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Abstract  

We present a centrifugal microfluidic “Lab-on-a-Disc” (LoaD) system capable of implementing 

nucleic acid in vitro amplification using non-contact heating and fluorescence detection. The system 

functionality is verified by implementing a Nucleic Acid Sequence Based Amplification (NASBA) 

reaction, targeting the tmRNA transcript of Haemophilus influenzae. The NASBA assay incorporates 

fluorescent molecular beacon probes reporting target tmRNA amplification for endpoint detection. 

The system implements non-contact IR heating to heat the NASBA reaction to the required target 

temperatures during denaturation and amplification steps. The LoaD control system facilitates spin 

speed and chamber positioning for heating and fluorescence detection. The LoaD alignment system 

uses magnetic fields to locate and lock the chamber in the required position (heating or detection). 

The NASBA assay was implemented on the system using Haemophilus influenzae tmRNA over the 

range 102 – 104 cell equivalent (CE) units. For comparison, identical qNASBA assays were 

implemented on a Roche LightCycler 2.0 over this concentration range.  

Keywords: Isothermal amplification,Lab-on-a-Disc(LoaD), tmRNA, IR heating, fluorescence detection.  

1.Introduction 

First generation point of care (POC) immunoassay diagnostic tests were relatively complex to 

perform and typically demonstrate poor sensitivities (25-65%), when compared to established 

laboratory based nucleic acid (NA) tests [1,2,3]. Second generation POC tests have adapted NA 

amplification for rapid disease diagnosis. The sensitivity and specificity of NA tests are typically > 

90%, with multiplex detection and analytical sensitivities in the range 1 – 100cells [4]. Recently a 

number of commercial PCR platforms have emerged [5,6] for POC infectious disease screening from 

Cepheid and BiofireDX.  Many of these use complex fluidic pump and valve systems to implement 

biochemical protocols, increasing system cost. The ability to integrate liquid manipulation on the 
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fluidic device has increased interest in centrifugal microfluidics, where centrifugal forces manipulate 

liquid reagents [7,8]. The LoaD system is an open platform where liquid moves outward towards the 

disc edge expelling air as it progresses. This facilitates on-disc liquid storage, negating the need for 

external pumps, valves or reservoirs found in hydrodynamic systems [9]. Furthermore, valving can 

be implemented and pressure gradients controlled through careful device design and optimized spin 

protocols [8,9,10]. At elevated temperatures in open systems, liquid loss by thermo-capillary 

pumping or evaporation can be an issue, thus on-disc PCR requires robust valving [11].  

Isothermal amplification offers advantages over PCR, removing thermal cycling reduces power 

consumption, eliminates complex electronics [12], and reduces liquid leakage/evaporation. 

Isothermal amplification methods achieve sensitivities and specificities matching or exceeding that 

of PCR and are capable of delivering results in <10 minutes [13]. Nucleic Acid Sequence based 

Amplification (NASBA), employs the simultaneous action of three different enzymes to amplify 

sequences from an original single-strand RNA template. The addition of molecular beacon probes to 

a NASBA reaction enables real-time and multiplex analysis [14]. NASBA has been employed for 

detecting microorganism RNA from a range of biological samples [15,16]. Since NASBA is an RNA 

specific amplification technology it offers several advantages over conventional DNA amplification 

technologies; (i) enabling quantitative detection of microorganism RNA [15,16,17], (ii) no 

amplification interference from contaminating background DNA [18], (iii) direct detection of RNA 

transcripts [19], (iv) yields of up to 1012 copies [13] and (v) has the potential to only detect viable 

micro-organisms [20].   

Previous reports of NASBA in microfluidic devices use direct contact heating to maintain reaction 

temperatures [21,22]. Non-contact heating facilitates LoaD NASBA amplification, allowing spin 

without the complexity of contact heating. Approaches to noncontact microfluidic heating include; 

microwave [23], induction [24] and infrared [25].  Microwave and induction heating require complex 

electronic components e.g. high frequency oscillators (26GHz) with high power inputs (20-70W). 

More recently, noncontact IR heating was applied to the rapid amplification of nucleic acids in 

microfluidic devices [26] and IR heating facilitates rapid heating/cooling of nanolitre sample volumes 

[27,28].  

Previously a LoaD system was demonstrated for solid phase purification of total RNA from MCF7 cell 

lysates with integrated dissolvable film and hydrophobic membrane valves [29,30]. This highlighted 

the possibility of integrating complex biochemical protocols on a LoaD system for downstream 

applications such as realtime amplification. In this work non-contact IR heating and fluorescence 

detection was applied to endpoint NASBA on LoaD. A software/hardware system 

implemented:(i)heating,(ii)detection,(iii)spin-control and (iv) chamber alignment for 

heating/detection. A LabVIEW™ programme controlled system timing, signal acquisition and data 

analysis. For detection performance endpoint NASBA assays were implemented on LoaD over the 

range 10 to 104 H. influenzae CE to determine system detection limits. For comparison, identical 

qNASBA assays were also carried out on a Roche LightCycler 2.0. The system demonstrated 

suitability for implementation of the NASBA heating protocol and optical fluorescence detection.  

This paper outlines the materials and methods used in: (i) device chamber fabrication/assembly,(ii) 

biological test samples and (iii) system components to implement heating, detection and LoaD spin 

control. Results presented detail the system performance for detection of H. influenzae tmRNA over 

a clinically relevant range.  



2. Materials and methods  

2.1 Microfluidic chamber fabrication 

The NASBA reaction chamber was injection moulded using Zeonor™ (1060R, Zeon Chemicals Europe 

Ltd) on a Babyplast 6/10P machine (Babyplast; Molteno, LC, Italy), pellets were dried for sixty 

minutes at 55°C. The system parameters were set for Zeonor™ [31]: Injection nozzle 195°C, injection 

chamber 210°C, plastic melt chamber 220°C, with three second injection at 60bar. The 

manufactured components were cleaned as follows: (i) forty minutes at 50°C in an ultrasonic bath 

(10% methanol) (ii) forty minutes at 50°C in an ultrasonic bath (0.1% TWEEN 20), (iii) forty minutes at 

20°C in an ultrasonic bath (de-ionised water) and (iv) ten minute  ozone clean (ProCleanerTM 

BioForce Nanoscience, UT). The microfluidic component was designed using computer-aided design 

(CAD) software (Solid Edge; Siemens, Plano, TX) and the injection mould was milled in brass using a 

Computer Numerical Control (CNC) milling machine (Bridgeport GX 480 VMC;Elmira, NY). The 

chamber dimensions were 500µm deep, 4mm wide and 15mm long (figure 5). The chamber design 

tapered from 4mm to 500µm wide at the inlet/outlet channels minimising air bubble trapping. The 

reservoir had inlet and outlet ports drilled for pipette sample loading and was mounted on a 4mm 

thick LoaD substrate using double sided pressure sensitive adhesive (MH-92712-3, Adhesives 

Research Ltd, Limerick, Ireland).  

2.2 Haemophilus influenzae culture and RNA extraction.  

Haemophilus influenzae (DSMZ23393) was cultured overnight in liquid haemophilus test medium 

(HTM) at 37 °C under microaerophilic conditions. Following this the organism was subcultured in 

HTM broth by transferring 100 µl of overnight culture to 10 ml fresh HTM broth and allowed to grow 

to exponential phase (~ four hours). Once in exponential phase, 1ml aliquots of culture were 

harvested and the H. influenzae cells were collected by centrifugation for two minutes at 12,000 x g. 

Total RNA was isolated from the cell pellet using the RiboPure yeast kit (Ambion, Austin, TX, USA) 

according to the manufacturers’ instructions. RNA integrity was assessed using an Agilent 2100 

Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA). RNA with an RNA Integrity Number (RIN) 

above 7.0 was used for NASBA assays. RNA concentrations were determined using the Qubit RNA BR 

Assay kit and the Qubit 1.0 fluorometer (Life Technologies, Carlsbad, CA) CEs were calculated on the 

basis of 1 cell containing 100 fg of RNA [32].  

2.3 NASBA assay design  

A pair of primers and a molecular beacon were designed to specifically amplify and detect the 

tmRNA transcript of H. influenzae. The primers (5’-3’) P1; AATTCTAATACGACTCACTATAGGG-

AGAAGG-CTTCGATCCTCAAACGGT, P2; GCAGCTTAACCT and a molecular beacon 5’FAM CCGAGT-

GGGGATAACGCGGAGTCA-ACTCGG DAB 3’ were designed according to recommended guidelines 

[33,34]. Primer and molecular beacon probes were supplied by Eurofins MWG Operon (Ebersberg, 

Germany).  

 

 

 



2.4 qNASBA H. influenzae assay 

NASBA assays were performed using the NucliSENS EasyQ Basic Kit V2 (Biomerieux, Marcy l'Etoile, 

France) to manufacturer’s instructions. qNASBA reactions were performed in a total volume of 20 µl. 

Target RNA (5µl) was added to 10 µl reagent/KCL (70 mM final concentration)/primers and 

molecular beacon probes (0.2 µM and 0.1 µM concentration respectively) mixture. The reaction was 

incubated on an iCycler thermocycler (Bio-rad, Hercules, CA) for 65oC for five minutes to denature 

the RNA secondary structure followed by 41oC for five  minutes to allow primer and probe annealing. 

Subsequently, the enzyme mixture (5µl) was added to the reaction. The reaction was then incubated 

on a LightCycler 2.0 (Roche Diagnostics) at 41oC for 60 minutes with a fluorescent measurement (530 

nm) recorded every minute. A no template control (NTC) consisting of water instead of RNA was 

included in each experiment. 

 

2.5 On-chip NASBA  

NASBA reactions were performed using the NucliSENS EasyQ Basic Kit v2.0 (BioMerieux, Marcy 

l'Etoile, France). A 40µl sample volume consisting of 20 µl reagent/KCL (70mM final concentration)/ 

primers and molecular beacon probes (0.2 µM and 0.1 µM concentration respectively) mixture, 10µl 

RNA template, and 10µl enzyme mix was prepared and used to fill the NASBA chamber. 

Reagent/KCL/primer mix and RNA template were premixed prior to loading on the chip. The reaction 

was incubated on the IR heater at 65 °C for five minutes and then cooled to 41°C for five minutes. 

Following the 65°C denaturation step, the enzyme mix was added directly to the chip and placed 

back on the IR heater at 41°C for one hour. Endpoint fluorescence on the NASBA product was 

measured at room temperature using the detection system.  

 

2.6 System functionality 

The instrument  implemented denaturation/amplification temperature profiles using a PID controller 

to modulate heater power.  A LabVIEW™ clock function held the target chamber at 65°C for five 

minutes, it then cooled & held the chamber at 41°C for five minutes for primer annealing. The motor 

spin parameters were set to generate centrifugal forces facilitating sample manipulation and 

chamber repositioning between the heating & detection locations. Chamber repositioning was 

achieved by rotating the LoaD in discrete 18 degree steps, while activating the position magnet 

(section 2.9). With the LoaD locked in position the sample chamber is heated to 41°C for 55 minutes. 

After amplification, the system rotates chamber rotated to the fluorescence detection and activates 

the excitation source and acquires the fluorescence signal from the PMT detector (section 2.8) via 

the daq card (NI-DAQ6229) analogue input.  

2.7 Non-contact IR heating system 

The non-contact heating element is a broadband NIR filament emitter from Sci-Tech Instruments (IR-

12K) positioned at the inner focus of a parabolic reflector. The PID controller receives a signal  from 

the IR thermal sensor (Omega OSR137-1-MA) and modulates power to the heater and cooling fan 

(20watt) via two high voltage relays (MOSFET 100V).  A calibrated thermocouple (K type, Chauvin 



Arnauk TK2000 instrument) was placed in the microfluidic chamber (filled with deionised water) the 

controller was set to hold the IR heater output fixed for five minutes before the temperature was 

recorded. For calibration, forty measurements were made over the range 20°C to 70°C. The heater 

to LoaD distance was fixed at 10mm while the sensor to LoaD distance was fixed at 15mm, identical 

materials and chamber designs were used for calibration and test. The PID parameters were tuned 

to optimise system response minimising overshoot/oscillation around set-points.  

 

 

2.8 Fluorescence detection system 

The detection system (figure 1), is controlled via LabVIEW™ through the NI-daq card. The optical 

setup uses a dual band (FAM/CY5) fluorescence emission filter (Omega optics XF 535-700DBEM). 

Two laser diodes; (i) 635nm (Thorlabs CPS182) and (ii) 450nm (Thorlabs CPS450) excite sample 

fluorescence for detection. Laser output was defocused illuminating the entire chamber (15mm x 

4mm), a microscope objective focused light from the chamber onto the detector (PMT H10721-01, 

Hamamatsu photonics, Japan), via the  filter. A 1mm diameter circular aperture between the filter 

and detector reduced stray light. The PMT was biased to 450V with 10msec integration time, the 

PMT current was converted to voltage using a transimpedance (X10) amplifier (C7319, Hamamatsu 

photonics, Japan) and measured using the daq card analogue voltage input (0 – 10V).  

Figure 1: The system (left & centre) rotates the LoaD counter-clockwise (right) repositioning the 

NASBA test chamber between the heating and detection locations as outlined in the centre and 

right images.  

Figure 1 illustrates the system implementing NASBA heating and detection within a chamber 

mounted on a Zeonor™ LoaD substrate. The fluorescence signal is recorded after amplification is 

completed. The LoaD was mounted in the system and chamber aligned to the detection position for 

initial measurement and subsequently rotated to the heating position for amplification. Upon NASBA 

completion the chamber was rotated to the detection position for fluorescent measurement. 

2.9 LoaD spin control  

The LoaD was mounted on DC motor spindle (2657W024CR, Faulhaber, Switzerland) with a 1000 

point line encoder (HEDM5500B, Faulhaber, Switzerland) the maximum motor speed was set to 

6000rpm. The acceleration/de-acceleration was set below 50rpm/sec. The LoaD positioning was 

automated by activating the motor in timed pulses, relocating the chamber from the heating to the 

fluorescence detection position. 

                                                    

Figure 2: The LoaD motion control (NI-DAQ 6229) and positioning system (RS232) is driven by 

LabVIEW™ software to actuate the solenoids/positioning magnets and control the motor e.g. 

acceleration, deceleration, speed, duration etc.  

Figure 2 outlines system hardware implementing spin control, the programme implements the spin 

protocol (speed, acceleration, duration etc.) for sample manipulation and chamber repositioning. 



Permanent magnets (MOD4, Magnet Expert Ltd, UK) attached to the LoaD aligned the chamber as 

the motor rotated the LoaD in short pulses (figure 3). After each pulse, an external magnet fixed on a 

linear solenoid (Black KnightTM 122, BLP components Ltd, UK) was actuated when LoaD & external 

mounted magnets overlapped the LoaD/chamber was locked in place. Two magnets mounted on the 

LoaD in combination with identical solenoid actuated magnets, allowed the chamber to be 

repositioned between heating and detection points from a random starting location. The motor was 

controlled via a motion controller (MCDC3006S, Faulhaber, Switzerland) for spin speed, acceleration, 

de-acceleration etc. The solenoids were controlled via the DAQ card analogue output (6V). All 

commands were executed in a LabVIEW™ to interface via an RS232 port & DAQ card. The sequence 

of timed pulses (figure 3) to the external solenoids and timed motor rotation allowed the sample 

chamber to be repositioned between heating and detection locations. The LoaD rotated by 18° per 

step, achieved by motor rotation (10rpm) for one second. The solenoid was activated every 500msec 

when the chamber was aligned the magnets overlap and the chamber locks in place.  

                    

Figure 3: The rotation control of the LoaD and the position of the sample chamber were 

implemented by pulsed (500msec) solenoid actuation of the attached “seek” magnet and the 

timed rotation (10rpm for 1sec) of the LoaD motor under LabVIEW™ control.  

3. Results  

3.1 System heating – Temporal Profile 

The heating control system implemented the NASBA temperature profile within the sample 

chamber, from room temperature the sample is heated to 65°C at a rate of 0.45°C/sec as outlined in 

figure 4. The sample was maintained at 65±0.5°C for five minutes denaturing target RNA and then 

cooled and held at 41°C for five minutes. For amplification the sample was maintained at 41±0.5°C 

for 55 minutes. For each power setting the temperature within the microfluidic chamber was 

measured using a calibrated K-type thermocouple (Chauvin Arnauk TK2000). The power input was 

slowly adjusted and left to equilibrate for ten minutes before the temperature was recorded.  

                          

Figure 4: The NASBA heating profile was applied for the protocol duration (60 minutes), the ramp 

time from room temperature to the denature temperature of 65°C was 100seconds and the 

cooling time to the incubation temperature of 41°C was 31 seconds. The sample was maintained 

at 65°C for five minutes then cooled and held at 41°C for 55 minutes implementing the complete 

NASBA heating protocol.  

3.2 System heating – chamber heating uniformity 

To confirm uniform heating, calibrated thermocouples were placed at three locations in the 

microfluidic chamber and temperature measured as illustrated in figure 5. The chamber heating 

profile using the IR heater was compared to that of a 1450nm laser (Roithner LaserTechnik 

L145T600M). Water has a strong infrared absorption peak at this wavelength making it suitable for 

microfluidic sample heating. For test, the beam from the laser and IR heater were centred on the 



chamber (long & short axis). When inverted on the long axis, similar temperature profiles were 

observed within the chamber.  

                              

Figure 5: The thermal profile across the chamber heating with the 1450nm laser is illustrated. The 

left profile (A) is from the laser focused on the fluidic chamber (2mm spot diameter). A significant 

fall-off in sample temperature is observed off centre of illumination. In (B) defocusing the laser 

spot on the chamber generates a more uniform profile. However, the sample temperature also 

decreases off axis. The temperature profile across the chamber using IR emitter (C) achieved a 

uniform temperature profile across the chamber.  

The focused laser spot size heats approximately 3mm2. However, the measured temperature fell 

rapidly from 65°C at the centre to 54.5°C - 2mm off centre and 47°C - 4mm off centre (figure 5A). 

Defocusing the laser beam (Figure 5B) spread the beam over a larger area, resulting in a decrease in 

the intensity per unit area. Power was increased to 3.8W to maintaining the reservoir centre at 65°C. 

The measured temperature 2mm and 4mm above centre was 62°C and 54°C respectively. Further 

defocusing wasn’t possible due to the laser power limit. The IR broadband emitter achieved a 

uniform temperature profile (65°C) across the chamber (figure 5C) when measured with the 

thermocouple.           

3.3 Fluorescence detection  

To verify detection sensitivity, qNASBA reactions were carried out on a Roche Lightcycler 2.0 at 

concentrations of 104,103 and 102 CE. The reactions confirmed successful amplification of the H. 

influenzae tmRNA concentrations tested. The qNASBA products were then loaded onto the LoaD 

chamber, positioned in the optical fluorescence detector path and the signal recorded (figure 6). This 

established that the fluorescence system could detect 102 CE for end point detection.  

                                                               

Figure 6: The fluorescent signal from NASBA amplifications undertaken in a bench-top 

thermocycler and subsequently analysed on the fluorescence detection system (endpoint).  

In figure 6 the fluorescence signal increases from the empty chamber (figure 6 – blank) to the NTC 

sample (figure 6 – control) due to molecular beacon characteristics:  (i) the quencher may not 

completely absorbed the reporter dye, (ii) there may be a native fluorescence from the quencher 

itself and (iii) the possibility some reporter dye molecule detach from the beacon structure. Thus the 

NTC sample exhibits decaying fluorescence signal during measurement similar to the samples.  

3.4 On disc endpoint NASBA using non-contact IR heating  

Following independent optimization and validation of the IR heater and fluorescence detection 

components, on LoaD endpoint NASBA was carried out in the system. Reactions were carried out at 

1 x104, 1 x 103, 5 x 102, and 1 x 102 CE. A NTC (molecular grade H2O) was also included. For on LoaD 

tests RNA was extracted from cultured H. influenzae cells and amplification was carried out as 

outlined in section 2.5. After NASBA incubation the spin control system was used to relocate the 

sample chamber from the heating position to the detection location. The endpoint fluorescence 



intensity for each of the on-chip NASBA reactions, including the NTC, was measured. To determine 

the absolute fluorescence signal from the NASBA product reactions, the NTC fluorescence signal 

measurement was subtracted. 

                                

Figure 7: The fluorescence intensity for H. influenzae RNA amplified and detected on the 

integrated heating / detection system. The RNA concentrations analysed were equivalent to 102, 5 

x 102, 103 and 104 cells. The error bars are standard deviation of three repeated measurements per 

test.  

This established increasing fluorescence signal over the range 1x102 to 104 CEs (figure 7). However, 

at 102 CE no detectable fluorescence signal above the NTC reaction was observed, thus the current 

detection limit of on-chip NASBA using this system lies between 100 and 500 CEs.  

4. Discussion 

This work demonstrates end point NASBA amplification of tmRNA transcript (H. influenzae) on a 

LoaD system. tmRNA, encoded by the ssrA gene has previously been shown as to be a useful 

molecular diagnostics target for NASBA [35,36]. It is highly expressed, significantly more stable than 

mRNA and contains conserved and variable regions making ideal for the sensitive and specific 

detection of bacterial species [22, 36]. The microfluidic LoaD system offers the possibility to 

integrate fluidic functionality for assay protocol implementation without the need for the external 

pumps, valves etc., traditionally used in hydrodynamic systems. In this approach the LoaD chamber 

is rotated between a heating and fluorescence detection locations using LoaD mounted magnets to 

align the NASBA chamber, eliminating the need for complex position control. A low temperature 

isothermal microfluidic amplification approach reduces: (i) bubble formation, (ii) liquid evaporation, 

(iii) high chamber thermodynamic pressure. Cost is a key consideration for disposable diagnostic 

devices and plastics are preferred over silicon and glass devices. Thus injection moulded Zeonor [37] 

devices were manufactured in this work, the devices were biocompatible, optically transparent with 

low auto-fluorescence.  

Laser and broad wavelength IR sources were evaluated, while the 1450nm laser diode achieved the 

required chamber temperature non-uniform chamber heating was an issue. Thermal gradients 

within a chamber can create localised diffusion, causing spatial variation in reagent concentration 

which may impact reaction efficiency [38]. Isothermal amplification doesn’t require rapid 

thermocycling thus slow heating rates are acceptable (2.5°C/sec). The detection system was 

evaluated with monoplex FAM assays, but it could detect duplex assays e.g. FAM/CY5, CY3/CY5. The 

system demonstrated fluorescence sensitivity down to 100CE with tmRNA (H. influenzae) sample 

amplified on a LightCycler 2.0 (Roche Diagnostics). To establish the system performance with NASBA 

heating and detection, a sample set were tested over the range 10 to 104CE. The full NASBA heating 

protocol was implemented on the LoaD chamber using the IR heater, the fluorescence signal was 

recorded before and after incubation. In this work the sample was pipetted onto the LoaD which 

was loaded onto the system for denaturation, upon completion the sample was removed from the 

LoaD by pipette mixed with the enzymes and reloaded onto the system for incubation/amplification.  



The LoaD motion control system outlined in section 2.9 was used to relocate the chamber between 

heating and detection zones. This demonstrated a system sensitivity of between 100 & 500CE. The 

ideal molecular diagnostics assay should be highly accurate (reproducible, sensitive and specific). 

One characteristic of a highly accurate assay is its analytical sensitivity. In blood stream infections, 

bacterial load can very often be less than 100 CE/mL [39]. Low bacterial load may be compounded 

when sample volumes are limited which is often the case with neonates and children [40]. By further 

optimising the NASBA assay presented here by for example altering the primer/probe concentration 

or through the addition of betaine to the reaction cocktail should enable improvement of the 

analytical sensitivity of the assay [36].The heating system generated temperature profiles 

compatible with the open chamber LoaD system without air bubble formation, liquid evaporation. 

Initially on-chamber NASBA tests demonstrated no amplification, a stringent wash protocol prior to 

test eliminated RNAse chamber contamination delivering successful amplification. Biomolecule-

surface interaction presents a challenge for microfluidic diagnostics [12]. Thus a published microchip 

treatment protocol was carried out [41] giving good amplification with comparable results obtained 

from on-chip and Lightcycler NASBA assays.                

Conclusions 

A non-contact IR heating approach compatible with fluorescence detection implemented the NASBA 

amplification protocol within a microfluidic LoaD system for endpoint detection of H. influenzae RNA 

samples between 102 and 104 CEs. A stringent chamber wash protocol was required to eliminate 

contamination for amplification. The IR heating approach lends itself to non-contact heating and 

uniformly heated the sample chamber to the target temperatures suitable for the NASBA assay 

implementation. Currently the system implements endpoint detection but future work will 

investigate the possibility of real time heating and detection by rotating the chamber between 

heating and detection locations. Thus the sample was loaded for denaturation, then extracted for 

enzyme addition and reloaded onto the chamber for amplification. Future work will implement all 

functionality on the LoaD. The ultimate goal of such a point-of-care LoaD system is to implement a 

complete test, incorporating biological sample preparation i.e. extraction, purification and detection. 

Future work will also focus on achieving a detection limit below 100 target cells.  
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