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Abstract

Varying concentrations of lipopolysaccharide (LPS) in ovalbumin (OVA) may influence the airway response to allergic
sensitization and challenge. We assessed the contribution of LPS to allergic airway inflammatory responses following
challenge with LPS-rich and LPS-free commercial OVA. BALB/c mice were sensitized with LPS-rich OVA and alum and then
underwent challenge with the same OVA (10 mg intranasally) or an LPS-free OVA. Following challenge, bronchoalveolar
lavage (BAL), airway responsiveness to methacholine and the lung regulatory T cell population (Treg) were assessed. Both
OVA preparations induced BAL eosinophilia but LPS-rich OVA also evoked BAL neutrophilia. LPS-free OVA increased
interleukin (IL)-2, IL-4 and IL-5 whereas LPS-rich OVA additionally increased IL-1b, IL-12, IFN-c, TNF-a and KC. Both OVA-
challenged groups developed airway hyperresponsiveness. TLR4-deficient mice challenged with either OVA preparation
showed eosinophilia but not neutrophilia and had increased IL-5. Only LPS-rich OVA challenged mice had increased lung
Tregs and LPS-rich OVA also induced in vitro Treg differentiation. LPS-rich OVA also induced a Th1 cytokine response in
human peripheral blood mononuclear cells.We conclude that LPS-rich OVA evokes mixed Th1, Th2 and innate immune
responses through the TLR-4 pathway, whereas LPS-free OVA evokes only a Th2 response. Contaminating LPS is not
required for induction of airway hyperresponsiveness but amplifies the Th2 inflammatory response and is a critical mediator
of the neutrophil, Th1 and T regulatory cell responses to OVA.
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Introduction

Allergen exposure is well recognized to participate in the

induction of asthma. [1] Since the pioneering studies of Mosmann

and colleagues, distinguishing two T helper subsets as Th1 and

Th2 types [2], extensive studies on model systems of asthma have

implicated a Th2 biased immune response in the pathogenesis of

the disease. Over-expression of Th2 cytokines has also been

confirmed in human asthmatic tissues and in induced sputum.

[3,4] Epidemiological studies have revealed a protective effect of

large family size on the development of asthma, triggering the idea

of the hygiene hypothesis in the protection against asthma. [5]

Living in a rural environment with exposure to farm animals early

in life was also shown to be protective against allergy and asthma.

[6] High levels of endotoxin associated with this environment have

been suggested to modulate innate immunity via Toll-like

receptors (TLRs) and to promote the maturation of an immune

system that is less predisposed to Th2 responses to innocuous

aeroallergens. [7].

The complex mechanisms leading to Th2 immune responses to

sensitization with allergen have been dissected using murine

models that readily develop several of the characteristics of

asthma, including eosinophilic inflammation and airway hyperre-

sponsiveness following sensitization and challenge with allergen.

[8–11] Dendritic cell processing of antigen and CD4+ T cell

activation is the principal mechanism by which airway inflamma-

tory responses to allergen are initiated. [12] Dendritic cell derived

cytokines are key in determining the nature of the T cell response,

whether Th1 or Th2 [12], Treg or Th17. [13] Other factors, such

as cysteinyl-leukotriene production by dendritic cells [14] as well

as basophil, mast cell and T cell derived cytokines may also alter

the airway milieu in a way that favours Th2 differentiation. [15–

17].

Innate immune mechanisms are required for dendritic cell

priming to occur [12] and to cause effective Th2 responses to

sensitization with ovalbumin. [18] Commercial OVA is known to

be LPS-rich and the contamination appears to be of sufficient

magnitude to affect allergic responses. [19] Previous studies have

examined the effect of the contaminating LPS in ovalbumin or

addition of exogenous LPS on the allergic sensitization process

(whether intraperitoneal or intranasal) as well as subsequent

allergen challenge. [18–22] Collectively, these studies have shown

that the contaminating LPS and TLR4 signaling are necessary for
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priming pro-inflammatory T helper cell responses to inhaled

ovalbumin and that the level of LPS exposure in conjunction with

ovalbumin determines whether a Th2, Th1, Th17 and/or T

regulatory cell response is elicited. [18,20–23] In contrast,

Watanabe et al. reported that the contaminating LPS in

commercial ovalbumin preparations inhibited the development

of allergic airway disease, though it is not clear whether this effect

may have been related to the systemic co-exposure to LPS during

sensitization rather than the pulmonary exposure during chal-

lenge. [19,24] What, if any, effect the contaminating LPS in

commercial ovalbumin preparations has specifically in relation to

the secondary allergen exposure or ‘‘challenge’’ in animals which

have been equivalently sensitized has not been examined to date.

Furthermore, unlike intranasal ovalbumin sensitization, intraper-

itoneal sensitization with the adjuvant aluminum hydroxide in

conjunction with ovalbumin has been shown to activate dendritic

cells via the nucleotide-binding domain, leucine-rich repeat

containing protein family, pyrin domain containing 3 (NLRP3)

[25], bypassing the need for TLR-4 activation by LPS [21] in the

induction of allergic airway disease. However, it is not known

whether the contaminating LPS may still modulate the airway

inflammatory response, even if it is not required for the

manifestation of experimental asthma in these so-called ‘‘alum-

based’’ allergy models. The aim of the present study was thus to

contrast the airway responses to OVA by comparing LPS-rich and

LPS-free OVA specifically during allergen challenge in a murine

model of allergic asthma. For this purpose we assessed lung

mechanical responses to methacholine challenge and the inflam-

matory response evoked by OVA. We also assessed the degree to

which regulatory T cells were induced in response to OVA

challenge and the effects of the TLR4 inhibitor, TAK242, on

in vitro Treg induction in splenocytes. TLR4-deficient mice were

also used to evaluate the role of TLR4 in vivo in the modulation of

airway inflammation by contaminating LPS. Finally we measured

the responses of peripheral blood mononuclear cell responses of

normal human volunteers to incubation with LPS-free and LPS-

containing OVA to assess the role of immune effector cells on

cytokine responses to LPS-rich OVA.

Methods

Assessment of endotoxin levels in OVA
Endotoxin levels were assessed in two sources of OVA; Sigma

Grade V OVA (LPS-rich) Sigma, St Louis MO or Dorset, UK and

Endograde-OVA (LPS-free) (Hyglos Gmbh, Regensburg, Ger-

many) using two methods. The first was the Limulus Amebocyte

Lysate Pyrogent Single Test Vials (Lonza, Walkersville, MD, USA)

with a maximum sensitivity of 0.06 EU/ml, this was used to

qualitatively test for the presence of LPS in both samples. Five

different concentrations of Sigma and Hyglos OVA were tested for

the presence of LPS (10 mg/ml, 1 mg/ml, 100 ng/ml, 10 ng/ml,

1 ng/ml). LAL reagent water was used as a negative control and

0.25 ml of each sample was added to the test vials containing

lysates from washed amebocytes, following the manufacturer’s

instructions. A positive outcome was detected as a firm gel

formation in the test vial after inversion.

To obtain a more quantitative assessment of endotoxin levels we

used the ToxinSensor Chromogenic LAL Endotoxin Assay Kit

(GenScript, Piscataway, NJ, USA) with a sensitivity range of

0.005–1 EU/ml. Concentrations of Sigma-OVA ranging from

0.1 ng/ml to 100 ng/ml, and five concentrations of Hyglos-OVA

ranging from 10 mg/ml to 100 ng/ml were used to evaluate LPS

content. First, 100 ml of LAL was added to 100 ml of each sample

followed by an incubation period of 45 minutes at 37uC.

Following the incubation period, 100 ml of chromogenic substrate

was added to each sample vial followed by 6 minutes incubation at

37uC. Following incubation, 500 ml of stop solution, 500 ml of
color stabilizer 2 and 500 ml of color stabilizer 3 were added to

each sample. Absorbance was measured at 550 nm using a plate

reader (ELx808 Absorbance Microplate Reader, BioTek, Wi-

nooski, VT). LPS concentrations in Sigma-OVA and Hyglos-

OVA were determined using standard curves obtained from

different concentrations of LPS (0.1 EU/ml, 0.04 EU/ml,

0.02 EU/ml, 0.01 EU/ml, 0.005 EU/ml). No LPS was detected

in the negative control.

Animal preparation
Male BALB/c mice were obtained from Charles River

Laboratories (Saint-Constant, Quebec, Canada) and Charles

River Laboratories (Margate, UK) and were studied between the

ages of 6–8 weeks. DO.11.10 mice, ovalbumin specific TCR

transgenic mice with BALB/c background, and TLR4 deficient

(BALB/c background) mice were bred in the animal care facility of

McGill University Health Centre. All animals were housed in

conventional animal facilities at McGill University and University

College Cork and were cared for in compliance with the Canadian

Council of Animal Care’s guide; protocols and procedures were

approved animal ethics committees of McGill University, Mon-

treal, Canada and University College Cork, Ireland.

Allergic sensitization and challenge protocol
The sensitization and challenge protocol used in this study is

shown in supplementary figure 1. Briefly, all groups were

sensitized with an i.p. injection of a phosphate-buffered saline

(PBS) (Invitrogen, Paisley, Scotland or USA) solution containing

10 mg OVA (Grade V, Sigma) with 1 mg of adjuvant aluminum

hydroxide, Al(OH)3 (Fisher Scientific, Ottawa, ONT, Canada).

Sensitization was performed on two separate days; day 0 and day

7. One week following the second sensitization, mice were

challenged once or on three consecutive days via an intra-nasal

instillation of 10 mg of LPS-rich OVA or LPS-free OVA in 50 ml
of saline under light isoflurane anaesthesia. One day after the

single challenge and two days following the three challenges,

experiments were performed. Control mice were challenged with

PBS.

Measurement of in vivo respiratory mechanics
Measurements of mechanics were made after three challenges

only, as airway hyperresponsiveness (AHR) is inconsistently

induced by a single challenge only. For this purpose, mice were

injected i.p. with xylazine (10 mg/kg) and pentobarbital sodium

(30 mg/kg). Mice were tracheostomized and an 18-gauge tracheal

metal cannula was inserted and firmly tied. Subsequently, the

animal was connected to a computer controlled small animal

ventilator (Flexivent, Scireq Inc. Montreal, Canada) and normal

tidal breathing was initiated. Mice were mechanically ventilated

with a tidal volume of 10 ml/kg at a PEEP of 3 cm H2O and a

frequency of 150 breaths/minute. Animals were then paralyzed

with pancuronium bromide (1.2 mg/kg), administered i.p., prior

to the measurement of respiratory mechanics.

Respiratory mechanics were measured using the flexiVent

(SCIREQ Inc., Montreal, Canada) small animal mechanical

ventilator. Briefly, total respiratory system resistance (Rrs) and

elastance (Ers) were calculated by fitting the equation of motion of

the linear single compartment model of lung mechanics to the data

recorded from a 1.2 second, 2.5 Hz single-frequency forced

oscillation perturbation, using multiple linear regression. Mea-

surements were obtained at baseline as well as after the delivery of
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aerosols of increasing concentrations (20, 40, 80, 160 mg/ml in

PBS) of methacholine (MCh; Sigma). Aerosols were delivered to

the airways via an ultrasonic nebulizer for a period of 5 seconds

(Aeroneb Lab, Aerogen Ltd, Ireland). Perturbations were executed

every 8 seconds until the peak Rrs and Ers was observed for a

given dose of MCh, and the process was repeated for each

subsequent dose. The average of these values (peak Rrs and Ers)

for each experimental group was then plotted.

Bronchoalveolar lavage
Bronchoalveolar lavage (BAL) was performed immediately

following single OVA challenge or, in the case of the three

OVA challenges, following mechanics measurements. BAL was

carried out using two aliquots of cold saline (1 ml) via the tracheal

cannula. Supernatant from the first BAL sample for each animal

was stored at 280uC for subsequent cytokine/chemokine analysis.

Cell pellets were pooled and reconstituted in PBS for the

determination of total viable cell counts and for cytospin

preparations (Shandon, Cheshire, UK). Cytospins were stained

with Diff-Quick (Fisher Scientific). Differential cell counts were

then determined from a count of three hundred cells.

Flow cytometric analysis of lung T helper and regulatory
cells
We assessed the CD4+ T cell numbers and CD4+CD25+

FoxP3+ cells in the lungs of animals undergoing three OVA

challenges. Following the assessment of methacholine responsive-

ness and BALF collection, the right lung of each animal was

excised and placed in cold RPMI-1640 medium, containing 8%

heat-inactivated FBS, 2 mM L-glutamine, 50 mg/ml gentamycin

and 10 mM HEPES (Invitrogen, USA.). The lung was removed

from the medium and transferred to a dish containing 4 ml of

sterile DPBS (Invitrogen) supplemented with collagenase (0.2

Wunsch units/ml, Clostridium histolyticum, Type XI-S, Sigma),

DNAse I (1000 DNase units/ml, Type II-S, Sigma) and 0.5 mM

calcium. The lung was also inflated with 1 ml of the same solution,

minced with forceps and a scalpel blade and incubated on an

orbital shaker at 37uC for 1 hour. The reaction was stopped with

5 ml cold RPMI-1640 medium (as above) with 2 mM EDTA

(Invitrogen,) and 50 mM b-mercaptoethanol (Sigma). The lung

tissues were mechanically disrupted, passed through 70 mm and

40 mm BD Falcon cell strainers and finally centrifuged at

1500 rpm for 5 min. Red blood cells were lysed with ammonium

chloride and leukocytes were counted using a Beckman Coulter

Ac.T Counter. Cells were incubated with mouse BD Fc Block (BD

Biosciences, Canada), then stained with FITC-conjugated rat anti-

mouse CD4 mAb (clone H129.19), followed by PE CD25 (clone

PC61), or the appropriate isotype control Ab (BD). Cells were then

fixed with BD Cytofix/Cytoperm solution, incubated with 1%

BSA in BD Perm/Wash solution and finally stained with APC

Foxp3 mAb (clone FJK-16s) or isotype control Ab (eBioscience,

San Diego, CA, USA). 50000 events were acquired for each

condition using the BD FacsCalibur (Becton Dickinson). Cells

were gated first based on CD4-positivity (vs side scatter) and then

based on forward scatter (vs side scatter) to exclude debris or small

dead cells.

Splenocyte culture and OVA stimulation
Spleens from 8–10 week DO.11.10 mice were harvested and a

single cell suspension was prepared as described for lung tissue

above. Splenocytes were cultured in 24-well plates, 56106 cell/ml,

for 3 days in RPMI 1640 supplemented with 10% FBS and

penicillin, 100 I.U/ml, streptomycin, 100 ug/ml, L-glutamine,

2 mM, (all reagents were purchased from Invitrogen), with either

OVA–LPS free or OVA-LPS rich and with or without TLR-4

inhibitor (TAK-242, InvivoGen, Cedarlane labs, Ontario, Ca-

nada). Cells were analyzed by flow cytometry as described above.

Isolation and stimulation of human peripheral blood
mononuclear cells
Human peripheral blood mononuclear cells (PBMC) were

isolated from 6 healthy human male volunteers with the approval

of the Ethics Committee of University College Cork. Nine mls of

venous blood was isolated in sterile EDTA vacutainers (BD). The

blood was mixed with an equal volume of PBS (Invitrogen),

layered over 20 mls of Histopaque (Sigma) and centrifuged for

400 g for 30 minutes. The buffy coat was removed from the

interface and washed twice by centrifugation (10 min at 300 g)

using DMEM (Invitrogen), 10% fetal calf serum (Sigma) and 1%

penicillin-streptomycin (Invitrogen). PBMC viability and cell

number was evaluated using the Countess automated cell counter

(Invitrogen) and were re-suspended in complete media at

16106 cells/ml. PBMCs were stimulated for 20 hrs with ultrapure

LPS (100 ng/ml) (E coli 0111:B4, InvivoGen), LPS-rich OVA

(100 ng/ml) and LPS-free OVA (100 ng/ml). Supernatants were

collect for cytokine analysis.

Bronchoalveolar Lavage Fluid (BALF) and PBMC
supernatant cytokine assay
IFN-c, IL-1b, IL-2, IL-4, IL-5, KC (CXCL1), IL-10, IL-12p40

and TNF-a levels were quantified using an electro-chemilumines-

cence multiplex system Sector 2400 imager from Meso Scale

Discovery (MSD) (Gaithersburg, MD, USA) where antibodies

labelled with a Sulfo-tag emitted light upon electrochemical

stimulation. MSD ultra-senstitive kits for murine (BALF) or human

PBMC samples were used respectively.

Statistical analyses
The experiments performed on wild type BALB/c mice

characterizing inflammatory responses to OVA sensitization and

challenge were reproduced in both the laboratories of the

investigators in Ireland and Canada. The data presented in the

manuscript are a representative dataset. The experiments charac-

terizing respiratory mechanics and those on the TLR4 deficient

and the DO.11.10 mice were performed in Canada only.

Experiments were usually performed over several days with all

experimental groups represented on any given day.

Data are expressed throughout as the mean +/2 standard error

of the mean. Comparison among means was performed using

ANOVA with Tukey’s post hoc test for multiple comparisons. For

lung mechanics ANOVA with Bonferroni’s multiple comparison

test was used. When data were not normally distributed the

analyses were performed on log transformed data.

Results

Commercial OVA contains high level of endotoxin
LPS content of both OVA samples was determined using the

Limulus Amebocyte Lysate (LAL) agglutination single test vial to

qualitatively test for the presence of LPS in the two commercial

sources of OVA that we explored. Using this test we demonstrated

the presence of LPS in the Sigma-OVA (LPS-rich OVA) whereas

there was no LPS detected in the Hyglos-OVA (LPS-free). To

obtain a more quantitative assessment of LPS levels we used the

LAL Chromogenic Assay and we found that LPS-rich OVA

contained on average 400 ng endotoxin/10 mg OVA, while LPS-
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free OVA had undetectable levels (Figure S1). Four different

batches of Sigma-OVA were tested for endotoxin and the results

demonstrated a range of concentrations from 75 ng to 1415 ng/

10 mg OVA.

AHR after OVA challenge is minimally further increased
by LPS-rich OVA
The effects of LPS-rich OVA and LPS-free OVA on the

induction of AHR to MCh were evaluated in animals that were

challenged with OVA on three consecutive days and had MCh

challenge two days later (Figure S2). Respiratory resistance (RRS)

was significantly greater in LPS-rich OVA challenged mice

following administrations of MCh in concentrations of 40, 80

and 160 mg/ml and also in LPS-free OVA challenged mice at 80

and 160 mg/ml concentrations of MCh, in comparison with PBS

challenged controls (Fig. 1A). Animals challenged with LPS-free

OVA only differed in their responsiveness (RRS) at the highest

MCh concentration (160 mg/ml) compared to LPS-rich OVA

challenged mice (16.7161.86 vs. 24.5462.67 cm H2O.s/ml

respectively).

Total respiratory elastance (ERS) was also significantly greater in

LPS-rich OVA challenged mice at MCh 40 mg/ml, 80 and

160 mg/ml and LPS-free OVA challenged mice (at 80, and

60 mg/ml) compared to PBS controls (Fig. 1B). However, in

contrast to the RRS, ERS responses of LPS-rich OVA and LPS-free

OVA challenged groups were not different in response to

increasing concentrations of MCh.

Contaminating LPS induces neutrophilia and increases
BALF cellularity in wild type but not TLR4 deficient mice
We assessed the differences in inflammatory response induced

by OVA challenge at 24 hrs after a single OVA exposure and

48 hrs following three OVA challenges in both wild type and

TLR4 deficient mice. There was a significant increase in total cell

counts in the BALF of LPS-rich OVA challenged animals

compared to both the saline control and the LPS-free OVA in

wild type animals (Fig. 2A). LPS-free OVA challenge did not

significantly alter the total cell number. Challenge of TLR4

deficient mice with LPS-free and LPS-rich OVA increased total

cell counts (Fig. 2A). There was an increase in eosinophil numbers

following challenge with both preparations of OVA but the LPS-

rich OVA caused a relatively greater eosinophilia in wild type

mice, (Fig. 2B). TLR4 deficient mice also had increased eosinophil

numbers from both OVA preparations, (Fig. 2B). In wild type

mice LPS-rich OVA also evoked increases in neutrophil and

lymphocyte numbers that were not seen with LPS-free OVA

(Fig. 2C, D). Lymphocyte numbers were also increased in the

TLR4 deficient mice, but by both OVA types, however no change

in neutrophils numbers was observed, (Fig. 2C, D). Macrophage

numbers did not change between the LPS-rich OVA and saline

challenged groups, however the macrophages were significantly

fewer in the LPS-free OVA challenged group compared to saline

and LPS-rich OVA challenge (Fig. 2E). LPS-rich OVA also

induced an increase in macrophage numbers in TLR4 deficient

mice, (Fig. 2E), however LPS-free OVA did not.

LPS-rich OVA induces a mixed Th2 and inflammatory
response in the bronchoalveolar lavage
The Th-2 cytokines, IL-2, IL-4 and IL-5, were increased in the

wild type BAL fluid harvested at 24 hr after a single challenge of

both groups with OVA (Fig. 3A–C). However the changes in IL-4

and IL-5 were greater in the group challenged with LPS-rich OVA

compared to the LPS-free OVA challenged group. LPS-rich OVA

also induced IFN-c while LPS-free did not (Fig. 3D). LPS-rich

OVA induced, in addition to the Th2 cytokines, increases in the

inflammatory cytokines/chemokines; IL-12p40, IL-1b, TNF-a,
and KC, the murine ortholog of IL-8, (Fig. 3E–H). No significant

change in these mediators was observed in the LPS-free OVA

challenged group. In the TLR4-deficient mice, no increase in IL-4

(Fig. 3B), was observed however IL-5 was induced to the same

degree by the two OVA preparations (Fig. 3C). IL-2 and IFNc
were undetectable in the challenged TLR4-deficient mice BAL

fluid. No increases in the inflammatory cytokines, IL-12p40, IL-

1b, TNF-a, and KC were observed (Fig. 3E–F).

OVA challenge increase helper T cells but only LPS-rich
OVA increases Treg recruitment to the lung
Challenge of wild type mice with LPS-rich OVA, following

three challenges, resulted in a significantly higher total lung cell

count compared to both saline and LPS-free OVA (Fig. 4A). The

total CD4+ cell numbers present in the lung were also elevated

following LPS–rich challenge (Fig. 4B). The percentage of CD4+
cells that were CD25+ Foxp3+ in the LPS-rich challenged group

Figure 1. Contaminating LPS increases airway resistance to
OVA following metacholine challenge. (a) Lung resistance in LPS-
rich and LPS-free OVA challenged mice 48 hours following three OVA
challenges, LPS rich OVA increased Lung resistance. (b) Lung elastance
compared to saline control in both LPS-rich and LPS-free OVA
challenged mice as per (a). Mice were sensitized with OVA on day 0
and 7 and challenged intra-nasally with either LPS-free or LPS-rich OVA
on day 14, 15, 16 and assessed for lung mechanics on day 18. * OVA-LPS
rich vs. PBS, + OVA-LPS free vs. PBS, # OVA-LPS free vs. OVA-LPS rich.
Number of symbols denotes signficance, e.g, *** = P,0.001, Values are
shown as Mean 6 SEM, N= 8. Statistical significance was determined
using ANOVA.
doi:10.1371/journal.pone.0098648.g001
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was elevated and there was also an increase in the number of

activated CD4+ T cells (CD25+ Foxp32) (Fig. 4C). LPS-free OVA

challenged mice did not have increased Tregs but did have

increased activated helper T cells (CD4+CD25+) compared to

saline (Fig. 4D). LPS-rich OVA also induced Treg differentiation

in vitro, in splenocyte cultures from DO.11.10 mice, while LPS-free

OVA did not; this effect was inhibited by adding the TLR4

inhibitor, TAK-242 (Fig. 4E).

Figure 2. LPS contaminated OVA induces neutrophilia in bronchoalveolar lavage fluid (BALF) in wild type mice but not in TLR4
deficient mice. Mice were treated as describe in Fig. 1, with three OVA challenges, and leukocytes were identified by morphological criteria and
staining. (a) Total BALF cells in sensitized mice, following challenge with saline, LPS-rich OVA and LPS-free OVA. (b) Total eosinophils in BALF. (c) Total
lymphocytes in BALF. (d) Total neutrophils in BALF. (e) Total macrophages in BALF. Values are shown as Mean 6 SEM. (n = 8). Statistical significance
was determined using ANOVA.
doi:10.1371/journal.pone.0098648.g002
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Figure 3. LPS contaminated OVA increase Th2 and Th1 cytokine levels in the BALF following nasal challenge in wild type mice but
not in TLR4 deficient mice. BALF cytokines were analysed using MSD electrochemical ELISA as described in the methods. Th2 cytokine levels
secreted into the BALF of mice following three challenges with LPS-rich or LPS-free OVA, were assayed IL-2 (pg/ml) (a), IL-4 (b), IL-5 (c) and IFN-c (d).
Th1 cytokine levels secreted into the BALF of mice following three challenges with LPS-rich or LPS-free OVA, IL-12p40 (pg/ml) (e), IL-1b (f), TNFa (g)
and KC (h). Not detectable (ND). Values are shown as Mean 6 SEM. (n = 8). Statistical significance was determined using ANOVA.
doi:10.1371/journal.pone.0098648.g003

Figure 4. OVA challenge increases lung CD25+Foxp32 T (helper) cells while LPS-rich OVA also induces CD25+Foxp3+ T (reg)
recruitment. Mice were treated as described in Fig. 1. Lung digests were performed, as described in the methods, cell populations were analysed by
flow cytometry. (a) Total cell counts, (b) Total CD4+ T cell, (c) CD4+ CD25+Foxp3+ (Treg) cells and (d) CD4+CD25+ Foxp32 (activated T cells) in lung
digests of sensitized mice following three challenges with saline, LPS-rich OVA and LPS-free OVA. (e) in vitro splenocyte Treg induction in the
presence of the TAK-242 inhibitor with or without LPS-rich OVA and LPS-free OVA. Values are shown as Mean 6 SEM. (n = 7). Statistical significance
was determined using ANOVA.
doi:10.1371/journal.pone.0098648.g004
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LPS-rich OVA induces an inflammatory cytokine response
in Human PBMCs while LPS-free OVA does not
It is possible that TLR4 on structural or immune effector cells

might be responsible for conditioning T cell responses to LPS-rich

OVA. Therefore we wished to determine whether the LPS-rich

OVA evoked different responses in human PBMCs. Following

incubation of PBMC for 20 hrs with either LPS-free OVA, LPS-

rich OVA or control LPS (E. coli LPS, 100 ng/ml) the pro-

inflammatory cytokines, IL-12p40, TNF-a, IFN-c and IL1-b, were
measured. LPS-rich OVA significantly induced all four Th1

cytokines with levels above that or comparable to the positive

control LPS (Fig. 5A–D). LPS-free OVA did not induce any

cytokine response from the PBMCs. IL-2, IL-4, IL-5 and IL-10

levels were also increased by LPS-rich OVA but not LPS-free

OVA (Fig. 5E–H).

Discussion

There is abundant evidence that activation of the TLR pathway

conditions subsequent responses to sensitization with soluble

antigens. We evaluated the importance of LPS contamination in

commercial OVA on the secondary inflammatory response evoked

in a murine model of allergic asthma. There were substantial

differences in the cellular and mediator responses to airway

exposure to OVA in the presence and absence of LPS. In the

context of sensitization using alum adjuvant, LPS modulates the

inflammatory response, but is not necessary for ‘‘disease’’

development, as defined by the induction of airway hyperrespon-

siveness. Differences in inflammation induced by inhalational

challenge with LPS-rich OVA and LPS-free OVA appear to be

accounted for by signaling through the TLR4.

The endotoxin/LPS detected in the two commercial OVA

preparations was evaluated using two assays, clot based and

colorimetric. Both assays, although differing in sensitivity demon-

strated the presence of endotoxin in the OVA that was not purified

and its absence in the commercial LPS-free preparation. The LPS-

rich OVA contained approximately 4 mg endotoxin/mg OVA.

There was substantial batch-to-batch variation in the degree of

endotoxin contamination. The levels of endotoxin detectable in

relation to bacterial colony forming units (CFU) would suggest at

least 26106 CFU of bacteria equivalents. [26] In a previous study

Watanabe et al. [19] estimated the levels of endotoxin present in

the same commercial source of OVA at 10 mg/mg, while our

estimates indicated a comparable, substantial LPS contamination.

Airway challenge with LPS-rich OVA resulted in a substantially

enhanced inflammation compared to challenge with LPS-free

OVA. Both inflammatory and Th2-associated cytokines were

augmented above the effects of OVA alone by the concomitant

LPS challenge associated with commercial LPS-rich OVA. An

increase in Tregs in lung digests was also observed following OVA

challenge but only when associated with LPS. Despite the

differences in inflammatory cells, cytokines and Tregs in the

pulmonary response of LPS-rich OVA challenged animals, there

was only a minor difference in the airway responses to inhaled

aerosols of methacholine, and the difference was attributable to a

slightly reduced degree of responsiveness of the larger conducting

airways as reflected in respiratory system resistance. The changes

were not detectable in respiratory system elastance, which is more

sensitive to peripheral airway responses. A previous study [19]

showing that endotoxin contamination of OVA reduced the

hyperresponsiveness to methacholine induced by OVA in contrast

to our findings but used the Penh technique, which is not a

measure of airway resistance but rather reflects changes in

breathing pattern that may or may not follow changes in

respiratory mechanics. [27] Likewise, mice lacking lipopolysac-

charide binding protein, an accessory molecule that is important

for the affinity of LPS binding to TLR-4 [28], have reduced OVA

induced airway responsiveness but again measured by the Penh

technique [29]. A recent study on the BN rat undergoing repeated

challenges with LPS-rich and LPS-free OVA demonstrated

comparable airway smooth muscle remodeling in the large

airways. [30].

Both OVA challenged groups showed substantial sensitization

to OVA but there was, in general, an augmented inflammatory

response to LPS-rich OVA challenge. An eosinophil-rich inflam-

mation followed challenge in both OVA challenged groups but it

was more pronounced after LPS-rich OVA exposure. Low dose

LPS has been shown previously to augment eosinophilic inflam-

mation in mice sensitized intranasally with LPS-free OVA. [20]

Low dose systemic LPS has similar effects on pulmonary

eosinophilia. [30] However, mice lacking lipopolysaccharide

binding protein, reportedly mount comparable degrees of eosin-

ophilia in response to OVA challenge to wild type controls,

although they do not develop allergen-induced airway hyperre-

sponsiveness. [29] However, the administration of exogenous LPS

to OVA challenged C57Bl/6 mice is inhibitory of eosinophilia

[20] as is high dose LPS challenge of BALB/c mice [25],

indicating that the timing, route of administration, origin and dose

of LPS may have important influences on the outcome of the

challenge. In the current study there was also a neutrophilic

response, a marked lymphocytosis and an increase in macrophage

numbers in the LPS-rich OVA challenged mice, not seen in LPS-

free OVA challenged wild type animals. The BALF neutrophilia

was also absent in TLR4-deficient mice. These data suggest

substantial differences in the synthesis and secretion of chemoat-

tractant molecules, chemokines and lipid mediators in the OVA

challenged groups, due to the presence of contaminating LPS. Our

observations with the TLR4-deficient mice confirm the observa-

tions of Strohmeier et al. [29], that LPS is not needed for OVA to

induce eosinophilia and also confirms that contaminating LPS

exacerbates inflammation in the wild type animals.

The BALF cytokine mediator levels, in the wild type mice, were

different in the two OVA challenged groups, consistent with the

differences in cellular influx that we observed. There appeared to

be similar levels of T cell activation as reflected in the levels of IL-

2. However, the Th2 cytokines IL-4 and IL-5 were more highly

expressed in the LPS-rich OVA challenged animals. Somewhat

paradoxically the inflammatory cytokine IFN-c was also increased

in expression in the LPS-rich OVA challenged animals. There was

also an increase in IL-12, presumably reflecting dendritic cell

priming by LPS. [25,31] Other inflammatory cytokines, IL1-b and

TNFa were elevated only in the LPS–rich challenged group.

Consistent with the neutrophilia seen in the BALF there was an

increase in the chemokine KC, an ortholog of IL-8 that is a potent

neutrophil chemoattractant. [32] It is possible that activation of

the airway epithelium by LPS may have contributed to the

elevation in KC. Activation of the nuclear factor kappa-light-

chain-enhancer of activated B cells (NFkB) pathway in the airway

epithelium has been reported following LPS challenge and is

important in mediating LPS-induced airway neutrophilia. [33]

Similarly, NFkB is activated within thirty minutes of OVA

challenge [34], potentially as a result of the LPS present in the

OVA. Both types of OVA induced the same degree of IL-5 in

TLR4-deficient mice, whereas the IL-4, IL-1b, TNF-a, KC and

IL-12p40 responses were blunted in TLR4-deficient mice,

indicating that, in particular, the pro-inflammatory cytokine

responses to OVA challenge are promoted by contaminating

LPS and TLR4. The route of sensitization may also affect the
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immune response following challenge. [23] Airway sensitization

with OVA and LPS results in a Th17 response while peritoneal

sensitization promotes a strong Th2 cytokine mediated response

[23] and the AHR produced is the result of synergy between IL-17

and Th2 cytokines. Th2 inflammation appears to have been the

dominant cause of AHR in our study and the additional

neutrophilic inflammation and augmented cytokines had only a

modest effect on the changes in resistance and no effect on

elastance in response to methacholine.

We evaluated the overall lung tissue T cell response, in wild type

mice, by lung digestion and flow cytometry. Similar to the finding

of increased total cells in BALF there was also an increase in total

cells recovered from the lung digests after LPS-rich OVA

challenge. In addition CD4+ T cells, Tregs and activated CD4+
T cells were all increased in the LPS–rich OVA challenged

animals. Although there were comparable levels of IL-2 in BALF

of both OVA challenged groups there was a greater absolute

number of CD4+CD25+FoxP32 T cells present in the LPS-rich

OVA challenged group. The increase in CD4+ T cells in the LPS-

rich OVA challenged animals is also consistent with the higher

levels of Th1 and Th2 cytokines in the BALF. Surprisingly there

was an increase in Tregs only in the LPS-rich OVA challenged

group indicating that Treg expansion or recruitment is facilitated

by LPS. This effect was also observable in vitro when murine

splenocytes were cultured with the LPS-rich OVA and could be

prevented with the TLR4 inhibitor TAK-242. Despite the

recruitment of Tregs to the lungs in animals challenged with

LPS-rich OVA, the inflammatory response was still greater than in

the LPS-free OVA challenged group. Although Tregs have been

implicated in determining the intensity and the resolution of

inflammation following pulmonary challenge with antigen. [35–

37] they appear to have little role to play in the acute response to

allergen challenge of a sensitized animal but are rather important

for the development of tolerance to chronic allergen challenge.

[38] Interestingly, Whitehead et al. recently reported that while the

addition of a low-moderate concentration of LPS during intranasal

OVA sensitization (comparable to the LPS concentrations found

in ovalbumin in our study) promoted more substantial acute

airway inflammation than lower levels of LPS, this concentration

of LPS also induced Tregs and, after multiple allergen challenges,

shorter-lived asthma-like features than in mice sensitized with

lower doses of LPS [22]. Whereas LPS levels were modified during

OVA sensitization but were equivalent during challenge, in our

study, we demonstrate in identically sensitized animals that the

induction of Foxp3-expressing Tregs is apparently entirely

dependent on the contaminating LPS and TLR4 signaling

associated with the inhalational allergen challenge, rather than

the adjuvant effect of alum or LPS during intraperitoneal

sensitization. Taken together, although it is not clear whether

the Tregs in both studies are functionally equivalent, their

expansion in response to inhaled antigen appears to depend on

concomitant airway exposure to sufficient levels of LPS irrespec-

tive of whether this exposure coincides with sensitization or

challenge. It is not clear whether the lack of resolution of airway

disease and thus apparent absence of an inhibitory effect of the

LPS-induced Tregs in our model may be due to a requirement for

prior airway exposure to LPS and OVA (such as during

sensitization), due to a need for more allergen challenges

(premature experimental endpoint), higher dose of LPS and

threshold of Tregs, or perhaps due to the alum-mediated pro-

inflammatory response overcoming the inhibitory capacity of the

induced Tregs. Finally, whether the induction of Tregs depends on

TLR4 receptors on dendritic cells or T cells requires further

exploration.

We tested also the response of human peripheral blood

mononuclear cells (PBMC) to LPS-free and LPS-rich OVA to

determine if a pattern of response specific to LPS-rich OVA was

present in vitro. The LPS-free OVA did not induce any cytokine

response whereas the LPS-rich preparation induced pro-inflam-

matory cytokines comparable to the effects of 100 ng of E coli LPS.

It is interesting to note that both IFN-c and IL-1b are significantly

increased by the LPS-rich OVA even compared to pure LPS.

MyD88-dependent signalling by both IFN-c and LPS has been

shown to induce steroid resistant AHR via IL-27 producing

pulmonary macrophages. [39] IL-1b is released from the

inflammasome upon Nod-like receptor stimulation by microbial

molecules [40], of which LPS is one of many. This increased IFN-

c and IL-1b level would suggest that the commercial LPS-rich

OVA may also contain other microbial-derived molecules which

may induce inflammation and confound the immune response to

the OVA allergen.

In the absence of adjuvant, stimulation of TLR4 on airway

structural cells has been shown to be necessary for priming of

innate immune responses and for the development of airway

disease in response to inhaled house dust mite allergen (HDM).

[41] Indeed HDM and LPS airway sensitization and challenge

reduced Th2 responses and enhanced Th1 inflammatory respons-

es, increasing both TNFa and IL-17 secretion. [42] Recently, Tan

et al., have also reported that TLR4 expression on stromal cells

promotes Th2-biased allergic sensitization to OVA via the airways

and the development of subsequent airway disease. [43] The levels

of contaminating LPS in our study are comparable to the low-

moderate level referred to by Tan et al. Here, we show that

systemic OVA sensitization in conjunction with an exogenous

adjuvant (alum) leads to AHR that is largely independent of the

contaminating endotoxin and TLR4 signaling. However, our data

reveal that although i.p. OVA sensitization with alum can elicit

subsequent allergic airway disease independently of TLR4, as has

been previously reported, this does not mean that the contami-

nating LPS in OVA and associated TLR4 signaling are devoid of

any influence upon the ensuing allergen challenge-associated

inflammatory response in an alum-dependent OVA-asthma

model. Indeed, observations regarding the phenomenon of LPS

tolerance by both Peters et al [44] and more recently by Chapman

et al, [45] elegantly demonstrate the significant effect of repeated

exposure to LPS and the respective LPS levels have on the

cytokine levels and allergic lung response. LPS tolerance also

results in long lasting effects on murine macrophage gene

expression and phenotypes. [46] Therefore, our study provides a

degree of refinement in our understanding of the mechanisms

underlying such experimental asthma models. Specifically, in

agreement with Tan et al., despite the sensitization with alum

adjuvant, we find that the associated Th2 inflammatory response

remains partially dependent on the contaminating endotoxin

present with OVA allergen challenge. Significantly, the inflam-

matory cytokine, T regulatory cell, and neutrophil responses

Figure 5. LPS-rich OVA induces a cytokine response in human PBMCs similar to LPS. PBMCs were stimulated for 20 hrs with saline, LPS-
free OVA, LPS-rich OVA and LPS, the supernatants were the analysed by MSD electrochemical ELISA for the levels of secreted cytokines, (a) IL-12p40,
(b) TNFa (c) IFNc, (d) IL-1b, (e) IL-2, (f) IL4, (g) IL-5 and (h) IL-10. Values are shown as Mean6 SEM. (n = 6). Statistical significance was determined using
ANOVA.
doi:10.1371/journal.pone.0098648.g005
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associated with OVA challenge are completely dependent on the

presence of contaminating endotoxin and signaling via TLR4, and

independent of the alum sensitization. We confirmed that these

findings could be recapitulated with peripheral blood mononucle-

ar cells.

In conclusion, LPS-contamination of commercial OVA is a

confounding variable in the interpretation of studies of experi-

mental asthma. The results of the current study show that the

pattern and degree of inflammation in an alum-dependent OVA-

asthma model, particularly neutrophil, lymphocyte and Treg

responses, is substantially influenced by the presence of LPS

specifically during the pulmonary antigen challenge.

Supporting Information

Figure S1 Timeline of OVA challenge comparing LPS-
rich and LPS-free OVA preparations. Mice were acclimated

for 1 week prior to i.p. sensitization with 10 mg of OVA (Grade V,

Sigma) in aluminum hydroxide. Sensitization was performed on

Day 0 and 7, on day 14 mice were intransally challenged once or

on three consecutive days with 10 mg of LPS-rich OVA (Sigma) or

LPS-free OVA (Hyglos Gmbh). One day after the single challenge

and two days following three challenges, experiments were

performed.

(TIF)

Figure S2 LAL assay analysis of endotoxin content in
LPS-rich and LPS-free OVA. LPS-rich OVA (Sigma) or LPS-

free OVA (Hyglos) samples were diluted to determine the range of

endotoxin concentration and samples were assessed using a

chromogenic LAL assay. LPS-rich, Sigma grade V, contained

0.004% endotoxin, (400 ng/10 mg OVA), while LPS-free OVA,

Hyglos-Endograde, had undetectable levels. LPS-rich OVA (light

bars), LPS-free OVA (dark bars). Values are shown as Mean 6

SEM, (n = 5).

(TIF)

Author Contributions

Conceived and designed the experiments: JMS JM. Performed the

experiments: JMS JM KHS SL CM TCL SF. Analyzed the data: JMS

JM KHS SL CM TCL SF STQ. Contributed reagents/materials/analysis

tools: JM JMS STQ FS. Wrote the paper: JMS JM KHS.

References

1. Malo JL, Ghezzo H, D’Aquino C, L’Archeveque J, Cartier A, et al. (1992)

Natural history of occupational asthma: relevance of type of agent and other

factors in the rate of development of symptoms in affected subjects. The Journal

of allergy and clinical immunology 90: 937–944.

2. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986)

Two types of murine helper T cell clone. I. Definition according to profiles of

lymphokine activities and secreted proteins. Journal of immunology 136: 2348–

2357.

3. Hamid Q, Azzawi M, Ying S, Moqbel R, Wardlaw AJ, et al. (1991) Interleukin-5

mRNA in mucosal bronchial biopsies from asthmatic subjects. International

archives of allergy and applied immunology 94: 169–170.

4. Olivenstein R, Taha R, Minshall EM, Hamid QA (1999) IL-4 and IL-5 mRNA

expression in induced sputum of asthmatic subjects: comparison with bronchial

wash. The Journal of allergy and clinical immunology 103: 238–245.

5. Strachan DP (1989) Hay fever, hygiene, and household size. Bmj 299: 1259–

1260.

6. von Mutius E (2007) Asthma and allergies in rural areas of Europe. Proceedings

of the American Thoracic Society 4: 212–216.

7. Holt PG, Upham JW, Sly PD (2005) Contemporaneous maturation of

immunologic and respiratory functions during early childhood: implications

for development of asthma prevention strategies. The Journal of allergy and

clinical immunology 116: 16–24; quiz 25.

8. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, et al. (1998)

Interleukin-13: central mediator of allergic asthma. Science 282: 2258–2261.

9. Kung TT, Stelts DM, Zurcher JA, Adams GK 3rd, Egan RW, et al. (1995)

Involvement of IL-5 in a murine model of allergic pulmonary inflammation:

prophylactic and therapeutic effect of an anti-IL-5 antibody. American journal

of respiratory cell and molecular biology 13: 360–365.

10. Ewart SL, Kuperman D, Schadt E, Tankersley C, Grupe A, et al. (2000)

Quantitative trait loci controlling allergen-induced airway hyperresponsiveness

in inbred mice. American journal of respiratory cell and molecular biology 23:

537–545.

11. Corry DB, Folkesson HG, Warnock ML, Erle DJ, Matthay MA, et al. (1996)

Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model

of acute airway hyperreactivity. The Journal of experimental medicine 183:

109–117.

12. Lambrecht BN (2005) Dendritic cells and the regulation of the allergic immune

response. Allergy 60: 271–282.

13. Shainheit MG, Smith PM, Bazzone LE, Wang AC, Rutitzky LI, et al. (2008)

Dendritic cell IL-23 and IL-1 production in response to schistosome eggs induces

Th17 cells in a mouse strain prone to severe immunopathology. Journal of

immunology 181: 8559–8567.

14. Machida I, Matsuse H, Kondo Y, Kawano T, Saeki S, et al. (2004) Cysteinyl

leukotrienes regulate dendritic cell functions in a murine model of asthma.

Journal of immunology 172: 1833–1838.

15. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the

initiation of allergen-induced T helper type 2 responses. Nature immunology 9:

310–318.

16. Okayama Y, Petit-Frere C, Kassel O, Semper A, Quint D, et al. (1995) IgE-

dependent expression of mRNA for IL-4 and IL-5 in human lung mast cells.

Journal of immunology 155: 1796–1808.

17. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of

lymphokine secretion lead to different functional properties. Annual review of

immunology 7: 145–173.

18. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, et al. (2002)

Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2

responses to inhaled antigen. The Journal of experimental medicine 196: 1645–

1651.

19. Watanabe J, Miyazaki Y, Zimmerman GA, Albertine KH, McIntyre TM (2003)

Endotoxin contamination of ovalbumin suppresses murine immunologic

responses and development of airway hyper-reactivity. The Journal of biological

chemistry 278: 42361–42368.

20. Dong L, Li H, Wang S, Li Y (2009) Different doses of lipopolysaccharides

regulate the lung inflammation of asthmatic mice via TLR4 pathway in alveolar

macrophages. The Journal of asthma: official journal of the Association for the

Care of Asthma 46: 229–233.

21. Piggott DA, Eisenbarth SC, Xu L, Constant SL, Huleatt JW, et al. (2005)

MyD88-dependent induction of allergic Th2 responses to intranasal antigen.

The Journal of clinical investigation 115: 459–467.

22. Whitehead GS, Thomas SY, Cook DN (2013) Modulation of Distinct Asthmatic

Phenotypes in Mice by Dose-Dependent Inhalation of Microbial Products.

Environmental health perspectives.

23. Wilson RH, Whitehead GS, Nakano H, Free ME, Kolls JK, et al. (2009) Allergic

sensitization through the airway primes Th17-dependent neutrophilia and

airway hyperresponsiveness. American journal of respiratory and critical care

medicine 180: 720–730.

24. Bortolatto J, Borducchi E, Rodriguez D, Keller AC, Faquim-Mauro E, et al.

(2008) Toll-like receptor 4 agonists adsorbed to aluminium hydroxide adjuvant

attenuate ovalbumin-specific allergic airway disease: role of MyD88 adaptor

molecule and interleukin-12/interferon-gamma axis. Clinical and experimental

allergy: journal of the British Society for Allergy and Clinical Immunology 38:

1668–1679.

25. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008)

Crucial role for the Nalp3 inflammasome in the immunostimulatory properties

of aluminium adjuvants. Nature 453: 1122–1126.

26. KL W (2007) Endotoxins: pyrogens, LAL testing and depyrogenation. New

York; London: Informa Healthcare.

27. Lundblad LK, Irvin CG, Hantos Z, Sly P, Mitzner W, et al. (2007) Penh is not a

measure of airway resistance! The European respiratory journal 30: 805.

28. Thomas CJ, Kapoor M, Sharma S, Bausinger H, Zyilan U, et al. (2002)

Evidence of a trimolecular complex involving LPS, LPS binding protein and

soluble CD14 as an effector of LPS response. FEBS letters 531: 184–188.

29. Strohmeier GR, Walsh JH, Klings ES, Farber HW, Cruikshank WW, et al.

(2001) Lipopolysaccharide binding protein potentiates airway reactivity in a

murine model of allergic asthma. Journal of immunology 166: 2063–2070.

30. Tsuchiya K, Siddiqui S, Risse PA, Hirota N, Martin JG (2012) The presence of

LPS in OVA inhalations affects airway inflammation and AHR but not

remodeling in a rodent model of asthma. American journal of physiology Lung

cellular and molecular physiology 303: L54–63.

31. Wills-Karp M (2001) IL-12/IL-13 axis in allergic asthma. The Journal of allergy

and clinical immunology 107: 9–18.

32. Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski LF Jr, Conklyn

MJ, et al. (1994) The murine interleukin 8 type B receptor homologue and its

LPS Contaminated OVA Increases Inflammation in Murine Asthma

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e98648



ligands. Expression and biological characterization. The Journal of biological

chemistry 269: 29355–29358.
33. Poynter ME, Irvin CG, Janssen-Heininger YM (2003) A prominent role for

airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway

inflammation. Journal of immunology 170: 6257–6265.
34. Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, et al. (2004) NF-

kappa B activation in airways modulates allergic inflammation but not
hyperresponsiveness. Journal of immunology 173: 7003–7009.

35. Strickland DH, Stumbles PA, Zosky GR, Subrata LS, Thomas JA, et al. (2006)

Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+
CD25+ regulatory T cells. The Journal of experimental medicine 203: 2649–

2660.
36. Morgan RK, McAllister B, Cross L, Green DS, Kornfeld H, et al. (2007)

Histamine 4 receptor activation induces recruitment of FoxP3+ T cells and
inhibits allergic asthma in a murine model. Journal of immunology 178: 8081–

8089.

37. Lewkowich IP, Herman NS, Schleifer KW, Dance MP, Chen BL, et al. (2005)
CD4+CD25+ T cells protect against experimentally induced asthma and alter

pulmonary dendritic cell phenotype and function. The Journal of experimental
medicine 202: 1549–1561.

38. Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, et al. (2008)

Adaptive Foxp3+ regulatory T cell-dependent and -independent control of
allergic inflammation. Immunity 29: 114–126.

39. Li JJ, Wang W, Baines KJ, Bowden NA, Hansbro PM, et al. (2010) IL-27/IFN-
gamma induce MyD88-dependent steroid-resistant airway hyperresponsiveness

by inhibiting glucocorticoid signaling in macrophages. Journal of immunology

185: 4401–4409.

40. Franchi L, Warner N, Viani K, Nunez G (2009) Function of Nod-like receptors

in microbial recognition and host defense. Immunological reviews 227: 106–128.

41. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, et al. (2009)

House dust mite allergen induces asthma via Toll-like receptor 4 triggering of

airway structural cells. Nature medicine 15: 410–416.

42. Daan de Boer J, Roelofs JJ, de Vos AF, de Beer R, Schouten M, et al. (2013)

Lipopolysaccharide inhibits Th2 lung inflammation induced by house dust mite

allergens in mice. American journal of respiratory cell and molecular biology 48:

382–389.

43. Tan AM, Chen HC, Pochard P, Eisenbarth SC, Herrick CA, et al. (2010) TLR4

signaling in stromal cells is critical for the initiation of allergic Th2 responses to

inhaled antigen. Journal of immunology 184: 3535–3544.

44. Peters M, Dudziak K, Stiehm M, Bufe A (2010) T-cell polarization depends on

concentration of the danger signal used to activate dendritic cells. Immunology

and cell biology 88: 537–544.

45. Chapman TJ, Emo JA, Knowlden SA, Rezaee F, Georas SN (2013) Pre-existing

tolerance shapes the outcome of mucosal allergen sensitization in a murine

model of asthma. Journal of immunology 191: 4423–4430.

46. O’Carroll C, Fagan A, Shanahan F, Carmody RJ (2014) Identification of a

unique hybrid macrophage-polarization state following recovery from lipopoly-

saccharide tolerance. Journal of immunology 192: 427–436.

LPS Contaminated OVA Increases Inflammation in Murine Asthma

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e98648


