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Supporting Information: 

Determination of phases of iron oxide nanodots before and after annealing. 

XPS was used to confirm the crystalline phase of the iron oxide nanodots on Si substrate after 

UV/Ozone treatment and further calcination. High resolution Fe2p spectra were recorded to 

distinguish different phases of iron oxides. Fe 2p core level spectrum recorded on iron oxide 

nanodots prepared after UV/Ozone treatment (Figure 1a) consists of two peaks associated 

with Fe 2p3/2 at 711 eV and Fe 2p1/2 at 724.4 eV and broadened due to the existence of Fe+2 

and Fe+3 ions. The Fe 2p3/2 and Fe 2p1/2 binding energies (BEs) for Fe+2 and Fe+3 were 

determined by curve-fitting using Gaussian-Lorentzian line shapes. The measured Fe 2p3/2 

and Fe 2p1/2 BEs are 709.7 and 723 eV (assigned to Fe+2) and 711.6 and 725 eV (Fe+3) 

matches literature values.1 The concentration ratio of Fe+3/ Fe+2 was calculated from the 

curve-fitted peak areas as about 2:1 as expected for Fe3O4. Fe 2p core level spectrum of iron 

oxide nanodots after calcination (Figure 1b) consists of two sharp peaks associated with Fe 



2p3/2 and Fe 2p1/2 at 711.3 and  725.1 eV accompanied by high binding energy satellite 

structures (+8 eV shift). These data are consistent with the existence of Fe+3 (Fe2O3) ions 

only.2-3  

 

 

 

 

 

 

Figure 1 High resolution spectrum for Fe 2p core level revealed (a) Fe3O4 and (b) Fe2O3 

phase. 

Determination of crystalline structure of iron oxide nanodots before and after annealing 

by TEM. 

The crystalline information of these systems is exemplified further by TEM (Figure 2). The 

nanodots on Si substrate were scratched by a sharp edge blade and disperse into ethanol for 

the preparation of TEM grid. Clear lattice fringes can be seen from Figure 2a revealed the 

single crystalline nature of the UV/Ozone treated sample. The lattice fringes were regularly 

separated with a spacing of 0.2967 nm, which agrees well with the (220) lattice index of 

cubic Fe3O4 (Figure 2a).4 Similarly, the single crystalline nature of the high temperature 

calcined sample was revealed by the HRTEM image (Figure 2b). Lattice fringes were 

regularly separated at 0.252 nm agreeing with the (110) lattice spacing of rhombohedral 

hematite.5 
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Figure 2 HRTEM image of (a) Fe3O4 and (b) Fe2O3 nanodots. Inset of (b) shows 

corresponding fringe spacings from nanodots. 

 

M-H measurements. 

The magnetization Vs. field (M-H) measurements were carried out on Fe2O3 nanodots.  The 

diamagnetic contribution from the quartz substrates was estimated, subtracted from the 

directly measured results shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 M-H curve of different diameter Fe2O3 nanodots. 
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