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A Schrödinger equation may be unitarily transformed into dynamical equations in different interaction

pictures which describe a common physical process, i.e., the same underlying interactions and dynamics.

In contrast to this standard scenario, other relations are also possible, such as a common interaction-

picture dynamical equation corresponding to several Schrödinger equations that represent different

physical processes. This may enable us to design alternative and feasible experimental routes for

operations that are a priori difficult or impossible to perform. The power of this concept is exemplified

by engineering Hamiltonians that improve the performance or make realizable several shortcuts to

adiabaticity.

DOI: 10.1103/PhysRevLett.109.100403 PACS numbers: 03.65.Ca, 03.65.Vf, 32.80.Qk, 42.50.Dv

Introduction.—In standard applications Schrödinger,
interaction, or Heisenberg ‘‘representations’’ or ‘‘pictures’’
of a quantum system, are linked to each other by unitary
transformations that guarantee their formal equivalence.
Changing the picture may be viewed as a change of basis,
so in principle the same information can be extracted from
any of them. The Schrödinger picture (SP) is often privi-
leged as the primary description, representative of the
physical or experimental setting, whereas the multiple
interaction pictures (IPs) have the connotation of auxiliary
mathematical constructs to facilitate the calculations. The
standard relation among them is schematically depicted in
Fig. 1(a), where each node may represent the dynamical
equations (DEs) for the state vectors, the Hamiltonians, or
the state vectors themselves. The external box means that
they all represent the same common underlying physics:
the same interactions and external forces, and the same
system dynamics.

In sharp contrast to this standard application of the
interaction picture just described, we propose in this
Letter alternative relations such as the ones in Figs. 1(b)
and 1(c) or more complex combinations, where the nodes
may belong to different physical processes, as a way to
design alternative and feasible experimental routes for
operations that are a priori difficult or impossible to per-
form. We will thus engineer Hamiltonians which improve
or make feasible ‘‘shortcuts to adiabaticity’’ [1]. Adiabatic
processes are very common and useful in laboratories,
but their intrinsic slowness imposes limitations. The design
of alternative fast routes is an active research field of
interest in cold atom physics, nuclear magnetic resonance,
quantum information processing, and beyond the quantum
domain, e.g., to couple different devices in optical
communications [2]. Contrary to [1] which is devoted
specifically to harmonic oscillator expansions, the schemes
proposed here are more general and provide a unified

treatment for internal and external degrees of freedom,
complementary to existing approaches.
Our first benchmark problem is the acceleration of

adiabatic population inversion in a two-level system, in
itself a phenomenon of broad interest from NMR applica-
tions [3] to quantum information [4]. We shall point out
several techniques to eliminate undesired Hamiltonian
terms, possible improvements to reinterpreted experi-
ments, and also feasible alternatives to inversion schemes
that required cumbersome level-shift engineering or mul-
tiple fields [5]. We shall finally show how to overcome
the difficulties to implement ‘‘counterdiabatic’’ terms and
perform fast trap expansions and transport of cold atoms
without final excitation [6].
Multiple Schrödinger pictures.—To explain the multi-

frame schemes of Figs. 1(b) and 1(c) we shall review first
some basic equations and notation. SP and IP states are
related by a unitary transformation, jc Ii ¼ Uyjc Si, jc Si ¼
Ujc Ii, and evolve according to i@@tjc Si ¼ Hjc Si,
i@@tjc Ii ¼ HIjc Ii, where H is the Hamiltonian in the SP
andHI ¼ UyðH � KÞU, withK ¼ i@ _UUy, the correspond-
ing IP Hamiltonian. H, HI, and K may be generally time
dependent. Note that whenUðtÞ ¼ 1 at initial and final times
the states are equal in both pictures at those times. If, in
addition, _U ¼ 0 at boundary times, the Hamiltonians coin-
cide there also. Similar relations hold for a unitary operator
U0 which defines an interaction picture I0.
As in Fig. 1(b), an interaction picture DE may be related

unitarily to two or more Schrödinger equations with
Hamiltonians that represent different experimental settings
and external interactions; i.e., in this case S and S0 corre-
spond to different physical realities. There is no contra-
diction with the equivalence discussed above when we pay
attention, not only to the DEs but to the observables as
well. A given picture is fully characterized by both the DE
and the operators for the observables. Thus Fig. 1(b) admits
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several interpretations depending on the treatment given to
the observables: If the observables are transformed, from
BS in S to BS0 ¼ U0UyBSUU0y in S0, we will get the same
expectation values from two different systems and dynam-
ics performing in general rather different measurement
operations. If instead one runs the same measurements in
S and S0 on the same, untransformed observables BS, the
expectation values will differ in general, and their IP
representatives would be either UyBSU or U0yBSU

0,
sharing in any case a common IP-state dynamics.

Another scheme is depicted in Fig. 1(c). In the upper box
a Schrödinger node is related unitarily to a first IP node, I1,
linked also unitarily to a second one, I2. The two consecu-
tive IP Hamiltonians may be modified or perturbed, e.g., by
the addition of some terms (dashed lines). Thus the nodes
I0 and I00 represent different physical processes (middle and
lower horizontal boxes) with corresponding Schrödinger
dynamics.

Superadiabatic iterations and counterdiabatic correc-
tions.—In the following example the consecutive IPs
of Fig. 1(c) are generated by means of adiabatic and
superadiabatic iterations [7,8], and the addition of a

‘‘counterdiabatic’’ term in the Hamiltonian is performed
so as to avoid transitions, canceling out the K [9]. This
enables us to accelerate slow processes without inducing
any final excitation. Our starting model Hamiltonian is

HjðtÞ ¼
ZjðtÞ XjðtÞ � iYjðtÞ

XjðtÞ þ iYjðtÞ �ZjðtÞ

 !
; (1)

i.e.,Hj ¼ Xj�x þ Yj�y þ Zj�z in terms of Pauli matrices.

(The index j will be used later to define a series of IP
Hamiltonians in successive iterations). The Hamiltonian
matrices are expressed in the ‘‘bare basis’’ of the two-level
system, j1i ¼ ð10Þ; j2i ¼ ð01Þ. It could represent several

physical systems such as a spin in a magnetic field, a two-
level atom (see below), or a condensate in the bands of an
accelerated optical lattice [10,11]. In the later case, Xj may

be controlled by the trap depth, Zj by the lattice acceleration

[10], and a Yj component could in principle be implemented

by a second shifted lattice [11]. The Hamiltonian evolution
or ‘‘trajectory’’ is specified here by the Cartesian coordi-
nates Xj, Yj, Zj. Later we shall also use the corresponding

polar, azimuthal, and radial spherical coordinates, �j, �j,

and Rj.

Let j ¼ 0 and Y0 ¼ 0. An adiabatic population inversion
is achieved withH0 by varying slowly X0 and Z0 so that the
resonance is crossed at Z0 ¼ 0, and the eigenvectors of
H0 interchange their character. Different schemes, such as
Landau-Zener, Allen-Eberly [12], and others, may be fol-
lowed to specify the time dependences.
The first IP that we shall consider depends on the adia-

batic basis fjn0ðtÞig that diagonalizesH0ðtÞ. Specifically we
use U ¼ A0ðtÞ ¼ P

n¼1;2jn0ðtÞihn0ð0Þj, where we assume

that the jn0ð0Þi coincide with the bare basis. Thus jc I1i ¼
Ay
0 jc Si and H1 ¼ Ay

0 ðH0 � K0ÞA0, where K0 ¼ i@ _A0A
y
0 .

The phases are chosen so that hn0ðtÞj _n0ðtÞi ¼ 0. This
makes K0 nondiagonal and minimizes its norm [9,13].

In terms of the polar angle �0, K0 ¼ @ð _�0=2Þ�y. The

adiabatic approximation neglects K0 in the IP Hamiltonian
H1 to trivially solve

i@@tjc I1i ¼ Ay
0H0A0jc I1i; (2)

an uncoupled system in the bare basis. Alternatively one

may add Ay
0K0A0 toH1 [5,9,14–16]. The effect is to cancel

any coupling so that Eq. (2) becomes exact rather than an
approximation. In the corresponding SP S0, see the middle
box in Fig. 1(c), this amounts to adding the counterdiabatic

term Hð0Þ
cd :¼ K0 to H0. H0 þ K0 preserves the populations

of the approximate adiabatic dynamics even for short
process times.
In a new iteration, and similarly for higher orders, we

write H1 ¼ Ay
0 ðH0 � K0ÞA0 in the form of Eq. (1), j ¼ 1,

and diagonalize it to produce a ‘‘superadiabatic’’ basis
fjn1ðtÞig, and the transformation A1 ¼ P

n¼1;2jn1ðtÞi�
hn1ð0Þj. As before we assume that this basis coincides at

FIG. 1 (color online). Schematic relation between different
Schrödinger and interaction picture dynamical equations. Each
node may also represent the Hamiltonians or the states. The
rectangular boxes enclose nodes that represent the same under-
lying processes. The solid lines connecting the nodes are unitary
relations for the linked states, and the dashed lines represent a
nonunitary addition of a term to the Hamiltonian.

PRL 109, 100403 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

7 SEPTEMBER 2012

100403-2



the boundary times with the bare basis and that K1 ¼
i@ _A1A

y
1 is nondiagonal in fjn1ðtÞig. A1 produces a new IP

[I2 in Fig. 1(c)] with jc I2i ¼ Ay
1 jc I1i, and Hamiltonian

H2 ¼ Ay
1 ðH1 � K1ÞA1. K1 can be either neglected to pro-

duce a superadiabatic approximation, or canceled by
adding a counterdiabatic term. In the corresponding SP

[S00 in Fig. 1(c)] the Hamiltonian becomes H0 þHð1Þ
cd ,

whereHð1Þ
cd ¼ A0K1A

y
0 [9]. In that manner a different short-

cut Hamiltonian is created. For our reference Hamiltonian
H0 with Y0 ¼ 0, and using polar angles for H0 and H1,

Hð1Þ
cd ¼ @ð _�1=2Þðcos�0�x � sin�0�zÞ, if _�0 < 0. The ab-

sence of a Y�y component, like inH0 and unlike inH
ð0Þ
cd , is

in some applications a practical advantage. For example, in
an optical lattice implementation of the two-level system
only one optical lattice is required [11]. One more advan-

tage of the superadiabatic shortcut is that Hð1Þ
cd is less

intense (it has a smaller norm) than Hð0Þ
cd [9]. Alternative

eliminations of �y are discussed next.

Z-axis rotation.—Starting from the SP dynamical equa-

tion with H0 þHð0Þ
cd that we write now in the form

H0 þHð0Þ
cd ¼ Z0 Pe�i�

Pei� �Z0

 !
; (3)

where � ¼ arctanð@ _�0=2X0Þ, 0 � �< 2�, and P ¼
½X2

0 þ ð@ _�0=2Þ2�1=2, we may apply the transformation [17]

Uz ¼
e�i�=2 0

0 ei�=2

 !
;

which amounts to a rotation about the Z axis by �. Notice
that because Uz is diagonal in the bare basis, the bare-state
populations are the same in the SP and the IP at all times. In

the corresponding IP, and with Kz ¼ i@ _UzU
y
z , the interac-

tion Hamiltonian becomes

Uy
z ðH0 þHð0Þ

cd �KzÞUz ¼
Z0 � @ _�=2 P

P �Z0 þ @ _�=2

 !
;

(4)

without Y�y component. It can be realized directly in the

laboratory (this goes beyond the formal application in [17])
and we may treat it as well as a SP Hamiltonian linked to the

I0 Hamiltonian Ay
0H0A0, a common IP node for the two SP

Hamiltonians inEqs. (3) and (4), connected viaA0 andU
y
z A0,

respectively. This Hamiltonian trio and the corresponding
dynamical equations constitute a neat example of the dual
scheme of Fig. 1(b). Equation (4) provides an alternative
shortcut path, that guarantees the samebare-state populations

as H0 þHð0Þ
cd , and indeed it has been implemented experi-

mentally for a condensate on an accelerating lattice [11], to
avoid the realization of a �y term with a second optical

lattice. The transition from Eq. (3) to (4) was justified based
on properties specific to the optical lattice setting in [11].

In fact the elimination of �y in the Hamiltonian can be done

formally for any physical realization, and its usefulness will
depend on the feasibility to implement the modified X and Z
terms, demonstrated for a condensate on an accelerating
lattice [11], but more involved for a two-level atom in an
oscillating field, see below.
The approach based on a Z rotation is compared in Fig. 2

with the one based on adding toH0 the counterdiabatic term

Hð1Þ
cd with the Landau-Zener scheme for H0 (i.e., a constant

X0 and a linear in time Z0). The process time is chosen to be
short so that adiabaticity and population inversion fail for
the Hamiltonian H0 alone while these two approaches lead
to perfect population inversion. In Fig. 2, it can be seen that
their Z components are similar, but the X components have
a rather different structure. A possible advantage of the

superadiabaticþ counterdiabatic approach using H0þHð1Þ
cd

is the smaller value of the X maximum, which reduces
amplitude noise and the field intensity.
Two-level atoms.—In quantum optics, Eq. (1), with

X0 ¼ @�R=2, Y0 ¼ 0, and Z0 ¼ �@�=2, represents a ro-
tating frame IP Hamiltonian for a two-level atom in an
oscillating field with angular frequency!ðtÞ ¼ !0 � �ðtÞ,
where !0 is the (angular) transition frequency, �R the
(on-resonance) Rabi frequency and � the detuning, after
having applied the electric dipole and rotating wave
approximations (RWAs). For K ¼ KL ¼ �½@!ðtÞ=2��z

andU ¼ UL ¼ exp½�ði=@ÞRt
0 KLðt0Þdt0� the corresponding

S (RWA) Hamiltonian is

KL þULH0U
y
L ¼ @

2

�!0 �Re
i�

�Re
�i� !0

 !
; (5)

where �ðtÞ ¼ R
t
0 !ðt0Þdt0. We can read from it the time-

dependent intensity, proportional to �2
R, the frequency of

0 1 2
10
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t T 2
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0 1 2
0
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FIG. 2 (color online). Z and X Hamiltonian components for:H0

(dashed lines); z-axis rotation Hamiltonian (4) (thick blue solid
lines); superadiabaticþ counterdiabatic method Hamiltonian

H0 þHð1Þ
cd (thin red solid lines). Z0ðtÞ ¼ ��ðt� T=2Þ, and

� ¼ �10, T ¼ 20=j�j, in units @¼1, X0 ¼ 1.
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the field that has to be applied, _�=ð2�Þ, and the atomic
transition frequency !0=ð2�Þ. If we start instead with

H0 þHð0Þ
cd in the IP DE and apply the same transformation

as before, we get the SP Hamiltonian

KL þULðH0 þHð0Þ
cd ÞUy

L

¼ @

2
�!0 ð�R � i _�0Þei�

ð�R þ i _�0Þe�i� !0

 !
;

which requires in principle two fields dephased by �=2
sharing a common time-dependent frequency butwith differ-
ent time-dependent intensities [5]. A Z rotation may also be
applied but realizing the result is now complicated due to
the time dependence of the diagonal components, this would
imply time-dependent level-shift engineering with an addi-
tional laser. It is thus advisable to find alternative, simpler
realizations of the shortcuts.

H0 þHð0Þ
cd is not the only Hamiltonian that drives the

populations along the ones of the adiabatic approximation
for H0. There is a whole family of them using different
phases for the adiabatic base states, the simplest one being

Hð0Þ
cd itself [16,18]. Note that Ay

0 ðHð0Þ
cd � K0ÞA0 ¼ 0 so the

state does not move at all in the corresponding IP, whereas

in the DE driven by Hð0Þ
cd the populations will follow the

ones for the adiabatic dynamics of H0. By contrast, Hð1Þ
cd

alone is not enough to take the system along the super-
adiabatic path defined by H1. We could still get rid of

H0 and use as a shortcut to superadiabaticity Hð01Þ
cd

:¼¼
Hð0Þ

cd þHð1Þ
cd , but it combines the threeCartesian components.

Let us now take Hð0Þ
cd ¼ K0 as the reference IP

Hamiltonian and try to implement it with different physical
fields as in Fig. 1(b). Applying UL we get the SP
Hamiltonian

HS ¼ KL þULK0U
y
L ¼ @

2

�!ðtÞ �i _�0e
i�

i _�0e
�i� !ðtÞ

 !
;

which is indeed problematic to realize because the atomic
transition frequency should be time dependent. In other
words, a simple IP Hamiltonian does not necessarily imply
a simple experiment. To remedy this, keeping the same

simple IP DE, we may use instead U0 ¼ e�ði=@Þ
R

t

0
K0ðt0Þdt0

,
with K0 ¼ �ð@=2Þ!0�z. This choice implies now a simple
resonant interaction with constant frequency !0 and S0
Hamiltonian

HS0 ¼ K0 þU0K0U
0y ¼ @

2

�!0 �i _�0e
i!0t

i _�0e
�i!0t !0

 !
:

Other single laser implementations may also be developed

by starting instead with H0 þHð1Þ
cd . The term Hð1Þ

cd modifies

the detuning and Rabi frequency so that the transformation
UL would lead to a SP Hamiltonian with the same structure
as Eq. (5), but with modified laser and Rabi frequencies.

An alternative to the superadiabatic iterations is the
‘‘invariants-based inverse engineering approach’’ [18].
Trap expansions.—A further example is a fast harmonic

trap expansion, or compression, which is receiving
much attention because of fundamental and practical
implications [1,19–26]. The reference Hamiltonian is
Hh ¼ p2=ð2mÞ þm ~!2q2=2, where ~! ¼ ~!ðtÞ is the
time-dependent angular frequency, m the particle mass,
and q and p are position and momentum operators. The
corresponding counterdiabatic term to avoid excitations

is Hð0Þ
cd ¼ �ðpqþ qpÞ _~!=ð4 ~!Þ, whose direct laboratory

implementation is problematic and was left as an
open question [6]. This difficulty is overcome by the

transformation Uq ¼ expði m _~!
4@ ~! q

2Þ, which eliminates the

cross terms; it produces from HS ¼ Hh þHð0Þ
cd the IP

Hamiltonian HI ¼ Uy
q ðHS � i@ _UqU

y
q ÞUq ¼ p2=ð2mÞ þ

m ~!02q2=2, where ~!0 ¼ ½ ~!2 � 3 _~!2

4 ~!2 þ €~!
2 ~!�1=2. This

Hamiltonian can actually be realized directly [20,21]
and considered in a different physical setting as an
ordinary harmonic oscillator with modified frequency.
(This is different from applying the transformation just
to solve formally the dynamics withHS, see e.g., [27].) To
satisfy the scheme of Fig. 1(b) we may apply U0 ¼ 1 and
regard HI as a Schrödinger Hamiltonian S0, namely
HI ¼ HS0 . It indeed provides a shortcut with the following
properties: Starting with a common state at time t ¼ 0,

the spatial densities driven by Hh þHð0Þ
cd and HS0 are

identical. In fact, by imposing _~!ðtfÞ ¼ €~!ðtfÞ ¼ 0 the final

state is also equal for both dynamics, even in phase, and
the final vibrational state populations coincide with those
of a slow adiabatic process.
Transport.—The final example is harmonic transport

of a particle [28–31]. A Hamiltonian H0 ¼ p2=ð2mÞ þ
½q� q0ðtÞ�2m ~!2

0=2, with ~!0 constant, will generally induce

excitations when moving the trap center q0ðtÞ. They are

formally avoided by adding the counterdiabatic termHð0Þ
cd ¼

p _q0 in HS ¼ H0 þHð0Þ
cd , which is, however, not realizable

[30]. The transformation U ¼ e�im _q0q=@ produces, after
adding a time-dependent constant term, the feasible
Hamiltonian HI ¼ HS0 ¼ p2=ð2mÞ þ ½q� q00ðtÞ�2m ~!2

0=2,
where q00 ¼ q0 þ €q0= ~!

2
0. In this and previous examples a

Lie algebra of operators and the Baker-Haussdorff identity
facilitate the elimination of physically undesirable terms.
Discussion.—We have first proposed schemes for which

an interaction picture dynamical equation represents
different physical processes and interactions. These
schemes have been later combined and exemplified to
produce better, realizable shortcuts to adiabaticity for
population inversion protocols, for trap expansions and
compressions, and for harmonic transport. Similar manipu-
lations may be applied as well to facilitate or improve
shortcuts to adiabaticity for other operations and may be
extended to three-level applications [32,33]. In fact the
idea of designing the pictures to generate alternative, easier
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to handle physics, is applicable to a plethora of quantum
systems, in particular, in the realms of quantum simula-
tions, quantum control, or quantum information, where
developing techniques to drive the systems for specific
goals is a central objective.
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[4] B. T. Torosov, S. Guérin, and N.V. Vitanov, Phys. Rev.
Lett. 106, 233001 (2011).

[5] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and
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[30] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D.
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