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NOT READY FOR PRODUCTION 

Editorial SUMMARY:  

Off-target effects of programmable nucleases remain a critical issue for therapeutic 

applications of genome editing. This review compares experimental and computational tools 

for off-target analysis, providing recommendations for better assessments of off-target effects. 
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ABSTRACT 

Genome editing using programmable nucleases is revolutionizing life science and 

medicine. Off-target editing by these nucleases remains a significant concern, 

especially in therapeutic applications. Here we review tools developed for identifying 

potential off-target editing sites and compare the ability of these tools to properly 

analyze off-target effects. Recent advances in both in silico and experimental tools for 

off-target analysis have generated remarkably concordant results for sites with high off-

target editing activity. However, no single tool is able to accurately predict low-

frequency off-target editing, presenting a bottleneck in therapeutic genome editing, 

since even a small number of cells with off-target editing can be detrimental. Therefore, 

we recommend that at least one in silico tool and one experimental tool should be used 

together to identify potential off-target sites, and amplicon-based next-generation 

sequencing (NGS) should be used as the gold-standard assay for assessing the true 

off-target effects at these candidate sites. Future work to improve off-target analysis 

includes expanding the true off-target editing dataset to evaluate new experimental 

techniques and to train machine learning algorithms; performing analysis using the 

particular genome of the cells in question rather than the reference genome; and 

applying novel NGS techniques to improve the sensitivity of amplicon-based off-target 

editing quantification. 
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INTRODUCTION  

Over the past few decades, the emergence of programmable nucleases has revolutionized the 

field of genome editing. Programmable nucleases, including Zinc Finger Nucleases (ZFNs) 1-3, 

Transcription Activator-like (TAL) Effector Nucleases (TALENs) 4-6, Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) / CRISPR-associated protein 9 (Cas9) 

(CRISPR/Cas9) systems and their derivatives such as Base Editors7-11, allow for site-specific 

and permanent alterations to the genomes of a wide variety of organisms. Most of the 

programmable nucleases function by creating a DNA double-strand break (DSB) at the 

intended target locus in a cell, which is subsequently repaired by the non-homologous end 

joining (NHEJ) pathway, resulting in insertion/deletion (indel) mutations at the target site; or by 

the homology-directed repair (HDR) pathway, leading to the targeted integration of a donor 

sequence. A glossary of abbreviations used in our review is provided in Box 1. 

Figure 1 shows four major classes of programmable nucleases: ZFNs, TALENs, 

CRISPR/Cas9 and Base Editors. For ZFNs and TALENs, a pair of nucleases is required to 

generate a DSB at a specific (predetermined) target locus. In the case of ZFNs (Figure 1A), 

each ZFN contains a DNA binding domain (zinc finger protein) fused to the FokI non-specific 

DNA cleavage domain. With each zinc finger binding to 3 DNA bases, a zinc finger protein 

typically consists of an array of 3-6 zinc fingers to recognize 9-18 DNA bases, thus a ZFN pair 

targets a DNA sequence of 18-36 bases. For TALENs, the nuclease is formed by fusing a 

transcription activator-like effector (TALE) DNA binding domain to the FokI nuclease domain 

(Figure 1B). Each DNA-binding domain of TALE contains a variable number of 33–35 amino 

acid repeats that specify the DNA-binding sequence primarily through their 12-th and 13-th 

repeat-variable di-residues (RVDs). As illustrated in Figure 1C, the CRISPR/Cas9 system 

targets the site of interest using a single guide RNA (gRNA). The gRNA sequence typically 

comprises a 5' 17-20 nucleotide sequence complementary to the target DNA sequence and a 

3' end sequence that interacts with the Cas9 protein. A protospacer-associated motif (PAM) of 

2 – 5 nucleotides on the target DNA is required for Cas9 binding, which is located directly 

downstream of the target sequence on the non-target DNA strand. Cas9 is guided by the 

gRNA to the target site and cleaves the DNA sequence it binds, giving rise to a DSB. Base 

Editors generate single-nucleotide changes in DNA12. A Base Editor typically consists of a 
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Cas9 nickase (nCas9) fused to an Adenosine or Cytosine deaminase, which is capable of 

converting A to G or C to T respectively in genomic DNA12 (Figure 1D). Base editing has the 

potential to make genome editing more versatile and safer. A new class of gene editors, Prime 

Editors, uses nCas9 fused to an engineered reverse transcriptase, programmed with a prime 

editing guide RNA (pegRNA) that both specifies the target site and encodes the desired base 

editing11. While Prime Editing has the potential to expand the scope and capability of genome 

editing13, it is still in an early stage of development and is thus not included in our discussion 

here.  

Programmable nucleases have a wide range of applications, including genetic modification of 

bacteria, plants, and animals; enhancing our understanding of, and regulating, gene functions; 

establishing human disease models for basic research and drug discovery; and targeted 

therapeutic intervention14-17. In particular, the potential of programmable nuclease-based 

genome editing in therapeutic applications has been broadly recognized, and to date there are 

53 genome editing-based clinical trials registered at clinicaltrials.gov: 15 with ZFNs, 6 with 

TALENs, and 32 with CRISPR/Cas9 systems. However, several major challenges currently 

affect clinical translation of programmable nuclease based gene editing, including pre-existing 

immunity18-21, in vivo delivery efficiency22, and potential off-target effects23-25.  

This review article focuses on the analysis of off-target effects, which remain a major safety 

concern in therapeutic applications of genome editing. An off-target event can be defined as 

programmable nuclease-induced DNA cleavage at a site anywhere in the genome other than 

the intended target site. When an off-target cutting event occurs, it can be repaired via the 

NHEJ pathway, potentially resulting in an indel mutation; or, if it occurs simultaneously with an 

on-target or a second off-target cutting event, the off-target cutting activity can generate a 

chromosomal rearrangement such as an inversion or translocation, or a large deletion between 

the two break points26. 

A number of tools, both in silico and experimental, have been developed to identify potential 

off-target sites for programmable nucleases (Tables 1-4). For researchers performing genome 

editing experiments with programmable nucleases, it can be difficult to choose among these 

methods for off-target analysis. Here we outline and analyze the most commonly used 
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methods developed for the identification of off-target sites, evaluating their strengths and 

weaknesses, and highlighting the challenges in accurately identifying off-target sites and 

quantifying off-target effects. We focus on tools designed for CRISPR/Cas9 systems due to 

their widespread use, although methods for ZFNs and TALENs are also briefly reviewed. After 

discussing both the experimental and computational methods available for off-target site 

identification, we will present a performance comparison of off-target analysis techniques and 

recommend best practices for evaluating off-target effects of CRISPR/Cas9 based gene 

editing. Future directions for improving off-target analysis methodologies are also discussed. 

WORKFLOW FOR ANALYSIS OF OFF-TARGET EDITING 

In general, the off-target cutting activity at a particular sequence in a genome depends on its 

homology with the target sequence, molecular interaction with the programmable nuclease, 

and accessibility. To analyze the off-target effects, it is necessary to first identify potential off-

target sites in the genome of interest using an in silico tool and/or an experimental genome-

wide off-target identification method such as GUIDE-seq27, then to quantify the indel rates at 

the predicted sites using a quantitative assay. Specifically, the loci of interest are amplified 

from genomic DNA extracted from a pool of cells using PCR, and the resulting amplicons can 

be analyzed for sequence mismatch incorporations by a variety of methods, including the 

Surveyor nuclease assay28, digestion by T7 Endonuclease I29, Sanger sequencing trace 

decomposition (TIDE30, ICE31) or direct detection of mutations using next-generation 

sequencing (NGS).  

DIRECT DETECTION OF MUTATIONS USING NGS  

NGS on PCR amplicons (hereafter referred to as Amp-NGS) remains the gold standard for 

confirming off-target cutting by programmable nucleases, due to its high sensitivity and 

applicability to any sample that has been subjected to gene editing by programmable 

nucleases. The sensitivity of Amp-NGS is limited by PCR and NGS errors, which confound the 

detection of true cutting events. NGS read errors are dominated by base substitution errors, 

whereas NHEJ repair of nuclease-induced DSBs leads to short indels, so Amp-NGS results 

are typically quantitated on the basis of indel frequency rather than base mutation frequency. 
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The generally recognized sensitivity limit of Amp-NGS is around 0.1%, dictated by the rate at 

which indels arise during both target amplification and the NGS read process32. For many sites, 

this 0.1% of off-target cutting activity may be an overestimate, since at these potential off-

target sites the NGS reads with indels could be a result of PCR and NGS errors. Furthermore, 

a small number of sites may exhibit apparent indel rates of more than 0.1% even without 

treatment with programmable nucleases. Therefore, negative controls need to be performed 

for each off-target site being analyzed using Amp-NGS to determine its true background signal. 

Typical negative controls comprise cells subjected to mock delivery conditions in the absence 

of Cas9 protein. However we have previously observed significant off-target events in vivo 

using a non-targeting gRNA33, so the optimal negative control consists of matched cells treated 

with Cas9 protein in the absence of any gRNA to rule out non-specific Cas9 cutting activity.  

EXPERIMENTAL TOOLS FOR OFF-TARGET SITE IDENTIFICATION  

A number of experimental tools have been developed to detect off-target activity of 

programmable nucleases (Figure 2). For clarity, we group experimental techniques into three 

broad categories: (1) detection of nuclease binding, (2) detection of nuclease-induced DSBs, 

and (3) detection of repair products arising from nuclease-induced DSBs. Since all of these 

techniques are intended to be as unbiased as possible, they are in general applicable across 

all the different programmable nuclease families. Among the techniques surveyed here, 

several approaches were pioneered in the study of ZFNs, the first truly engineered nuclease 

platform, and subsequently refined for use with TALENs and CRISPR/Cas9 systems. The 

performance evaluation for these techniques and best practice recommendations will be given 

in later sections (see “PERFORMANCE COMPARISONS” and “BEST PRACTICES” sections 

below). 

Detection of nuclease binding 

Initial efforts at analyzing off-target cutting of ZFNs relied on the characterization of the binding 

specificity of monomeric zinc finger proteins to DNA using assays such as SELEX and its 

derivatives34-36, Bacteria-1-hybrid screening37, ELISA38, and microarrays39. Sequences bound 

by individual zinc finger proteins could then be used to search the genome of interest for 
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homodimeric or heterodimeric off-target ZFN sites. Similarly, binding of Cas9 to DNA targets 

has been characterized both in vitro40 and in vivo41,42 using sequencing techniques. 

While nuclease binding is the most straightforward to detect, it is the least informative, since 

nuclease binding is necessary but not sufficient for cutting. This appears to be true for ZFNs, 

TALENs and CRISPR/Cas9 systems. Off-target detection techniques that rely solely on 

nuclease binding thus tend to yield large numbers of false positive sites and are not in 

common use. 

Detection of Nuclease Activity 

Instead of detecting the binding of nucleases, another approach to discovering nuclease off-

target effect is to detect the cutting activity directly. For instance, Pattanayak et al. used DNA 

substrates generated by rolling circle amplification of a random library to directly determine the 

sequences that could be cleaved in vitro by a pair of ZFNs43. These were then used to build a 

statistical model whereby off-target cutting of genomic locations could be predicted. In vitro off-

target sequence identification using synthetic DNA substrates was also used to determine the 

specificity of CRISPR/Cas9 systems44-46. 

Early work to discover DSBs generated in vitro by Cas9 looked at fragmentation patterns in 

libraries generated from purified genomic DNA (Digenome-seq)47. Recently, two techniques, 

SITE-seq48 and CIRCLE-seq49, have been developed where sequencing adapters are ligated 

to the DSBs resulting from nuclease activity. These adapters are used to enrich for the 

fragments that arise from the DSBs to facilitate sequencing. In the case of SITE-seq, the 

adapters are also biotinylated, and further enrichment is achieved by performing a pulldown of 

ligated fragments using streptavidin-coated beads. CHANGE-seq, a high-throughput method 

based on DNA circularization, has just been developed to analyze the genome-wide off-target 

activities of CRISPR–Cas9 nucleases in vitro.50 

All of the aforementioned techniques start with purified DNA as the substrate, with the 

drawback that the chromatin state of the substrate is not considered. Similar to the in vitro 

nuclease binding assays, inability to consider the chromatin state in a living cell thus cut-site 

accessibility in the assay gives rise to a large number of false positive events. DIG-seq, an 
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updated version of Digenome-seq, was developed to perform the same fragmentation pattern 

assay in nuclease-digested chromatin51. Several additional techniques attempt to detect DSBs 

being produced in cells. BLESS ligates biotinylated adapters to DSBs in fixed cells and then 

uses these adapters to capture DNA proximal to DSBs52,53. BLISS ligates indexed adapters to 

DSBs in fixed cells and then performs in vitro transcription from those adapters, followed by 

NGS54. DISCOVER-seq enriches DSBs by immunoprecipitation of MRE11, a protein that 

specifically binds to DSBs in cells and in vivo55. 

Detection of DSB Repair Products 

Detection of DSBs generated in living cells may have limited sensitivity since cells can 

efficiently repair these DSBs. A potentially more sensitive approach would be to specifically 

enrich the repair products containing mutated sequences, which are expected to accumulate 

over time. This approach was initially demonstrated for ZFNs using an integrase deficient 

lentiviral vector (IDLV). However, IDLV capture is only able to reliably detect off-target sites 

with >1% activity56 and underperforms compared to the in vitro ZFN cutting assay57. A newer 

technique, GUIDE-seq, increases the sensitivity by flooding cells with short (34 bp) double-

stranded oligodeoxynucleotides (dsODNs) that can be inserted at the DSB sites when 

nuclease cutting occurs. Detection of dsODN insertion events provides improved sensitivity, 

and GUIDE-seq is currently the preferred experimental technique by many groups for 

identifying potential off-target sites. A major drawback of GUIDE-seq is that it requires delivery 

of dsODN into cells and not all cell types, especially primary cells, are amenable to dsODN 

delivery49. In cases where GUIDE-seq is unfeasible for the cell type of interest, a substitute cell 

type such as U2OS is often used. This, however, may lead to false positives and/or false 

negatives since some off-target effects can be cell type-specific.   

Instead of detecting exogenous DNA insertion events, HTGTS26 and LAM-HTGTS58 look for 

endogenous repair products in the form of chromosomal rearrangements with known cutting 

loci. This allows off-target cutting detection in most cell types. 
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BIOINFORMATIC PREDICTION OF OFF-TARGET SITES 

The bioinformatic analysis for identifying off-target sites of programmable nuclease can be 

divided into two steps. In the first step, site detection, the target genome is scanned for 

potential sites based on homology to the on-target sequence. A number of studies, especially 

those performed early on, used simple homology search programs like BLAST for off-target 

screening 59,60. Many bioinformatic off-target prediction tools utilized read mapping programs 

like Bowtie61 (e.g. implemented in CHOPCHOP62 and GT-Scan63) and Bowtie264 (e.g. 

implemented in E-CRISP website65 and CRISPRscan66) to perform site detection. However, 

these screening algorithms should be avoided since they were not designed for locating 

homologous sequences that are short (12-24 bp) and can contain relatively large numbers of 

sequence mismatches (up to 6) or short indels. More recent tools such as CRISPRitz67 are 

specifically designed to accomplish this task efficiently and thus should be used instead. 

A site detection program typically yields tens to hundreds of potential off-target cut-sites. Thus, 

in the second step, site scoring/ranking, potential off-target sites detected in the first step are 

scored and/or ranked based on either the degree of homology to the target sequence, or the 

expected cutting activity of the programmable nuclease. This allows users to focus on the top-

ranked sites for experimental validation using, for example, targeted deep sequencing. In 

some cases, scoring is accomplished by the application of a pre-defined formula, and in other 

cases the scoring algorithm is obtained using machine learning (ML) based on existing off-

target cleavage data as the training set. However, due to limited data sets of experimentally 

validated true off-target sites, neither formula-based nor ML-based scoring/rankings are very 

accurate, and true off-target sites can be missed when taking the top-ten or top-twenty sites 

from the ranked list for validation. This has been a major issue in the off-target analysis of 

CRISPR/Cas9 systems.  

Unlike experimental techniques developed for identifying potential off-target sites, which can 

be applied to different nucleases that generate DSBs, bioinformatic techniques are typically 

specific to the nuclease class of interest. We therefore discuss different nuclease classes 

separately, considering heterodimeric programmable nucleases (ZFNs and TALENs) first, then 

CRISPR/Cas9 systems. 
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Bioinformatic Approaches for Off-target Evaluation of ZFNs and TALENs 

Both ZFNs and TALENs are designed as heterodimers, with two DNA recognition domains 

(Figure 1) flanking a short spacer (5-7 nucleotide) that contains the cut site. Off-target sites 

reflect this design strategy, with perfect and imperfect matches of each domain spaced by a 

range of distance intervals. Homodimerization has also been observed with both ZFNs and 

TALENs, and this also contributes to off-target cutting.   

Early analyses of potential off-target sites for ZFNs and TALENs, performed for small sets of 

nuclease designs, used general sequence mapping programs such as BLAST and Bowtie to 

generate lists of candidate sites, and performed ranking of off-target sites using the number of 

mismatches within recognition domains68-74. A number of the top-ranked sites were then 

assessed experimentally. Strategies for off-target site detection were later codified into ZFN 

and TALEN design tools, as well as standalone tools that assess off-target specificity. 

Computational tools capable of identifying potential off-target sites for ZFNs and TALENs are 

listed in Table 1. 

In addition to performing more thorough site detection, some design tools also incorporated 

new knowledge arising from more thorough characterizations of the programmable nucleases 

to enable more sophisticated site prioritization. For TALENs, binding specificities of natural 

TAL effectors were first mined to generate binding frequency matrices between RVDs in TAL 

effectors and nucleotides at the corresponding positions of the recognition domain. This 

allowed the Paired Target Finder feature of TALE-NT75 to sum up the relative score of each 

RVD-nucleotide association using the frequency matrix for potential target sites. The search 

tool TALENoffer76 further incorporates the contributions of different RVDs to TALEN cutting 

activity77. 

The off-target prediction tool PROGNOS78 incorporated molecular features of nuclease–DNA 

interactions and used experimentally confirmed off-target sites as the training set to obtain 

scoring algorithms for off-target site identification of both ZFNs and TALENs. PROGNOS also 

factors in “polarity” effects, whereby the location of mismatches within the nuclease target site 

affects the DNA-protein binding affinity79. PROGNOS has relatively low false positive rates and 
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its false negative rates are comparable to experiment-based predictions, making it a robust off-

target search method for ZFNs and TALENs.   

CRISPR/Cas9 Off-target Site Identification and Ranking 

Many tools have been developed to identify potential CRISPR/Cas9 off-target sites80. Some of 

the tools, such as Cas-OFFinder81, Crisflash82 and CasOT83, identify off-target sites without 

ranking them, thus can only be used for screening gRNA designs. Details of screening 

algorithms designed for CRISPR/Cas9 off-target identification are listed in Table 2. Other tools 

have the capability of scoring and ranking the potential off-target sites identified (Table 3). For 

example, E-CRISP65, one of the early approaches for off-target identification, ranks off-target 

hits by alignment scores. CCTOP84 and COSMID78, on the other hand, rank the potential off-

target sites by considering the position of mismatches relative to the PAM sequence, based on 

the observation that mismatches closer to the PAM are more likely to prevent Cas9 cutting23,85. 

COSMID also allows input of one-base insertion (DNA bulge) and one-base deletion (RNA 

bulge) relative to the perfectly matched sequence, since these can be tolerated by Cas978.    

Further improvements to ranking potential off-target sites use experimental Cas9 binding and 

cutting data. CROP-IT86 divides the protospacer sequence into three regions with different 

weights for mismatches, using Cas9 ChIP-seq data from previous studies87 for weight 

parameter optimization. CROP-IT further adds a location-based, cell-type-specific accessibility 

score derived from genome-wide DNAse I-seq data88. The MIT score (also known as 

crispr.mit.edu or Hsu score) attempts to estimate the off-target cutting rate using a mismatch 

weight matrix derived from detailed studies of gRNA variants, and rescales the final score 

according to the minimum distance between mismatches23. The original paper by Hsu et al23 

provided several ways of calculating the scores for ranking, and the normalized aggregate 

frequencies method performed the best80. Finally, CFD (Cutting Frequency Determination)89 

uses a position- and base change-specific scoring matrix derived from systematically altering 

gRNAs targeting the CD33 gene.  

The availability of large CRISPR/Cas9 activity data sets, as well as computational tools, has 

led to the development of ML-based algorithms for off-target prediction. Details of each of 

these ML-based algorithms such as structures and training sets are listed in Supplementary 
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Table 1. CRISTA models off-target cutting data derived from three different genome-wide 

assays (GUIDE-seq, HTGTS, and BLESS)90 with a Random Forest algorithm using a broad 

range of features spanning six categories: nucleotide identities; alignment related features 

(including bulges); RNA thermodynamics; genomic locations; features from experimental 

databases (such as DNAse I hypersensitivity and gene expression level); and DNA enthalpy 

and geometry features. Another machine learning approach, predictCRISPR91, tested a 

Support-Vector Machine (SVM) model with a validated dataset. A more recent machine 

learning approach, Elevation92, uses a two-layer regression model in which the first layer 

predicts the off-target activity of a single mismatch between the target DNA and gRNA, and the 

second layer combines the contribution of each single mismatch to the gRNA-target score with 

that of multiple mismatches. Deep learning has also been applied to off-target prediction. 

CNN_std93 and deepCRISPR94 are two convolutional neural network (CNN)-based models for 

CRISPR/Cas9 off-target site prediction. deepCRISPR also integrates several modalities of 

epigenetic information. However, the architecture of these deep learning models precludes the 

consideration of insertions and deletions relative to the gRNA target sequence. Finally, 

SynergizingCRISPR takes a different approach to using machine learning, whereby prediction 

scores from five other tools (MIT website, MIT/Hsu score, CFD, Cropit and CCTop) rather than 

the gRNA and potential off-target sequences are used as inputs to the model95. 

While most of the bioinformatic off-target search tools are designed for CRISPR/Cas9, a recent 

study established a CNN based classifier for CRISPR/Cpf1 activity and specificity prediction96. 

As the first Cpf1 (i.e., Cas12a) off-target predicting algorithm, the algorithm was trained using 

the dataset of a lentiviral library-based AsCpf1 gRNA-target pairs established by Kim et al97, 

and compared the performance of 9 different sophisticated learning and deep learning models.  

OFF-TARGET ANALYSES OF BASE EDITORS 

Base Editors use a Cas9 nickase (nCas9) fused to a deaminase or glycosylase inhibitor to 

directly convert one DNA base or base pair into another without making DSBs98. Whole-

genome sequencing (WGS) revealed that third-generation Base Editors (BE3) could induce 

genome-wide off-target effects in mice99 and rice100, showing a significant amount of gRNA-

independent single-nucleotide mutations with high frequency in transcribed regions of the 
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genome, suggesting that the off-target effects were caused by the fused rAPOBEC1 

deaminase of BE3. Investigation of transcriptome-wide RNA off-target mutations showed that 

both adenine Base Editors (ABEs) and cytosine Base Editors (CBEs) could generate gRNA-

independent off-target mutations101-103. In addition, gRNA-dependent off-target editing has 

been observed104,105. Novel in vitro genome-wide off-target detection assays for ABEs and 

CBEs were established by capturing dCas9-induced DNA nicks using NGS97,106,107. The 

specificity of BE3 was analyzed using modified USER-Digenome-seq108, indicating that BE3 

could tolerate mismatches in gRNA-DNA base pairing, with a different off-target efficiency 

pattern compared with that of active Cas9.  

Two recent studies established EndoV-seq107 and Endo-Digenome-seq106 assays respectively 

to assess the specificity of ABEs, using EndoV/EndoVIII to generate the second nick after ABE 

editing and WGS to identify the resulting DSBs. Both studies showed lower gRNA-dependent 

off-target effects than that of wildtype SpCas9, although gRNA-independent off-target editing 

remains a critical issue. More recently, gRNA-independent off-target base editing was studied, 

including the use of sensitive R-loop assays without requiring whole-genome sequencing109,110. 

Bioinformatics-based algorithms need to be established in order to better predict the gRNA-

dependent off-target effects, and the mechanisms of gRNA-independent off-target effects need 

to be better established before accurate predictions could be made.  

PERFORMANCE COMPARISONS FOR CRISPR/CAS9-BASED TECHNIQUES 

To guide the reader towards a better understanding of the relative strengths and weaknesses 

of the CRISPR/Cas9 off-target analysis tools, both experimental and in silico, we compared the 

performance of these techniques. The ideal dataset for these comparisons is difficult to obtain, 

especially for experimental techniques, which need to be performed under conditions as 

comparable as possible for the same Cas9 and gRNA. Our performance comparison, therefore, 

comprises a number of ad hoc analyses intended to discern gross differences between the 

different approaches. 
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Comparison of Experimental Techniques 

We assessed the performance of a selection of experimental techniques, including Digenome-

seq47, DIG-seq51, CIRCLE-seq49, SITE-seq48, HTGTS26, GUIDE-seq111, DISCOVER-seq55, and 

BLISS54, in two different ways, and summarize the results in Table 4. First, we attempted to 

determine the relative sensitivities of these techniques, i.e. how often these techniques are 

able to detect true-positive off-target editing events. We found it difficult to define “gold 

standard” lists of off-target cutting sites to directly determine false negative rates for these 

methods, since they were generally performed for disparate gRNA sequences in disparate 

experimental systems. To sidestep this issue, we used on-target read enrichment as a proxy 

for sensitivity. We reasoned that each of the experimental techniques considered here relies 

on some sort of enrichment for the nuclease cut sites, including enrichment for genomic DNA 

bearing the cut sites, as in HTGTS; enrichment for the precise locations of the cut sites, as in 

Digenome-seq; or enrichment for both, as in GUIDE-seq. The degree of enrichment over 

background, i.e. what is expected of randomly fragmented genomic reads, should therefore be 

correlated with how well a given technique is able to detect the rare cutting events that give 

rise to off-target editing. Since none of the techniques treats on-target editing events differently 

from off-target events, enrichment over background can be assessed readily for the on-target 

editing events, and extrapolated to off-target editing.  

To accomplish this, we downloaded raw reads from entries in the Sequence Read Archive 

associated with each technique using the SRA Toolkit (entries listed in Supplementary Table 

2). We mapped these reads to the hg38 reference genome using BWA-MEM, and counted 

reads within 400 bp of the expected on-target cut sites using SAMtools112. Read counts were 

then divided by how many random genomic reads would be expected within the same region, 

given the total number of reads that mapped to the human genome, to yield the on-target 

enrichment. For the cases of Digenome-seq113 and DIG-seq, where enrichment is for fragment 

ends rather than fragments themselves, we counted reads whose 5’ ends fell precisely on the 

on-target cut site and compared those counts to what was expected given random genomic 

fragmentation. 
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Second, we assessed the relative specificities of each technique. In general, false-positive 

rates can be determined by performing Amp-NGS on DNA extracted from gene-edited cells, 

using primers flanking sites discovered by the technique in question. We therefore use Amp-

NGS data from the publications reporting each discovery technique to assess their respective 

specificities, applying the standard 0.1% indel threshold to distinguish true from false positives. 

As with the sensitivity comparison, this assessment is inevitably imperfect since the underlying 

datasets are not all directly comparable. The situation is further complicated by the fact that 

roughly half of the techniques being considered here are performed on purified DNA, which 

lacks the chromatin structure that can potentially prevent cutting by programmable nucleases 

within cells. However, the purpose of performing off-target site identification is usually to 

generate predictions as to which sites will likely be edited in cells. We therefore believe that the 

degree to which these predictions are validated as true off-target activity in cells should be 

used as the measure of specificity, even when that technique is not itself performed with living 

cells. We have labeled the corresponding column in Table 4, “Cellular false positives”, to 

highlight the fact that the false positive rate is for validation with living cells and may not be 

relevant to other applications of Cas9 and other programmable nucleases. As noted above, 

defining false negatives for experimental methods in a way that can be consistently applied is 

not currently feasible given the paucity of data derived from comparable experiments. 

Results of these assessments suggest that GUIDE-seq is the best-performing experimental 

technique: it shows the highest on-target enrichment with a moderate number of false positives. 

Some caution needs to be taken in interpreting these results: on-target enrichment can be 

correlated with the number of PCR cycles and is thus an imperfect readout of sensitivity, and 

variations in the gRNAs and cells used to perform off-target identification and validation can 

potentially cause biases in the observed false negative rates. Still, the status of GUIDE-seq as 

the most commonly-used experimental off-target technique would appear to be well-justified. 

Comparison of Computational Techniques 

We used a list of experimentally validated true off-target editing sites to assess the 

performance of computational techniques. Here, our manually curated true off-target list 

includes sites having editing rates of >0.1% quantified by Amp-NGS and processed by 
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CRISPResso2114. Not all sites so generated yielded scores in all ranking algorithms. For 

instance, only COSMID and CRISTA were able to score sites with base insertions (DNA bulge) 

and deletions (RNA bulge). In cases where an algorithm gave no score, we used a score of 

zero instead (see below). Supplementary Table 3, and references therein, contain all the 

information used in this performance assessment. Specifically, experimentally validated off-

target sites were collected from 9 different studies with true editing rate > 0.1% as measured 

by Amp-NGS (8 studies) 47,56,115-120 or T7 Endonuclease I (1 study)24. For each gRNA, off-

target sites were screened by Cas-OFFinder allowing up to 4 mismatches and 1 base 

DNA/RNA bulge (Supplementary Table 4). As shown in Table 3 and Supplementary Table 1, 

gRNAs in the training datasets of most of the machine-learning based algorithms had some 

overlap with our testing set in the performance comparison. To mitigate the potential for over-

fitting, we identified gRNAs tested by Amp-NGS in 4 studies117-120 that were not included in any 

training or testing set of machine-learning based-algorithms (listed in Supplementary Table 5), 

and additionally assessed algorithm performances with only these gRNAs. Standard Receiver-

Operator Characteristic (ROC) curves and Precision-Recall Curves (PRCs) were generated 

using Scikit-learn121 and are shown in Supplementary Figures 1 and 2. In addition to these 

curves, which can be difficult to use directly in designing experiments, we used the same 

underlying data to compute the true positive rates as a function of the total number of sites 

(Figure 3). That is, for each technique and sample size n, we determined the fraction of 

experimentally validated off-target sites ranked among the top n candidate sites by that 

technique. This curve, then, can be used to estimate the number of top-ranked sites that need 

to be assessed experimentally to detect true off-target sites with a given sensitivity. 

To determine off-target scores, CCTOP84 off-target scores were computed based on the 

formula in the original paper. Code for the MIT score (Hsu score)23, and CROP-IT86 score was 

adapted from the CRISPOR review80. Code for CFD score89 was obtained from the authors. 

Elevation92, predictCRISPR91, CNN_std93, and CRISTA90 were implemented based on 

instructions provided by original authors. Code for COSMID78 was adapted from source code 

obtained from Dr. Peng Qiu at Georgia Institute of Technology. To keep all the scores 

positively correlated to editing efficiency, we used 48.4 to subtract the original COSMID score, 

making zero correlated to no editing efficiency. Default models were used for all machine 
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learning algorithms without re-training. Algorithms requiring cell-line specific information were 

not included due to the lack of relevant data. 

From the plots shown in Figure 3A and Supplementary Figure 1, it appears that Elevation is 

the best performer, both by Area Under the Curve (AUC) of ROC and PRC, and by the true 

positive rate for reasonable numbers (< 200) of top-ranked sites. One caveat here is that 

Elevation is an ML-based technique whose training dataset overlaps extensively with the 

assessment dataset that we have collected in this study. The risk of over-fitting here is 

somewhat mitigated by the fact that Elevation’s training dataset incorporates all sites identified 

by unbiased techniques, instead of only those sites that were validated by Amp-NGS. We 

further mitigate this risk by re-doing the sensitivity analysis using targeted Amp-NGS data from 

four gRNAs in our dataset not present in the training sets of any of the machine learning 

approaches (Figure 3B and Supplementary Figure 2). In this re-analysis, Elevation is still 

among the top three performers (the other two being CFD and CRISTA). Interestingly, this is 

true despite the fact that Elevation does not consider sites containing DNA or RNA bulges. 

This is likely because the number of validated true CRISPR/Cas9 off-target sites containing 

DNA or RNA bulges is still small. Whether the paucity of true off-target sites containing indels 

reflects the biology of CRISPR/Cas9, or the lack of studies focusing on bulge-containing off-

target sites remains to be seen. Given its ability to rank off-target sites with DNA/RNA bulges 

and its overall performance, CRISTA can be a good alternative for scoring potential off-target 

sites. 

Best Practices 

As an example of determining off-target effects of programmable nucleases, we describe in 

Box 2 the analysis of a CRISPR/Cas9 system designed to correct the single-base mutation in 

β-globin gene that causes sickle cell disease (SCD)117. The original off-target site prediction 

was performed using both COSMID and GUIDE-seq, and the NGS quantification of off-target 

activity was carried out using genomic DNA from gene-edited CD34+ hematopoietic stem and 

progenitor cells (HSPCs) from patients with SCD. Here we further performed off-target 

prediction and ranking using Elevation and CRISTA for the same gRNA, and compared the 

results with that using GUIDE-seq and COSMID, as shown in Box 2. 
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As can be seen in Box 2, analysis of any given programmable nuclease can be complex, with 

each different technique giving different results. In our own CRISPR/Cas9 gene editing work, 

these observations have driven us to follow several principles for the analysis of off-target 

effects by programmable nucleases. An overview of the recommended workflow, from gRNA 

design to off-target validation is shown in Figure 4. Prior to extensive off-target analysis as 

outlined below, the first step is to confirm efficient on-target editing in the cell type of interest. 

TIDE30 and ICE31 are common tools that quickly estimate the level of editing by analyzing 

Sanger sequencing traces from CRISPR treated cells. Once a lead candidate of efficient 

gRNA(s) has been identified the following steps give an overview of current best practices for 

assaying off-target effects. 

1. Combine experimental and in silico analyses to assemble a list of potential off-

target editing sites. Any given methodology has the possibility of missing true off-

target editing. Using at least one bioinformatics based tool and one experimental tool 

allows these approaches to complement each other. The experimental tool provides an 

independent assessment of off-target editing rates, allowing one to discern and reject 

nuclease designs, such as the gRNA designed to target VEGFA site 2122, that cuts in a 

promiscuous fashion. On the other hand, the in silico tool can be useful in picking up the 

potential off-target sites that were missed by the experimental tool, especially in cases 

where the true off-target sites missed by the experimental tool affect the final product for 

a therapeutic application (e.g., edited stem cells for clinical use). From the above 

performance comparisons, Elevation is recommended for in silico prediction, and the 

top ~100 potential off-target sites should be retained for downstream validation. GUIDE-

seq is recommended as the experimental tool, especially when it can be performed 

using the cell type of interest. For well-behaved CRISPR/Cas9 protospacer sequences, 

GUIDE-seq typically yields 5-10 potential off-target sites, many of which may overlap 

with computationally identified sites. The inclusion of sites identified by GUIDE-seq, 

therefore, is not expected to significantly increase the burden of downstream 

experimental validation.  

2. Use Amp-NGS as the gold standard assay for determining true off-target sites. As 

many potential off-target sites should be assessed as is practical, to minimize the 

likelihood of missing important bona fide off-target editing events, since to date none of 
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the ranking algorithms is accurate. The decreasing costs of NGS and fluid-handling 

robotics allows a laboratory of even modest means to assay tens to hundreds of 

potential off-target sites for any given gRNA. Matched negative control assays must 

also be performed using unedited cells, since detection limits vary across different 

genomic loci. A recent review123 compared three web-based Amp-NGS data analysis 

tools (CRISPResso2114, Cas-Analyzer124 and CRISPR-GA125), among which 

CRISPResso2 was recommended because of its detailed output report, functionality of 

batch analysis and capability to be utilized in base editing applications. 

 

CONCLUDING REMARKS 

Much progress has been made in both experimental and computational approaches to 

analyzing off-target effects of programmable nucleases, especially for CRISPR/Cas9-based 

systems. As the field matures, several key areas of research will improve the accuracy and 

relevance of off-target editing detection and quantitation technologies. 

Clinical consequences. As far as we are aware, to date no clinical trials have reported 

adverse events arising from off-target effects of gene editing using any programmable 

nuclease. While this can partly be ascribed to the attention paid to off-target editing in pre-

clinical studies, it also likely reflects the fact that few such studies have been completed, and 

that these studies typically enroll small numbers of patients.  

A simple calculation suggests that the risk of adverse events arising from off-target editing is 

not necessarily small. For curing sickle cell disease, for example, 2-5 million gene-edited 

CD34+ HSPCs per kilogram of body weight may constitute a potentially curative dose126. Off-

target editing at a rate of 0.1% is thus expected to give rise to many thousands of cells bearing 

an off-target edit. Since rare gain-of-function and loss-of-function mutations have led to clonal 

expansion within virally transduced therapy products127,128, the technological detection limit of 

0.1% might be insufficient to identify all potentially dangerous off-target editing events, and the 

long-term consequences of off-target editing remain largely unknown. More molecular biology, 

bioinformatics and clinical research will be required to determine what the detection limit 
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should be, and more technology development will be needed to achieve it. Furthermore, to 

date most of the off-target analyses focus on small indel mutations at the off-target cut sites; 

however, due to simultaneous on- and off-target cutting, intra- and inter-chromosomal 

rearrangements such as inversions, large deletions and translocations may occur117. Although 

chromosomal rearrangements are likely rare events, even a very small number of stem cells 

harboring these detrimental events could clonally expand in vivo and cause diseases such as 

cancer.   

Improving quantitation. The 0.1% detection limit for amplicon sequencing reflects current 

practices and can be improved upon in several ways. Miller et al129 used oversampling and 

rigorous statistical analyses to improve upon this limit by ~10-fold. Further improvements 

should be possible using UMI tagging in initial rounds of PCR, followed by oversampled NGS. 

More data, better data. At the moment, experimental data on true off-target effects are 

scattershot. Each experimental method published so far has been performed on different sets 

of gRNAs, and often in different cell types. This has prevented the field from obtaining a 

systematic understanding of how these experimental methods compare with each other, and 

necessitated our use of on-target enrichment as an imperfect proxy for how sensitive each 

method is. More, and better, data sets will improve our understanding of the relative merits of 

each experimental and computational technique, and will also improve the performance of 

machine learning tools in predicting potential off-target sites. 

Future studies should be performed on consistent sets of programmable nucleases in 

consistent cell types, and the existing methods should be re-evaluated by “back-filling” the 

analysis to give a more consistent set of data. As much as possible, data for these methods 

should also be obtained for therapeutically-relevant cell types such as HSCs. A recently 

created NIST genome editing consortium (see Box 1) will develop measurements and 

standards to increase confidence in the use of these technologies.  

Machine learning (ML). Two main factors have facilitated the development of ML-based 

algorithms for off-target prediction. The evolution of NGS made it affordable for researchers to 

screen larger numbers of potential off-target sites with much greater sensitivity resulting in 

datasets sufficient for model training, while in-depth research into the mechanism of 
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CRISPR/Cas9 editing provided more potential features affecting cutting efficiency and 

specificity  for consideration during model development. With further increases in the amount 

of off-target data and the rapid progress of basic research in ML, it is expected that ML-based 

off-target scoring algorithms will aid both off-target prediction and the gRNA design process.   

Personalized off-target analysis. One major limitation of most existing off-target analysis 

tools concerns mapping of sequencing reads. This is currently done using the reference 

human genome which is mostly comprised of a single individual with 70% of the reference 

derived from donor RP11130. A recent study of 910 African genomes revealed 300 million 

bases of new DNA spread across 120,000 contigs not found in the reference genome, with 40% 

of this new DNA shared with Korean and Chinese genomes131. This large variability across 

genomes raises the possibility that distinct human populations or individuals may harbor novel 

off-target sites and events that will go undetected by in silico tools that search the reference 

genome and by experimental assays since sequence reads are filtered out when mapping to 

the reference genome. This is especially important considering that clinical trials are underway 

for sickle cell disease patients of African descent. Future studies of off-target effects in gene 

editing using programmable nucleases for therapeutic application should take into account the 

genome of the patient, reflecting a truly personalized medicine approach.  
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FIGURE LEGENDS 
 
Figure 1. Schematics showing four major classes of programmable nucleases. 

Programmable nucleases for genome editing include (a) zinc-finger nuclease (ZFN), Fn, FokI 

nuclease domain (b) transcription activator-like effector nuclease (TALEN), Fn, FokI nuclease 

domain (c) clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-

associated protein 9 (Cas9) systems. (d) A Base Editor is a CRISPR/Cas9 system that directly 

converts one DNA base or base pair into another without making a DSB. It consists of a Cas9 

nickase (nCas9) fused to an Adenosine or Cytosine deaminase, which is capable of converting 

A to G or C to T respectively in genomic DNA.  

Figure 2. Schematics showing in vitro and in vivo experimental techniques most 

commonly used to characterize off-target cutting by CRISPR/Cas9. These techniques 

include those for detection of (i) in vitro (biochemical) tagging of Cas9 cut-sites, (ii) in vivo 

(cellular) tagging of Cas9 cut-sites, and (iii) targeted sequencing of PCR amplicons. Cas9 

binding techniques are not commonly used to characterize off-target cutting and are therefore 

not shown. Targeted amplicon sequencing is routinely used to verify off-target sites identified 

by these experimental techniques. 

Figure 3. The ability of various off-target site identification algorithms to correctly rank 

experimentally confirmed true off-target sites. For each algorithm, we plot the fraction of 

true off-target sites found in the set of top-ranked sites as a function of the size of that set, 

averaged across 27 gRNAs for which validated off-target cutting data exist. These results can 

be interpreted as estimates of how many computationally-predicted off-target sites need to be 

experimentally assayed to achieve a given level of coverage for true off-target cutting events. 

Algorithms that are more useful for this task, then, yield curves that are further to the left, since 

they allow the user to assay fewer sites to achieve the same level of sensitivity for true-positive 

off-target events. (a) Potential off-target sites for each of the 27 gRNAs were computed by 

Cas-OFFinder and separately ranked by each algorithm. (b) Same as in (a), except only for 

the 4 novel gRNAs whose results were not present in the training datasets of any of the 

machine learning algorithms to mitigate potential risk of over-fitting. 
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Figure 4. Recommended workflow for identifying CRISPR/Cas9 off-target editing. 1) 

gRNA designs for the target gene are screened using an in silico tool e.g. Elevation to identify 

candidate gRNAs with limited potential for off-target editing. 2) Candidate gRNAs are delivered 

to cells and 3) Editing efficiency is assessed via Sanger sequencing trace analysis and used to 

confirm lead candidate gRNAs with high on-target editing. 4) Identification of off-target sites 

using an experimental tool e.g. GUIDE-seq with 5) detection of off-target sites by NGS. 6) PCR 

amplification of bioinformatically predicted and experimentally identified off-target sites for 7) 

NGS and bioinformatic analysis to generate a 8) Final off-target report for lead candidate 

gRNAs. 
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BOXES 

Box 1: Glossary 

Base Editor Cas9 nickase fused to an active deaminase for targeted conversion of cytosine to 
thymine or adenine to guanine without the generation of a DNA double strand break.  

Cas9 (CRISPR associated protein 9) Nuclease capable of generating DNA double strand 
breaks in a sequence-specific manner in combination with a gRNA. 

CNN (Convolutional Neural Networks) A specific type of artificial neural networks that uses 
convolution for supervised learning and data classifications. Typically used for image 
recognition. 

CRISPR (Clustered Regularly-Interspaced Short Palindromic Repeats) DNA sequences in 
prokaryotes that play a key role in antiviral defense. 

dCas9 (Nuclease-dead Cas9) A modified Cas9 enzyme where both nuclease domains have 
been inactivated to create a DNA binding protein that does not cut DNA. 

DSB (Double strand break) DNA lesion where both strands of the DNA duplex are cleaved. 

FokI Nuclease domain Non-specific DNA cleavage domain from the type IIS restriction 
enzyme FokI. 

gRNA (Single guide RNA) A short RNA sequence (100 nucleotides) that interacts with Cas9 
to generate ribonucleoprotein complexes capable of sequence-specific DNA cleavage. 

HDR (Homology-directed repair) A DNA repair pathway which requires a DNA donor 
template, resulting in the targeted integration of a donor sequence.  

ICE (Inference of CRISPR Edits) Python script and webtool for analyzing Sanger sequence 
files of CRISPR edited cells. 

Indel (Insertion or deletion) DNA sequence mutations arising from imperfect repair of DNA 
double strand breaks where bases are inserted or removed. 

nCas9 (Nickase Cas9) A modified Cas9 where one of two nuclease domains is disrupted 
resulting in a Cas9 protein capable of cleaving one strand of a DNA duplex resulting in DNA 
nicks. 

NHEJ (Non-homologous end joining) A DNA repair pathway which results in the direct 
ligation of DNA break ends in the absence of a homologous template for repair. 

NIST (National Institute of Standards and Technology) A measurement standards 
laboratory that supplies Standard Reference Materials. The NIST Genome Editing Consortium 
is tasked with establishing Standards in Genome Editing. 
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PAM (Protospacer Adjacent Motif) A short DNA sequence recognized by Cas9 and essential 
for DNA binding and cleavage by Cas9. 

PRC (Precision-Recall Curve) A plot of the precision (y-axis) and the recall (x-axis) where the 
precision is calculated as the ratio of the number of true positives divided by the sum of the 
true positives and false positives and recall is calculated as the ratio of the number of true 
positives divided by the sum of the true positives and the false negatives.  

PWM (Position Weight Matrix) A matrix of weights for distinguishing between true binding 
sites from non-target sites with similar sequences. This matrix can be used to scan genomes 
for potential off-target site discovery. 

ROC curve (Receiver-Operator Characteristic curve) A plot of the true positive rate (y-axis) 
versus the false positive rate (x-axis). The true positive rate is calculated as the number of true 
positives divided by the sum of the number of true positives and the number of false negatives. 
The false positive rate is calculated as the number of false positives divided by the sum of the 
number of false positives and the number of true negatives. The area under the curve (AUC) 
can be used as a summary of the model performance.  

RVD (Repeat Variable Diresidue) TAL effectors consist of repeated highly conserved 
domains of 33-34 amino acids with divergent amino acid residues at the 12th and 13th positions 
known as the Repeat Variable Diresidue. These RVDs determine the DNA binding specificity 
of the TAL effector with one RVD binding to one nucleotide. 

TAL Effector Nuclease (TALEN) Engineered TAL effectors consisting of 12-31 repeats fused 
to the FokI nuclease domain. Since the FokI domain requires dimerization to cleave DNA a 
pair of TALENs must bind with appropriate spacing and orientation to successfully cleave the 
DNA target. 

TIDE (Tracking of Indels by Decomposition) R code and webtool for analyzing Sanger 
sequence files of CRISPR edited cells. 

Zinc Finger Small protein motif first identified as DNA-binding motifs in transcription factors. 
Each Zinc finger typically recognizes 3bp of DNA and tandem arrays of zinc fingers allow for 
longer sequences of DNA to be recognized. 

Zinc Finger Nuclease (ZFN) Engineered zinc finger proteins consisting of 3-6 Zinc Finger 
repeats fused to the FokI nuclease domain. Since the FokI domain requires dimerization to 
cleave DNA a pair of ZFNs must bind with appropriate spacing and orientation to successfully 
cleave the DNA target. 
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Box 2: Off-target determination for a gRNA sequence for Sickle Cell Disease 

 

As a real-world example of characterizing off-target effects of programmable nucleases, we 
describe here the analysis of a CRISPR/Cas9 system designed to treat Sickle Cell Disease 
(SCD)117. The CRISPR gRNA R66SCD targets the SCD mutant site in HBB (with the target 
sequence next to PAM as GTAACGGCAGACTTCTCCACNGG). Co-delivery of the 
R66SCD/SpCas9 RNP with a short ssODN donor template elicits gene-correction of the 
sickling mutation locus in CD34+ hematopoietic stem and progenitor cells (HSPC) from 
patients with SCD. Injection and engraftment of a sufficient number of these gene-edited 
HSPCs is potentially curative for SCD. 

The above figure shows all of the sites at which off-target cutting was detected in CD34+ 
HSPCs by targeted NGS of ~7,500 cells, along with corresponding editing rates shown as 
“%indel”. To generate the list of potential off-target editing sites, we first performed 
computational prediction using COSMID63, which identified 57 potential off-target sites. To 
complement the computational prediction, we also performed experimental off-target site 
discovery using GUIDE-seq in U2OS cells. This yielded six potential off-target sites, all of 
which had been predicted using COSMID. Targeted NGS of the 57 potential off-target sites, 
yielding at least 9,000 total reads per site, showed that 9 of them had detectable off-target 
activity. These are listed in the figure in order of decreasing editing activity seen at that site, as 
determined by fraction of total sequencing reads from those sites bearing indels (“% indels”). 

In addition to GUIDE-seq and COSMID, we performed off-target prediction using two additional 
computational prediction tools (Elevation and CRISTA). Both of these techniques identified a 
large number of potential off-target sites. Since these techniques give scores for each potential 
off-target site that they identify, we sought to determine whether the scores could aid in 
prioritizing which sites to assess by targeted NGS. We therefore show the rank for each 
confirmed off-target site within the predictions arising from each discovery method. In some 
cases the methods failed to identify a site that was confirmed to have off-target editing; these 
have a “-“ where the rank would otherwise be. 

Our results here show remarkable agreement among the various methods for predicting off-
target sites at which editing rates are high. Even though it was performed in a different cell line, 
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GUIDE-seq was nevertheless able to discover the top three off-target sites for R66SCD gRNA. 
Further, all off-target sites at which the indel rate was >0.5% were ranked among the top 10 by 
both Elevation and CRISTA. However, these methods start to diverge at sites with lower off-
target editing rates. Therefore, we cannot be assured that any approach to off-target site 
discovery, either experimental or computational, can predict all off-target sites for which the 
true editing rate is at least 0.1% without introducing a large number of false positives. As even 
this low off-target editing rate can potentially compromise the safety of gene-edited therapeutic 
products (see “CLINICAL CONSEQUENCES” section), much work remains to improve the 
quality of off-target prediction. 
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TABLES 

Table 1. Comparison of in silico off-target site search tools for ZFNs and TALENs 

 Name Screening 
approach or 
algorithm 

Off-target 
ranking/scoring 

basis 

Strengths Weaknesses 

Z
F

N
 T

o
o

ls
 

PROGNOS78 
(Website) 

Base by base Weighted 
homology, 

conserved G score, 
polarity effects 

Allows user-defined spacing, 
ZF homo-dimerization, 

ambiguous bases.  
Analyzes ZF subunits. 

Relatively low false-positive 
ratios 

Limited training set 

ZFN-site132 
(Website) 

TagScan133 Sequence 
homology 

Allows user-defined spacing, 
ZF homo-dimerization, 

ambiguous bases 

No scoring algorithm 
 

Zinc Finger 
Tools134 
(Website) 

Search in <10kb 
user-defined 
sequence 

N/A Screens ZF targets in user-
supplied DNA sequences 

Screens limited to 
49 triplets with 
validated ZF 

domains 

T
A

L
E

N
 T

o
o

ls
 

PROGNOS78 
(Website) 

Base by base Modular Position 
Weight Matrix, 
binding energy 
compensation, 
polarity effects 

Allows up to 20 mismatches. 
Relatively low false-positive 

ratios (~11:1)* 

Limited training set 

CHOPCHOP135 
(Website) 

Bowtie Weighed off-target 
site number 

Allows up to 2 mismatches  Potentially misses 
off-target sites 

TALENgetter/ 
TALENoffer76 
(Website, 
command line) 

Base by base 
with threshold-
based speed-up 
strategy 

Machine-learning- 
based Modular 
Position Weight 

Matrix 

Allows up to 10 mismatches, 
Allows the use of rare RVDs  

 

The scoring 
algorithm was 

overperformed by 
PROGNOS78 

TALE-NT 2.075 
(Website) 

Base by base Modular Position 
Weight Matrix 

The first scoring tool for 
TALEN off-target analysis 

 

Potential worse 
performance if using 

custom RVD 
designs 

 
*The false-positive ratios are defined as “the number of screened sites with no detectable 
activity to the number with detectable activity measured by experimental prediction methods” 78
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Table 2. Comparison of in silico off-target site screening tools for CRISPR/Cas9 

systems 

Name Strengths Weaknesses 

BLAST136 
(Website, 

Command line) 

A time optimized sequence alignment tool 
(seeding based algorithm), bulges allowed 

Less accurate (can miss potential off-target 
sites), limited mismatch numbers, no custom 

PAM 

TagScan133 
(Website, 

Command line) 

A time optimized sequence screening tool for 
queries <60 bases, web support 

Limited mismatch numbers, no custom PAM, 
no bulges allowed 

Bowtie61 
(Command line) 

A time optimized alignment tool for queries <50 
bases 

Less accurate (can miss potential off-target 
sites), limited mismatch numbers, no custom 

PAM, no bulges allowed 

Bowtie264 
(Command line) 

A time optimized alignment tool, bulges allowed Misses off-target sites with low mismatch 
numbers80, limited mismatch numbers, no 

custom PAM 

CasOT83 
(Command line) 

A sequence screening tool for CRISPR/Cas9 
system, custom PAM, user-defined mismatch 

number in seed/non-seed region, paired-gRNA 
mode allowed 

Time-consuming137, no bulges allowed 

Cas-OFFinder81 
(Website, 

Command line) 

A commonly used sequence screening tool for 
CRISPR/Cas systems, web support, custom 
PAM, user-defined mismatch number, bulges 

allowed 

Can miss potential off-target sites with 
complex DNA/RNA bulges67, moderate 

speed137 

dsNickFury92 
(Command line) 

A sequence screening tool for CRISPR/Cas9 
system, custom PAM, user-defined mismatch 

number 

No bulges allowed 

FlashFry138 
(Command line) 

A time optimized sequence screening tool for 
CRISPR/Cas systems, custom PAM, user-
defined mismatch number. Good for large 

datasets. 

No bulges allowed 

Crisflash82 
(Command line) 

A sequence screening tool for CRISPR/Cas9 
system, custom PAM, user-defined mismatch 

number, accepts genetic variation data on 
haplotype level 

No bulges allowed 

CRISPRitz67 
(Command line) 

A time optimized sequence screening tool for 
CRISPR/Cas9 system, custom PAM, user-
defined mismatch number, bulges allowed, 

accepts genetic variation data 

Cannot process genetic variation data on 
haplotype level 
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Table 3. Comparison of in silico off-target site ranking and scoring tools for 

CRISPR/Cas9  

Name Main features reported Strengths Weaknesses 

E-CRISP65 (Website) 
Formula based 

Mismatch numbers An early approach for 
CRISPR/Cas9 off-target 

identifications 

Rankings were outperformed 
by other algorithms 

CCTOP84 (Website) 
Formula based 

Mismatch positions and 
numbers 

Web support Scorings were outperformed 
by other algorithms 

COSMID78 (Website) 
Formula based 

Mismatch positions and 
numbers 

Web support, bulges allowed Scorings were outperformed 
by other algorithms 

Cropit86 (Website) 
Formula based 

Mismatch numbers and 
continuities (Optional: 
chromatin states) 

Web support. Better 
performance than other 

formula-based algorithms on 
ChIP-seq data 

Scores did not correlate well 
with cleavage-based 

genome-wide experimental 
data 

MIT23 (Website*) 
Formula based Modular 
PWM (see Box 1) 

Mismatch positions, 
numbers and mean 
distances 

Web support. The most 
popular formula-based 

algorithm. Good ranking 
performance80 

Scorings were outperformed 
by CFD89, no bulges allowed 

Hsu score23  
(Command line*) 
Normalized Modular PWM 

Mismatch positions and 
numbers 

A simplified version of MIT Scores did not correlate with 
experimental data as well as 

the MIT score 

CFD89 (Command line) 
Modular PWM 

Mismatch positions, 
numbers and identities 

Based on the biggest 
cleavage dataset to date, 

Good ranking performance80 

No bulges allowed 

predictCRISPR91 
(Command line) 
Machine learning 

281 sequence-related 
features  

 
 
 
 
 

 
All the machine-learning-based tools showed comparable to 
better performances than the algorithms in other categories. 

However, since most of these models were trained by 
genome-wide experiment data, which were largely 

overlapped to most of the training sets, a potential over-
fitting issue exists in the comparison (as described in detail 

in the “PERFORMANCE COMPARISONS” section and 
shown in Supplementary Table 1). Elevation is 

recommended for in silico prediction, and CRISTA is the 
only option that allows bulges. 

CRISTA90 
(Website, Command line) 
Machine learning 

Nucleotide identities, 
alignment, 
thermodynamics and 
genomic contents 

Elevation92 
(Website, Command line) 
Machine learning 

gRNA spacer sequence 
and off-target sequence 

CNN_std93 
(Command line) 
Deep learning 

gRNA spacer sequence 
and off-target sequence 

deepCRISPR94 
(Command line) 
Deep learning 

gRNA spacer sequence 
and off-target sequence, 
cell-type specific features 

Synergizing CRISPR95 
(Command line) 
Deep learning 

Scores from 5 other 
algorithms (CFD, MIT 
Website, MIT score, 
Cropit, CCTop) and 
evolutionary conservation 

*Implemented in the CRISPOR website and reviewed in reference80. 
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Table 4. Comparison of experimental off-target site search tools with estimated 

performance characteristics 

 Name Method What is 
detected? 

Setting Cut site 
enrichment 

Cellular false 
positives 

In
 V

it
ro

 

Digenome-seq47 NGS fragment 
end statistics 

DSB DNA 170* 65% 

CIRCLE-seq49 DSB end 
enrichment 

DSB DNA 821 88% 

SITE-seq48 DSB end 
enrichment 

DSB DNA 178 95% 

DIG-seq51 NGS fragment 
end statistics 

DSB Chromatin 289* 64% 

In
 V

iv
o

 

HTGTS26 Rearrangeme
nt detection 

Repair 
product 

Cells 4,700 n.d. 

GUIDE-seq27 Oligonucleotid
e integration 

Repair 
product 

Cells 29,000 20% 

DISCOVER-seq55 DSB end 
enrichment 

DSB Cells/tissue 233 ~0% 

BLISS54 DSB end 
tagging 

DSB Cells/tissue 160 20% 

Summary of experimental techniques for off-target cutting by programmable nucleases. Since 
all methods rely on specific enrichment of either DNA close to cut sites, or DNA ends close to 
cut sites, we use the degree to which they achieve enrichment of DNA fragments near the on-
target editing site (“Cut site enrichment”) as a proxy for their sensitivity. For “Cellular false 
positives”, we use the fraction of sites identified by each technique that fail to be edited (indels 
< 0.1%) in the accompanying cellular validation studies; see main text for details. *Cut site 
enrichment for Digenome-seq and DIG-seq was assessed by enrichment of sequencing 
fragments whose ends are precisely at the on-target editing site. n.d., not determined. 
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Supplementary Information 

Supplementary Figures 

Supplementary Figure 1: ROC and PRC of various off-target scoring algorithms based on the 

true off-target sites identified.   

Supplementary Figure 2: ROC and PRC of various off-target scoring algorithms based on 

novel gRNA off-target datasets 

Supplementary Tables 

Supplementary Table 1: Structures and training sets of machine-learning-based algorithms 

for off-target prediction. 

Supplementary Table 2: List of datasets from the Sequence Read Archive used to calculate 

on-target enrichment for performance comparison of experimental techniques. All genomic 

coordinates reference the hg38 human genome assembly.  

Supplementary Table 3: Components of the true positive list used in the analysis for 

performance comparison of computational techniques, taken from nine studies that used 

amplicon-specific experimental techniques to detect off-target editing rates. “OT” in this table 

stands for off-target. 

Supplementary Table 4: The full off-target dataset used in the performance assessment. 

Supplementary Table 5: The off-target dataset of novel gRNAs used in the performance 

assessment. 
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