of checking consistency of subsets

of the language L′pqT , which is LpqT with certain negated statements

also included. Formally, define L′pqT to be the union of LpqT with

{¬ϕ : ϕ ∈ LpqT , ϕ non-strict, and Rϕ = Sϕ}.

We can use the method of Section 4.2.3 to determine the consistency of a set

of preference statements Γ ⊆ L′pqT , by incrementally extending a maximal |=∗-
model π of Γ by one more variable, and then checking whether or not π |= Γ
holds; this makes use of Corollary 4.18 and Proposition 4.28. A closer descrip-

tion of this can be found in Chapter 8 together with a more detailed description

on computational methods and complexities.
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4.3.3 CVO Singleton Pareto Models

To consider inference and (strong) compositionality of unspecified preference

statements based on cvo singleton Pareto models P, we assume a set of vari-

ables V is given so that every alternative can be described and compared by a

collection of values from the variable domains (see definition of Pareto models

in Section 3.3).

Recall that for a cvo singleton Pareto model π = {(X1,≥1), . . . , (Xk,≥k)} in

P, we say α is preferred to β, α <π β, if α(Xi) ≥i β(Xi) for all i = 1, . . . , k,

where α, β ∈ A are the associated value vectors of two alternatives. We say

α is strictly preferred to β, α �π β, if α <π β and there exists i ∈ {1, . . . , k}
such that α(Xi) >i β(Xi). Finally, we say α and β are incomparable, α ∼π β, if

α 6<π β and β 6<π α.

We consider the composition of two cvo singleton Pareto models π = {(X1,≥1

), . . . , (Xk,≥k)} and π′ = {(X ′1,≥′1), . . . , (X ′l ,≥′l)}, by model π in union with the

disjoint part of π′ (see Lemma 4.9). Let {(X ′′1 ,≥′′1), . . . , (X ′′m,≥′′m)} be the set

of the tuples in π′ whose variables do not appear in π. Then the composition

is given by π ◦P π′ = {(X1,≥1), . . . , (Xk,≥k), (X ′′1 ,≥′′1), . . . , (X ′′m,≥′′m)}. By this

definition the empty model {} is the unique minimum model of the set of cvo
singleton Pareto models P. As proven in Lemma 4.9 in the beginning of the

chapter, ◦P is a composition operator and thus all results from Sections 4.1

and 4.2 can be applied. For simplicity of notation, we abbreviate ◦P to ◦ in the

following.

As in the cvo lexicographic case from the previous section, a cvo singleton Pareto

model π can be mapped to the set σ(π) = Vπ ⊆ V of variables involved and

Vπ◦π′ = Vπ ∪ Vπ′. If V ( Vπ, we can construct a model π′ that involves the

variables Vπ′ = V with exactly the same value orders as in π, such that π = π′.

Furthermore, if Vπ′ ⊆ Vπ for models π and π′, then π = π ◦π′. Thus, the variable

mapping and composition satisfy properties (i)-(iii) of Definition 4.14 and all

results from Section 4.3.1 (Propositions 4.27 — 4.29 and Lemma 4.31) hold.

4.3.3.1 Statements on Complete Variable Assignments

In the following, we show that non-strict and strict statements are strongly

compositional for models P, while incomparability statements are only com-

positional.
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The next proposition shows that if two alternatives are equivalent in one max-

imal cvo singleton Pareto model of Γ then they are equivalent in all models of

Γ.

Proposition 4.51. Assume that Γ ⊆ L is consistent and compositional. Let
π, π′ ∈P be models of Γ and let π be a maximal model of Γ. If, for α, β ∈ A,
we have α ≡π β then we have α ≡π′ β, and in fact Γ |= α ≡ β.

Proof. By Proposition 4.29, Vπ′ ⊆ Vπ. Assume that α ≡π β. Then α(Vπ) =
β(Vπ), and so α(Vπ′) = β(Vπ′) and π′ |= α ≡ β. Since π′ is arbitrary, we have

Γ |= α ≡ β.

To show that non-strict statements are strongly compositional, we make use of

Lemma 4.24 and first show that non-strict statements are decreasing.

Lemma 4.52. α ≥ β is decreasing.

Proof. Let π, π′ ∈ P such that π′ extends π. Suppose α <π′ β. Then α(X) ≥X
β(X) for all (X,≥X) in π′. Since π′ extends π, π ⊆ π′. Hence, α(X) ≥X β(X)
for all (X,≥X) in π, i.e., α <π β. Thus, α ≥ β is decreasing.

The following Lemma states useful properties for the satisfaction relation for

compositions of models similar to Lemma 4.35.

Lemma 4.53. Let π, π′ ∈ P. If α <π β and α �π′ β then α �π◦π′ β and
α �π′◦π β. If α ≡π β, then α <π′ β ⇐⇒ α <π◦π′ β; and α �π′ β ⇐⇒ α �π◦π′ β.

Proof. Suppose α <π β and α �π′ β. Then by definition of <π, α(X) ≥X β(X)
for all (X,≥X) in π. By definition of �π′, the same holds for all (X,≥X) in π′

and there exists a tuple (Y,≥′Y ) in π′ such that α(Y ) >′Y β(Y ), i.e., α(Y ) 6=
β(Y ). In the case that the same variable Y also appears in a tuple (Y,≥Y ) in π,

α(Y ) >Y β(Y ) since α(Y ) 6= β(Y ) and ≥Y is a total order. Thus, α(X) ≥X β(X)
for all (X,≥X) in π′ ◦ π and π ◦ π′, since all (X,≥X) in π′ ◦ π are either in π or

in π′. Hence, α <π′◦π β and α <π◦π′ β. Also, π′ ◦ π and π ◦ π′ both include either

(Y,≥′Y ) or (Y,≥Y ) and thus α �π′◦π β and α �π◦π′ β.

Assume now that α ≡π β, so that α(X) = β(X) for all variables X appearing in

tuples of π. The model π′ ◦ π includes only tuple (X,≥X) which are either in π

or in π′. Thus, α(X) ≥X β(X) for all (X,≥X) in π′ if and only if α(X) ≥X β(X)
for all (X,≥X) in π′ ◦ π. Hence, α <π′ β ⇐⇒ α <π◦π′ β. Also, if there exists a
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variable Y with α(Y ) 6= β(Y ), then (Y,≥Y ) is not in π and thus is a tuple of π′

if and only if (Y,≥Y ) is a tuple of π′ ◦ π. Hence, α �π′ β ⇐⇒ α �π◦π′ β.

Using the previous two results, we can now prove that non-strict statements are

strongly compositional.

Proposition 4.54. α ≥ β is strongly compositional.

Proof. We first show that α ≥ β is compositional. Suppose that α <π β and

α <π′ β. If α �π β or α �π′ β then, by Lemma 4.53, we have α �π◦π′ β, and

thus also α <π◦π′ β. So, it just remains to deal with the case where α ≡π β
and α ≡π′ β. Then α(Vπ) = β(Vπ) and α(Vπ′) = β(Vπ′) and so, because Vπ◦π′ =
Vπ ∪ Vπ′, we have α(Vπ◦π′) = β(Vπ◦π′), proving α ≡π◦π′ β and hence α <π◦π′ β.

Thus, α ≥ β is compositional. By Lemma 4.52, α ≥ β is decreasing. Thus,

Lemma 4.24 implies that α ≥ β is strongly compositional.

The following proposition gives the relation between (|=∗-) inference of strict

and non-strict statements similar to Proposition 4.37.

Proposition 4.55. For any alternatives α, β ∈ A and for π ∈ P, if α 6= β,
π |=∗ α > β ⇐⇒ π |= α ≥ β ⇐⇒ π |=∗ α ≥ β.

Proof. Suppose α 6= β. Then there exists a variable Y such that α(Y ) 6= β(Y ).
For π |= α ≥ β, either π |= α > β (which implies π |=∗ α > β), or π |= α = β.

Consider the case of π |= α = β and let ≥Y be such that α(Y ) > β(Y ). Then

π ◦ (Y,≥Y ) |= α > β and thus π |=∗ α > β. Hence, π |= α ≥ β implies

π |=∗ α > β.

Now let π |=∗ α > β. Then there exists a model π′ with π v π′ and π′ |= α > β.

Thus, there exists a tuple (Y,≥Y ) in π′ such that α(Y ) >Y β(Y ), and for all

other tuples (X,≥X) in π′, α(X) ≥X β(X). Since π ⊆ π′, α(X) ≥X β(X) for all

(X,≥X) in π, i.e., π |= α ≥ β. We have shown that π |=∗ α > β is equivalent to

π |= α ≥ β.

π |= α ≥ β, by definition, implies π |=∗ α ≥ β. Conversely, let π |=∗ α ≥ β.

Then there exists a model π′ w π with π′ |= α ≥ β. By Lemma 4.52, α ≥ β is

decreasing and thus π |= α ≥ β.

The following proposition gives another example of strongly compositional

preference statements.
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Proposition 4.56. α > β is strongly compositional.

Proof. Lemma 4.53 together with Proposition 4.55 implies that α > β is

strongly compositional.

Next, we show that incomparability statements are compositional.

Proposition 4.57. α ∼ β is compositional.

Proof. Let π, π′ ∈ P be models of α ∼ β. Then since β 6<π α, there exists

(X,≥X) ∈ π with α(X) >X β(X). Similarly, since α 6<π β, there exists (Y,≥Y ) ∈
π with β(Y ) >Y α(Y ). Both, (X,≥X) and (Y,≥Y ) are also in π ◦ π′. Thus,

β 6<π◦π′ α and α 6<π◦π′ β. Hence, π ◦ π′ |= α ∼ β.

The following example shows that incomparability statements α ∼ β for α, β ∈
A are not strongly compositional.

Example 4.5: α ∼ β Is Not Strongly Compositional

Let X1, X2 ∈ V be variables such that α(Xi) 6= β(Xi) for i = 1, 2. We can

construct two cvo singleton Pareto models π, π′ that satisfy α ∼ β in the

following way.

Let π = {(X1,≥1), (X2,≥2)} with value orders such that α(X1) >1 β(X1)
and α(X2) <2 β(X2). Let π′ = {(X1,≥′1), (X2,≥′2)} with value orders such

that α(X1) <′1 β(X1) and α(X2) >′2 β(X2). Then π is an extension of

π̄ = {(X1,≥1)}, i.e., π̄ |=∗ α ∼ β. Also, π̄ |= α > β. The composition

π̄◦π′ = {(X1,≥1), (X2,≥′2)} satisfies π̄◦π′ |= α > β and thus π̄◦π′ 6|= α ∼ β.

Hence, α ∼ β is not strongly compositional.

Note that for every cvo singleton Pareto model π ∈ P and for any alternatives

α, β ∈ A, either α �π β, or β �π α, or α ≡π β (i.e., α <π β and β <π α) or

α ∼π β (i.e., α 6<π β and β 6<π α).

We can consider negations as introduced in the previous section for strict, non-

strict and incomparability preference statements. Then a cvo singleton Pareto

model π satisfies a statement

• ¬(α > β), if α ∼π β or β <π α.

• ¬(α ≥ β), if α ∼π β or β �π α.
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• ¬(α ∼ β), if α <π β or β <π α.

It can be shown that both ¬(α > β) and ¬(α ≥ β) are compositional but not

strongly compositional. Also, ¬(α ∼ β) is not compositional.

The method of deciding consistency from Section 4.2 can thus only be applied

to strict and non-strict statements. Here, a minimal extension, as for the cvo
lexicographic case, includes exactly one more variable and the unique minimum

model is the empty model {}.

4.3.3.2 Statements on Partial Variable Assignments

Instead of comparing complete vectors of value assignments for all variables,

we can consider preference statements on partial assignments. Consider state-

ments of the form p � q | T where p is an assignment of values to variables

P ⊆ V, q is an assignment of values to variables Q ⊆ V, T is a set of variables

disjoint from P and Q and � is an order relation. Let ϕ∗ be the set of all pairs

(α, β) where α extends p, β extends q, and α and β agree on T . Then a cvo
singleton Pareto model π satisfies a statement ϕ that is

• fully strict, denoted p� q | T , if α �π β for all (α, β) ∈ ϕ∗.

• weakly strict, denoted p > q | T , if α <π β for all (α, β) ∈ ϕ∗ and there

exists (α′, β′) ∈ ϕ∗ such that α′ �π β′.

• non-strict, denoted p ≥ q | T , if α <π β for all (α, β) ∈ ϕ∗.

• fully incomparable, denoted p ≈ q | T , if α ∼π β for all (α, β) ∈ ϕ∗.

• weakly incomparable, denoted p ∼ q | T , if there exists (α, β) ∈ ϕ∗ such

that α ∼π β.

• incomparable, denoted p × q | T , if there exists (α, β) ∈ ϕ∗ such that

α ≺π β and (α′, β′) ∈ ϕ∗ such that α′ �π β′.

Fully strict, non-strict and fully incomparable statements can be expressed as

conjunctions of strict, non-strict and incomparable statements on the tuples of

alternatives in ϕ∗. By Lemma 4.14 together with Propositions 4.54 and 4.56,

it follows that fully strict and non-strict statements are strongly compositional.

Also, by Proposition 4.57, fully incomparable statements are compositional but

not strongly compositional. The compositionality of the remaining statements

is described in the following.
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Proposition 4.58. Weakly strict preference statements p > q | T are strongly
compositional.

Proof. Consider a weakly strict statement ϕ : p > q | T and cvo singleton

Pareto models π, π′ such that π |=∗ ϕ and π′ |= ϕ. Thus there exists a model

π′′ extending π with π′′ |= ϕ. In particular, α <π′′ β for all (α, β) ∈ ϕ∗. Since

by Lemma 4.52 non-strict statements α ≥ β are decreasing, α <π β for all

(α, β) ∈ ϕ∗. Since π′ |= ϕ, also α <π′ β for all (α, β) ∈ ϕ∗. By the strong

compositionality of non-strict statements (Proposition 4.54), α <π◦π′ β for all

(α, β) ∈ ϕ∗. There exists (α′, β′) ∈ ϕ∗ such that α′ �π′ β′ because π′ |= ϕ. By

Lemma 4.53 and because α′ <π β′, α′ �π◦π′ β′. Thus, π ◦ π′ |= ϕ.

Proposition 4.59. Weakly incomparable preference statements p ∼ q | T are
compositional, but not strongly compositional.

Proof. Consider a weakly incomparable statement ϕ : p ∼ q | T and cvo single-

ton Pareto models π, π′ such that π |= ϕ and π′ |= ϕ. Thus there exists (α, β) ∈
ϕ∗ with α ∼π β. More specifically, there exists (X,≥X), (X ′,≥′X) ∈ π with

α(X) >X β(X) and α(X ′) <′X β(X ′). By definition (X,≥X), (X ′,≥′X) ∈ π ◦ π′.
Thus, α ∼π◦π′ β and hence π ◦ π′ |= ϕ. We showed that weakly incomparable

statements are compositional.

Any incomparability statement on complete alternatives α ∼ β can be rep-

resented as the weakly incomparable statement α ∼ β | ∅. In Example 4.5 we

demonstrated that α ∼ β is not necessarily strongly compositional. Thus weakly

incomparable statements are not necessarily strongly compositional neither.

The next proposition shows that incomparability preference statements p×q | T
are compositional. However, the example following the next proposition shows

that incomparability preference statements are not strongly compositional.

Proposition 4.60. Incomparability preference statements p × q | T are composi-
tional.

Proof. For any π satisfying ϕ, none of the variables X occurring in π or π′ can

be in Pϕ ∩ Qϕ in case p(X) 6= q(X), since otherwise there exists no (α, β) ∈ ϕ∗

with α >π β or alternatively there exists no (α, β) ∈ ϕ∗ with α <π β.
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Let π, π′ be two models of ϕ. Suppose, π ◦π′ 6|= ϕ and w.o.l.g. assume that there

exists no (α, β) ∈ ϕ∗ with α >π◦π′ β. Since π |= ϕ, there exists (α, β) ∈ ϕ∗ with

α >π β. Consider the alternatives (α′, β′) defined as follows:

• α′(X) = α(X) for all X /∈ (Qϕ \ Pϕ) ∩ (σ(π′) \ σ(π)), and

α′(X) = q(X) for all X ∈ (Qϕ \ Pϕ) ∩ (σ(π′) \ σ(π)),

• β′(X) = β(X) if α(X) >X β(X) for (X,≥X) ∈ π, or X ∈ Qϕ ∪ T , and

β′(X) = α′(X) otherwise.

Then (α′, β′) ∈ ϕ∗, since α and thus α′ extends p, and β and thus β′ extends

q, and α and β and thus α′ and β′ agree on T . Let (X,≥X) ∈ π, so that

α(X) ≥X β(X). For α(X) >X β(X), α′(X) = α(X) and β′(X) = β(X), and

thus α′(X) > β′(X). For α(X) =X β(X), α′(X) = α(X), and either β′(X) =
β(X) = α(X) or β′(X) = α′(X) = α(X), and thus α′(X) = β′(X). Now

consider (X,≥X) ∈ π′ \ π. By our observation from the beginning of the proof,

X /∈ Pϕ ∩ Qϕ in case p(X) 6= q(X). If X ∈ Pϕ ∩ Qϕ and p(X) = q(X), then

α′(X) = β′(X), since α′ extends p and β′ extends q. If X ∈ T , then α′(X) =
β′(X), since α′ and β′ agree on T . If X ∈ Qϕ \ Pϕ, then α′(X) = β′(X), since

α′(X) = q(X) and β′ extends q. If X ∈ V \ (Qϕ ∪ T ), then α′(X) = β′(X) by

definition of β′. Thus, α′(X) ≥X β′(X) for all (X,≥X) ∈ π ◦ π′. Also, there

exists (X,≥X) ∈ π ◦ π′ such that α′(X) >X β′(X). Hence, α′ >π◦π′ β
′ which is a

contradiction to our assumption that there exists no (α, β) ∈ ϕ∗ with α >π◦π′ β.

Similarly, we can prove that there exists (α, β) ∈ ϕ∗ with α <π◦π′ β. We have

thus proven that for π |= ϕ and π′ |= ϕ, π ◦ π′ |= ϕ, i.e., ϕ is compositional.

The following example shows that incomparability statements p× q | T are not

strongly compositional.

Example 4.6: p× q | T Is Not Strongly Compositional

As before, consider flight connections with variables V = {airline, class,

time} with domains {KLM, LAN}, {business, economy} and {day, night}.

Suppose a user states "Sometimes KLM flights strictly better than day-time

flights with LAN, but sometimes it is exactly the other way around." This

can be expressed by the preference statement ϕ given by (business) ×
(LAN, business, day) | ∅.

Let π be the model {(airline, LAN > KLM), (time, night > day)}. Then

π |= ϕ and π is an extension of the model π1 = {(airline, LAN > KLM)}
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such that π1 |=∗ ϕ. Let the cvo singleton Pareto model π2 = {(airline, KLM

> LAN), (time, day > night)} such that π2 |= ϕ. Then the composition

π1 ◦ π2 is the model {(airline, LAN > KLM), (time, day > night)} and

π1◦π2 6|= ϕ. Thus, ϕ is not strongly compositional. The table below displays

the order relation the described cvo singleton Pareto models imply on the

set of tuples ϕ∗.

(α, β) ∈ ϕ∗ π π2 π1 ◦ π2

((LAN, business, day), (LAN, business, day)) =π′ =π =π′◦π

((LAN, business, night), (LAN, business, day)) >π′ <π <π′◦π

((KLM, business, day), (LAN, business, day)) <π′ >π <π′◦π

((KLM, business, night), (LAN, business, day)) ∼π′ ∼π <π′◦π

A set of fully strict, weakly strict and non-strict preference statements Γ is

strongly compositional for models P and as described before, Γ is consistent

if and only if any maximal |=∗-model of Γ satisfies Γ. We can construct a max-

imal |=∗-model of Γ, by starting with the empty model and iteratively finding

minimal extensions that are still |=∗-model of Γ. Here, minimal extensions are

adding exactly one tuple (X,≥X).

4.4 Discussion

In this chapter, we have concentrated on analysing consistency and deduction

for (strongly) compositional preference statements.

Here, the concept of strong compositionality, which is based on a composition

operator, enables us to formulate a greedy approach to determine consistency.

This approach builds up a maximal |=∗-model of strongly compositional pref-

erence statements Γ by iteratively finding minimal extensions of the current

model, starting with a minimal model. Since all maximal |=∗-models of strongly

compositional preference statements Γ are also models of Γ if and only if Γ is

consistent, we then only need to test if the resulting model satisfies Γ. This

method can be efficient, given that it is efficient to find a minimal model, to

compute possible minimal extensions and to perform (|=∗-) satisfaction tests

for a given preference model.

We showed several criteria which help to show strong compositionality of pref-

erence statements. A preference statement ϕ is strongly compositional if:
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• it is a conjunction of strongly compositional statements,

• it is decreasing and compositional,

• there exists a setMϕ of preference models that is decreasing and contains

all models of ϕ, and for all π, π′ ∈ G, if π ∈Mϕ and π′ |= ϕ then π◦π′ |= ϕ,

• there exists a decreasing relaxation ϕ̄ of ϕ such that for all π, π′ ∈ G, if

π |= ϕ̄ and π′ |= ϕ then π ◦ π′ |= ϕ.

Furthermore, we showed several examples of natural preference statements

which are strongly compositional for cvo lexicographic models L and cvo sin-

gleton Pareto models P together with specific composition operators. The same

preference statements can be shown to be strongly compositional for models

H(1) and P(1), respectively, under similar composition operators (by simply

disregarding the value orders on variable domains).

We also showed that the minimum model for L and P (and thus H(1) and

P(1)) under these composition operators is simply the empty model. Also, min-

imal extensions consist of exactly one variable more, and all maximal models

include the same variables and satisfy the same preference statements. Since

testing (|=∗-) satisfaction is also efficient for the discussed strongly composi-

tional preference statements, the greedy method is an efficient option to test

consistency in this case. Here, for cvo lexicographic models, which imply total

orders on alternatives, the same method can be used to solve the Deduction

Problem. Since incomparability statements are not strongly compositional, this

is not true for cvo singleton Pareto models.

More details about consistency and deduction for (fvo and cvo) lexicographic

models will be given in Chapter 6 and 8. More properties and alternative algo-

rithmic approaches for consistency and deduction for (fvo) Pareto models P(1)
and P(t) with t > 1 are discussed in Chapter 5.

Another important type of preference models, general hierarchical models H(t)
with t > 1, are discussed in Chapter 7. For general hierarchical models, we

can define a composition operator similar to the composition ◦H(1) for models

H(1). Comparative preference statements LA on alternatives are not strongly

compositional in this case (see Example 7.6), but a similar greedy search for

testing consistency, in which repeatedly minimal extensions are found, can be

applied, see Section 7.3.2. This method is not polynomial, due to the exponen-

tial number of minimal extensions. In fact, we can show that the Consistency
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Problem for some simple preference statements is coNP-complete, which im-

plies that there exists no composition operator for which the greedy algorithm

can be polynomial.

Since strong compositionality depends on the definition of a composition oper-

ator, it is open to explore other composition operators for different preference

models and test (strong) compositionality for preference statements.

In conclusion, strong compositionality is a concept that captures many different

and natural types of preference statements and provides a simple method to

solve the Consistency Problem, which in some cases can be very efficient.
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Chapter 5

Pareto Model

Pareto orders give a natural way of comparing outcomes; one outcome is better

than another if it is better on all relevant variables (different criteria by which

the outcomes can be evaluated). In recommender systems and multi-objective

decision making frameworks as well as the other aforementioned fields of appli-

cation, one might assume that the users express their preferences (direct com-

parisons of two outcomes) in a Pareto manner, i.e., a user very cautiously only

expresses a preference of one alternative over another if it is better or equal in

all criteria. Here, one tries to find a set of optimal outcomes, i.e., outcomes that

are undominated w.r.t. the Pareto order. In contrast to many other model types,

deduction and consistency are not mutually expressive under Pareto models,

due to the fact that Pareto models imply only partial orders on the set of out-

comes. This causes the need to discuss consistency and deduction separately.

In this chapter, we consider fvo singleton Pareto models P(1) and k-bound

Pareto models P(k). For better readability, we drop the mention "fvo" in the

following and assume that a fixed value order for every variable domain is

given.

In the next section, we first describe properties for the special case of consis-

tency and deduction based on Pareto models that don’t allow tradeoffs between

variables. These properties are exploited to formulate polynomial time algo-

rithms for PDP and PCP. One can show that the statements LA are strongly

compositional for fvo Pareto models, and thus a simple greedy algorithm from

Section 4.2.4 can be applied to solve the Consistency Problem. However, be-

cause consistency and deduction are not mutually expressive, this algorithm

cannot be applied to solve the Deduction Problem. But since Pareto models, in
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contrast to lexicographic models, do not imply an order on variables, we can

give simpler characterisations of consistency and deduction. In Section 5.2.1,

we develop necessary and sufficient conditions for consistency and deduction

for fvo singleton Pareto models P(1). Similar properties for the case of consis-

tency and deduction based on the general form of t-bound Pareto models P(t)
with t ≥ 1 are developed in Section 5.2.2. Here, we also show that PCP and

PDP based on general Pareto models are NP-complete and coNP-complete, re-

spectively. Throughout this chapter we will consider consistency and deduction

only for the preference language LA.

5.1 Preliminaries

Recall from the definition of k-bound Pareto models P(k) from Section 3.3, see

Definition 8.3, that Pareto models are defined over a set of variables V by which

the alternatives can be described, i.e., A = V.

Recall from Definition 3.10 that a k-bound Pareto model M ∈ P(k) is a set of

pairwise disjoint subsets of variables. More specifically, M = {C1, . . . , Cr} with

r ≥ 0 and pairwise disjoint sets Ci ⊆ V with |Ci| ≤ k for i = 1, . . . , r. When

considering Pareto models in P(k) with k > 1 we will assume the variables to be

commensurable so that values of different variables can be combined with the

operation ⊕. Let D be the variable’s common domain with fixed value order

≥. ⊕ is an associative, commutative and monotonic operation (where strict

monotonicity means x⊕ y ≥ z ⊕ y if x ≥ z) on the variable’s domain D. Here,

e ∈ D is the neutral element such that e⊕ x = x for all x ∈ D.

The order relation on the outcomes A that is induced by Pareto model M =
{C1, . . . , Cr} ∈ P(k) is given as in definition 3.11. For α, β ∈ A:

• α ≥M β if
⊕
c∈Ci α(c) ≥ ⊕

c∈Ci β(c) for all i = 1, . . . , r. (M satisfies α ≥ β,
written M � α ≥ β.)

• α >M β if α ≥M β and there exists j ∈ {1, . . . , r} such that
⊕
c∈Cj α(c) >⊕

c∈Cj β(c). (M satisfies α > β, or M strictly satisfies α ≥ β, written
M � α > β.)

• α ≡M β if α ≥M β and β ≥M α. (M satisfies α ≡ β, written M � α ≡ β.)

Note that in the context of hierarchical models in some parts of Chapter 7 (see

also [WGO15]) an operator ⊕ that combines commensurable variable values
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has been defined to be only monotonic (not strictly monotonic). However, the

strict monotonicity property is needed to establish some important theoretical

results in Section 5.2. This excludes operators like maximum or minimum, but

still allows interesting operators like addition with neutral element 0, which is

natural for combining, e.g., costs, distances, etc. In the special case of strictly

positive variables X with X = D = Q>0, multiplication can also be used as

an operator with neutral element 1. For computational and complexity results,

we assume that x ⊕ y can be computed in logarithmic time for x, y ∈ D in this

chapter.

Example 5.1

Consider the choice of holiday packages α, β and γ. We rate the holiday

packages by the distance from the hotel to the city center dc, the distance

to the beach db, the costs for the hotel ch and the travel costs ct. The

distances are categorised into far (0), medium (1) and near (2). The costs

are categorised into high (0), medium (1) and low (2). The values of the

four criteria for the outcomes α, β and γ are given by the following table.

α β γ

dc 0 2 1

db 1 1 2

ch 2 1 0

ct 2 1 1

To combine variables, consider the operator ⊕ that is the standard addition

on the natural numbers. Then 〈A,V ,⊕〉 is a preference structure, where

A = {α, β, γ} is the set of outcomes and V = {dc, db, ch, ct} is the set of

variables.

In the following, we consider preference statements LA that are strict or non-

strict comparisons on outcomes. Here, LA≥ is the set of non-strict preference
statements α ≥ β, and LA> the set of strict preference statements α > β, for all

α, β ∈ A. Thus, LA = LA≥ ∪ LA>. We write ϕ ∈ LA as αϕ > βϕ, if ϕ is strict,

and as αϕ ≥ βϕ, if ϕ is non-strict. Recall from Definition 3.4 that Γ(≥) is the

non-strict version of Γ ⊆ LA, i.e., Γ(≥) = {αϕ ≥ βϕ | ϕ ∈ Γ}.

110



5.1 Preliminaries

Definition 5.1: Reversed Statements

Define ϕ for a preference statement ϕ ∈ LA to be the statement βϕ > αϕ

if ϕ is the non-strict statement αϕ ≥ βϕ, and βϕ ≥ αϕ if ϕ is the strict

statement αϕ > βϕ.

Note that in the context of Pareto models, ϕ is not the same as ¬ϕ. Since the

order relation that is given by a Pareto model is not necessarily complete, it can

occur that a model M satisfies M � ¬ϕ, i.e., M 6� ϕ, but M 6� ϕ.

Example 5.2: continued

Consider variables, alternatives and operator on variables as described in

Example 5.1. The Pareto model M = {{dc, db}, {ch, ct}} describes the sit-

uation in which a user allows tradeoffs between the distance to the city

center and the distance to the beach, and tradeoffs between the cost of

the hotel and the travel costs. This Pareto model satisfies β >M γ since

β(dc)⊕β(db) = 2+1 = 1+2 = γ(dc)⊕γ(db) and β(ch)⊕β(ct) = 1+1 > 0+1 =
γ(ch)⊕γ(ct). Furthermore, the induced order relation of M leaves the pairs

of outcomes α, β and α, γ incomparable, i.e., M 6� α ≥ β, M 6� β ≥ α and

M 6� α ≥ γ, M 6� γ ≥ α. Thus, M � ¬α ≥ β, but M 6� (α ≥ β), i.e.,

M 6� β ≥ α.

A user that considers Pareto model M ′ = {{db, ch}, {ct}} to describe his

or her preferences allows tradeoffs between the distance to the beach and

the costs of the hotel. Here, the user considers the travel costs separately

and disregards the distance of the hotel to the city completely. This Pareto

model satisfies α >M ′ γ ≡M ′ β.

Let PV denote the set of all Pareto models (with any cardinality bound on sets)

over the set V of variables, i.e., PV = ⋃
k≤|V|P(k). We will abbreviate this

notation to P, when the set of variables V is clear from the context. In Sec-

tion 5.2, we consider properties and complexity of the problems PCP and PDP

based on Pareto models PV in general and based on the special classes of Pareto

models PV(1) and PsV . The class PV(1) consists of Pareto models with only sin-

gleton sets, i.e., PV(1) = {{C1, . . . , Cr} ∈ PV | |Ci| = 1 for all i = 1, . . . , r}.
The class PsV consists of Pareto models that contain only a single set, i.e.,

PsV = {{C} ∈ PV | C ⊂ V}. We adjust the notation where Pareto models

111



5.2 Properties and Solutions

in PV(1) or PsV are considered to avoid confusion, and omit the set of variables

V when this is clear from the context.

Example 5.3: continued

Consider variables, alternatives and operator on variables as described in

Example 5.1. Let Γ = {α > β, α ≥ γ} be a set of preference statements in

LA. The set Γ is consistent (for all P(k) with k ≥ 1 in general and in partic-

ular for P(1) and for Ps) and the following Pareto models satisfy α > β and

α ≥ γ: {{ch}}, {{ct}}, {{ch}, {ct}}, {{ch, ct}}, {{ch, db}}, {{ch, db}, {ct}},
{{ct, db}}, {{ct, db}, {ch}}, {{ch, ct, db}}. Furthermore, Γ 6�P(k) β ≥ γ for

k > 1 and Γ 6�Ps β ≥ γ since the Pareto model {{ct, db}} ∈ Ps ⊆ P(k)
with k > 1 satisfies Γ but not β ≥ γ. However, Γ �P(1) β ≥ γ since the

Pareto models {{ch}}, {{ct}} and {{ch}, {ct}} in P(1) all satisfy Γ and sat-

isfy β ≥ γ.

5.2 Properties and Solutions

For many order relations like lexicographic orders, hierarchical models and

weighted sums, PDP and PCP are mutually expressive, as shown in our pa-

pers [WGO15, GRW15]. Note that for these models ϕ is equivalent to ¬ϕ. The

following example shows that Γ∪ {ϕ} is P-inconsistent does in general not im-

ply Γ �P ϕ for Pareto models P. Thus, we need to find algorithms to solve the

Consistency Problem (PCP) and the Deduction Problem (PDP) separately.

Example 5.4

Let the operator ⊕ be the standard addition on Q≥0.Consider the table of

values for variables c1, c2, c3 evaluated at outcomes α, β, γ.

α β γ

c1 5 3 1

c2 0 1 3

c3 1 3 4

Let the set of given preference statements be Γ = {γ > β} and let ϕ be

the strict statement α < β, so that ϕ is α ≥ β. The following Pareto

models satisfy Γ: {{c2}}, {{c3}}, {{c2}, {c3}}, {{c2, c3}}, {{c1, c2}, {c3}},
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{{c1, c2, c3}}. However, none of the Γ-satisfying models satisfies α ≥ β.

Thus, the set Γ ∪ {ϕ} = {α ≥ β, γ > β} is P-inconsistent. Also, Γ 6�P ϕ, as

the Pareto model {{c1, c2}, {c3}} satisfies Γ but not α < β. For models Ps,
Γ �Ps ϕ.

However, we can show that Γ �P ϕ implies Γ ∪ {ϕ} is P-inconsistent.

Proposition 5.1. Let Γ ⊆ LA and ϕ ∈ LA \Γ be preference statements. If Γ �P ϕ,
then Γ ∪ {ϕ} is P-inconsistent.

Proof. Suppose Γ ∪ {ϕ} is P-consistent, i.e., there exists a Pareto model M =
{C1, . . . , Cm} that satisfies Γ and M � ϕ. Suppose ϕ is the strict statement

α > β, i.e., ϕ is the statement α ≤ β. Since M � ϕ, for all i = 1, . . . ,m,⊕
c∈Ci α(c) ≤ ⊕

c∈Ci β(c). Thus, M 6� ϕ, and Γ 6�P ϕ. Analogously, we can show

Γ 6�P ϕ for non-strict ϕ.

5.2.1 Singleton Models

In this section, we find a simple characterisation of the Pareto inference re-

stricted to the class P(1) by using set relations on sets of variables. We define

the set Cα≥β = {c ∈ V | α(c) ≥ β(c)} of variables that satisfy α ≥ β. Simi-

larly, Cα>β = {c ∈ V | α(c) > β(c)} and Cα=β = {c ∈ V | α(c) = β(c)}.
For better readability, we abbreviate the notation of a model of singleton sets

M = {{c1}, . . . , {cr}} in PV(1) to {c1, . . . , cr} if the context is clear.

Note that the empty Pareto model {} always satisfies non-strict statements, and

thus, a set Γ ⊆ LA≥ is always P(1)-consistent. We can prove the following

characterisation of P(1)-consistency.

Theorem 5.1: P(1)-Consistency

Let Γ ⊆ LA be a set of preference statements that includes at least one

strict statement. Γ is P(1)-consistent if and only if for all strict statements

ϕ′ ∈ Γ ∩ LA> there exists a variable c that satisfies the non-strict statements

Γ(≥) and strictly satisfies ϕ′, i.e., Cϕ′ ∩ (⋂ϕ∈Γ(≥) Cϕ) 6= ∅.

Proof. Suppose, Γ is P(1)-consistent and let M = {c1, . . . , ck} be a Γ-satisfying

model in P(1). Since M satisfies every statement ϕ ∈ Γ, αϕ(c) ≥ βϕ(c) for every
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c ∈ M , i.e., c ∈ ⋂ϕ∈Γ(≥) Cϕ. Furthermore, for every strict statement ϕ′ ∈ Γ ∩ LA>
there exists a c ∈M such that αϕ′(c) > βϕ′(c), i.e., c ∈ Cϕ′ ∩ (⋂ϕ∈Γ(≥) Cϕ) 6= ∅.

Conversely, suppose Cϕ′ ∩ (⋂ϕ∈Γ(≥) Cϕ) 6= ∅ for all ϕ′ ∈ Γ ∩ LA>. Consider the

set M = (⋃ϕ′∈Γ∩LA> Cϕ′) ∩ (⋂ϕ∈Γ(≥) Cϕ). For every variable c ∈ M and every

statement ϕ ∈ Γ, c ∈ ⋂
ϕ∈Γ(≥) Cϕ, i.e., αϕ(c) ≥ βϕ(c). Furthermore, for every

strict statement ϕ′ ∈ Γ∩LA> there exists a c ∈M such that c ∈ Cϕ′ ∩
⋂
ϕ∈Γ(≥) Cϕ,

i.e., αϕ′(c) > βϕ′(c). Thus M is a Pareto model in P(1) that satisfies Γ, i.e., Γ is

P(1)-consistent.

Following Theorem 5.1, we formulate the algorithm Singleton-Pareto-

Consistency that solves P(1)-PCP in polynomial time O(|Γ||V|).

Algorithm 5.1: Singleton-Pareto-Consistency(Γ,V)

Input: Variables V, statements Γ ⊆ LA.
Question : Is Γ P(1)-consistent ?
1. Let G = Γ ∩ LA>.
2. FOR ALL c ∈ V DO
3. IF ( αϕ(c) ≥ βϕ(c) for all ϕ ∈ Γ ) THEN
4. G = G \ {ϕ ∈ Γ | αϕ(c) > βϕ(c)}.
5. IF ( G = ∅ ) THEN
6. RETURN "Γ is consistent " and STOP.
7. RETURN "Γ is inconsistent " and STOP.

Proposition 5.2. Algorithm 5.1 is correct and solves P(1)-consistency in
O(|Γ||V|).

Proof. The correctness of Algorithm 5.1 is a direct consequence of Theorem 5.1.

The for-loop is accessed |V| many times. Here, for every c ∈ V we test αϕ(c) ≥
βϕ(c) for all ϕ ∈ Γ. Thus, Algorithm 5.1 runs in O(|Γ||V|).

We can prove criteria for strict and non-strict Pareto inferences based on P(1)
models by utilising the following lemma.

Lemma 5.3. Let Γ ⊆ LA be a set of P(1)-consistent preference statements. For
every variable c ∈ ⋂

ϕ∈Γ(≥) Cϕ there exists a Γ-satisfying Pareto model in P(1)
that contains c. Furthermore, for every Γ-satisfying Pareto model M in P(1),
M ⊆ ⋂ϕ∈Γ(≥) Cϕ.
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Proof. Let M be a Γ-satisfying Pareto model in P(1) that does not contain some

c ∈ ⋂
ϕ∈Γ(≥) Cϕ. Since αϕ(c) ≥ βϕ(c) for all ϕ ∈ Γ, M ∪ {c} is a Γ-satisfying

Pareto model in P(1). Thus, for every variable c ∈ ⋂ϕ∈Γ(≥) Cϕ there exists a Γ-

satisfying Pareto model in P(1) that contains c. Furthermore, for every variable

c in M and every ϕ ∈ Γ, αϕ(c) ≥ βϕ(c), i.e., c ∈ Cαϕ≥βϕ. Thus, M ⊆ ⋂
ϕ∈Γ(≥) Cϕ

for every Γ-satisfying Pareto model M in P(1).

Theorem 5.2: PV(1)-Deduction

Let Γ ⊆ LA be a set of PV(1)-consistent preference statements. We can

deduce a preference statement α ≥ β from Γ (Γ �PV (1) α ≥ β) if and

only if all variables c ∈ V that satisfy Γ(≥) also satisfy α(c) ≥ β(c), i.e.,⋂
ϕ∈Γ(≥) Cϕ ⊆ Cα≥β.

Also, Γ is PCα=β(1)-inconsistent for the set PCα=β(1) of P(1) models on

variables Cα=β, if no Γ-satisfying model on variables V satisfies α ≡ β.

Then, Γ �PV (1) α > β if and only if
⋂
ϕ∈Γ(≥) Cϕ ⊆ Cα≥β and Γ is PCα=β(1)-

inconsistent.

Proof. Consider the case of non-strict inference Γ �PV (1) α ≥ β. By definition,

Γ �PV (1) α ≥ β if and only if for every variable c involved in a Γ-satisfying

Pareto model in PV(1), α(c) ≥ β(c). By Lemma 5.3, the set of variables involved

in a Γ-satisfying Pareto model in PV(1) is
⋂
ϕ∈Γ(≥) Cϕ. Thus, Γ �PV (1) α ≥ β is

equivalent to c ∈ Cα≥β for all c ∈ ⋂ϕ∈Γ(≥) Cϕ, i.e.,
⋂
ϕ∈Γ(≥) Cϕ ⊆ Cα≥β.

Now, consider the case of strict inference Γ �PV (1) α > β. By definition, Γ �PV (1)

α > β if and only if for every variable c involved in a Γ-satisfying Pareto model

in PV(1), α(c) ≥ β(c), and there exists no Γ-satisfying Pareto model M such that

M �PV (1) α ≡ β. Thus, Γ �PV (1) α > β is equivalent to
⋂
ϕ∈Γ(≥) Cϕ ⊆ Cα≥β and

there exists no Γ-satisfying Pareto model M ∈ PV(1) with M ⊆ Cα=β, i.e., Γ is

PCα=β(1)-inconsistent for the set PCα=β(1) of P(1) models on variables Cα=β.

Following Theorem 5.2 and using the algorithm Singleton-Pareto-Consistency,

we formulate the algorithm Singleton-Pareto-Deduction that solves PV(1)-PDP

in polynomial time O(|Γ||V|). Note that, for PV(1)-inconsistent Γ ⊆ LA, we can

deduce any statement ϕ ∈ LA.

Algorithm 5.2: Singleton-Pareto-Deduction(Γ,V,ϕ)
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Input: Variables V, statements Γ ⊆ LA and ϕ ∈ LA \ Γ.
Question : Does Γ �P(1) ϕ hold?

1. IF ( Singleton -Pareto - Consistency (Γ,V)
= Γ is inconsistent ) THEN

2. RETURN "Γ �P(1) ϕ" and STOP.
3. Let N = ∅.
4. FOR ALL c ∈ V such that αρ(c) ≥ βρ(c) for all ρ ∈ Γ DO
5. IF ( αϕ(c) < βϕ(c) ) THEN
6. RETURN "Γ 6�P(1) ϕ" and STOP.
7. ELSE IF ( αϕ(c) = βϕ(c) ) THEN
8. N = N ∪ {c}.
8. IF ( ϕ ∈ LA> and Singleton -Pareto - Consistency (Γ,N )

= Γ is consistent ) THEN
9. RETURN "Γ 6�P(1) ϕ" and STOP.

10. ELSE RETURN "Γ �P(1) ϕ" and STOP.

Proposition 5.4. Algorithm 5.2 is correct and solves P(1)-deduction in O(|Γ||V|).

Proof. The correctness of Algorithm 5.2 is a direct consequence of Theorem 5.2.

For every access of the for-loop, we test for every c ∈ V whether αρ(c) ≥ βρ(c)
for all ρ ∈ Γ. This is possible in O(|Γ||V|). Within the for-loop only constant

many operations are executed. After the for-loop, we test consistency, which

by Proposition 5.2 is also possible in O(|Γ||V|). Thus, Algorithm 5.2 runs in

O(|Γ||V|).

5.2.2 General Pareto Inference

In this section, we want to find characterisations for general Pareto inference,

i.e., inference based on general Pareto models P by using set relations similar to

those in the previous section. We define the set Vα≥β = {B ⊆ V | ⊕c∈B α(c) ≥⊕
c∈B β(c)} of sets of variables that satisfy α ≥ β. Similarly, Vα>β = {B ⊆ V |⊕
c∈B α(c) >⊕

c∈B β(c)} and Vα=β = {B ⊆ V |⊕c∈B α(c) = ⊕
c∈B β(c)}.

As mentioned in the previous section before Theorem 5.1, a set Γ ⊆ LA≥ is al-

ways P(1)-consistent and thus P-consistent. We can prove the following char-

acterisation of P-consistency.

Proposition 5.5. Let Γ ⊆ LA. Γ is P-consistent if and only if
⋂
ϕ∈Γ Vϕ 6= ∅.
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Proof. Suppose,
⋂
ϕ∈Γ Vϕ 6= ∅. Then for any set B ∈ ⋂

ϕ∈Γ Vϕ, {B} is a Γ-

satisfying Pareto model. Now suppose that Γ is P-consistent, i.e., there exists a

Γ-satisfying Pareto model M = {C1, . . . , Cr}. For every set Ci ∈ M and every

ϕ ∈ Γ,
⊕
c∈Ci αϕ(c) ≥ ⊕

c∈Ci βϕ(c), and for all ϕ ∈ Γ ∩ LA> there exists Cj ∈ M
with

⊕
c∈Cj αϕ(c) > ⊕

c∈Cj βϕ(c). Let C ′ = ⋃
i=1,...,r Ci. By strict monotonicity of

⊕,
⊕

c∈C′ αϕ(c) ≥ ⊕
c∈C′ βϕ(c) for ϕ ∈ Γ(≥), and

⊕
c∈C′ αϕ(c) > ⊕

c∈C′ βϕ(c) for

all ϕ ∈ Γ ∪ LA>. Thus C ′ ∈ ⋂ϕ∈Γ Vϕ 6= ∅.

Remember from the preliminaries of this chapter that Ps = {{C} ∈ PV | C ⊂
V} contains all Pareto models that consist of only a single set. The proof of

Proposition 5.5 directly implies the following equivalence.

Corollary 5.6. Let Γ ⊆ LA. Γ is P-consistent if and only if Γ is Ps-consistent.

Consider the relation of P and Ps for deduction. Γ �P ϕ implies Γ �Ps ϕ
because Ps ⊆ P. However, Example 5.4 shows the contrary is not true.

In the following, we find characterisations for preference deduction for PV . For

a given set B ⊆ V, define Γ>B to be the set of statements in Γ that are strictly

satisfied by variables B ⊆ V, i.e., Γ>B = {ϕ ∈ Γ | ⊕c∈B αϕ(c) > ⊕
c∈B βϕ(c)}.

Similarly, Γ=B = {ϕ ∈ Γ | ⊕c∈B αϕ(c) = ⊕
c∈B βϕ(c)}. Recall that the non-

strict version of preference statements Γ is denoted by Γ(≥). We abbreviate the

notation of (Γ>B)(≥) to just Γ(≥)
>B, and define Γ↔B = (Γ \Γ>B)∪Γ(≥)

>B. Thus, Γ↔B
replaces the preference statements in Γ that are strictly satisfied by B with their

non-strict versions.

The following two propositions give characterisations for deductions. Both

propositions can be proven by technical constructions. The next proposition

gives a characterisation for deduction of non-strict statements.

Proposition 5.7. Let Γ ⊆ LA be a P-consistent set of preference statements and
let α ≥ β ∈ LA \ Γ be a non-strict statement. Γ 6�PV α ≥ β if and only if there
exists a set B ∈ ⋂

ψ∈Γ(≥) Vψ ∩ Vα<β such that Γ↔B is PV\B-consistent, i.e., the
(α ≥ β)-opposing set B can be extended to a Γ-satisfying Pareto model.

Proof. Suppose, Γ 6�PV α ≥ β. There exists a Pareto model M = {C1, . . . , Cr}
with M �PV Γ and

⊕
c∈Cj α(c) < ⊕

c∈Cj β(c) for some Cj ∈ M . Since M �PV Γ,⊕
c∈C αψ(c) ≥ ⊕

c∈C βψ(c) for all C ∈ M and ψ ∈ Γ. Thus, Cj ∈
⋂
ψ∈Γ(≥) Vψ ∩

Vα<β. Furthermore, for all γ ∈ Γ ∩ LA> there exists a C ∈ M with
⊕
c∈C αγ(c) >⊕

c∈C βγ(c). In particular, for all strict statements γ ∈ (Γ\Γ>Cj)∩LA> (not strictly
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satisfied by Cj) there exists a C ∈M\{Cj}with
⊕

c∈C αγ(c) >
⊕

c∈C βγ(c). Thus,

M \ {Cj} satisfies (Γ \ Γ>Cj) ∪ Γ(≥)
>Cj

, so that Γ↔Cj is PV\Cj -consistent.

Now suppose, there exists a set B ∈ ⋂
ψ∈Γ(≥) Vψ ∩ Vα<β such that Γ↔B is

PV\B-consistent. Let {C1, . . . , Cr} be a Pareto model over V \ B that satis-

fies Γ↔B. Since B is in
⋂
ψ∈Γ(≥) Vψ and satisfies the statements Γ>B strictly,

{C1, . . . , Cr, B} is a Pareto model in PV that satisfies Γ. Since B ∈ Vα<β, the

model {C1, . . . , Cr, B} does not satisfy α ≥ β. Thus, Γ 6�PV α ≥ β.

We prove the following characterisation for deduction of strict statements.

Proposition 5.8. Let Γ ⊆ LA and let α > β ∈ LA \ Γ be a strict statement.
Γ 6�P α > β if and only if Γ 6�P α ≥ β or

⋂
ψ∈Γ Vψ ∩ Vα=β 6= ∅.

Proof. Suppose Γ 6�P α > β. Since α > β is a strict statement, this is if and

only if either Γ 6�P α ≥ β or there exists a Γ-satisfying Pareto model M with

M �P α ≡ β. We show there exists a Γ-satisfying model M with M �P α ≡ β

if and only if
⋂
ψ∈Γ Vψ ∩ Vα=β 6= ∅. Let M = {C1, . . . , Cr} ∈ P be a Γ-satisfying

model with M �P α ≡ β. Because of strict monotonicity of ⊕ and because

M satisfies Γ,
⋃
i=1,...,r Ci ∈ Vψ for all ψ ∈ Γ. Furthermore, because of the

monotonicity of ⊕,
⋃
i=1,...,r Ci ∈ Vα=β. Thus,

⋃
i=1,...,r Ci ∈

⋂
ψ∈Γ Vψ ∩ Vα=β 6= ∅.

Now suppose,
⋂
ψ∈Γ Vψ ∩ Vα=β 6= ∅. Any model M ′ = {C} with C ∈ ⋂ψ∈Γ Vψ ∩

Vα=β satisfies Γ and M ′ �P α ≡ β.

Hence, Γ 6�P α > β if and only if either Γ 6�P α ≥ β or
⋂
ψ∈Γ Vψ ∩ Vα=β 6= ∅.

Note that the characterisation for deduction and consistency can be realised as

algorithms for P-PCP and P-PDP, but cannot be implemented in polynomial

time since this requires a search through the exponentially large power set of

variables 2V . In fact, we can prove the following complexity results for PCP and

PDP.

Theorem 5.3: NP-completeness of PCP for Pareto Models

The P-Preference Consistency Problem is NP-complete.

Proof. For any given Pareto model, we can check in polynomial time if it satisfies

all given preference statements. Thus, PCP is in the class NP. We prove NP-

completeness by a reduction from SAT.

118



5.2 Properties and Solutions

Let B = K1, . . . , Km be a set of clauses in conjunctive normal form with clauses

Ki = (li,1 ∨ · · · ∨ li,ki) for i = 1, . . . ,m, where the literals li,j are chosen from the

set of propositional variables X = {x1, . . . , xn}. In the following, we construct

an instance of PCP from the SAT instance B. For every propositional variable xj,

we construct three variables: pj (corresponding to xj = 1), nj (corresponding

to xj = 0) and the auxiliary variable hj. The set of variables V = {pj, nj, hj | j =
1, . . . , n} has cardinality polynomial in n. We define the function Q that maps

the literals involved in B to the variables V by Q(xj) = pj and Q(¬xj) = nj. Let

the set of alternatives be A = {αi, βi | i = 1, . . . ,m} ∪ {γj, δj, εj, ζj, ηj, θj | j =
1, . . . , n}. Then the cardinality ofA is polynomial in the given sizesm and n. Let

s ∈ D with s > e and ⊕ be an associative, commutative and strictly monotonic

operation with neutral element e. Define the values of the variables on the

alternatives as given in the following tables. For i = 1, . . . ,m and j = 1, . . . , n,

αi βi

Q(l) with l ∈ Ki s e

V \ {Q(l) | l ∈ Ki} e e

εj ζj ηj θj

pj s e e s

nj s e e s

hj e e s e

V \ {pj, nj, hj} e e e e

The set Γ = {αi > βi | i = 1, . . . ,m} ∪ {εj > ζj, ηj ≥ θj | j = 1, . . . , n} of

preference statements on A is polynomial in the given sizes m and n.

In the following, we prove that there exists a Γ-satisfying Pareto model with

variables in V if and only if there exists a satisfying truth assignment for B.

Because of the equivalence between P- and Ps- consistency stated in Corol-

lary 5.6, we can restrict the following considerations to Pareto models in Ps.

Suppose there exists a Γ-satisfying Pareto model M = {C} with C ⊆ V. We

prove that for each j = 1, . . . , n, the set C contains either pj or nj and not

both. Suppose for some j ∈ {1, . . . , n}, pj /∈ C and nj /∈ C. Then,
⊕

c∈C εj(c) =
e = ⊕

c∈C ζj(c). This contradicts M � εj > ζj. Thus, for all j = 1, . . . , n,

pj ∈ C or nj ∈ C. Now suppose, for some j ∈ {1, . . . , n}, that hj /∈ C. Then,⊕
c∈C ηj(c) = e < s ≤ ⊕

c∈C θj(c). This contradicts M � ηj ≥ θj. Thus, hj ∈ C
for all j = 1, . . . , n. Suppose, for some j ∈ {1, . . . , n}, both pj ∈ C and nj ∈ C.

Because hj ∈ C,
⊕

c∈C ηj(c) = s < s ⊕ s = ⊕
c∈C θj(c). Again, this contradicts

M � ηj ≥ θj. Hence, for each j = 1, . . . , n, M contains either pj ∈ C or nj ∈ C
but not both.

Thus, for a Γ-satisfying model M ∈ Ps the assignment A, with A(li,k) = 1
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if and only if Q(li,k) ∈ M , is well defined. Furthermore, we can show that M

contains at least one variableQ(l) with l ∈ Ki for every clause with i = 1, . . . ,m.

Suppose otherwise. Then,
⊕
c∈C αi(c) = e ⊕ · · · ⊕ e = ⊕

c∈C βi(c). This is a

contradiction to M � αi > βi. Thus, A is a satisfying truth assignment of the

SAT instance B.

Conversely, let A be a satisfying truth assignment of the Boolean formula B.

Consider the Pareto model M = {C} with hj ∈ C, and pj ∈ C if and only if

A(xj) = 1, and nj ∈ C if and only if A(xj) = 0, for all j ∈ {1, . . . , n}. We show

M �P Γ:

• αi >C βi: Since A satisfies B, there exists l ∈ {li,1, . . . , li,ki} for every clause

Ki with A(l) = 1. Thus, Q(l) ∈ C and
⊕

c∈C αi(c) ≥ s > e = ⊕
c∈C βi(c).

• εj >C ζj: Every variable xj is assigned to be true or false. Thus either

pj ∈ C or nj ∈ C (not both), and
⊕

c∈C εj(c) = s > e = ⊕
c∈C δj(c).

• ηj ≥C θj: Either pj ∈ C or nj ∈ C but not both, and hj ∈ C. Thus,⊕
c∈C ηj(c) = s = ⊕

c∈C θj(c).

Hence, we have shown that there exists a satisfying truth assignment for B if

and only if there exists a Γ-satisfying Pareto model in PsV , which is if and only

if there exists a Γ-satisfying Pareto model in PV .

Theorem 5.4: coNP-completeness of PDP for Pareto Models

The P-Preference Deduction Problem is coNP-complete.

Proof. For any given Pareto model, we can check in polynomial time if it satisfies

all given preference statements Γ and does not satisfy ϕ. Thus we can verify in

polynomial time that Γ 6� ϕ for some instance of PDP. Hence, PDP is in the class

coNP.

We prove coNP-completeness by a reduction from SAT. For a set of clauses B =
K1, . . . , Km, consider the preference structure and statements as constructed

in the proof of Theorem 5.3. In the following, we will define a preference

statement ϕ : ρ > σ such that no Γ-satisfying model satisfies ϕ. Hence, Γ �P ϕ
if and only if Γ is P-inconsistent, which by the previous proof is if and only if

B is not satisfiable. For every variable c ∈ V let ρ(c) = σ(c) = e. Then every

Pareto model M satisfies M � ρ = σ, because every set in M evaluates to e on

both ρ and σ. Thus, M 6� ρ > σ.
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5.3 Conclusion

We investigated the Preference Deduction Problem and the Preference Consis-

tency Problem based on Pareto models. Here, we developed characterisations

for consistency and deduction (strict and non-strict) which allow one to de-

sign algorithms for PCP and PDP. These characterisations depend on set rela-

tions of sets of supporting and opposing variables. Furthermore, we established

that general P-consistency is equivalent to Ps-consistency, where Ps are mod-

els that include one single set. However, PCP and PDP are NP-complete and

coNP-complete, respectively, for the general case of models P. In the special

case of singleton models, the characterisations of consistency and deduction

lead to polynomial algorithms that solve PCP and PDP in O(|Γ||V|) for given

preferences Γ and variables V.
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Chapter 6

FVO Lexicographic Model

In this chapter, we analyse the problems of consistency and inference based

on fvo lexicographic models H(1) for the preference language LA. For better

readability, we will drop the annotation "fvo" in most places in this chapter, an

always assume that fixed order relations on the variable domains are given. We

will see that in this case, lexicographic models allow for efficient algorithms to

solve consistency and inference. This method is a detailed description of the

general algorithm formulated in the previous chapter in Section 4.2.4 for the

specific case of lexicographic models and certain languages of strongly com-

positional statements. The general algorithm uses a greedy approach which

consists of repeatedly finding minimal extensions that do not oppose any pref-

erence statement. In the following, we characterise such minimal extensions

for lexicographic models H(1) and outline how they can be found efficiently.

Recall from Definition 3.14 that the models H(1) are lexicographic models over

variable domains with fixed value orders, i.e., the value orders on variable

domains are the same for every model. Thus, every π ∈ H(1) can be writ-

ten as a tuple (c1, . . . , ck) where the set of variables involved is denoted by

σ(π) = {c1, . . . , ck} ⊆ V. For example, we could consider variables time, class,

and airline with fixed value orders day > night, business > economy, and KLM

> LAN. Then a simple lexicographic model can be fully described by giving a

sequence of variables, e.g., (airline,time). The annotation of the value orders

of the variables in this case can be dropped.

We start with the simplest assumption of the preference language LA that con-

sists of statements that are strict and non-strict comparisons of alternatives, i.e.,

complete assignments to variables (see Definition 3.3). That is, for a set of al-
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6.1 Preliminaries

ternatives A, LA = {α > β | α, β ∈ A} ∪ {α ≥ β | α, β ∈ A}. A novelty in

this chapter is the consideration of strict and non-strict preference statements

together, whereas for example [Wil14] only considers non-strict preferences

(however, for more general lexicographic models). Here, we also allow the set

of input preference statements Γ ⊆ LA to be an infinite set unless otherwise

stated. Furthermore, we find an interesting structure, inconsistency bases, that

allows us to characterise and understand inference and consistency in greater

detail (Section 6.2) and solve these problems in polynomial time (Section 6.3).

In Subsection 6.3.4, we briefly discuss how the outcome of the algorithm can

be interpreted as the "best fitting preference model" for inconsistent preference

statements. The same algorithm can be applied to decide strong consistency

and max-model inference, two concepts that are discussed in Section 6.4. In

Section 6.3.5, we briefly outline another preference language that enforces con-

straints on the importance order of variables, and show that these statements

are equivalent to certain statements in the language LA. We develop a proof

theory and completeness results in Section 6.5 which shows the previously se-

mantically introduced results in the perspective of logics. This is followed by a

discussion at the end of the chapter.

Many parts of this chapter originate from [WGO15] and [WG17].

6.1 Preliminaries

Since the value orders of the variable domains for modelH(1) are fixed, we will

abbreviate the notation α(c) >c β(c) to simply α(c) > β(c), where α and β are

alternatives in A and c is a variable in V with associated total order ≥c on the

variable domain c. The Deduction Problem for lexicographic models in this case

is given as follows. Given Γ ∪ {ϕ} ⊆ LA, is it the case that Γ |=H(1) ϕ? That is:

Is it the case that for all H(1)-models π (over A), if π satisfies Γ then π satisfies

ϕ? In the case of lexicographic models with strict and non-strict preference

statements in LA, the Deduction Problem can be reduced to the Consistency

Problem: Does there exist a model π ∈ H(1) such that π |=H(1) Γ∪ {¬ϕ}? If the

answer to this question is no, then Γ |=H(1) ϕ.

To show this result, we first prove that the induced order relation of H(1) mod-

els is complete.
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Lemma 6.1. Let H ∈ H(1) be a lexicographic model and α, β ∈ A alternatives.
Then H satisfies α ≥ β if and only if H does not satisfy β > α.

Proof. Let H be the model (c1, . . . , ck). By definition of the lexicographic order

relation, we have that H satisfies α ≥ β if and only if 1) there exists ci ∈ σ(H)
such that α(ci) > β(ci) and α(cj) = β(cj) for all j < i, or 2) α(cj) = β(cj)
for all j = 1, . . . , k. This is if and only if there exists no ci ∈ σ(H) such that

β(ci) > α(ci) and β(cj) = α(cj) for all j < i, i.e., if and only if H does not satisfy

β > α.

Proposition 6.2. Let Γ ∪ {ϕ} ⊆ LA. Then Γ |=H(1) ϕ if and only if Γ ∪ {¬ϕ} is
inconsistent for models H(1).

Proof. Suppose Γ |=H(1) ϕ. By definition of |=H(1), this is if and only if for all

models H ∈ H(1) with H |= Γ, H |= ϕ. Thus by Lemma 6.1, for all models

H ∈ H(1) with H |= Γ, H 6|= ¬ϕ. This means, there does not exist any model

H ∈ H(1) with H |= Γ∪{¬ϕ}, i.e., Γ∪{¬ϕ} is inconsistent for modelsH(1).

6.2 Inconsistency Bases

In the following we define inconsistency bases which help characterise a set

of variables that cannot appear in any model of Γ ⊆ LA. First we define the

support, opposition and indifference sets of variables for a preference statement

φ ∈ LA. Here, we write ϕ ∈ LA as αϕ > βϕ, if ϕ is strict, or as αϕ ≥ βϕ, if ϕ

is non-strict. We consider a set Γ ⊆ LA, and a set V of variables by which the

alternatives A can be specified, i.e., A = V.

SuppϕV , Oppϕ and Indϕ: For ϕ ∈ Γ, define Suppϕ to be {c ∈ V : αϕ(c) > βϕ(c)};
define Oppϕ to be {c ∈ V : αϕ(c) < βϕ(c)}; and define Indϕ to be

{c ∈ V : αϕ(c) = βϕ(c)}. Thus, Suppϕ, Oppϕ and Indϕ form a partition of V, for

any ϕ ∈ LA. Note that these three sets do not depend on whether ϕ is a strict

statement or not. Suppϕ are the variables that support ϕ; Oppϕ are the variables

that oppose ϕ. Indϕ are the other variables that are indifferent regarding ϕ.

Recall from Definition 3.15 that a model π = (c1, . . . ck) ∈ H(1) satisfies a strict

statement ϕ ∈ LA, i.e., π |= αϕ > βϕ, if and only if there exists some i ∈
{1, . . . , k} such that αϕ(cj) = βϕ(cj) for all j < i and αϕ(ci) > βϕ(ci). π satisfies
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a non-strict statement ϕ ∈ LA, i.e., π |= αϕ ≥ βϕ, if and only if π |= αϕ > βϕ or

αϕ(cj) = βϕ(cj) for all j ∈ {1, . . . , k}. For a model π to satisfy ϕ it is necessary

that no variable that opposes ϕ appears before all variables that support ϕ.

More precisely, we have the following:

Lemma 6.3. Let π be an element of H(1), i.e., a sequence of different elements
of V. For strict ϕ, π |= ϕ if and only if an element of Suppϕ appears in π which
appears before any (if there are any) element in Oppϕ that appears. For non-strict
ϕ, π |= ϕ if and only if an element of Suppϕ appears in π before any element in
Oppϕ appears, or no element of Oppϕ appears in π (i.e., σ(π) ∩ Oppϕ = ∅).

Proof. Let π = (c1, . . . ck) be a H(1)-model. Suppose that ϕ is a strict statement.

Then π |= ϕ, i.e., αϕ �π βϕ, if and only if there exists some i ∈ {1, . . . , k} such

that {c1, . . . ci−1} ⊆ Indϕ and ci ∈ Suppϕ, which is if and only if an element of

Suppϕ appears in π before any element in Oppϕ appears.

Now suppose that ϕ is a non-strict statement. Then π |= ϕ, i.e., αϕ <π βϕ, if

and only if either (i) for all i = 1, . . . , k, α(ci) = β(ci); or (ii) there exists some

i ∈ {1, . . . , k} such that α �ci β and for all j such that 1 ≤ j < i, α(cj) = β(cj).
(i) holds if and only if σ(π) ⊆ Indϕ, i.e., no element of Suppϕ or Oppϕ appears in

π. (ii) holds if and only if an element of Suppϕ appears in π before any element

in Oppϕ appears, and some element of Suppϕ appears in π. Thus, π |= ϕ holds

if and only if either no element in Oppϕ appears in π or some element of Suppϕ

appears in π and the first such element appears before any element in Oppϕ

appears.

The following defines inconsistency bases, which are concerned with variables

that cannot appear in any model satisfying a set of preference statements Γ (see

Proposition 6.4 below). They are a valuable tool in understanding the structure

of the set of satisfying models (see e.g., Proposition 6.19 below).

Definition 6.1: Inconsistency Base

Let Γ ⊆ LA, and let V be a set of variables. We say that (Γ′, C ′) is an

inconsistency base for (Γ,V) if Γ′ ⊆ Γ, and C ′ ⊆ V, and

(i) for all ϕ ∈ Γ′, Suppϕ ∪ Oppϕ ⊆ C ′ (and thus V − C ′ ⊆ Indϕ); and

(ii) for all c ∈ C ′, there exists ϕ ∈ Γ′ such that Oppϕ 3 c.
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Thus, for all ϕ ∈ Γ′, the set C ′ contains all variables that are not indifferent

regarding ϕ, and for all c ∈ C ′ there is some element of Γ′ that is opposed by c.

Example 6.1

Consider variables V = {e, f, g, h} with with the natural numbers as vari-

able domains and the usual order relation on natural numbers. The values

for alternatives α, β, γ and δ are given by the following table.

α β γ δ

e 1 1 0 0

f 3 0 2 2

g 3 1 1 3

h 2 2 0 1

Consider the strict preference statement ϕ1 : α > β, and the non-strict

preference statements ϕ2 : β ≥ γ, ϕ3 : γ ≥ δ. Let Γ = {ϕ1, ϕ2, ϕ3}.

Then, Oppϕ1 = ∅, Suppϕ1 = {f, g} and Indϕ1 = {e, h}. Similarly, Oppϕ2 =
{f}, Suppϕ2 = {e, h} and Indϕ2 = {g}. For ϕ3, Oppϕ3 = {g, h}, Suppϕ3 = ∅
and Indϕ3 = {e, f}.

The lexicographic model (e, f) satisfies Γ. As stated in Lemma 5, the vari-

able e ∈ Suppϕ2 precedes f ∈ Oppϕ2.

Consider the tuple (Γ′, C ′) = ({ϕ3}, {g, h}). Condition (i) of Definition 1

is satisfied by Suppϕ3 ∪ Oppϕ3 = {g, h} ⊆ C ′. Since for f, h ∈ C ′, f ∈
Oppϕ3 and h ∈ Oppϕ3 , condition (ii) is satisfied as well. Thus, (Γ′, C ′) =
({ϕ3}, {g, h}) is an inconsistency base of (Γ,V).

The following result motivates the definition of inconsistency bases (Γ′, C ′),
showing that no model of Γ can involve any element of C ′, and that if Γ′ con-

tains a strict element then Γ is H(1)-inconsistent.

Proposition 6.4. Let (Γ′, C ′) be an inconsistency base for (Γ,V). Let π be an
element of H(1). If π |= Γ′, then C ′ ∩ σ(π) = ∅ and for any ϕ ∈ Γ′, αϕ ≡π βϕ, so
π 6|= αϕ > βϕ. In particular, no H(1) model of Γ can involve any element of C ′.
Also, if Γ is H(1)-consistent then Γ′ contains no strict preference statements.

Proof. Let (Γ′, C ′) be an inconsistency base for (Γ,V). Let π = (c1, . . . , ck) be an

element of H(1) with π |= Γ′. Suppose π contains some element in C ′ and let ci
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be the element in C ′ ∩ σ(π) with the smallest index. By Definition 6.1(ii), there

exists ϕ ∈ Γ′ such that Oppϕ 3 ci. Furthermore, since cj /∈ C ′ for all 1 ≤ j < i,

Definition 6.1(i) implies cj ∈ Indϕ. But then, a variable that opposes ϕ appears

before all variables that support ϕ. By Lemma 6.3, this is a contradiction to

π |= Γ′; hence we must have C ′ ∩ σ(π) = ∅. Also, for all ϕ ∈ Γ′, σ(π) ⊆
V \ C ′ ⊆ Indϕ by Definition 6.1(i). Therefore, for any ϕ ∈ Γ′, αϕ ≡π βϕ, and

thus π 6|= αϕ > βϕ. Since π |= Γ′, this implies that Γ′ contains no strict elements.

The last parts follow from the fact that Γ′ is a subset of Γ, so if π |= Γ then

π |= Γ′.

We next give a small technical lemma that will be useful later. In particular,

part (i) will be used in proving compactness of preference inference.

Lemma 6.5. Assume that (Γ′, C ′) is an inconsistency base for (Γ,V). Then the
following hold.

(i) There exists a finite set Γ′′ ⊆ Γ such that (Γ′′, C ′) is an inconsistency base for
(Γ,V), and if Γ′ contains a strict statement then Γ′′ does also.

(ii) For any ∆ such that Γ′ ⊆ ∆ ⊆ Γ, (Γ′, C ′) is an inconsistency base for (∆,V).

Proof. (i): By condition (ii) of the definition of an inconsistency base, for each

c ∈ C ′, there exists ϕc ∈ Γ′ such that OppϕcV 3 c. If Γ′ contains a strict statement

ψ, then let Γ′′ = {ψ} ∪ {ϕc : c ∈ C ′}; else let Γ′′ = {ϕc : c ∈ C ′}. Because V is

finite, Γ′′ is finite. The definition implies that (Γ′′, C ′) is an inconsistency base

for (Γ,V).

Part (ii) follows immediately from Definition 6.1, since conditions (i) and (ii)

of the definition do not directly refer to Γ, but just to Γ′, which is a subset of

Γ.

We will show there is, in a natural sense, a unique maximal inconsistency base

for (Γ,V).

For inconsistency bases (Γ1, C1) and (Γ2, C2) for (Γ,V), define (Γ1, C1)∪ (Γ2, C2)
to be (Γ1 ∪ Γ2, C1 ∪ C2). More generally, for inconsistency bases (Γi, Ci), i ∈ I,

we define
⋃
i∈I(Γi, Ci) to be (⋃i∈I Γi,

⋃
i∈I Ci), which can easily be shown to be

an inconsistency base.

Lemma 6.6. Suppose, for some (finite or infinite) non-empty index set I, and for
all i ∈ I, that (Γi, Ci) is an inconsistency base. Then

⋃
i∈I(Γi, Ci) is an inconsis-

tency base.
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Proof. For all i ∈ I, by Definition 6.1(i), for all ϕ ∈ Γi, Suppϕ∪Oppϕ ⊆ Ci; thus,

for all ϕ ∈ ⋃i∈I Γi, Suppϕ ∪ Oppϕ ⊆ ⋃i∈I Ci. This proves condition (i). To prove

condition (ii): for all i ∈ I, by Definition 6.1(ii), for all c ∈ Ci, there exists

ϕ ∈ Γi such that Oppϕ 3 c. Thus, for all c ∈ ⋃i∈I Ci, there exists ϕ ∈ ⋃i∈I Γi
such that Oppϕ 3 c.

Define MIB(Γ,V), the maximal inconsistency base for (Γ,V), to be the union of

all inconsistency bases for (Γ,V), i.e.,
⋃ {(Γ′, C ′) ∈ I}, where I is the set of

inconsistency bases for (Γ,V). This is well-defined, because I is non-empty,

since it always contains the tuple (∅, ∅).

The next result states that MIB(Γ,V) is an inconsistency base for (Γ,V).

Proposition 6.7. MIB(Γ,V) is an inconsistency base for (Γ,V), which is maximal
in the following sense: If (Γ1, C1) is an inconsistency base for (Γ,V), then Γ1 ⊆ Γ⊥

and C1 ⊆ C⊥, where MIB(Γ,V) = (Γ⊥, C⊥).

Proof. By Lemma 6.6, the union of an arbitrary set of inconsistency bases is

an inconsistency base. Consequently, MIB(Γ,V) is an inconsistency base. Let

MIB(Γ,V) = (Γ⊥, C⊥). The definition immediately implies that if (Γ1, C1) is an

inconsistency base for (Γ,V), then Γ1 ⊆ Γ⊥ and C1 ⊆ C⊥.

By Proposition 6.4, if Γ is H(1)-consistent then Γ⊥ contains no strict elements,

proving the next result. The converse also holds, see Lemma 6.22 below.

Proposition 6.8. Suppose that Γ isH(1)-consistent, i.e., there exists aH(1) model
of Γ. Then for any inconsistency base (Γ′, C ′) of (Γ,V), Γ′ ∩LA> = ∅. In particular,
if MIB(Γ,V) = (Γ⊥, C⊥) then Γ⊥ ∩ LA> = ∅.

Proof. By Proposition 6.4, for every inconsistency base (Γ′, C ′) and π ∈ H(1)
with π |= Γ, we have for any ϕ ∈ Γ′, π 6|= αϕ > βϕ. Thus, if Γ is H(1)-
consistent, i.e., there exists some π ∈ H(1) with π |= Γ, then Γ′ contains no

strict statements.

Example 6.2

Consider variables and preference statements as in Example 6.1. The

only inconsistency bases of (Γ,V) are (∅, ∅) and ({ϕ3}, {g, h}). Thus,

({ϕ3}, {g, h}) is the maximal inconsistency base MIB(Γ,V) and does not

contain any strict statements of Γ.
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6.3 Towards a Polynomial Algorithm

We can show that the statements LA are strongly compositional for models

H(1). Thus all results from Section 4.2 hold for this case. Furthermore, we can

show that σ(π) for π ∈ H(1) gives a variable mapping (see Definition 4.14).

Thus, all results from Section 4.3.1 also hold. We will, in the following, prove

the strong compositionality result amongst others and find a detailed formula-

tion of the algorithmic approach outlined in Section 4.3.1 to solve the Consis-

tency Problem for models H(1) and preference statements LA.

In the following, let Γ ⊆ LA be a set of input preference statements, and V the

set of variables associated with the alternatives A.

Define OppΓ(c) (usually abbreviated to Opp(c)) to be the set of statements op-

posed by c, i.e., ϕ ∈ Γ such that αϕ(c) < βϕ(c), and define SuppΓ(c) (abbre-

viated to Supp(c)) to be the set of statements ϕ of Γ supported by c, (i.e.,

αϕ(c) > βϕ(c)). For for C ′ ⊆ V, we define SuppΓ(C ′) to be the statements of

Γ that are supported by some element of C ′, i.e., Supp(C ′) = ⋃
c∈C′ Supp(c).

Also, for sequence of variables (c1, . . . , ck), we define Supp(c1, . . . , ck) to be⋃k
i=1 Supp(ci), which equals Supp({c1, . . . , ck}).

We thus have ϕ ∈ Supp(c) ⇐⇒ αϕ(c) > βϕ(c) ⇐⇒ c ∈ Suppϕ; and ϕ ∈ Opp(c)
⇐⇒ αϕ(c) < βϕ(c) ⇐⇒ c ∈ Oppϕ.

Recall that the non-strict version of preference statements Γ ⊆ LA, Γ(≥), is

defined as the set {αϕ ≥ βϕ : ϕ ∈ Γ}, i.e., Γ where the strict statements are

replaced by corresponding non-strict statements. Clearly, if π |= Γ then π |= Γ(≥)

(since π |= α > β implies π |= α ≥ β).

The next lemma follows immediately, since the definition of maximal inconsis-

tency base does not depend on whether elements of Γ are strict or not.

Lemma 6.9. For any Γ and V, MIB(Γ(≥),V) = MIB(Γ,V).

In order to determine the consistency of a set of preference statements Γ, we

want a method for generating a model π ∈ H(1) satisfying Γ. (Determining

(non-)inference can be similarly performed by generating a model satisfying

Γ∪{¬ϕ}, using Proposition 6.2.) By definition, π |= Γ(≥) is a necessary condition

for π |= Γ. There is a simple necessary and sufficient condition for π |= Γ(≥),

where π = (c1, . . . , ck), i.e., that every ϕ ∈ Γ that is opposed by cj is supported

by some earlier element in the sequence (see Proposition 6.11). This condition
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together with Proposition 4.28 allows one to easily incrementally grow models

of Γ(≥), until one has a maximal model of Γ(≥). We show in the following

that only maximal models of Γ(≥) need to be considered, because if a model

π of Γ(≥) satisfies Γ, then any maximal model of Γ(≥) extending π satisfies Γ.

Note that the results about maximal inconsistency bases allow us to show a

restricted version of Corollary 4.18 for the case of lexicographic models and

comparative statements on complete alternatives (see Corollary 6.21 below).

So to determine consistency of Γ we just need to generate any maximal model

of Γ(≥), by adding single variables that do not oppose any so far unsatisfied

statements. This can be done in a straight-forward iterative way and is the

basis of the algorithm.

6.3.1 Γ-allowed sequences, i.e., models of Γ(≥)

We define the notion of a Γ-allowed sequence, which turns out to be the same

as a model of Γ(≥) (see Proposition 6.11), and a |=∗-satisfying model of Γ, and

derive important properties (Proposition 6.15), which are useful for showing

the main results about maximal Γ-allowed sequences in Section 6.3.2.

For C ⊆ V, define NextΓ(C) to be the set of all c ∈ V \ C such that Opp(c) ⊆
Supp(C), i.e., the set of c ∈ V \ C that only oppose elements in Γ that are

supported by elements of C. The following result gives an equivalent condition

for c ∈ NextΓ(C).

Lemma 6.10. Consider any c ∈ V and C ⊆ V. Then, c ∈ NextΓ(C), i.e., Opp(c) ⊆
Supp(C), if and only if for all ϕ ∈ Γ \ Supp(C), c ∈ Suppϕ ∪ Indϕ.

Proof. Suppose first that Opp(c) ⊆ Supp(C), and consider any ϕ ∈ Γ \ Supp(C).
Since ϕ /∈ Supp(C), then ϕ /∈ Opp(c), and thus, c /∈ Oppϕ. This implies that

c ∈ Suppϕ ∪ Indϕ.

Conversely, suppose that for all ϕ ∈ Γ\Supp(C), c ∈ Suppϕ∪ Indϕ. Consider any

ϕ ∈ Opp(c). Then c ∈ Oppϕ and so c /∈ Suppϕ ∪ Indϕ. Thus, ϕ ∈ Supp(C).

Definition 6.2: Γ-Allowed Sequences

Consider an arbitrary sequence π = (c1, . . . , ck) of variables in V. Let

us say that π is a Γ-allowed sequence (of V) if for all j = 1, . . . , k,

cj ∈ Next({c1, . . . , cj−1}), i.e., Opp(cj) ⊆ Supp({c1, . . . , cj−1}).

130



6.3 Towards a Polynomial Algorithm

Example 6.3

Consider variables and models as in Example 6.1 and preference state-

ments Γ = {ϕ1, ϕ2} with ϕ1 : α > β, and ϕ2 : β ≥ γ. Then π = (h, f, e) is a

Γ-allowed sequence since:

• e ∈ Next({h, f}), i.e., Opp(e) = ∅ ⊆ Supp({h, f}) = {ϕ1, ϕ2} .

• f ∈ Next({h}), i.e., Opp(f) = {ϕ2} ⊆ Supp({h}) = {ϕ2} .

• h ∈ Next(∅), i.e., Opp(h) = ∅ ⊆ Supp(∅) = ∅ .

π also satisfies all preference statements in Γ.

The Γ-allowed sequences turn out to be just models of Γ(≥).

Proposition 6.11. Consider an arbitrary sequence π = (c1, . . . , ck) of elements of
V. Then, π |= Γ(≥) if and only if π is a Γ-allowed sequence.

Proof. Suppose that π 6|= Γ(≥), so there exists some ϕ ∈ Γ such that π 6|= αϕ ≥
βϕ. If all elements cj of π were indifferent to ϕ (i.e., αϕ(cj) = βϕ(cj)), then

we would have π |= αϕ ≥ βϕ. Thus, some element cj in π is not indifferent

to ϕ. Let ci be the first such element in the sequence of π. If it were the case

that αϕ(ci) > βϕ(ci), then we would have π |= αϕ ≥ βϕ, so we must have

αϕ(ci) < βϕ(ci), and thus, ϕ ∈ Opp(ci). Now, ϕ /∈ Supp({c1, . . . , ci−1}), since

αϕ(cj) = βϕ(cj) for all j < i, and hence, Opp(ci) 6⊆ Supp({c1, . . . , ci−1}). This

shows that ci /∈ Next({c1, . . . , ci−1}), and so π is not a Γ-allowed sequence.

Conversely, suppose that for some j ∈ {1, . . . , k}, cj /∈ Next({c1, . . . , cj−1}),
and let ci be the first such element in the sequence. Then for all j < i, cj ∈
Next({c1, . . . , cj−1}). Since ci /∈ Next({c1, . . . , ci−1}), there exists some ϕ ∈ Γ \
Supp({c1, . . . , ci−1}) such that ϕ ∈ Opp(ci), and thus, αϕ(ci) < βϕ(ci). Let j

be minimal such that αϕ(cj) 6= βϕ(cj). Since ϕ /∈ Supp({c1, . . . , ci−1}), we do

not have αϕ(cj) > βϕ(cj), so we must have αϕ(cj) < βϕ(cj). This implies that

π 6|= αϕ ≥ βϕ, where αϕ ≥ βϕ is an element of Γ(≥), and thus π 6|= Γ(≥).

In the following, it will be important to consider models extending other mod-

els. Recall from Proposition 4.6 in Section 4.1 that a composition π ◦ π′ of two

lexicographic models π = (c1, . . . , ck) and π′ = (c′1, . . . , c′l) can be defined as the

sequence c1, . . . , ck followed by all variables {c′′1, . . . , c′′m} that appear in π′ but

not in π in the same order as they appear in π′. Based on this, the extension

131



6.3 Towards a Polynomial Algorithm

w is defined as follows: For π = (c1, . . . , ck) and π′ = (c′1, . . . , c′l) we say that π′

extends π, π v π′, if l ≥ k and for all j = 1, . . . , k, c′j = cj. Similarly, we say that

π′ strictly extends π, π < π′, if l > k and for all j = 1, . . . , k, c′j = cj.

Lemma 6.12. The mapping of models π = (c1, . . . , ck) ∈ H(1) to the set of in-
volved variables σ(π) = {c1, . . . , ck} is a variable mapping.

Proof. We show the three properties of variable mappings for σ step by step.

(i) Since the composition π ◦ π′ of models π, π′ ∈ H(1) consists of the model

π extended by all variables in π′ that do not appear in π, π ◦ π′ is mapped

to the union of variables σ(π) and σ(π′), i.e., σ(π ◦ π′) = σ(π) ∪ σ(π′).

(ii) For model π = (c1, . . . , ck) ∈ H(1), any model π′ = (c1, . . . , cl) with l < k

and variable set σ(π′) = {c1, . . . , cl} ( σ(π), satisfies π = π′ by definition

of the extension relation.

(iii) If σ(π′) ⊆ σ(π) for models π and π′, then there exists no variable in π′ that

π can be extended by. Thus, π = π ◦ π′.

This result allows us to apply the results of Section 4.3.1 to models H(1).

Recall from Definition 4.3 that for a model π ∈ H(1) and Γ ⊆ LA, π |=∗ Γ if

there exists a model π′ ∈ H(1) that extends π and π′ |= Γ.

We can show that, for consistent Γ, models of Γ(≥) are |=∗-models of Γ. By

Proposition 6.11, this shows that Γ-allowed sequences are also |=∗-models of Γ.

Proposition 6.13. Let Γ ⊆ LA be consistent. Consider an arbitrary sequence
π = (c1, . . . , ck) of elements of V. Then, π |= Γ(≥) if and only if π |=∗ Γ.

Proof. First, consider any non-strict statement ϕ given by α ≥ β in Γ. Suppose,

π |= α ≥ β, then clearly π |=∗ α ≥ β. Conversely, assume π |=∗ α ≥ β. Then

there exists a model π′ ∈ H(1) extending π and satisfying π′ |= α ≥ β. By

Lemma 6.3, this is if and only if an element of Suppϕ appears in π′ before any

element in Oppϕ appears, or no element of Oppϕ appears in π′. The same must

hold for the model π, since π is an initial sequence of variables in π′. Thus,

π |= α ≥ β.

Now, consider any strict statement ϕ given by α > β in Γ. Suppose, π |= α ≥
β. Since Γ is consistent, there exists a model π′ that satisfies π′ |= α > β.
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Consider the composition π ◦ π′ of the two models, which is an extension of

π. By Lemma 6.3, π |= α ≥ β if and only if an element of Suppϕ appears in

π before any element in Oppϕ appears, or no element of Oppϕ appears in π.

Also, π′ |= α > β if and only if an element of Suppϕ appears in π′, and appears

before any element in Oppϕ appears. Since π ◦π′ is the model π extended by all

variable in π′ that do not appear in π, an element of Suppϕ must appear in π◦π′,
and it must appear before any element in Oppϕ appears. Thus, π ◦ π′ |= α > β,

and hence, π |=∗ α > β.

Then π |=∗ α > β. Conversely, assume π |=∗ α > β. Then there exists a model

π′ ∈ H(1) extending π and satisfying π′ |= α > β. By Lemma 6.3, this is if and

only if an element of Suppϕ appears in π′, and appears before any element in

Oppϕ appears. Since π is an initial sequence of variables in π′, an element of

Suppϕ appears in π before any element in Oppϕ appears, or no element of Oppϕ

(or Suppϕ) appears in π. Thus, π |= α ≥ β.

This proves that π |= Γ(≥) if and only if π |=∗ Γ.

We can now prove the strong compositionality of statements LA in connection

with models H(1), which allows us to apply the results of Section 4.2.

Proposition 6.14. Let ϕ ∈ LA. Then ϕ is strongly compositional for modelsH(1),
i.e., for π, π′ ∈ H(1) with π |=∗ ϕ and π′ |= ϕ, π ◦ π′ |= ϕ.

Proof. By Proposition 6.13 we have that π |=∗ ϕ if and only if π |=∗ αϕ ≥ βϕ.

Let us first consider a non-strict statement ϕ written as α ≥ β. Then π |=∗ ϕ
is the same as π |= ϕ. By Lemma 6.3, we have for π and π′ that an element of

Suppϕ appears in the model before any element in Oppϕ appears, or no element

of Oppϕ appears in the model. Since the composition π ◦π′ is an extension of π,

π ◦ π′ consists of the variables in π followed by the variables in π′ that are not

in π. Thus, if an element of Oppϕ appears in π then there exists and element of

Suppϕ preceding it, and the same is true in π ◦ π′, i.e., π ◦ π′ |= ϕ. Consider the

case that no element of Oppϕ appears in π. Then any element co of Oppϕ that

appears in π ◦ π′ must appear in π′. Thus, co is preceded by an element cs in

Suppϕ in π′. By definition of the composition operator, co is also preceded by cs
in π ◦ π′. Hence, π ◦ π′ |= ϕ.

Consider now a strict statement ϕ written as α > β. Then π |=∗ ϕ is the same

as π |= α ≥ β. By Lemma 6.3, we have for π that an element of Suppϕ appears

in π before any element in Oppϕ appears, or no element of Oppϕ appears in π.

133



6.3 Towards a Polynomial Algorithm

Also, we have for π′ that an element of Suppϕ appears in the π′, and appears

before any element in Oppϕ appears. Thus, if an element of Oppϕ appears in

π then there exists and element of Suppϕ preceding it, and the same is true in

π ◦ π′, i.e., π ◦ π′ |= ϕ. Consider the case that no element of Oppϕ appears in π.

Since there exists an element cs in Suppϕ in π′, which precedes any element of

Oppϕ in π′, cs is also in π ◦π′ and precedes any element of Oppϕ in π ◦π′. Hence,

π ◦ π′ |= ϕ.

We also have the following property of Γ-allowed sequences.

Proposition 6.15. Suppose that π is a Γ-allowed sequence. Then, for all ϕ ∈
Supp(π), π |= αϕ > βϕ, and for all ϕ ∈ Γ \ Supp(π), αϕ ≡π βϕ, so, in particular
π 6|= αϕ > βϕ. Thus, for ϕ ∈ Γ, we have π |= αϕ > βϕ if and only if ϕ ∈ Supp(π).
Also, π |= Γ if and only if every strict element of Γ is in Supp(π).

Proof. First, consider any ϕ ∈ Supp(π). Thus there exists cj ∈ σ(π) such that

αϕ(cj) > βϕ(cj), so, in particular, αϕ(cj) 6= βϕ(cj). Let i be minimal such that

αϕ(ci) 6= βϕ(ci). Proposition 6.11 implies that π |= αϕ ≥ βϕ, which implies that

αϕ(ci) 6< βϕ(ci), and thus αϕ(ci) > βϕ(ci), proving that π |= αϕ > βϕ.

Now, consider ϕ ∈ Γ \ Supp(π). If it were the case that there exists cj ∈ σ(π)
such that αϕ(cj) 6= βϕ(cj), then the argument above implies that there exists

i such that αϕ(ci) > βϕ(ci), and thus ϕ ∈ Supp(π). Thus, for all cj ∈ σ(π),
αϕ(cj) = βϕ(cj), and, hence, αϕ ≡π βϕ.

For the last part, since, by Proposition 6.11, π |= Γ(≥), we have: π |= Γ if and

only if for every strict element ϕ of Γ, π |= αϕ > βϕ, i.e., ϕ ∈ Supp(π).

6.3.2 Maximal Γ-allowed sequences

As before, when talking about maximal models, with respect to some set of

models G, we mean maximality with respect to the extension relation, so a

model in G is (G-)maximal if there is no element of G that extends it.

Definition 6.3: Maximal Γ-Allowed Sequences

We say that π is a maximal Γ-allowed sequence of V if π is a Γ-allowed

sequence of V and no extension of π is a Γ-allowed sequence of V, i.e.,

Next(σ(π)) = ∅.
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Lemma 6.16. Suppose that π, π′ ∈ H(1) and π, π′ |= Γ(≥), and that π′ extends π.
Then for all ϕ ∈ Γ, if π |= ϕ then π′ |= ϕ. In particular, if π |= Γ then π′ |= Γ.

Proof. Assume that π, π′ |= Γ(≥), and π′ extends π. Consider any ϕ ∈ Γ, and

suppose that π |= ϕ. If ϕ is non-strict, then ϕ ∈ Γ(≥) and so π′ |= ϕ. If ϕ is strict,

then by Lemma 6.3, π |= ϕ if and only if an element of Suppϕ appears in π, and

appears before any element in Oppϕ appears in π. Since π′ is an extension of π

and thus has π as an initial sequence of variables, we also have that an element

of Suppϕ appears in π′, and appears before any element in Oppϕ appears in π′.

Thus, π′ |= ϕ.

We use this in proving the next result, which shows that if we are interested

in finding models of Γ it is sufficient to only consider maximal Γ-allowed se-

quences, i.e., maximal models of Γ(≥).

Lemma 6.17. If π is a Γ-allowed sequence, then either π is a maximal Γ-allowed
sequence or there exists a maximal Γ-allowed sequence π′ that extends π. Then,
for all ϕ ∈ Γ, if π |= ϕ then π′ |= ϕ. In particular, if π |= Γ then π′ |= Γ.

Proof. The extends relation on the finite set of Γ-allowed sequences is transitive

and acyclic. It follows that for any Γ-allowed sequence π there exists a maximal

Γ-allowed sequence extending π. The last part follows from the previous result,

Lemma 6.16 (using the equivalence stated by Proposition 6.11).

The following key lemma shows the close relationship between maximal Γ-

allowed sequences and the maximal inconsistency base.

Lemma 6.18. Suppose that π is a maximal Γ-allowed sequence. Then (Γ \
Supp(π),V \ σ(π)) equals MIB(Γ,V).

Proof. We first check the two conditions in the definition of an inconsistency

base (see Definition 6.1). Consider any element ϕ of Γ \ Supp(π). Proposi-

tion 6.15 implies that αϕ ≡π βϕ, so that for all c ∈ σ(π), αϕ(c) = βϕ(c), and

so σ(π) ⊆ Indϕ, showing that Condition (i) holds. Now, consider any variable

c in V \ σ(π). By definition of a maximal Γ-allowed sequence, Next(σ(π)) = ∅,
so c /∈ Next(σ(π)). Therefore, by Lemma 6.10, there exists ϕ ∈ Γ \ Supp(π)
such that c /∈ Suppϕ ∪ Indϕ, so c ∈ Oppϕ, showing that Condition (ii) of an

inconsistency base holds.
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Write MIB(Γ,V) as (Γ⊥, C⊥). Thus, by definition, Γ \ Supp(π) ⊆ Γ⊥ and V \
σ(π) ⊆ C⊥. Proposition 6.11 implies that π |= Γ(≥). Lemma 6.9 implies that

MIB(Γ(≥),V) = (Γ⊥, C⊥). Proposition 6.4 then implies that C⊥ ∩ σ(π) = ∅, and

so, V \ σ(π) ⊇ C⊥. Thus, V \ σ(π) = C⊥.

Consider any ϕ ∈ Γ⊥. By definition of an inconsistency base, V \ C⊥ ⊆ Indϕ,

i.e., σ(π) ⊆ Indϕ, which implies αϕ ≡π βϕ, and so, by Proposition 6.15, ϕ ∈
Γ \ Supp(π). Thus, Γ⊥ ⊆ Γ \ Supp(π), and hence, Γ⊥ = Γ \ Supp(π), completing

the proof that (Γ \ Supp(π),V \ σ(π)) equals (Γ⊥, C⊥).

Different maximal Γ-allowed sequences satisfy the same subset of Γ and involve

the same subset of V:

Proposition 6.19. Suppose that π is a maximal Γ-allowed sequence. Write
MIB(Γ,V) as (Γ⊥, C⊥). Then Γ⊥ = Γ \ Supp(π) and C⊥ = V \ σ(π). Thus, if π′ is
another maximal Γ-allowed sequence, then σ(π′) = σ(π) and Supp(π′) = Supp(π).
Also, for all ϕ ∈ Γ, π |= ϕ ⇐⇒ π′ |= ϕ, which is if and only if ϕ is not a strict ele-
ment of Γ⊥. Hence, every maximal Γ-allowed sequence satisfies the same elements
of Γ.

Proof. By Lemma 6.18, Γ⊥ = Γ \ Supp(π) and C⊥ = V \ σ(π). For any maximal

Γ-allowed sequence π′, σ(π′) = V\C⊥ = σ(π), and Supp(π′) = Γ\Γ⊥ = Supp(π).

Since by Proposition 6.11 and 6.13 the maximal Γ-allowed sequences are the

same as maximal |=∗-models of Γ, and the statements LA are strongly compo-

sitional for models H(1) by Proposition 6.14, the last part follows from Theo-

rem 4.1 (i).

No model of Γ(≥) satisfies any element of Γ that is not satisfied by a maximal

Γ-allowed sequence π.

Proposition 6.20. Consider any maximal Γ-allowed sequence π, and any π′ ∈
H(1) such that π′ |= Γ(≥). For any ϕ ∈ Γ, if π′ |= ϕ then π |= ϕ.

Proof. Let ϕ ∈ Γ. Suppose that π 6|= ϕ, and so, by Proposition 6.15, ϕ is strict

and ϕ ∈ Γ \ Supp(π). Consider any model π′ |= Γ(≥). By Proposition 6.11,

π′ is a Γ-allowed sequence. By Lemma 6.17, there exists some maximal Γ-

allowed sequence π′′ that extends or equals π′. We have Supp(π′) ⊆ Supp(π′′).
Proposition 6.19 implies that Supp(π) = Supp(π′′), so ϕ /∈ Supp(π′). Since ϕ is

strict, π′ 6|= ϕ, again using Proposition 6.15.
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The corollary below is a restriction of Corollary 4.18, to the case of H(1) mod-

els and preference statements in LA. Following Propositions 6.11 and 6.13,

we can replace the expression "|=∗-model of Γ" by "Γ-allowed sequence" in the

statement. The corollary then shows that to test consistency, one just needs to

generate a single maximal Γ-allowed sequence (i.e., maximal |=∗-model of Γ),

which can be easily done using an iterative algorithm.

Corollary 6.21. Let π be any maximal Γ-allowed sequence of preference state-
ments Γ ⊆ LA. Then Γ is H(1)-consistent if and only if π |= Γ.

This leads to a simple characterisation of H(1)-consistency using the maximal

inconsistency base: Γ is H(1)-consistent if and only if no inconsistency base

involves any strict element of Γ.

Lemma 6.22. Write MIB(Γ,V) as (Γ⊥, C⊥). Γ is H(1)-consistent if and only if
Γ⊥∩LA> = ∅, which is if and only if Γ⊥ isH(1)-consistent. If Γ isH(1)-inconsistent,
then there exists a finite set Γ′ ⊆ Γ⊥ such that Γ′ isH(1)-inconsistent, and (Γ′, C⊥)
is an inconsistency base for (Γ,V).

Proof. Let Γ> = Γ∩LA>. First, suppose that Γ isH(1)-consistent. Then, by Corol-

lary 6.21, any maximal Γ-allowed sequence π satisfies Γ. By Proposition 6.15,

Γ> ⊆ Supp(π), and thus, Γ> ⊆ Γ \Γ⊥, by Proposition 6.19. Hence, Γ>∩Γ⊥ = ∅,
and so Γ⊥ ∩ LA> = ∅.

Conversely, suppose that Γ⊥ ∩ LA> = ∅. Proposition 6.19 implies that for any

maximal Γ-allowed sequence π, Γ \ Γ⊥ = Supp(π) and thus, Γ> ⊆ Supp(π).
Proposition 6.15 then implies that π |= Γ, and so Γ is H(1)-consistent.

If Γ is H(1)-consistent, then Γ⊥ is H(1)-consistent, since Γ⊥ ⊆ Γ. Conversely,

suppose that Γ⊥ is H(1)-consistent. Lemma 6.5 implies that (Γ⊥, C⊥) is an

inconsistency base for (Γ⊥,V). Proposition 6.8 implies that Γ⊥ ∩LA> = ∅, which

by the first part, implies that Γ is H(1)-consistent.

Now suppose that Γ is H(1)-inconsistent. The first part implies that Γ⊥ con-

tains a strict statement. By Lemma 6.5(i), there exists finite Γ′ ⊆ Γ⊥ such that

(Γ′, C ′) is an inconsistency base for (Γ,V), and Γ′ contains a strict statement. By

Lemma 6.5(ii), (Γ′, C ′) is an inconsistency base for (Γ′,V), and thus, by Propo-

sition 6.8, Γ′ is H(1)-inconsistent, since it contains a strict statement.

The following result shows that this kind of preference inference is compact.
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Lemma 6.23. Consider any Γ ⊆ LA and ϕ ∈ LA.

(i) If Γ is H(1)-inconsistent, then there exists finite Γ′ ⊆ Γ which is H(1)-
inconsistent.

(ii) If Γ |=H(1) ϕ, then there exists finite Γ′ ⊆ Γ such that Γ′ |=H(1) ϕ.

Proof. (i) Suppose that Γ is H(1)-inconsistent. The last part of Lemma 6.22

implies that then there exists finite Γ′ ⊆ Γ which is H(1)-inconsistent.

(ii) Suppose that Γ |=H(1) ϕ. Then Γ ∪ {¬ϕ} is H(1)-inconsistent, by Proposi-

tion 6.2. Part (i) implies that there exists finiteH(1)-inconsistent ∆ ⊆ Γ∪{¬ϕ}.
If ∆ ⊆ Γ, then we can let Γ′ = ∆, since trivially ∆ |=H(1) ϕ. Otherwise,

∆ 3 {¬ϕ}, and we let Γ′ = ∆ \ {¬ϕ}. We have Γ′ ⊆ Γ, and Γ′ |=H(1) ϕ,

again by Proposition 6.2.

6.3.3 The Algorithm

The idea behind the algorithm is to build up a maximal Γ(≥)-satisfying sequence

by repeatedly adding variables to the end as described in the general method for

solving the Consistency Problem in Section 4.3.1. Note that an obvious variable

mapping for models π ∈ H(1) is given by σ(π). We specify in which way these

extensions can be selected efficiently. Suppose that we have picked a sequence

C ′ of variables in V so far. Next, we need to choose a variable c such that, if

c opposes some ϕ in Γ, then ϕ is already supported by some variable in C ′ (or

else the generated sequence will not satisfy ϕ).

π is initialised as the empty sequence (), which is a minimum model for com-

position ◦ on H(1). π ← π + c means variable c is added to the end of π.

Algorithm 6.1: H(1)-Consistency for Statements Γ ⊆ LA

1. π ← ()
2. WHILE ( ∃ c ∈ V \ σ(π) : Opp(c) ⊆ Supp(π) )
3. Choose some such c

4. π ← π + c

5. IF ( π |= Γ ) THEN
6. RETURN π & "Γ is consistent " and STOP.
7. ELSE RETURN π & "Γ is inconsistent " and STOP.

138



6.3 Towards a Polynomial Algorithm

Note that at each stage an element of NextΓ(σ(π)) is chosen, so at each stage

π is a Γ-allowed sequence. Also, the termination condition is equivalent to

NextΓ(σ(π)) = ∅, which implies that the returned π is a maximal Γ-allowed

sequence.

The algorithm involves often non-unique choices. However, if we wish, the

choosing of c in line 3 can be done based on an ordering c1, . . . , cm of V, where,

if there exists more than one c ∈ V \ σ(π) such that Opp(c) ⊆ Supp(π), we

choose the element ci fulfilling this condition that has smallest index i. The

algorithm then becomes deterministic with a unique result following from the

given inputs.

A straight-forward implementation runs in O(|Γ||V|2) time; however, a more

careful implementation runs in O(|Γ||V|) time, which we now describe. Let

πk be the lexicographic model after the k-th iteration of the for-loop. In ev-

ery iteration of the for-loop, we update sets Opp∆
k (c) = Opp(c) \ Supp(πk)

and Supp∆
k (c) = Supp(c) \ Supp(πk) for all c ∈ V \ σ(πk). This costs us

O(|V\σ(πk)|×|Supp(πk)\Supp(πk−1)|) = O(|V\σ(πk)|×|Supp∆
k−1(ck)|) more time

for every iteration k in which we add variable ck to πk−1. However, the choice

of the next variable ck be performed in constant time by marking variables c

with Opp∆
k−1(c) = ∅. Suppose the algorithm stops after 1 ≤ l ≤ |V| iterations.

Since all Supp∆
k−1(ck) are disjoint,

∑l
k=1 |Supp∆

k−1(ck)| = |Supp(πl)| ≤ |Γ|. Al-

together, the running time is O(∑l
k=1 |V \ σ(πk)| × |Supp∆

k−1(ck)|) ≤ O(|V| ×∑l
k=1 |Supp∆

k−1(ck)|), and thus the running time is O(|V| × |Γ|).

Properties of the Algorithm

The algorithm will always generate a lexicographic model satisfying Γ if Γ is

H(1)-consistent. It can also be used for computing the maximal inconsistency

base. The following result sums up some properties related to the algorithm.

Theorem 6.1: Correctness of the Algorithm

Let π be a sequence returned by the algorithm with inputs Γ and V, and

write MIB(Γ,V) as (Γ⊥, C⊥). Then C⊥ = V \ σ(π) (i.e., the variables that

don’t appear in π), and Γ⊥ = Γ \ Supp(π). We have that π |= Γ(≥). Also, Γ
is H(1)-consistent if and only if Supp(π) contains all the strict elements of

Γ, which is if and only if Γ⊥ ∩ LA> = ∅. If Γ is H(1)-consistent, then π |= Γ.
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Proof. By the construction of the algorithm, π is a maximal Γ-allowed sequence,

as observed earlier. Proposition 6.19 implies that C⊥ = V \ σ(π) and Γ⊥ =
Γ \ Supp(π). By Proposition 6.11, we have π |= Γ(≥). Lemma 6.22 implies that

Γ is H(1)-consistent if and only if Γ⊥ ∩ LA> = ∅. Corollary 6.21 implies that Γ is

H(1)-consistent if and only if π |= Γ. Proposition 6.15 implies that π |= Γ if and

only if Supp(π) contains all the strict elements of Γ.

The algorithm therefore determines H(1)-consistency, and hence H(1)-
deduction (because of Proposition 6.2), in polynomial time, and also generates

the maximal inconsistency base.

6.3.4 The case of inconsistent Γ

For the case when Γ is not H(1)-consistent, the output π of the algorithm is a

model which, in a sense, comes closest to satisfying Γ: π always satisfies Γ(≥),

the non-strict version of Γ, and if any model π′ ∈ H(1) satisfies Γ(≥) and any

element ϕ of Γ, then π also satisfies ϕ.

Proposition 6.24. Let π be a sequence returned by the algorithm with inputs Γ
and V, and suppose that π′ ∈ H(1) is such that π′ |= Γ(≥). Then, for all ϕ ∈ Γ, if
π′ |= ϕ then π |= ϕ.

Proof. Since π is a maximal Γ-allowed sequence, we have (by Proposition 6.11)

that π |= Γ(≥). Suppose that π′ ∈ H(1) is such that π′ |= Γ(≥). Proposition 6.20

implies that if π′ |= ϕ then π |= ϕ.

These properties suggest the following way of reasoning withH(1)-inconsistent

Γ. Let us define Γ′ to be (Γ \ Γ⊥) ∪ Γ(≥), where MIB(Γ,V) = (Γ⊥, C⊥). By

Theorem 6.1, this is equal to Supp(π) ∪ Γ(≥), where π is a model generated by

the algorithm, enabling easy computation of Γ′. Γ′ is H(1)-consistent, since it is

satisfied by π. We might then (re-)define the (non-monotonic) deductions from

H(1)-inconsistent Γ to be the deductions from Γ′.

6.3.5 Orderings on variables

The preference logic defined here is closely related to a logic based on disjunc-

tive ordering statements. Given a set of variables V, we consider the set of
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statements OV of the form C1 > C2, and of C1 ≥ C2, where C1 and C2 are

disjoint subsets of V.

We say that π |= C1 > C2, if some variable in C1 appears in π before every

element of C2, that is, there exists some element of C1 in π (i.e., C1 ∩ σ(π) 6= ∅)
and the earliest element of C1 ∪ C2 to appear in π is in C1.

We say that π |= C1 ≥ C2 if either π |= C1 > C2 or no element of C1 or C2

appears in π: (C1 ∪ C2) ∩ σ(π) = ∅. By Lemma 6.3 we have that

π |= αϕ > βϕ ⇐⇒ π |= Suppϕ > Oppϕ,

and π |= αϕ ≥ βϕ ⇐⇒ π |= Suppϕ ≥ Oppϕ.

This shows that the language OV can express anything that can be expressed in

LA. It can be shown, conversely, that for any statement τ in OV , one can define

αϕ and βϕ, such that for all π ∈ H(1), π |= τ if and only if π |= ϕ (where ϕ

is strict if and only if τ is strict). Assume that for every variable c, there exist

two values lc and uc in it’s domain c such that lc < uc. (This is a reasonable

assumption, as variables that can only assume one value are irrelevant for any

decision problem.) Now if τ is, for example, the statement C1 > C2, we can

define αϕ(c) = uc for all c ∈ C2, and αϕ(c) = lc for c ∈ V \ C2; and define

βϕ(c) = uc for all c ∈ C1, and βϕ(c) = lc for c ∈ V \ C1.

The algorithm can be adapted in the obvious way to the case where we have

Γ consisting of (or including) elements in OV . When viewed in this way, the

algorithm can be seen as a simple extension of a topological sort algorithm;

the standard case corresponds to when the ordering statements only involve

singleton sets.

6.4 Strong Consistency and |=max-Inference

In the set of models H(1), we allow models involving any subset of V, the set

of variables. We could alternatively consider a semantics where we only allow

models π that involve all elements of V, i.e., with σ(π) = V.

In applications, where we can assume that all variables are reflecting features

of the alternatives that are relevant for the user, we can consider consistency

and inference for preferences based on models that are complete, i.e., involve

all variables. These models can lead to different inference than the set of mod-
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els H(1), as H(1) includes models on subsets of variables and even the empty

model. However, restricting our considerations to only complete models makes

it more likely that preference statements are inconsistent.

Definition 6.4: Strong H(1)-Consistency

Let H(1∗) be the set of models π of H(1) with σ(π) = V. Γ is defined to be

strongly H(1)-consistent if and only if there exists a model π ∈ H(1∗) such

that π |= Γ.

Let MIB(Γ,V) = (Γ⊥, C⊥). Proposition 6.4 implies that, if Γ is strongly H(1)-
consistent then C⊥ is empty, and Γ⊥ consists of all the elements of Γ that are

indifferent to all of V, i.e., the set of ϕ ∈ Γ such that αϕ(c) = βϕ(c) for all c ∈ V.

There is an associated preference inference based on this restricted set of mod-

els. We write Γ |=H(1∗) ϕ if π |= ϕ holds for every π ∈ H(1∗) such that π |= Γ.

This form of deduction can be expressed in terms of strong consistency, as the

following result shows.

Lemma 6.25. If Γ is strongly H(1)-consistent, then Γ |=H(1∗) ϕ holds if and only
if Γ ∪ {¬ϕ} is not strongly H(1)-consistent.

Proof. First suppose that Γ∪{¬ϕ} is stronglyH(1)-consistent. Then there exists

π ∈ H(1) such that π |= Γ∪{¬ϕ} and σ(π) = V. Thus π |= Γ and π 6|= ϕ, showing

that Γ 6|=H(1∗) ϕ.

Now suppose that Γ 6|=H(1∗) ϕ. Then there exists π ∈ H(1) such that π |= Γ
and σ(π) = V and π 6|= ϕ. Then π |= Γ ∪ {¬ϕ}, so Γ ∪ {¬ϕ} is strongly H(1)-
consistent.

In the next section we will consider a related form of preference inference,

where we only consider maximal models.

6.4.1 Max-model inference

For Γ ⊆ LA, let Mmax
H(1)(Γ) be the set of maximal models of Γ within H(1),

i.e., the set of π ∈ H(1) such that π |= Γ, and for all π′ ∈ H(1) extending π,

π′ 6|= Γ. Recall the definition of the max-model inference relation |=max from

Definition 4.16:
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Γ |=max ϕ if and only if π |= ϕ for all π ∈Mmax
H(1)(Γ).

As shown in Proposition 4.27 the maximal |=∗-models of Γ (i.e., the maximal

Γ-allowed sequences, by Proposition 6.11) involve the same set of variables

which, by Proposition 6.19, are V \ C⊥, where MIB(Γ,V) = (Γ⊥, C⊥). By The-

orem 4.1, if Γ is consistent, the set of maximal |=∗-models of Γ is the same as

the set of maximal models of Γ, and thus the latter also involve the same set of

variables V \ C⊥.

The next result shows that the same non-strict preference statements are in-

ferred for the max-model inference relation |=max as for the inference relation

|=H(1).

Proposition 6.26. Consider any Γ ⊆ LA, and any preference statement α ≥ β in
LA.

(i) Γ is H(1)-consistent if and only ifMmax
H(1)(Γ) 6= ∅.

(ii) Γ |=max α ≥ β ⇐⇒ Γ |=H(1) α ≥ β.

Proof. (i) follows easily: If Γ isH(1)-consistent, then there exists some π ∈ H(1)
with π |= Γ, so there exists π′ ∈ Mmax

H(1)(Γ) extending or equalling π. The

converse is immediate: If there exists π ∈ Mmax
H(1)(Γ), then π ∈ H(1) and π |= Γ,

so Γ is H(1)-consistent.

(ii) If Γ is not H(1)-consistent, then by part (i),Mmax
H(1)(Γ) = ∅, so Γ |=max α ≥ β

and Γ |=H(1) α ≥ β both hold vacuously. Let us thus now assume that Γ is

H(1)-consistent.

⇒: Assume Γ |=max α ≥ β, and consider any π ∈ H(1) such that π |= Γ.

We need to show that π |= α ≥ β. Since π |= Γ, we have π |= Γ(≥), and

so π is a Γ-allowed model, by Proposition 6.11. Choose, by Lemma 6.17, any

maximal Γ-allowed sequence π′ extending or equalling π, and we have π′ |= Γ.

By, Theorem 4.1 and Proposition 6.11, π′ ∈ Mmax
H(1)(Γ). Then, Γ |=max α ≥ β

implies that π′ |= α ≥ β. Since π′ w π, π |=∗ α ≥ β, and by Proposition 6.13,

π |= α ≥ β.

⇐: Assume Γ |=H(1) α ≥ β, and consider any π ∈ Mmax
H(1)(Γ). This implies that

π ∈ H(1) and π |= Γ, so π |= α ≥ β showing that Γ |=max α ≥ β.

In the following, we write Γ |=H(1) α ≡ β as an abbreviation of the conjunction

of Γ |=H(1) α ≥ β and Γ |=H(1) β ≥ α; and similarly for other inference relations.
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The last result can be used to prove that inferred equivalences are the same for

max-model inference, and have a simple form.

Proposition 6.27. Consider any H(1)-consistent Γ ⊆ LA. Let MIB(Γ,V) equal
(Γ⊥, C⊥). Consider any α, β ∈ A. Then, Γ |=H(1) α ≡ β if and only if Γ |=max α ≡
β if and only if for all c ∈ V \ C⊥, α(c) = β(c).

Proof. First assume that Γ |=H(1) α ≡ β. This trivially implies that Γ |=max α ≡
β, since every maximal model π ins also in H(1) and thus π |=H(1) α ≡ β.

Now assume that Γ |=max α ≡ β. Γ is H(1)-consistent so Mmax
H(1)(Γ) 6= ∅, by

Proposition 6.26(i). Consider any π ∈ Mmax
H(1)(Γ). Then α ≡π β, which implies

that for all c ∈ σ(π), α(c) = β(c), and thus, by Proposition 6.19, for all c ∈
V \ C⊥, α(c) = β(c).

Finally, let us assume that for all c ∈ V \C⊥, α(c) = β(c). Consider any π ∈ H(1)
such that π |= Γ. Proposition 6.4 implies that σ(π)∩C⊥ = ∅, i.e., σ(π) ⊆ V \C⊥.

So, for all c ∈ σ(π), α(c) = β(c), and thus α ≡π β, and hence Γ |=H(1) α ≡ β.

This completes the proof that the three statements are equivalent.

The following result shows that the strict inferences with |=max are closely tied

with the non-strict inferences.

Proposition 6.28. Γ |=max α ≥ β if and only if either Γ |=max α ≡ β or Γ |=max

α > β. Also, if Γ is H(1)-consistent, then Γ |=max α > β holds if and only if
Γ |=max α ≥ β and Γ 6|=max α ≡ β.

Proof. If Γ is not H(1)-consistent, then, by Proposition 6.26(i), Mmax
H(1)(Γ) = ∅,

so Γ |=max α ≥ β and Γ |=max α ≡ β (and Γ |=max α > β) hold vacuously,

and therefore the equivalence holds. Let us thus now assume that Γ is H(1)-
consistent. One direction holds easily: Suppose that Γ |=max α ≡ β or Γ |=max

α > β, and consider any π ∈ Mmax
H(1)(Γ). We have either π |= α ≡ β or π |= α >

β, so π |= α ≥ β, showing that Γ |=max α ≥ β.

Now, let us assume that Γ |=max α ≥ β, and that it is not the case that

Γ |=max α ≡ β. It is sufficient to show that Γ |=max α > β. Consider any

π ∈ Mmax
H(1)(Γ). Since, Γ |=max α ≥ β, we have π |= α ≥ β. Since Γ 6|=max α ≡ β,

Proposition 6.27 implies that there exists c ∈ V \ C⊥ such that α(c) 6= β(c),
where MIB(Γ,V) = (Γ⊥, C⊥). By Proposition 6.19, σ(π) = V \ C⊥, so there

exists some c ∈ σ(π) such that α(c) 6= β(c); let c be earliest such element in
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σ(π). Since π |= α ≥ β, we have α(c) > β(c), so π |= α > β. This shows that

Γ |=max α > β, as required.

Assume that Γ is H(1)-consistent. Suppose that Γ |=max α > β holds. Then

clearly, Γ |=max α ≥ β. Consider any π |= Γ. Then we have α �π β, so we do

not have α ≡π β, which implies that Γ |=H(1) α ≡ β does not hold. Conversely,

suppose that Γ |=max α ≥ β and Γ 6|=max α ≡ β. The first part then implies that

Γ |=max α > β.

6.4.2 Properties of strong consistency and the associated in-

ference

The following result shows that the consequences of Γ with respect to |=H(1∗) are

the same as those with respect to |=max, when Γ is stronglyH(1)-consistent. (Of

course, if Γ is not strongly H(1)-consistent then all ϕ in LA are consequences of

|=H(1∗).)

Lemma 6.29. If Γ is strongly H(1)-consistent, then, for any ϕ ∈ LA, Γ |=H(1∗) ϕ

⇐⇒ Γ |=max ϕ.

Proof. Assume that Γ is strongly H(1)-consistent, so there exists a model π′

with σ(π′) = V. By definition of |=H(1∗) and |=max it is sufficient to show that

Mmax
H(1)(Γ) is equal to the set H of all π ∈ H(1) such that π |= Γ and σ(π) =

V. It immediately follows that Mmax
H(1)(Γ) ⊇ H. Conversely, consider any π ∈

Mmax
H(1)(Γ). Since π′ ∈ H, we have π′ ∈ Mmax

H(1)(Γ). Proposition 6.19 implies that

σ(π) = σ(π′) = V, proving that π ∈ H.

The next discussion shows that the non-strict |=H(1∗) inferences are the same as

the non-strict |=H(1) inferences, and that (in contrast to the case of |=H(1)), the

strict |=H(1∗) inferences almost correspond with the non-strict ones. This also

implies that the algorithm in Section 6.3.3 can be used to efficiently determine

the |=H(1∗) inferences.

To illustrate the difference between the |=H(1) inferences and the |=H(1∗) infer-

ences for the case of strict statements, consider some strongly H(1)-consistent

Γ which only includes non-strict statements. Then, for every strict preference

statement α > β, we will have Γ 6|=H(1) α > β since the empty sequence satisfies

Γ but not α > β. However, we will have Γ |=H(1∗) α > β if Γ |=H(1) α ≥ β
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and Γ 6|=H(1) β ≥ α. For example, if Γ is just {α ≥ β}, where for some c ∈ V,

α(c) > β(c), then we will have Γ |=H(1∗) α > β but not Γ |=H(1) α > β.

Proposition 6.30. Let MIB(Γ,V) = (Γ⊥, C⊥). Γ ⊆ LA is strongly H(1)-consistent
if and only if C⊥ = ∅ and Γ∩LA> ⊆ Supp(V), where Supp(V) is the set of statements
ϕ ∈ Γ that are supported by some variable c ∈ V.

Suppose that Γ ⊆ LA is strongly H(1)-consistent. Then,

(i) Γ |=H(1) α ≥ β ⇐⇒ Γ |=H(1∗) α ≥ β;

(ii) Γ |=H(1∗) α ≡ β if and only if α and β agree on all of V, i.e., for all c ∈ V,
α(c) = β(c);

(iii) Γ |=H(1∗) α > β if and only if Γ |=H(1) α ≥ β and α and β differ on some
element of V, i.e., there exists c ∈ V such that α(c) 6= β(c).

Proof. First, suppose that Γ is strongly H(1)-consistent. Then there exists π′ ∈
H(1) such that π′ |= Γ and σ(π′) = V. Since π′ |= Γ(≥), by Proposition 6.11,

π′ is a Γ-allowed sequence. By Lemma 6.17, there exists a maximal Γ-allowed

sequence π extending or equalling π′, so, since σ(π′) = V, we must have π = π′.

Proposition 6.19 implies that C⊥ = ∅ and Γ⊥ = Γ \ Supp(π) = Γ \ Supp(V),
and Lemma 6.22 shows then that (Γ \ Supp(V)) ∩ LA> = ∅, which implies that

Γ ∩ LA> ⊆ Supp(V).

Conversely, suppose that C⊥ = ∅ and Γ ∩ LA> ⊆ Supp(V). Let π be a maximal

Γ-allowed sequence. Proposition 6.19 implies that σ(π) = V. Then Supp(π) =
Supp(V), and Proposition 6.15 implies that π |= Γ, showing that Γ is strongly

H(1)-consistent.

Now suppose that Γ is strongly H(1)-consistent. Lemma 6.29 implies that for

any ϕ ∈ LA, Γ |=H(1∗) ϕ ⇐⇒ Γ |=max ϕ. Part (i) then follows by Proposi-

tion 6.26(ii). Part (ii) follows from Proposition 6.27, using the fact that C⊥ is

empty. Part (iii) follows from part (ii) and Proposition 6.28.

The next result shows that |=H(1) inference is not affected if one removes the

variables in the MIB.

Proposition 6.31. Suppose that Γ is H(1)-consistent, let MIB(Γ,V) = (Γ⊥, C⊥),
and let H′(1) be the lexicographic models in H(1) only involving variables V \C⊥.
Then Γ is strongly H′(1)-consistent, and Γ |=H(1) ϕ if and only if Γ |=H′(1) ϕ.
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Proof. By Theorem 6.1, any output of the algorithm is in C ′(1∗) and satisfies

Γ. Thus Γ is strongly H′(1)-consistent. Let H ′ = {π ∈ H′(1) : π |= Γ}
and H = {π ∈ H(1) : π |= Γ}. Then H ′ ⊆ H, because H′(1) ⊆ H(1). By

Proposition 6.4, for every π ∈ H, we have σ(π) ∩ C⊥ = ∅, and hence π ∈ H ′.
Thus H ′ = H and Γ |=H(1) ϕ if and only if Γ |=H′(1) ϕ.

6.5 Proof Theory for H(1)-Inference

Preference inference has been defined semantically, and we have an efficient

algorithm for the simple lexicographic case. From a logical perspective, it is

natural to consider if we can construct an equivalent syntactical definition of

inference via a proof theory; this can give another view of the assumptions

being made by the logic. In this section, we construct such a proof theory for

preference inference based on simple lexicographic models, involving an axiom

schema and a number of fairly simple inference rules. We consider a fixed set of

variables V for which variable values are real numbers so that subtraction and

multiplication with scalars are well defined. We abbreviate |=H(1) to just |=.

We make use of a form of Pareto (point wise) ordering on alternatives, and we

define a kind of addition and rescaling operation on alternatives and thus on

preference statements.

We define the following well-known point wise (or weak) Pareto ordering on

alternatives. For α, β ∈ A, α <par β ⇐⇒ for all c ∈ V, α(c) ≥ β(c). We also

define the Pareto Difference relation between elements of LA.

Definition 6.5: Pareto Difference Relation

For ψ, θ ∈ LA, we say that ψ <parD θ holds if and only if

(i) ψ and θ are either both strict or both non-strict; and

(ii) for all c ∈ V, βψ(c)− αψ(c) ≥ βθ(c)− αθ(c).

Note that the definition of ψ <parD θ requires variable domains to be closed

under a subtraction operation, which is the case due to our assumption that

variable values are subsets of the real numbers. Thus, if ψ <parD θ and

αψ(c) ≥ βψ(c) then αθ(c) ≥ βθ(c). If ψ <parD θ and π |= ψ, then π |= θ

(see Lemma 6.32(vi) below).
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Point wise multiplication of alternatives and preference statements: Let

F be the set of functions from V to the strictly positive rational numbers. For

f ∈ F , we define 1
f
∈ F in the obvious way: Let f(c) = 1

f(c) for c ∈ V. Let f be

an arbitrary element of F .

• For α, γ ∈ A, we say that α .= fγ if for all c ∈ V, α(c) = f(c)×γ(c) (where

× is the standard multiplication).

• For ϕ, ψ ∈ LA, we say that ϕ .= fψ if (i) αϕ
.= fαψ and βϕ

.= fβψ, and (ii)

ϕ is strict if and only if ψ is strict.

Note that if ϕ .= fψ then for all c ∈ V, αϕ(c) ≥ βϕ(c) ⇐⇒ αψ(c) ≥ βψ(c). It is

then easy to show that if π ∈ H(1) and ϕ .= fψ then π |= ϕ if and only if π |= ψ

(see Lemma 6.32(iv) below).

Addition of alternatives and preference statements:

• For α, β, γ ∈ A, we say that γ .= α + β if for all c ∈ V, γ(c) = α(c) + β(c).

• For ϕ, ψ, χ ∈ LA, we say that ϕ .= ψ+χ if (i) αϕ
.= αψ +αχ, and βϕ

.= βψ +
βχ; and (ii) ϕ is non-strict if both ψ and χ are non-strict, and otherwise, ϕ

is strict.

6.5.1 Syntactic deduction ` and soundness of inference rules

As usual the proof theory is constructed from axioms and inference rules.

Axioms:

α ≥ β for all α, β ∈ A with α <par β.

Inference Rules Schemata:

(1) For any α, β ∈ A: From α > β deduce α ≥ β.
[Strict to Non-Strict]

(2) For χ ∈ LA such that χ .= ϕ+ ψ: From ϕ and ψ deduce χ.
[Addition]

(3) For f ∈ F and ϕ ∈ LA such that ϕ .= fψ: From ψ deduce ϕ.
[Point wise Multiplication]

(4) For any α ∈ A and any ϕ ∈ LA: From α > α deduce ϕ.
[Inconsistent Statement]
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(5) For any ψ, θ ∈ LA such that ψ <parD θ: From ψ deduce θ.
[Pareto Difference]

Defining syntactic deduction `: Let Γ be a subset of LA and ϕ ∈ A. We

say that ϕ can be proven from Γ, written Γ ` ϕ, if there exists a sequence

ϕ1, . . . , ϕk of elements of LA such that ϕk = ϕ and for all i = 1, . . . , k, either

ϕi ∈ Γ or ϕi is an axiom, or there exists an instance of one of the inference

rules with consequent ϕi and such that the antecedents are in {ϕ1, . . . , ϕi−1}.
Relation ` depends strongly on the set of alternatives A; e.g., {ϕ, ψ} ` ϕ + ψ

(if and) only if ϕ + ψ ∈ LA, i.e., only if αϕ + αψ and βϕ + βψ are in A. We

write ` as `A if we want to emphasise this dependency. It can happen that for

Γ ∪ {ϕ} ⊆ LA ⊆ LB, we have Γ `B ϕ, but Γ 6`A ϕ. (We could also write |=A to

emphasise the dependency on A; however, it isn’t usually important to do so,

since for Γ ∪ {ϕ} ⊆ LA ⊆ LB, we have Γ |=B ϕ ⇐⇒ Γ |=A ϕ.)

Any given set of alternatives may not be closed under addition (for instance),

and there may be α, β ∈ A with no γ ∈ A such that γ .= α+ β. We assume that

we can augment A with additional alternatives, and for any function g : V →
Q+, we can construct an alternative α with, for all c ∈ V, α(c) = g(c).

Next we state a lemma showing soundness of the axioms and inference rules,

which is used to prove soundness of the associated syntactic deduction (Propo-

sition 6.33).

Lemma 6.32. Consider any π ∈ H(1), any α, β ∈ A, and any ϕ, ψ, χ, θ ∈ LA.

(i) If α <par β, then π |= α ≥ β.

(ii) If π |= α > β, then π |= α ≥ β.

(iii) If χ .= ϕ+ ψ and π |= ϕ and π |= ψ, then π |= χ.

(iv) If ϕ .= fψ, then π |= ϕ ⇐⇒ π |= ψ.

(v) π 6|= α > α.

(vi) If π |= ψ and ψ <parD θ, then π |= θ.

Proof. Write π as (c1, . . . , ck). For ϕ ∈ LA we define iϕ to be k + 1 if for all

i = 1, . . . , k, αϕ(ci) = βϕ(ci); otherwise, we define iϕ to be the minimum i such

that αϕ(ci) 6= βϕ(ci). Then αϕ ≡π βϕ ⇐⇒ iϕ = k + 1, and π |= αϕ > βϕ ⇐⇒
iϕ ≤ k and αϕ(ciϕ) > βϕ(ciϕ).
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(i): Assume that α <par β, so that for all c ∈ V, we have α(c) ≥ β(c). This

implies α <π β and thus π |= α ≥ β.

(ii): Assume that π |= α > β, so that α �π β. This implies α <π β and hence

π |= α ≥ β.

(iii): Assume that χ .= ϕ+ ψ, and π |= ϕ and π |= ψ.

Case (I): iϕ = iψ = k + 1. Then for all i = 1, . . . , k, αϕ(ci) = βϕ(ci) and

αψ(ci) = βψ(ci). Then, αχ(ci) = αϕ(ci) + αψ(ci) = βϕ(ci) + βψ(ci) = βχ(ci), so

iχ = k + 1, which implies that αχ ≡π βχ. We have αϕ ≡π βϕ, and also π |= ϕ, so

ϕ is non-strict. Similarly, ψ is non-strict. Thus χ is non-strict, and so π |= χ.

Case (II): iϕ = iψ ≤ k. Because αϕ(ciϕ) 6= βϕ(ciϕ) and π |= ϕ, we have αϕ(ciϕ) >
βϕ(ciϕ). The same argument implies that αψ(ciϕ) > βψ(ciϕ). We then have

αχ(ciϕ) > βχ(ciϕ), and iχ = iϕ. This implies that π |= αχ > βχ, and thus, π |= χ,

whether χ is strict or non-strict.

Case (III): iϕ < iψ. Arguing as in Case (II), we have αϕ(ciϕ) > βϕ(ciϕ). We also

have αψ(ciϕ) = βψ(ciϕ). We then have αχ(ciϕ) > βχ(ciϕ), and iχ = iϕ. Again we

have π |= χ, whether χ is strict or non-strict.

Case (IV): iϕ > iψ. This is similar to Case (III), but with the roles of ϕ and ψ

reversed.

(iv): Assume that ϕ .= fψ, and consider any c ∈ V. Because f(c) > 0, we have

αϕ(c) = βϕ(c) if and only if αψ(c) = βψ(c); and αϕ(c) > βϕ(c) if and only if

αψ(c) > βψ(c). This shows that π |= ϕ ⇐⇒ π |= ψ.

(v): π 6|= α > α follows since α ≡π α and so α 6�π α.

(vi): Suppose that π |= ψ and ψ <parD θ, so that ψ and θ are either both strict

or both non-strict; and for all c ∈ V, βψ(c)−αψ(c) ≥ βθ(c)−αθ(c). If it were the

case that iψ < iθ, then because π |= ψ, we would have that αψ(ciψ) > βψ(ciψ)
and αθ(ciψ) = βθ(ciψ), and thus, βψ(ciψ)−αψ(ciψ) < 0 = βθ(ciψ)−αθ(ciψ), which

contradicts ψ <parD θ. Thus we must have that iψ ≥ iθ.

First consider the case when iθ = k + 1. Then iψ = k + 1, and so αθ ≡π βθ

and αψ ≡π βψ. The latter implies that ψ is non-strict, since π |= ψ. Then θ is

non-strict and thus, π |= θ.

Now consider the case when iθ ≤ k, and thus αθ(ciθ) 6= βθ(ciθ). We showed

earlier that iθ ≤ iψ. If iθ = iψ, then π |= ψ implies that αψ(ciθ) > βψ(ciθ). If

iθ < iψ, then αψ(ciθ) = βψ(ciθ). So, in either case we have αψ(ciθ) ≥ βψ(ciθ),

150



6.5 Proof Theory for H(1)-Inference

i.e., βψ(ciθ)− αψ(ciθ) ≤ 0. The assumption ψ <parD θ then implies that βθ(ciθ)−
αθ(ciθ) ≤ 0, and so, αθ(ciθ) ≥ βθ(ciθ). Since iθ ≤ k we have αθ(ciθ) > βθ(ciθ),
showing that π |= αθ > βθ, and therefore π |= θ whether θ is strict or non-

strict.

We are now ready to state and prove the soundness result.

Proposition 6.33. For Γ ∪ {ϕ} ⊆ LA, and any B ⊇ A, if Γ `B ϕ then Γ |=A ϕ.

Proof. First note that if Γ is H(1)-inconsistent, then there is nothing to prove,

since Γ |=A ϕ follows trivially. So, let us assume now that Γ is H(1)-consistent.

We use an inductive proof based on Lemma 6.32. Suppose that Γ `B ϕ. Con-

sider any π ∈ H(1) such that π |= Γ. We need to show that π |= ϕ. Since Γ `B ϕ
there exists a sequence ϕ1, . . . , ϕk of elements of LB such that ϕk = ϕ and for all

i = 1, . . . , k, either ϕi ∈ Γ or ϕi is an axiom, or there exists an instance of one

of the inference rules with consequent ϕi and such that the antecedents are in

{ϕ1, . . . , ϕi−1}. Consider any i ∈ {1, . . . , k}. We will prove that, if for all j < i,

π |= ϕj, then π |= ϕi. This then implies that for all i = 1, . . . , k, we have π |= ϕi,

and thus π |= ϕk, as required.

Therefore, let i be some arbitrary element in {1, . . . , k}, and assume that for all

j < i, π |= ϕj. We will prove that π |= ϕi. Let us abbreviate ϕi to be θ. One of

the cases (1)–(7) below applies. We consider each case in turn.

(1): θ equals α ≥ β for some α, β ∈ B, and there exists some j < i with ϕj

equalling α > β. Since π |= ϕj, by Lemma 6.32(ii), we have π |= α ≥ β,

i.e., π |= θ.

(2): θ equals χ for some χ ∈ LB such that χ .= ϕ + ψ, and for some j, l < i we

have ϕ = ϕj and ψ = ϕl. Since π |= ϕj, ϕl, Lemma 6.32(iii) implies that

π |= θ.

(3): There exists j < i and f ∈ F such that θ .= fϕj. Lemma 6.32(iv) implies

that π |= θ.

(4): There exists α ∈ B and j < i such that ϕj equals α > α, so we have

π |= α > α. However, by Lemma 6.32(v), this is impossible, so Case (4)

cannot arise.

(5): There exists j < i such that ψ = ϕj ∈ LB and ψ <parD θ. Lemma 6.32(vi)

implies π |= θ.

(6): θ ∈ Γ. Then π |= θ.
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(7): θ is equal to α ≥ β for some α, β ∈ B such that α <par β. Lemma 6.32(i)

implies π |= θ.

6.5.2 Completeness of Proof Theory

We now give a pair of technical lemmas which we will use in the completeness

proof.

Lemma 6.34. Consider any H(1)-inconsistent Γ ⊆ LA, and suppose that
({ϕ1, . . . , ϕk}, C ′) is an inconsistency base for (Γ,V), with {ϕ1, . . . , ϕk} being in-
consistent. Then there exist strictly positive functions f1, . . . , fk ∈ F , set of alter-
natives B ⊇ A with B \A finite, preference statement ρ ∈ LB and strict preference
statement ψ in LB such that ρ .= f1ϕ1 + · · ·+ fk−1ϕk−1 and ψ .= f1ϕ1 + · · ·+ fkϕk,
and Γ `B ρ and Γ `B ψ, and βψ <par αψ.

Proof. Let T = {|αϕi(c)− βϕi(c)| : c ∈ V , i ∈ {1, . . . , k}} \ {0}. If T = ∅, then

set a = b = 1, and if T 6= ∅ let a = minT and let b = max T , so 0 < a ≤ b. For

i = 1, . . . , k and c ∈ V, we define fi(c) = 1 if αϕi(c) < βϕi(c), and otherwise, we

define fi(c) = d where d = a/(kb) > 0.

For i = 1, . . . , k, we include elements γi, δi, εi, λi in B, where γi
.= fiαϕi, and

δi
.= fiβϕi; and we let ε1 = γ1 and λ1 = δ1, and for i = 2, . . . , k, εi

.= εi−1 + γi,

and λi
.= λi−1 + δi.

There exists ψ1 ∈ LB with ψ1
.= f1ϕ1, and αψ1 = γ1 = ε1 and βψ1 = δ1 = λ1.

Similarly, for i = 2, . . . , k, there exists ψi ∈ LB with ψi
.= ψi−1+fiϕi, and αψi = εi

and βψi = λi.

By the Addition and Point wise Multiplication rules, for each i = 1, . . . , k, we

have Γ `B ψi. Abbreviate ψk to ψ and ψk−1 to ρ. We have Γ `B ψ and ψ
.=

f1ϕ1 + · · ·+ fkϕk, and Γ `B ρ and ρ .= f1ϕ1 + · · ·+ fk−1ϕk−1. Since {ϕ1, . . . , ϕk}
is inconsistent, some ϕi is strict (else the empty model satisfies them all), and

therefore, ψ is a strict preference statement.

Consider any c ∈ V \C ′. By Definition 6.1(i), αϕi(c) = βϕi(c) for all i = 1, . . . , k.

Thus αψ(c) = βψ(c).

Now consider any c ∈ C ′. For any j ∈ {1, . . . , k}, αϕj(c) − βϕj(c) ≤ b, and so

γj(c) − δj(c) ≤ bd = a/k. By Definition 6.1(ii), there exists some i ∈ {1 . . . , k}
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such that αϕi(c) < βϕi(c). This implies that T 6= ∅. We have αϕi(c) − βϕi(c) ≤
−a, and thus γi(c) − δi(c) ≤ −a(< 0). Now, αψ(c) = ∑k

j=1 γj(c) and βψ(c) =∑k
j=1 δj(c). Therefore, αψ(c) − βψ(c) ≤ −a + (k − 1)a/k < 0. We have shown

that for all c ∈ V, αψ(c) ≤ βψ(c), so βψ <par αψ.

Lemma 6.35. Suppose Γ ∪ {ϕ} ⊆ LA, and that Γ is H(1)-consistent and Γ |= ϕ.
Then there exists B ⊇ A (with B \ A finite), and χ, θ ∈ LB such that Γ `B χ, and
θ is strict and θ .= χ+ ¬ϕ, and βθ <par αθ.

Proof. By Lemma 6.2, Γ ∪ {¬ϕ} is H(1)-inconsistent. By Lemma 6.22 there

exists an inconsistency base (∆, C ′) for (Γ ∪ {¬ϕ},V) with ∆ being a finite and

H(1)-inconsistent subset of Γ∪{¬ϕ}, and C ′ ⊆ V. Now, ∆ contains ¬ϕ, since ∆
is H(1)-inconsistent and Γ is H(1)-consistent. We write ∆ as {ϕ1, . . . , ϕk} with

ϕk = ¬ϕ.

By Lemma 6.34, there exist strictly positive functions f1, . . . , fk ∈ F , set of

alternatives B ⊇ A with B \ A finite, preference statement ρ ∈ LB and strict

preference statement ψ in LB such that ρ .= f1ϕ1 + · · · + fk−1ϕk−1 and ψ
.=

f1ϕ1 + · · ·+ fkϕk, Γ `B ρ and Γ `B ψ, and βψ <par αψ.

Let B′ = B ∪ {αχ, βχ, αθ, βθ}, where αχ
.= 1
fk
αρ and βχ

.= 1
fk
βρ, and αθ

.= αχ + βϕ

and βθ
.= βχ + αϕ, and χ, θ (which are thus in LB′) are such that χ .= 1

fk
ρ and

θ
.= χ + ¬ϕ, i.e., θ .= χ + ϕk. We have fkθ

.= fkχ + fkϕk
.= ρ + fkϕk and thus

ψ
.= fkθ. This implies that θ is a strict statement and that βθ <par αθ. Now,

Γ `B ρ implies that Γ `B′ ρ (because B′ ⊆ B). Since χ .= 1
fk
ρ, we have Γ `B′ χ,

using the Point wise Multiplication inference rule, completing the proof.

These lemmas lead to the completeness theorems.

Theorem 6.2: Completeness of Proof Theory (1)

Consider any Γ ⊆ LA and any ϕ ∈ LA. Then there exists B ⊇ A, with B\A
finite such that Γ |= ϕ ⇐⇒ Γ `B ϕ.

Proof. ⇐ follows by Proposition 6.33. To prove the converse, let us assume that

Γ |= ϕ; we will show that A can be extended to B such that Γ `B ϕ.

First let us consider the case when Γ is H(1)-inconsistent. By Lemma 6.22

there exists C ′ ⊆ V and a H(1)-inconsistent subset {ϕ1, . . . , ϕk} of Γ, such that

({ϕ1, . . . , ϕk}, C ′) is an inconsistency base for (Γ,V). By Lemma 6.34, there exist
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strictly positive functions f1, . . . , fk ∈ F , set of alternatives B ⊇ A with B \ A
finite, and strict preference statement ψ in B such that ψ .= f1ϕ1 + · · · + fkϕk,

and Γ `B ψ and βψ <par αψ. Consider any γ ∈ A. Then βψ <par αψ implies for

all c ∈ V, βψ(c)− αψ(c) ≥ 0 = γ(c)− γ(c). The Pareto Difference inference rule

then implies that Γ `B γ > γ, since ψ is strict, and hence, by the Inconsistent

Statement inference rule, Γ `B ϕ, as required.

Now we consider the case when Γ is H(1)-consistent. By Lemma 6.35, we have

that there exists set of alternatives B ⊇ A with B \ A finite, and χ, θ ∈ LB such

that Γ `B χ, and θ is strict, θ .= χ + ¬ϕ, and βθ <par αθ. Then, by definition

of ¬ϕ, we have αθ
.= αχ + βϕ and βθ

.= βχ + αϕ. This implies that for all

c ∈ V, βχ(c) + αϕ(c) ≥ αχ(c) + βϕ(c), and thus, for all c ∈ V, βχ(c) − αχ(c) ≥
βϕ(c) − αϕ(c). Now, since θ

.= χ + ¬ϕ and θ is strict, if χ is non-strict then

¬ϕ must be strict and so ϕ is non-strict. The Pareto Difference inference rule

then implies that Γ `B ϕ. If, on the other hand, χ is strict then the Pareto

Difference inference rule implies that Γ `B αϕ > βϕ, and thus Γ `B αϕ ≥ βϕ,

using the From Strict to Non-Strict rule. Therefore, Γ `B ϕ whether ϕ is strict

or non-strict.

Let A∗ be a set of alternatives including for each function g : V → Q+, an

alternative α with, for all c ∈ V, α(c) = g(c), and let A′ = A∪A∗. Consider any

Γ ⊆ LA and any ϕ ∈ LA. Then Γ ∪ {ϕ} ⊆ LA′. If we use A′ instead of A in the

proofs of Lemma 6.34 and 6.35, and Theorem 6.2, we can use B = A′ in each

case. This leads, for arbitrary Γ and ϕ, to: Γ |=A′ ϕ ⇐⇒ Γ `A′ ϕ, which since

Γ |=A′ ϕ holds if and only if Γ |=A ϕ holds, gives the following version of the

completeness result.

Theorem 6.3: Completeness of Proof Theory (2)

For any A, there exists A′ ⊇ A such that for any Γ ⊆ LA and any ϕ ∈ LA,

Γ |= ϕ ⇐⇒ Γ `A′ ϕ.

6.6 Discussion

Throughout this chapter, we considered lexicographic models H(1) in connec-

tion with strict and non-strict preference statements LA. Here, because of the

strong resemblance to cvo lexicographic models L , we can observe that many
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results previously proven in Section 4.3.2 for cvo lexicographic models L also

hold true for modelsH(1). The cvo lexicographic models L are more general in

the sense that value orders on the variable domains are not fixed but arbitrary

total orders and part of the model. A similar composition operator and variable

mapping as for models L is defined for H(1) models.

As a main result of this Chapter, the statements LA are strongly compositional

and the algorithm of Section 4.2.4 can be applied to solve the Consistency and

the Deduction Problem (which are mutually expressive for the considered case).

We describe in detail how to choose minimal extensions in the algorithm, and

how to do (|=∗-) satisfaction checks. Here, we make use of inconsistency bases

and Γ-allowed sequences. Interestingly, analysing these structures, we can ob-

serve that even for a set of inconsistent preference statements, the preference

model created by the algorithm is the closest approximation we can have to a

satisfying lexicographic preference model. Furthermore, we show that a prefer-

ence language that gives order constraints on variables instead of alternatives,

is equally expressive as the language LA for models H(1).

Strong consistency considers the existence of a preference model that involves

all variables and satisfies the given preference statements. Naturally, we can

apply the same algorithm as described earlier. Also, if a set of preference state-

ments is strongly consistent, then the set of models of the preference statements

that include all variables is the same as the set of maximal models of the pref-

erence statements. Thus, the consequences of the inference of either model set

are the same. We also identified cases in which the inference based on mod-

els including all variables is the same as the inference with models of all sizes.

These observations rely on properties deduced from inconsistency bases and

Γ-allowed sequences.

We can thus conclude that inconsistency bases are a very helpful concept in

understanding the structure of the Consistency Problem for statements LA and

models H(1). It might be interesting to investigate this concept for cvo lexi-

cographic models L . Here, inconsistency bases would have to respect order

constraints on value orders of variable domains. It is not obvious, how the con-

cept of inconsistency bases can be transferred to the more general hierarchical

models H(t) for t > 1. However, for the case of t-bound Pareto models P(t)
with t ≥ 1, identifying variables / variable sets, which cannot be included in

any model satisfying the input preferences, is possible and discussed in Chap-

ter 5.
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The completeness results of the prove theory discussed in Section 6.5 show that

there exists an equivalent syntactical definition of the inference discussed in

this chapter, which so far has only been defined semantically.

Note that we only concentrated on statements in LA and did not consider the

languages LpqT and L′pqT for models H(1). These languages will be discussed

in connection with models L in Chapter 8. However, because models L are a

generalisation of models H(1) of sorts, we believe that many results developed

for models L in Chapter 8 for languages LpqT and L′pqT can also hold for models

H(1).
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Chapter 7

Hierarchical Model

In this chapter, we consider the Deduction and Consistency Problem for hierar-

chical models H(t) with t > 1 for input preference statements LA that are strict

and non-strict comparisons on complete alternatives.

After a detailed introduction of deduction and consistency for hierarchical mod-

elsH(t), we show that the Deduction Problem is coNP-complete, even if one re-

stricts the cardinality of the equal-importance sets of variables to have at most

two elements (Section 7.2). Recall from Chapter 6 that it is polynomial in many

cases in which it is assumed that the user’s ordering of variables is a total order-

ing, i.e., a fvo lexicographic models H(1). At the end of Section 7.1, we briefly

mention the special case where a fixed equivalence relation on variables is given

that specifies the possible level sets. In this case the problem is polynomial and

the algorithm from Section 6.3.3 can be applied to solve it.

In Section 7.3, we focus on finding efficient algorithm approaches for the Con-

sistency Problem (and thus the Deduction Problem). Here, we first describe a

Mixed Integer Linear Program formulation and then approach the problem with

a recursive search. The recursive search relies on a pruning of the search space

that is based on specific properties of hierarchical models. Furthermore, a vari-

ant of the recursive search is described in which conflicting sets of variables are

maintained, by which the search space can be pruned further. We then describe

an experimental set up and runtime comparison of the developed approaches

in Section 7.4. The last section concludes.

This chapter takes results and descriptions from [GWO16, WGO15]

and [WG17].
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7.1 Preliminaries

We consider preference models, based on an importance ordering of variables

that is basically lexicographic, but involving a combination of variables which

are at the same level in the importance ordering. In the papers that this chapter

is based on, we called these “HCLP models", because models of a similar kind

are considered in Hierarchical Constraint Logic Programming systems [WB93]

(though we have abstracted away some details from the latter system).

Definition 7.1: Hierarchical Structures

Define a hierarchical structure to be a tuple S = 〈A,⊕,V〉. Here, A (the

set of alternatives) is a (possibly infinite) set. V is a finite set of variables

with the same domains and a fixed order ≥ on the variable’s domain D.

Elements in A are vectors over the common domain D of variables X ∈ V,

i.e., A ⊆ D|V|. ⊕ is an associative, commutative and monotonic operation

(x ⊕ y ≥ z ⊕ y if x ≥ z) on the variable’s domain D. Furthermore, we

assume that D contains an identity element 0 ∈ D and at least one other

element which we call "1" such that 1 > 0.

Note that in practice this means that variables are commensurable such that an

operator ⊕ exists for which combining variable values is reasonable. This can

include, for example, variables with cost values, but also equal ordinal scales

(e.g., small > medium > large, or good > medium > bad).

In this chapter, we assume that operation ⊕ can be computed in linear time

(which holds for natural definitions of ⊕, including addition and max on Q+).

The variables in V may be considered as representing criteria or objectives un-

der which the alternatives are evaluated.

Example 7.1

Suppose, a user wants to buy a new prepay mobile phone SIM card and

considers different providers based on the price per 10MB data usage (d),

the price per text message (m) and the price per minute for calls to the

same provider (c). These prices of d, m and c can be combined by addition.

For any of the four price categories, the lower the price is the better it is

for the customer. Consider four different options (providers) α, β, γ and δ
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with the following prices in cent.

α β γ δ

d 18 15 13 14

m 15 17 15 13

c 10 11 14 15

In this context, the hierarchical structure 〈A,⊕,V〉 is given by the set of

alternatives A = {α, β, γ, δ}, the operator ⊕ being the ordinary addition

on the integers and the set of variables V = {d,m, c} specifying the alter-

natives as in the table above.

For each subset C of V we define ordering <⊕C on A by α <⊕C β if and only if⊕
c∈C α(c) ≥⊕c∈C β(c). Relation<⊕C represents how well the alternatives satisfy

the set of variables C if the latter are considered equally important. <⊕C is a

total pre-order (a weak order, i.e., a transitive and complete binary relation).

We write ≡⊕C for the associated equivalence relation on A, given by α ≡⊕C β

⇐⇒ α <⊕C β and β <⊕C α. We write �⊕C for the associated strict weak ordering,

defined by α �⊕C β ⇐⇒ α <⊕C β and β 6<⊕C α. Thus, α ≡⊕C β if and only if⊕
c∈C α(c) = ⊕

c∈C β(c); and α �⊕C β if and only if
⊕
c∈C α(c) > ⊕

c∈C β(c).

Recall from Definition 3.16 that a hierarchical model H based on 〈A,⊕,V〉 is

defined to be an ordered partition (C1, . . . , Ck) of a subset of V; we label this

subset as σ(H), so that σ(H) = C1 ∪ · · · ∪ Ck. Note that σ(H) can be empty,

which corresponds to the empty model H = (). However, the variable sets

within a model are non-empty. The sets Ci are called level sets or levels of H,

which are thus non-empty, disjoint and have union σ(H). If c ∈ Ci and c′ ∈ Cj,
and i < j, then we say that c appears before c′ (and c′ appears after c) in H.

Recall from Definition 3.18 that the set of t-bound hierarchical models for t ∈ N
is defined as the set of hierarchical models with level sets of maximum cardi-

nality t, i.e., H(t) = {H = (C1, . . . , Cl) | H is a hierarchical model and |Ci| ≤
t ∀i = 1, . . . , l}. An element ofH(1) thus corresponds to a sequence of singleton

sets of variables; this special case has been discussed in the previous chapter.

Note that, these models do not depend on ⊕ (since there is no combination of

variables involved), so we were able to drop any mention of ⊕ in the previous

chapter.

Associated with a hierarchical model H = (C1, . . . , Ck) is an order relation <⊕H
on A as described in Definition 3.17:
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α <⊕H β if and only if either:

(I) for all i = 1, . . . , k, α ≡⊕Ci β; or

(II) there exists some i ∈ {1, . . . , k} such that (i) α �⊕Ci β and (ii) for all j with

1 ≤ j < i, α ≡⊕Cj β.

Relation <⊕H is a kind of lexicographic order on A, where the values of variables

in the level set Ci are first combined into a single value. <⊕H is a total preorder

on A. We write ≡⊕H for the associated equivalence relation (corresponding with

condition (I)), and �⊕H for the associated strict weak order (corresponding with

condition (II)), so that <⊕H is the disjoint union of �⊕H and ≡⊕H . If σ(H) = ∅, i.e.,

H = () the empty model, then the first condition for α <⊕H β holds vacuously

(since k = 0), so we have α <⊕() β for all α, β ∈ A, and �⊕() is the empty relation.

Preference Language Inputs: Consider the preference language LA of strict

and non-strict comparisons over alternatives in A as defined in Section 3.2.

We define LA≥ to be the set of non-strict statements of the form α ≥ β (“α is

preferred to β”), for α, β ∈ A; we write LA> for the set of strict statements of the

form α > β (“α is strictly preferred to β”), for α, β ∈ A. Hence, LA = LA≥ ∪ LA>.

Recall from Section 2.4.2 that since hierarchical models induce a total preorder

on the alternatives A, if ϕ is the preference statement α ≥ β, then ¬ϕ is the

preference statement β > α. If ϕ is the preference statement α > β, then

¬ϕ is the preference statement β ≥ α. In the following, we sometimes write a

preference statement ϕ ∈ LA≥ as αϕ ≥ βϕ, and ϕ ∈ LA> as αϕ > βϕ for αϕ, βϕ ∈ A.

We denote the non-strict version of preference statements Γ ⊆ LA by Γ(≥), i.e.,

Γ(≥) = {αϕ ≥ βϕ | ϕ ∈ Γ} (see Definition 3.4).

Satisfaction of preference statements: For a hierarchical model H over the

hierarchical structure 〈A,⊕,V〉, we say that H satisfies α ≥ β (written H |=⊕

α ≥ β), if α <⊕H β holds. Similarly, we say that H satisfies α > β (written

H |=⊕ α > β), if α �⊕H β. For Γ ⊆ LA, we say that H satisfies Γ (written

H |=⊕ Γ), if H satisfies ϕ for all ϕ ∈ Γ. If H |=⊕ ϕ, then we sometimes say that

H is a model of ϕ (and similarly, if H |=⊕ Γ).
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Example 7.2

Consider Example 7.1 of a user choosing between different providers to

buy a prepay SIM card.

Suppose, the user is not interested in using data and has as many call

minutes as text messages, i.e., the prices m and c are equally important.

She can express her preferences by the corresponding hierarchical model

H = ({m, c}) in H(t) with t ≥ 2. Since α(m) + α(c) = 25 < β(m) + β(c) =
28 = δ(m) + δ(c) = 28 < γ(m) + γ(c) = 29, H satisfies γ ≺⊕H β ≡⊕H δ ≺⊕H α.

The variables involved in H are σ(H) = {m, c}.

If the user is most interested in the text message prices, and only if these

are equal in the call prices, and only if these are also equal in the data

prices, then the corresponding hierarchical model is H ′ = ({m}, {c}, {d})
in H(t) with t ≥ 1. The induced order relation for this model satisfies

β ≺⊕H′ γ ≺⊕H′ α ≺⊕H′ δ, since δ(m) < α(m) = γ(m) < β(m) and α(c) < γ(c).
The variables involved in H ′ are σ(H ′) = {d,m, c}.

Satisfaction of negated preference statements behaves as one would expect:

Lemma 7.1. Let H be a hierarchical model over hierarchical structure S. Then,
H satisfies ϕ if and only if H does not satisfy ¬ϕ.

Proof. Write S as 〈A,⊕,V〉. First show that, for any α, β ∈ A, H satisfies α ≥ β

if and only if H does not satisfy β > α. We have that H satisfies α ≥ β if and

only if α <⊕H β, which, since <⊕H is a weak order, is if and only if β 6�⊕H α, i.e.,

H does not satisfy β > α. It immediately follows that H satisfies α > β if and

only if H does not satisfy β ≥ α.

As for other model types, for preference statements Γ and statement ϕ we say

that Γ |=⊕H(t) ϕ, if H |=⊕ ϕ for every H ∈ H(t). Also, Γ is H(t)-inconsistent for

operator ⊕, if there exists no H ∈ H(t) such that H |=⊕ Γ. The next proposition

shows the relation between deduction and consistency for hierarchical models

based on statements LA.
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Theorem 7.1: Mutual Expressiveness of Consistency and Deduction

Let Γ ⊆ LA be a set of preference statements and ϕ ∈ LA. Γ |=⊕H(t) ϕ if and

only if Γ ∪ {¬ϕ} is H(t)-inconsistent for operator ⊕.

Proof. Suppose that Γ |=⊕H(t) ϕ. By definition, H satisfies ϕ for every H ∈ H(t)
satisfying (every element of) Γ. Thus, using Lemma 7.1, there exists no H ∈
H(t) that satisfies Γ and ¬ϕ, which implies that Γ ∪ {¬ϕ} is H(t)-inconsistent

for operator ⊕.

Conversely, suppose Γ∪{¬ϕ} isH(t)-inconsistent for operator ⊕. By definition,

there exists no H ∈ H(t) that satisfies Γ ∪ {¬ϕ}. Thus, every H ∈ H(t) that

satisfies Γ does not satisfy ¬ϕ, and therefore satisfies ϕ, by Lemma 7.1. Hence,

Γ |=⊕H(t) ϕ.

We formulate the Preference Consistency and Deduction (decision) Problems

for classes H(t) as follows.

H(t) Preference Consistency Problem (H(t)-PCP): Given a hierarchical struc-

ture 〈A,⊕,V〉, a constant t ∈ {1, . . . , |V|} and a set of preference statements

Γ ⊆ LA. Is Γ H(t)-consistent for operator ⊕?

H(t) Preference Deduction Problem (H(t)-PDP): Given a hierarchical struc-

ture 〈A,⊕,V〉, a constant t ∈ {1, . . . , |V|}, some preference statements Γ ⊆ LA

and ϕ ∈ LA \ Γ. Does Γ |=⊕H(t) ϕ? In other words, does H �⊕ ϕ hold for all

H ∈ H(t) with H �⊕ Γ?

Note that, the empty model H = () always satisfies non-strict statements, but

never satisfies strict statements. Thus, Γ ⊆ LA≥ is always consistent. It is easy to

see that Γ is H(t)-consistent, if Γ is H(s)-consistent for some s < t. Here, the

class of hierarchical modelsH(1) consists of fvo lexicographic models that imply

the usual lexicographic order relations. Thus, if preference statements Γ are

consistent with respect to fvo lexicographic models H(1) (see Definition 3.14),

then Γ is consistent with respect to hierarchical models in H(t).
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Example 7.3

Consider the hierarchical structure of Example 7.1.

Suppose, the user states that she prefers α to β, i.e. α ≥ β, and strictly

prefers β to γ, i.e. β > γ. Only the hierarchical models ({c}, . . . ),
({m}, . . . ), ({c,m}, . . . ) or ({d,m, c}) satisfy α ≥ β, where ". . . " signifies

any possible extension. Only the hierarchical model ({c}, . . . ), ({c, d}, . . . )
or ({c,m}, . . . ) satisfy β > γ. Thus, the models ({c}, . . . ) and ({c,m}, . . . )
are the only ones that satisfy the set Γ = {α ≥ β, β > γ} of the user’s

preferences.

Let t ∈ {1, 2, 3}. Then Γ 6�⊕H(t) δ ≥ β since the model H = ({c}) ∈
H(1) ⊆ H(t) satisfies Γ and β �⊕H δ, i.e., H �⊕ β > δ. Furthermore,

Γ 6�⊕H(2) β ≥ δ since the model H ′ = ({c,m}, {d}) ∈ H(2) satisfies Γ and

δ �⊕H′ β, i.e.,H ′ �⊕ δ > β. However, we can infer Γ �⊕H(1) β ≥ δ, and even

Γ �⊕H(1) β > δ, since all Γ-satisfying hierarchical model in H(1), i.e., ({c}),
({c}, {m}), ({c}, {d}), ({c}, {m}, {d}), and ({c}, {d}, {m}), satisfy the rela-

tion β > δ.

Fixed Equivalence Classes of Variables Let ≡ be an equivalence relation on

V. We define H(≡) to be the set of all hierarchical models (C1, . . . , Ck) such

that each Ci is an equivalence class with respect to ≡. It is easy to see that

the relation |=⊕H(≡) is the same as the relation |=⊕H′(1) where H′(1) is defined as

follows. V ′ is in 1-1 correspondence with the set of ≡-equivalence classes of V.

If E is the ≡-equivalence class of V corresponding with e ∈ V ′ then, for α ∈ A,

α(e) is defined to be
⊕

c∈E α(c). H′(1) is the set of singleton hierarchical models

on variables V ′.

In Chapter 6, we showed that the Consistency Problem (and thus also the De-

duction Problem) is polynomial for |=H(1). Thus it is polynomial also for |=⊕H(≡),

for any equivalence relation ≡ and the polynomial time algorithm from Sec-

tion 6.3.3 can be applied. In contrast, it is coNP-complete for |= being |=⊕H(t)

when t > 1, as we show below in the next section.
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7.2 coNP-completeness of H(t)-Deduction for t > 1

In this section, we prove the following coNP-completeness result for Deduction

for |=⊕H(t) with t > 1 (as defined in Section 7.1) by a reduction from 3-SAT.

Theorem 7.2: coNP-completeness of PDP for Hierarchical Models

The H(t) Preference Deduction Problem is coNP-complete for any t > 1,

even if we restrict the language to non-strict preference statements LA≥.

We have that Γ 6|=⊕H(t) β ≥ α if and only if there exists a hierarchical model

H ∈ H(t) such that H |=⊕ Γ and H 6|=⊕ β ≥ α. By our assumption, the operator

⊕ is computable in linear time. To check whether a preference statement is

satisfied by a hierarchical model, the ⊕-combinations of values for variables in

the same level sets have to be computed and compared. Thus, for any given

H ∈ H(t), checking that H |=⊕ Γ and H 6|=⊕ β ≥ α can be performed in

polynomial time (in the number of variables and preference statements). This

implies that determining if Γ 6|=⊕H(t) β ≥ α holds is in NP.

Given an arbitrary 3-SAT instance, we will show that we can construct a set Γ of

non-strict statements and a statement β ≥ α such that the 3-SAT instance has

a satisfying truth assignment if and only if Γ 6|=⊕H(t) β ≥ α (see Proposition 7.5

below). This then implies that determining if Γ 6|=⊕H(t) β ≥ α holds is NP-

complete, and thus determining if Γ |=⊕H(t) β ≥ α holds is coNP-complete.

The idea behind the reduction: Consider an arbitrary 3-SAT instance based

on propositional variables p1, . . . , pr that consists of clauses Λj, for j = 1, . . . , s.
With each propositional variable pi, we associate two variables q+

i and q−i , where

q−i corresponds with literal ¬pi, and q+
i corresponds with literal pi. We construct

a (polynomial size) set Γ ⊆ LA≥ of preference statements, which is the disjoint

union of sets Γ1, Γ2 and Γ3, and we construct a non-strict statement β ≥ α.

For the remainder of this section, let H be an arbitrary hierarchical model in

H(t). Γ1 is chosen so that if H |=⊕ Γ1 then, for each i = 1, . . . , r, σ(H) cannot

contain both q+
i and q−i , i.e., q+

i and q−i do not both appear in H. (Recall H is

an ordered partition of σ(H), so that σ(H) is the set of variables that appear in

H.) We choose Γ2 such that, if H |=⊕ Γ2 and H |=⊕ α > β, then σ(H) contains

either q+
i or q−i . Together, this implies that, if H |=⊕ Γ and H 6|=⊕ β ≥ α (i.e.,
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H |=⊕ α > β), then for each propositional variable pi, model H involves either

q+
i or q−i , but not both. Γ3 is used to make the correspondence with the clauses.

For instance, if one of the clauses is p2 ∨ ¬p5 ∨ p6, then any hierarchical model

H ∈ H(t) of Γ ∪ {α > β} will involve either q+
2 , q−5 , or q+

6 .

Suppose that H satisfies Γ but not β ≥ α. We can generate a satisfying assign-

ment of the 3-SAT instance, by assigning pi to 1 (TRUE) if and only if q+
i appears

in H.

The monotonicity assumption for operation ⊕ implies that 1 ⊕ 1 > 0, since we

have 1⊕1 ≥ 1⊕0 = 1 > 0. In fact, in the proof below we do not need to assume

monotonicity of ⊕; it is sufficient to just assume that 1⊕ 1 > 0.

We describe the construction more formally in the following.

Defining A and V: The set of alternatives A is defined to be the union of the

following sets, where each of these alternatives is defined below.

• {α, β} ∪ {αi, βi, δi | i = 1, . . . , r},

• {γki | i = 1, . . . , r, k = 1, . . . , t− 1},

• {θj, τj | j = 1, . . . , s}.

We define the set of variables V to be {c∗}∪{q+
i , q

−
i | i = 1, . . . , r}∪A1∪· · ·∪Ar,

where Ai = {aki | k = 1, . . . , t− 1}.

Both A and V are of polynomial size.

Satisfying α > β: The values of α and β on the variables are defined as

follows.

• α(c∗) = 1, and for all c ∈ V − {c∗}, α(c) = 0.

• For all c ∈ V, β(c) = 0.

It immediately follows that: H |=⊕ α > β ⇐⇒ σ(H) 3 c∗, for H ∈ H(t).

The construction of Γ1: We define Γ1 = ⋃r
i=1 Γi1 where, for each i = 1, . . . , r,

we define Γi1 = {δi ≥ γki , γ
k
i ≥ δi | k = 1, . . . , t− 1}. We make use of auxiliary

variables Ai = {a1
i , . . . , a

t−1
i }. The values of γki and δi on the variables are

defined as follows:
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• γki (aki ) = 1, and for all c ∈ V − {aki } we set γki (c) = 0.

• δi(q+
i ) = δi(q−i ) = 1, and for other c ∈ V, δi(c) = 0.

Thus, for any B ⊆ Ai, we have
⊕

a∈B δi(a) ⊕ δi(q+
i ) = 0 ⊕ · · · ⊕ 0 ⊕ 1 = 1.

Similarly,
⊕

a∈B δi(a) ⊕ δi(q−i ) = 1. Furthermore,
⊕

a∈B γ
k
i (a) ⊕ γki (q+

i ) = 1 ⇔
aki ∈ B and

⊕
a∈B γ

k
i (a) ⊕ γki (q−i ) = 1 ⇔ aki ∈ B. This helps us to prove the

following lemma.

Lemma 7.2. H |=⊕ Γi1 if and only if either (i) σ(H) does not contain any element
in Ai or q+

i or q−i , i.e., σ(H)∩ (Ai∪{q+
i , q

−
i }) = ∅; or (ii) Ai∪{q+

i } is a level of H,
and σ(H) 63 q−i ; or (iii) Ai ∪ {q−i } is a level of H, and σ(H) 63 q+

i . In particular, if
H |=⊕ Γi1, then σ(H) does not contain both q+

i and q−i .

Proof. Consider any H ∈ H(t), so that for each level set E in H we have |E| ≤ t.

We have that H |=⊕ Γi1 if and only if for each level set E in H and for all

k = 1, . . . , t− 1, δi ≡⊕E γki . Now, δi ≡⊕E γki if and only if
⊕

c∈E δi(c) = ⊕
c∈E γ

k
i (c).

Also,
⊕

c∈E δi(c) = 0 if E contains neither q+
i nor q−i ; and

⊕
c∈E δi(c) = 1⊕ 1 > 0

if E contains both q+
i and q−i ; and

⊕
c∈E δi(c) = 1 if E contains either q+

i or q−i ,

but not both.
⊕
c∈E γ

k
i (c) equals 1 if and only if E contains aki , and equals 0

otherwise.

This implies that, if for all k = 1, . . . , t − 1, δi ≡⊕E γki and E contains q+
i or q−i ,

then for all k = 1, . . . , t − 1, E contains aki , and so E ⊇ Ai. Because of the

condition that |E| ≤ t (since H ∈ H(t)), and |Ai| = t − 1, we then have that E

equals either Ai ∪ {q+
i } or Ai ∪ {q−i }.

Similarly, if for all k = 1, . . . , t − 1, δi ≡⊕E γki and E contains aki for some k ∈
{1, . . . , t− 1}, then E contains q+

i or q−i , and so, by the previous paragraph, E

equals either Ai ∪ {q+
i } or Ai ∪ {q−i }.

Thus, if H |=⊕ Γi1, then for at most one level E of H do we have E ∩ (Ai ∪
{q+

i , q
−
i }) non-empty (else we would have two levels both containing Ai, con-

tradicting disjointness of levels); also if E ∩ (Ai∪{q+
i , q

−
i }) is non-empty then E

equals either Ai ∪ {q+
i } or Ai ∪ {q−i }. In particular, if H |=⊕ Γi1, then σ(H) does

not contain both q+
i and q−i .

Regarding the converse, let us suppose first that (i) σ(H) does not intersect with

Ai ∪ {q+
i , q

−
i }. Then for all levels E of H, and for all k = 1, . . . , t − 1, we have⊕

c∈E δi(c) = ⊕
c∈E γ

k
i (c) = 0, and thus δi ≡⊕E γki , which implies H |=⊕ Γi1.

Now suppose (ii) that Ai ∪ {q+
i } is a level E ′ of H and σ(H) 63 q−i . Then every
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other level E is disjoint from Ai∪{q+
i , q

−
i }, so for all k = 1, . . . , t−1,

⊕
c∈E δi(c) =⊕

c∈E γ
k
i (c) = 0, and thus δi ≡⊕E γki . Also,

⊕
c∈E′ δi(c) = ⊕

c∈E′ γ
k
i (c) = 1, and

thus H |=⊕ Γi1. Case (iii), when Ai ∪ {q−i } is a level E ′ of H and σ(H) 63 q+
i , is

essentially identical to Case (ii), just switching the roles of q+
i and q+

i . We have

proven that H |=⊕ Γi1, if (i), (ii) or (iii) hold.

The construction of Γ2: For each i = 1, . . . , r, define ϕi to be βi ≥ αi. We let

Γ2 = {ϕi | i = 1, . . . , r}. The values of αi and βi on the variables are defined as

follows.

• αi(c∗) = 1, and for all c ∈ V − {c∗}, αi(c) = 0.

• βi(q+
i ) = βi(q−i ) = 1, and for all c ∈ V − {q+

i , q
−
i }, βi(c) = 0.

Thus, similarly to the previous observations for Γ1, βi(c∗) ⊕ βi(q+
i ) = βi(c∗) ⊕

βi(q−i ) = 1 and αi(c∗)⊕ αi(q+
i ) = αi(c∗)⊕ αi(q−i ) = 1. Also, αi(q+

i )⊕ αi(q−i ) = 0
and βi(q+

i )⊕βi(q−i ) ≥ 1, because of the monotonicity of ⊕, and αi(c∗)⊕αi(q+
i )⊕

αi(q−i ) = 1 and βi(c∗)⊕ βi(q+
i )⊕ βi(q−i ) ≥ 1.

The following result easily follows.

Lemma 7.3. If q+
i or q−i appears before c∗ in H, then H |=⊕ ϕi. If σ(H) 3 c∗ and

H |=⊕ ϕi, then σ(H) 3 q+
i or σ(H) 3 q−i .

Proof. Consider any H ∈ H(t), and consider any i ∈ {1, . . . , r}. Then the

following hold for any level set E in H.

(I) If E does not contain any of {c∗, q+
i , q

−
i }, then

⊕
c∈E αi(c) = ⊕

c∈E βi(c) =
0, so αi ≡⊕E βi.

(II) If E contains c∗ but neither of q+
i or q−i , then

⊕
c∈E αi(c) = 1 and⊕

c∈E βi(c) = 0, so βi 6<⊕E αi.

(III) If E contains q+
i or q−i but not c∗, then

⊕
c∈E αi(c) = 0 and

⊕
c∈E βi(c) > 0

using the fact that 1⊕ 1 > 0, so βi �⊕E αi.

Assume that σ(H) 3 c∗. If σ(H) ∩ {q+
i , q

−
i } = ∅, then by considering the level

containing c∗ we can see, using (I) and (II), that βi 6<⊕H αi, so H 6|=⊕ ϕi. This

proves the second part of the lemma.

If q+
i or q−i (or both) appear before c∗ in H then (I) and (III) imply that βi �⊕H αi

and thus H |=⊕ ϕi. This proves the first part of the lemma.
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The construction of Γ3: We define a function Q over all literals by Q(pi) = q+
i

and Q(¬pi) = q−i , for each i = 1, . . . , r. Let us write the jth clause as l1 ∨ l2 ∨ l3
for literals l1, l2 and l3. Define Qj = {Q(l1), Q(l2), Q(l3)}. For example, if the

jth clause was p2 ∨ ¬p5 ∨ p6 then Qj = {q+
2 , q

−
5 , q

+
6 }. We define ψj to be the

statement τj ≥ θj, and Γ3 = {ψj | j = 1, . . . s}, where the values of θj and τj are

given as follows.

• θj(c∗) = 1, and θj(c) = 0 for all c ∈ V − {c∗}.

• τj(q) = 1 for q ∈ Qj, and τi(c) = 0 for all c ∈ V −Qj.

Lemma 7.4. If some element of Qj appears in H before c∗, and no level of H
contains more than one element of Qj, then H |=⊕ ψj. If σ(H) 3 c∗ and H |=⊕ ψj
then σ(H) contains some element of Qj.

Proof. The proof of this result is similar to that of Lemma 7.3. Consider any

H ∈ H(t) and the jth clause Λj of the 3-SAT instance. Then the following hold

for any level set E in H.

(I) If E does not contain any element of Qj ∪ {c∗}, then
⊕
c∈E θj(c) =⊕

c∈E τj(c) = 0 so θj ≡⊕E τj.

(II) If E contains c∗ but no element of Qj, then
⊕
c∈E θj(c) = 1 and⊕

c∈E τj(c) = 0, so τj 6<⊕E θj.

(III) If E contains exactly one element of Qj but not c∗, then
⊕

c∈E θj(c) = 0
and

⊕
c∈E τj(c) = 1, so τj �⊕E θj.

Assume that σ(H) 3 c∗. If σ(H)∩Qj = ∅, then by considering the level contain-

ing c∗ we can see, using (I) and (II), that τj 6<⊕E θj, so H 6|=⊕ ψj. This argument

proves that if σ(H) 3 c∗ and H |=⊕ ψj, then σ(H) contains some element of Qj.

If some element of Qj appears in H before c∗, and no level of H contains more

than one element ofQj, then (I) and (III) imply that τj �⊕H θj and thusH |=⊕ ϕi.
This proves the first part of the lemma.

We set Γ = Γ1∪Γ2∪Γ3. The following result implies that the Deduction Problem

is coNP-complete (even if we restrict to the case when Γ ∪ {ϕ} ⊆ LA≥).

Proposition 7.5. Using the notation defined above, the 3-SAT instance is satisfi-
able if and only if Γ 6|=⊕H(t) β ≥ α.
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Proof. First let us assume that Γ 6|=⊕H(t) β ≥ α. Then by definition, there exists

a hierarchical model H ∈ H(t) with H |=⊕ Γ and H 6|=⊕ β ≥ α. Since H 6|=⊕

β ≥ α ⇐⇒ H |=⊕ α > β because hierarchical models imply a total order on

the alternatives, we have H |=⊕ Γ ∪ {α > β}. Because H |=⊕ α > β, we have

σ(H) 3 c∗.

Because also H |=⊕ Γi2, either σ(H) 3 q+
i or σ(H) 3 q−i , by Lemma 7.3. Since

H |=⊕ Γi1, the set σ(H) does not contain both q+
i and q−i , by Lemma 7.2.

Let us define a truth function f : P → {0, 1}, where P is the set of propositional

variables, as follows: f(pi) = 1 ⇐⇒ σ(H) 3 q+
i . Since σ(H) contains exactly

one of q+
i and q−i , we have f(pi) = 0 ⇐⇒ σ(H) 3 q−i . We extend f to negative

literals in the obvious way: f(¬pi) = 1 − f(pi), and thus, f(¬pi) = 1 ⇐⇒
σ(H) 3 q−i .

Since H |=⊕ Γ3 and σ(H) 3 c∗, σ(H) contains at least one element of each Qj,

by Lemma 7.4. Thus, f(l) = 1 for at least one literal l in every clause, and

hence f satisfies all clauses Λj. We have shown that f satisfies each clause of

the 3-SAT instance, proving that the instance is satisfiable.

Conversely, suppose that the 3-SAT instance is satisfiable, so there exists a truth

function f satisfying it. We will construct a hierarchical model H ∈ H(t) such

that H |=⊕ Γ ∪ {β > α}, and thus H 6|=⊕ α ≥ β, proving that Γ 6|=⊕H(t) α ≥ β.

For i = 1, . . . , r, let Si = Ai∪{q+
i } if f(pi) = 1, and otherwise, let Si = Ai∪{q−i }.

Thus, if f(pi) = 1 then Q(pi) ∈ Si; and if f(¬pi) = 1 then Q(¬pi) ∈ Si. We then

define H to be the sequence S1, S2, . . . , Sr, {c∗}. Since σ(H) 3 c∗, we have that

H |=⊕ α > β. By Lemma 7.2, for all i = 1, . . . , r, H |=⊕ Γi1 and so H |=⊕ Γ1. By

Lemma 7.3, for all i = 1, . . . , r, H |=⊕ ϕi, so H |=⊕ Γ2.

Consider any j ∈ {1, . . . , s}, and, as above, write the jth clause as l1 ∨ l2 ∨ l3.
Truth assignment f satisfies this clause, so there exists k ∈ {1, 2, 3} such that

f(lk) = 1. Then Q(lk) appears in H before c∗, so, by Lemma 7.4, H |=⊕ ψj. Thus

H |=⊕ Γ3.

Since Γ = Γ1 ∪ Γ2 ∪ Γ3, we have shown that H |=⊕ Γ ∪ {α > β}, proving that

Γ 6|=⊕H(t) β ≥ α.

Example 7.4

Let (p1 ∨ p2 ∨ ¬p3) ∧ (¬p1 ∨ p2 ∨ p3) be an instance of 3-SAT with the three

169



7.2 coNP-completeness of H(t)-Deduction for t > 1

propositional variables p1, p2, p3 and clauses Λ1,Λ2. From this we construct

a H(2)-Deduction instance as in the previous paragraphs. Correspond-

ing to the two possible assignments of each of the propositional variables

p1, p2, p3, we construct variables q+
1 , q

+
2 , q

+
3 and q−1 , q

−
2 , q

−
3 . We also intro-

duce the additional variables c∗ and A1 = {a1
1, a

1
2, a

1
3}. Furthermore, we

construct alternatives α, β, α1, α2, α3, β1, β2, β3, δ1, δ2, δ3, γ1
1 , γ

1
2 , γ

1
3 , θ1, θ2,

τ1, τ2 for the preference statements α > β, Γ1, Γ2 and Γ3 as follows:

Γ2 Γ1 Γ3

α > β α1 ≤ β1 α2 ≤ β2 α3 ≤ β3 δ1 ≤,≥ γ1
1 δ2 ≤,≥ γ1

2 δ3 ≤,≥ γ1
3 θ1 ≤ τ1 θ2 ≤ τ2

q+
1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0

q+
2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1

q+
3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

q−1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1

q−2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

q−3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

c∗ 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

a1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

a1
2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

a1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Here, the values of τ1 and τ2 correspond to the occurrences of the literals

pi or ¬pi in the clauses Λ1 and Λ2, respectively. Since the statement α > β

is strict, the variable c∗ has to be included in any satisfying hierarchical

model. For the satisfaction of all preference statements Γ1,Γ2 and Γ3, the

same principal applies. To satisfy a non-strict preference statement ν ≤
ρ in Γ, the first level set that contains variables with value 1 on ν must

also contain at least as many variables with value 1 on ρ. The satisfaction

of preference statement α1 ≤ β1, e.g., enforces that the same level set

containing c∗ (where α1(c∗) = 1) must also contain at least one of the

variables q+
1 or q−1 (where β1(q+

1 ) = 1 and β1(q−1 ) = 1). The assignment p1 =
true, p2 = true, p3 = false satisfies the instance (p1∨p2∨¬p3)∧(¬p1∨p2∨p3).
The corresponding Γ ∪ {α > β}-satisfying hierarchical model in H(2) is

({q+
1 , a

1
1}, {q+

2 , a
1
2}, {q−3 , a1

3}, {c∗}).

Theorem 7.3: NP-completeness of PCP for Hierarchical Models

The H(t) Preference Consistency Problem is NP-complete for any t > 1,

even if we restrict the preferences to include only one strict preference

statement in LA≥.

Proof. Checking whether a hierarchical model satisfies a set of preference state-

ments is polynomial in the number of preference statements and variables, and
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thus Preference Consistency is in NP.

Let Γ ⊆ LA≥ and ϕ ∈ LA≥ be an instance of the Deduction Problem for |=⊕H(t)

over the hierarchical structure 〈A,⊕,V〉. By Theorem 7.1, Γ 6|=⊕H(t) ¬ϕ if and

only if Γ ∪ {ϕ} is H(t)-consistent. This result gives us an easy reduction from

the Deduction Problem to the Consistency Problem. Since, by Theorem 7.2,

deciding Γ 6|=⊕H(t) ¬ϕ is NP-complete, deciding consistency for Γ ∪ {ϕ} is NP-

complete.

7.3 Solving H(t)-Consistency with t > 1

In the previous section, we established that H(t)-PDP is coNP-complete and

that H(t)-PCP is NP-complete for any t ≥ 2. A greedy algorithm can solve the

special cases H(1)-PCP and H(1)-PDP in time O(|V| · |Γ|) as described in Sec-

tion 6.3.3. The correctness of this algorithm strongly depends on the fact that

all maximal Γ(≥)-satisfyingH(1) hierarchical models contain the same variables

and (strictly) satisfy the same statements in Γ. This only holds for the class

H(1), and not for the general case of H(t) as Example 7.5 below shows. In the

remainder of this chapter, we concentrate on finding efficient solutions for the

NP-complete H(t)-Consistency Problem for t ≥ 2. In the following, we assume

that the operator ⊕ is an associative, commutative and strictly monotonic oper-

ation (x ⊕ y > z ⊕ y if x > z). Strict monotonicity is explicitly needed in some

of the results.

Example 7.5

Suppose as before, a user wants to buy a new prepay mobile phone SIM

card and considers different providers based on the price per 10MB data

usage (d), the price per text message (m) and the price per minute for calls

to the same provider (c). These prices of d, m and c can be combined by

the operator⊕ which is the ordinary addition. For any of the four price

categories, the lower the price is the better it is for the customer. Consider

four different options (providers) α, β, γ and δ with the following prices in

cent.
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α β γ δ

d 18 15 13 14

m 15 17 15 13

c 10 11 14 15

Then the model H = ({m, c}) satisfies γ ≺⊕H β ≡⊕H δ ≺⊕H α. That is, under

the assumption that the price per text message and the price per minute

for calls are the only relevant features and are equally important option

α is the best, followed by β and δ which are equally good, and then γ.

The model H ′′ = ({c}, {m}, {d}) satisfies δ ≺⊕H′′ γ ≺⊕H′′ β ≺⊕H′′ α. Thus,

under the assumption that the price per minute for calls is more important

than the price per text message which is more important than the price per

10MB data usage, option α is the best, followed by β, then γ, and then

δ. Both are maximal models of Γ = {δ ≤ β, γ ≤ α} as they cannot be

extended. However, the two models do not include the same variables and

H ′′ satisfies δ ≤ β strictly, while H is indifferent between β and δ.

7.3.1 MILP Formulation

We describe a Mixed Integer Linear Programming (MILP) formulation for H(t)-
PCP with hierarchical structure 〈A,⊕,V〉 and preference statements Γ ⊆ LA,

where the domain D of the variables is integral and ⊕ is the standard addition

on integers. Let the number of variables in V be n = |V|. For ϕ ∈ Γ, we

denote the alternatives involved by αϕ and βϕ, such that ϕ is either the strict

statement αϕ > βϕ or the non-strict statement αϕ ≥ βϕ. In the case that there

exists a feasible solution for the constricted constraints, we can conclude that Γ
is consistent.

Assigning Variables to Level Sets: We introduce a matrix of Boolean variables

Y ∈ {0, 1}n×n such that yi,j = 1 if and only if variable i is included in the j-th

level set of the hierarchical model corresponding to the MIP solution. For H(t)-
PCP, every variable is contained in at most one level set and the cardinality of

the level sets is bounded by t.

n∑
j=1

yi,j ≤ 1 and
n∑
j=1

yj,i ≤ t ∀i = 1, . . . , n. (7.1)

Maintaining Values of ⊕-combined Level Sets: The matrix of integer vari-
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ables X ∈ Qn×|Γ| maintains the degree of support/opposition of the statements

in the level sets. That is, xj,ϕ = ⊕
c∈Cj αϕ(c) −⊕c∈Cj βϕ(c) for statement ϕ ∈ Γ

and the j-th level set Cj.

n∑
i=1

yi,j(αϕ(ci)− βϕ(ci)) = xj,ϕ ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (7.2)

Next, we define the upper and lower bounds Mϕ and mϕ on variables xj,ϕ, such

that Mϕ ≥ xj,ϕ ≥ mϕ for all j = 1, . . . , n and ϕ ∈ Γ. These will be used to

linearise implication constraints.

mϕ = min
E⊆V

∑
c∈E

αϕ(c)− βϕ(c) =
∑

c∈V,αϕ(c)<βϕ(c)
αϕ(c)− βϕ(c),

Mϕ = max
E⊆V

∑
c∈E

αϕ(c)− βϕ(c) =
∑

c∈V,αϕ(c)>βϕ(c)
αϕ(c)− βϕ(c).

Maintaining the Sign of Level Sets (Supporting, Opposing and Indifferent):

The Boolean variables s<0
j,ϕ, s

>0
j,ϕ and s=0

j,ϕ express the sign for xj,ϕ. This is, s<0
j,ϕ = 1

if and only if xj,ϕ < 0, s>0
j,ϕ = 1 if and only if xj,ϕ > 0, and s=0

j,ϕ = 1 if and only if

xj,ϕ = 0. Since exactly one of the relations holds,

s<0
j,ϕ + s>0

j,ϕ + s=0
j,ϕ = 1 ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (7.3)

To enforce the equivalences between variables s<0
j,ϕ, s

>0
j,ϕ, s=0

j,ϕ and xj,ϕ, we make

use of the bounds Mϕ and mϕ and the integrity of the variables. In particu-

lar, we utilise the fact that the lowest positive value xj,ϕ can take is 1 and the

highest negative value is −1. It is enough to enforce three implications. The

equivalences then follow by equation 7.3.

For the implication s<0
j,ϕ = 1⇒ xj,ϕ < 0, we set the constraint

xj,ϕ + s<0
j,ϕ(Mϕ + 1) ≤Mϕ ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (7.4)

For the implication s>0
j,ϕ = 1⇒ xj,ϕ > 0, we set the constraint

xj,ϕ + s>0
j,ϕ(mϕ − 1) ≥ mϕ ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (7.5)
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Finally, we enforce s=0
j,ϕ = 1⇒ xj,ϕ = 0 by

xj,ϕ − (1− s=0
j,ϕ)mϕ ≥ 0 ∀j = 1, . . . , n, ∀ϕ ∈ Γ and (7.6)

xj,ϕ − (1− s=0
j,ϕ)Mϕ ≤ 0 ∀j = 1, . . . , n, ∀ϕ ∈ Γ. (7.7)

The equivalences, s<0
j,ϕ = 1 if and only if xj,ϕ < 0, s>0

j,ϕ = 1 if and only if xj,ϕ > 0,

and s=0
j,ϕ = 1 if and only if xj,ϕ = 0, follow from constraint 7.3 together with

constraints 7.4 - 7.7.

Satisfaction of Strict and Non-strict Statements: Following the definition

of <⊕H , the hierarchical model corresponding to the variable assignments of Y

satisfies a non-strict statement ϕ in Γ if and only if

(I′) for all i = 1, . . . , n, s=0
i,ϕ = 1; or

(II′) there exists some i ∈ {1, . . . , n} such that s>0
i,ϕ = 1 and for all 1 ≤ j < i,

s=0
j,ϕ = 1.

Also, a strict statement ϕ in Γ is satisfied if and only if (II′) holds.

It is easy to check that conditions (I′) or (II′) hold for all ϕ ∈ Γ if and only if

i−1∑
j=1

s>0
j,ϕ ≥ s<0

i,ϕ ∀i = 1, . . . , n, ∀ϕ ∈ Γ. (7.8)

To show this equivalence, assume first that condition (I′) holds for some ϕ ∈ Γ.

Then
i−1∑
j=1

s>0
j,ϕ = 0 and s<0

i,ϕ = 0 for all i = 1, . . . , n and ϕ ∈ Γ. Now assume that

condition (II′) holds for some ϕ ∈ Γ, i.e., there exists some i ∈ {1, . . . , n} such

that s>0
i,ϕ = 1 and for all 1 ≤ j < i, s=0

j,ϕ = 1. Suppose, there exists k ∈ {1, . . . , n}

such that s<0
k,ϕ = 1. Then k > i. Thus,

k−1∑
j=1

s>0
j,ϕ ≥ 1 and s<0

k,ϕ = 1.

Conversely, if Constraint 7.8 holds, then there exists no i and ϕ for which s>0
i,ϕ =

1 and
k−1∑
j=1

s>0
j,ϕ = 0. Thus, either (I′) or (II′) holds.

Inequality 7.8 yields the satisfaction of Γ(≥). We enforce satisfaction of all strict

statements in Γ, by including also the following constraint:

n∑
j=1

s>0
j,ϕ ≥ 1 ∀ϕ ∈ Γ ∩ LA>. (7.9)

Alternative Constraints: The constraints 7.1- 7.9 form a rather simple MILP
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formulation for H(t)-PCP. Constraints 7.3- 7.9 could be replaced by sums with

extreme weights to enforce a lexicographic order on the level sets. Let L > 0 be

sufficiently large; then the following two inequalities can be used to replace 7.3-

7.9.
n∑
j=1

xj,ϕ
Lj
≥ 0 ∀ϕ ∈ Γ ∩ LA≥. (7.10)

n∑
j=1

xj,ϕ
Lj

> 0 ∀ϕ ∈ Γ ∩ LA>. (7.11)

However, these inequalities can lead to numerical difficulties for a MILP solver.

This is true even for small instances with integral variables of small domains

and a sophisticated choice for L.

Also, decision variables yi,j could be substituted by y′i,j such that y′i,j = 1 if and

only if i is included in a level set with index ≥ j. For each j, the three variables

s<0
j,ϕ, s

>0
j,ϕ, s

=0
j,ϕ ∈ {0, 1} might be replaceable by only one variable sj,ϕ ∈ {0, 1, 2},

e.g., so that sj,ϕ = 0 corresponds to s<0
j,ϕ = 1, sj,ϕ = 1 corresponds to s>0

j,ϕ = 1
and sj,ϕ = 2 corresponds to s=0

j,ϕ = 1. However, since our MILP is a satisfaction

problem, not an optimization problem, it is not clear whether any of these mea-

sures improve the formulation. After trying various Constraint Programming

models with set or binary variables, different versions of constraints and differ-

ent search heuristics, the MILP formulation using inequalities 7.1- 7.9 seemed

most promising among this class of approaches.

7.3.2 Recursive Algorithms

In the following, we describe two recursive search algorithms forH(t)-PCP. The

algorithms are based on properties of consistency that can be used to prune

the search space when searching for a satisfying preference model. Both try to

construct a Γ-satisfying hierarchical model by sequentially adding new level sets

that do not oppose any preference statement that is not strictly satisfied so far.

This implies that, during the algorithm the current model always satisfies Γ(≥),

the non-strict version of Γ. We backtrack when the current model cannot be

extended further and the model does not satisfy all strict preference statements.

The approaches aim to reduce the number of Γ(≥)-satisfying hierarchical models

constructed by the algorithm. In particular, they try to identify and ignore

level sets which cannot lead to a Γ-satisfying hierarchical model although not

opposing the preference statements.
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Utilising Sequences of Singleton Level Sets: The first approach is based on

the idea of including as many singleton level sets as possible in the constructed

model. This seems computationally less challenging since a Γ(≥)- satisfying

sequence of singleton level sets that is maximal in the number of level sets can

be found in time O(|V| · |Γ|) (see Section 6.3.3). In the following, we show that

for strictly monotonic operators ⊕ the recursive search algorithm never needs

to backtrack over the choice of such singleton sequences. We first establish the

following property for strictly monotonic operators ⊕ which can be shown by a

short technical proof.

Lemma 7.6. Let⊕ be an associative, commutative and strictly monotonic operator
on the common domain D of the variables V, and let X, Y ⊆ V be sets of variables
with X ⊆ Y . Let α, β ∈ A be alternatives such that X is indifferent under α and
β, i.e., α ≡⊕X β. Then α �⊕Y β if and only if α �⊕Y \X β. Hence, α ≡⊕Y β if and only
if α ≡⊕Y \X β.

Proof. Let α �⊕Y β, i.e.,
⊕
c∈Y α(c) >

⊕
c∈Y β(c). Since ⊕ is associative and

commutative, and X ⊆ Y , this is equivalent to
⊕
c∈Y \X α(c) ⊕ ⊕

c∈X α(c) >⊕
c∈Y \X β(c) ⊕⊕c∈X β(c). By strict monotonicity of ⊕ and because X is indif-

ferent under α and β (and thus,
⊕
c∈X α(c) = ⊕

c∈X β(c)), this is equivalent to⊕
c∈Y \X α(c) >⊕

c∈Y \X β(c), i.e., α �⊕Y \X β. The same argument implies α ≺⊕Y β
if and only if α ≺⊕Y \X β. Both equivalences together yield α ≡⊕Y β if and only if

α ≡⊕Y \X β.

Note that the previous proof explicitly uses the strict monotonicity of the oper-

ator ⊕.

Consider the (non-commutative) combination H ◦′H ′ of two hierarchical mod-

els H = (C1, . . . , Cl) and H ′ = (C ′1, . . . , C ′k) in H(t) by (C1, . . . , Cl, (C ′1 \
σH), . . . , (C ′k \ σH)), where σH = ⋃

i=1,...,l Ci is used as an abbreviation of the set

σ(H) of variables involved in the model H. Note that for hierarchical models,

level sets are defined to be non-empty, however, sets C ′i\σH might be empty. We

thus define H ◦H ′ to be the sequence H ◦′H ′ = (C1, . . . , Cl, (C ′1 \ σH), . . . , (C ′k \
σH)) without any empty sets. It is easy to see that H ◦H ′ is a hierarchical model

in H(t). Furthermore, ◦ is a composition operator (see Definition 4.1).

Lemma 7.7. The operator ◦ : H(t) × H(t) −→ H(t) on hierarchical models is a
composition operator, i.e.,

1) H ◦ (H ′ ◦H ′′) = (H ◦H ′) ◦H ′′, (associativity)
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2) H ◦H = H, (idempotence)

3) If H1 = H2 ◦H and H2 = H1 ◦H ′, then H1 = H2. (asymmetry)

for all models H1, H2, H,H
′, H ′′ ∈ H(t).

Proof. Let H1, H2, H,H
′, H ′′ ∈ H(t) be hierarchical models with H =

(C1, . . . , Ck), H ′ = (C ′1, . . . , C ′l) and H ′′ = (C ′′1 , . . . , C ′′m). Then H ◦ H ′ =
(C1, . . . , Cl, (C ′1 \ σH), . . . , (C ′k \ σH)) without empty sets, and since 1 ≤ |Ci| ≤ t

and 1 ≤ |C ′i \ σH | ≤ |C ′i| ≤ t (for C ′i \ σH in H ◦H ′), we have H ◦H ′ ∈ H(t).

Associativity: Consider H ◦′ (H ′ ◦′ H ′′). Then (H ′ ◦′ H ′′) = (C ′1, . . . , C ′l , (C ′′1 \
σH′), . . . , (C ′′m \ σH′)). Thus, H ◦′ (H ′ ◦′ H ′′) = (C1, . . . , Ck, (C ′1 \ σH), . . . , (C ′l \
σH), (C ′′1 \σH′)\σH , . . . , (C ′′m\σH′)\σH). Furthermore, H◦′H ′ = (C1, . . . , Ck, (C ′1\
σH), . . . , (C ′l \ σH)), and thus (H ◦′ H ′) ◦′ H ′′ = (C1, . . . , Ck, (C ′1 \ σH), . . . , (C ′l \
σH), (C ′′1 \σH◦′H′), . . . , (C ′′m \σH◦′H′)). Since σH◦′H′ = σH ∪σH′, H ◦′ (H ′ ◦′H ′′) =
(H ◦′ H ′) ◦′ H ′′. Thus, for the composition ◦, H ◦ (H ′ ◦H ′′) = (H ◦H ′) ◦H ′′.

Idempotence: We have H ◦H = H by definition of ◦, since for H = (C1, . . . , Ck)
all sets Ci \ σH are empty and thus left out of the sequence H ◦H.

Asymmetry: Suppose H = H ′ ◦ H1 and H ′ = H ◦ H2. Then by definition of

◦, H = (C ′1, . . . , C ′l , . . . ), i.e., H starts with the sequence of level sets in H ′.

Similarly, H ′ = (C1, . . . , Ck, . . . ). Thus, C1 = C ′1, C2 = C ′2, and so on. Hence,

k = l and H = H ′.

The following proposition shows how the satisfaction of preference statements

Γ from H ′ persists under combination with sequences of singleton level sets

that only satisfy Γ(≥).

Proposition 7.8. Let Γ ⊆ LA, and ⊕ an associative, commutative and strictly
monotonic operator on the variable’s domain. If H = (c1, . . . , cl) is a Γ(≥)- satis-
fying model in H(1) and H ′ = (C ′1, . . . , C ′k) is a Γ-satisfying model in H(t), then
H ◦H ′ is a Γ-satisfying model in H(t).

Proof. We show that H ◦ H ′ satisfies Γ(≥) and strictly satisfies the preference

statements that H ′ strictly satisfies. Hence, H ◦H ′ is a Γ-satisfying hierarchical

model in H(t).

Recall that a preference statement ϕ is strictly satisfied when there exists a

level set C supporting ϕ, i.e., αϕ �C βϕ, and all preceding level sets C ′ are

indifferent under ϕ, i.e., αϕ ≡C′ βϕ. Hence, the preference statements in Γ that
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are strictly satisfied by H = (c1, . . . , cl) are also strictly satisfied by H ◦ H ′ =
(c1, . . . , cl, (C ′1 \ σH), . . . , (C ′k \ σH)). Let Γ′ be the set of remaining preference

statements that are not strictly satisfied by H.

Since H satisfies Γ(≥), H is indifferent under all statements in ϕ ∈ Γ′, i.e.,

αϕ(ci) = βϕ(ci) for all 1 ≤ i ≤ l. Consider an arbitrary level set C in H ′ and a

preference statement ϕ ∈ Γ′. Repeatedly applying Lemma 7.6 for the singleton

level sets in σH∩C in connection with a level set C in H ′ yields: αϕ ∼⊕C βϕ if and

only if αϕ ∼⊕C\σH βϕ, where ∼ is one of the relations �, ≡ or ≺. Thus, the level

sets C ′i \ σH in H ◦H ′ have the same relation towards statements ϕ ∈ Γ′ as the

level sets C ′i in H ′. Since the initial singleton sequence in H ◦H ′ is indifferent

under preference statements ϕ ∈ Γ′, H ◦H ′ satisfies ϕ if and only if H ′ satisfies

ϕ. Also, all statements Γ \ Γ′ are strictly satisfied by H ◦ H ′. Hence, H ◦ H ′

satisfies Γ(≥) and strictly satisfies all statements in Γ that H ′ strictly satisfies.

Therefore, H ◦H ′ satisfies Γ.

The statement of Proposition 7.8, can be seen as a weak version of strong com-

positionality of preference statements LA for the composition operator ◦ on

models H(t). The Γ-satisfaction of a model is preserved under combination

with a |=∗ model of Γ in H(1). In general statements in LA are not strongly

compositional for models H(t), and in fact non-strict statements are not even

compositional as the following example shows.

Example 7.6

Consider variables V = {c, d, e, f} expressing ratings for cost, distance,

experience and food quality of restaurants A = {α, β}. Let the operator

⊕ be the ordinary addition on the integers by which the ratings can be

combined. Assume the higher the rating is, the better the alternative with

respect to the corresponding feature.

α β

c 3 5

d 5 3

e 1 2

f 2 1
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In this context, the two model H = ({c, d}) and H ′ = ({d, e}) both satisfy

the non-strict statement α ≥ β in LA. That is, no matter whether cost and

distance are considered together or experience and distance, the restaurant

α is preferred to β. However, the composition H ◦H ′ = ({c, d}, {e}), which

incorporates the second viewpoint into the first, satisfies α < β, and thus

does not satisfy α ≥ β. Hence, α ≥ β is not generally compositional under

addition for hierarchical models H(t) with t > 1. Furthermore, H |=∗

α > β, since the extension ({c, d}, {f}) satisfies the strict statement. Also,

H ′ |= α > β. However, the composition H ◦ H ′ = ({c, d}, {e}) satisfies

α < β. Hence, α > β is not strongly compositional under addition for

hierarchical models H(t) with t > 1.

Proposition 7.8 immediately leads to the next result.

Theorem 7.4: Singleton Set Sequences in Γ-Satisfying Models

Let H be a maximal H(1)-model of Γ(≥), i.e., H ∈ H(1) satisfies Γ(≥) and

cannot be extended by another singleton level set without opposing some

statement in Γ. If Γ is H(t)-consistent, then there exists a Γ-satisfying

model in H(t) with H as initial sequence.

Proof. Suppose Γ is H(t)-consistent. Then there exists a model H ′ of Γ. By

Proposition 7.8, H ◦H ′ satisfies Γ. Also, H ◦H ′ has H as initial sequence.

Based on Theorem 7.4, we describe the algorithm PC-check(V ,Γ,⊕, t,) that

solves H(t)-PCP by trying to construct a Γ-satisfying hierarchical model. This

method is summarised in the algorithm below. After finding an initial singleton

sequence (c1, . . . , ck) that is maximal while satisfying Γ(≥) (in time O(|V| · |Γ|)
by a greedy algorithm, see Section 6.3.3), we consider possible (non-opposing)

level sets C of size 2 ≤ |C| ≤ t. Let Γ′ be the set of preference statements

in Γ that are not strictly satisfied by H = (c1, . . . , ck, C). We try to extend

the sequence H by another Γ′-satisfying hierarchical model. We construct this

extending model by recursively calling the method for the subproblem with

statements Γ′ and variables V ′ = V − {c1, . . . , ck} − C. If no such extension

exists (that satisfies Γ), we backtrack over the last chosen level set C and try a

new level set. Note that by Theorem 7.4, we never have to backtrack over the

choice of singleton level sets, which can be a significant advantage over solving

the MILP model. As soon as the currently considered sequence in the algo-
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rithm satisfies Γ, we stop and return the sequence, showing that the instance

is H(t)-consistent. If no Γ-satisfying sequence can be found after exploiting all

possible (Γ(≥)-satisfying) hierarchical models, we stop and return an empty sets

signifying that the instance is H(t)-inconsistent.

Algorithm 7.1: PC-check(V ,Γ,⊕, t,)

1. H ← (c1, . . . , ck) some maximal H(1)-model of Γ(≥)

2. IF ( H � Γ ) THEN
3. RETURN H and STOP.
4. FOR ALL C ⊆ V − {c1, . . . , ck} with 2 ≤ |C| ≤ t and

αϕ <
⊕
C βϕ for all ϕ ∈ Γ with αϕ ≡⊕H βϕ DO

5. H ′ ← (c1, . . . , ck, C)
6. IF ( H ′ � Γ ) THEN
7. RETURN H ′ and STOP.
8. ELSE Γ′ = {ϕ ∈ Γ | αϕ ≡⊕H′ βϕ}
9. V ′ = V − σ(H ′)

10. H ′′ ← H ′◦ PC -check(V ′,Γ′,⊕, t,)
11. IF ( H ′′ � Γ ) THEN
12. RETURN H ′′ and STOP.
13. RETURN ∅ and STOP.

Maintaining Conflicting Sets: In the following, we extend the algorithm PC-

check(V ,Γ,⊕, t) by maintaining conflicting sets that cannot be contained in the

later level sets, and thus reduce the number of backtracks. Proposition 7.9

shows that the satisfaction of Γ persists in a certain case for a hierarchical

model H ′ when combining with a hierarchical model H that extends an ini-

tial sequence of level sets of H ′ by one more level set and only satisfies Γ(≥).

Proposition 7.9. Let (〈A,⊕,V〉,Γ) be an instance of H(t)-PCP that is H(t)-
consistent. Let H = (C1, . . . , Ck, B) be a Γ(≥)-satisfying model in H(t), and let
H ′ = (C1, . . . , Ck, Ck+1, . . . , Cl) be a Γ-satisfying hierarchical model in H(t) with
B ⊆ Cj for some k + 1 ≤ j ≤ l. Then H ◦ H ′ = (C1, . . . , Ck, B, Ck+1, . . . , (Cj \
B), . . . , Cl) is a Γ-satisfying hierarchical model in H(t).

Proof. We show that the model H ◦H ′ = (C1, . . . , Ck, B, Ck+1, . . . , Cj−1, Cj \ B,
Cj+1, . . . , Cl) satisfies Γ(≥) and strictly satisfies all statements that are strictly
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satisfied by H ′. Hence, H ◦H ′ is a Γ-satisfying hierarchical model in H(t).

A preference statement ϕ is strictly satisfied when there exists a level set C

supporting ϕ, i.e., αϕ �C βϕ, and all preceding level sets C ′ are indifferent

under ϕ, i.e., αϕ ≡C′ βϕ. Hence, the preference statements in Γ that are strictly

satisfied by H = (C1, . . . , Ck, B) are also strictly satisfied by H ◦ H ′. In the

following, we consider all remaining preference statements. Let Γ′ be the set of

preference statements in Γ that are not strictly satisfied by H.

Since H satisfies Γ(≥), the sequence (C1, . . . , Ck, B) is indifferent under all

statements in Γ′, i.e.,
⊕

c∈C αϕ(c) = ⊕
c∈C βϕ(c) for all ϕ ∈ Γ′ and C ∈

{C1, . . . , Ck, B}. The level sets Ci with k + 1 ≤ i ≤ l and i 6= j are level sets

in both H ′ and H ◦H ′. Hence, for the satisfaction of statements in Γ′, we only

need to compare the level set Cj in H ′ to the level set Cj \B in H ◦H ′. Consider

a preference statement ϕ ∈ Γ′. Since B is indifferent under ϕ, by Lemma 7.6,

αϕ ∼⊕Cj βϕ if and only if αϕ ∼⊕Cj\B βϕ, where ∼ is one of the relations �, ≡ or ≺.

Thus, for ϕ ∈ Γ′ all level sets Ck+1, . . . , Cl in H ′ have the same relation towards

ϕ as the level sets Ck+1, . . . , Cj−1, Cj \ B,Cj+1, . . . , Cl in H ◦ H ′. Since the ini-

tial sequence (C1, . . . , Ck, B) is indifferent under preference statements ϕ ∈ Γ′,
H ◦H ′ satisfies ϕ if and only if H ′ satisfies ϕ. Furthermore, all statements Γ \Γ′

are strictly satisfied by H ◦ H ′. We have shown that H ◦ H ′ satisfies Γ(≥) and

strictly satisfies all preference statements that H ′ strictly satisfies.

Reformulating Proposition 7.9 yields the following statement.

Theorem 7.5: Conflicting Sets

Let H = (C1, . . . , Ck, B) be a Γ(≥)-satisfying hierarchical model in H(t).
If there exists no extension (C1, . . . , Ck, B, Ck+1, . . . , Cl) of H in H(t)
that satisfies Γ, then for all Γ-satisfying hierarchical models H ′ =
(C1, . . . , Ck, Ck+1, . . . , Cl) in H(t), we have B * Cj for all k + 1 ≤ j ≤ l.

This proposition characterises the conflicting sets B that are maintained in the

second recursive approach. By Theorem 7.5, no Γ-satisfying hierarchical model

that extends (C1, . . . , Ck) can contain the conflicting set B. Thus, at a point

of the algorithm where we backtrack because no Γ-satisfying extension of the

current hierarchical model can be found, we add the last considered level set

to the list of conflicting sets. We then choose a new next level set that does not

contain any conflicting set. This extension of the algorithm PC-check(V ,Γ,⊕, t)
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is given as the algorithm PC-check(V ,Γ,⊕, t,S = ∅, s) below. Here, although

reducing the search space, we have to maintain a list of conflicting sets which

can grow exponentially large. Thus, it is not obvious if maintaining conflicting

sets is advantageous. We introduce the additional parameter s which is a car-

dinality bound on the size of the conflicting sets. Only conflicting sets C with

|C| ≤ s are maintained, so that the space needed is O(s ·
(
n
s

)
).

Algorithm 7.2: PC-check(V ,Γ,⊕, t,S = ∅, s )

1. H ← (c1, . . . , ck) some maximal H(1)-model of Γ(≥)

2. IF ( H � Γ ) THEN
3. RETURN H and STOP.
4. FOR ALL C ⊆ V − {c1, . . . , ck} with 2 ≤ |C| ≤ t and

αϕ <
⊕
C βϕ for all ϕ with αϕ ≡⊕H βϕ

such that there 6 ∃ S ∈ S with S ⊆ C DO
5. H ′ ← (c1, . . . , ck, C)
6. IF ( H ′ � Γ ) THEN
7. RETURN H ′ and STOP.
8. ELSE Γ′ = {ϕ ∈ Γ | αϕ ≡⊕H′ βϕ}
9. V ′ = V − σ(H ′)

10. H ′′ ← H ′◦ PC -check(V ′,Γ′,⊕, t,S, s)
11. IF ( H ′′ � Γ ) THEN
12. RETURN H ′′ and STOP.
13. ELSE IF ( |C| ≤ s ) THEN
14. S ← S ∪ {C}
15. RETURN ∅ and STOP.
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Example 7.7

Consider a H(3)-PCP instance with the following variables c1, . . . , c5 and

statements on the alternatives α, β, γ, δ given by Γ = {α ≤ β, β ≤ γ, γ < δ}.

α ≤ β ≤ γ < δ

c1 1 0 0 0

c2 0 2 2 2

c3 1 1 0 1

c4 0 2 1 1

c5 2 0 1 0

Let ⊕ be the standard addition on integers. Suppose, in the first step

PC-check finds the maximal singleton sequence (c2, c1) (which cannot be

extended by any other variable without violating Γ(≥)). Then the algo-

rithm will in turn consider sets {c3, c4}, {c3, c5}, {c4, c5} and {c3, c4, c5}.
The sequences c2, c1, {c3, c4} and c2, c1, {c4, c5} violate Γ(≥). The sequence

c2, c1, {c3, c5} satisfies Γ(≥) but cannot be extended to satisfy Γ. In PC-

check(V ,Γ,⊕, t,S, s), the set {c3, c5} is added to the conflicting sets S and

thus the set {c3, c4, c5} does not have to be checked (by Proposition 7.9).

PC-check(V ,Γ,⊕, t) finds that c2, c1, {c3, c4, c5} violates Γ(≥). Thus none of

the possible extending sets leads to a Γ-satisfying sequence and “Incon-

sistent” is returned. Note that PC-check does not have to backtrack over

the choice of variables in the initial singleton set sequence c2, c1 (by Theo-

rem 7.4).

7.4 Experimental Runtime Comparisons

In our experiments, we compare the approaches from Section 7.3.1 and 7.3.2

for solving PCP by their running time. Here, the MILP formulation functions as a

baseline and is expected to be outperformed by the two recursive approaches as

they directly exploit the problem structure to perform less backtracks in a way

that is not recognized by the CPLEX solver that we use to solve the MILP formu-

lation. Note that it is not obvious how to incorporate the pruning of the search

space that is performed by the recursive algorithms, in a MILP model in the

form of constraints or heuristics (if indeed it is possible at all). We investigate

the degree of improvement of the recursive algorithms towards the rather sim-
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ple MILP formulation and the relation of the recursive algorithms towards each

other. Though PC-check(V ,Γ,⊕, t,S, s) prunes the search space further than

PC-check(V ,Γ,⊕, t), the list of maintained conflicting sets can grow extremely

large. Thus, it is not obvious if maintaining conflicting sets is advantageous.

Instances: For our experiments, we considered different instance sizes in or-

der to observe the effect on the running time by varying the number of vari-

ables n and the number of preference statements g. For the lack of real world

data, we generated 50 instances uniformly at random with variables each with

domain {0, 1, 2, 3, 4, 5} for each of the problem sizes n ∈ {10, 15, . . . , 35} and

g ∈ {10, 15, . . . , 50}, where we fix the number of alternatives that the prefer-

ence statements are based on to m = 25.

First an n × m matrix is generated that gives the values of the variables for

the alternatives. We next draw g ordered pairs of alternatives (αi, αj) with

i < j uniformly at random (without repetition) such that the corresponding

preference statement αi ≥ αj or αi > αj coincides with the linear order α1 >

· · · > αm. This way, we avoid cycles in the statements, which trivially lead to

inconsistency. The first dg/2e statements are handles as strict statements, the

remaining statements are non-strict statements. Note that not all alternatives

generated are involved in preference statements. Thus, m does not have a direct

influence on the size of the search space or the running time.

Implementation: We implemented all three approaches in Java Version 1.8 us-

ing the IBM ILOG CPLEX (version 12.6.2) library for the MILP formulation. All

experiments were conducted independently on a 2.66Ghz quad-core processor

with 12GB memory.

We choose ⊕ as the standard addition on the integers as in Section 7.3.1. To

reduce the number of experiments, we allow the cardinality bound on the level

sets to be t = n, the number of variables, and fix the cardinality bound on the

maintained conflicting sets to s = 5 (which gives the bound |S| ≤
(
n
s

)
≤
(

35
5

)
=

324632). Since H(k′) ⊆ H(k) for all k′ < k, we expect that the running times

would be lower for smaller t. Also, H(k) = H(n) for all k ≥ n, i.e., the running

times are the same for bigger t. For the recursive algorithms, we enumerate the

next level sets with lower cardinality before ones with higher cardinality, and

level sets containing variables with smaller indexes before ones with higher

indexes.

Experimental Results: As expected, solving the MILP formulation of PCP (as
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presented in Section 7.3.1) by the CPLEX solver is much slower than by the two

recursive algorithms PC-check (as presented in Section 7.3.2), see Table 7.1.

However, it is remarkable how quickly the ratio between the mean times of

solving the MILP and PC-check grows with the number of statements and vari-

ables in the instances.

Table 7.1: Mean running times in seconds to solve PCP with the MILP formu-
lation over 25 instances and with PC-check over 50 instances.

g = n = 10 n = 15 n = 20

10

PC-check(V ,Γ,⊕, t) 0.011 0.01 0.04
PC-check(V ,Γ,⊕, t,S, s) 0.003 0.01 0.03
MILP 0.22 10.53 149.81
ratio: MILP/PC-check ≥ 20 ≥ 1053 ≥ 3745.25

15

PC-check(V ,Γ,⊕, t) 0.003 0.01 0.29
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.01 0.28
MILP 0.22 220.28 >41472
ratio: MILP/PC-check ≥ 73.33 ≥ 22028 ≥ 143006.89

The two algorithms PC-check(V ,Γ,⊕, t) and PC-check(V ,Γ,⊕, t,S, s) show sim-

ilar behaviour of running times for different instance sizes. Figure 7.1 shows

some of the running times for PC-check(V ,Γ,⊕, t) and PC-check(V ,Γ,⊕, t,S, s).
Here, we can see that the running times increase with the number of variables

n and the number of statements g.
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Figure 7.1: Mean running times in seconds of PC-check(V ,Γ,⊕, t) (left) and
PC-check(V ,Γ,⊕, t,S, s) (right).

For time reasons experiments were only run for 5 instances (instead of 50) for

some larger instance sizes. This may explain the irregularity at n = 35, g = 30.

Table 7.2 shows all running times for algorithms PC-check.

185



7.4 Experimental Runtime Comparisons

Table 7.2: Mean times of PC-check in seconds fixing m = 25 and ratios of
the mean times between PC-check(V ,Γ,⊕, t) and PC-check(V ,Γ,⊕, t,S, s)
rounded to the nearest hundredth. *Mean time over 5 instances only. (All re-
maining are mean times over 50 instances.)

g = n = 10 n = 15 n = 20 n = 25 n = 30 n = 35

10
PC-check(V ,Γ,⊕, t) 0.011 0.01 0.04 0.38 14.9 0.005
PC-check(V ,Γ,⊕, t,S, s) 0.003 0.01 0.03 0.36 14.16 0.003
ratio 3.67 1 1.33 1.06 1.05 1.67

15
PC-check(V ,Γ,⊕, t) 0.003 0.01 0.29 1.27 17.1 522.26
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.01 0.28 1.21 16.34 500.13
ratio 3 1 1.04 1.05 1.05 1.04

20
PC-check(V ,Γ,⊕, t) 0.006 0.02 0.42 9.41 180.83 2165.83
PC-check(V ,Γ,⊕, t,S, s) 0.003 0.02 0.42 9.25 182.09 2159.93
ratio 2 1 1 1.02 0.99 1.00

25
PC-check(V ,Γ,⊕, t) 0.003 0.02 0.51 17.67 442.79 5393.47*
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.01 0.51 17.81 452.74 5377.27*
ratio 3 2 1 0.99 0.98 1.00

30
PC-check(V ,Γ,⊕, t) 0.003 0.02 0.53 18.27 586.16 6.57*
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.02 0.54 18.47 595.09 6.32*
ratio 3 1 0.98 0.99 0.98 1.04

35
PC-check(V ,Γ,⊕, t) 0.003 0.02 0.54 20.09 560.51 16796.17*
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.02 0.54 20.6 567.16 16503.98*
ratio 3 1 1 0.98 0.99 1.02

40
PC-check(V ,Γ,⊕, t) 0.003 0.02 0.56 21.24 729 24494.72*
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.02 0.57 21.45 736.87 24269.56*
ratio 3 1 0.98 0.99 0.99 1.01

45
PC-check(V ,Γ,⊕, t) 0.003 0.02 0.58 22.08 744.17 23180.91*
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.02 0.57 21.86 749.54 22886.84*
ratio 3 1 1.02 1.01 0.99 1.01

50
PC-check(V ,Γ,⊕, t) 0.003 0.02 0.57 21.62 776 27084.24*
PC-check(V ,Γ,⊕, t,S, s) 0.001 0.02 0.57 21.51 795 26955.88*
ratio 3 1 1 1.01 0.98 1.00

A detailed analysis shows that in 57% of the measured instance sizes

PC-check(V ,Γ,⊕, t) is slower than PC-check(V ,Γ,⊕, t,S, s). The ratios

of the mean running times of the two algorithms demonstrate that PC-

check(V ,Γ,⊕, t) is at most 3.67 times slower than PC-check(V ,Γ,⊕, t,S, s) and

PC-check(V ,Γ,⊕, t,S, s) is at most 1.03 times slower than PC-check(V ,Γ,⊕, t).
This small difference between the running times of the two algorithms indi-

cates that for these instances reducing the number of backtracks by ruling out

conflicting sets (of size < 5) is not very worthwhile.

Table 7.2 indicates that the running times for PC-check increase with increasing

number of preference statements. Also, the running times tend to increase for

increasing number of variables (with some exceptions).
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Interpretation of Experimental Results Exploiting the theoretical results on

properties of consistent instances developed in Section 7.3.2 allow the algo-

rithms PC-check to prune the search space much further than a MILP solver

could do for the MILP formulation given in Section 7.3.1. The experimental re-

sults confirm that the algorithms PC-check are solving the instances faster than

CPLEX. Even more, the ratios between the mean solving times of the MILP and

PC-check increase extremely quickly with the number of variables and state-

ments. It is not obvious how the pruning rules of the PC-check algorithms

could be incorporated in the MILP formulation as constraints.

There is relatively very little difference between the mean running times of

the two recursive algorithms PC-check on the tested instances. Thus, in PC-

check(V ,Γ,⊕, t,S = ∅, s), the effort of maintaining a list S of (possibly expo-

nentially many) conflicting sets to prune the search space further, is not strongly

paying off.

7.5 Discussion

In this chapter, we established that the Deduction and Consistency Problem for

hierarchical models H(t) with t > 1 with preference statements LA are NP-

complete and coNP-complete, respectively, even if one restricts the cardinality

of the equal-importance sets of variables to have at most two elements.

However, the special case where a fixed equivalence relation on variables is

given that specifies the possible level sets is polynomial time solvable by apply-

ing the algorithm from Section 6.3.3.

We developed a Mixed Integer Linear Program formulation for the H(t)-
Consistency Problem, and then approach the problem with two variants of a

recursive search that rely on pruning rules of the search space. The first recur-

sive search tries to find a satisfying model that includes as many singleton sets

as possible, since they can be found in polynomial time. The second variant of

the recursive search, extends the first approach by additionally maintaining a

list of conflicting sets, which can not be included in extending models. Our run-

time experiments show, as expected, that the recursive search approaches which

explicitly exploit the problem structure, outperform the MILP solver. However,

they also indicate that maintaining a large list of conflicting sets does not im-

prove the runtime of the recursive search significantly.
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To find an explanation for the behaviour of the running times, we could observe

the occurrence of instances that have solutions in H(t) with t > 1, in H(1), or

are H(t)-inconsistent. The whole search space must be explored until decid-

ing inconsistency for H(t), which can lead to high running times. In contrast,

PC-check solves H(1)-consistent instances in polynomial time. The instance

distribution might suggest that the running times go up with the number of

inconsistent instances. A further analysis of the experiments could involve the

size of the search space, i.e., counting the number of Γ(≥)-satisfying hierarchi-

cal models and the number of hierarchical models that were actually considered

during the search. Also, one could try using a relaxation of a MILP formulation

as a fast check for inconsistency within PC-check(V ,Γ,⊕, t). If the relaxation

shows that the current subproblem is inconsistent, we can avoid another (time

consuming) recursive call.
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Chapter 8

CVO Lexicographic Model

In this chapter, we analyse the problems of consistency and inference based

on cvo lexicographic models L for comparative preference languages LpqT and

L′pqT . For better readability, we will drop the annotation "cvo" in most places

in this chapter. They include forms of the statements φR from Section 4.3.2.2,

where R is a set of pairs of alternatives. In many natural situations, R can

be exponentially large; in the languages discussed here, we are able to express

certain exponentially large sets R compactly. We will see that even for these

general preference languages, cvo lexicographic models allow for efficient algo-

rithms to solve consistency and inference.

The method introduced in Section 8.1 is a detailed description of the general

algorithm formulated in the previous chapter in Section 4.2.4. We previously

established the strong compositionality of statements in languages LpqT and

L′pqT with respect to cvo lexicographic models L (see Theorem 4.2). Other pre-

liminary results for LpqT and L′pqT in connection with L are discussed in the

beginning of Section 8.1. The general algorithm uses a greedy approach which

consists of repeatedly finding minimal extensions that do not oppose any pref-

erence statement. Conditions for Γ-satisfaction (for |=∗-models of Γ) are devel-

oped in Section 8.1.2. In Section 8.1.2 we characterise minimal extensions for

cvo lexicographic models L and outline how they can be found. Section 8.1.4

summarises the previous results in a formal description of the algorithm.

Related work on L models considers preference inference and develops an ef-

ficient algorithm similar to ours for the case where preference statements are

restricted to be only non-strict statements p ≥ q | T in LpqT , [Wil14]. This

is again a greedy approach that aims at finding a maximal model of Γ, how-
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ever, since the preference statements are only non-strict statements in LpqT , the

conditions of finding extending models are somewhat simpler.

We describe different notions of optimality in Section 8.2.1 and analyse these

for the case of cvo lexicographic models L and compositional statements in

Section 8.2.2. A detailed analysis of computational methods and complexities

for the case of models L and statements L′pqT is provided in Section 8.2.3. We

end the chapter with a brief discussion.

Most parts of this chapter originate from [WG17] and some from [GRW15].

8.1 L -Consistency for LpqT and L′pqT

Recall from Definition 3.5 that the language LpqT consists of all preference state-

ments of the form p � q | T , where � is either ≥, or � or >, and P , Q and T

are subsets of V , with (P ∪ Q) ∩ T = ∅, and p ∈ P is an assignment to P , and

q ∈ Q is an assignment to Q. Here, the statement p � q | T represents that p is

preferred to q if T is held constant.

Statements of the form p ≥ q | T are called non-strict; statements of the form

p� q | T , are called fully strict, and statements of the form p > q | T are called

weakly strict.

For any statement φ ∈ LpqT equalling p� q | T , the set φ∗ is defined as the set of

tuples of alternatives (α, β), such that α extends the partial assignments p and

β extends q, and α and β agree on all variables in T (see Definition 3.6). φ(≥) is

defined to be p ≥ q | T , the non-strict version of φ. For lex model π, we define:

• π satisfies φ(≥), if α <π β for all (α, β) ∈ φ∗.

• π satisfies fully strict φ, if α �π β for all (α, β) ∈ φ∗.

• π satisfies weakly strict φ, if π satisfies φ(≥) and if α �π β for some (α, β) ∈
φ∗.

For alternatives α and β, a non-strict preference of α over β can be represented

as α ≥ β | ∅, which is equivalent to the non-strict preference statement α ≥ β

in LA, so we abbreviate it to that. Similarly, we abbreviate α > β | ∅ to α > β

(which is also equivalent to α� β | ∅).

We can write a statement φ ∈ LpqT as ur � us | T , where u ∈ U , r ∈ R, s ∈ S,

and U , T and R ∪ S are (possibly empty) mutually disjoint subsets of V , and
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for all X ∈ R ∩ S, r(X) 6= s(X). For such a representation, we write uφ = u,

rφ = r, sφ = s, Uφ = U , Rφ = R, Sφ = S and Tφ = T . We assume, without loss

of generality, that for X ∈ V, if |X| = 1 then X ∈ Tφ. This ensures that such a

representation is unique. We also define Wφ = V \ (Rφ ∪ Sφ ∪ Tφ ∪ Uφ).

8.1.1 Projections to Y

Recall the definition of (φ∗)↓YA , the A-restricted projection of statement φ ∈ LpqT
to Y , from Definition 4.18. (φ∗)↓YA , for Y ∈ V and A ⊆ V − {Y }, is the set of

pairs (α(Y ), β(Y )) such that (α, β) ∈ φ∗ and α(A) = β(A). For a comparative

preference statement φ we abbreviate (φ∗)↓YA to φ↓YA .

Proposition 1 of [Wil14] leads to the following result.

Proposition 8.1. Consider any element φ ∈ LpqT written as the unique represen-
tation uφrφ�uφsφ | Tφ, where uφ ∈ Uφ, rφ ∈ Rφ, sφ ∈ Sφ, and for all X ∈ Rφ∩Sφ,
rφ(X) 6= sφ(X). Let A be a set of variables and let Y be a variable not in A.

If Rφ ∩ Sφ ∩ A 6= ∅ then (φ∗)↓YA is empty. Otherwise, (φ∗)↓YA consists of all pairs
(y, y′) ∈ Y × Y such that (i) y = y′ if Y ∈ Tφ; (ii) y = y′ = uφ(Y ) if Y ∈ Uφ (iii)
y = rφ(Y ) if Y ∈ Rφ; and (iv) y′ = sφ(Y ) if Y ∈ Sφ. Thus if Rφ ∩ Sφ ∩A = ∅ and
Y ∈ Wφ then (φ∗)↓YA = Y × Y .

Proof. First supposeRφ∩Sφ∩A 6= ∅. Then there exists a variableX ∈ Rφ∩Sφ∩A
with rφ(X) 6= sφ(X), by our definition of sets Rφ and Sφ. Thus, there does not

exist a pair of alternatives (α, β) extending uφrφ and uφsφ, respectively, such

that α(X) = β(X) for the variables X ∈ Rφ ∩ Sφ ∩ A. Hence, (φ∗)↓YA is empty.

Assume Rφ ∩ Sφ ∩ A = ∅ for the remainder of the proof.

If Y ∈ Tφ, then all tuples in (α, β) ∈ (φ∗)A satisfy α(Tφ) = β(Tφ), and thus y = y′

for all pairs (y, y′) ∈ Y × Y . For (α, β) ∈ (φ∗)A and any y ∈ Y , we can define

α′(X) = α(X) and β′(X) = β(X) for all X ∈ V \ {Y }, and α′(Y ) = β′(Y ) = y.

Then (α′, β′) ∈ (φ∗)A and hence, for any y ∈ Y , we have (y, y) ∈ (φ∗)↓YA .

Similarly, if Y ∈ Uφ, then all tuples in (α, β) ∈ (φ∗)A satisfy α(Uφ) = β(Uφ) = uφ,

and thus y = y′ = uφ(Y ).

For the case that Y ∈ Rφ, all tuples in (α, β) ∈ (φ∗)A satisfy α(Rφ) = rφ, and

thus y = rφ(Y ). For (α, β) ∈ (φ∗)A and any y ∈ Y , we can define β′(X) = β(X)
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for all X ∈ V \ {Y }, and β′(Y ) = y. Then (α, β′) ∈ (φ∗)A and hence, for any

y ∈ Y , we have (rφ(Y ), y) ∈ (φ∗)↓YA .

Similarly, if Y ∈ Sφ, all tuples in (α, β) ∈ φ∗ satisfy β(Sφ) = sφ, and thus

y′ = sφ(Y ). For (α, β) ∈ (φ∗)A and any y ∈ Y , we can define α′(X) = α(X) for

all X ∈ V \ {Y }, and α′(Y ) = y. Then (α′, β) ∈ (φ∗)A and hence, for any y ∈ Y ,

we have (y, sφ(Y )) ∈ (φ∗)↓YA .

Consider the case Y ∈ Wφ, i.e., Y /∈ Rφ ∪ Sφ ∪ Uφ ∪ Tφ ∪ A. Then, the tuples

of extensions (α, β) ∈ φ∗ include all possible values for variable Y . Hence,

(φ∗)↓YA = Y × Y .

The following lemma will be used later.

Lemma 8.2. Consider any φ ∈ LpqT , and any set of variables A ⊆ V . We have
the following.

(i) There exists (α, β) ∈ φ∗ such that α(A) = β(A) if and only if Rφ∩Sφ∩A = ∅.

(ii) α(A) = β(A) holds for all (α, β) ∈ φ∗ if and only if A ⊆ Tφ ∪ Uφ.

Proof. (i) First suppose that Rφ ∩ Sφ ∩ A 6= ∅, choose some X ∈ Rφ ∩ Sφ ∩ A,

and consider any (α, β) ∈ φ∗. Then α(X) = rφ(X) and β(X) = sφ(X) 6= α(X),
which shows that α(A) 6= β(A). Conversely, suppose that Rφ ∩ Sφ ∩ A = ∅. Let

s′φ be sφ restricted to Sφ \Rφ. Let α be any alternative extending uφ and rφ and

s′φ. Define β by β(X) = sφ(X) if X ∈ Sφ, and β(X) = α(X), otherwise. Then

(α, β) ∈ φ∗ and α(A) = β(A), since α and β differ only on Rφ ∩ Sφ, which is

disjoint from A.

(ii) Assume first that A 6⊆ Tφ∪Uφ, i.e., (Rφ∪Sφ∪Wφ)∩A 6= ∅. We will construct

α and β such that α(A) 6= β(A) and (α, β) ∈ φ∗. Let α be any alternative

extending uφ and rφ and such that α(X) 6= sφ(X) for all X ∈ Sφ. Let β be any

alternative extending uφ and sφ and α(Tφ) and such that β(X) 6= rφ(X) for all

X ∈ Rφ, and also β(X) 6= α(X) for all X ∈ Wφ (we can do this because each

element of the domain of each variable in Rφ ∪ Sφ ∪Wφ includes at least two

elements). Then (α, β) ∈ φ∗ and α(X) 6= β(X) for all X ∈ Rφ ∪ Sφ ∪Wφ, which

implies that α(A) 6= β(A).

To prove the converse, assume that A ⊆ Tφ ∪ Uφ and consider any (α, β) ∈ φ∗.
Then, for each X ∈ Tφ ∪ Uφ, we have α(X) = β(X), and so α(A) = β(A).
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8.1.2 Checking Γ-Satisfaction

In this section, we investigate under what conditions a preference model satis-

fies preference statements Γ in LpqT and L′pqT . Recall from Definition 3.7 that

L′pqT is LpqT with certain negated statements also included. Formally, we define

L′pqT to be the union LpqT ∪ {¬φ : φ ∈ LpqT , φ non-strict, and Rφ = Sφ}

The next lemma shows a condition for variables in Wφ for φ(≥) satisfying mod-

els.

Lemma 8.3. Let φ ∈ LpqT and π ∈ L . Suppose that π |= φ(≥), i.e., <π ⊇ φ∗. If
Wφ∩Vπ 6= ∅ then there exists X ∈ Rφ∩Sφ∩Vπ that appears earlier in π than any
variable in Wφ.

Proof. Suppose otherwise, and let X be the first variable in Wφ that appears in

π, and let ≥X be the corresponding value ordering. We will define two different

pairs (α, β) and (α′, β′) in φ∗. Let s′φ be sφ restricted to Sφ \ Rφ. Let α be any

alternative extending uφ and rφ and s′φ. Define β by: β(X) is an element other

than α(X); β(Y ) = sφ(Y ) if Y ∈ Sφ; β(Y ) = α(Y ) for all other Y . Then

(α, β) ∈ φ∗, and α and β only differ on variable X and variables Rφ ∩ Sφ. The

first variable in π on which α and β differ is X, and thus, α(X) >X β(X), since

α <π β.

Now, define alternative α′ which agrees with α except on X, and alternative

β′ which agrees with β except on X, and where α′(X) = β(X) and β′(X) =
α(X). By the same argument, we have (α′, β′) ∈ φ∗ and α′(X) >X β′(X), i.e.,

β(X) >X α(X), which is a contradiction, since >X is a total order.

The following result characterises when a lex model satisfies a non-strict pref-

erence statement in LpqT .

Proposition 8.4. Let π ∈ L and φ be a non-strict element of LpqT , so that φ =
φ(≥). Let us say that X ∈ Vπ is definite if X ∈ (Rφ ∩ Sφ) ∪Wφ, and that X is
relevant if X ∈ Rφ ∪Sφ ∪Wφ and there is no earlier definite variable in Vπ. Thus,
the set of relevant variables consists of the earliest definite variable (if there is one),
plus all earlier variables not in Tφ or Uφ. As usual, we let ≥X be the total ordering
associated with X in π. Then, π |= φ if and only if for all relevant variables X,

(a) X /∈ Wφ;

(b) if X ∈ Rφ ∩ Sφ then rφ(X) >X sφ(X);
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(c) if X ∈ Rφ \ Sφ then for all x ∈ X, rφ(X) ≥X x, i.e., rφ(X) is the best value
of X; and

(d) if X ∈ Sφ \Rφ then for all x ∈ X, x ≥X sφ(X), i.e., sφ(X) is the worst value
of X.

In particular, if Vπ ⊆ Tφ ∪ Uφ then π |= φ.

Proof. First let us assume that π |= φ, i.e., π |= φ(≥), and thus, <π ⊇ φ∗.

Consider any relevant variable X. We will prove that (a), (b), (c) and (d) hold.

We first define a pair (α0, β0) in φ∗. Let s′φ be sφ restricted to Sφ \ Rφ. Let α0

be any alternative extending uφ and rφ and s′φ. Define β0 by: β0(Y ) = sφ(Y ) if

Y ∈ Sφ; β0(Y ) = α0(Y ) for all other Y . The only variables on which α0 and β0

differ are those in Rφ ∩ Sφ, and we have α0(Rφ) = rφ and β0(Sφ) = sφ. We thus

have (α0, β0) ∈ φ∗.

(a): Suppose that X ∈ Wφ. Let x be any element of X other than α0(X),
and let x′ = α0(X). Define β1 by β(X) = x, and for all other Y ∈ V \ {X},
β1(Y ) = β0(Y ). Also, define α1 by α1(X) = x, and for all Y ∈ V \ {X},
α1(Y ) = α0(Y ). It follows that (α0, β1) and (α1, β0) are in φ∗, and thus, α0 <π β1

and α1 <π β0, because <π ⊇ φ∗. The first variable in π on which α0 and β1

differ is X, and thus, α0(X) >X β1(X), i.e., x′ >X x. Similarly, the first variable

in π on which α1 and β0 differ is X, and thus, α1(X) >X β0(X), i.e., x >X x′,

contradicting the fact that ≥X is a total order.

(b): Assume that X ∈ Rφ ∩ Sφ, and so α0(X) 6= β0(X). Since (α0, β0) ∈ φ∗

we have α0 <π β0. Let Y be the first variable on which α0 and β0 differ, so

Y ∈ Rφ ∩ Sφ. Y is thus a definite variable. Since X is relevant, there is no

earlier definite variable, so Y = X, and X is the first variable on which α0 and

β0 differ. α0 <π β0 implies that α0(X) >X β0(X), i.e., rφ(X) >X sφ(X), proving

(b).

(c): Assume that X ∈ Rφ \ Sφ and π |= φ. Choose any x ∈ X with x 6= rφ(X).
Let β2 be an alternative that only differs with β0 on X, and with β2(X) = x.

Then, (α0, β2) ∈ φ∗, and so α0 <π β2, since π |= φ. Now, α0 and β2 do not differ

on any earlier variables, since no earlier variable is in Rφ ∩ Sφ, because X is

relevant. This implies that α0(X) ≥X β2(X), i.e., rφ(X) ≥X x.

(d): Assume that X ∈ Sφ \ Rφ and π |= φ. The proof of (d) is analogous to

that of (c). Choose any x ∈ X with x 6= sφ(X). Let α2 be an alternative that
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only differs with α0 on X, and with α2(X) = x. Then, (α2, β0) ∈ φ∗, and so,

α2(X) ≥X β0(X), i.e., x ≥X sφ(X).

To prove the converse, we now assume that for all relevant variables, conditions

(a), (b), (c) and (d) hold. We will prove that π |= φ. It is sufficient to show

that for all (α, β) ∈ φ∗ we have α <π β. So, consider any (α, β) ∈ φ∗. If

α(Vπ) = β(Vπ) then we have α <π β, so we can assume that α and β differ

on some variable in Vπ; let X be the first such variable, and let A be the set of

earlier variables, so that α(A) = β(A). By the definition of a cvo lexicographic

order, to prove that α <π β, it is sufficient to prove that α(X) ≥X β(X) (i.e.,

α(X) >X β(X), since α(X) 6= β(X)).

We will show that X is relevant, by first showing that A contains no definite

variable. Suppose that there exists a definite variable, and let Y be the earliest

(according, as always, to the Vπ ordering in π). Then Y is relevant. By condition

(a), Y /∈ Wφ and so Y ∈ Rφ ∩ Sφ, but then α(Y ) = rφ(Y ) 6= sφ(Y ) = β(Y ), so

α(Y ) 6= β(Y ). In particular this implies that Y /∈ A, so A contains no definite

variable. Since α(X) 6= β(X), we have X /∈ Tφ ∪ Uφ, so X is relevant.

If X ∈ Rφ ∩ Sφ then the definition of φ∗ implies that α(X) = rφ(X) and β(X) =
sφ(X), and thus, α(X) >X β(X), by condition (b). If X ∈ Rφ \ Sφ then α(X) =
rφ(X) and condition (c) implies that α(X) ≥X β(X). Similarly, if X ∈ Sφ \ Rφ

then condition (d) implies that α(X) ≥X β(X).

We state the following corollary which is an immediate consequence of Propo-

sition 8.4.

Corollary 8.5. Suppose that φ ∈ LpqT and π ∈ L such that π |= φ and Vπ ∩Rφ ∩
Sφ = ∅. Then, Vπ ∩Wφ = ∅.

Proof. If π |= φ, then also π |= φ(≥). Suppose Vπ ∩Wφ 6= ∅. Let X be the first

variable in Vπ ∩Wφ that appears in the sequence of π. Since Vπ ∩ Rφ ∩ Sφ =
∅, X is relevant. Then Proposition 8.4 a) implies that X /∈ Wφ, which is a

contradiction.

The next result gives the extra conditions required for satisfying strict state-

ments.

Proposition 8.6. Let φ ∈ LpqT and π ∈ L .

• If φ is a fully strict statement, then π |= φ if and only if π |= φ(≥) and
Rφ ∩ Sφ ∩ Vπ 6= ∅.
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• If φ is a weakly strict statement, then π |= φ if and only if π |= φ(≥) and
(Rφ ∪ Sφ) ∩ Vπ 6= ∅.

Proof. The definitions immediately imply that if π |= φ then π |= φ(≥), so we

can assume that in all cases π |= φ(≥).

Suppose that φ is a fully strict statement. Now π |= φ(≥) implies that α <π β

for all (α, β) ∈ φ∗. Therefore, π |= φ if and only if for all (α, β) ∈ φ∗, α 6≡π
β, i.e., α(Vπ) 6= β(Vπ). Lemma 8.2(i) then implies that π |= φ if and only if

Rφ ∩ Sφ ∩ Vπ 6= ∅.

Assume now that φ is a weakly strict statement, and also assume that π |= φ(≥).

We then have π |= φ if and only if there exists (α, β) ∈ φ∗ with α(Vπ) 6= β(Vπ),
which, by Lemma 8.2(ii), is if and only if Tφ∪Uφ 6⊇ Vπ, i.e., (Rφ∪Sφ∪Wφ)∩Vπ 6=
∅. Now, Corollary 8.5 implies that if π |= φ and Wφ ∩ Vπ 6= ∅ then Rφ ∩ Vπ 6= ∅,
and thus, π |= φ if and only if (Rφ ∪ Sφ) ∩ Vπ 6= ∅.

Theorem 8.1: Γ-Satisfaction of |=∗-Model

Suppose that Γ ⊆ L′pqT and that π |=∗ Γ.

• If φ ∈ Γ ∩ LpqT and φ is non-strict, then π |= φ.

• If φ ∈ Γ∩LpqT and φ is fully strict, then π |= φ ⇐⇒ Rφ∩Sφ∩Vπ 6= ∅.

• If φ ∈ Γ∩LpqT and φ is weakly strict, then π |= φ ⇐⇒ (Rφ∪Sφ)∩Vπ 6=
∅.

• If ¬φ ∈ Γ, where φ is a non-strict element of LpqT with Rφ = Sφ, we

have π |= ¬φ ⇐⇒ Vπ 6⊆ Tφ ∪ Uφ.

Thus, π |= Γ if and only if

• for all fully strict statements φ in Γ ∩ LpqT , Rφ ∩ Sφ ∩ Vπ 6= ∅;

• for all weakly strict statements φ in Γ ∩ LpqT , (Rφ ∪ Sφ) ∩ Vπ 6= ∅;

• for all ¬φ ∈ Γ, where φ is a non-strict element of LpqT with Rφ = Sφ,

we have Vπ 6⊆ Tφ ∪ Uφ.

Proof. First consider any φ ∈ Γ ∩ LpqT . We have that π |=∗ φ, which implies, by

Theorem 4.2, that π |= φ(≥). Thus, if φ is non-strict then π |= φ, showing the

first bullet point. We can then use Proposition 8.6 to imply the second and third

bullet points.
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Now consider an element of the form ¬φ in Γ. Theorem 4.2 implies that either

π |= ¬φ or Vπ ∩Sφ = ∅. Thus, if π |= φ then Vπ ∩Sφ = ∅, and so Vπ ∩Wφ = ∅, by

Corollary 8.5, and so Vπ ∩ (Rφ ∪ Sφ ∪Wφ) = ∅, i.e., Vπ ⊆ Tφ ∪ Uφ. Conversely,

if Vπ ⊆ Tφ ∪ Uφ then it follows using Proposition 8.4 that <π ⊇ φ∗, and hence

π |= φ(≥), and so, π |= φ, since φ is a non-strict statement. This proves the

fourth bullet point.

The second half of the result follows from the first half.

8.1.3 |=∗-Models for Subsets of L′pqT

Theorem 4.2 suggests the feasibility of checking consistency of subsets of the

language L′pqT .

We use the method of Section 4.2.3 to determine the consistency of a set of

preference statements Γ ⊆ L′pqT , by incrementally extending a maximal |=∗-
model π of Γ, and then checking whether or not π |= Γ holds; this makes use of

Theorem 8.1.

Definition 8.1: BestπΓ(X), WorstπΓ(X) and PairsπΓ(X)

Let Γ ⊆ L′pqT , let X ∈ V, and let π ∈ L . Furthermore, let Γ be the set of

all φ ∈ Γ ∩ LpqT such that Rφ ∩ Sφ ∩ Vπ = ∅. We define:

• BestπΓ(X) = {rφ(X) : φ ∈ Γ & X ∈ Rφ \ Sφ}.

• WorstπΓ(X) = {sφ(X) : φ ∈ Γ & X ∈ Sφ \Rφ}.

• PairsπΓ(X) = PosπΓ(X) ∪ NegπΓ(X), where

PosπΓ(X) is the set of all pairs (rφ(X), sφ(X)) such that φ ∈ Γ and X ∈
Rφ ∩ Sφ. NegπΓ(X) is the set of all pairs (sφ(X), rφ(X)) such that ¬φ ∈ Γ
and Tφ ∪ Uφ ⊇ Vπ, and X ∈ Rφ(= Sφ).

Lemma 8.7. Suppose that Γ ⊆ L′pqT . Let X ∈ V and let ≥X be a total ordering
on X, and let π′ = π ◦ (X,≥X). Suppose that π′ |=∗ Γ. Then the following hold:

• For all x ∈ BestπΓ(X) and x′ ∈ X we have x ≥X x′. In particular then,
|BestπΓ(X)| ≤ 1.

• For all x ∈ WorstπΓ(X) and x′ ∈ X we have x′ ≥X x. In particular then,
|WorstπΓ(X)| ≤ 1.
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• If (x, x′) ∈ PairsπΓ(X) then x ≥X x′.

Proof. Since π′ |=∗ Γ we have, by Theorem 4.2, π′ |= φ(≥) for φ ∈ Γ ∩ LpqT , and

for ¬φ ∈ Γ, either π′ |= ¬φ or Vπ′ ∩Sφ = ∅. Recall the definitions of definite and

relevant variables in Proposition 8.4. Given φ ∈ Γ ∩ LpqT , we have that if φ is

such that Rφ∩Sφ∩Vπ = ∅ and X ∈ Rφ∪Sφ then X is relevant given φ(≥) and π′.

This is because X would only not be relevant if there were an earlier definite

variable Y in π′ and thus in Vπ; we’d then have Y /∈ Wφ, by Proposition 8.4 and

so Y ∈ Rφ ∩ Sφ, which contradicts Rφ ∩ Sφ ∩ Vπ = ∅.

Suppose that x ∈ BestπΓ(X). By definition, there exists φ ∈ Γ ∩ LpqT such that

x = rφ(X) and Rφ ∩ Sφ ∩ Vπ = ∅ and X ∈ Rφ \ Sφ. Since X is relevant given

φ(≥) and π′, Proposition 8.4 implies that for all x′ ∈ X, x ≥X x′. Since ≥X is a

total order, there can be at most one element x in BestπΓ(X). A similar argument

shows that if x ∈WorstπΓ(X) then for all x′ ∈ X, we have x′ ≥X x which implies

that |WorstπΓ(X)| ≤ 1.

Suppose that (x, x′) ∈ PosπΓ(X). Then, by definition, there exists φ ∈ Γ ∩ LpqT
such that rφ(X) = x and sφ(X) = x′ and Rφ ∩ Sφ ∩ Vπ = ∅ and X ∈ Rφ ∩ Sφ.
Since X is relevant given φ(≥) and π′, Proposition 8.4 implies that x ≥X x′.

Suppose that (x, x′) ∈ NegπΓ(X). Then there exists ¬φ ∈ Γ with sφ(X) = x and

rφ(X) = x′ and Tφ∪Uφ ⊇ Vπ and X ∈ Rφ = Sφ. Since Vπ′∩Sφ 6= ∅ and π′ |=∗ ¬φ,

we have π′ |= ¬φ, by Theorem 4.2, i.e., π′ 6|= φ. The condition Tφ ∪ Uφ ⊇ Vπ,

using Proposition 8.4 implies that π |= φ(≥), i.e., π |= φ, since φ is non-strict.

Also, X is relevant given φ(≥) and π′, so, π′ 6|= φ implies, using Proposition 8.4,

that rφ(X) 6≥X sφ(X)), and thus, sφ(X) >X rφ(X) and x ≥X x′.

Definition 8.2: Variables That Can Be Chosen Next

Given Γ ⊆ L′pqT and π ∈ L with π |=∗ Γ, we say that X can be chosen next
if: X ∈ V \ Vπ and

• if φ ∈ Γ ∩ LpqT and Rφ ∩ Sφ ∩ Vπ = ∅ then X /∈ Wφ;

• PairsπΓ(X) is acyclic;

• |BestπΓ(X)| ≤ 1 and |WorstπΓ(X)| ≤ 1;

• if x ∈ BestπΓ(X) then x is undominated in PairsπΓ(X), i.e., there exists

no element of the form (x′, x) in PairsπΓ(X);
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• if x ∈ WorstπΓ(X) then x is not dominating in PairsπΓ(X), i.e., there

exists no element of the form (x, x′) in PairsπΓ(X).

Definition 8.3: Valid Extensions

Given Γ ⊆ L′pqT and π ∈ L with π |=∗ Γ, we say that (X,≥X) is a valid
extension of π if

(i) X can be chosen next,

(ii) ≥X ⊇ PairsπΓ(X),

(iii) if x ∈ BestπΓ(X), then x is the best element in X with respect to ≥X
(so that x ≥ y for all y ∈ X),

(iv) if x′ ∈ WorstπΓ(X) then x′ is the worst element in X with respect to

≥X .

Note that, for any variable X that can be chosen next, there exists a valid ex-

tension (X,≥X).

The following result states the conditions needed for minimally extending π to

maintain the |=∗-satisfaction of Γ.

Proposition 8.8. Suppose that Γ ⊆ L′pqT , and that π |=∗ Γ. Let X be a variable in
V \ Vπ and let π′ = π ◦ (X,≥X), where ≥X is a total ordering on X. Then π′ |=∗ Γ
if and only if (X,≥X) is a valid extension of π.

Proof. Since π |=∗ Γ, Theorem 4.2 implies that π |= φ(≥) for φ ∈ Γ ∩ LpqT , and

for ¬φ ∈ Γ, either π |= ¬φ or Vπ ∩Sφ = ∅ (since ¬φ ∈ L′pqT implies that φ ∈ LpqT
and φ is non-strict, and Rφ = Sφ).

⇐: We will first prove that if (X,≥X) is a valid extension of π then π′ |=∗ Γ. For

φ ∈ Γ ∩ LpqT , we have π′ |=∗ φ if and only if π′ |= φ(≥), by Theorem 4.2. Also,

for ¬φ ∈ Γ we have π′ |=∗ ¬φ if and only if either π′ |= ¬φ or Vπ′ ∩ Sφ = ∅.

Consider any φ ∈ Γ ∩ LpqT . Since π |= φ(≥), it follows using Lemma 4.44 that

π′ |= φ(≥) if and only if ≥X ⊇ φ↓XVπ .

Consider any (x, x′) ∈ φ↓XVπ . We need to show that (x, x′) ∈≥X , i.e., that x ≥X x′;

this will then imply that ≥X ⊇ φ↓XVπ , and hence, π′ |= φ(≥). Since φ↓XVπ is non-

empty, we have, using Proposition 8.1, that Rφ ∩ Sφ ∩ Vπ = ∅. This implies
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that X /∈ Wφ, because (X,≥X) is a valid extension of π. If x = x′ then clearly,

x ≥X x′, This covers the cases when X ∈ Tφ and X ∈ Uφ (see Proposition 8.1).

If X ∈ Rφ∩Sφ, then, by Proposition 8.1, φ↓XVπ = {(rφ(X), sφ(X))}. Thus, (x, x′) ∈
PosπΓ(X), so x ≥X x′ since (X,≥x) is a valid extension of π.

If X ∈ Rφ \ Sφ then rφ(X) ∈ BestπΓ(X). Proposition 8.1 implies that x = rφ(X),
and thus, x ≥X x′. Similarly, if X ∈ Sφ \ Rφ then sφ(X) ∈ WorstπΓ(X). Proposi-

tion 8.1 implies that x′ = sφ(X), and thus, x ≥X x′. This completes the proof

that, for any φ ∈ Γ ∩ LpqT , we have ≥X ⊇ φ↓XVπ , and hence, π′ |= φ(≥), and thus,

π′ |=∗ φ.

Now suppose that ¬φ ∈ Γ, and so φ is non-strict and Rφ = Sφ. We will show

that π′ |=∗ ¬φ. Since π |=∗ ¬φ we have either π |= ¬φ or Vπ ∩Sφ = ∅. If π |= ¬φ,

and so <π 6⊇ φ∗, then the fact that π′ extends π implies that <π′⊆<π (e.g., using

Lemma 4.33), and thus, <π′ 6⊇ φ∗, and therefore π′ |= ¬φ and π′ |=∗ ¬φ. We

now thus have only to consider the case when π |= φ and Vπ ∩ Sφ = ∅. This

implies, using Corollary 8.5, that Vπ∩Wφ = ∅, and thus, Vπ ⊆ Tφ∪Uφ. If X /∈ Sφ
then Vπ′ ∩ Sφ = ∅, and so, π′ |=∗ ¬φ. Now assume that X ∈ Sφ. This implies

that (sφ(X), rφ(X)) ∈ NegπΓ(X). Because (X,≥X) is a valid extension of π, we

have sφ(X) ≥X rφ(X), i.e., sφ(X) >X rφ(X), since sφ(X) 6= rφ(X). It cannot

be the case that π′ |= φ, since then we would have π′ |= φ(≥) and thus, using

Lemma 4.44, ≥X ⊇ φ↓XVπ , which implies rφ(X) ≥X sφ(X) using Proposition 8.1,

contradicting sφ(X) >X rφ(X). We therefore have π′ |= ¬φ, and thus, π′ |=∗ ¬φ.

⇒: Assume now that π′ |=∗ Γ; we will show that (X,≥X) is a valid extension of

π. We haveX ∈ V\Vπ. Since π′ |=∗ Γ we have π′ |= φ(≥) for φ ∈ Γ∩LpqT , and for

¬φ ∈ Γ, either π′ |= ¬φ or Vπ′∩Sφ = ∅. For φ ∈ Γ∩LpqT we then have≥X ⊇ φ↓XVπ ,

by Lemma 4.44. Corollary 8.5 implies that if φ ∈ Γ∩LpqT and Rφ ∩ Sφ ∩ Vπ = ∅
then X /∈ Wφ. Lemma 8.7 implies that there is at most one element in BestπΓ(X)
and at most one element in WorstπΓ(X). Also if (x, x′) ∈ PairsπΓ(X) then x ≥X x′

and so ≥X extends PairsπΓ(X), and thus, PairsπΓ(X) is acyclic. The same lemma

also implies that if x ∈ BestπΓ(X) then for all x′ ∈ X, x ≥X x′, and thus, by

the acyclicity of ≥X , x is undominated in PairsπΓ(X). A similar argument shows

that if x ∈ WorstπΓ(X) then x is not dominating in PairsπΓ(X). This completes

the proof that (X,≥X) is a valid extension of π.
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8.1.4 The Algorithm

Based on Proposition 8.8 and Theorem 8.1, we give the following formal de-

scription of the algorithm to solve L -Consistency for Statements Γ ⊆ L′pqT .

Algorithm 8.1: L -Consistency for Statements Γ ⊆ L′pqT

1. π ← ()
2. WHILE ( ∃ X ∈ V \ σ(π) that can be chosen next)
3. Choose a valid extension (X,≥X) for such X

4. π ← π ◦ (X,≥X)
5. FOR ( φ ∈ Γ ) DO
6. IF(φ is fully strict and Rφ ∩ Sφ ∩ Vπ = ∅, or
7. φ is weakly strict and (Rφ ∪ Sφ) ∩ Vπ = ∅, or
8. φ is a negated statement and Vπ ⊆ Tφ ∪ Uφ) THEN
9. RETURN "Γ is inconsistent " and STOP.

10. RETURN "Γ is consistent " and STOP.

In summary, when building up a maximal |=∗-model π of Γ incrementally, at

each stage we see if there is a variable X that can be chosen next. If so, we

generate a valid extension; if not, we then have generated a maximal |=∗-model

π of Γ (by Proposition 8.8). We check consistency of Γ by determining if π

satisfies Γ, following the results of Theorem 8.1. Hence we use the general

algorithm presented in Section 4.2.4, however, with detailed description on

how to find the minimal extensions/variables that can be chosen next, and how

(|=∗-)satisfaction tests can be executed.

Using the fact that |PairsπΓ(X)| ≤ |Γ|, it can be shown that the overall com-

plexity of checking consistency for Γ ⊆ L′pqT is O(|V|2|Γ|), if variable domains

are of constant size. The first for-loop explores all variables. Within the for-

loop, we test if there exists a variable that can be chosen next. To check if a

variable can be chosen next, we need to analyse the constraints on the value

order of the considered variable given by the preference statements. This takes

O(|PairsπΓ(X)|) time, which is O(|Γ|). If a variable can be chosen next, we can

construct a valid extension in the same time bound, since the variable domains

are assumed to be of constant size. This gives us, for the first for-loop, a time of

O(∑i=1,...,|V|
∑
j=1,...,|V|−i |Γ|), which is O(|V|2|Γ|). The second for-loop performs
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satisfaction tests for all preference statements for the constructed |=∗-model. A

satisfaction test for one preference statement can be done in O(|V|). Thus the

time for the second for-loop is O(|V||Γ|). Hence, the overall running time is

bound by O(|V|2|Γ|).

Note that, to check consistency, we do not need to construct a satisfying model

with specified value orders on the variable domains. It is enough to keep track

of the relations of values that are constraint by the preference statements, i.e.,

the sets BestπΓ(X), WorstπΓ(X) and PairsπΓ(X). Their size is bound by O(|Γ|), and

so even for non-constant variable domains, the algorithm can be modified to

run in O(|V|2|Γ|).

In comparison, Section 6.3.3 described this procedure for fvo lexicographic

models H(1) and less general preference statements LA. In this case, find-

ing minimal extensions is easier, and the overall complexity of the method was

reduced by a factor of |V|.

Example 8.1

Consider the set of cvo lexicographic models L over variables V = {airline,

class,time} with domains orders {KLM, LAN}, {business, economy} and

{day, night}. Let Γ = {ϕ1, ϕ2, ϕ3, ϕ4} ⊆ L′pqT with:

ϕ1: (LAN , business ) ≥ (KLM , economy , night) | ∅
ϕ2: (KLM) > (economy , night) | ∅
ϕ3: (KLM , day) � (night) | ∅
ϕ4: ¬ (KLM , economy ) ≥ (LAN , business ) | ∅

To find out if Γ is consistent, we start with the minimal model π = () and

search for a variable that can be chosen next:

For variable airline, BestπΓ(airline)= {KLM}, but PairsπΓ(airline)=
{(LAN,KLM)}, i.e., KLM ∈ BestπΓ(airline) is dominated by LAN in

PairsπΓ(airline). Thus, airline cannot be chosen next. Also, class cannot

be chosen next as class ∈ Wϕ3.

For variable time, PairsπΓ(time)= {(day,night)} is acyclic, and time /∈ Wϕ1,

time /∈ Wϕ2 and time /∈ Wϕ3. Also, |BestπΓ(time)|= |{}| ≤ 1 and

|WorstπΓ(time)|= |{night}| ≤ 1 where night is not dominating in any el-

ement in PairsπΓ(time). Thus, time can be chosen next. The tuple (time,

day > night) is a valid extension and so we set π = ((time, day > night)).
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Since the sets BestπΓ(airline) and PairsπΓ(airline) remain unchanged, air-

line cannot be chosen next again. For variable class, PairsπΓ(class)=
{(business,economy)} is acyclic, and class /∈ Wϕ1, class /∈ Wϕ2. (Note

that Wϕ3 is ignored at this point since Rϕ3 ∩ Sϕ3 ∩ Vπ 6= ∅.) Also,

|BestπΓ(class)|= |{}| ≤ 1 and |WorstπΓ(class)|= |{economy}| ≤ 1 where

economy is not dominating in any element in PairsπΓ(class). Thus, class

can be chosen next. Then the tuple (class, business > economy) is a valid

extension and so we set π = ((time, day > night), (class, business > econ-

omy)).

Now, we can see that airline can be chosen next since Rϕ1 ∩ Sϕ1 ∩ Vπ 6= ∅
and Rϕ3 ∩Sϕ3 ∩Vπ 6= ∅, and thus PairsπΓ(airline)= {} is acyclic. Also, airline

/∈ Wϕ2, and |BestπΓ(airline)|= |{KLM}| ≤ 1 and |WorstπΓ(airline)|= |{}| ≤ 1
where KLM is not dominated in any element in PairsπΓ(class). The tuple

(airline, KLM > LAN) is a valid extension and so we set π = ((time, day >

night), (class, business > economy), (airline, KLM > LAN)).

Since there are no more variables left to add, π is a maximal |=∗-model of

Γ. In fact, π |= Γ and thus Γ is consistent.

8.2 Optimal Alternatives

Let us consider a finite set of alternatives A, and assume that we have elicited a

set Γ of preference statements from the user; we would like to find the optimal

alternatives among A based on the user’s preferences. As we will see in this

section, there are several natural definitions of optimal [GPR+10, WO11]. We

compare some of these notions of optimality for cvo lexicographic models L in

the next section and analyse their computational cost in Section 8.2.3.

8.2.1 Notions of Optimality

The definitions of different notions of optimality in this section are based on

inferences |=L for cvo lexicographic models L . But can similarly be defined

for other preference model types. Let Γ be a set of preference statements over

some language L.
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Γ-Induced Order Relation We define the pre-order relation <Γ on outcomes

by α <Γ β ⇐⇒ Γ |=L α ≥ β. For α <Γ β, we say that α dominates β. We

define equivalence relation ≡Γ by α ≡Γ β ⇐⇒ Γ |=L α ≡ β, i.e., if α and β are

equivalent in all models of Γ. For a set of alternatives B, we say that B are all

Γ-equivalent if for all α, β ∈ B, we have Γ |=L α ≡ β. We also define �Γ to be

the strict part of <Γ, so that α �Γ β if and only if α <Γ β and α 6≡Γ β. We then

say that α strictly dominates β.

Can Strictly Dominate We define CSDΓ(A) (‘Can Strictly Dominate’) to be

the set of maximal, i.e., undominated, elements of A w.r.t. �Γ. α ∈ CSDΓ(A)
if and only if for all β ∈ A which are not ≡Γ-equivalent to α there exists some

π ∈ L with π |= Γ and α �π β.

Necessarily Optimal We define Oπ(A) to be the subset of the alternatives that

are optimal in model π ∈ L , i.e., {α ∈ A : ∀β ∈ A, α <π β}. We say that α ∈ A
is necessarily optimal in A, written α ∈ NOΓ(A), if α is optimal in every model,

i.e., if for all π ∈ L with π |= Γ we have α ∈ Oπ(A). This holds if and only if

for all β ∈ A, and for all π ∈ L with π |= Γ we have α <Γ β.

Possibly (Strictly) Optimal We say that α is possibly optimal, written α ∈
POΓ(A), if α is optimal in some model of Γ, so that POΓ(A) = ⋃

π|=Γ Oπ(A).
Similarly, we say that α ∈ POMΓ(A) if α is optimal in some maximal model

of Γ. Thus we have POMΓ(A) = ⋃
π|=maxΓ Oπ(A), where π |=max Γ means that

π ∈ L is a maximal model of Γ. α is possibly strictly optimal in A, written

α ∈ PSOΓ(A), if there exists some π ∈ L with π |= Γ and Oπ(A) 3 α and

Γ |=L α ≡ β for all β ∈ Oπ(A). Thus α is in PSOΓ(A) if there is a model of Γ in

which α is optimal, and all other optimal elements are equivalent to α.

Strictly Optimal Given Γ ⊆ L, we say that α is strictly optimal (within A)

with respect to π ∈ L if α is optimal in π and any other optimal element is

equivalent to α, i.e., α ∈ Oπ(A) and Γ |=L α ≡ β for all β ∈ Oπ(A). We

write SOΓ
π(A) for the set of such elements. If Oπ(A) are all Γ-equivalent then

SOΓ
π(A) = Oπ(A), otherwise, SOΓ

π(A) = ∅. We always have that SOΓ
π(A) are all

Γ-equivalent.

204



8.2 Optimal Alternatives

Maximally Possibly Optimal Let OptAΓ (α) be the set of models π ∈ L of Γ
that make α optimal in A, i.e., OptAΓ (α) = {π ∈ L | π |= Γ,Oπ(A) 3 α}. We

define α ∈ MPOΓ(A) if OptAΓ (α) is maximal, in the sense that there exists no

β ∈ A with OptAΓ (β) a strict superset of OptAΓ (α). We say that α ∈ MPOΓ(A)
is maximally possibly optimal in A given Γ; this holds if and only if there is

no alternative that is optimal in the same set of cvo lexicographic models and

more.

Extreme Elements Let π1, . . . , πk be a finite sequence of models. Define Aπ1

to be Oπ1(A). For i = 1, . . . , k we iteratively define Aπ1,...,πi to be Oπi(Aπ1,...,πi−1).
We define the extreme elements EXTΓ(A) as follows. α ∈ EXTΓ(A) if and only

if there exists a sequence π1, . . . , πk of models of Γ such thatAπ1,...,πk 3 α and for

all β ∈ Aπ1,...,πk , Γ |=L α ≡ β. Therefore, α ∈ EXTΓ(A) if there is a sequence

of models such that iteratively maximising with respect to each model in turn

leads to a set containing α and only other alternatives that are Γ-equivalent to

α.

8.2.2 Optimality for L and Compositional Statements

In the following, we analyse and compare the different notions of optimality de-

fined in the previous section for cvo lexicographic models L and compositional

statements. We start by giving some basic properties.

For α ∈ A, let ∆Aα = {α ≥ β : β ∈ A}.

Lemma 8.9. Let Γ ⊆ L be a set of preference statements, and let π and π′ be cvo
lexicographic models, and let α be an element of set of alternatives A. Then the
following all hold.

1. If π′ extends π then Oπ′(A) ⊆ Oπ(A).

2. α ∈ Oπ(A) ⇐⇒ π |= ∆Aα

3. π |= Γ ∪∆Aα ⇐⇒ π ∈ OptAΓ (α)

4. α ∈ POΓ(A) ⇐⇒ Γ ∪∆Aα is consistent ⇐⇒ OptAΓ (α) is non-empty.

5. Γ ∪∆Aα |=L α ≡ β ⇐⇒ OptAΓ (β) ⊇ OptAΓ (α).

Proof. 1) Assume that π′ extends π. Consider any α ∈ Oπ′(A), so that, for all

β ∈ A, α <π′ β. By Lemma 4.34, if α <π′ β then α <π β. Therefore, for all
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β ∈ A, α <π β, and so α ∈ Oπ(A).

2) We have: π |= ∆Aα if and only if for all β ∈ A, α <π β, which is if and only if

α ∈ Oπ(A).

3) π |= Γ ∪ ∆Aα if and only if π |= Γ and α ∈ Oπ(A), which is if and only if

π ∈ OptAΓ (α).

4) α ∈ POΓ(A) if and only if there exists some π with π |= Γ and α ∈ Oπ(A).
By 2), this holds if and only if there exists π with π |= Γ ∪ ∆Aα , i.e., Γ ∪ ∆Aα is

consistent. This is also equivalent to OptAΓ (α) being non-empty by 3).

5) First suppose that Γ ∪∆Aα |=L α ≡ β, and consider any π ∈ OptAΓ (α). Then,

π |= Γ ∪∆Aα , and thus, π |= α ≡ β, and so, α ≡π β. This implies that β ∈ Oπ(A)
and hence, π ∈ OptAΓ (β).
Conversely, suppose that OptAΓ (β) ⊇ OptAΓ (α), and consider any π such that

π |= Γ ∪ ∆Aα ; we then have α <π β. Then, by 3), π ∈ OptAΓ (α), and so,

π ∈ OptAΓ (β), which implies that π |= Γ∪∆Aβ . This entails that β <π α, and thus

α ≡π β, i.e., π |= α ≡ β. We have shown that Γ ∪∆Aα |=L α ≡ β.

Without making assumptions about Γ we have the following properties

from [WO11], which follow from basic arguments, that apply in a very gen-

eral context (for proofs see also [O’M13]).

Proposition 8.10. Consider a set of alternatives A and preference statements Γ ⊆
L. Then, the following all hold. (i) NOΓ(A)∪PSOΓ(A) ⊆ MPOΓ(A)∩EXTΓ(A);
(ii) EXTΓ(A) ⊆ CSDΓ(A)∩POΓ(A); (iii) MPOΓ(A) ⊆ POΓ(A); (iv) MPOΓ(A)∩
EXTΓ(A) is always non-empty. (v) If NOΓ(A) is non-empty then NOΓ(A) =
MPOΓ(A) = EXTΓ(A) = CSDΓ(A).

Proof. (i) Proposition 4.7 in [O’M13] implies that NOΓ(A) ∪ PSOΓ(A) ⊆
EXTΓ(A). Furthermore, Proposition 4.6 in [O’M13] implies that NOΓ(A) ∪
PSOΓ(A) ⊆ MPOΓ(A).

(ii) Proposition 4.7 in [O’M13] implies that EXTΓ(A) ⊆ CSDΓ(A) and

EXTΓ(A) ⊆ POΓ(A).

(iii) Proposition 4.6 in [O’M13] implies that MPOΓ(A) ⊆ POΓ(A).

(iv) Proposition 4.7 in [O’M13] implies that EXTΓ(A) ∩ MPOΓ(A) is always

non-empty.
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(v) Proposition 4.8 in [O’M13] implies that if NOΓ(A) is non-empty then

NOΓ(A) = MPOΓ(A) = EXTΓ(A) = CSDΓ(A).

We can visualise these relations in the following diagram, where A→ B repre-

sents the relation A ⊆ B.

∅ NOΓ(A)

PSOΓ(A)

EXTΓ(A)

MPOΓ(A)

CSDΓ(A)

POΓ(A)

A

Equal to NOΓ, if NO 6= ∅
Always non-empty

The following lemmas and propositions will extend these results by relations of

POMΓ(A) and the case where Γ is compositional.

Lemma 8.11. For alternatives A and preference statements Γ ∈ L under cvo
lexicographic models, we have PSOΓ(A) ⊆ POMΓ(A). If Γ is compositional, then
PSOΓ(A) = POMΓ(A).

Proof. Suppose that α ∈ PSOΓ(A), so there exists π ∈ L with π |= Γ, and

Oπ(A) 3 α, and Γ |=L α ≡ β for all β ∈ Oπ(A). Let π′ be any maximal model of

Γ that extends π. Choose some β that is optimal in π′, i.e., β ∈ Oπ′(A). Then,

using Lemma 8.9, β ∈ Oπ(A), and thus, Γ |=L α ≡ β, so π′ |= α ≡ β, which

implies that α ∈ Oπ′(A), and thus, α ∈ POMΓ(A).

Assume now that Γ is compositional. Let α ∈ POMΓ(A), so there exists π ∈ L

with π |=max Γ and α ∈ Oπ(A). Proposition 4.29 implies that for all β ∈ Oπ(A)
we have Γ |=L α ≡ β, and thus, α ∈ PSOΓ(A).

Lemma 8.12. For any A and compositional Γ, we have MPOΓ(A) ⊆ POMΓ(A).

Proof. We will prove that (POΓ(A) − POMΓ(A)) ∩ MPOΓ(A) = ∅. Since,

MPOΓ(A) ⊆ POΓ(A), this implies that MPOΓ(A) ⊆ POMΓ(A). Let α ∈
POΓ(A) − POMΓ(A). By Lemma 8.9, Γ ∪ ∆Aα is consistent; we choose some

maximal model π of Γ ∪ ∆Aα . In particular, Oπ(A) 3 α. Choose some max-

imal model π′ of Γ extending π. Then, α /∈ Oπ′(A), since α /∈ POMΓ(A).
Choose some β ∈ Oπ′(A), and thus, β ∈ Oπ(A), by Lemma 8.9. This implies

α ≡π β, and thus, by Proposition 4.29, Γ ∪ ∆Aα |=L α ≡ β. This implies that
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OptAΓ (β) ⊇ OptAΓ (α), by Lemma 8.9. Since π′ ∈ OptAΓ (β) − OptAΓ (α), we have

that α /∈ MPOΓ(A).

A straight-forward argument implies that PSOΓ(A) ⊆ MPOΓ(A). Lemmas 8.11

and 8.12 then imply the following.

Proposition 8.13. For any alternatives A and preference statements Γ ⊆ L we
have PSOΓ(A) ⊆ POMΓ(A) ∩MPOΓ(A). If Γ is compositional then PSOΓ(A) =
POMΓ(A) = MPOΓ(A).

We consider now the relation of class EXTΓ(A) to the other classes. First let us

prove, the following basic property of compositions of L -models.

Lemma 8.14. Let π1, . . . , πk be a finite sequence of models, and let π = π1◦· · ·◦πk.
Then, Aπ1,...,πk = Aπ = Oπ(A).

Proof. We first show that for arbitrary π, π′ ∈ L , Oπ′(Aπ) = Aπ◦π′, i.e.,

Oπ′(Oπ(A)) = Oπ◦π′(A).

Consider an element α ∈ Oπ′(Oπ(A)); we will show that α <π◦π′ β for every

β ∈ A, showing that α ∈ Oπ◦π′(A). We have that α ∈ Oπ(A), which implies

α <π β. If α �π β then α �π◦π′ β, by Lemma 4.35. Otherwise, we have α ≡π β,

which implies that β ∈ Oπ(A), and thus, α <π′ β. Lemma 4.35 implies that

α <π◦π′ β.

Conversely, assume that α ∈ Oπ◦π′(A). Consider any β ∈ Oπ(A). We need to

show that α <π′ β. We have α <π◦π′ β. Lemma 4.34 implies that α <π β, which

implies that α ∈ Oπ(A), and also α ≡π β. Since α <π◦π′ β, Lemma 4.35 implies

α <π′ β, as required.

We now prove the result by induction. It is trivial for k = 1. Now, Aπ1,...,πk =
Oπk(Aπ1,...,πk−1), which by the inductive hypothesis equals Oπk(Aπ1◦···◦πk−1),
which equals Aπ1◦···◦πk , by the argument above.

The optimality class EXTΓ(A) turns out also to be equivalent to PSOΓ(A) when

Γ is compositional.

Proposition 8.15. Consider any A and compositional Γ ⊆ L. Then EXTΓ(A) =
PSOΓ(A).

Proof. Proposition 8.10 implies EXTΓ(A) ⊇ PSOΓ(A). To prove the converse,

suppose that α ∈ EXTΓ(A). Then there exists a sequence π1, . . . , πk of models of

208



8.2 Optimal Alternatives

Γ such that Aπ1,...,πk 3 α and for all β ∈ Aπ1,...,πk , Γ |=L α ≡ β. By Lemma 8.14,

α ∈ Oπ(A), where π = π1 ◦ · · · ◦ πk, and Γ |=L α ≡ β for all β ∈ Oπ(A). Since Γ
is compositional, π |= Γ, and thus, α ∈ PSOΓ(A).

Propositions 8.10, 8.15 and 8.13 imply the following result, showing that there

are substantial simplifications of the optimality classes when Γ is compositional.

Theorem 8.2: Set Relations of Different Optimality Classes

Consider any A and compositional Γ ⊆ L. Then NOΓ(A) ⊆ PSOΓ(A) =
EXTΓ(A) = MPOΓ(A) = POMΓ(A) ⊆ CSDΓ(A) ∩ POΓ(A).

Proof. Proposition 8.13 implies that PSOΓ(A) = MPOΓ(A) = POMΓ(A).
Proposition 8.15 implies that EXTΓ(A) = PSOΓ(A). Proposition 8.10 implies

that NOΓ(A) ⊆ EXTΓ(A) ⊆ CSDΓ(A) ∩ POΓ(A), completing the proof.

We can summarise the relations in the following diagram, where A→ B repre-

sents the relation A ⊆ B.

∅ NOΓ(A)

PSOΓ(A)

EXTΓ(A)

MPOΓ(A)

POMΓ(A)

CSDΓ(A)

POΓ(A)

A

Equal, for

compositional Γ

8.2.3 Computing Optimal Solutions for L and L′pqT

Let us now analyse the efficiency of computing POΓ, PSOΓ, CSDΓ and NOΓ for

Γ ⊆ L′pqT for cvo lexicographic models L . Note that by Theorem 8.2, since

Γ ⊆ L′pqT is compositional, EXTΓ = MPOΓ = POMΓ = PSOΓ and thus PSOΓ is

chosen to represent all of these classes.
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8.2.3.1 Membership Tests

One approach to compute Ω(A) for Ω ∈ {POΓ,PSOΓ,CSDΓ,NOΓ} is to test

membership for every alternative separately, i.e., checking if α ∈ Ω(A) for all

α ∈ A. Let τ(g, n) be an upper bound on the time to decide consistency for g

statements and n variables. To test if α ∈ POΓ(A), we test whether Γ∪{α ≥ β |
β ∈ A−{α}} is consistent in τ(g+m− 1, n), where |A| = m. Similarly, we test

if α ∈ PSOΓ(A) in τ(g+m− 1, n), by checking if Γ∪{α > β | β ∈ A, β 6≡Γ α} is

consistent. Note that by Proposition 4.32, β 6≡Γ α can be checked by computing

a maximal model π of Γ and checking β 6≡π α, which can be done in O(n2)
by the algorithms from Section 8.1.3. To test if α ∈ CSDΓ(A), we check for

all β ∈ A with β 6≡Γ α if Γ ∪ {α > β} is consistent in mτ(g + 1, n). To test

if α ∈ NOΓ(A), we test for all β ∈ A − {α} if Γ ∪ {α < β} is consistent in

mτ(g + 1, n).

Let MΩ(m) denote the worst case running time of testing if an outcome α ∈ A
is in Ω(A) for |A| = m and operator Ω. Then the running time to compute Ω(A)
can be estimated by O(mMΩ(m)). Upper bounds on the theoretical running

times for computing Ω(A) for Ω ∈ {POΓ,PSOΓ,CSDΓ,NOΓ} are summarised

by the following table.

POΓ,PSOΓ CSDΓ NOΓ

Running time m τ(g +m− 1, n) m2 τ(g + 1, n) m2 τ(g + 1, n)

Consider the computation of operators POΓ,PSOΓ,CSDΓ,NOΓ for cvo lexico-

graphic models L . By the results in Section 8.1.3, we can decide L -consistency

for g statements and n variables in O(n2g). The theoretical running times for

computing Ω(A) for Ω ∈ {POΓ,PSOΓ,CSDΓ,NOΓ} are thus as summarised in

the following.

POΓ,PSOΓ CSDΓ NOΓ

Running time O(mn2(g +m)) O(m2n2g) O(m2n2g)

8.2.3.2 Incremental Approaches

In this section, we describe incremental approached to compute operators

POΓ,PSOΓ,CSDΓ,NOΓ. For this purpose, we define the notion of optimality

operators as in [WRM15] and show that the considered operators are either

optimality operators or satisfy similar properties.
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Definition 8.4: Optimality Operators

A function Ω : 2A −→ 2A is called optimality operator over the finite set A,

if for arbitrary A,B ⊆ A:

(I) Ω(A) ⊆ A,

(II) if A ⊆ B then Ω(B) ∩ A ⊆ Ω(A) and

(III) if Ω(B) ⊆ A ⊆ B then Ω(A) = Ω(B).

We say a function Ω : 2A −→ 2A satisfies path independence if for arbitrary

A,B ⊆ A Ω(A ∪B) = Ω(Ω(A) ∪B).

Note that as described in [WRM15], path independence of an operator Ω is

equivalent to Ω being an optimality operator. They also make a statement for

general definitions of PO and CSD. Let A be a set of alternatives, and S a set

of total preorders on A. Define POS(A) to be the set of α ∈ A such that there

exists ≥∈ S and for all β ∈ A, α ≥ β. Define CSDS(A) to be the set of α ∈ A
such that for all β ∈ A with β 6≡S α, there exists ≥∈ S with α ≥ β.

Proposition 8.16 (from Proposition 3 in [WRM15]). Let S be a set of total pre-
orders on some alternatives A. The operators CSDS and CSDS are optimality
operators for alternatives A.

Proposition 8.17. The operator PSOΓ for Γ ⊆ L′pqT is an optimality operator for
cvo lexicographic models L .

Proof. By Lemma 8.11, PSOΓ is equal POMΓ. Thus, PSOΓ is equal to POΓ re-

stricted to maximal models of Γ. By Proposition 3 in [WRM15], POΓ restricted

to maximal models of Γ is an optimality operator. Thus, PSOΓ is optimality

operator for L .

The work in [WRM15] describes the algorithm “IncrementalO” to compute

Ω(A) for optimality operators Ω and alternatives A = {α1, . . . , αm} in an incre-

mental way by testing if αi ∈ Ω(Ω({α1, . . . , αi−1}) ∪ {αi}) and if so computing

Ω({α1, . . . , αi}) as Ω(Ω({α1, . . . , αi−1}) ∪ {αi}). We formulate this algorithm in

the following way.
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Algorithm 8.2: Computing Ω(A) for Optimality Operator Ω

1. L = ∅; D = ∅
2. FOR ( αi ∈ A with i = 1, . . . , |A| ) DO
3. IF ( αi ∈ Ω(L ∪ {αi}) ) THEN
4. FOR ( β ∈ L ) DO
5. IF ( β /∈ Ω(L ∪ {αi}) ) THEN
6. D = D ∪ {β}
7. L = (L \D) ∪ {αi}; D = ∅
8. RETURN L and STOP.

Algorithm 8.2 may be used to compute POΓ,PSOΓ and CSDΓ since all of these

operators satisfy path independence and thus are optimality operators.

Under the assumption that MΩ(m) is monotonically increasing in m, we can

estimate the running time MΩ(m) of the algorithm described in [WRM15] to

compute Ω(m) by O(∑i=1,...,m iMΩ(i)) in the worst case and O(mMΩ(1)) in the

best case.

The following proposition shows that the algorithm "IncrementalO" cannot be

used to compute the class NOΓ.

Proposition 8.18. The class NOΓ is not an optimality operator for cvo lexico-
graphic models L .

Proof. We show for A,B ⊆ A with NOΓ(B) ⊆ A ⊆ B that NOΓ does not

necessarily satisfy NOΓ(A) = NOΓ(B) in the case of NOΓ(B) = ∅. Thus NOΓ

does not satisfy property (III) of optimality operators. Let B be a set of more

than one alternative such that NOΓ(B) = ∅ and let α ∈ B. For A = {α},
NOΓ(A) = α. Thus NOΓ(A) 6= NOΓ(B)

However, NOΓ satisfies similar properties as optimality operators. For an oper-

ator N and A,B ⊆ A, consider the following properties:

(I′) N(A) ⊆ A,

(II′) if A ⊆ B then N(B) ∩ A ⊆ N(A),

(III′) if N(B) 6= ∅ and N(B) ⊆ A ⊆ B then N(A) = N(B)

(IV′) if N(A) 6= ∅ then N(A ∪B) = N(N(A) ∪B) and
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(V′) N(A) is either singleton or empty.

Even though “IncrementalO” cannot necessarily be applied to operators that are

not optimality operators, we can prove that operators with properties (I′)-(V′)

can be computed by the following similar algorithm.

Algorithm 8.3: Computing N(A) when (I′)-(V′) holds

1. L = {a1}
2. FOR ( αi ∈ A with i = 2, . . . , n ) DO
3. IF ( αi ∈ N(L ∪ {αi}) ) THEN
4. L = {αi}
5. ELSE IF ( |L| > 1 ) THEN
6. L = L ∪ {αi}
7. ELSE Write L as {β}
8. IF ( β /∈ N({αi, β}) ) THEN
9. L = L ∪ {αi}

10. IF ( |L| > 1 ) THEN
11. L = ∅
12. RETURN L and STOP.

Proposition 8.19. Algorithm 8.3 computes N(A) for any A ⊆ A and operator N
that satisfies (I′)-(V′).

Proof. Let Li denote the set L after the ith iteration of the outer for-loop and

let L1 = {α1}. Let Ai denote the set of alternatives α1, . . . , αi that have been

considered in the first i iterations of the outer for-loop. We prove N(Ai) = Li

if |Li| = 1 and N(Ai) = ∅ otherwise for i = 2, . . . , n by induction. Thus the

returned set L is equal to N(A).
i = 2:

• Suppose N(A2) = N({α1, α2}) = ∅. Then α2 /∈ N(L1 ∪ {α2}) and |L1| = 1
so both else-cases apply. Since also α1 /∈ N({α1, α2}), L2 = {α1, α2}. Thus

|L2| > 1.

• Suppose N(A2) = N({α1, α2}) = {α1}. Then α2 /∈ N(L1 ∪ {α2}) and

|L1| = 1 so both else-cases apply. But since α1 ∈ N({α1, α2}), L2 = L1.

Thus |L2| = 1 and N(A2) = L2.
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• Suppose N(A2) = N({α1, α2}) = {α2}. Then α2 ∈ N(L1 ∪ {α2}), i.e., the

first if-case applies, and the algorithm sets L2 = {α2}. Thus |L2| = 1 and

N(A2) = L2.

i→ i+ 1: Consider N(Ai+1).

• Suppose N(Ai+1) = ∅ and N(Ai) = Li, i.e., |Li| = 1 (by induction hypoth-

esis). Then by (IV′), ∅ = N(Ai+1) = N(N(Ai)∪ {αi+1}) = N(Li ∪ {αi+1}).
Then αi+1 /∈ N(Li ∪ {αi+1}) and |Li| = 1 so both else-cases apply. Fur-

thermore, for Li = {β}, β /∈ N({β, αi+1}). Thus, the algorithm sets

Li+1 = {β, αi+1} and |Li+1| > 1.

• Suppose N(Ai+1) = ∅ and N(Ai) = ∅, i.e., |Li| > 1 (by induction hypothe-

sis). Then Li is of the form Li = {αj, αk, . . . , αi}, where j < k and j is the

highest index lower i such that Lj = {αj}. Then N(Lj ∪ {αl}) = Lj for all

j ≥ l ≤ k and by induction hypothesis N(Al) = Lj. We show N(Ai+1) =
N(Li ∪ {αi+1}). By (IV′), N(Ai+1) = N(Ak ∪ {αk+1, . . . , αi} ∪ {αi+1}) =
N(N(Ak)∪{αj+1, . . . , αi}∪{αi+1}) = N({αj}∪{αk+1, . . . , αi}∪{αi+1}) =
N(Li ∪ {αi+1}). Thus, N(Li ∪ {αi+1}) = ∅ and αi+1 /∈ N(Li ∪ {αi+1}).
Hence, the algorithm sets Li+1 = Li ∪ {αi+1} and thus |Li+1| > 1.

• Suppose N(Ai+1) = {αi+1}. Then because N(Ai+1) ⊆ Li ∪ {αi+1} ⊆ Ai+1,

(III′) implies N(Li ∪ {αi+1}) = N(Ai+1) = {αi+1}. Thus, the algorithm

sets Li+1 to {αi+1}. Hence, |Li+1| = 1 and N(Ai+1) = Li+1.

• Suppose N(Ai+1) = {αj} for j ≤ i. Then because N(Ai+1) ⊆ Ai ⊆
Ai+1, (III′) implies N(Ai) = N(Ai+1) = {αj}. By induction hypothe-

sis, Li = {αj}. Because N(Ai+1) ⊆ Li ∪ {αi+1} ⊆ Ai+1, (III′) implies

N(Li ∪ {αi+1}) = N(Ai+1) = {αj}. Thus, αi+1 /∈ N(Li ∪ {αi+1}) and the

algorithm sets Li+1 = Li = {αj}. Hence, |Li+1| = 1 and N(Ai+1) = Li+1.

Proposition 8.20. NOΓ satisfies (I′)-(IV′).

Proof. (I′): By definition of NOΓ, NOΓ(A) ⊆ A.

(II′): Let A,B ⊆ A with A ⊆ B. Then NOΓ(B) ∩ A = {α ∈ A | ∀π � Γ ∀β ∈ B :
α <π β} ⊆ {α ∈ A | ∀π � Γ ∀β ∈ A : α <π β} = NOΓ(A).

(III′): Now consider A,B ⊆ A with ∅ 6= NOΓ(B) ⊆ A ⊆ B. Since NOΓ(B) ⊆ A,

(II′) implies NOΓ(B) ⊆ NOΓ(A). Now suppose NOΓ(A) \ NOΓ(B) 6= ∅ and let
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α ∈ NOΓ(A) \ NOΓ(B). Since α ∈ NOΓ(A), ∀π � Γ and ∀β ∈ A, α <π β. Since

α /∈ NOΓ(B), there exists π′ � Γ and β ∈ B \ A, β �π′ α. Let γ ∈ NOΓ(B) ⊆ A.

Then ∀π � Γ, γ <π β. In particular, γ <π′ β �π′ α. This is a contradiction since

γ ∈ A and α ∈ NOΓ(A). Thus NOΓ(A) \ NOΓ(B) = ∅, i.e., NOΓ(A) ⊆ NOΓ(B).

(IV′): Let A,B ⊆ A with NO(A) 6= ∅. Since NOΓ(A) ⊆ A, NOΓ(A)∪B ⊆ A∪B.

Suppose, NOΓ(A∪B) 6= ∅. We show that NOΓ(A∪B) ⊆ NOΓ(A)∪B. Suppose

NOΓ(A ∪ B) \ (NOΓ(A) ∪ B) 6= ∅ and α ∈ NOΓ(A ∪ B) \ (NOΓ(A) ∪ B). Then

α /∈ B and α /∈ NOΓ(A) but α ∈ A. Thus, there exists π′ � Γ and β ∈ A such

that β �π′ α. This is a contradiction to α ∈ NOΓ(A∪B). Hence, NOΓ(A∪B) ⊆
NOΓ(A) ∪B ⊆ A ∪B and by (III′), NOΓ(A ∪B) = NOΓ(NOΓ(A) ∪B).

Now suppose NOΓ(A ∪ B) = ∅. We show NOΓ(NOΓ(A) ∪ B) ⊆ NOΓ(A ∪ B)
and thus NOΓ(NOΓ(A) ∪B) = ∅. Suppose there exists α ∈ NOΓ(NOΓ(A) ∪B) \
NOΓ(A∪B). Then for all π � Γ and β ∈ NOΓ(A)∪B, α �π β. Let β ∈ NOΓ(A).
Then for all π � Γ and γ ∈ A\(NOΓ(A)∪B), α �π β �π γ. Thus α ∈ NOΓ(A∪B)
which is a contradiction.

Furthermore, for any A ⊆ A the set NOΓ(A) is an equivalence class, i.e., if

α, β ∈ NOΓ(A) then α ≡Γ β. Thus, for sets A ⊆ A in which alternatives are pair-

wise non-equivalent, NOΓ(A) is either singleton or empty. By preprocessing the

set of alternatives and including only one representative of every equivalence

class w.r.t. Γ-equivalence, we obtain a set of alternatives A′ with |NOΓ(A′)| ≤ 1
in O(n2g + mn) time. As mentioned before, we can find Γ-equivalence classes

by finding a maximal model π of Γ (in O(|V|2)) and comparing all alternatives

on the variables Vπ (in O(|V| |A|)). This enables us to use Algorithm 8.3 to

compute NOΓ(A).

The incremental computation of Ω(A) for Ω ∈ {POΓ,PSOΓ,CSDΓ,NOΓ} based

on models L results in the following theoretical best and worst case running

times.

POΓ,PSOΓ CSDΓ NOΓ

Best case O(mn2g) O(mn2g) O(mn2g)
Worst case O(m2n2(g +m)) O(m3n2g) O(m2n2g)

We can thus expect that an incremental computation is faster than membership

tests for POΓ,PSOΓ and CSDΓ. For NOΓ, however, the bounds on the running

time are the same for the incremental approach and membership tests.
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8.3 Discussion

We analysed the problems of consistency and inference based on cvo lexico-

graphic models L for comparative preference languages LpqT and L′pqT , and

developed a polynomial time algorithm that runs in O(|Γ||V|), for preference

statements Γ ∈ L′pqT and variables V. This is based on the algorithm described

in Section 4.2.4.

Furthermore, we considered different notions of optimality and analysed the

relations between optimality classes for the case of cvo lexicographic models

L and compositional statements. For cvo lexicographic models L and state-

ments L′pqT , we show methods of computing the defined optimality classes. This

makes use of the polynomial time algorithm to solve L -consistency. A detailed

analysis of the complexities for the computational methods shows that the naive

approach of testing membership for all alternatives can be outperformed by an

incremental way of building up the optimal set of alternatives.

Since the considered notions of optimality can be defined for other model types,

we could check if our approaches could also be applied to other model types,

by checking if the corresponding operators are optimality operators or satisfy

similar conditions.
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Chapter 9

Conclusion

9.1 Summary

We presented approaches for preference inference based on qualitative pref-

erence models, which can be included in decision support systems to handle

sparse input preference information.

Foremost, we considered expressive comparative preference statements that are

relatively easy for a user to express. These include strict and non-strict versions

and negations. We analysed deduction and consistency for various qualitative

preference models that are based on lexicographic and Pareto orders.

We also analysed deduction and consistency under preference statements that

are (strongly) compositional under some set of preference models. The con-

cept of strong compositionality is build on properties of inference of preference

statements for combinations of preference models. It is an assumption that

holds true for many natural definitions of preference models and statements,

as can be seen in our analysis of lexicographic, hierarchical and Pareto mod-

els. Indirectly, strong compositionality imposes some constraints on preference

models, since a composition operator (with certain properties) is required to

exist. However, no specific structural constraints on the preference models or

preference statements are given by strong compositionality. Nonetheless, we

were able to find many interesting results in this case, which ultimately leads

to a general greedy algorithm to solve the Consistency Problem. It will thus be

worthwhile to check strong compositionality, when exploring different models

under different preference languages.
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We showed that preference deduction is coNP-complete for hierarchical mod-

els, and polynomial for the case of cvo and fvo lexicographic models, where the

variables are assumed to be totally ordered and value orders of variables can

be fixed for all models or depending on the model. In contrast with the cvo
lexicographic inference system in [Wil14], the logic developed here for lexico-

graphic models allows strict (as well as non-strict) preference statements. The

coNP-hardness result for hierarchical models is notable, since these preference

logics are relatively simple ones.

Exploiting the theoretical results on properties of consistent instances for hi-

erarchical models allows the PC-check algorithms to prune the search space

much further than a MILP solver could do for the MILP formulation. The exper-

imental results confirm that the PC-check algorithms solve the instances faster

than CPLEX. Even more, the ratios between the mean solving times of the MILP

and PC-check increase extremely quickly with the number of evaluations and

statements.

We also examined different notions of optimality for cvo lexicographic models,

and proved relationships between them. Methods to generate sets of optimal

solutions for the different notions were presented together with their complex-

ity.

For fvo singleton Pareto models and general (k-bound) Pareto models, we were

able to characterise deduction and consistency through set relations of (sets of)

variable sets. In the case of fvo singleton Pareto models this enables efficient

polynomial algorithms. We proved that the Consistency and Deduction Problem

are NP-complete for general (k-bound) Pareto models.

We conclude that efficient preference inference is possible for some types of

qualitative preference models under expressive preference languages using sim-

ple (greedy) approaches, whereas other types of qualitative preference mod-

els under simple preference languages lead to NP-completeness and coNP-

completeness results. The following table summarizes the complexity results

by listing the membership of problems in P, NPand coNP.
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Models Language Deduction Consistency

P(1) LA P P

P LA coNP NP
H(1) LA P P

H(k) LA coNP NP
L L′pqT P P

9.2 Possible Future Work

Strong Compositionality There might be other common forms of preference

statement that are strongly compositional, and for which the greedy algorithm

from Section 4.2.4 will enable checking consistency.

Lemma 4.14 showed that the property of being strongly compositional is

(roughly speaking) preserved under conjunction. Although this is far from be-

ing the case for disjunctions in general, some disjunctive statements are strongly

compositional. This includes the weakly strict statements in LpqT , and restric-

tions on value orderings, such as being single-peaked [Con09].

It would be interesting to investigate more complex preference languages for

the considered and new models, to find more examples of strongly composi-

tional statements. Here, we could also determine under what circumstances

deduction and consistency remain polynomial.

Inconsistency Bases Inconsistency bases were a helpful concept in under-

standing the structure of the Consistency Problem for statements LA and mod-

els H(1). They allowed us to find variables which cannot be included in any

fvo lexicographic model that satisfies the given user preferences. Similarly, for

the case of t-bound Pareto models P(t) with t ≥ 1, we were able to identify

variables / variable sets, which cannot be included in any model satisfying the

input preferences. It would be interesting to investigate, if such structures exist

for other qualitative preference models, especially, as this might also enable us

to identify unsatisfiable preference statements.

Implementation and Experimental Runtime Comparison We presented

many algorithmic approaches to solve consistency and deduction for different

preference models and languages. Since this dissertation mostly focused on
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theoretical results, we only implemented methods and compared their running

times experimentally for the NP-complete case of consistency for hierarchical

models. However, future work could include implementations of the remaining

methods. These could also be incorporated in other systems such as multi-

objective constraint optimisation problem solvers like in our paper [GRW15]. A

further analysis could also involve counting the number of Γ(≥)-satisfying mod-

els and the number of models that were actually considered during the search.

For the case of hierarchical models, using a relaxation of a MILP formulation as

a fast check for inconsistency within the recursive approaches could be tested.

Computation of Optimality Operators We showed approaches to compute

different optimality operators under cvo lexicographic models for preference

statements L′pqT . These notions of optimality can also be transferred to other

preference models and computed for other preference languages. We can in-

vestigate whether the optimality classes are in similar set relations for other

model types and if the algorithmic approaches presented can be adapted. Fur-

thermore, it would be interesting to compare run times of implementations

experimentally for different classes and models.

Cautiousness of Preference Models We analysed preference inference for

different types of preference models based on lexicographic and Pareto or-

ders. Naturally, it would be interesting how the inferences considered com-

pare to each other. Which models leads to "good" inference results? Our pa-

pers [GRW15] and [WG17] compare some preference models by their cautious-

ness, i.e., by the number of inferences made. Here it is shown that all inferences

by some model types can also be made by other model types, which results in

set inclusions for the sets of undominated alternatives. A broader analysis is

needed that compares the here presented models, as well as other well known

preference models like CP-nets, based on their cautiousness.

User Feedback While analysing preference inference for different preference

statements and models is interesting from a theoretical point of view, the re-

search on preference handling could benefit from more user studies to explore,

which preference models and preference statements are realistic to present user

preferences in different scenarios. Furthermore, user feedback on the quality of

the inferences made for different models can be interesting.
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