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Executive Summary

Executive Summary

Maintenance planning and life-cycle assessment methods for bridge networks

have received large research interest for many years; with modern emphasis

often based on probabilistic approaches, due to their ability to handle uncer-

tainty. This allows for risk-based approaches to quantify structural safety, which

is largely seen as a superior approach than the deterministic methods typically

used in practice. Structural safety can broadly be defined as an acceptable level

of chance/probability that the structure will not fail in its function; i.e. to resist

the loads/actions to which it is subjected to. The structural reliability method

provides for the computation of structural safety by accounting for probabilis-

tically uncertain load models and uncertainties around the return period of

extreme load events, as well as the uncertainty in the resistance capacity of the

structural system. In addition to a single-point-in-time evaluation of structural

safety, the life-cycle performance can be evaluated using physical models for

future deterioration; again, constrained under uncertain information about fu-

ture deterioration. However, being a probabilistic method, it can be somewhat

subjective in nature, based on the availability of accurate data and the reliance

on expert knowledge, and thus sensitive to the parameters of the input model

which rely on the level of information available for the problem at hand.

While structural safety is the apex of modern maintenance planning and life-

cycle assessment, the most prevalent performance indicator for which future

maintenance and intervention decisions are made come from visual inspection

based condition ratings. These visual inspections are used to evaluate the ex-

tent of deterioration present and assign a condition rating based on a predefined

scale of damage, after which bridge managers trigger further assessment or in-

tervention actions based on acceptable damage levels. Again, in evaluating a

single or small number of bridges, there is a degree of subjectivity and reliance

on expert knowledge that is also seen with probabilistic assessment methods.

Unlike structural reliability, which often suffers from a lack of available or ac-

curate information, condition rating data for large bridge networks generate

a large repository of data which provides an excellent opportunity to look at

data on a larger scale than is currently implemented in practice. This results in

disparate levels of information being available for bridge networks, with large

amounts of lower level information and small amounts of detailed information.

In this thesis, how disparate information levels affect these two assessment

xiii Ciarán Hanley



methods will be explored and efforts to mitigate against the uncertainty in the

information will be suggested. It will be shown that:

• Reliability-based calibrations of bridges are possible through observed

clustering of parametric importance and sensitivity measures, based on

uncertainty in relation to the available information for probabilistic mod-

elling (Hanley and Pakrashi 2016)

• Existing bridges assessed under code-defined traffic load are sensitive to

safety reclassification due to evolving definitions, leading to misinterpre-

tation of the actual state of the structure and, thus, a misallocation of

resources (Hanley et al. 2017a)

• Bridges designed under modern, more conservative code-defined traffic

load models and assessed under probabilistic load models can expect a

longer projected service life before intervention is required, and that the

initial construction cost of this conservatism is largely offset when life-

cycle cost is considered (Hanley et al. 2016a)

• The use of multivariate analysis methods are applicable to modern bridge

management systems that store large amounts of data, and that these

methods can provide for clustering of bridges based on their structural

forms and states of disrepair (Hanley et al. 2015)

• Large groups of specific bridge types have well-defined, consistent factor

structures, whereby a bespoke linear combination of individual elemental

condition ratings provide an accurate assessment of the bridge’s overall

condition rating; improving on currently implemented decision tools in

existing bridge management systems (Hanley et al. 2016b, 2017b,c)

This work provides a basis for which further research can be undertaken into de-

veloping an information-driven probabilistic decision making framework, lead-

ing to the quantification of the value of disparate information levels. The po-

tential future applications include incorporating the derived underlying factor

structure of large data-sets of bridges directly into structural reliability methods

through probabilistic graphical models, such as Bayesian Belief Networks; thus

providing a more robust, information driven framework from which to make

decisions under uncertainty.
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Chapter 1

Introduction

1.1 Motivation

Bridges are a crucial aspect of transport infrastructure networks which drive

modern economies, linking regions and populations otherwise separated by

natural or man-made obstacles. Often times, regional and national transport

networks can be dependent on the performance of a small number of bridges to

complete the network. When these bridges fail or cease to operate due to safety

or serviceability concerns, the economic losses incurred due to the restriction

of free movement of goods and services are severe. In a report by the American

Society of Civil Engineers (ASCE 2011), it was estimated that the cost of a defi-

cient surface transport network, due to deteriorating conditions, to homes and

businesses was $130 billion; while failure to halt this deficiency would cost the

American economy 400,000 jobs by 2040. Due to these consequences, stake-

holders of bridge networks are tasked with responsibility of ensuring the safe,

reliable, and functional performance of bridges within their purview. In order

to meet this task, bridge managers must look to innovative methods to guide

their decision making process with regard to intervention policies of network

assets in the latter stages of their service life.

A review of the national bridge stock in six European countries showed that the

majority of bridges were built in the post-war period of 1945–1965 (Žnidarič

et al. 2011), while in the United States, the average age of the national bridge

stock is 42 years; 11% of which is said to be structurally deficient and 25% said

to be “functionally obsolete” (ASCE 2013). However, it is at this present time,

when a significant portion of the bridge stock demands resources, that bridge

1
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managers find themselves having to operate under significant budget restraints

due to recent economic conditions. In this regard, the most effective alloca-

tion of resources becomes a primary motivator for practice and research, with

risk-based methods emerging as a prominent solution to effective infrastructure

asset management under uncertainty.

Risk-based management under uncertainty is the state-of-the-art in terms of

life-cycle prediction of structure and infrastructure systems; whereby proba-

bilistic methods form the underpinning concepts for design and assessment,

and are consequently the main performance indicators of a structure (Elling-

wood and Frangopol 2016, Biondini and Frangopol 2016, Ghosn et al. 2016a,b,

Sánchez-Silva et al. 2016, Lounis and McAllister 2016). Structural reliability

methods are a tool used to incorporate uncertainty into performance assess-

ment of structures, by treating them as probabilistic systems that can vary with

time as opposed to deterministic in nature. In its most elementary form, struc-

tural reliability analysis is conducted under the context of the equation:

g = R− S (1.1)

Where g is a limit-state; R is a resistance variable; and S is a load variable. In

a general sense, R is a resource variable and S is a demand variable (Lemaire

2009). In this basic example of a simple structure, the limit-state is violated if

an applied load S exceeds the structures capacity R it resist it; and thus g ≤ 0 is

the failure domain of the structure. For common structures and structural sys-

tems with multiples of variables, the solution of this equation requires transfor-

mation to the probabilistic space, such as through a Rosenblatt transformation

(Rosenblatt 1952), or simulation methods, such as Monte Carlo simulation; and

can often yield different solutions based on small changes in the model param-

eters. Due to this sensitivity, structural reliability assessments of existing struc-

tures are typically more bespoke than conventional, widely used assessment

practices, and are thus less generic and uniform. While guidelines exist for

structural reliability modelling, the model parameters and variables are often

chosen based on existing best practice as opposed to site-specific information on

the load effects and material properties present in the system. This information

can be obtained by employing modern weigh-in-motion (WIM) technologies for

evaluation of local traffic effects, or through destructive and non-destructive

evaluation (NDE) methods to establish local material properties and environ-

mental effects. Both methods, however, require considerable resources, and so
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this information is not typically available on a wider scale.

However, the most ubiquitous source of information on the current state of

bridges is condition rating data obtained through visual inspection. Visual in-

spection is the most common form of bridge assessment, as it is inexpensive

relative to the other methods in terms of budget allocation and required time.

These inspections are used to classify the operating states of bridges, as well as

highlight any significant damage which may have occurred since the previous

inspection or last intervention. It is typically not used as a damage prediction

tool, in that it cannot inform the inspector of deterioration rates of the struc-

tural materials, yet it can be used in model updating based on the expected

condition state due to a priori analysis. In this regard, it can be a useful tool

not just for classification of operating states, but in the advancement of more

sophisticated assessment techniques. Further to this, there is a degree of sub-

jectivity within the condition assessment of bridges through visual inspection,

which results in somewhat ambiguous classifications of condition states. If used

to update probabilistic models, this ambiguity must be mitigated in order to en-

sure an appropriate classification of safety, and consequent resource allocation.

By investigating the available information at a larger scale, it should be possible

to reduce the ambiguity in this assessment method by employing multivariate

analysis techniques in order to gain a deeper understanding of the appropria-

tion of condition ratings, with an effort to establishing a more objective frame-

work from which to feed into further levels of assessment.

As bridge maintenance management evolves over time, we now stand at a junc-

ture where significant data collection is being carried out at a network level, but

different levels of information are available at different amounts and with dif-

ferent levels of accuracy or uncertainty. There is no commentary at this moment

on what such variations of information at different levels lead to and how it can

inform future decision making for bridges; especially at a network level.

1.2 Background

Historic, current, and predicted information of individual bridges, or a collec-

tion of bridges, in a network have increased significantly in several networks

globally. A focus on maintenance and management of bridge networks to a

minimum acceptable level of performance, usually in the presence of funding
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constraints, remains a challenge to bridge managers. Bridge management sys-

tems provide a framework from which to implement intervention strategies,

in which a large amount of data is collected and archived for these networks.

This data can be sourced from historical records, inspection records, testing re-

sults, and deterministic and probabilistic assessments. Advancement in digital

technology is expected to lead to a more intensive data-driven decision making

platform for networks of bridges and individual bridges. However, there is cur-

rently an imbalance in the quantity and quality of information available from

each data source. Condition rating data from visual inspection is available to

bridge managers of networks in large quantities, but contains very limited to no

information around the structural capacity of a bridge. Contrarily, structural re-

liability methods, considering site-specific traffic loading and material strength

with degradation models, provides a greater understanding of structural capac-

ity; but data from these methods are not as widely available. While studies in

relation to individual tests, inspection methods, or assessment techniques are

well-established, very few studies exist comparing the effect of information at

different levels on the assessment of individual bridges and of a network. A

better understanding of how information at different levels can impact bridge

assessment can lead to better management of these networks. Patterns may

develop when this information is available for a set of bridges in a network,

and this can lead to the development of network-based calibrations of their

performance by estimating these patterns as a performance signature of the

network. The studies can also be indicative of what types of bridges tend to

cluster together and how degradation processes and other decisions on loading

eventually affect bridges. A greater understanding of information at different

levels can lead to better managed bridge networks and a more judiciously cho-

sen monitoring and intervention options.

Early works by Liu and Frangopol (2004) and Estes and Frangopol (2003) have

investigated possible presence or absence of correlations for bridges, but there

has not been sufficient real data to develop a network calibration. When es-

timates of degradation are present, it is possible to assess and optimise costs

related to rehabilitation in a life-cycle format (Kong and Frangopol 2003). The

most direct study to-date linking different levels of information relates to 14

bridges, within relatively close geographical proximity to each other, in a small

urban network in the United States; which led to the development of some

amount of correlation between these levels of assessment, despite the small

sample size and some significant variation (Akgül and Frangopol 2004a). More
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simplified models have been used in larger networks for assessing the effects on

service life for specification changes (Kirkpatrick et al. 2002), which provides

incentive for investigating how other such changes in standard specifications

might affect bridges over time. Correlations from a range of bridges are more

well-researched in terms of testing, where comparative performance in rela-

tion to corrosion (Pakrashi et al. 2012a) and strength (Breysse 2012) are often

carried out; usually as part of a special inspection (Harries 2009). While per-

formance updating (Akgül and Frangopol 2003, Maes 2002) and cost-effective

repair optimisation (Orcesi and Frangopol 2011, Stewart et al. 2004) naturally

come from many such assessments, it is observed from the literature that the

availability of real data or actual policy changes provide a better insight to the

real condition of a network; and thus the methodologies are better compared

for such realistic considerations. This is not counter-intuitive, but the availabil-

ity or consideration of such data for the same and similar networks are still not

readily available and there is a necessity of presenting more such investigations.

Limited information and variations in uncertainty exist in every level of bridge

assessment at a network level, and understanding the effects of such varia-

tion better, using existing networks and representative bridges, is important;

especially when instrumentation and testing of bridges is becoming more com-

monplace due to technological advancement. However, most networks still rely

heavily on visual inspections for maintenance planning, as it is the least re-

source intensive method of obtaining some information regarding the state of

a network; despite the obvious limitations associated with such assessments.

Nevertheless, when this information is available at a network level, some pat-

terns and inferences may be drawn regarding the state of the network and its

evolution due to degradation over time (Reale and O’Connor 2012, Lovejoy

2003). Information obtained in this manner can be linked to the Value of In-

formation format, typically using Bayesian Belief Network modelling (Kallen

2007), and eventually leading to sensor placement strategies (Malings and

Pozzi 2016). While these advantages are present, the variations or uncertainties

around this information is also observed to be an important aspect for bridge

management (Moore et al. 2001, Figueiredo et al. 2013, Frangopol and Boc-

chini 2012). While most managed networks seem to align to minimum levels

of safety and serviceability limits, a significantly large number of bridges on

non-national or secondary roads seem to be structurally deficient (Chase and

Laman 2000). Under such circumstances, the margin of safety is often less

than what is typically obtained for better managed networks, and probabilistic
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assessments of such bridges can lead to lower reliability indices than usually

acceptable (Akgül and Frangopol 2003, Leander et al. 2015).

For probabilistic assessments of real networks, there is inadequate information

around how parameter importance measures perform and if similar types of

bridges tend to cluster in values or not. The variations around such analyses

are primarily due to uncertainty in capacity variables; yet the impact of load

variables, especially for traffic loading, due to changes of regulations over time

on bridge assessment can provide significant variation in assessment outcomes.

This leads to a circumstance where more onerous classifications of safety occur

in certain periods of time; since the assessments typically were and currently

are carried out using deterministic methods with prescribed loading. For in-

spection data, there are questions around how to reduce and cluster such data

when available from a network, and can this data be used to provide insight to

the condition of the network; leading to a calibrated signature of the network.

Impacts of disparate levels of information on bridge maintenance and manage-

ment is thus an active and important field, especially when more information

and data is becoming available. While the connection between different levels

of information may still not have enough available data to draw a definitive

conclusion, understanding the influence of variation of information at different

levels for a bridge network leads to a first step towards future assessment of

these networks in a data-driven environment. This thesis attempts to address

this issue using as much real data, information, and policies as possible.

1.3 Research Objectives

The objective of this thesis is to investigate the effect of disparate informa-

tion levels on bridge management and safety, and how the levels of information

available to the engineer can severely impact the stability of probabilistic assess-

ment. With the effective use of available information, and the understanding

on the limits of this information, it should be possible to further the application

of probabilistic assessment methods in the evaluation of existing bridges and

understand the entire process of bridge maintenance management on a deeper

level.

The specific objectives of the thesis are to:

1. Demonstrate the effect of uncertainty on reliability assessment of bridges
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by studying the sensitivity of the model parameters and their influence on

the model solutions

2. Investigate the evolving nature of codes for bridge design and assessment,

and show how variations in traffic loading definitions can introduce a level

of uncertainty to a network assessment, independent of the deterioration

of the bridges

3. Evaluate the effect on life-cycle costs for bridges designed in different eras

and, thus, under different traffic loading definitions; with a view to deter-

mining how conservatism at the design stage can reduce the requirement

for financial investment in the latter stages of a bridges service life

4. Use multivariate analysis techniques on condition rating data within

bridge management systems to develop an improved understanding of

the behaviour of specific bridge types in the context of visual inspection

data

5. Relate the derived models back to risk-based evaluation and explore the

potential applications in which the use of multivariate techniques on ex-

isting data can be used

1.4 Scope of Work

The scope of the work is mostly limited to the evaluation of short span bridges

(Figure 1.1), as these bridges form the majority of national networks within

Europe, subjected to traffic loading only. The bridges assessed probabilistically

are reinforced and prestressed concrete bridges; being the predominant type of

modern bridge in Ireland. The assessments incorporates the use of a statistically

defined traffic load model, from which comparisons will be made to the traffic

load models defined in codes used in Ireland in the past and present. As the load

model used defines the annual maximum value of traffic loading, the reliabil-

ity indices determined using this model are considered to be annual reliability

indices and nominal values; from which it is possible to provide comparisons.

The data used for the corrosion modelling has been based on results obtained

largely from studies conducted on bridges in the United States, and so the re-

sults presented herein are non-specific to Irish bridges and corrosion rates. The

time-dependent reliability assessment will be based on a single-point-in-time

assessment of the future reliability of the bridge at a specified time, assuming
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Figure 1.1: Typical arrangement of short, single span highway bridge
(Leonhardt 1982)

failure has not already occurred. The level of uncertainty in relation to the

flexural capacity of these bridges is investigated, from which it can be seen

that the results can be quite sensitive to the levels of information available to

the engineer. In this regard, the most ubiquitous information source in bridge

management, condition rating data, is used from which to establish a reliable

model from which to drive a greater level of information into structural reliabil-

ity modelling. The primary source of data used in this analysis is the condition

rating data of single span masonry arch and reinforced concrete bridges, being

the most numerous type of bridge typically seen in existing stock in Europe.

These bridges are not identified in the thesis, but are defined by their parame-

ters and their presence within respective data-sets. A targeted literature review

is included at the beginning of Chapters 3-6.

1.5 Outline of Thesis

This thesis is organised into seven chapters, where:

• Chapter 1 provides an introduction to the topic and defines the scope and

objectives of the presented research

• Chapter 2 gives the theoretical background to the probabilistic method of

structural reliability analysis, and is presented in the context of its sensi-

tivity to sources of information used in the construction of a probabilistic

assessment model

• Chapter 3 considers model uncertainty for reliability analysis, and pro-

ceeds to estimate the level to which the computed reliability indices β are

a function of the level of uncertainty in the model parameters. Addition-

ally, useful by-products of reliability analysis, in the form of sensitivity

Effects of Disparate Information Levels on
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and parameter importance measures, are shown to give guidance on the

level of uncertainty in the model and what parameters to target to reduce

uncertainty through information gathering

• Chapter 4 models the effects of changes in traffic loading definitions over

time and the fact that such definitions may influence the computed level

of safety of bridges. These estimates identify periods of time when such

definitions have had the maximum effect. Further to this, it is shown that

bridges designed under modern, conservative design standards might en-

joy a prolonged life-cycle and that the increased cost associated with more

conservative design can be significantly offset by life-cycle cost reductions

seen due to the reduced necessity for essential or preventative mainte-

nance

• Chapter 5 investigates the concept of multivariate data techniques and

their application to condition rating data in bridge management systems.

Specifically, multivariate data reduction techniques will be explored in an

effort to reconstitute the large data set into a reduced space that explains

the most variance in the data-set

• Chapter 6 shows the applicability of using multivariate data techniques

on existing available information, and how this can be used to derive

an improved model for network performance through the use of latent

variables and underlying factor structures of bridge management systems,

by utilising perceived patterns in condition rating signatures for different

bridge types in varying locations

• Chapter 7 gives a summary of the research contributions contained in this

thesis, including a critical appraisal of the work and its limitations; as well

as suggested directions for future work derived from this research

1.6 Research Output

The following publications represent the primary dissemination of the research

contained in this thesis, to date.
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Chapter 2

Background to Probabilistic
Assessment

2.1 Introduction

As infrastructure deteriorates over the course of its life-cycle, it is important

to ensure the continued safety and serviceability of the various elements. To

achieve this, it is necessary to be able to predict the point in time at which an

infrastructural asset will deteriorate to a critical condition state. To predict this

point in time, it is necessary to consider how this deterioration will affect the

structural capacity of the asset, as well as any future increase in the applied

loading; all of which have an associated level of uncertainty, hindering an ac-

curate prediction (Ang and Tang 2007). Thus, advanced methods are required

that allow for the consideration of all pertinent information in an analytical

assessment model. There exists a hierarchy (Figure 2.1) for the levels of as-

sessment associated with an infrastructure network (Pakrashi et al. 2012b), for

which all levels are included into the decision making tool. The most advanced

level in this hierarchy is probabilistic/reliability methods, due to its role in the

establishment of key performance indicators for structures.

Reliability is regularly related to the probability that failure will not occur; thus,

it is complementary to the failure probability Pf and, consequently, this leads

to the estimation of probability of structural safety over a prescribed period of

time. Often, this prescribed period of time is the ‘design life’ of a structure; typi-

cally agreed to be 120 years (CEN 2002). The use of probabilistic methods allow

for the treatment of structures as probabilistic systems rather than determinis-
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Figure 2.1: Infrastructure assessment hierarchy, adapted from Pakrashi
and Hanley (2015)

tic, a treatment which is more accurate to the actual realization of an engineer-

ing structure. Reliability methods provide for the computation of safety based

on varying load models and uncertainties around the return period of extreme

load events, in addition to addressing the uncertainty in the resistance capacity

of a structure. Previously, the wide-spread application of structural reliability

analysis was hindered by high computational demand, but modern advances in

computing technology have overcome these issues (Ellingwood 2006). Thus,

there remains no effective restriction on the extensive implementation of the

method for infrastructure assessment or design.

Probabilistic methods can sometimes be subjective in nature or may be based on

engineering judgement to a certain extent, as the input variables required for

the analysis can only be modelled based on the level of information available
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about the problem at hand. From this, the lack of information, or uncertainty

in information, becomes a significant consideration in reliability analysis. Un-

certainties can be simply defined in two ways: aleatory and epistemic (Faber

2005). Aleatory uncertainty relates to uncertainties that are inherent to the

problem and must be accounted for, whereas epistemic uncertainties are those

which can be reduced or mitigated through the collection of information about

the problem, and the refinement of the model used in the analysis.

A brief overview of the structural reliability method is presented in the following

sections for completeness, with the presented theory being the basis for further

discussion in later chapters.

2.2 Code Treatment of Structural Reliability

2.2.1 Formulation of Reliability Analysis

The basic formulation of structural reliability can be expressed through a model

of a single load effect variable S resisted by a single resistance variable R, with

each having its own probability density function. In the general case for engi-

neering structures, the limit state is violated if S exceeds the value of R. This

limit-state can be expressed in the following form:

g = R− S (2.1)

This can also be described in different but probabilistically equivalent limit-state

functions, depending on the criteria of the problem being assessed:

g = 1− S

R
, g = ln

(
R

S

)
(2.2)

The probability of this violation is identical to the probability of failure Pf . This

concept has its most basic form when considering a single structural element

for an ultimate or serviceability limit-state, which is denoted by the limit-state

function, G(X).

Pf = P (R− S ≤ 0) = P [G(R, S) ≤ 0] = P [G(X) ≤ 0] (2.3)
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where P represents probability. In the case that the basic variables in the limit-

state function are independent:

Pf =
∫

R<S

∫
fR(r)fS(s)drds =

∫ ∞
0

∫ S

0
fR(r)fS(s)drds =

∫ ∞
0

FR(s)fS(s)ds

(2.4)

where FR(S) is the cumulative distribution function, with the convention be-

ing used of upper case letters denoting the cumulative distribution of its lower

case counterpart. The simplest form of structural reliability analysis can be

evaluated by modelling each random variable in the problem as a normal dis-

tribution and using only the first two moments: mean µ and standard deviation

σ. The reliability index β and failure probability Pf can then be approximated

as (Cornell 1969):

β = µZ
σZ

= µR − µS√
σ2
R + σ2

S

= −Φ−1(Pf ) (2.5)

However, the output from this method must strictly be considered nominal and

is useful only when employed on a comparable basis to other analyses of the

same type. Additionally, the use of this method assumes a linear limit-state

function with a normal distribution. However, limit-states are typically ob-

served to be nonlinear in practice, which make it difficult to obtain the first

two moments of the limit-state function.

Figure 2.2: Conceptualization of the reliability problem (Melchers 1999)

When conducting a structural reliability analysis, four levels have been defined
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with increasing levels of complexity. Level I, the most basic level, is the com-

monly seen partial factor approach used in design codes where deterministic

values are used and uncertainty is accounted for by way of partial factors.

Level II methods incorporate the idea of model uncertainty by describing the

input parameters as normal distributions with mean and standard deviation

values. The use of this method yields a nominal failure probability useful for

comparison purposes. Level III methods involve establishing the failure prob-

ability using advanced methods, such as transformations and simulations, and

can be referred to as “exact” methods. Level IV methods expand on the “exact”

methods by incorporating economic models in order to generate a risk analysis.

2.2.2 Incorporation of Reliability Analysis into Normative

Documents

The role of normative documents, such as structural design codes, is generally

to ensure a degree a harmonisation of structural design, in an effort to provide

minimum safety levels of structures. Having employed the use and followed the

rules of a design code, the designer should have reasonable confidence in the

safety and serviceability of the designed structure (Melchers 1999). To this end,

a design code needs to be based on advanced methods for predicting structural

safety, but also to be accessible enough to the end-user/designer. To address

this issue, modern structural design codes (DNV 1992, CEN 2002, JCSS 2000)

implement the concept of partial factors γ for both loads and resistance vari-

ables. The partial factor method, also called the load-resistance factor reduction

(LRFD) method, is designed to be able to apply probabilistic uncertainty to de-

terministic design variables (Ellingwood 1996). For the reliability method, an

applied load above the mean value µS is said to be unfavourable, while a resis-

tance value below the mean µR is also deemed unfavourable. Thus, the partial

factors are applied to simulate such an unfavourable scenario. The values for

these partial factors can be determined through calibration to the limit-states

equations specified in the code against the target reliabilities established to en-

sure adequate safety is provided.
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2.2.3 Reliability Targets

The reliability target is the level for which a structure should perform at a mini-

mum. In design, it can be used as the minimum target benchmark to ensure that

certain safety levels are achieved. Rather than simply be based on a pass-fail

approach for all structures, the target reliability can be optimized to different

scenarios where failure consequences may be considered on different levels,

and where the nature of the structural failure can be predicted. Thus, target

reliability indices can be seen to be situational. The specification of target relia-

bilities has been included in numerous design standards prepared by Det Norske
Veritas (Table 2.1), the European Committee for Standardization (Table 2.2), and

the Joint Committee on Structural Safety (Table 2.3).

Table 2.1: Target reliability for failure types and consequences (DNV
1992)

Consequence of failure

Class of failure Less serious Serious

I – Redundant structure 3.09 3.71
II – Significant warning before the occurrence
of failure in a non-redundant structure

3.71 4.26

III – No warning before the occurrence of failure
in a non-redundant structure

4.26 4.75

Table 2.2: Target reliability for ultimate limit state (CEN 2002)

Reference period

Consequence classes 1 year 50 years

Low consequence for loss of human life,
and economic, social or environmental conse-
quences small or negligible

4.2 3.3

Medium consequence for loss of human life,
economic, social or environmental conse-
quences considerable

4.7 3.8

High consequence for loss of human life, or eco-
nomic, social or environmental consequences
very great

5.2 4.3

A reference period refers to the period of time used as a basis for assessing

stochastic actions. It should be noted that when designing a new structure or

assessing an existing structure to fulfil target reliability levels, the uncertainties

within the model used will affect the reliability level. Thus, the true relation-

ship between the calculated reliability index and the target reliability index is a
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Table 2.3: Target reliability for ultimate limit state at one year
reference period (JCSS 2000)

Relative cost of safety measure

Consequence classes Large Normal Small

Minor – risk to life is small and negli-
gible economic consequences

3.1 3.7 4.2

Moderate – risk to life is medium and
economic consequences are consider-
able

3.3 4.2 4.4

Large – risk to life is large and eco-
nomic consequences are significant

3.7 4.4 4.7

function of the commonality of the uncertainties and assumptions used in the

establishing models.

2.2.4 Consistency with Deterministic and Semi-Deterministic

Methods

As mentioned earlier, the target reliability can be used in order to calibrate

partial factors in a design code that used the Load and Resistance Factor Design

(LRFD) method, or limit-state design. The typical limit-state equation used in

modern design codes is of the form:

φRn ≥
i∑

k=1
γkSkm (2.6)

Where the characteristic resistance values are typically reduced by a partial

factor φ and the characteristic load actions are typically increased by the ap-

plication of the partial factor γ. As the values of partial factors are derived

from probabilistic methods in reference to target reliabilities, codes of prac-

tice which use partial factors are said to be probability based codes or semi-

deterministic/probabilistic (Vrouwenvelder 1997). These partial factors are

derived using the general procedure outlined by Melchers (1999).
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2.3 Second Moment Transformation and Simula-

tion Methods

In order to facilitate the broad application of the reliability method, a gen-

eralized reliability problem is required to be defined, derived from the load-

resistance case presented earlier. However, in most engineering applications,

R and S will not comprise single variables but will be a function of a number

of basic variables which contribute the limit-state function. All basic variables

can be represented by the vector X. Now, by expressing the generalized limit-

state function as G(X), the failure probability for the joint probability density

function fX(x) can be expressed as:

Pf = P [G(X) ≤ 0] =
∫
...

∫
G(X)≤0

fX(x)dx (2.7)

In most cases of evaluating the generalized failure probability, the integration of

the probability density functions cannot be performed analytically, and must be

approximated using appropriate methods; of which the two leading approaches

are transformation methods and simulation methods. Using simulation meth-

ods, such as Monte Carlo methods, the multi-dimensional integral can be eval-

uated. Conversely, transformation methods are used when bypassing the inte-

gration is desirable, and the joint probability density function is transformed to

a multi-normal probability density function which can be described by its mo-

ments. Although often seen to be competing methods, the belief held by some

researchers is that these methods should be seen as complementary; as one

method may be more appropriate for a specific problem over another (Bjerager

1990).

It is possible to evaluate the failure probability through direct integration, but

only in a limited number of instances; specifically where the limit-state function

is linear and all random variables are normally or lognormally distributed. For

this reason, it is largely considered an impractical method to solve for the failure

probability.
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2.3.1 Problem Formulation

The First-Order Second Moment (FOSM) method was developed to linearise

the nonlinear limit-state function using a Taylor series expansion about a lin-

earisation point. The location of this point is best chosen to be the design point,

being the point of maximum likelihood. However, it has previously been lin-

earised at the mean values of the random variables, giving rise to the name

Mean Value First-Order Second Moment (MVFOSM) method. Moreover, the

benefit of this method is that it is easier to locate this point than that of the de-

sign point, but does not offer as good an approximation. However, linearising

the surface at the mean leads to an invariance problem, where the analysis of

equivalent limit-state functions will result in a disagreement of the reliability

indices. To correct this invariance problem, the first-order reliability method

was developed.

2.3.2 First-Order Reliability Method

First-order reliability methods (FORM) involve transforming non-Normal ran-

dom variables into comparable Normal random variables that can be described

using their first-order moments. This can be achieved using methods such as

the Rosenblatt (Rosenblatt 1952) or the approximate Nataf transformations.

However, by transforming the random variables, the limit-state function is also

transformed, and is usually now represented as a nonlinear function. In order to

compute the reliability index, FORM requires a linearisation of the limit-state

surface at a point that provides a better approximation than seen with MV-

FOSM. The linearisation is achieved through a Taylor series expansion about

a point on the limit-state surface, optimally chosen to be the design point u∗.
The prominent computational demand of FORM is through the location of u∗,
and methods to locate this point are discussed later. A general algorithm is

developed based on the location methods, which is repeated until the solution

converges to a point where u∗ and β stabilise in terms of value.

FORM addresses the invariance problem present using MVFOSM by approxi-

mating the limit-state surface at a point as opposed to the mean value of the

random variables. But, as can be seen, using an expansion method to linearise

the limit-state surface becomes less accurate as the level of curvature of this

surface increases, and as such, use of FORM becomes less desirable in these

scenarios, in comparison to the use of second-order methods.
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2.3.3 Second-Order Reliability Method

Second-order reliability method (SORM) is an extension of FORM, but without

the need to linearise the limit-state surface. Instead, a hyperparabolic surface

is fitted the limit-state surface at the location of the design point. Due to this,

SORM is capable of dealing with problems of a higher degree of complexity than

FORM, as the method can be extended to highly curved limit-state surfaces.

A number of methods have been proposed to evaluate the failure probability

using SORM (Der Kiureghian et al. 1987, Hohenbichler and Rackwitz 1988,

Tvedt 1990, Der Kiureghian and Stefano 1991), but the simplest implementa-

tion of the method involved asymptotic approximations (Breitung 1984) and

multiplied the FORM result by a correction factor:

Pf ≈ Φ(−β)
n−1∏
i=1

1√
1 + βki

(2.8)

As can be seen, the correction factor is a function of the limit-state curvatures

ki at the design point. Thus, the problem reduces to one of determining the

curvatures of the limit-state surface.

Figure 2.3: FORM linearisation and SORM approximation in standard
normal space
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2.3.4 Monte Carlo Simulation for Reliability Analysis

A direct method to evaluate the probability density integral for the limit state

function is through simulation methods. The use of simulation methods was

proposed as an alternative to the high computational demand required for solv-

ing through direct integration, and was specifically helpful in solving for non-

linear limit-state functions. Monte Carlo simulation involves artificially running

a large number of experiments based on the numerical model, with the output

being a function of the number of experimental failures observed. When ap-

plied to structural reliability, the failure probability is calculated as being the

number of the instances the limit-state function was violated across the total

number of experiments run N.

Pf ≈
n[G(xi) ≤ 0]

N
(2.9)

To evaluate the accuracy of a Monte Carlo simulation, the coefficient of variance

of the failure probability δpf should be checked, and is defined as:

δpf = σpf
µpf

=
√

1− pf
Npf

(2.10)

Values of 2–5% for δpf are typically deemed to be acceptable. Knowing the ac-

ceptable levels of CoV, and having a target reliability index/failure probability,

the number of samples required for an acceptable Monte Carlo simulation can

be found from the following formula:

N = 1
δ2
pf

(
1− pf
pf

)
(2.11)

It should be noted that the Monte Carlo simulation method is only a practical

alternative method when the number of simulations is less than the number

of integration points required for a numerical integration. Additionally, the

Monte Carlo simulation can be optimized by sampling in the area of the design

point. This greatly improves the efficiency of the method and is referred to as

Importance Sampling. However, a transformation method, such as FORM, must

be conducted in order to locate the design point.
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2.3.5 Practical Implementation Aspects

As the computational difficulties from the past have been rectified through de-

velopment of robust methods and commercially available software applications

which implement them, there remains little reason to hinder the widespread

application of the structural reliability method. Remaining difficulties include

the sufficient education of engineers to be able to fully utilize the method and

work with the output. However, as with any advanced numerical method and

associated software application, the quality of the input data is of primary im-

portance as small input errors can manifest in large output errors. To effectively

model the input variables, the most appropriate probability distribution must be

chosen, of which will be highlighted in the following sections.

2.4 Resistance Modelling Considering Deteriora-

tion and Uncertainty

It is evident that the purpose of inspecting a structure is to assess whether it

is continuing to perform for its intended purpose. For engineering structures,

this is typically borne by whether the structure has the capacity or resistance

to sustain the applied load in a safe manner. For new structures, this is simply

accounted for in adherence to modern design codes, which have a founding in

probabilistic methods. However, for existing structures, the prediction of the

actual strength of the structure is often determined using imprecise methods.

A condition rating is usually assigned to the structure based on the results of

the assessment. For many infrastructure networks, these condition ratings are

assigned based on the results of a visual inspection alone. For infrastructure

managers to make maintenance decisions for a vast network, while operating

under budget constraints, this is often seen as an economical approach. How-

ever, it must be noted that visual inspections cannot offer information on how

a structure is likely to deteriorate over time (Frangopol et al. 2001) and, there-

fore, they do not make for a good decision tool when considering future inter-

vention plans. Additionally, visual inspection cannot highlight how a material

is performing internally. Thus, in order to effectively allocate future resources

for areas of future need, it is necessary to make decisions based on methods

that allow the accurate modelling of deterioration.
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2.4.1 Uncertainty Modelling

A benefit of using probabilistic methods in the design and assessment of engi-

neering structures is the ability to adequately account for uncertainty in prob-

lems. The types of uncertainties typically associated with an engineering prob-

lem are (DNV 1992):

• physical uncertainty, which is intrinsically associated with a variable due

to naturally occurring randomness in its composition. Efforts to reduce

this type of uncertainty can only work to an extent, but it can never be

truly eliminated

• the uncertainty related to the measurement and collection of data. This

type of uncertainty is usually confined to human error and equipment

error, which can be satisfactorily eliminated by calibration to a known

state

• statistical uncertainty, which can arise due to the sample size of informa-

tion used in an analysis, or an insufficient number of iterations used on a

convergence

• model uncertainty, which is associated with the construction of the ana-

lytical solution. This type of uncertainty, in addition to being a function of

other types of uncertainty, is based on decisions made by the engineer, and

can increase due to excessive and incorrect simplifications/assumptions

made in devising the computational or physical model. Methods to ac-

count for this type of uncertainty have been developed to be integrated

into the computational model (NKB 1978, O’Brien et al. 2015a)

Another source of error in the determination of a computational model is the

selection of a probability distribution for the random variables in the problem.

It has been shown that curve fitting a distribution to a set of data will often al-

low the engineer to select a number of seemingly appropriate distributions that

possess a similar form or curvature. However, the tails of these distributions

are often vastly different and result in widely varying approximations of failure

probability. This usually referred to as the “tail sensitivity problem”, and efforts

have been made to reduce this effect by standardising appropriate probability

distributions for load and resistance random variables (Tables 2.4 and 2.5).
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Table 2.4: Material property distribution models (O’Brien et al. 2015a)

Variable Unit Distribution σ CoV

Modulus of elasticity N/mm2 Normal - -
Steel strength (reinforcing steel) N/mm2 Lognormal 25 -
Concrete strength N/mm2 Lognormal - 0.12–0.22
Area of steel mm2 Normal - -
Effective depth mm Lognormal - 0.05-0.20
Cover to reinforcement mm Lognormal - -
Steel strength (prestressing steel) N/mm2 Lognormal - 0.04
Steel strength (structural steel) N/mm2 Lognormal 25 0.04–0.07

Table 2.5: Typical probabilistic load distributions (DNV 1992)

Variable Type Distribution

Wind Short-term instantaneous gust speed Normal
Long-term n-minute average speed Weibull
Extreme speed, yearly Gumbel

Wave Short-term instant. Surface elevation (deep water) Normal
Short-term heights Rayleigh
Wave period Longuet-Higgins
Long-term significant wave height Weibull
Long-term mean zero upcrossing or peak period Lognormal
Extreme height, yearly Gumbel

Current Long-term speed Weibull
Extreme, yearly Gumbel

Forces Hydrodynamic coefficients Lognormal

2.4.2 Need for Resistance Modelling

When conducting a reliability analysis, the two fundamental aspects of the

limit-state need to be modelled: R and S. In the explanation of the method,

these were limited to single variables, but in practice, each will be repre-

sented by its own equation and associated parameters. For this section, ma-

terial strength is mostly considered, but the variable R can be extended to other

applications including, but not limited to, flow capacity of a pipe or river, traf-

fic capacity on a road network, soil cohesion, etc. Additionally, the variables

relating to the geometry of the structure are typically classed as R variables.

To accurately assess the strength of a material, the inherent variation in ma-

terial properties needs to be modelled. In general, these properties tend to

have variation from point to point, and an appropriate probability distribution

should be used when modelling for structural reliability. Using a probability

distribution allows the specification of a mean value µ and a standard devia-
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tion σ to represent the expected value of the material property and the typical

range of variation. In addition to specifying the range of values, the uncertainty

surrounding the expectation of these values can also be modelled. Sources for

uncertainty in material strength include:

• Deviation from sample used in testing

• Level of workmanship during construction

• How the material will respond to the environment

• The rate of deterioration for the material

These sources of uncertainty can often be mitigated against through diligent su-

pervision and the refinement of models, and can thus be classified as epistemic,

as mentioned in previous sections. The geometry of the structure is often sub-

ject to less uncertainty than the material properties, as the built structure can

be measured against what is designed for. In the design phase, uncertainty can

be lowered by specifying small tolerance levels, and can be further reduced in

the construction phase by competent workmanship and supervision. Due to

minimal expected deviation from the mean value, the basic variables relating

to geometry can often be modelled as fixed or deterministic.

2.4.3 Measurement of Resistance Variables

In order to gather information about the safety of a structure, the material prop-

erties of the resistance material need to be tested against the values used in the

design model. This quality control process can be achieved using two distinct

approaches: total testing of the material and sample testing of the material.

An example of quality control is the testing of concrete specimens during the

construction phase, i.e. a concrete cube/cylinder test.

For total testing, every unit produced and is assessed on a pass/fail approach

using a non-destructive testing method. This type of testing is analogous to an

assembly line product inspection. For sample testing, a series of random sam-

ples are taken from the total population of produced units in order to establish

a measure of quality, where each unit has an equal chance of being selected

for inspection. With regard to structures, sampling efficiency can be improved

by limiting the population to areas of interest; such as weak points, critical

connections, etc.
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2.4.4 Typical Loading Scenarios

The loads which act on structures are typically categorized as dead (permanent)

and live (variable). Dead loads are those that are inherent to the geometry

and composition of the structure, where live loading considers loads which are

imposed upon the structure. Live loads can occur through human intervention

(floor loading, traffic loading, etc.) or due to natural phenomena (wind loading,

wave loading, etc.).

2.5 Probabilistic Assessment of Limit State Viola-

tion

In the undertaking a probabilistic assessment of limit-state violation, the meth-

ods used and the modelling of variables can provide inaccuracies when it comes

to achieving comparable results. For the successful implementation of the

method, the engineer needs to be aware of the limitations of some methods

and the pitfalls of others.

2.5.1 Reliability Index and Probability of Failure

For the simple case of the FOSM method, the reliability index can be seen to

be equal to the number of standard deviations the mean value lies from the

failure surface. It can also be seen to be the least distance from the origin to

the limit-state surface in the standardised space. Thus, as the distance from the

mean to the failure surface increases, so too does the reliability index, as the

failure probability decreases.

The Cornell reliability index βC is defined as a quotient of an expected value

E[G] and an uncertainty parameter D[G]. For structural reliability applications,

E[G] can be modelled as the mean value µ of the parameter and D[G] can be

modelled as the standard deviation σ of the parameter. So for the simple R and

S scenario, the Cornell reliability index can be defined as:

βC = E[G]
D[G] = E[R]− E[S]√

Var[R]− Var[S]
= µR − µS√

σ2
R + σ2

S

(2.12)
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2.5 Probabilistic Assessment of Limit State Violation

This definition of βC accounts only for uncorrelated basic variables. For basic

variables that possess a degree of correlation, as is often seen, it is necessary to

modify βC as follows (Lemaire 2009):

βC = µZ
σZ

= µR − µS√
σ2
R + σ2

S − 2cov[R, S]
(2.13)

As the simple reliability case of R and S is a basic subtraction problem, it is not

feasible to use the previous method to establish reliability indices for variables

that are restricted to positive values. For such cases, the FOSM reliability index

βRE was developed (Rosenblueth and Esteva 1972) by using the logarithms of

µZ and σZ in the evaluations of β.

βRE = E[log(R/S)]
D[log(R/S)] (2.14)

However, the limit-state is now a non-linear function, and so the first two mo-

ments cannot easily be determined. As such, the limit-state surface must be

linearised in order to determine β. This can be achieved by a Taylor series ex-

pansion about one of the expected values, such as µ. This allows the limit-state

function G and reliability function to be rewritten as:

G = logµR − logµS + R− µR
µR

− S − µS
µS

(2.15)

β = logµR − logµS√
V 2
R + V 2

S

(2.16)

Hasofer and Lind (1974) proposed to map the basic variables into an uncor-

related standard space, and evaluate the reliability index as the least distance

from the origin of this space to the failure surface, defined by the limit-state

function. This gave rise to what is now considered the design point.

2.5.2 The Concept of the Design Point

The point on the limit state surface that satisfies the condition of being min-

imum distance from the origin is called the design point, and is the point of

maximum likelihood for the failure domain by having the greatest probability

density. This point is generally used when conducting reliability studies using
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FORM and SORM, as it is seen to be the optimum location for a linear expan-

sion for nonlinear limit-state surfaces. Previously, the mean point was used

for the expansion point in the linearisation, but using this method resulted in

an invariance problem where equivalent limit-states were outputting different

reliability indices.

As the design point was shown to be the optimum position for approximat-

ing the limit-state surface, a method needed to be developed to locate this

point. Many methods have been investigated to efficiently find the design point

(Liu and Der Kiureghian 1991): the gradient projection method, the penalty

method, the augmented Lagrangian method, the sequential quadratic program-

ming method, and the Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method

(Hasofer and Lind 1974, Rackwitz and Fiessler 1978). The most widely used

algorithm to find the design point was the iterative HL-RF method, defined by

the formula:

ui+1 =
[

G(ui)
‖∇G(ui)‖

+ αTui

]
α (2.17)

Where αT is the transpose of α, and every successive iteration i+ 1 is a function

of the previous iteration i. Starting from an initial expansion point, taken to

be the mean value for convenience, the refined expansion point is computed

using the above formula. This is repeated until the location of the design point

and the reliability index stabilises. However, this method had demonstrated

a convergence problem under certain circumstances, and modifications were

proposed to rectify this computation issue. The most popular modification is by

introducing a line search along a directional vector d. This can be seen as an

expansion on the gradient projection method, with the improvement that the

initial checking point does not need to be located on the limit-state surface.

A significant issue with using the design point as the estimate for the reliability

index, and thus failure probability, is the problem of nonlinear failure surfaces

that exhibit a high degree of convexity with which it is endowed. As can be seen

in Figure 2.4, four limit-state functions are presented which are of different

forms but possess the same design point and reliability index. However, it is

obvious that the failure probability of g1 is much more significant than that of

g4, which seems to have an outlying critical level as opposed to g1 which exhibits

a near constant critical level. The understanding of this pitfall is a mitigation of

the negative effects it can have on the reliability evaluation. A procedure was

proposed by Ditlevsen (1979) to rectify this issue by introducing a weighting

factor ψ to the normal probability density function. The use of this method is
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said to provide a more robust selection of the reliability index than the HL index

for nonlinear failure surfaces.

Figure 2.4: Common reliability index for differing limit-states

2.5.3 Sensitivity Studies & Parameter Importance Measures

The parametric sensitivity is the measure of change of the reliability index due

to perturbations in the basic variables (Hohenbichler and Rackwitz 1986, Mad-

sen et al. 1986). When a basic parameter θ is changed in the limit-state equa-

tion, the original failure surface g(u, θ) = 0 is subject to change as a function of

dθ. With a new failure surface g(u, θ + dθ) = 0, the design point u∗ is relocated

from its original position to u∗+du∗ (Figure 2.5). The location of the new design

point can be related to the original position through the unit directional vector

α and its infinitesimal orthogonal increment dα (Bjerager and Krenk 1989).

dβ

dθ
= αT

du∗

dθ
= 1
|∇g(u∗)|

∂g

∂θ
(2.18)

Sensitivity studies can be carried out within the framework of reliability analy-

sis and it is helpful in identifying and quantifying errors in design, modelling

and construction (Frangopol 1985, Nowak and Carr 1985). The importance of

a variable to β is defined as the alpha-value αi, which measures the sensitiv-

ity of β to a small variation in the mean-value µi of a basic random variable
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Figure 2.5: Illustration of parametric sensitivity

(Hohenbichler and Rackwitz 1986):

αi = ∂β

∂µi
(2.19)

This parametric sensitivity factor αi for the reliability index β with respect to a

parameter θ is defined (Madsen et al. 1986) and developed (Bjerager and Krenk

1989) as the derivative ∂β/∂θ. This factor measures the relative change in β

due to a variation in a parameter ∆θ. For a specified or known value of ∆θ, the

adjusted reliability index β′ can now be expressed as:

β′ = β + ∂β

∂θ
∆θ (2.20)

With this expression, the magnitude of how much each parameter must change

in order to satisfy a specified level of safety can be evaluated. For design, the

parameters can be adjusted to obtain a target reliability index βT , and for as-

sessment, the parameters can be monitored such that they do not degrade to a

critical reliability index βMin.

∆θ = β′ − β
∂β/∂θ

(2.21)

It should be noted that the terms βT and βMin are often used interchangeably,

and that the rest of this chapter will use the term βT .

As part of a sensitivity analysis, parameter importance factors α2
i can be deter-

mined, identifying which of the modelled parameters have the greatest impact
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on the reliability index, and thus, the safety of the structure.

n∑
i=1

α2
i = 1 (2.22)

These factors indicate through their ranking, expressed as a percentage, what

parameters are important for monitoring within a system and to what extent

they contribute to the probability of safety or failure. Also, for varying limit

states or uncertainties, the ranking of these parameters within a system can

change; emphasizing the fact that the contribution of a certain factor to a failure

defined by a limit state is a function of the information available about the

system and the associated confidence or accuracy of that information. It should

be noted that a positive α-value corresponds to a load variable and a negative

α-value corresponds to a resistance variable.

The parameter importance factors allow for the computation of the omission

sensitivity factor γi, which is the relative error of β when a stochastic variable is

modelled as a deterministic parameter (Madsen 1988). This factor for a basic

variable xi is measured as the inverse ratio of β and an adjusted reliability

index β′ when the random variable xi is replaced by a deterministic parameter,

typically its median (Ditlevsen and Madsen 1996).

γi = 1√
1− α2

i

(2.23)

2.6 Time Dependent Reliability

2.6.1 Concept of Time Dependence

A powerful application of the structural reliability method is the ability to per-

form a time-dependent reliability analysis; whereby the reliability of a structure

can be predicted at a certain point in time in the future, or over a specific time

interval. This is often necessary when considering a life-cycle approach to the

design or assessment of structures, as the condition of a structure is likely to

vary with time. Advanced applications of the method concern the evaluation of

fatigue effects or the dynamic application of loads, but more fundamental topics

are concerned with changes in the basic variables which govern the limit-state

equations. In a typical example of the life of a structure, it is often observed
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that the structural resistance decreases over time due to destructive processes

such as corrosion, section loss etc.; and the applied load often increases due to

increased demand or unfavourable change of use. Thus, the relevant basic vari-

ables can be considered as functions of time and that the structural reliability

decreases with time, typically. It should be noted that factors which improve

the lifetime reliability include structural strengthening or favourable change of

use.

Figure 2.6: General time-dependent reliability problem

2.6.2 Handling Time Dependency in Reliability Analysis

The time-dependent reliability model extends the fundamental model previ-

ously discussed by introducing the time function t:

Pf (t) = P [R(t) ≤ S(t)] (2.24)

Pf (t) =
∫

G[X(t)]≤0

fX(t)[x(t)]dx(t) (2.25)

Using the above equations, the failure probability can be calculated for a specific

time t or can be evaluated as the probability of failure occurring over a time

period ending at t. To achieve this, integrate the above over the bounds 0
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(now) to t. This time period can be defined to be the life of the structure, with

the bound t0 to tL. It is also possible to evaluate the first instance where the

load exceeds the resistance, or where S(t) “crosses” R(t). The evaluation of this

point, known as the upcrossing point or barrier crossing point, is done using

stochastic process theory, which is discussed in other textbooks in greater detail

(Melchers 1999).

From a time-dependent reliability assessment, a reliability index profile can be

created over a period of time (Kong and Frangopol 2003). This profile plots

the change in reliability index β over time due to degradation and completed

intervention actions. The new profile is obtained by superimposing the profile

of expected degradation or interventions onto the existing profile obtained from

a time-dependent reliability assessment (Figure 2.7).

Figure 2.7: Various action-based reliability index profiles and their
effect on existing reliability profiles, adapted from Kong and

Frangopol (2003)

βj(t) = βj,o(t) +
n∑
i=1

∆βj,i(t) (2.26)

Where ∆βj,i(t) is the additional reliability index profile generated by the action

i, and n is the number of actions associated with the failure mode j during the

lifetime. Actions associated with a value for ∆β greater than unity are those that

positively contribute to the structural safety; examples of which include main-

tenance activities or physical effects such as concrete hardening. Conversely,

values for ∆β less than unity are those that negatively contribute to structural

safety; examples of which are degradation over time or sudden effects such as
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2. BACKGROUND TO PROBABILISTIC ASSESSMENT

damage from an impact load. This is useful for performance-based design as it

enables the evaluation of how much damage a structure can sustain at a single

point in time before becoming critically unsafe.

2.6.3 Time-Dependent Deterioration Modelling

The use of time-dependent reliability assessment facilitates the prediction of fu-

ture performance by including information obtained from future deterioration

modelling of the structure. This process is used later in the thesis to quantify

the performance of a number of sample bridges, and the methods used to model

this deterioration are briefly explained here.

Here we will consider the chloride-induced deterioration of a reinforced con-

crete under the three main phases of deterioration: time to corrosion initiation

Ti, time to crack initiation T1st, and time to crack propagation Tcp (Kenshel and

O’Connor 2009). Chloride-induced corrosion is among the most widespread

deterioration mechanisms for reinforced concrete structures, and its presence

is typically indicated by the cracking of the concrete cover to reinforcement

(O’Brien et al. 2015a). This occurs due to the expansive nature of corrosion in-

ducing a tensile stress in the concrete surrounding the reinforcement bars. The

time at which corrosion will first occur Ti can be determined by Fick’s second

law of diffusion:

Ti = C2

4Dapp

[
erf−1

(
Cs − Ccr

Cs

)]−2
(2.27)

Where Dapp is the apparent diffusion coefficient (mm2/year); Cs is the surface

chloride concentration (% per weight of cement or concrete); Ccr is the critical

chloride concentration (% per weight of cement or concrete); and C is the

concrete cover (mm). The time (years) from this initiation of corrosion to the

first instance of cracking T1st can be determined from a number of numerical

models, such as (El Maaddawy and Soudki 2007):

T1st =
[

7117.5(D + 2δo)(1 + ν + ψ)
icorrEef

] [
2Cfct
D

2δoEef
(1 + ν + ψ)(D + 2δo)

]
(2.28)

Where D is the diameter of the steel rebar (mm); δo is the thickness of the

porous zone around the steel bar which will have to be filled before the tensile

stresses can be generated (mm); ψ is a factor dependent on D, C and δo; icorr is

the corrosion rate density (µA/cm2); Ec is the elastic modulus of concrete; Eef
is the effective elastic modulus of concrete that is equal to [Ec/(1 + φcr)], where
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φcr is the concrete creep coefficient; ν is the Poisson ratio for concrete; and fct

is the tensile strength of the concrete. In the final phase of chloride-induced

corrosion, the time (years) from the first instance of cracking to the maximum

allowable cracking is (Vu and Stewart 2005):

Tcp = 0.0167i−1.1
corr

[
42.9

(wc
C

)−0.54
+
(
wlim − 0.3

0.0062

)1.5]
(2.29)

Where wc is the water/cement ration; and wlim is the maximum crack size. The

ability to be able to determine the time in which the structure is expected to

develop critical cracking enables a more accurate estimation of the future reli-

ability of the structure. In addition to modelling this critical crack propagation,

it is also possible to account for the expected loss of an effective area in a time-

dependent reliability model. Two models for reinforcement section loss are

often considered: uniform corrosion and pitting corrosion, for which numerous

methodologies exist for the calculation of section loss (Andrade et al. 1993, Val

and Melchers 1997). As section loss increases, the structural capacity of criti-

cal structural elements is compromised and thus the reliability of the structure

is also compromised. This section loss can be modelled using the stochastic

methods mentioned previously. The application of these methods will be seen

in Chapter 4, whereby single point in time estimations of section loss be will

evaluated and used to compute reliability indices at these times. While this rep-

resents only one method of computed time dependent reliability, it is adequate

to reach the objectives of this thesis.

2.7 Conclusion

In this chapter, a performance-based approach to the design and assessment

of structures was presented through the implementation of the probabilistic

reliability method. The basis of the method was explained and shown to be

present in modern structural design codes of practice. The rationale behind the

use of this method is how it allows the stochastic modelling of variables in the

limit-state design, which is more reflective of actual structural realization than

the standard deterministic approach. The various reliability methods used to

compute the safety classification of structures were shown, and guidance was

given on which method should be chosen in response to the requirement of the

structure.

37 Ciarán Hanley



2. BACKGROUND TO PROBABILISTIC ASSESSMENT

The modelling of the basic variables for load and resistance was presented, and

the sensitivity of the method to input parameters was highlighted, along with

the potential advantageous by-products of using the method; such as paramet-

ric sensitivity and parameter importance measures. The practical hindrances to

the widespread adoption of the method have been resolved in the development

of software applications and the continued efforts to improve the robustness of

the method. In Chapters 3 and 4, the effect that disparate information levels

for load and resistance modelling have on β will be shown.
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Chapter 3

Reliability Analysis with Uncertain
Parameters

3.1 Introduction

3.1.1 Overview

In the previous chapter, a background has been presented to the structural relia-

bility method, from which it can be seen the role that small changes on the basic

input model can have on the computed reliability of the structure. With regard

to our basic model formulation of Equation 1.1, this chapter will investigate the

uncertainty in information surrounding the resource variable R. By increasing

the uncertainty in the basic variables, the level at which reliability analysis is

compromised to a point that it becomes difficult to extract any valuable infor-

mation from the analysis can be estimated. From the analysis, it can be seen

that it is possible to identify the most important parameters that influence the

reliability index of a particular bridge type; however, these calibrations become

clouded when more uncertainty in information is introduced to the model.

Presented here is a reliability analysis of three bridges; comprising reinforced

concrete slab, reinforced concrete beam-slab, and prestressed concrete beam

construction, with a focus on the sensitivity analysis and the analysis of param-

eter importance measures. The basis of the analysis stems from the possibility

of investigating similarities in various parameters, leading to the establishment

of network-level indicators based on fully probabilistic assessments; as these

bridges are typical of construction details on road networks. A probabilistic
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3. RELIABILITY ANALYSIS WITH UNCERTAIN PARAMETERS

analysis is conducted, taking uncertainty in relation to the available informa-

tion into account. Parametric importance measures are established across the

three bridge types, and patterns identified from these studies suggest the po-

tential for reliability-based network calibrations of bridge structures.

3.1.2 Background

As bridge infrastructure networks age, it is often necessary to employ non-

deterministic techniques in the assessment of intervention options for deteri-

orating network assets to maintain an adequate level of safety throughout the

network (Žnidarič et al. 2011). Probability concepts have been shown to have

significant advantages in the design and assessment of engineering structures,

specifically structural reliability methods (Ang and Tang 2007). A reliability-

based approach for quantifying the safety of structures enables a lifetime eval-

uation of both individual and networks of structures (Akgül and Frangopol

2004a,b, Frangopol and Das 1999, Liu and Frangopol 2006a,b, Frangopol and

Liu 2007a,b, Frangopol 2011, Bocchini and Frangopol 2011a,b,c, Saydam et al.

2013). While this method is commonly implemented at both a component and

system level for an individual bridge in isolation (O’Connor and Enevoldsen

2008, Estes and Frangopol 2001a), there are advantages to conducting a reli-

ability analysis for a network of bridges (Frangopol and Bocchini 2012); high-

lighting critical components and providing the stakeholders of bridge stock with

comparable safety indices and sensitivity measures (O’Connor and Enevoldsen

2007, Dong et al. 2014).

The effective allocation of capital resources seeks to minimise the inherent risks

associated with investments through the use of advanced methods (Mueller and

Stewart 2011). Reliability methods are an effective tool for the monitoring of

the asset base and, thus, allowing the prioritisation of intervention and invest-

ment requirements in a more careful and rational manner. Intervention can be

focused to address the most important parameters that govern the safety of the

bridges, as highlighted by the parametric sensitivity and parameter importance

factors, which are beneficial by-products of reliability assessments. Conducting

this analysis over a network allows for the comparison of different parameters

and uncertainties in each bridge type, and investigates correlations that arise

between them (Hanley and Pakrashi 2014). This emphasizes the need for a

network based calibration of the importance of certain critical parameters, and
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provides a framework for future assessments of the structures.

The objective of this chapter is to investigate how uncertainty in the parame-

ters involved can affect this proposed framework and to assess the existence

of a minimum level of confidence that is required in order to make a rational

intervention decision. A number of bridges are described and results of the reli-

ability analysis are shown over the group and the parametric sensitivity studies

are detailed; highlighting critical parameters that contribute to the violation of

the established limit-states. Investigations are carried out to obtain common

markers or patterns of information present in the bridges described by the sen-

sitivity studies and parameter importance measures. These measures provide

greater information for an engineer in terms of how to assemble a probabilistic

model, and guides the process of further data gathering through other assess-

ment methods, in an effort to build a more representative model from which to

base intervention decisions.

3.2 Description of Bridges

In order to assess the effects of uncertainty on the reliability analysis of a num-

ber bridges and bridge networks, three single span, simply supported bridges

were evaluated as a case study. The bridges used for the analysis have rein-

forced concrete slab, reinforced concrete beam-slab, and prestressed concrete

beam construction; of which is largely seen in national bridge stock in Ireland

(Duffy 2004) and mainland Europe (Žnidarič et al. 2011). The general arrange-

ment and cross-sections of these bridges can be seen in Figure 3.1, and they all

comprise a span length of 16m (Table 3.1). This span was chosen with regard

to the available probabilistic load model, as detailed in the following section.

The cross-section parameters and structural information can be seen in Tables

3.2 & 3.3.

3.3 Assessment Methodology

In this assessment, the flexural limit-state g was analysed; having been identi-

fied as the critical limit-state in recent assessments carried out in Ireland (NRA

2010). The flexural capacity Mu was tested against the bending moment effects

of the self-weight of the bridge MDL, the superimposed dead load of the road
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3. RELIABILITY ANALYSIS WITH UNCERTAIN PARAMETERS

Table 3.1: General bridge dimensions

Attribute Value

Number of spans (No.) 1
Overall length (m) 16
Width out-to-out (m) 10.4
Width of footway (m) 1.5
Width of carriageway (m) 6.4
Road surface (mm) 100
Number of lanes (No.) 2
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Figure 3.1: General arrangement of bridges under analysis.

surface MSDL, and the various bending moments produced by changing traffic

Effects of Disparate Information Levels on
Bridge Management and Safety

42



3.3 Assessment Methodology

load specifications MLL.

g = R− S = Mu −MDL −MSDL −MLL (3.1)

The probabilistic load model used in this chapter was developed by Chryssan-

thopoulos et al. (1997) and Cooper (1997), and was derived as a static load

model with a uniformly distributed load (UDL) of 27 kN/m and 2 axle loads

of 300 kN each, factored by a statistically defined variable λProb with a Gumbel

distribution; extrapolated from WIM data on motorway bridges in the UK. The

variable λProb given in Table 3.2 corresponds to a major road that experiences a

traffic volume flow per direction per day of 10,000 (Cooper 1997); with the sta-

tistical parameters defined in Table 3.2 being one year parameters for a Gumbel

distribution.

For computational efficiency, the limit state equations are expressed in para-

metric form (Akgül and Frangopol 2004b), whereby the random variables Xij

and the deterministic parameters Yij are decoupled, and groups of Yi are com-

bined into deterministic constant coefficients Cij in the limit state equations.

For the reinforced concrete slab under consideration, the limit state equation

for flexural failure is defined as:

gslab,m =
(
C01Asfyγmλd − C02

A2
sf

2
y γm

fc

)
− C03λc − C04λs − C05λProb (3.2)

where the random variables As, fc, fy, and the uncertainty factors λx and γm

are defined in Table 3.2, and the deterministic constant coefficients Cij are

functions of the deterministic parameters defined in Table 3.3, where:

C01 = d

1000000

C02 = 1
1200000b

C03 = ρcbhcL
2

8000000

C04 = ρsbtsL
2

8000000

C05 =

27L2

8 +
300

[(
L
2 + 0.3

)
+
(
L
2 − 0.9

)]
L

(L
2 − 0.3

) b

1000bL
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For the reinforced concrete beam bridge, the flexural limit state is defined sim-

ilarly as:

gbeam,m =
(
C11Asfyγmλd − C12

A2
sf

2
y γm

fc

)
− C13λc − C14λs − C15λProb (3.3)

where, in this case, the deterministic constant coefficients Cij are defined as:

C11 = C01

C12 = C02

C13 = ρc (beffhf + [hc − hf ] bw)L2

8000000

C14 = ρsbeff tsL
2

8000000

C15 =

27L2

8 +
300

[(
L
2 + 0.3

)
+
(
L
2 − 0.9

)]
L

(L
2 − 0.3

) beff
1000bL

Lastly, the flexural limit state for the prestressed concrete beam bridge is defined

as:

gpres,m =
(
C21ApsC23fpuγmλd − C22

A2
psC23f

2
puγm

fc

)
− C24λc − C25λs − C26λProb

(3.4)

and the deterministic constant coefficients Cij are defined as:

C21 = C11 = C01

C22 = C12 = C02

C23 = 0.7× 0.7 = 0.49

C24 = ρc (Ab + beffhf − 0.2884to [hc − hf + to]− 3.75)L2

8000000
C25 = C14

C26 = C15

where C23 is a factor account for the effects of relaxation and creep.

Effects of Disparate Information Levels on
Bridge Management and Safety

44



3.4 Results

Table 3.2: Random variables for all bridges (All RV’s have lognormal
distributions (Akgül and Frangopol 2005b, 2004c), with the exception

of λProb, which has a Gumbel distribution (Cooper 1997))

Tag Variable Description µ σ

X01 As Area of flexural steel reinforcement (mm2) 6835.35 341.7675
X02 fcu Compressive strength of concrete (N/mm2) 50 7.5
X03 fy Yield strength of reinforcing steel (N/mm2) 500 50
X04 γm Model uncertainty for flexure 1 0.1
X05 λc Concrete weight uncertainty factor 1 0.1
X06 λs Surfacing weight uncertainty factor 1 0.25
X07 λd Effective depth uncertainty factor 1 0.02
X08 λProb Probabilistic load adjustment factor 0.4101 0.02466

X11 As Area of flexural steel reinforcement (mm2) 5192.69 259.6345
X12 fcu Compressive strength of concrete (N/mm2) 50 7.5
X13 fy Yield strength of reinforcing steel (N/mm2) 500 50
X14 γm Model uncertainty for flexure 1 0.1
X15 λc Concrete weight uncertainty factor 1 0.1
X16 λs Surfacing weight uncertainty factor 1 0.25
X17 λd Effective depth uncertainty factor 1 0.02
X18 λProb Probabilistic load adjustment factor 0.4101 0.02466

X21 Ap Area of prestressing steel (mm2) 3892 194.6
X22 fcu Compressive strength of concrete (N/mm2) 50 7.5
X23 fpu Prestressing steel strength (N/mm2) 1670 83.5
X24 γm Model uncertainty for flexure 1 0.1
X25 λc Concrete weight uncertainty factor 1 0.1
X26 λs Surfacing weight uncertainty factor 1 0.25
X27 λd Effective depth uncertainty factor 1 0.02
X28 λProb Probabilistic load adjustment factor 0.4101 0.02466

Note: Slab = X0i; Beam = X1i; Prestressed = X2i

3.4 Results

3.4.1 Reliability Indices

The reliability analysis used herein was conducted using OpenSees, an open-

source software framework for evaluating the performance of structural sys-

tems (McKenna et al. 2002). The reliability indices β for the bridges within the

network were determined using FORM and were then checked for non-linearity

using SORM. The high correlation between βFORM and βSORM suggested that

the failure surfaces were highly linear. The results for the three bridges were
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Table 3.3: Deterministic parameters for all bridges

Bridge Tag Parameter Description Value

Slab Y01 b Width of section considered (mm) 1000
Y02 bL Notional lane width (m) 3.2
Y03 d Effective depth of section (mm) 724
Y04 L Span length (m) 16
Y05 hc Height of concrete slab (mm) 800
Y06 ts Thickness of road surface (mm) 100
Y07 ρc Self-weight on concrete (kN/m3) 25
Y08 ρs Self-weight of surface (kN/m3) 24

Beam Y11 beff Effective flange width (mm) 1200
Y12 bL Notional lane width (m) 3.2
Y13 bw Width of beam (mm) 300
Y14 d Effective depth of section (mm) 924
Y15 L Span length (m) 16
Y16 hc Overall height of concrete beam (mm) 1000
Y17 hf Thickness of concrete flange/slab (mm) 200
Y18 ts Thickness of road surface (mm) 100
Y19 ρc Self-weight on concrete (kN/m3) 25
Y110 ρs Self-weight of surface (kN/m3) 24

Prestressed Y21 Ab Area of precast section (mm2) 339882
Y22 beff Effective flange width (mm) 1200
Y23 bL Notional lane width (m) 3.2
Y24 d Effective depth of section (mm) 818.571
Y25 L Span length (m) 16
Y26 hc Overall height of section (mm) 950
Y27 hf Thickness of concrete flange/slab (mm) 200
Y28 to Thickness of overlap (mm) 50
Y29 ts Thickness of road surface (mm) 100
Y210 ρc Self-weight on concrete (kN/m3) 25
Y211 ρs Self-weight of surface (kN/m3) 24

grouped together to determine if a relationship existed for β between common

bridge materials, and to what degree uncertainty, with regard to the random

variables, affected the results of a safety classification based on β. The un-

certainty in the random variables is represented by the coefficient of variation

(CoV), which is a relative measure of dispersion within the probability density

function (PDF). It is proposed that a high level of certainty for the value of a

random variable would, as much as practicable, manifest itself as a PDF with

a narrow dispersion. For bridge structures, this can be seen to occur in ma-

terial strengths where a variation is present, and the level of variation across

the structure can be known or unknown; based on the level of information ob-
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tained from methods such as non-destructive testing (NDT) or structural health

monitoring (SHM) (Frangopol 2011, Frangopol and Bocchini 2012). As they

can be measured with a high degree of accuracy, the basic variables related to

the bridge geometry are considered deterministic (Table 3.3), and those related

to material properties were modelled stochastically (Table 3.2).

The results obtained from the analysis based on the values given Tables 3.2 &

3.3 yielded reliability indices of βslab = 3.68, βbeam = 4.79, and βpres = 4.93.

Now, these reliability indices were obtained based on the mean values µ of

the random variables Xij and their variable standard deviations σ; indicating

various levels of uncertainty surrounding these random variables. However, to

investigate the effect that uncertainty in model information has on the results of

a reliability analysis, the assessment was conducted for increasing uniform un-

certainty in the random variables. In this study, the same CoV has been chosen

for all random variable with the exception of λProb, for which the probabilistic

parameters remained unchanged. This can be seen in Figure 3.2, where it is

observed that β for all bridges decreases at a divergent rate for uniform CoVs of

0.05 to 0.4. It can be seen that for a uniform CoV of 0.05, β for the slab, beam-

slab, and prestressed concrete bridge is 6.10, 7.53, and 7.13, respectively. For a

uniform CoV of 0.1, these values decrease to 3.05, 4.00, and 3.69, respectively.

It can be seen that these values are less than that for the analysis under variable

values of CoV for different σ, but it is notable that the prestressed bridge no

longer has the highest β. This can be attributed to the greater affect that a CoV

of 0.1 has on this model, as the initial analysis had CoV values in the order of

0.05, due to the nature of the manufacture of prestressed concrete elements

and greater control over material quality. Conversely, the reinforced concrete

beams were initially analysed with a CoV of 0.1 being typical the random vari-

ables, based on the in-situ nature of the construction. As the CoV increased to

0.4, it can be seen that the values of β decreased to 0.59, 0.80, and 0.73 for the

slab, beam, and prestressed bridge, respectively.

It is expected and observed that β decreases with increasing CoV. It can be seen

that this decrease occurs almost as a divergent series from a CoV of 0.05 to 0.1,

0.2, 0.3, and 0.4 at an approximate rate of 1, 1/2, 1/3, and 1/4, respectively.

This demonstrates the importance of limiting uncertainty within the probabilis-

tic model, as the greatest decrease occurs in the CoV increase from 0.05 to 0.1,

after which it is observed that the decrease in β slows. Consequently, for higher

levels of uncertainty, the lack of information governs the estimated risk of fail-

ure and this also explains the lack of variability of different bridges at higher

47 Ciarán Hanley



3. RELIABILITY ANALYSIS WITH UNCERTAIN PARAMETERS

Figure 3.2: Reliability index for increasing levels of CoV.

levels of uncertainty. This builds the basis for assessing the relative importance

of the basic variables in the failure surface, as it shows that there can be sig-

nificant discrepancies in β based on small changes in CoV, especially for initial

estimates.

3.4.2 Sensitivity Studies

Sensitivity assessments were carried out by considering a 10% perturbation in

the various parameters involved in the assessment, which demonstrate the rel-

ative contribution each basic variable makes to β (DNV 1992). The resulting

change in reliability index ∆β can be seen in Figure 3.3 for each of the three

bridges under assessment. From this, it can be seen that the variable Xi4, cor-

responding to the model uncertainty for flexure γm, has the greatest positive

contribution to β for all bridges. This positive contribution is expected con-

sidering it forms part of the R component of our general limit state equation.

The next highest positive contributors correspond to Xi7(λd), Xi3(fy,pu), and

Xi1(As,p). As Xi7 is used to represent the deterministic parameter of effective

section depth d, a mean increase in Xi7 is akin to a general increase in section

depth; and while providing greater stiffness to a particular section, it represents

more of a consideration in the design of these cross-sections than in the assess-

ment of such. For Xi3 and For Xi1, it can be seen that these variables contribute

significantly to β and so significant effort should be used in reducing the level

of uncertainty associated with these variables when developing an assessment
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model. It is noteworthy that the compressive strength of concrete fcu(Xi2) of-

fers little to computation of β for this limit-state, and thus resources need not

be deployed into reducing the uncertainty in this variable in model building.

It can be seen that the three load variables Xi5, Xi6, and Xi8 are those which

negatively contribute to β, as expected, but that the predominantly negative

variable is Xi5, corresponding to the weight of concrete. Here, it can also be

seen that this represents the greatest deviation in ∆β across the three bridges;

which have largely corresponded in value for the other variables. Here, the slab

bridge is the one that is most adversely affected by this variable, and this is

due to the higher volumes of concrete used in this type of construction relative

to the others. It can also be seen that the prestressed concrete bridge is also

slightly more affected by this variable, as this type of construction here has

beams of greater area than the beam bridge.

Figure 3.3: Change in reliability index considering a 10% increase in
basic variables.

Now, while this physical reasoning has provided a good verification on the ve-

racity of the presented model, it is important to investigate how sensitive this

model is to increasing levels of uncertainty across the basic variables; as before.

For the slab bridge alone, the resulting change in reliability index ∆β, consider-

ing a 10% perturbation and for increasing levels of CoV, can be seen in Figure

3.4. For a uniform change in CoV, it can be seen that the general relationship

between the variables remains as before, and that the increase in CoV merely

lowers ∆β in magnitude, corresponding to the lower values of β seen in Figure

3.2 for higher values of CoV.
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Figure 3.4: Change in reliability index for reinforced concrete slab
considering a 10% increase in basic variables for different levels of

CoV.

Again, it can be seen that ∆β decreases in the same divergent series manner

as β from before. This shows that while it is important to accurately model

the uncertainty in the random variables, as much as possible, that the overall

relationship between the basic variables is invariant to this. Such a relation-

ship may only change if there was significant variation in uncertainty between

important basic variables, but modelling a reliability analysis under these con-

ditions would fall out of line with best practice.

Finally, the relationship between sensitivity of the models under variable uncer-

tainty and uniform uncertainty can be seen in Figure 3.5 for all bridges; where

the uniform uncertainty is only presented for a CoV of 0.1, due to the observed

relationship for subsequently increased values of CoV. Here it can be seen that

there is general agreement between the values of ∆β between the variable and

uniform uncertainty. However, this agreement in magnitude is largely a func-

tion of the values of β for these assessments, from which a uniform CoV of 0.1

was similar to that of the initial assessment.

3.4.3 Importance Factors

Importance factors α2
i were determined to allow the relative ranking of random

variables to aid the assessment process. These factors highlight those random

variables which have the greatest influence on β, and thus which variables it
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Figure 3.5: Change in reliability index for considering a 10% increase
in basic variables under variable and uniform uncertainty for (a.) slab,

(b.) beam, and (c.) prestressed bridges.

would be beneficial to reduce the level of uncertainty. Random variables with

low importance factors can afford to be modelled as deterministic parameters,

without significant change in the computed β. Those with high importance fac-

tors should be prioritised when more detailed material assessments are deemed

necessary.

For the reinforced concrete slab bridge, it can be seen that the variable with

the highest important factor is Xi5(λc) for the initial assessment (Figure 3.6).

This correlates with the result seen for the parametric sensitivity in the previous

sections, and is due to the fact that the slab bridge contains a larger portion of

concrete per unit width than a beam bridge, and thus the unfavourable effect of

the self-weight of the bridge is more pronounced; as can be seen with the cor-

responding important factors for Xi5 in the reinforced concrete and prestressed

beam bridges. Conversely, it can be seen that the other component of the bridge
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self-weight, in the form of the superimposed permanent load of the road sur-

face Xi6 is seen to be more of a significant factor for these two bridges, and

it is deemed largely unimportant for the slab bridge. Further remaining large

importance factors are seen for the variables Xi3(fy,pu) and Xi3(γm), however

less importance is seen on the variable X33(fpu) for the prestressed concrete

bridge. For all bridges, Xi2(fcu) has a very low importance factor and can mod-

elled deterministically without much adverse effect on the reliability model.

When allocating resources for determining information to be included in the

assessment model, these results would suggest that any chemical inspections or

non-destructive testing of these bridge types should focus entirely on evaluating

an accurate model for the PDF of As,ps and fpu, and it would be considered un-

necessary to establish anything more than initial estimates of the properties of

fcu. This can drive how destructive and non-destructive evaluation of bridges

are conducted by prioritising tests based on the level of detail they produce

regarding these variables.

Figure 3.6: Importance factors for probabilistic variables.

When evaluating the importance factors for a uniform increase in the level of

CoV in the random variables, the same relative change was seen in the results

as observed for β and ∆β previously. When comparing the importance factors

for the initial assessment with variable values of CoV to an assessment with

a uniform CoV of 0.1, it can be seen that while there is broad agreement in

the importance factors in some variables between both assessments, there is

significant discrepancy in a number of variables (Figure 3.7). This is primarily

seen in the variables Xi6(λs) and Xi7(λd), which display significant differences
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between the initial assessment and the uniform CoV of 0.1 assessment. When

considering the probabilistic parameters used in the initial assessment (Table

3.2), it can be seen that Xi6 has an initial CoV of 0.25 and that Xi7 has an

initial CoV of 0.02. As Xi6 was modelled with more uncertainty in the initial

assessment, it is acknowledged that the stochastic importance of this variable

is reduced when it is modelled with a lower uncertainty attached. Similarly,

now that Xi7 has had a relatively significant increase in CoV, this variable now

demonstrates more stochastic importance than before. In fact, it can be argued

that Xi6 was initially modelled with too large of a CoV of 0.25, with the next

highest CoV being 0.1; and thus the large importance factor for this variable

guides us to re-evaluate how this variable should be modelled in the reliability

assessment. This also demonstrates some qualitative significance in that the

surface weight of the road is not expected to contribute this significantly to the

structural model. Thus, as the quality of information included in the analysis

has significant bearing on the variable importance, targeting these variables in

the inspection phase of bridge assessment results in a more stable model from

which β can be determined.

The effect on β of modelling these variables as deterministic parameters rather

than stochastic variables can be determined from the omission sensitivity factor

γi, which is a function of α2
i (Eqn. 2.23). This factor ratio of the β′ and β shows

the relative error of replacing a stochastic variable with a deterministic param-

eter a probabilistic assessment (Table 3.4), and in general, shows little correla-

tion between the variables Xij when comparing variable or uniform variation.

However, the relative ranking of these factors remained similar, with small rela-

tive movement typically; with the exception of Xi6 and Xi7, which experienced

jumps of from highest ranking to lowest, and lowest to highest between vari-

able and uniform variation models. This can be explained due to their CoV

values being both the smallest and largest in the initial model with variable

CoV, and thus under the uniform CoV of 0.1, they experienced the greatest

relative change in their stochastic importance. This further demonstrates the

sensitivity of a reliability model due to initial modelling of its stochastic param-

eters, and highlights the importance of which disparate information levels and

uncertainty have on a probabilistic model.
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Figure 3.7: Importance factors for probabilistic variables under
variable and uniform uncertainty.

Table 3.4: Omission sensitivity factors for variable and uniform CoV

Slab Beam Prestressed

Tag Variable Uniform Variable Uniform Variable Uniform

Xi1 1.027 1.086 1.027 1.110 1.026 1.069
Xi2 1.001 1.001 1.000 1.000 1.004 1.001
Xi3 1.125 1.086 1.123 1.110 1.026 1.069
Xi4 1.150 1.103 1.133 1.119 1.163 1.090
Xi5 1.347 1.197 1.075 1.108 1.122 1.065
Xi6 1.012 1.001 1.255 1.003 1.292 1.002
Xi7 1.006 1.123 1.005 1.129 1.007 1.115
Xi8 1.003 1.003 1.006 1.008 1.005 1.173

3.5 Conclusions

A structural reliability analysis was conducted on three bridges of typical con-

struction type in Ireland and mainland Europe. These bridges were assessed
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3.5 Conclusions

for the flexural limit-state under a probabilistic load model, considering various

levels of uncertainty in the modelled random variables. The computed esti-

mates of the reliability indices were presented, along with associated paramet-

ric sensitivity and importance measures. It was observed that bridges of similar

structural arrangement and form are clustered in terms of sensitivity or para-

metric importance studies. The levels of correlation evident in the parameters

when considering different degrees of uncertainty indicates the potential for a

calibrated baseline model from which further assessments can be carried out,

and benchmarks can be obtained relative to the level of uncertainty present in

the model. This calibration would be strongly dependent on the availability and

the quality of information of the bridges within a network. This emphasizes the

need for data-sharing for such structures by the managers and owners of bridge

networks for the most reasonable and cost-effective interventions to be carried

out. Further work is encouraged on a wider range of bridges under improved

probabilistic information, in order to establish if baseline safety classifications

can be established for further specific bridge types. While this chapter was pri-

marily concerned with the uncertainty in the resistance variables in achieving

research Objective 1, the following chapter will explore the effects of chang-

ing interpretation of load models and their effect on safety classifications of

concrete bridges.
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Chapter 4

Reliability Analysis under Traffic
Loading Uncertainty

4.1 Introduction

4.1.1 Overview

While the previous chapter was mostly concerned with the resource or capacity

variables R in the reliability analysis of existing bridges, this chapter will be

concerned with the effect of uncertainty in information on applied loading due

to the effect of changes in the definitions of the demand variable S (Equation

1.1), through the evolving nature of traffic loading definitions in codes and

through newer, probabilistically defined loading models.

With the continued evolution of traffic live loading specifications, safety classi-

fications of bridge structures are subject to change, independent of the actual

condition of the structures at that point in time. As investment decisions are

often based on these safety classifications, a reclassification of safety level due

to changing of live load definitions can lead to misinterpretation of the actual

state of the structure, and thus lead to a misallocation of resources. On the

other hand, should a reclassification of safety occur after a change in live load

specification, the question as to whether modern design traffic loading leads

to more or less robust bridges than previous design codes is raised. To investi-

gate this, the same three bridges used in Chapter 3 were assessed for evolving

definitions of live load. Using deterministic and probabilistic methods, critical

limit-states were assessed and the associated reliability indices and parametric
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sensitivity factors were determined and compared across various code specifi-

cations. This comparison allowed for the evaluation as to how the evolution of

live load over time influences the computed safety of bridge structures. Addi-

tionally, this chapter investigates the effects that increased design traffic loading

have on the initial construction cost and whether that could be balanced by a

reduced requirement for financial intervention in the mid to later stages of the

bridges design-life. This is investigated by conducting a life-cycle performance

and cost assessment on a reinforced concrete slab bridge that is designed to

increasing standard traffic loads.

4.1.2 Background

Preserving a functional and serviceable civil infrastructure network requires

complex methods to devise optimum strategies to schedule expensive preven-

tative and essential maintenance of existing bridge stock (Estes and Frangopol

2001b). Quantification of structural safety and redundancy for bridges is an

important process in network maintenance management (Akgül and Frangopol

2003, Frangopol and Nakib 1991, Weninger-Vycudil et al. 2015) and is strongly

dependent on the effects of live loading (Nowak et al. 1993, Nowak 1993).

Markers of quantification have evolved from basic definitions of allowable stress

indices, to limit-state design, and, eventually, to fully probabilistic reliabil-

ity analysis (Ellingwood 1996, O’Connor and Enevoldsen 2007, Dawe 2003).

While new bridge structures conform to and benefit from the acknowledgement

of epistemic and aleatory uncertainties (Ang and Tang 2007) through norma-

tive documents (Cornell 1969, Benjamin and Lind 1969, Shah 1969, Lind 1972,

Rosenblueth and Esteva 1972), much of the global bridge stock originate from

a time when the design of structures was based on basic models and engineer-

ing judgement. The nature of these bridges has not fundamentally changed

over time, except for the consideration of degradation. Yet, there has not been

sufficient funds for owners of bridge stock to replace, intervene, or even pri-

oritise investment (Ellingwood 2005, Frangopol and Liu 2007b, Mueller and

Stewart 2011, Frangopol 2011, Frangopol and Soliman 2016, Pakrashi et al.

2011, Frangopol and Bocchini 2012).

Performance indicators are used as a significant decision tool when evaluating

intervention options when structural safety is of primary concern. Even after

considering a full probabilistic regime, it is important to assess how the markers
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of safety, expressed as a reliability index β or other performance indices, have

changed over time with changing benchmarks of live loading. The evolution of

such indices over time, combined with degradation patterns and maintenance

intervention is yet to be investigated. Site-specific live loading, related to ex-

treme value distributions fitted to assumed or observed data, through weigh-in-

motion (WIM) technology, has shown to have significant potential for assessing

the effects of live loading (O’Connor et al. 2001, O’Connor and O’Brien 2005,

Caprani and O’Brien 2010, O’Brien et al. 2015a,b). However, too often is the

performance of bridges within a network, and thus economic decisions made

regarding intervention options, determined using generalised normative/code-

based descriptions of traffic loading that are subject to change over time. The

use of such methods can thus misinform bridge managers and stakeholders

by significantly underestimating the true performance measure of the bridges

within their networks.

In most European countries, the basis of assessment calculations is the same as

for the design of new bridges (Zonta et al. 2007). At the design stage, traffic

loading is typically specified in codes of practice as a function of bridge ge-

ometry, with section capacities being designed accordingly (Dawe 2003). In

practice, the structural capacity is minimised at the ultimate limit state in an ef-

fort to reduce material quantities and initial construction costs. Achieving such

economy is often accomplished at the expense of structural robustness from a

life-cycle perspective. This chapter investigates to what extent design traffic

loading has on life-cycle safety and cost assessments for bridge structures. As

deterministic methods, such as LRFD, are predominantly used in structural ca-

pacity assessment across a network of bridges, these changes in definitions can

have significant impacts on resulting intervention decisions and resource allo-

cation. In this chapter, a brief history of the major bridge design and assessment

standards will be presented, and the effect of the varying definitions of code-

defined traffic loading will be shown on the performance indicators, in this case

the reliability index β (Ditlevsen and Madsen 1996, Melchers 1999, Pakrashi

and Hanley 2015), of three simply supported concrete bridges of the same

span. These changes will be benchmarked against β from site-specific traffic

loading, and the effect changing code-defined traffic loading has on the prob-

abilistic model will be shown through parametric sensitivities and importance

factors (Madsen et al. 1986). The type of bridges used in this assessment were

chosen based on their high level presence within Europe and the UK (Žnidarič

et al. 2011). An 80 year reliability assessment is also presented, showing how β
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can transition below a minimum acceptable threshold at a single point-in-time

due to code changes coupled with typical degradation effects, as well as an

associated life-cycle cost assessment that is required to keep the bridge above

a minimum acceptable performance threshold, defined as the target reliability

index βT . It is shown how a small relative increase in the flexural capacity at

the design stage, and thus initial construction cost, results in a significant offset

in the expect cost of failure, and thus the total expected life-cycle cost.

4.2 Evolution of Normative Live Loading

Prior to the latter 19th century, traffic loading on bridges was not of primary

concern to the bridge builder, as this load was considered light relative to the

self-weight of the structure itself (Henderson 1954). It was only subsequently

due to the emergence of the traction engine that the effect of traffic loading

on bridges became an important design criteria. The evolution of normative

traffic load specifications in the UK and Ireland, from the suggestion of nominal

wheel loads to a standard loading curve (SLC), is detailed at length by Dawe

(2003) and is summarised in Table 4.1. While many minor changes to these

normative documents have been made in the past century, the five major chan-

ges will be discussed in this chapter; BS 153 (BSI 1937), BS 5400 (BSI 1978),

BD 21/84 (Highways Agency 1984), BD 37/88 (Highways Agency 1988), and

the introduction of the Eurocode (CEN 1994).

4.2.1 BS 153

BS 153–Standard specification for girder bridges (BSI 1937) was developed by

the British Standard Institution (BSI) in 1937 for the design and construction of

girder bridges, part 3 of which dealt with the application of traffic loading. The

standard recommended the use of a standard loading train (SLT) with a unit

load of 1 ton/axle, and 15 units to be applied per 10 ft of lane width, and a 10

ft headway between vehicles. Additionally, it was specified to apply a uniformly

distributed load (UDL) of 4.02 kN/m2 (84 lb/ft2) to account for pedestrians and

light traffic. Further revisions of this standard introduced what is now known

as ‘abnormal’ loading, with the previous loading being referred to as ‘normal’

loading, as well as the increase in applied units from 15 to 22 to account for

general traffic increases. Furthermore, computational ease was improved with
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the introduction of a standard loading curve (SLC) to replace the SLT model.

The SLC specified a UDL as a function of span, with a higher UDL for shorter

spans to account for the increased likelihood of a single span being fully loaded

by trucks. Additionally, a knife-edge load was to be applied across the lane

width of 39.4 kN/m (2700 lb/ft) at a location within the span to produce the

worst shear force effect.

4.2.2 BS 5400

The introduction of BS 5400–Steel, concrete, and composite bridges (BSI 1978)

in 1978 transitioned standards to the limit-state philosophy, whereby partial

factors could be applied to both load and resistance variables (Allen 1975). Part
2 of the standard dealt with the application of traffic loads, and recommended

a 5% characteristic value for the ultimate traffic load; having a 5% chance of

occurring within the design life of the structure, set as 100 years. The limit-state

philosophy is designed to allow for the benefit of statistical knowledge to more

accurately model expected scenarios. However, at the introduction of BS 5400,

such data was not available, and so nominal loading and partial factors were

specified, based on engineering judgement at the time. The SLC from BS 153
was retained, except with a constant UDL of 30 kN/m/lane up to a span of 30

m. For simply supported spans, this resulted in a maximum midspan bending

moment slightly less than that prescribed in BS 153, for which a divergence

begins from the 30–50 m span range (Figure 4.1).

4.2.3 BD 21/84

BD 21–The assessment of highway bridges and structures (Highways Agency

1984) was introduced in 1984 revise some provisions of BS 5400 for shorter

spans. Specifically, the furthest departure was the elimination of a constant

UDL for spans under 30 m, to be replaced by a curve that was fully variant

with span length, and defined by a single formula as a function of length. The

apparent lifetime of a bridge was extended to 120 years, so whereby a 5% char-

acteristic ultimate load over the design life resulted in a total return period for

the ultimate load of 2,400 years. The development of this code involved a more

rigorous calibration of partial factors using statistical methods than the previ-

ous standard employed. The SLC was developed under the assumption that
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Figure 4.1: Maximum bending moment with increasing spans for
changing live load definitions

shorter spans are more likely to be fully laden with convoys of large vehicles

than larger spans, and thus envelopes were made of the worst load effects for a

variety of spans, and a new single SLC was derived from the results. The effect

of the elimination of a constant UDL for spans under 30 m can be seen through

the deviation between maximum bending moments for BS 5400 and BD 21/84
in Figure 4.1.

4.2.4 BD 37/88

Due to the general expected increase in total weight of European vehicles, the

SLC of BD 21/84 was updated in BD 37–Loads for highway bridges (Highways

Agency 1988) to account for a 40 tonne gross weight vehicle, as opposed to that

of BD 21/84 which accounted for 38 tonnes. This code also featured a ‘com-

posite’ version of BS 5400, which included specifications for railway loading.

The effect of this code is scene in greater prominence for spans above 50 m, but

produces a minimal change in flexural load effects from BD 21/84 (Figure 4.1).

4.2.5 Eurocode

The development of EN 1991-2: Eurocode 1: Actions on structures. Traffic loads
on bridges (CEN 1994) introduced four separate load models to account for the
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vertical load being applied to bridges, with Load Model 1 (LM1) corresponding

to what has been referred to as normal loading, for spans between 5–200 m,

and a carriageway width of up to 42 m. LM1 was derived from real European

traffic data, and specified an ultimate load exceedence rate of 5% in 50 years, or

a return period of 1000 years (Bruls et al. 1996). LM1 departed from previous

representations of normal traffic loading by eliminating the SLC defined UDL

and invariant KEL, and replacing them with a series of constant UDL, invariant

with span length, in adjacent lanes and a tandem axle system of point loads.

Table 4.1: Development of traffic loading rules, abridged from Dawe
(2003)

Date Event/publication Comment

End of
19th
century

Principal live loading on bridges deemed to be due to crowd
loading. UDL used for design of bridge decks, for example 4.8
kN/m2 for Hungerford Suspension Bridge

1904 Restriction on vehicle weights 8 ton limit for single axle, 12 ton limit for gross vehicle weight
1923 BS 153 Part 3: Loads and stresses Traffic live loading to be specified by the Engineer. Impact factor

inversely proportional to span.
1931 MoT Standard loading for

highway bridges
Standard Loading Curve. Deterministic approach using
equivalent UDL and KEL, with allowance for impact. Heavy
wheel load introduced for short span structures.

1937 BS 153 Part 3 (1st revision) Introduced Types A and B loading. Impact allowance varied with
span

1954 BS 153: Part 3A (2nd revision) Appendix A introduces Types HA and HB loading. HA comprises
deterministic formula loading based on 22-ton vehicles, and an
alternative wheel loading. HB loading with axle number and
spacing based on typical abnormal trailers of the day; axle loads
are heaviest allowed by law. (metricated in 1972)

1973 DoE technical memorandum
(bridges) BE 5/73, Standard
highway loadings

Loads applicable to all highway structures except steel box
girders. Required a minimum of 30 units of HB loading for
public roads. HA UDL capped at 31.5 kN for loaded lengths up to
6.5 m. HA wheel load and HB loading assumed to cover design
of short spans.

1978 BS 5400 Part 2, Specification for
loads

Introduction of limit state design. HA loading based on 24-tonne
vehicles. HA UDL capped at 30 kN/m for loading lengths up to
30 m. Minimum UDL intensity now required to be 9 kN/m.
Minimum of 25 units of HB required for public roads. HB loading
(and HA wheel load) assumed to cover design of short spans.

1982 DTp BD 14, Loads for highway
bridges

Implemented BS 5400: Part 2 for loaded lengths up to 40 m.

1984 DTp BD 21, The assessment of
highway bridges and structures

HA loading re-derived for Construction and Use vehicles, taking
into account effects of overloading, lateral bunching and impact
factor of 1.8. Loading derived for a full range of spans (i.e. no
longer capped for short spans).

1988 DTp BD 37, Loads for highway
bridges (composite version of
BS 5400: Part 2). Incorporated
in DMRB in 2001

Revision of BS 5400: Part 2: 1972 containing revised HA loading;
short span based on BD 21/84, enhanced long span derived
statistically from live traffic data. Covers spans up to 1600 m.

1994 CEN, ENV 1991-3. Eurocode 1:
Basis of design and actions on
structures. Part 3: Traffic loads
on bridges

European pre-standard for traffic loads on bridges. Covers spans
up to 200 m. Constant UDL for all spans and tandem axle
systems. 3 m notional lanes. (Issued in 2000 together with UK
NAD. Constant UDL for all lanes across carriageway.)

1997 HA, BD 21. The assessment of
highway bridges and structures.
Revised in 2001

Revision of short span assessment loading by statistical methods
and allowing for site factors for volumes of traffic and road
surface condition.
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4.2.6 Summary

As can be seen from the comparison of bending moments in Figure 4.1, LM1 of

Eurocode results in the most onerous of load effects of the presented normative

standards. This can further be seen in Figure 4.2 where the Eurocode loading

can produce a bending moment of as much as three times that of the initial

bending moment M0 due to BS 153 in a simply support span. This ratio can be

expressed as Mx/M0, where Mx is a bending moment produced by a subsequent

normative standard x, and reduces to 2 at 13 m under Eurocode and 1.25 at 50

m. For the 16 m spans considered in this and the previous chapter, the ratios of

Mx/M0 for BS 5400, BD 21/84, BD 37/88, and Eurocode are 0.96, 1.36, 1.43,

and 1.86, respectively. Throughout this change in live load definitions, there

has been no substantive change in the capacity models or in the partial factors

for materials γm; for which the concrete factor γm,c for the ultimate limit-state

is 1.5 and the reinforcing/prestressing steel factor γm,s is 1.15, for both the

British Standards (BSI 1984, 1990) and Eurocode (CEN 2004). From this, it can

be argued that these later design standards faced larger design requirements

than initially for BS 153, and so these bridges were designed to provide a larger

degree of strength than before; which would typically result in a higher con-

struction cost due to increased use of structural materials, not accounting for

variations in raw material cost over time. This, however, does pose the question

as to whether this increased initial cost can be off-set by reduced repair costs in

stronger bridges throughout their life-cycle.

4.3 Assessment Model

A reliability analysis was carried out under the flexural limit-state as per the

previous chapter. However, in addition to the analysis under the probabilisti-

cally defined load model used previously; in this chapter a comparison is being

sought between various deterministic load models defined in codes of practice.

While these models have not been typically defined using statistical methods, in

order to draw a direct comparison between the load models and the effects that

their changes may have on structural parameters, such as importance factors

or parametric sensitivity, a notional reliability analysis in conducted under each

load model. If real information around traffic loading was available over time,

then it would have been possible to create a traffic load distribution, including
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Figure 4.2: Maximum bending moment ratio Mx/M0 with increasing
spans for changing live load definitions

possible evolution of it in time. However, in the absence of such a model, nor-

mative assessment uses the traffic load definition from codes. It is often difficult

to translate these definitions into an equivalent probabilistic distribution and a

related value.

However, should there only be definitions from codes available, it is expected

that any such equivalent value will reflect the changes in definitions from codes;

and reliability indices computed from that limited level of information will re-

flect changes in definitions in codes. While such historical evolution provides a

commentary on how normative safety indices have changed over time, adopt-

ing a probabilistic study, based on the assumption that limited and only code-

based traffic loading definitions are present, will allow for investigation into

what codes provided what levels of estimated safety; along with information

around parametric sensitivity and parameter importance measures. To reason-

ably conduct this, the undamaged reliability index assessed from this analysis

is benchmarked against known values for bridges under the probabilistic traffic

load model; so that this method of investigation does not represent significantly

unrealistic scenarios and the comparisons are carried out with examples with a

realistic degree of confidence.

In order to represent the load in a probabilistic space, and with reference to

equations 3.2, 3.3, and 3.4, the random variable λProb is replaced with a live

load uncertainty factor λLL, which is modelled as a lognormal distribution with

values (µ, σ) of (1.0,0.2) (Akgül and Frangopol 2004b). Additionally, the de-
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terministic coefficients C05, C15, and C26 can now be expressed as:

Cij,a =
(

32.106L2

8 + 120L
4

)
b

1000bL

Cij,b =
(

30L2

8 + 120L
4

)
b

1000bL

Cij,c =

260
(

1
L

)0.6
L2

8 + 120L
4

 b

1000bL
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(

1
L

)0.67
L2
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4

 b

1000bL

Cij,e =

16.764L2

8 +
300

[(
L
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)
+
(
L
2 − 0.9

)]
L

(L
2 − 0.3

) b

1000bL

where the subscripts a, b, c, d, and e represent BS 153, BS 5400, BD 21/84,

BD 37/88, and Eurocode, respectively; and the variable b in the equations is the

width of section considered for the slab bridge, and the effective flange width

beff for the beam and prestressed concreted bridge (Table 3.3).

At this point it is useful to consider the effects of deterioration over the life-

cycle of the bridges in order to determine a time-dependent reliability index

β (t). The time-dependent reliability model extends the fundamental model

previously discussed by introducing the time function t:

Pf (t) = P [R(t) ≤ S(t)] (4.1)

Where R(t) is the time-varying resistance and S(t) is the time-varying load.

With the absence of any future traffic loading, S(t) will be treated as S as per the

initial assessment, but R(t) will be evaluated as the loss of capacity over time

due to corrosion effects. The corrosion model used in the lifetime assessment

of the bridges was based on a uniform reduction in flexural steel area, assumed

here to be caused by chloride only (Akgül and Frangopol 2005a). The time to

initiation of corrosion Ti is commonly obtained using Fick’s 2nd law of diffusion

(Akgül and Frangopol 2004c, 2005b, Kenshel and O’Connor 2009):

Ti = C2

4Dc

[
erf−1

(
Cs − Ccr

Cs

)]−2
(4.2)

where C is the concrete cover to flexural reinforcement (mm); Ccr is the crit-
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ical chloride concentration (%); Cs is the surface chloride concentration (%);

Dc is the chloride diffusion coefficient (mm2/year); and erf is the error func-

tion. In this analysis, Ccr, Cs, and Dc are treated as random variables with a

lognormal distribution; with values (µ, σ) of (0.037,0.0056), (0.15,0.015), and

(110,12.1), respectively (Enright and Frangopol 1998). While this represents

only one method for modelling corrosion, its use is adequate here for establish-

ing a comparative discussion across the various traffic load models. Once the

time to corrosion initiation is determined, time-variant flexural steel As(t) area

can be found as:

As(t) = π

4

n∑
j=1

[D0,j −∆Dj(t)]2 , ∆Dj(t) = rcorr (t− Ti) (4.3)

where D0,j is the initial diameter of the steel bars and strands; ∆Dj(t) is the

amount of section lost after time t; n is the number of bars; and rcorr is the

rate of corrosion of the flexural steel. While rcorr is a function of the constant

rate in time icorr and the corrosion coefficient value Ccorr, here rcorr (mm/year)

is modelled as random variable with a lognormal distribution, with a mean

µ and standard deviation σ of 0.0762 and 0.0223 for the RC bridges (Akgül

and Frangopol 2005b), and 0.0571 and 0.017 for the PC bridge (Akgül and

Frangopol 2004c).

In addition to uniform corrosion, it is acknowledged that localised corrosion can

reach a penetration of four to eight times the penetration estimated under the

uniform corrosion model (González et al. 1995). This additional penetration

can be modelled using the pitting corrosion model (Val and Melchers 1997),

where the net cross-sectional area of the steel As(t) can be found as:

As(t) =


πD2

o

4 − A1 − A2, p (t) ≤
√

2
2 Do

A1 − A2,
√

2
2 Do < p (t) ≤ Do

0, p (t) > Do

(4.4)

where A1, A2, a, θ1, and θ2 are physical parameters of the pit (Figure 4.3),

defined as:

A1 = 1
2

[
θ1

(
Do

2

)2
− a

∣∣∣∣∣Do

2 −
p (t)2

Do

∣∣∣∣∣
]

(4.5)

A2 = 1
2

[
θ2p (t)2 − ap (t)2

Do

]
(4.6)
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a = 2p (t)

√√√√1−
[
p (t)
Do

]2

(4.7)

θ1 = 2 arcsin
( 2a
Do

)
(4.8)

θ2 = 2 arcsin
[
a

p (t)

]
(4.9)

and p(t) is the radius of the pit at time t, being a function of ∆Dj(t) from the

uniform corrosion model (Equation 4.3):

p(t) = ∆Dj(t)R (4.10)

where R is a coefficient of the ratio between the maximum and uniform corro-

sion penetration, and typically has a value of between 4 and 8 which accounts

for the difference as noted by González et al. (1995), as specified earlier.

Do

a

p(t)

θ1

θ2

Figure 4.3: Pitting corrosion, adapted from Val and Melchers (1997)

While the use of a pitting corrosion model produces a more critical deterioration

scenario when spatial variability is considered (Stewart 2004), the uniform cor-

rosion model will be used in this analysis due to its simplicity in application and

where the consideration of time dependent effects are considered from a nom-

inal basis, from which only direct comparison will be made across the results.

While the use of the pitting corrosion model would result in variation in the

results than those presented, and would be expected to be less favourable, the

variations would be relative across the bridges and so the conclusions drawn

would be the same as the presented assessment using the uniform corrosion
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model.

4.4 Life-Cycle Cost Model

The life-cycle cost model used in this assessment was developed by Frangopol

et al. (1997) to optimise the inspection and repair of deteriorating structures,

the procedure of which is briefly summarised here. The expected total life-cycle

cost CET is the sum of the various cost components of the structure; initial con-

struction CT , routine preventative maintenance CPM , inspections CINS, repair

CREP , and failure CF .

CET = CT + CPM + CINS + CREP + CF (4.11)

The initial construction cost CT is taken as a function of the volume of concrete

and steel in the section, and can be expressed as:

CT = CcAcL+ CsAsL (4.12)

where Cc and Cs is the unit cost of concrete and steel per m3, respectively; Ac
and As is the area of concrete and steel in the section, respectively; and L is the

length of the section being considered. For this analysis, Cc was chosen to be

C36/m3 and Cs was chosen to be C1785/m3; for a Cs/Cc ratio of approximately

50:1 (Lin and Frangopol 1996). In order to account for the reduction of As
away from the position of maximum bending moment, it is suggested by Lin

and Frangopol (1996) to factor As by 0.75. However, as this model does not

consider the effect and cost of shear reinforcement, the total value of As will be

accounted for to simulate the cost of shear reinforcement.

The cost of lifetime preventative maintenance CPM is described as the linear

combination of the cost of preventative maintenance at year one Cmain, and the

age of the structure at the time of the preventative maintenance t. To account

for future costs, CPM is the sum of the net present value costs of each occurrence

of routine preventative maintenance:

CPM =
t∑
i=1

Cmain,i
1

(1 + r)ti (4.13)

where r is the net discount rate.
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The total expected inspection cost CINS is defined as:

CINS =
m∑
i=1

Cins
1

(1 + r)ti (4.14)

where m is the number of inspections; and Cins is the cost of the inspection

method used (Mori and Ellingwood 1994), which is a function of the detectable

damage intensity η and cost of an ideal inspection αins, which is to be taken as

a fraction of the initial cost CT .

In the development of this model, Frangopol et al. (1997) have shown that the

number of inspections m have a significant influence on CET , as this variable

has a direct influence on the number of repair activities carried out, which

reduces the overall probability of failure Pf and thus the expected cost of failure

CF . To establish CREP and CF , an event tree can be constructed whereby for

each inspection, a decision can be taken on whether to initiate a repair activity

or not. A constraint imposed on the model is that if damage η is detected during

any inspection, a repair activity must be carried out. This decision is thus based

on the probability of detecting damage at the time of an inspection, or the

probability of damage not being detected. For simplicity, in this assessment it

is assumed that each repair activity returns the bridge to its initial reliability

index βi. Thus, for each node of the event tree, the decision on whether to

conduct a repair activity or not will directly influence the failure probability at

the following node on the event tree for the next inspection.

The lifetime failure probability Pf,life of the bridge for any number of m inspec-

tions can be defined as:

Pf,life =
2m∑
i=1

Pf,life,iP (Bi) (4.15)

where P (Bi) is the probability that any path on the event tree occurs (Figure

4.4), and Pf,life,i is the maximum failure probability for that path. Each branch

Bi represents a specific sequence of repair events bji , which can be defined as

repair occurring or not occurring after an inspection; the probability of which is

determined as a function of the damage intensity η (t) at the time of inspection

and the probability of detecting this damage d (η). These can be defined using
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the following expressions:

η (t) =

0, 0 ≤ t ≤ Ti
Db0−Db(t)

Db0
, Ti < t

(4.16)

d (η) = P (damage detection | η) =


0, 0 ≤ η ≤ ηmin

Φ
(
η−η0.5
σ

)
, ηmin < η ≤ ηmax

1, η > ηmax

(4.17)

Where Db0 is the initial bar diameter; Db (t) is the time-dependent bar diameter

based on the corrosion model; eta0.5 is the damage intensity at which the NDE

method has a 50% probability of detection; σ is the standard deviation; and

ηmin and ηmax are the minimum detectable damage intensity and the damage

intensity for which probability detection is certain, respectively.

Figure 4.4: Event tree of repair path for five inspections (Frangopol
et al. 1997)
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The expected total cost of repair is then defined as:

CREP =
2m∑
i=1

Crep,iP (Bi) (4.18)

where Crep,i is the net present value repair cost at each node, as a function of

the effect of the repair activity erep, defined as:

erep = M̄r,a − M̄r,b

M̄r0
(4.19)

Where M̄r0 is the original mean flexural capacity; and M̄r,b and M̄r,a are the

mean flexural capacities before and after repair, respectively.

Finally, the expected failure cost CF is defined as:

CF = CfPf,life (4.20)

where the failure cost Cf is a function of the initial cost CT ; in this assessment

assumed to be 1,400Cc, for illustrative purposes. For a full life-cycle cost analy-

sis, this failure cost would need to be specified with greater detail, and account

for economic and social consequences of failure. The model used here is so

as to benchmark the results against those obtained in the formulation of this

life-cycle cost model by Frangopol et al. (1997). By using this model, it will

be possible to offer nominal comparisons between the expected life-cycle cost

of bridges designed under increasing design traffic loading, and show whether

this increase in capacity requirements, thus increased initial construction costs,

can be off-set by reduced necessity for remedial intervention throughout the

bridges lifetime. While other models exist for estimating life-cycle costs of civil

infrastructure (Cho 2009), this method has been deemed adequate to address

the objective posed in this chapter.

4.5 Results

4.5.1 Undamaged Reliability Assessment

A reliability assessment was conducted on the three bridges under considera-

tion to determine the relative change in β for each variation in code-defined

traffic loading, not considering degradation. These values of β were compared
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to that for βslab, βbeam, and βpres from Chapter 3, which were computed from the

probabilistic load model. The ratio of the reliability index for each code defined

load model βx and under the probabilistic load model βProb can be seen in Fig-

ure 4.5; where ratios closer to 1 represent little variation between β assessed

under the code-defined or probabilistic load model, and ratios closer to 0 repre-

sent large deviation between the models. As can be seen, despite an increase in

β from BS 153 to BS 5400, there is a consistent decrease in β with more recent

code-defined traffic loading. Additionally, with more recent code-defined loads,

the disparity between β for specified loading and the probabilistic load model

is increased.

As the return periods for the code-based loading is quite high, this disparity be-

tween specified loading and site-specific probabilistic loading is expected; and

so with greater disparity, more conservative structures are being designed, and

thus the probability of the limit state being violated under regular use is low-

ered. This, however, can not be said to be the case for BS 153 to BS 5400, which

have much closer β’s to the probabilistic load model. This would suggest that

the load effects produced by the ultimate traffic load in these early codes are

actually more representative of that produced by the typical traffic load from

the probabilistic model. This is problematic, as these ultimate loads are not

expected to occur within the reasonable life-cycle of the bridge structure. The

low relative value of β under Eurocode is expected given it produces the most

adverse bending moment of the presented standards (Figure 4.1). However,

the discrepancy between this β and that for the site-specific loading suggests

that it is perhaps too onerous for the purposes of assessment for existing struc-

tures, but designing new bridges to this requirement will produce more robust

structures.

4.5.2 Parametric Sensitivity & Importance Factors

The importance factors α2
i were determined to highlight the random variables

that have the greatest influence on β, for each new definition of code-based

traffic loading (Figure 4.6). The importance factors which demonstrate the

biggest variation are the random variables X5 and X8, which correspond to the

uncertainty factors for concrete λc and live load λLL. This would suggest a

diminishing role of the self-weight of the bridges as the traffic loading becomes

more onerous. For RC and PC beam bridges, λLL has the highest importance
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Figure 4.5: Ratio of reliability index for probabilistic load model to
code defined load model, not considering structural degradation

factor across all the codes, with a lower bound value of 30.3% and 31.7% for BS
5400, and an upper bound value of 45.3% and 51.4% for Eurocode, respectively.

However, for the RC slab bridge, it can be seen that the importance factors

for these random variables occupy the same range throughout the changing

codes, except for an almost inverse relationship between the self-weight and

the live load. For BS 5400, the importance factors for λc and λLL are 34.2%

and 11.8%, respectively; whereas, for Eurocode, they are 15.6% and 30.7%,

respectively. The greater influence of the self-weight is expected for the slab

bridge, due to its inherent form of mass concrete, as opposed to the RC and PC

beam bridges, which are lighter in nature. It can be seen that the importance

factors for each of these variables are somewhat equal for BD 21/84 and BD
37/88, before the more onerous traffic loading of Eurocode becomes the most

dominant importance factor.

The parametric sensitivity αi was demonstrated by assessing the effect on β of a

10% perturbation in the mean value of the random variables (Figure 4.7). It is

evident that the most favourable random variables across the three bridges are

X1, X3, X4, and X7, corresponding with As,p, fy,pu, γm, and λd. The only ran-

dom variable which exhibits any significant variation with changing codes is the

model uncertainty for flexure γm, with the remaining favourable random vari-

ables maintaining their relative sensitivities. However, the variation remains

only slight, but is indicative of how the code-defined traffic loading becomes

more onerous and, thus, more dominant in the probabilistic model. It is note-
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Figure 4.6: Importance factors of the random variables for each code
specification

Figure 4.7: Parametric sensitivity of β for a 10% perturbation in the
random variables

worthy how, for the PC beam bridge, the grade of prestressing steel fpu has a

low importance measure (Figure 4.6), yet is in line with the grade of reinforc-

ing steel fy for the parametric sensitivity, even when fy is stochastically more

important. This can be attributed to the coefficients of variation (CoV) for the

two random variables; with fpu having a lower CoV (5%) than fy (10%), due

to the more controlled nature of manufacturing process of precast PC beams,

as opposed to in-situ cast RC slabs and beams .
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For the unfavourable random variables, X5 (λc), X6(λs), and X8 (λLL), it can be

seen that the uncertainty factor related to concrete self-weight λc displays the

greatest negative relative change in β for a 10% perturbation. Additionally, λc
for the RC slab bridge has the greatest parametric sensitivity, which is consistent

with the established importance factors (Figure 4.6). While the sensitivity of λc
across the code variations remains the highest for the RC slab bridge, it can be

seen that the relative ranking of sensitivities is switched between that for λc and

λLL for the RC and PC beam bridges. This is more prevalent for the RC beam

bridge, where the relative change in β for λc and λLL under BS 5400 is -0.29

and -0.17, and under Eurocode is -0.20 and -0.26, respectively. This shows the

same somewhat inverted relationship between these two codes as has already

been seen earlier. For the PC beam bridge, these two variables have a relative

change in β of -0.36 and -0.16 under BS 5400, and then converge to -0.26 and

-0.27 under Eurocode, respectively.

Figure 4.8: Relative change in the random variables at the design
point for each code specification

The percentage change in each of the random variables at the design point u*,

being the most likely point of failure, can be seen in Figure 4.8. It is apparent

that, under Eurocode, the variables require the least amount of deviation from

the mean value to reach u*, whereas for BS 5400, the variables require the

largest deviation. This variation between the two codes is most pronounced

for λLL, and is consistent with the relationship seen for the importance factors

(Figure 4.6). Again, this further emphasises the more onerous nature of the

more recent codes, over the earlier models.
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4.5.3 Life-Cycle Reliability Assessment

The life-cycle assessment was conducted through a time-dependent reliability

analysis, considering the time-variant degradation of flexural steel area due to

the uniform corrosion model. The reliability indices computed in this analysis

are single-point-in-time, annual figures to demonstrate the expected future β at

a specific point in time in the future. Using Equation 4.2, the time to corrosion

initiation Ti was evaluated using a Monte Carlo simulation of 50,000 samples,

and fitting a lognormal distribution as a good estimate (Enright and Frangopol

1998). The mean value of Ti for both RC bridges was 24.1 years, and for the

PC bridge is 15.4 years for the first layer of steel and 51.8 years for the second

layer of steel. The loss of cross-sectional area of flexural steel was determined

using equation 4.3 and plotted for each bridge over an 80 year period (Figure

4.10).

Figure 4.9: Probability density function of corrosion initiation time for
each bridge with lognormal distribution and Monte Carlo Simulation

The effect of corrosion on β for the three bridges can be seen in Figure 4.11,

where the time-varying reliability is presented for the probabilistic load assess-

ment. Included in Figure 4.11 is a normative safety index based on code-defined

loading; including ‘jumps’ in this safety index that account for the changing

code specifications over time. For the flexural limit-state, this safety index is de-

fined as the ratio between the maximum moment under traffic loading Md and

the moment capacity of the section Mu; where values in excess of 1 represent

failure of the limit-state under a normative LRFD assessment. The ‘jumps’ in
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Figure 4.10: Deterioration of steel area on RC and prestressed bridges

safety index represent periods where code-defined traffic load models changed

to a newer model, and the rapid change in safety index are thus expected when

using only these normative models.

Figure 4.11: Life-cycle reliability index and normative safety index for
flexure

For the RC slab bridge, the initial reliability index under probabilistic loading β

is 3.68, where it remains at this level until the onset of corrosion, and degrades

to a final β of 2.05 over the 80 year period. For the same duration, an LRFD

assessment would yield an initial safety index of 0.78 under BS 153, and have a

final safety index of 1.36 under Eurocode; representing a load model producing
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a bending moment that is 36% over capacity of the section. If BS 153 was

used at year 80 for the LRFD assessment, the safety index would be 1.03; just

3% over estimated capacity and a 33 percentage point (pp) difference under

the newer Eurocode model. Similar results can be seen for the RC beam and

prestressed concreted bridges; where the beam bridge has a β of 4.79 at year

0 and 2.29 at year 80, and the prestressed concrete bridge has a β of 4.92 at

year 0 and 3.51 at year 80. For the normative LRFD assessment, the RC beam

bridge has an initial safety index of 0.68 under BS 153 and 1.43 at year 80

under Eurocode. Again, the variation in the safety index at year 80 is significant,

with a 45 pp difference to BS 153 for a safety index of 0.98. For the prestressed

bridge, the year 0 and 80 safety indices were 0.72 and 1.26, respectively; where

the 1.26 was 38 pp difference over a year 80 safety index of 0.88 under BS 153.

While these end variations in safety index are somewhat large, it is perhaps an

inappropriate comparison to compare the safety indices determined under BS
153 and Eurocode, as these codes never operated sequentially. Thus, it is im-

portant to consider these ‘jumps’ in safety index as these occur in the transition

from one code to the next. Two large jumps are seen over the 80 year pe-

riod; when BD 21/84 replaced BS 5400 and when Eurocode replaced BD 37/88.

When BD 21/84 was introduced, the revised safety indices for the slab (1.01),

beam (0.96), and prestressed (0.92) concrete bridges increased by 15 pp, 19

pp, and 17 pp over their BS 5400 values, respectively. This change caused vi-

olation of the flexural limit-state for the slab bridge, and near violation for the

beam and prestressed bridges. When the next jump occurs, at the introduction

of Eurocode, these limit-states would have been violated due to the ongoing

deterioration due to corrosion, if rehabilitation hadn’t taken place.

Conversely, at the time of these ‘jumps’ (years 49 and 65), reliability assessment

under the probabilistic load model gives values of β for the slab, beam, and pre-

stressed bridge of 3.03, 3.83, and 4.49, respectively, at year 49, and 2.54, 3.05,

and 4.02, respectively, at year 65. As maintenance and intervention decisions

are often based on performance indicators such as β or the safety index, more

commonly, the decision to intervene structurally on a bridge can be taken too

hastily when code-defined loading is used instead of probabilistic loading, and

lead to the misallocation of budgetary resources. Thus the use of β as the per-

formance indicator over the lifetime of the bridge appears to provide a more

stable assessment of safety than the normative LRFD assessment.

Furthermore, while the effects of deterioration on β have been shown over
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time (Figure 4.11), it is also worth examining the effect deterioration has on

the importance factors α2. Specifically, it is interesting to note the effect that

this deterioration has on the ranking of the random variables in regard to α2

(Figure 4.12). It can be seen that the variable Xi1, corresponding to the area

of reinforcing or prestressing steel As,ps, experiences an increase in importance

over time; this increase occurring after the onset of corrosion in the bridge. As∑
α2 = 1, any increase in α2 for a specific variable is done so at the expense of

other variables included in the model.

Figure 4.12: Variations in life-cycle importance factors for the a.) slab,
b.) beam, and c.) prestressed concrete bridges

This is most prominent in the RC beam bridge, where X11 experiences its great-

est increase of the three bridges, and is largely due to the decrease in α2 of X16;

being the surfacing weight uncertainty factor λs. As per Chapter 3, this impor-

tance factor is quite high, due to the large CoV of 0.25 in the initial model. As

the ongoing deterioration increases the uncertainty in X11, it can be seen that

X16 degrades to an importance measure that is more in line with its actual ef-

fect on the bridge, qualitatively. Interestingly, this same decrease in λs is seen

in the prestressed bridge for the variable X16, except in this case, X21 does not
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increase at a commensurate rate. This can be attributed to the prefabricated

nature of prestressed beams, where there is less uncertainty in Aps and while

it is still subject to degradation, its uncertainty is not affected to the extent of

it reinforced concrete counterparts. Instead, the concrete weight uncertainty

factor λc(X25) gains a measure of importance over time, which represents un-

certainty in the permanent load of the bridge. As the bridge deteriorates and

loses its flexural capacity, the effect of the self-weight of the bridge can become

more of a consideration, thus explaining its increase in importance. It is note-

worthy that the grade of steel used in the reinforcing and prestressing Xi3 does

not gain any significant importance over time.

4.5.4 Life-Cycle Cost Assessment

The life-cycle cost was evaluated in MATLAB (MathWorks 2015) using the

model described in Section 4.4. The objective of the life-cycle cost model used

here is to minimise CET while ensuring a minimum level of structural perfor-

mance at all times, and then to determine the optimum inspection and repair

strategy that achieves this goal. The structural performance is indicated through

β and Pf , with a minimum performance indicator being the target reliability in-

dex βT . In this assessment, βT is set at a value of 2.5, which corresponds to a

Pf of 0.0062. While this value is lower than those specified in Tables 2.2 and

2.3, it is being used as a nominal minimum value for convenience, from which

it is possible to offer direct comparison between the various bridge capacities

and their intervention requirements. Should a more onerous value be selected

for βT , such as 3.8, then only the bridge subjected to Eurocode loading would

be above this threshold, and thus a comparison would not be able to be made

for intervention requirements. As the expected cost of failure CF is a function

of the lifetime probability of failure Pf,life, and Pf,life is heavily related to the

number of inspections m conducted, it has been shown by (Frangopol et al.

1997) that CF can be minimised by an optimum number of inspections mopt.

This is because only after an inspection can a repair activity be carried out; an

activity which will improve β and lower Pf . Thus, as m increases, the likeli-

hood of failure and thus Pf,life and CF are reduced. However, there exists a

point of diminished returns when Pf,life is low enough to keep CF as a minor

component of CET , and for increasing values of m, CET rises with the expected

cost of inspection CINS.
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Figure 4.13: Variation in total expected life-cycle cost against
increasing number of inspections for each design load

The effect of more onerous traffic load requirements on CET , as well as the

effect of increased inspections m is shown in Figure 4.13. In the figure, there

exists a gulf between CET for the earlier codes, BS 153 and BS 5400, and that

for the more modern codes; BD 21, BD 37, and Eurocode. Despite the required

increase in CT for the modern codes, the values of CET are significantly lower,

and less dependent on the number of inspections carried out. This is explained

by the effective reduction in CF due to the improved β provided by the in-

creased As demanded by the modern codes. The effect that this increased As

has on CET can be seen in Figure 4.14. It is clear that while there is very little

relative change in CT , there is a significant reduction in CET to the point where

the number of inspections m loses significant importance.

The effect of increasing values of m and As on CET and CF can be visualised

in the 3D surface plots in Figures 4.15 & 4.16, respectively. It can be seen in

Figure 4.16 that CF , and consequently Pf,life, lower to a near zero point for

10 inspections under Eurocode designed As. It is clear from these figures that

the increased demand of As, and thus the small relative increase in CT , has a

greater influence on CET than the inspection regime.

This contention can be borne out by evaluating the repair strategies for each

bridge, based on the number on inspections that return a minimum value of

CET . From Figures 4.13–4.15, this can be seen to result in mopt of 9, 9, 5, 5, & 2

for BS 153–Eurocode, respectively. In assessing the repair options available, two

strategies were adopted: to repair the structure to its original state after each
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Figure 4.14: Diminishing total expected failure cost for increasing area
of steel and increasing number of inspections

Figure 4.15: Effects of increasing inspections and area of steel on total
expected life-cycle cost
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Figure 4.16: Effects of increasing inspections and area of steel on total
expected failure cost

inspection, and to repair the structure to its original condition at a time where

it would fall below βT before the next scheduled inspection. For both these

strategies, a uniform inspection interval was assumed. In this model, it was

assumed that once chloride induced corrosion began in the original structure,

it would continue to act on As immediately after repair.

The result of the first strategy can be seen in Figure 4.17. Here the bridge is

repaired prematurely for those designed under modern standards, resulting in

a misallocation of resources, but is seemingly appropriate for the bridges de-

signed by the less onerous standards. It is evident from Figure 4.18 that the

second repair strategy results in a more sensible schedule of repair activities,

to the point where the Eurocode designed bridge will maintain a level above

βT for the 80 year assessment period, under the presented deterioration model.

Furthermore, bridges designed under BD 21 and BD 37 require only one repair

activity, whereas those designed under BS 183 and BS 5400 require 8 and 9,

respectively. This is further evidence of apparent life-cycle cost savings avail-

able with a small increase in the initial investment in the structure. As the

design codes under which a bridge is constructed have an apparent effect on

the levels of maintenance and intervention required later in the bridges life-

cycle, bridges designed during periods of transition between one design code to

another require critical evaluation; as while their relative age would be similar,

there could be significant, code-based discrepancies between their strengths,

even when constructed in close proximity of years.
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Figure 4.17: Effect of non-optimum repair strategy on β for uniform
interval inspection for each design load

Figure 4.18: Effect of optimum repair strategy on β for uniform
interval inspection for each design load
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4.6 Conclusions

This chapter addresses research Objectives 2 and 3 in its investigation of the

life-cycle performance and costs effects of different codes of practice for bridge

design and assessment. An equivalent structural reliability analysis, based on

information available only from the code definitions and their variations, was

conducted on three bridges to assess the effect of changing definitions of code-

defined traffic loading on safety classifications of the structures. These results

were compared with those for site-specific probabilistic loading to determine

how representative the safety classification for a bridge assessed under specified

loading was against a more realistic loading scenario. It was observed that

earlier codes produced less onerous flexural load effects and, as such, resulted

in a reduced demand for flexural capacity and, thus, reliability indices closer

to that determined under the probabilistic load model. This, however, results

in a situation where bridges designed and assessed under these early codes

are regularly being subjected to close to their ultimate loads. As these code-

defined loads were said to have a large return period, such proximity between

the ‘typical’ and ‘ultimate’ loading is not an expected or desirable scenario.

It was shown that bridges produced under loading prescribed by modern stan-

dards produced bridges with a higher β assessed under a probabilistic load

model, and resulted in a significantly reduced expected life-cycle cost, despite

the increased initial construction costs due to a higher minimum requirement

for flexural reinforcement. This increased initial cost was seen to be signifi-

cantly offset with a lower expected cost of failure, which is a function of the

probability of failure and thus the reliability index β. This gives rise to the

question as to whether there is an optimum point at which the initial cost can

be increased to minimise the total expected life-cycle cost, and is there further

variables that can be optimised at the design stage for bridges. Furthermore,

the practical ways such a philosophy can be adopted in normative standards

are unanswered; be it through refinements of partial factors for resistance vari-

ables such as the area of steel As or the compressive strength of concrete fc,

or through the a more holistic increase in safety factors regarding the applied

traffic loading. Despite these remaining issues, it is clear from the presented

results that there is scope for significant savings through a more conservative

approach at the design stage.

Given the disparity between β for the probabilistic load model and the more
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recent codes of practice, it is evident that bridge structures designed and con-

structed according to these standards should have a higher resistance capacity

than seen in bridges designed to the extent of the earlier standards. It can thus

be suggested that bridges designed to the extent of the modern standards will

perform better in terms of β when assessed against a probabilistic load. How-

ever, since many of the assessments tend to use code based definitions of design

traffic loading, their direct use in assessment of existing bridges is not best prac-

tice for economical life-cycle asset management. The use of probabilistic load

modelling, such as through site-specific weigh-in-motion (WIM), in reliability

analyses yields a more accurate assessment of the true safety of a bridge.
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Chapter 5

Multivariate Data Techniques for
Network Condition Monitoring

5.1 Introduction

5.1.1 Overview

The previous chapters have dealt with the theory and application of the struc-

tural reliability method and its role in the assessment of existing bridges. It was

seen how sensitive the method can be to varying levels of information in the

input model, and the pitfalls that can compromise a useful and sophisticated

method in its application for life-cycle assessment. To reiterate a core concept

in this thesis, structural reliability methods can be said to refer more to our

state of knowledge of the structure, which is directly dependent on uncertainty

and the level of information available for the model. In this regard, efforts

to better inform our probabilistic models rely heavily on the gathering of data

and information to reduce uncertainty in the limit state equations. While meth-

ods to reduce the uncertainty in the loading model S are largely concerned

with bespoke, site-specific probabilistic loading models, various methods ex-

ist from which to try to reduce the uncertainty in R. Many of these methods

involve non-destructive evaluation (NDE) of the bridges elements, or through

Bayesian updating of β based on expected values of condition rating against

those observed in practice. In modern bridge management systems (BMS), the

most plentiful source of information comes in the form of condition rating data

evaluated through visual inspection. However, while this typically represents
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the largest amount of data available for bridge management, it gives no infor-

mation on the structural capacity of these bridges. That being said, there are

opportunities to use this data to a greater extent to extract the greatest knowl-

edge of the state of a network of bridges. Methods to exploit the vast amount of

data available to bridge managers on the state of existing bridges have not been

explored to date. In this chapter, for the first time, large volumes of condition

rating data will be explored in an effort to extract patterns within these data-

sets from which to improve our knowledge on the state of the resource variable

R in the basic reliability model.

5.1.2 Background

Infrastructure asset management involves management of the expectation of

infrastructure stakeholders at different levels (Weninger-Vycudil et al. 2015,

Lloyd 2010). In the past, a strategy of ‘deferred maintenance’ (Petroski 1996)

on national bridge stock has resulted in a scenario where, in the United States

alone, 11% of the nation’s bridges are said to be structurally deficient, while

25% are described as being ‘functionally obsolete’ (ASCE 2013). As such,

the maintenance of an infrastructure network is a resource intensive endeav-

our which seeks to mitigate the risk of its failure to the society and economy

(Mueller and Stewart 2011, Denysiuk et al. 2016). For a country’s national

bridge stock, the management of these maintenance activities are often enabled

using bridge management systems (BMS), which provide a platform to coalesce

various assessment methods and criteria in order to improve intervention plan-

ning by asset managers (Hearn 1998, Lauridsen et al. 1998, Matos et al. 2005).

This allows an organisation to combat the so-called “asset time bomb” (Thurlby

2013).

The most prevalent methods of assessment for these systems is through sched-

uled visual inspection activities, from which the damage state of the asset can

be described through condition ratings; the results of which often guide fur-

ther assessment and, eventually, intervention, (Das 1998, Estes and Frangopol

2003). The populating of these systems also leads to the storage of large quan-

tities of so-called metadata; which can describe the physical parameters of the

bridge.

When applied to a national bridge stock, this results in a large database of

condition ratings and provides scope for which to apply modern principals of
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“big data analysis” (Manyika et al. 2011, Kobayashi and Kaito 2016). When

examining large amounts of data in this way, it is possible to use advanced

multivariate analysis methods to extract patterns within the data-set and to

define underlying latent constructs for variables within this data-set using data-

reduction techniques. For a BMS, these variables are in the form of condition

ratings for a bridges individual elements. The application of multivariate meth-

ods such as principal component analysis (PCA) to bridge management systems

has been shown to be successful in describing a large asset base (Hanley et al.

2015), as well as differentiating between condition state signatures between

different bridge types (Hanley et al. 2016b). In this chapter, a background to a

representative BMS is presented, including an explanation of the condition rat-

ing descriptions used by Ireland and Portugal. The application of multivariate

data-reduction to compare two networks from different regions is evaluated on

data-sets containing condition rating data for a large number of masonry arch

bridges in Ireland and Portugal; which are typical for both countries. The ap-

propriate data size required for a reasonable comparison between two data-sets

is established, and the methodology for conducting the multivariate analysis is

presented.

5.2 Bridge Management Systems

5.2.1 Background

Due to the societal importance of bridges, early infrastructural asset manage-

ment systems have primarily been based around bridge management, and thus

many systems concerned with other infrastructural objects follow from the de-

velopment of BMSs (Mirzaei et al. 2014). A BMS is a rational, popular, and

systematic approach to carrying out all management activities related to man-

aging a network of bridges (Scherer and Glagola 1994), including the priori-

tisation of bridges for intervention activities. A complete BMS defines a set

of interrelated codes and guidelines for bridge management activities, and an

organisation structure to plan and implement these activities; as well as a com-

putational tool to track, record, and process the results of these management

activities (Lauridsen et al. 1998).

While the maintenance requirements of any bridge, or a network thereof, are

best evaluated in relation to its ability to perform its structural and functional
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role, too often the underlying assumptions of the use of a BMS are that a bridges

maintenance needs are dictated by its condition state, and that the most ap-

propriate maintenance actions are those which will cost more at a later date,

when deterioration is allowed to continue (Das 1998). A typical, modern BMS

comprises a number of basic components, namely: inventory, inspection, main-

tenance, financial, and condition rating; all comprised in a central database

(Ryall 2009). The inventory data recorded in the BMS details the bridges lo-

cation, construction type, crossing type, etc., and inspection data comprises vi-

sual inspection condition ratings for various defined elements within the overall

bridge structure, recorded by trained bridge inspectors. The condition ratings

of the elements are indicative of any damage present in the element and are

used to assign an overall condition rating to the bridge; a rating that has been

shown to be sensitive to the worst condition rating of the primary structural ele-

ments in BMSs in which the overall condition rating is not a linear combination

of the elemental condition ratings (Hanley et al. 2016b).

5.2.2 Condition Evaluation

The prevalence of condition ratings in BMSs has a historic reason in that when

these modern systems were developed, the most plentiful type of electronic

information available for bridge damage states was in the form of discrete,

numerical condition ratings, and thus modern systems needed to be designed

around existing platforms and protocols (Hearn 1998).

There are various methods used in BMSs for determining a bridges overall con-

dition rating from visual inspection data; with two common methods being

the worst-conditioned element approach and the weighted averaging approach

(Swanlund 2016). Both methods are fundamentally based on assigning numer-

ical condition ratings to individual bridge elements during visual inspection,

based on a well-defined scale of damage present (Table 5.1).

The worst-conditioned element approach is based on the principle whereby the

overall condition rating of the bridge is determined as being equal to the worst

condition rating of the primary structural elements of the bridge; thus, signifi-

cantly tying the overall condition rating to that of a single element, and not to

the total amount of damage present in the bridge. While this is useful for iden-

tifying bridges that are vulnerable to elemental failure, it results in a scenario

where similar bridges of vastly different states of distress can possess equal
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Table 5.1: Condition rating descriptions, adapted from NRA (2008)

Rating Description

0 No or insignificant damage.
1 Minor damage but no need of repair.
2 Some damage, repair needed when convenient. Component is still func-

tioning as originally designed. Observe the condition development.
3 Significant damage, repair needed very soon. i.e. within next financial

year
4 Damage is critical and it is necessary to execute repair works at once, or

to carry out a detailed inspection to determine whether any rehabilitation
works are required.

5 Ultimate damage. The component has failed or is in danger of total fail-
ure, possibly affecting the safety of traffic. It is necessary to implement
emergency temporary repair work immediately or rehabilitation work
without delay after the introduction of load limitation measures.

condition ratings. For management of maintenance activities, the overall state

of deterioration of the bridge is required for adequate planning and resource

allocation. When a small number of these bridges are compared against each

other, it is simple and trivial to discern which is in the worst state. However,

in BMSs that contain a large number of bridges, such a comparison becomes

cumbersome and unwieldy.

To overcome this, the weighted averaging approach assigns an element impor-

tance factor to the condition ratings of each element; often based on engineer-

ing judgement alone. The overall condition rating is then determined as a func-

tion of the elemental condition ratings and weighting factors; these functions

often differing from region to region, based on the requirements of asset man-

agers and stakeholders. This method has the benefit of establishing an overall

damage assessment of the bridge, and is not as sensitive to the damaged state

of one element in the way the worst-conditioned element approach is. Due to

this, it can be considered a more powerful approach in the planning of future

maintenance activities, as the most critical bridges are identified in the BMS,

as opposed to those bridges with the most critical elements. However, the use

of engineering judgement alone in the definition of the weighting factors itself

leads to issues of bias and inaccurate assessments of overall damage state. In

the following chapter, multivariate analysis techniques will be shown to use ex-

isting elemental condition rating data on a large scale to help define, as a first

step, information-based, structure-specific weighting factors.
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5.3 Multivariate Data-Reduction Techniques

5.3.1 Background

The purpose of data-reduction techniques in multivariate analysis is to find a

suitable lower-dimensional space with which to represent the original data,

allowing for the discovery of data structures and patterns, and to enable visual-

isation of the data in two- and three-dimensional spaces (Martinez et al. 2011).

Data-reduction techniques create new variables yi that are functions of the orig-

inal variables xi in the data-set, and thus establish the relationship between

these original variables (xi, xi+1, . . . , xn). Common methods for data-reduction

are principal component analysis (PCA) and exploratory factor analysis (EFA).

While both methods typically yield similar results, they have differing levels of

computational effort and efficiency. A brief overview of each method follows

for comparative purposes.

5.3.2 Principal Component Analysis

PCA is a multivariate, data-reduction technique, the primary purpose of which

is to reduce the dimensionality of a data-set and to redefine the input variables

as PCs, or latent variables, being a linear combination of the original variables

(Mardia et al. 1979, Jolliffe 2002). In defining these PCs or new variables,

the goal is to have a magnitude less than the variables in the original data-

set, but while preserving most of the information contained within it. This is

accomplished by highlighting the variables that demonstrate the most variance

in the data set. The first principal component Y1 is defined as:

Y1 = α′1x = α11x1 + α12x2 + · · ·+ α1pxp =
p∑
j=1

α1jxj (5.1)

Where α′1x is a linear function of the elements x having maximum variance,

and α is a vector of p coefficients α. The sum of the square of the coefficients

αi is equal to unity, and is a better indicator of the influence the coefficient has

than the raw value:
p∑
i=1

α2
i = α′α = 1 (5.2)
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The first PC Y1 is the direction along which the data set shows the largest vari-

ation (Ringnér 2008), and the second PC Y2 is determined under the constraint

of being orthogonal to Y1 and to have the largest variance (Abdi and Williams

2010). The second PC Y2 = α′2x is found in a similar manner to Y1, and so on

for the subsequent PCs, up to p PCs, Yp. It is desired, however, that most of the

variance in the data set is accounted for in the PCs� p, in that dimensionality

reduction is the primary aim of this method. In order to locate the PCs, it is

necessary to determine the covariance matrix Σ of the vector of random vari-

ables x. It can then be shown that αk is an eigenvector of Σ corresponding to

its kth largest eigenvalue λk (Jolliffe 2002).

The above can be discussed in matrix terms where a PCA can be conducted

through an eigenvalue decomposition (EVD) or a more robust and generalized

singular value decomposition (SVD) (Chambers 1977). For a data matrix X of

n observations on p variables measured about their means:

X = ULA′ (5.3)

Where L is an (r × r) diagonal matrix, and U and A are (n × r) and (p × r)

matrices, respectively, with orthonormal columns, and r is the rank of X. It has

been observed that SVD approach to PCA is a computationally efficient and

generalised method to determining the PCs. Further discussion of the method

can be seen in depth with Gower (1966), Anderson (1963), Wold et al. (1987),

Hui Zou et al. (2006), Rao (1964), Tipping and Bishop (1999).

5.3.3 Exploratory Factor Analysis

Factor analysis is a multivariate technique for which the primary purpose is to

define the underlying structure amongst variables in a data-set, and to establish

factors; which are sets of highly correlated variables. These factors cannot be

observed directly.

xi =
k∑
i=1

λijfi + ui + µi, i = 1, · · · , p (5.4)

Where fi is an underlying common factor, λij are factor loadings, ui are random

disturbance terms, and µi is a mean value of xi (Mardia et al. 1979). This
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equation can be written in matrix form as:

x = Λf + u + M (5.5)

Where x is a (p × 1) random vector with mean M and covariance matrix Σ, Λ
is a (p × k) matrix of constants, and f and u are (k × 1) and (p × 1) random

vectors, respectively. This model is valid for x when Σ can be decomposed in

the form of:

Σ = ΛΛ′ + Ψ (5.6)

Where Ψ = diag(ψ11, · · · , ψkk) is the covariance matrix of u. The variance σii
of x can be defined as:

σii = h2
i + ψii, h2

i =
k∑
j=1

λ2
ij (5.7)

Where h2
i is the variance of xi shared with the other variables via common

factors fi, and ψii is the variance of xi not shared with the other variables due

to the unique factor ui. These are referred to as communality and specific

variance for h2
i and ψii, respectively.

In order to give the factors f intuitive meaning, it is necessary to rotate them to

a more interpretive space. A popular method is the varimax rotation; which is

an orthogonal rotation in an iterative manner. The matrix of rotated loadings

∆ is given by:

∆ = ΛG (5.8)

Where G is a (k × k) orthogonal matrix that maximises the function φ, which

is the sum of the variances of the squared loadings within each column of the

loading matrix.

The calculation of factor scores f can be conducted using two popular meth-

ods; Bartlett’s method for deterministic scores f̂ , and Thompson’s method for

stochastic scores f ∗. Using Bartlett’s method, the factor score can be determined

as:

f̂ = (Λ′Ψ−1Λ)−1Λ′Ψ−1x (5.9)

The use of deterministic factors is appropriate for use on a specifically defined

data set, whereas stochastic Thompson factors are favoured when sampling

from a population of data.
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5.3.4 Comparison of PCA and EFA

A detailed comparison of the two methods was conducted by Velicer and Jack-

son (1990), who generalised both methods into the equation:

η = Aζ + ε (5.10)

Where η is a set of p random variables, ζ is a set of m random variables, of

which m ≤ p, ε is a set of p residuals, and A is the p ×m multiple regression

pattern for optimally predicting the variates η from the m variates in ζ. In PCA,

the covariance matrix of ε cannot be diagonal and of full rank, whereas in EFA,

this covariance matrix must be diagonal and of full rank.

There are many similarities between the methods and results for PCA and EFA,

in that they both attempt to describe a data-set with a reduced number of vari-

ables than in the original set, with comparable results between the methods

for highly correlated data. However, there does exist differences between the

methods, with a primary difference being that retained principal components

(PC) account for maximal variance, whereas factors account for common vari-

ance. In a comparison of the two methods, Suhr (2005) recommended the

most appropriate application of these techniques involved selecting the pre-

ferred method a priori, and not to conduct both PCA and EFA on the same

data-set. Velicer and Jackson (1990) argued that while well modelled data-sets

are likely to produce similar results when either method is applied, PCA has ad-

vantages over EFA in that it is more robust in terms of determining the number

of components to retain, as well as its computational efficiency when applied

to large data-sets.

The methods differ in that PCA has a unique solution, and the composition of a

PC is not sensitive to the number of components retained; whereas in EFA, there

is no unique solution in that the composition of the factors are variant with the

number of factors specified and retained. The rules regarding the retention of

components and factors are similar for the two methods; with popular rules

being the scree procedure (Cattell 1966), eigenvalue greater than unity pro-

cedure (Kaiser 1960), and the minimum average partial correlation procedure

(Velicer 1976). While the Kaiser rule is the simplest to implement, it can lead to

problems of retaining too many components/factors, or overextraction (Browne

1968). While, in practical purposes, this is less of a problem for PCA which has

a unique solution, it can cause problems for EFA whereby the number of factors

97 Ciarán Hanley



5. MULTIVARIATE DATA TECHNIQUES FOR NETWORK CONDITION MONITORING

retained, selected a priori, directly affects the results of the analysis. In fact,

differences in the results between the two methods can often be attributed to

the number of factors retained in EFA. Thus, PCA is the preferred method of use

for this analysis.

5.4 Methodology

5.4.1 Asset Base

In order to test the feasibility of applying multivariate data reduction to condi-

tion rating data from a BMS, data was collected from two sources: a data-set of

3,036 bridges from the Portuguese national bridge authority, Infraestruturas de
Portugal (INFRAPOR), and a data-set of 458 bridges from the regional authority

responsible for non-national bridges in Cork, Cork County Council (CCC). This

allows a comparison of data-sets at a national and regional level in Europe, both

of which operate under similar BMS structures. Within these data-sets, the en-

tirety of the bridges from the CCC data-set were masonry arch bridges, whereas

the data from INFRAPOR contained a greater variety of bridge construction;

with the predominant types being reinforced concrete (1690) and masonry arch

(713) bridges. For each bridge in both data-sets, the condition state was eval-

uated for each element on the 0-5 scale described in Table 5.1, and the overall

condition of the bridge was determined using the worst-conditioned element

approach described in this chapter.

Within these data-subsets, the problem of ‘missing data’ needed to be accounted

for (Little and Rubin 2002). In multivariate analysis, it is often possible to use

the existing structure of the data to estimate the missing data and complete a

data-set. This can simply be accomplished through element-wise computation

of the correlation matrix (Beale and Little 1975) or through replacing empty

values via imputation; usually selected as the mean value for the variable, or by

a sampling procedure where the replacement value is selected m times from a

probability distribution and a PCA is conducted for each m (Schafer 1997). Fur-

ther advanced methods to solve this problem involve use of the maximum like-

lihood estimation (MLE) method through the expectation-maximisation (EM)

algorithm (Little and Rubin 2002, Dempster et al. 1977). However, in the case

of BMSs, an absent condition rating for a specified element is typically due to
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this element not being present on the bridge, and therefore it is neither appro-

priate nor accurate to use the above methods to complete the data-set.

The account for this, the PCA was conducted on the specified bridges, but was

limited only to the primary elements that are to be expected on these bridges.

The primary elements can be said to be structural and non-structural. Struc-

tural elements are typically the deck, abutments, walls, and piers. Primary

non-structural elements are usually parapets/guardrails, embankments, sur-

face, and bearings. For the single-span masonry arch bridges, there was no

necessity for condition rating data for piers and bearings, and so the analysis

was conducted for: abutments, parapets, walls, surface, deck, and embank-

ments. The reinforced concrete bridges were also single-span, but as there was

little information available on the condition of the bearings, the PCA was con-

ducted for the same variables across both regions and both bridge types. The

exclusion of the other elements does not compromise the PCA, as a PCA does

not look for hidden correlation in the variables, but for highest variation in the

presented variables.

5.4.2 Required Sample Size

To compare two data-sets of differing sizes, it is necessary to determine the

magnitude of data-set at which point the analysis stabilises and converges to a

reliable solution. Being the larger data-set of the two presented, the Portuguese

data was used for this bootstrapping. A Monte Carlo Simulation was used to

randomly select 100 bridges, 50,000 times, from the total population size, and

a PCA was conducted for each of these 50,000 samples. This was repeated for

200, 300, up to 500 bridges, for a total of 250,000 individual PCAs. From this, it

was possible to establish a histogram of PC coefficients αi for each variable, for

each sample size m. It was observed that these histograms could be reasonably

well-fitted to a normal distribution (Figure 5.1).

For this test, it can be seen that the mean values and standard deviations µ(σ)

of α11 are 0.4613(0.0632), 0.4633(0.0393), 0.4645(0.0275), 0.4650(0.0188),

and 0.4654(0.0112) for m = 100 → 500, respectively (Figure 5.2). The nar-

rowing of the probability density function (PDF) and the resulting reduction in

coefficient of variation (CoV) show, as expected, that the µ stabilises with in-

creasing m. However, there is a diminishing returns observation in that the rate

of convergence to the stable value of α11 slows significantly after m = 300, and
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Figure 5.1: Normal probability plot of α11.

this can be seen when compared to α11 for the total data-set in terms of relative

error (Figure 5.3).

Figure 5.2: Probability density functions of α11 for increasing number
of bridges m.

While this convergence is presented for a single coefficient α11 in the first PC Y1,

the similar stabilisation and convergence rates were observed for the remaining

results of αip. As this stabilisation point for m is observed to be less than the size

of the individual data-sets, it is thus possible to compare the results of a PCA for

both regions. The quartile distribution of αip each element for m = 300 can be

represented in a boxplot, where the box represents the 25th to 75th percentile
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Figure 5.3: Relative error of α1p for increasing number of bridges m.

range, encompassing the median, with the extents to the most extreme data

points not considered outliers (Figure 5.4).

Figure 5.4: Quartile distribution of α1p for m = 300.
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5.5 Interpretation of PCA

5.5.1 Dimensionality Reduction

As the traditional purpose of PCA is dimensionality reduction of a data-set, it

is important to consider the criteria for which an appropriate number of PCs

can be said to represent the original data-set. For the most part, the most

extensively used procedures or rules for determining the appropriate number

of PCs are informal, and largely based on judgement. The most subjective of

these procedures is to use a scree plot of the eigenvalues (Cattell 1966) of the

data in order to visualise the number of important PCs. In this method, as the

slope of the scree plot begins to flatten, the PCs become less important as they

retain less variance then the previous PCs, and thus can be discarded from the

data-set. The point on the plot where there is a marked difference in slope on

either side of a PC is said to be the elbow of the plot, and the corresponding PC

is the last PC to be retained in the analysis. An example of this plot is shown in

Figure 5.5 and detailed in Jolliffe (2002), where it can be seen that the elbow

of the plot occurs at the 4th PC, with the plot flattening up to the 7th PC. Using

this approach would suggest that the first four PCs are appropriate to retain in

the analysis.

Figure 5.5: Scree plot example, reproduced from Jolliffe (2002)

Another method of determining how many PCs to retain is named the Kaiser
Rule, and it simply states that PCs that have eigenvalues λ less than 1 should

be discarded from the analysis (Kaiser 1960). This rule is based on the analysis

Effects of Disparate Information Levels on
Bridge Management and Safety

102



5.5 Interpretation of PCA

of independent variables in x, whereby the correlation matrix will contain unit

variances, and that any PC with a value of λ less than 1 will contain less in-

formation than the original variables. It has been suggested by Jolliffe (1972),

however, that choosing a threshold less than 1 would be more optimal as it

would eliminate errors associated with using samples of data. This might arise

when a single variable is independent of every other variable in x, and thus

produces a PC with a λ of close to 1 that contains information independent of

the other PCs. When sampling this variable from a larger population, it is likely

that this λ may be less than 1 due to sampling error, and strict adherence to

the Kaiser Rule would discard useful information. In that study, Jolliffe (1972)

suggested that a threshold for λ of 0.7 would be more appropriate than 1.

The last method to discuss here is to select the number of PCs to be retained

based on the total, cumulative variation present in a minimum number of PCs.

In this method, it is desired to retain PCs that contain between 70–90% of

variance of x; working from largest variance to smallest. This rule is based more

on judgement than any strict adherence to a minimum value or threshold; and

the above recommended boundary of variance should be employed based on

judgement and requirements of the analysis based on the original data x.

It is possible to combine the above rules in a single Pareto chart, which allows

concise visualisation of all three criteria: scree slope, eigenvalues, and total

cumulative variation. The data in Figure 5.5 can be reconstituted into a Pareto

chart as an example (Figure 5.6). It can be seen in this figure that while the first

four PCs account for 79% of the variance, including a further PC or two would

include 87% and 93% of the variance, respectively. However, retaining anything

beyond three PCs would violate the Kaiser Rule, while anything beyond four PCs

would not comply with Jolliffe’s amended threshold of 0.7.

This shows the relative subjectivity of determining the extent to reduce the

dimensionality of a data-set. However it does not pose an obstacle to analysis

as the number of retained PCs does not affect the results of a PCA; whereas,

analogously, the same cannot be said for factor analysis, in which the results

of the process is dependent on the number of factors to be retained, which are

selected a priori. In the results to follow in the next chapter, the Pareto chart will

be used as a basis for selecting the number of retained components; keeping in

mind the above rules and best practice.
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Figure 5.6: Pareto chart of data from Figure 5.5

5.5.2 Principal Component Coefficients

In the previous section, where it was shown how the eigenvalues λj of the data-

set represent the level of importance attributed to the corresponding PCs, in this

section it will be briefly shown how the associated eigenvectors αj contribute

to the new latent variables Yj. In this thesis, these eigenvectors will be referred

to a PC coefficients.

Referring back to Equation 5.1, a linear function α′1x of the elements of x hav-

ing maximum variance is sought; such that the vector α maximises:

var[α′1x] = α′1Σα1 (5.11)

Under the constraint of α′1α1 = 1. The standard approach for this maximisation

(Jolliffe 2002) is to use the technique of Lagrange multipliers, whereby:

α′1Σα1 − λ (α′1α1 − 1) (5.12)

is to be maximised, with λ being a Lagrange multiplier. Differentiating with

respect to α1 gives:

Σα1 − λα1 = 0

(Σ− λIp) α1 = 0
(5.13)

Which is the general form of the eigenvalue equation, with Ip being the (p× p)
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5.5 Interpretation of PCA

identity matrix. This shows that λ is the eigenvalue of Σ, with α1 being the

corresponding eigenvector. Referring back to the maximisation Expression 5.11,

it can be rewritten as:

α′1Σα1 = α′1λα1 = λα′1α1 (5.14)

Now, as α′1α1 = 1; for the expression to be maximised, λ must be the largest

possible eigenvalue, and thus λ1 is the largest eigenvalue corresponding to the

first PC Y1 which has maximum variance. This procedure is repeated for the

second PC Y2, however under the constraint of being orthogonal to Y1.

As the PCA is to be conducted on the condition ratings of elements within a

bridge, the derived PC coefficients αj indicate the relationship between the

bridge elements and new PC Yj. In the case of the studied BMSs, where low

condition ratings correspond to low damage and high condition ratings corre-

spond to advanced damage, positive values of αj indicates deterioration, and

bridges that score highly in Yj will be seen to have advanced deterioration in

these elements. Conversely, αj with negative values that score highly will indi-

cate elements that are in good condition. This relationship is also seen where

low negative scores indicate the opposite to what high positive scores indicate.

5.5.3 Principal Component Scores

From the previous sections, it can be seen that a PCA identifies latent variables

for each of the bridges in the data-set which have factor scores, or PC scores,

based on the values of the original variables and the PC coefficients αij (Abdi

and Williams 2010). These scores, computed from Equation 5.1, highlight the

bridges that most conform to the identified latent variables. In the studied data-

sets, each bridge had six condition ratings associated with each element of the

bridge. Under the PCA, each of these bridges will now be described by the

number of PCs that are chosen to be retained in the analysis; optimally chosen

to be less than six, in this case. The scores that each bridge now has will be

a function of the original condition ratings and the derived coefficients αij, as

per Equation 5.1. As the magnitude and directions of the vector αi detail the

interrelationships between the bridge elements, the scores obtained for the new

PCs Yi will detail the extent to which the original condition ratings comply with

the new latent variable.
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5.6 Conclusions

In this chapter, a background has been presented on the use of condition rating

data in modern BMSs, obtained through visual inspection. The role that these

ratings play in maintenance management was discussed and the potential for

using the vast amount of information generated from these inspections in re-

ducing uncertainty in maintenance management was theorised. Methods from

which to explore these large data-sets reside in the domain of multivariate data

analysis, with a specific emphasis on reconstituting the data in a condensed

space through dimensionality reduction techniques. The two methods of inter-

est in this chapter were principal component analysis (PCA) and exploratory

factor analysis (EFA). In a comparison of the complexities of the methods, it

was shown that PCA was a preferred method based on its absence of subjectiv-

ity in the input model, of which is required in EFA. Two data-sets from modern

BMSs were presented for analysis, and the level of data required for a stable

PCA was determined through Monte Carlo Simulation. It was shown that the

level of data available in both data-sets was adequate for a reasonable analysis.

The form of output received from a PCA and its interpretation was discussed,

and the results of the analysis on the available data will be presented in the

following chapter.
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Chapter 6

Application of Multivariate
Techniques to Bridge Management

6.1 Introduction

In the previous chapter, it was shown how the vast amount of information avail-

able on bridge network condition ratings can be exploited through multivariate

techniques. For large networks typical of national infrastructure networks, it

becomes difficult to parse through this data with any degree of accuracy or re-

liability, and in this regard, these techniques become necessary to appropriately

assess available data and derive more informed condition models from which

to make network decisions. By using data reduction techniques, it is possible to

define latent variables as functions of the original data-set, which, in this case,

highlights common variances within the condition ratings of bridge stock con-

tained in these management systems. A demonstration of the use of PCA will be

shown on BMSs from Ireland and Portugal, which shows the utility of reconsti-

tuting the large data-sets in a reduced space. Additionally, it will be shown how

the newly derived latent variables can provide improved models from which

to reduce the uncertainty in maintenance planning based on visual inspection.

While the use of this latent variable approach can be used independently of

other bridge evaluation techniques, these methods are best used in coopera-

tion with each other. In this regard, this chapter will explore potential future

applications of these derived latent variable models in bridge management.
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6.2 Region Variant Assessment

A region variant PCA was carried out on condition rating data of masonry arch

bridges from BMSs in Ireland and Portugal. Both BMSs operated under the

same general ratings system described in Table 5.1, and thus allowed for a

direct comparison between the data-sets. The methodology behind conducting

the assessments was presented in the previous chapter.

In regards to determining how many PCs to analyse, the Pareto chart is used to

combine the rules defined in Section 5.5.1. As can be seen in Figure 6.1, the first

PC Y1 for both data-sets has more than twice the eigenvalue λ of the next PC

Y2. The subsequent PCs have eigenvalues decreasing at a much slower rate, and

are close in magnitude, making accurate interpretation of an elbow point the

scree line difficult. Using the Kaiser rule (Kaiser 1960), it can be seen that just

two PCs for each data-set have a value of λ greater than one. However, it can

be seen that the retention of the first two PCs Y1 and Y2 account for 53.3% and

57.1% of the Irish and Portuguese data-sets, respectively. This would fall short

of the cumulative variation threshold, which looks for 70%–90% of variation

to be retained. By relaxing the Kaiser rule as per Jolliffe (1972), it can be seen

that there is scope to retain a further two PCs in analysis. By retaining three

PCs, 68.6% and 71.1% of the variance of the variance is accounted for, while

retaining four PCs would keep 82.3% and 81.8% of the variance in the two

data-sets. Additionally, it is obvious that Y1 accounts for a significant amount

of the variation here; totalling approximately 37% and 40% of the Irish and

Portuguese data-sets, respectively. Thus, Y1 here is deemed to be the primary

PC for these networks.

For Y1, it can be seen that each element has a positive value for α1, and it can

also be seen that there is some correlation between the two data-sets (Figure

6.2). As each α1 is positive, it can be said that Y1 is a latent variable from the

data-sets that describes the general state of deterioration of a bridge within the

data-sets; where a high positive score indicates advanced damage for all the

elements in the bridge, and a low negative score indicates bridges where these

elements are in favourable conditions. In fact, as the largest coefficients are

for the primary structural elements, Y1 can further be described as a measure

of the structural condition of the bridge; as these coefficients have the largest

influence on Y1, and thus prioritise the condition in these elements over that of

the minor elements.
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6.2 Region Variant Assessment

Figure 6.1: Pareto plot of principal components for Irish (a) and
Portuguese (b) bridges in the data-sets.

Unlike Y1, it can be seen that Y2 is the latent variable that describes a situation

where there is a discrepancy between the condition ratings of the parapets, sur-

face, and embankment, and the ratings for abutments, walls, and deck; or, gen-

erally speaking, the non-structural and structural elements (Figure 6.3). Addi-

tionally, it can be seen that there is an apparent inverse correlation between the

bridge stock of Ireland and Portugal. However, it can be seen that the absolute

values of α2 for each element are very similar across the two countries. How-

ever, this inverse relationship can be explained by the number of each bridges

in the original data set that exhibited this relationship, where the distribution of

condition ratings for abutments, walls, and deck in the Irish data-set contained
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Figure 6.2: Coefficients for the first PC Y1.

a larger number of higher condition ratings than in the Portuguese data-set;

and similarly, it was seen that the Portuguese data-set had larger number of

higher condition ratings for the elements parapets, surface, and embankments.

Figure 6.3: Coefficients for the second PC Y2.

The third PC Y3 mostly describes bridges that have a discrepancy between the

condition ratings of the embankments and surface of the bridge (Figure 6.4).

The small PC coefficients α3 for abutments, walls, and deck show that these

elements are not very influential in this PC. However, it can be seen in the

Irish data-set that the parapets have significantly more influence on Y3 that the

parapets in the Portuguese data-set. On a reduced scale, the opposite is true
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6.2 Region Variant Assessment

for the deck element where, in the Portuguese data-set, this element has more

influence than in the analysis for the Irish data-set.

Figure 6.4: Coefficients for the third PC Y3.

The fourth PC Y4, similarly to Y2, demonstrates an apparent anti-correlation

in α4 between the elements in the Irish and Portuguese data-sets (Figure 6.5).

Again, however, the absolute magnitudes of these coefficients are quite similar,

and typical of the relationship seen so far for the first three PCs. This PC de-

scribes bridges that have a disparity in condition ratings between the parapets

and the abutments, with the other elements not proving to be very influential.

Thus, Y4 can be said to represent the ‘topside’ of a bridge, also the aspects of

the bridge most encountered by bridge users.

A further comparison between the two data-sets can be observed by squaring

the PC coefficients αij, which offers a direct comparison between the absolute

values of αij for each element (Tables 6.1 & 6.2). This provides a different com-

parison than presented previously, in that for Figures 6.2 and 6.3, the direction

of αij (i.e. positive or negative) gave an indication to the relative number of

bridges with elements in a state of deterioration above or below average for

the data-set. This is most evident in Figure 6.3, where αij for Ireland and Por-

tugal have opposing directions but similar magnitudes. By comparing the α2
ij,

it is possible to compare the relative contributions of the original variables to

the new latent variables; in this case being Y2. By plotting the α2
ij of the Irish

data-set against that of the Portuguese data-set, it can be seen that there is a

good degree of linear correlation between the two, yielding a coefficient of de-

termination R2 of 0.8605 (Figure 6.6). However, it can be seen that the linear
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Figure 6.5: Coefficients for the fourth PC Y4.

fit tends towards the Irish axis, suggesting an unbalanced comparison between

the two data-sets. Such a relationship, in addition to differences seen in the

magnitudes of the αij show that any attempt to compare condition data from

similar but geographically different BMSs requires the consideration of local

variances within the data, with a calibration of these variances being necessary

for direct comparison or homogenisation of the systems.

Table 6.1: Squared coefficients for first and second PC, α2
1i and α2

2i

Y1 Y2

Element Ire Por Ire Por

Abutments 0.2605 0.2166 0.0651 0.1296
Parapets 0.1035 0.1669 0.2141 0.1710
Walls 0.2575 0.2043 0.0135 0.0698
Surface 0.0918 0.0989 0.2131 0.3675
Deck 0.2112 0.2033 0.2573 0.1584
Embankment 0.0755 0.1099 0.2368 0.1037

Σ 1.0000 1.0000 1.0000 1.0000

It has been shown that Y1 is a measure of the overall condition of the bridges,

being a linear combination of the deteriorated state of each element. Thus,

bridges that have high positive scores for Y1 are expected to have damage

present in each element, and bridges with low scores should generally be in

a favourable state. This was confirmed by investigating the original data-sets,

which showed that the bridges with the lowest scores had condition ratings of 0

for each element, and the bridges with the highest score typically showed dam-
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6.2 Region Variant Assessment

Table 6.2: Squared coefficients for third and fourth PC, α2
3i and α2

4i

Y3 Y4

Element Ire Por Ire Por

Abutments 0.0068 0.0008 0.0015 0.0264
Parapets 0.1658 0.0066 0.4634 0.6402
Walls 0.0088 0.0103 0.0253 0.0068
Surface 0.1968 0.2595 0.4941 0.2726
Deck 0.0074 0.0592 0.0107 0.0031
Embankment 0.6143 0.6637 0.0050 0.0508

Σ 1.0000 1.0000 1.0000 1.0000

Figure 6.6: Relationship of α2
ij for Irish and Portuguese data-sets.

age present in each element, with advanced condition ratings for each element

typically between 3 and 5. Similarly, it was seen that bridges that had extreme

scores for Y2 were those that exhibited a discrepancy between the elemental

condition ratings of the structural and non-structural elements. As using ei-

ther model for Y2 on both data-sets would significantly skew the results for the

other data-set, the widespread application of the latent variable model for PCs

with directional disagreement requires further refinement. However, for PCs in

general directional agreement, such as Y1, it is possible to apply a single model

across both data-sets; providing the magnitudes of αij and α2
ij are in general

agreement.

In this analysis, it has been shown that there is some variation in same-

structure values for α2
ij between Ireland and Portugal; initially suggesting that

a homogenised, region-invariant latent variable approach cannot be employed
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across differing BMSs. However, when comparing the condition ratings from

both data-sets using the first PC models for Ireland (Y1,Ire) and Portugal (Y1,Por),

it can be seen that there is considerable agreement between the overall condi-

tion under both models (Figure 6.7).

Figure 6.7: Comparison of condition rating for Ireland (a) and
Portugal (b) under different regional models for Y1.

The linear relationship between these two models is seen to be high, exhibiting

an R2 of 0.98 for both comparisons. Similar to Figure 6.6, it can be seen that

the relationships tend toward the Irish axis, suggesting that the model for Y1,Ire

derived from the Irish data is slightly more conservative than that for the Por-

tuguese model Y1,Por. As this conservatism is based on a model derived from

existing data, it is necessary to explore a larger data-set from more regions to
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establish if a homogenised model can be developed to describe the overall con-

dition of specific structures, or if regional variances must be accounted for to

result in a homogenised description of the overall damage state.

6.3 Structure Variant Assessment

To explore a PCA on a larger data-set, it was decided to study the Portuguese

data-set in more detail, as it contained 3,036 bridges in total. The most numer-

ous of these bridges were reinforced concrete (1690) and masonry arch (713)

bridges. The methodology used in the previous analysis is repeated here, in

that the data-set analyses consisted of condition ratings on six elements, as this

allowed the largest analysis.

From Figure 6.8, it can be seen that the PC at which the plot begins to flatten

out, or the elbow, occurs for both bridge types at the third PC, Y3. The first three

PCs for the reinforced concrete and masonry arch bridges account for 74% and

71% of the variation in the data, respectively. Additionally, these three PCs

also satisfy the established relaxation of the Kaiser rule. Including the fourth PC

results in retaining 84% and 82% of the variation, but this PC can be discounted

based on the established retention criteria.

From these plots, it is clearly evident that the first PC Y1 retains the most signif-

icant amount of variation; accounting for 41% of the variation in both bridge

types, and is thus the primary PC. For Y1, it can be seen that each element has

a positive value for α1, and it can also be seen that there is some correlation

between the two data-sets (Figure 6.9). As each α1 is positive, it can be said

that Y1 describes the general state of deterioration of a bridge in the data-sets,

where a high positive score indicates advanced damage for all the elements in

the bridge, and a low negative score indicates bridges where these elements are

in favourable conditions. In fact, as the largest coefficients are for the primary

structural elements, Y1 can further be described as a measure of the structural

condition of the bridge.

Notably, it can also be seen that there is some correlation between the two data-

sets, despite bridges having different structural forms and being constructed

with different materials. It can be seen that the greatest deviation occurs for

the embankment, where α1 for this element is less influential in the reinforced

concrete bridges than in the masonry arch bridges. This demonstrates, in a
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Figure 6.8: Pareto plot of principal components for reinforced concrete
(a) and masonry arch (b) bridges in the data-sets.

way to be expected, that while many elements will behave in a similar way

regardless of the bridge type, there remains a number of elements that are

specific to certain bridge types, and exercise their own degree of influence on

the PCA accordingly. This suggests that the PCA method needs to be applied in

a more targeted fashion, and should not be inappropriately applied to an entire

data-set of a BMS, if the population of bridges is non-uniform. This provides

opportunities to cluster or bunch the data based on associated meta-data, and

establish defined signatures for various bridge types.

Unlike Y1, it can be see that Y2 describes a situation where there is a discrepancy
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Figure 6.9: PC coefficients for the first PC, Y1.

between the condition ratings of the parapets, surface, and embankment, and

the ratings for abutments, walls, and deck, or, simply, Y2 can be said to describe

bridges where there is a disparity between the condition ratings of the structural

and non-structural elements (Figure 6.10). This would suggest that there are a

greater proportion of bridges in both data-sets that have structural elements in

good conditions where non-structural elements had exhibited damage. This is

often typical of asset-management strategies for bridges where the structural el-

ements are subject to a greater repair priority than the non-structural elements.

Figure 6.10: PC coefficients for the second PC, Y2.

The third PC Y3 mostly describes bridges that have a discrepancy between the
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condition ratings of the embankments and surface of the bridge (Figure 6.11).

The small PC coefficients α3 for abutments, walls, and deck show that these

elements are not very influential in this PC, and thus it can be said that this PC

primarily is a measure of the condition of the embankment and its relationship

to the condition of the surface. Here, however, we see some deviation based

on bridge types, where for masonry arch bridges the surface is the second most

influential element, whereas for reinforced concrete bridges this influence is

attributed to the barriers and thirdly the surface. This can be explained by how

reinforced concrete bridges are likely to be more modern than masonry arch

bridges, and are thus more likely to have traffic barriers installed, in addition

to the parapets. The structural elements of abutments, walls, and deck account

for little influence in this PC.

Figure 6.11: PC coefficients for the third PC, Y3.

It has been shown that Y1 is a measure of the overall condition of the bridges,

being the deteriorated state of each element. Now, as Y1 shows the overall

damage of the bridge, by way of the amount of damage in each element, these

scores can be compared to the overall condition rating for each data-set. How-

ever, it can be seen that there does not exist a high correlation between these

overall condition ratings and the PC scores. This can be seen for the reinforced

concrete bridges in the data-set (Figure 6.12) and the masonry arch bridges in

the data-set (Figure 6.13). For both these data-sets, the coefficient of determi-

nation (R-squared) is approximately 0.6.

From these figures, it is obvious that there is a significant discrepancy between

this overall condition rating and Y1, which appears to represent the overall state
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Figure 6.12: Correlation between PC scores for Y1 and the overall
condition rating (reinforced concrete).

Figure 6.13: Correlation between PC scores for Y1 and the overall
condition rating (masonry arch).

of the structure. There exists an overlap of condition ratings for the same scores,

with some bridges on the same score having condition ratings of 1, 2, and 3,

for example, when their elements are largely in the same condition.
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6.4 Integration to Existing BMS

From the previous section, it is clear that there is scope for an improved form of

the overall condition rating, in the guise of a linear combination of the condition

ratings of the bridges individual elements. However, as some elements are more

important to the structural condition, an equal weighting should not be applied

to each rating. In regard to Equation 5.2, it is seen that the sum of the square

of the PC coefficients αi equal unity, and thus α2
i for each variable quantify

its relative influence and importance in the PC score. As the score for Y1 has

been shown to be a good descriptor of the overall condition of the bridge, the

weighting factors can be derived from the squared coefficients α2
i as a first step.

In this regard, the revised weighted condition rating ζ of the overall structure

can be defined as:

ζ =
p∑
j=1

ψjxj, ψj = α2
1,j (6.1)

Where ζ is a linear combination of the new weighting factors ψj and the original

condition ratings xj for the individual elements. The new weighting factors ψj
for each element for both bridge types can be seen in Table 6.3.

Table 6.3: Weighting factors, ψ

Element Reinforced concrete Masonry arch

Abutments 0.2466 0.2166
Barriers 0.1238 0.1669
Walls 0.2290 0.2043
Surface 0.1255 0.0989
Deck 0.2300 0.2033
Embankment 0.0451 0.1099

Σ 1.0000 1.0000

From this, it is clear that ζ is weighted further towards the structural ele-

ments than the non-structural elements, and would align with typical positions

adopted by bridge managers.

The approach of using weighting factors to determine a more realistic inter-

pretation of the overall state of the bridge stock allows for a simple integration

into an existing BMS, and does not require formalising a multivariate procedure

into an existing framework. This is demonstrated for the presented data-sets,

whereby Equation 6.1 was applied to the original condition rating data and

compared the PC scores for Y1. It can be seen for the reinforced concrete (Fig-

ure 6.14) and masonry arch (Figure 6.15) bridges that there is high correlation
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between the PC scores and the revised weighted condition rating ζ. Addition-

ally, ζ is presented in the same condition rating range as the original data-set,

which allows for the simple comparison between ζ and the existing overall con-

dition rating. While the current overall condition rating is useful in determining

the need for intervention, as an overall rating above a defined threshold trig-

gers action, its use in describing the state of the complete asset base can result

in a significantly misleading assessment. Additionally, the proposed weighted

condition rating can be used in conjunction with the existing overall condition

rating, whereby when presented with a high number of bridges which call for

immediate intervention, ζ can be used to prioritise which bridges are most in

danger structurally. This provides an extra decision tool that can be used, in

addition to such aspects as the bridges importance to the road network, as well

as cost of intervention activity.

Figure 6.14: Revised weighted condition rating against Y1 for
reinforced concrete bridges.

In regards to establishing the current damage state of the entire bridge inven-

tory, using these revised ratings can allow for the establishment of a more re-

fined distribution based on a histogram of smaller intervals. For the original

condition ratings, any distribution for the bridge inventory must be derived

from a histogram of 6 discrete intervals of 0→ 5. However, under the proposed

model, there is a greater spread in the frequencies of the condition ratings,

leading to a smoother distribution. As ζ is a function of the PC scores Y1, it

is prudent to first consider the distribution of scores for this PC when looking

at the inventory. From Figures 6.16 and 6.17, it can be seen that the scores
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Figure 6.15: Revised weighted condition rating against Y1 for masonry
arch bridges.

for the first PC generally conform to a normal distribution. This is expected as

these scores are contained in the positive and negative domain, and are thus

compatible with a normal distribution.

Figure 6.16: Normal probability plot for the distribution of the scores
for Y1 for reinforced concrete bridges.

However, when reconstituted into ζ, which is exclusively positive in the pre-

sented model, it is not appropriate to model the data as a normal distribution.

For this reason, a lognormal distribution was fitted to represent the revised con-

dition ratings. From these distributions, it can be seen that the mean condition
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Figure 6.17: Normal probability plot for the distribution of the scores
for Y1 for masonry arch bridges.

rating is 1.36 for reinforced concrete bridges and 1.54 for masonry arch bridges

from the Portuguese data-set (Figure 6.18).

Figure 6.18: Distribution of revised weighted condition ratings for
reinforced concrete and masonry arch bridges.

Being able to classify certain bridge types within an inventory in this fashion al-

lows for significant planning in regards to future intervention strategies, and the

expected performance of a network. Using this approach to condition ratings

can help identify at-risk bridges and bridge types, and allows greater forward

planning in regards to future maintenance needs.
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From this analysis, it was seen that the PC coefficients represented a good start-

ing point where to establish weighting factors ψj to existing condition ratings,

to create a revised weighted condition rating ζ. As a first point, these weight-

ing factors can be presented to asset-managers for their input, and determine if

these factors can be refined based off the experience of asset-managers and their

decision making tools. In order to present these first point weighting factors, it

will be necessary to investigate further bridge types, in order to see if generic

weighting factors are applicable, or if it is necessary to have bespoke factors

based on the structural form and location of the bridge. While this analysis was

conducted on two BMSs that operated under the same general framework, it

should be possible to use the PCA method to compare bridge stocks assessed

under various BMSs, as an underlying latent variable for the general condition

can be found for a direct comparison. Gaining access to more data-sets of na-

tional bridge inventory is a priority in this regard so that a definitive condition

assessment model can be developed; and should regional variances become a

significant factor, the development of region-specific adjustments factors can

be explored to align regions under a single latent variable model for condition

assessment. It can be seen that this chapter addresses the final research Objec-

tives, 4 and 5, outlined in Chapter 1.

6.5 Conclusions

A PCA was conducted on data-sets of masonry arch bridges in Ireland and Portu-

gal, as well as reinforced concrete bridges in Portugal, to exploit dimensionality

reduction techniques to establish latent variables. It was seen that there was

good correlation in the PCs, where elements typically had the same influence

on the PC across the two countries and both bridge types. Despite some di-

rectional variances in the PC coefficients αij between the two data-sets, it was

observed that the absolute and squared values of αij were in general agreement

across both regions. The variances in direction for some values of αij can be

attributed to the percentage of bridges within each data-set that had elements

in a favourable or unfavourable state. This demonstrates how PCA can be an

effective tool when looking for a direct comparison between the relative health

or condition of elements in multiple data-sets; as an agreement in magnitude

implies reliability in the model, and disagreement in direction indicates how

elements in one data-set are performing against the other.
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6.5 Conclusions

Further to this, beyond using data-reduction for comparative purposes, the pos-

sibility of developing a homogenised, region-invariant condition rating model

through latent variables can be seen in this chapter; based on the models for

Y1 derived from both data-sets. As a first step, these models can be the founda-

tion from which to build on a more reliable condition assessment model; which

can be refined based on input from experienced bridge managers and through

further analysis on a wider array of data from different regions and for more

bridge types. By using the vast amounts of data currently available but some-

times being under-utilised, it is possible to better inform decision making by

using this data to reduce uncertainty levels surrounding maintenance activities

dictated by condition rating data.
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Chapter 7

Conclusions

7.1 Summary of Research

This thesis focused on the effects of disparate information levels on bridge man-

agement and safety. The work focused on variable levels at which information

is available for a bridge network. Structural reliability is the most sophisticated

assessment method and allows for structure specific analysis, but can be inten-

sive in its requirement for information gathering, and so information relating

to reliability assessment is not plentiful. On the other hand, visual inspection of

bridges, with its limitation in terms of actual capacity information, is available

for thousands of bridges in many networks. By evaluating these methods, it

was seen that there was a degree of subjectivity to how they are conducted and

this affects the results that they garner.

It was observed that uncertainty in information around resistance and load vari-

ables affects the estimates of reliability and condition evaluation. By looking at

different levels of uncertainty in structural reliability analysis, it was possible to

extract bridge-specific information on important aspects from which to monitor

and gain further information. From the perspective of loading, it was seen that

bridges designed and constructed in specific eras can be more susceptible to

limit-state violation based on the design load models used at the time.

For the condition rating data, it was seen that there is a discrepancy between

overall condition ratings, that are not assigned as a function of element con-

dition ratings, and latent variables, that work as a linear combination of these

elemental ratings. These latent variables were seen to provide a better indica-
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tor for bridge condition, and can be used to improve intervention decisions for

bridge managers and stakeholders.

7.2 Detailed Results

The objective of this thesis was to investigate the effect of disparate informa-

tion levels on bridge management and safety, and how the levels of information

available to the engineer can severely impact the stability of probabilistic as-

sessment. Five specific objectives were outlined in Chapter 1, and they were

addressed as follows:

1. In Chapter 3, a structural reliability analysis was conducted on three

bridge types typical of Ireland and mainland Europe; all of which were

assessed for the limit-states of flexure under a probabilistically defined

load model. The emphasis on this work was regarding the levels of uncer-

tainty in the model parameters of the physical nature of the bridges, and

how these affected different bridge types. It was observed that bridges of

similar structural material and form are clustered in terms of sensitivity or

parametric importance studies. The levels of existing correlations for the

parameters across the bridge types, and how their influences on the reli-

ability under varying degrees of uncertainty indicates the importance of

a calibrated framework for the assessment of bridges at a network level.

The network-level calibration is observed to be strongly dependent on the

availability and the quality of information of the bridges within the net-

work and, consequently, it can be stated that structural reliability analysis

refers more to our state of knowledge of the structure than to the actual

state of the structure itself. This emphasizes the need for data-sharing for

such structures by the managers and owners of bridge networks for the

most reasonable and cost-effective interventions to be carried out.

2-3. In exploring the effect of uncertainty surrounding load models in assess-

ment, a structural reliability analysis was conducted on three bridges in

Chapter 4 to assess the effect of changing definitions of code-defined traf-

fic loading on safety classifications of the structures. It was observed that

earlier codes produced less onerous flexural load effects and, as such,

resulted in a reduced demand for flexural capacity and thus reliability in-

dices closer to that determined under the probabilistic load model; mak-
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ing them more susceptible to limit-state violation and a greater interven-

tion burden. It was shown that bridges produced under loading prescribed

by modern standards produced bridges with a higher β assessed under a

probabilistic load model, and resulted in a significantly reduced expected

life-cycle cost; despite the increased initial construction costs due to a

higher minimum requirement for flexural reinforcement. This increased

initial cost was seen to be significantly offset with a lower expected cost

of failure over the bridges life-cycle. Given the disparity between β for

the probabilistic load model and the more recent codes of practice, it is

evident that, while bridge structures designed and constructed according

to these standards should have a higher resistance capacity than seen in

bridges designed to the extent of the earlier standards, the use of the load

model itself for assessment does not reflect the true operating state of the

bridge.

4. The prevalence of visual inspection based condition ratings in bridge

maintenance management showed the potential for using the vast amount

of information generated from these inspections to reduce network uncer-

tainty by extracting patterns from a large data-set. In Chapter 5, methods

from which to explore these large data-sets were shown to be principal
component analysis (PCA) and exploratory factor analysis (EFA); both data

reduction techniques to explore maximum variance in a data-set. In a

comparison of the complexities of the methods, it was shown that PCA

was a preferred method based on its absence of subjectivity in the input

model, and it was shown that the level of data available for analysis was

adequate for a reasonable assessment. In Chapter 6, the analysis was con-

ducted in on data-sets of masonry arch bridges in Ireland and Portugal,

as well as reinforced concrete bridges in Portugal, to exploit dimension-

ality reduction techniques to establish latent variables. It was seen that

there was good correlation in the PCs, where elements typically had the

same influence on the PC across the two countries and both bridge types.

Despite some directional variances in the PC coefficients αij between the

two data-sets, it was observed that the absolute and squared values of

αij were in general agreement across both regions. This demonstrates

how PCA can be an effective tool when looking for a direct comparison

between the relative health or condition of elements in multiple data-sets.

5. In Chapter 6, it was observed that the analysis derived a latent variable

(PC) that provided an indicator of the overall condition of the bridge
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based on the conditions of the individual elements, and it was notable that

when plotted against the overall condition ratings of the bridges, there

was little correlation observed with the recorded values in the data-set;

showing the subjectivity of overall condition rating scores assigned semi-

independent of the condition of the bridges elements. Referring back to

the original data-set and ranking the bridges according to their scores for

this PC, it was seen that bridges with the lowest scores had elements in

favourable conditions, while the bridges with the highest score showed

advanced damage in each element. A new condition rating model based

on weighting functions was proposed based on this latent variable, which

was seen to perform at a higher level than existing overall structure classi-

fications based on condition ratings. In addition, it was possible to create

a refined distribution of the condition ratings for specific bridge types;

which can enable an improved ranking of bridges in the network and bet-

ter highlight at-risk bridges. By using the vast amounts of data currently

available this way, it is possible to better inform decision making by using

this data to reduce uncertainty levels surrounding maintenance activities

dictated by condition rating data.

7.3 Critical Assessment of Developed Work

As this thesis is predicated on the availability and use of information in bridge

management and safety, so too is this thesis affected by the availability of this

data.

For the analysis presented in Chapters 3 and 4, the assessment was constrained

by the availability of probabilistic loading information, and so the span length

was fixed for the three bridges used in the analysis. The use of site-specific

loading data on a larger number of bridges with varying geometry would re-

sult in a more definitive conclusion. As the superstructure of the bridges varied

between reinforced and prestressed concrete slabs and beams, further study is

recommended on additional bridge types and for varying span lengths before

a definitive outcome can be reached. The use of typical bridge geometry and

random variable distributions, as opposed to real bridges and actual material

property information, produces nominal results; but are adequate from which

to draw a general conclusion. Although the life-cycle cost analysis produced en-

couraging results, further questions remain as to whether there is an optimum
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point at which the initial cost can be increased to minimise the total expected

life-cycle cost, and whether there are further variables that can be optimised at

the design stage for bridges. Additionally, the use of other life-cycle cost models

would allow for a greater degree of benchmarking from which a more accurate

forecasting of life-cycle costs at this design stage. Furthermore, the practical

ways such a philosophy can be adopted in codes of practice are unanswered; be

it through refinements of partial factors for resistance variables such as the area

of steel As or the compressive strength of concrete fc, or through a more holis-

tic increase in safety factors regarding the applied traffic loading. Despite these

remaining issues, it is clear from the presented results that there is scope for

significant savings through a more conservative approach at the design stage.

While the PCA presented in Chapters 5 and 6 was conducted on data-sets of

bridges from Ireland and Portugal and a direct comparison between the out-

put for each analysis was made, the regional effects on the data-sets was not

explored due to the lack of information available on maintenance practices or

environmental factors; due to confidential nature of the data received. The

work presented showed good utility as a way to compare data-sets, but more

holistic information needs to be accounted for in order to achieve a more re-

fined comparison. Additionally, efforts should be made to determine the age

of the bridges under assessment, as this would allow the for time-varying com-

parisons between bridges under different stages of their life-cycle. However,

this data is not always available in BMSs, due to availability of historic records

surrounding bridge construction.

7.4 Recommendations for Future Research

Based on the results presented in this thesis, there are a number of further

research areas which logically follow; which include, but is not limited to:

• Further analysis into benchmarking the uncertainty in reliability in differ-

ent bridge types, and establishing parameter sensitivities and importance

measures to define bespoke areas of interest for different types of bridge

construction

• Detailed life-cycle cost analysis on additional bridge types and using dif-

ferent financial models to establish an optimum level for which to balance

construction cost and life-cycle cost. This optimum point could be quan-
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tified as a global or partial factor to be applied to newly designed bridges

in networks of economic importance, from which to reduced maintenance

and intervention burden

• Further PCA on larger data-sets, along with other methods of multivariate

analysis under which to establish patterns and clusters in existing net-

works that can inform decision making. This analysis should incorporate

greater investigation into different parameters which form meta-data for

the existing condition rating data. These include bridge span, location,

environmental factors, etc.

• The integration of this multivariate analysis into a risk-based assessment

framework. This can be linked to reliability analysis under a number of

ways currently being researched, which includes the use of Bayesian Be-

lief Networks, Bayesian updating, and value of information concepts in

reliability

This thesis is presented as a first step from which to exploit the modern land-

scape of large data-sets being created and stored in BMSs, in an effort to better

inform some of the more subjective aspects of bridge management. As these

modern BMSs are now widely employed by bridge management authorities,

the level of data available will continue to grow, presenting researchers greater

opportunity from which to understand networks at a larger level.

While structural reliability and a risk-based approach to bridge management

represents the most compelling method for intervention decisions and resource

allocation, it must be done in the confines of the existing environment for bridge

management, in order to ease a widespread application. In order to accomplish

this, condition rating data must be used to inform probabilistic assessments as

much as is reasonably practicable. In that regard, efforts must be taken to re-

late condition rating data with NDE results, so as to inform a probabilistic model

with reduced uncertainty into the resistance capacity of the structure. By refin-

ing the results obtained from the multivariate assessment, a more definitive and

unambiguous condition rating can be obtained for a bridge and its elements,

from which it can be possible model the resistance parameters without the ne-

cessity for expensive NDE. While the true reliability can only be determined

using NDE and site-specific data, a network assessment using such a correlation

can be used to identify bridges that require further assessment in this regard.
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