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1. Abstract

Background. de novo metastatic breast cancer (dnMBC) is responsible for 6-10% of breast cancer
presentations with increasing incidence and has remained resistant to detection by mammography
screening. Recent publications hypothesized that in addition to poor screening uptake, the presentation of
dnMBC may be due to its unfavourable biology which remains unknown at the molecular level. Here we
investigated the tumour biology of dnMBC in the form of clinicopathology, genomic alterations and
differential gene expression to create a comparative landscape of de novo versus relapsed metastatic
breast cancer (rMBC). Additionally, to address the current screening limitations, we conducted a
preliminary biomarker investigation for early dnMBC detection.

Methods. In this retrospective case-control study, gene expression anc clin zal data were accessed from
the Cancer Genome Atlas (TCGA) for primary tumours of treatme -, ive patients with dnMBC (n=17),
rMBC (n=49), and normal tissue (n=113). The clinical and histolugic2! data were assessed categorically
using Fisher’s Exact Test for significance (p<0.05), or continir=-*s1, using the Mann-Whitney Test
(p<0.05) where appropriate. The differential gene expressioi. ana ysis was performed using EdgeR’s
negative binomial distribution model with a false discovery .ate \~DR) <0.05. The resulting gene list was
analysed manually for roles in metastasis as well as on olug’-ally using STRING-DB with FDR <0.05.

Results. dnMBCs showed improved median su’ vivil v> rMBC (36 vs. 12 months). dnMBCs were more
likely to be hormone receptor positive, less like: * 0 be triple negative with lower histological
lymphocytic infiltrate. In terms of genome ~lterations, dnMBCs had 4-fold increased PTEN mutations
and poor survival with ABL2 and GATA? ~lte.ations. Expression-wise, dnMBCs down-regulated TNFa,
IL-17 signalling, and chemotaxis, while uf -reyulating steroid biosynthesis, cell migration, and cell
adhesion. Biomarker analysis detecte 1 pi -existing and novel breast cancer biomarkers.

Conclusion. The comparative tu.mou: landscape revealed significant clinical, pathological and molecular
differences between dnMBC a1 rv 3C, indicating that dnMBC may be a separate biological entity to
rMBC at the primary level vvitn dirtering paths to metastasis. Additionally, we provided a list of potential
serum biomarkers that .n. ’ be wseful in detecting dnMBC in its pre-metastatic window if such a window
exists.

Keywords: Breast cancer; Metastasis; Gene expression; de novo; Biomarkers



2. Introduction

Breast cancer (BC) is the most common cancer in women with 1.7 million new cases per year, causing
520 000 cancer-related deaths annually [1]. The incidence of breast cancer is increasing and is estimated
to reach 3.2 million new cases per year by 2050 [1] With advances in treatment and the introduction of
screening programs, BC mortality has decreased by 25 — 38% [2]. However there exists a subpopulation
of breast cancer patients who present with stage IV or metastatic disease at .= time of diagnosis, a
phenomenon referred to as de novo metastatic or de novo stage 1V s asccancer (dnMBC) [3]. Cancer
screening programs have reduced the incidence of metastasis at .*agnosis for other malignancies such as
prostate cancer by 50% from 1990 to 2010, but similar initiatn ~< for BC have had no effect on dnMBC
incidence, which is currently at 6%-10% of BC preser.a*.or s, accounting for 28% of metastatic breast
disease and increasing [3-6]. This discrepancy ‘.1 st reei.ing outcomes has given rise to avenues of
investigation into the clinical features of these paticats and basic histopathological classification of their
tumours [3]. Here we present the first cliricu ~lecular landscape of these tumours and their relapsed

counterparts (rMBC).

3. Materials and Methi ds

3.1 Clinicopathological and gene expression data. The gene expression, genomic alteration, and clinical
data from treatment-naive, primary tumours were obtained from the Cancer Genome Atlas (TCGA) and
cBioPortal [7, 8]. The expression data was processed in the form of high throughput sequencing (HTSeq)
counts. Patients with dnMBC (n=17) were defined as being diagnosed with Stage IV disease. rMBC
patients (n=49) were defined as patients diagnosed with Stages I to III disease whose “new tumour event”

was listed as “Distant Metastasis” greater than 3 months after initial diagnosis to differentiate a true

relapse from undetected de novo metastatic disease. Normal tissue samples were also accessed for



biomarker discovery (n=113). Tumour leukocyte infiltrate quantitation was obtained from Satlz et al.,
2018 [9]. Histological data was obtained from Ping et al., 2016 [10]. Mutation and copy number data
were obtained from TCGA’s PanCancer Atlas. Clinicopathological data was analysed for statistical
significance by Fisher’s exact test (p<0.05) or Mann-Whitney U-test (p<0.05) where appropriate. Survival

analysis was performed using the log-rank test (p<0.05).

3.2 Differential gene expression analysis. Using the EdgeR package in Rstudio, implementing the
negative binomial distribution model, primary tumour HTSeq counts we. * input, and subsequently
filtered for protein-coding genes, using the Biomart package as previo.sly lescribed [11, 12]. Expressed
genes were defined as having at least 10 counts in at least 17 sarip.< 7 he counts were normalized,
dispersion estimated and differentially expressed genes (DE‘ss) v ‘ere identified by Exact Test. The results
were filtered using a false discovery rate (FDR) <0.05 ~:.2 1urther analysed by receiver operating
characteristics (ROC) and area under the curve (AU ) witn p<0.05 as previously described using

GraphPad Prism version 5 [13].

3.3 Biomarker discovery. Using the Edge R o ~kage, a similar analysis was performed using the dnMBC
sample and 113 normal tissue contro.. froni the TCGA. Significant genes (as described above) were
filtered using the secretome and se.*in, proteome accessed from the Human Protein Atlas [14]. Biomarker
sensitivity and specificity v as semmarized in receiver operating characteristics (ROC) curves and area

under the curve (AUC) with 1<0.05.

3.4 Molecular subtype classification. Primary tumours were classified into molecular subtypes by the
PAMBS0 signature as previously described using the genefu package in R studio and assessed for statistical

significance using Fisher’s exact test [15, 16].

3.5 Protein-protein interaction and Gene ontology analysis. Using STRING-DB, the significantly
regulated genes were analysed for protein-protein associations using default settings; the main network of

interactors was clustered in an unsupervised manner using the Markov Clustering algorithm (MCL). Each



cluster was analysed for functional enrichment in Cytoscape v3.6.1 using STRING’s enrichment plugin
[17]. Significant terms were defined as FDR<0.05. Enriched terms were assessed for net log2 fold change
by summation of gene expression. Concomitantly, the gene list was queried through literature search for

metastatic processes and their molecular mechanisms.

3.6 Genomic alterations. Mutation data, copy number variation, and alteration-based survival data were
accessed from the cBioPortal via the TCGA PanCancer Atlas. TCGA sample IDs from the downloaded
tumour HTSeq counts data were matched to those in cBioPortal to obtair, <heir corresponding genomic

data which were then visualized by oncogrid [8, 18].

4. Results

4.1 Clinical data. The mean ages of dnMBCs ar. -M_C were 61.2 + 4.69 (95%Cl) and 56.6 +3.56
(95%Cl) respectively (Table 1). African America.> batients were more represented in rMBC (30.61% vs.
17.65%). Caucasian patients were similar’y isuibuted (67.35% vs. 58.85%). dnMBCs were more likely
to be deceased (76.47% vs. 71.43%) (n w.*ms of diagnosis, 82.35% of dnMBCs vs 61.22% were
diagnosed with invasive ductal c. cn.nma and 5.88% vs. 22.45% were diagnosed with invasive lobular
carcinoma. None of the find’.iy. were statistically significant (Table 1). An additional table has been

provided with details regaru™g clinical variables [see Additional file 1].

4.2 Survival analysis. From the onset of metastasis the overall survivals of patients with dnMBC vs.
rMBC were 36.35 months and 12.10 months respectively (p=0.0241) with a hazard ratio (HR) of 0.503
(95%CI = 0.277 to 0.914) (Fig. 1D). rMBC patient survival by metastasis free interval (MFI) >2 years
was 24.32 months and showed no statistical difference to dnMBC survival (p=0.364). Relapse patients
MFI< 2 years had a median survival of 10.9 months and comparing dnMBC to this group showed a

statistical significance (p=0.005) with HR =0.290 (95%CI = 0.132 to 0.638) (Figure 1E). Lastly,



comparing the MFIs of rMBC (<2 years vs. > 2 years) showed a statistical significance (p=0.0178) with

HR = 2.427 (95%CI = 1.166 to 5.054).

4.3 Pathological variables. dnMBC tumours (70.59% vs. 53.06%) were ER/PR+ (p=0.0452). They were
more advanced in T staging; 29.41% vs. 4.08% are T4 (p=0.0313), more lymph node involvement;
35.29% vs 16.33% are N3 (p=0.0465), more positive margins; 47.06% vs. 6.12% (p<0.001). decreased
lymphocytic infiltrate; 6.17% vs 12.32% (p=0.0361), marginally increased tumour necrosis; 2.44% vs.
1.99% (p=0.0297). Histologically, dnMBCs were less aggressive with fe. «r mitotic cells, more tubular
structures, and lower nuclear grade. In terms of molecular subtype (Ficure .F,G), dnMBCs were more
likely to be Her2+ (17.65% vs. 4.08%) and less likely to be Base ! (.7 £5% vs. 28.57%). Other non-
significant findings included tumour mass and stromal conteat (1 1ble 1). Anadditional table is available

with details regarding pathological variables [see Addit’s. 21 file 1].

4.4 Gene expression analysis. 74 genes were v7,-re jula.2d, and 57 down-regulated. Top 10 up-regulated
genes were BCHE, UGT2B4, ZFP57, CA! CR,BL_2L14, ARHGAP36, GPM6A, KRT4, CYP4F8, and
CDC20B. Top 10 down-regulated genes nvei. CTHGA, PCSK1, GRIAL, TRH, KCNJ16, OLFM4, HDC,
P13, SIAH3, and BMP5. A complete st on DEGs has been provided [see Additional file 2]. Top

performing genes by ROC and AL " analysis included PPFIBP2, GATD3A, ARC, and PWP2 (Figure 2).

4.5 Protein-protein int., ~cvu ~n 4nd functional analysis. The DEG list was significantly enriched in
protein-protein associatiori., (PP enrichment p-value =1.5e-14). In total 20 clusters were formed (Figure
3) and tested for functional enrichment summarized in Additional file 3. Cluster 1 was enriched in genes
involved in cell proliferation, infllmmation via IL-17 and TNF, cancer pathways, cell adhesion and
apoptosis signalling. Cluster 2 and 3 were enriched in nervous system processes including neural
projections, cAMP signalling and calcium signalling, synaptic vesicles transport and clatherin mediated
endocytosis. Cluster 6 was enriched in steroid biosynthetic processes. Cluster 8 was enriched in cell

differentiation, cell adhesion, cell migration, blood vessel morphogenesis and Wnt signalling. The



complete list of functional enrichments by cluster is available [see Additional file 3]. Mechanisms of
metastasis by gene expression in dnMBC versus rMBC included up-regulation of filopodia formation,
Racl/cdc42 signalling, beta-catenin signalling and adherens junction dysregulation. In rMBC, up-
regulated genes were involved in MMP and urokinase plasminogen activator expression. Similarly-
regulated pathways included ERK1/2, PI3K/Akt, and FAK signalling. The complete list of genes

involved in metastasis is available [see Additional file 4].

4.6 Copy number alterations and mutations. Data from cBioPortal (Figu * 4) showed that dnMBCs and
rMBC shared the top 2 most frequently mutated genes: TP53 (37.50% vs. : 4.69%); PIK3CA (31.25% vs.
28.57%). dnMBCs were more likely to have a PTEN mutation (£5.00% vs. 6.12%) as well as mutations
resulting in USP32 fusion proteins (18.75% vs. 0.00%) as we Il as KMT2C (18.75% vs. 8.16%) and
GATA3 (18.75% vs. 10.20%). dnMBCs also had increr224 copy number alterations, and mutations but
not significantly more than rMBC. In terms of altera:on-pased outcomes, patients with rMBC harbouring
PTEN or ARID4B alterations resulted in poor s.-vival outcomes, with no statistical significance for
dnMBC. In patients with dAMBC, ABL2 ard G\ TAS3 alterations resulted in poor survival outcomes, with
no significance in rMBC. Patients in Fo.™ g, uups with TP53 or PI3KCA alterations revealed no
significant survival differences. Pa.=nts with TP53 mutations were associated with increased tumour
hypoxia scores across both or~upe No alterations were detected in either groups for the following genes
in known breast cancer sy, druines, namely CHEK2, MLH1, MSH2, MSH6, PMS2, EPCAM, STK11.
Three rMBC patients had mutations in NF1, three had BRCA1 mutations, one with BRCA2 mutation and
one with an ATM mutation. One patient in the dnMBC group harboured a NF1 mutation. A complete list

of copy number alterations and mutations used in this study is available [see Additional file 5].

4.7 Biomarker analysis. 712 genes coding for experimentally confirmed secreted proteins were
significantly up-regulated in dnMBCs compared to normal tissue controls. The top 5 genes were CBLN2,

MMP11, COL10A2, ISBP and CARTPT. A complete list of secreted DEGs is available [see Additional



file 6]. Top performing genes include MMP11 (AUC of 1.00), followed by COL10A1 (AUC =0.9989),

SCT (AUC=0.9908), and WISP1 (AUC=0.9900) (Figure 5).

5. Discussion

5.1 Study context. dnMBC is an interesting phenomenon given its steadily increasing incidence despite
mammography screening and how it seems to challenge the Halstedian paradigm of BC tumour
progression [3, 5]. In this work we have conducted the first gene expresesion ~tudy of these tumours,
establishing a preliminary molecular portrait of this disease and ha.c chuwn that there are indeed
significant clinical, genomic, molecular and pathological differei.~es between dnMBC and relapsing
primary tumours, indicating that dnMBC may have distinct bi.'2yy. Due to this study’s small sample
size, largely resulting from limited primary tumour datx. clinical consistency with the literature was
important to improve its external validity. Sign¥ica it 1.xdings that were recapitulated in this study
included the increased hormone receptor pnsitive s.atus of dnMBC, higher nodal involvement, improved
survival outcomes relative to rMBC, and th= “portance of the MFI for rMBC prognosis [19-21]. Non-
significant congruencies were increa.~d aye of metastasis for patients with dnMBC. The main non-
significant incongruencies includeu increased diagnosis of IDC in dnMBCs and increased frequency of
African American patients /1 riv'BCs. Itshould also be noted that while on average dnMBC survival
outcomes are better than tho: 2 in relapsed patients, recent publications have shown conflicting evidence
for the role of systemic therapy in terms of patient survival between these tumour groups. One study
found that in patients having undergone systemic therapy, dnMBCs have a better prognosis than rMBC
regardless of MFI (greater or less than 24 months) [22]. However, another study showed similar outcomes
between dnMBC and rMBC with MFI >24 months regardless of use of systemic (neo)adjuvant therapy
[21]. In using samples from the TCGA, none of this study’s patients received neo-adjuvant therapy and
their clinical outcomes are more comparable with the findings in the latter of the aforementioned studies.

Despite this study’s sample size, the clinical data concur with both studies regarding the importance of the



MFI for survival in rMBC, however this study’s data regarding Systemic therapies after tumour resection

is too limited to comment on (Table 1).

5.2 dnMBC expresses more therapeutic targetsthan rMBC. According to the National Institute for Health
and Care Research (NICE) guidelines, in cases of advanced breast cancer, treatment is guided by tumour
histology. Histology focuses on important therapeutic targets, namely the oestrogen receptor,
progesterone receptor and human epidermal growth factor receptor (Her2/ Erbb2). In this study dnMBC
were more likely to be HR+ and Her2+than rMBC, thus increasing the 1.« of endocrine therapy
(Tamoxifen/ Anastrazole) and epidermal growth factor targeting thera,w (1 rastuzumab and Lapatinib) in
this treatment naive subgroup. Furthermore, in advanced breast cai.~er poth HR and Her2 are associated
with improved survival, though the benefits of Her2 expression &, pear to be unrelated to its use as a
therapeutic target [21, 23, 24]. Contrarily, rMBC was m.c:2 likely to be Basal in molecular subtype and
triple negative histologically which are known to he ™ore aggressive tumours with poor survival

outcomes [25].

5.3 Genomic alterations have group-spe :if.c ~*tects on patient outcomes. In assessing the genomic
landscape of these tumours, we unco. <rea that PTEN, a tumour suppressor phosphatase and tensin
homolog, was more frequently mu.~ted in dnMBC [26]. Since PTEN loss is a known tumourigenic event
in BC with prognostic impli :atiu1s, we examined the effects of its alteration in each group on patient
survival [27]. Interestingly, « 2spite the increased presence of PTEN mutations and similar levels of
deletions, PTEN alterations had no significant prognostic effect on patients with dnMBC, however in
rMBC a PTEN alteration appeared to be a devastating prognostic event (Figure 4D). This finding led us to
examine more gene alterations for group-specific survival effects and discuss their implications. Interms
of the main offenders in breast cancer, TP53 and PIK3CA alterations showed no survival differences in
either group. ARID4B, a gene interacting with chromatin modifying complexes and associated with
metastasis in BC, was shown to be more frequently amplified in rMBC with poor survival outcomes [28].

For dnMBC patients, alterations in GATA3 and ABL2 had poor survival outcomes, while rMBC patients



were not significantly affected by these gene alterations (Figure 4D). GATA3 is a transcription factor that
regulates normal breast morphology and is correlated with the expression of ER [29]. While there is
debate over the role of this gene in BC, it has been hypothesized that mutations in GATA3 in ER+
tumours may alter ER turnover and enhance ER and GATA3-driven tumour growth [29]. Conversely,
wild-type GATAS expression can also repress Basal tumour progression which is a possible explanation

for why we observe GATAS3 mutations in rMBC with similar patient outcomes [29].

5.3 dnMBCsdown-regulate immune infiltration. Transcriptomic analysis :nd functional enrichment of
protein clusters revealed that dnMBCs down-regulate chemotaxis, TN =a, il terleukin-17 (I1L-17)
signalling and the inflammatory response which is consistent wit e < gnificant histological finding of a
2-fold decrease in tumour-infiltrating lymphocytes (TILs). P -evic s studies have discussed the role of the
immune response to chemotherapy in the poor outcomez >f rMBC [22]. In this study, even before
systemic therapy, a significant increase in TILs was -~hserved which may indicate that even in primary
lesions, patients with rMBC may be primed for . .umourigenic response to such therapies through its pro-
inflammatory biology. In murine breast cAnce, models, it has been demonstrated that TILs, particularly T-
cells that secrete IL-17, promote a prc-w.mu.genic and pro-inflammatory environment that results in
increased tumour proliferation, any.~qenesis, and increased expression of matrix metallopeptidase 9
(MMP9) which degrades the ~xu >~ :llular matrix (ECM), thus promoting invasion and metastasis [30].
Interestingly, all these afo, ~mentioned factors were enriched in rMBC for Cluster 1, indicating that
immune-mediated tumour progression may be a significant differentiating pathway to metastasis between
these two tumour groups. And indeed, when the gene list was queried for molecular mechanisms of
metastasis, rMBC showed increased proclivity for ECM degradation, targeting both urokinase
plasminogen activator (uPA) and MMP expression. Additionally, MMP9 expression was found to be up-
regulated in rMBC and PTEN mutations were 4 times more common in dnMBC and have been

previously associated with an immune evasion phenotype in dnMBC [31].



5.4 dnMBCsup-regulate steroid biosynthesis with implications for endocrine therapy. Steroid signalling
is well-characterized feature that drives ER/PR+ breast cancer [32]. In keeping with their significantly
increased ER/PR+ histology, dnMBCs showed net up-regulation in cholesterol/steroid synthetic processes
in Cluster 6. One of the up-regulated genes, namely HSD17B7 is known to be induced by oestrogen
receptor alpha (ERa) and drives tumourigenesis through a feedforward mechanism involving the
production of intratumoural oestradiol from weaker steroids oestrogen and oestrone [33]. MSMO1,
another gene involved in cholesterol biosynthesis was also shown to be 1p-regulated in ER+ BC cell lines
and whose increased expression was associated with resistance to arom.aw.~e whibitors [34]. While
dnMBCs are more likely to be ER+than rMBC they also express ¢ ene. involved in endogenous steroid
production and aromatase inhibitor resistance which has impli=-tiu,>s for endocrine therapy. One study
demonstrated the importance of systemic therapy (including 2n.ncrine therapy) in dnMBC survival,
without which the survival benefit is lost relative to r'vi™-C .vhich implicates unrestrained steroid

signalling in dnMBC tumour progression [22]

5.5 dnMBCs harness the cytoskeleton and dis, ‘1ot cell adhesion to promote invasion and metastasis.

A prominent theme among the genes . Yved in dNMBC metastasis mechanisms is the interconnectivity
between filopodia assembly dynamis, kacl/cdc42, beta-catenin, and adherens junctions, namely Wnt
signalling. Canonical Wnt sirman leads to nuclear localization of beta-catenin which in normal
epithelium is in close appioxiiation to the cell membrane where it stabilizes cell-cell adhesion via E-
cadherin [35]. Displacement of beta-catenin from adherens junctions destabilizes them and decreases
epithelial integrity—an essential step to epithelial mesenchymal transformation (EMT). Additionally,
Rac1 promotes the nuclear localization of beta-catenin and also regulates filopodia formation through
actin dynamics in non-canonical Wnt signalling [36]. Wnt11 (up-regulated in dnMBC) has been shown to
activate both canonical and non-canonical Wnt pathways, possibly combining the EMT-promoting effect
of nuclear beta-catenin through canonical Wnt signalling with metastasis-promoting actin regulation via

non-canonical signalling [37]. An in vitro Wnt pathway knockdown study in breast cancer cells



reinforced this concept in demonstrating that Wntl depletion caused actin disorganization, decreased
Rac1 expression and interfered with filopodia function and decreased the cancer stem cell’s migratory
potential [38, 39]. This relative dependence on cytoskeletal dynamics indicates that dnMBCs may be
more sensitive to cytoskeletal-targeting therapies such as taxanes which are commonly used in the
treatment of advanced breast cancer and may contribute to their improved survival outcomes as supported
by a previous study highlighting the importance of systemic therapy for improved dnMBC survival [22].
Conversely, rMBC tumour cells may rely more heavily on ECM degrad~tion to propagate rather that
cytoskeletal activity. Current therapies for systemic disease do not spe~un.>ahy target cancer cell’s
enzymatic degradation of the ECM, which is associated with most agg: »ssive form of breast cancer,
namely triple negative (histological) or basal (molecular) sub*,mes ‘vhich are overrepresented in rMBC.
These findings are also consistent with patient survival outcrme= Interestingly, development of treatment
resistance was previously hypothesized to be the cause - puor survival in rMBC, however, in this study
we have preliminary evidence that even in the orirr ary stage, tumours of rMBC are more likely to be

basal, accompanied by a less targetable mecanism of progression and metastasis compared to dnMBC.

5.6 Mammography and dnMBC. Tho'.y. the tumour sizes for this study were missing, a recent study
using Surveillance, Epidemiology. .nd End Results (SEER) data demonstrated that dnMBC primary
lesions tend to be larger than ~tay~e I-111 tumours which are routinely detected mammographically,
indicating that tumour size s 1wt likely to be the limiting factor regarding mammography detection [5].
Rather, it has been postulated that dnMBC can grow rapidly and metastasize between mammograms,
making the disease difficult to detect, and tending to occur in populations with limited access to
screening, namely, African American women, and those of low socioeconomic and educational status
[5]. However, this would appear biologically discordant. Despite their rapid development, dnMBC
primary lesions appear less aggressive than their rIMBC counterpart, yet have significantly increased
tumour T staging, indicating that despite lower mitotic bodies, lower nuclear grade, and relatively

preserved tubular architecture, these primary tumours are growing sufficiently larger, and/or reaching the



skin or chestwall, relative to primary tumours of rMBC patients. An explanation for this
clinicopathological discrepancy is that these tumours may have experienced a period of rapid growth
followed by a plateau at the time of resection according to a logistic or Gompertz model of tumour growth
[40]. This finding is intriguing, especially when matched with the increased incidence of PTEN mutations
which are associated with increased tumour size, increased tumour stage, poor differentiation and poor
clinical outcomes [27, 41]. Additionally, Harding and Welch have noted that while the incidence of small
tumours has increased, the incidence of large tumours has not proportiorately decreased, indicating that
improved screening is not detecting most of these large tumours in ear'ie: stages [42, 43]. Furthermore,
Welch and colleagues noted that in countries with limited BC scre :ning, the incidence of dnMBC is
similar indicating that their size and presentation are likely ref!~cv -2 of their unfavourable biology [3, 5].
The question then becomes, is dnMBC an inevitable product o1 “imour biology, or does a window exist
where these tumours can be detected and treated befrre ne’astasis? Is the answer more screening or is

screening doing more harm if biology rather tran e arly detection dictates patient survival?

5.7 dnMBCs express sensitive and specifir sev~eted protein biomarkers. Serum biomarkers have long
been sought for breast cancer and are cu:re..dy in their early phase of development [44-46]. With the
limitations of BC screening in the context of dnMBC, we searched for adjunct screening methods for this
disease in the form of serum hini, ~r«ers. Here we produced a panel of previously confirmed secreted
proteins that are sensitive .na specifically expressed by dnMBC. Interestingly, some of the biomarkers
discovered here have been detected in sera of patients for breast cancer, namely PLAC1, FN1 (FN),
EDIL3 (DEL1Y), TFF1, TFF3, AGR2, AGR3, APOC1,and PTN, though they do not reach the high AUC
values (>0.99) that our top-performing biomarkers exhibit [45, 46]. To further validate our candidates,
protein expression studies in patient plasma will need to be undertaken. However, even if successful, the
biomarkers will be of little use if outreach and healthcare access are not improved for the low

socioeconomic demographic of women that constitutes dnMBC.



6. Conclusion

In this study, we established a preliminary molecular landscape of dnMBC versus rMBC primary tumours
to further understand how they differ and revealed some significant biological insights. dnMBC appears
to be less aggressive than rMBC despite its early metastatic potential; this is supported by patient
survival, histological grading, molecular subtyping and by our molecular model. Briefly, dnMBC showed
increased proclivity for cytoskeletal regulation, was more steroid dependent, and recruited fewer
lymphocytes, while rMBC was more immunogenic, more likely to be tri > negative and targeted the
ECM more frequently. Ultimately the limitations of mammography w.‘h re spect to dnMBC may be
compensated for through the addition of sensitive and specific seiu.™biomarker screening that will
prompt further diagnostic imaging; the candidates we discor:rea ‘n this study would require further
validation in patient serum. Lastly, due to this study’s s7.2Y sample size, we encourage further research
into the molecular properties of these primary tumo. s, as well as their metastatic counterparts, to further
characterize the molecular differences between .~ :m which may have important implications for therapy

and tumour detection.
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Additional file 1: Patient and tumour characteristics. T 1o’ consisting of TCGA patient IDs clinical
variables including age, gender, ethnicity and si".v>/a,, as well as pathological variables including,

diagnosis, histochemistry, PAM50, etc.

Additional file 2: Differentially expressed jenes dnMBC vs. rMBC: Complete table of 131 differentially

expressed genes, showing the gene’s t.>sembl ID, followed by gene name, log fold change, log(counts

per million), p-value and FDR.

Additional file 3: Gene on.~oyy analysis. Table of 20 gene clusters with additional details regarding

enriched GO terms, number of genes involved, FDR, net regulation, etc.

Additional file 4: Mechanisms of metastasis. Table of DEGs with known involvement in mechanisms of

metastasis, showing gene name, category, mechanism, reference and tabulation of the genes below.

Additional file 5: CNA and mutations. Table providing details of copy number alterations and mutations

in dnMBC and rMBC primary tumours.



Additional file 6: Differentially expressed genes dnMBC vs. normal tissue: Complete table of 1228
differentially expressed, secreted genes, showing the gene’s Ensembl ID, followed by gene name,
whether that gene is present in normal human plasma, log fold change, log(counts per million), p-value

and FDR.

Figure Legends

Figure 1: Clinicopathological characteristics of dnMBC vs. rMBC. (A C) " AM50 molecular classification
of tumours showing increased Her2 and less Basal tumours in dnl BC. (B) Patient age boxplot showing
similar age distributions. (D,E) Patient overall survival from un. >t of metastasis indicating that dnMBC
patients have a better prognosis. (F,G) Tumour histology frmm th. TCGA showing low grade versus high
grade tumours respectively and (H-K) histological clarc2*cristics that contribute to histological grade
showing that dnMBCs have a lower grade. (L, ®lc. of lymphocytic infiltrate tumour fraction with
decreased infiltration in dnMBC. (M) Tumou: T-staging profile with significantly elevated T staging in

dnMBC.

Figure 2: Differential gene « xpre ssion analysis of dnMBC vs. rMBC. (A) Hierarchical clustering of top
performing DEGs showing ustering of dnMBC. (B-E) LogCPM expression and AUC performance of
the top 4 DEGs which have unknown roles in breast cancer. (F,G) Principal component analysis of the top

performing DEGs showing segregation of tumours.

Figure 3: Gene ontology analysis and comparative metastasis mechanisms. (A) Main clusters (1-20) of
core DEGs in PPI-interaction network. (B) Gene ontology terms by cluster with FDR and log fold change

showing changes in inflammatory response, chemotaxis, cell adhesion and steroid synthesis. (C)



Molecular model of metastasis highlighting main differences by gene expression, including filopodia
assembly, MMP activation/ expression, Racl signalling and cell adhesion. (D) Mechanisms of metastasis

by gene expression.

Figure 4: Oncogrid and alteration-specific survival of dnMBC vs rMBC. (A) Oncogrid displaying tumour
mutations, copy number alterations and hypoxia scores. (B) Comparison of most frequently mutated
genes, namely TP53, PIK3CA, PTEN, USP32,and KMT2D. (C) Comp=ris.~ of copy humber variations
between groups. (D) Differing effects of gene alterations in PTEN ~"1w4B, ABL2, and GATA3 on

overall patient survival in dnMBC and rMBC.

Figure 5: Biomarker discovery analysis. (A) Un-.erv'sed hierarchical clustering of DEGs between
Normal breast tissue and dnMBC showing cluste, "1g of tumour and normal tissue. (B-E) Expression and

ROC analysis for top performing biomarke: ~ai.didates: MMP11, COL10A1, SCT, and WISP1. (F,G)

Principal component analysis of DE(=s si1.>wing tumour segregation from normal tissue.



Table1Clincopathological characteristics

dnMBC (n=17) rMBC (n =49) Exacttest Ttest
Characteristics Number Percentage Number Percentage p-value p-value
Age 0.147 --
<50 2 11.76% 17 34.69%
50-64 11 64.71% 20 40.82%
65+ 4 23.53% 12 24.49%
Age at metastasis -- 0.436
61.24 -- 58.88 --
Year of diagnosis 0.65
1990-2000 2 12.50% 3 6.12%
2000-2010 3 18.75% 12 24.49%
>2010 12 75.00% 33 67.35%
Unknown 0 0.00% 1 2 04%
Diagnosis S 0.364 --
IDC 14 82.35% 30 C1..2%
ILC 1 5.88% 11 22.45%
Mucinous 0 0.00% z 2.04%
Mixed 1 5.88% % 6.12%
Unknown 1 5.88% 4 8.16%
Tumor stage _ o n/a --
I -- - 3 6.12%
I -- ) 22 44.90%
i -- \ 24 48.98%
Tumour Size o/ 3.13E-02 -
T1 1 5.8%% 7 14.29%
T2 6 35.29% 28 57.14%
T3 < 23.53% 11 22.45%
T4 Y 29.41% 2 4.08%
Unknown ? 5.88% 0 0.00%
Node status 4.65E-02 --
NO 0 0.00% 7 14.29%
N1 3 17.65% 24 48.98%
N2 4 23.53% 10 20.41%
N3 6 35.29% 8 16.33%
Unknown 4 23.53% 0 0.00%
Histology 0.22 --
ER+/PR+ 12 0.67 26.00 0.51
ER-/PR- 0 0.00 9.00 0.18
Her2+ 1 0.06 2.00 0.04
Triple neg. 1 0.06 7.00 0.14
Unknown 4 0.22 7.00 0.14

ER/PR status 4.52E-02 --




Positive 12 70.59% 26 53.06%
Negative 1 5.88% 16 32.65%
Unknown 4 23.53% 7 14.29%
Her2 Status 1 -
Positive 1 5.88% 2 4.08%
Negative 12 70.59% 26 53.06%
Unknown 4 23.53% 21 42.86%
Histological Grade 0.0856
Grade | 1 5.88% 3 6.12%
Grade Il 6 35.29% 4 8.16%
Grade I 5 29.41% 20 40.82%
Unknown 5 29.41% 22 44.90%
Tumor Mass 0.099 -
<300 3 17.65% 14 28.57%
300-600 8 47.06% 24 48 98%
600-900 5 29.41% 3 5.12%
>900 1 5.88% 7 21L.29%
Unknown 0 0.00% 1 2.04%
PAMS50 type Yy 0.481 --
Luminal A 4 23.53% o 24.49%
Luminal B 6 35.29% 17 34.69%
Her2 3 17.65% 2 4.08%
Basal 3 17.5°5% 14 28.57%
Normal 1 5.88%¢ 4 8.16%
Tumour Infiltrate 1Y
Leukocytes - 10 05% - 23.74% - 0.165
Macrophages -- 8.41% -- 9.74% -- 0.351
Lymphocytes -- 6.17% -- 12.32% --  3.61E-02
Neutrophils - 0.05% -- 0.06% -- 0.588
Mast cells - 0.93% -- 1.15% -- 0.394
Dendriticcells - 0.50% -- 0.47% -- 0.101
Eosinophils -- 0.00% -- 0.00% -- n/a
Margin status 7.41E-05 --
Positive 8 0.47 3.00 0.06
Negative 6 0.35 42.00 0.86
Close 2 0.12 2.00 0.04
Unknown 1 0.06 2.00 0.04
Tumour necrosis --  2.97E-02
% necrosis 2.44% 1.99%
Tumor stromal cells -- 0.229
% stromal 21.68% 16.19%
Site of Metastasis -- --
Bone 2 10.53% 33 63.46%
Brain 1 5.26% 2 3.85%



Lung 1 5.26% 11 21.15%
Liver 1 5.26% 1 1.92%
Skin 0 0.00% 2 3.85%
Cervical node 0 0.00% 1 1.92%
Mediastinal nodes 0 0.00% 2 3.85%
Unknown 14 73.68% 0 0.00%
Systemictherapy --
Neo-adjuvant 0 0.00% 0 0.00%
Adjuvant 3 17.65% 2 4.08%
None 1 5.88% 0 0.00%
Unknown 13 76.47% 47 95.92%
Ethnicity 0.664
Black 3 17.65% 15 30.61¥
White 10 58.82% 33 67.35%
Unknown 4 23.53% 1 2 Y%
Vital status N 0.762
Living 4 23.53% 14 2257%
Deceased 13 76.47% 35 ~1.43%
MFI ~
<6 months -- -- 4 6.12%
6 months- 2 years -- -- 24 48.98%
>2 years -- -- 22 44.90%
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Highlights:

From the onset of metastasis, de novo metastatic breast cancer (dnMBC) patients have increased
median survival compared to their relapsed counterparts (rMBC).

Relative to rMBC, dnMBC primary tumours display an immune evasion phenotype in their
transcriptomes with significantly reduced tumour infiltrating lymphocytes histologically.
Genomic alterations in PTEN, GATAS3, ABL2 and ARID4B have differential effects on patient
survival in dnMBC vs. rMBC.

dnMBC tumours express sensitive and specific biomarkers that may be detectable in patient

serum.
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