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Using Jones matrices and vectors, we show that a metasurface-based optical 
element composed of a set of subwavelength diffraction gratings, whose 
anisotropic transmittance is described by a matrix of polarization rotation by angle  
mφ, where φ is the polar angle, generate an m-th order azimuthally or radially 
polarized beam, when illuminated by linearly polarized light, or an optical vortex 
with topological charge m, when illuminated by circularly polarized light. Such a 
converter performs a spin-orbit transformation, acting similarly to a liquid-crystal 
half-wave plate. Using the FDTD-aided numerical simulation, we show that 
uniform linearly or circularly polarized light passing through the above-described 
optical metasurface with m=2 and then tightly focused with a binary zone plate 
generates an on-axis near-focus energy backflow comparable in magnitude with 
the incident energy. Notably, the magnitude of the reverse energy flow is shown 
to be the same when focusing a circularly polarized optical vortex with 
topological charge m=2 and a light beam with the second-order polarization 
singularity.   

Key words: optical vortex, polarization singularities, energy backflow, 
metalens. 

  

Introduction 
Optical vortex beams [1], which are characterized by a spiral phase function, have been known 

for a long time, continuing to attract much attention due to their peculiar properties during 
propagation [2] and many novel applications. Vortex beams, which carry orbital angular 
momentum, may find uses in telescopes for exoplanet detection [3] and optical tweezers and 
spanners for micromanipulation [4, 5, 6], for transferring angular momentum to microparticles [7] 
and increasing the data carrying capacity of fiber-optic communication systems [8], also showing 
promise for quantum informatics [9, 10] and high-resolution electron microscopy [11]. One more 
potential application of optical vortices is associated with the phenomenon of the negative 
propagation of energy, in which an energy backflow occurs in the opposite direction of the 
propagation of light [12]. It has been numerically shown [12] that when illuminating a spiral phase 
plate by a circularly polarized vortex beam, a near-axis backflow of light energy occurs in the sharp 
focus. The effect of the negative propagation of energy has previously been reported and was shown 
to occur in superposition of two arbitrary light fields with different projections of the wave-vector 
onto the longitudinal axis [13]. In some regions of the cross-section of such superposition of light 
fields, the force exerted upon a microparticle has been shown to be directed oppositely to the beam 



propagation. The reverse flow of energy on the optical axis has been shown to occur in the focus of 
a metalens [14]. The negative propagation of energy has been observed in a vector Bessel beam 
with fractional topological charge [15]. The said light beam is actually a linear combination of a 
countable number of conventional Bessel modes. Theoretical relationships to describe the energy 
flow characteristics given by the Poynting vector of X-beams and necessary conditions for the 
formation of a reverse energy flow have been derived [16]. Presence of the energy backflow in the 
cross-section of a non-paraxial accelerating 2D Airy beam has also been demonstrated [17]. 
Conditions to be imposed on a light field, enabling a quantum backflow and optical retro-
propagation to occur locally have been theoretically deduced [18]. Thus, we can see that circularly 
polarized laser vortex beams are a popular instrument for generating regions in an electromagnetic 
field with an energy backflow.  

Hypothetically, light fields with phase and polarization singularities, which form in free space 
multiply connected vortex knots [19, 20], may also have regions of the negative propagation of light 
or the energy backflow.  

Recent trends have seen the increasing use of optical metasurfaces for generating laser beams 
with tailored properties [21-25]. Optical metasurfaces, which represent a nanostructured 100-200-
nm metal/semiconductor/dielectric film with a subwavelength feature size may be in the form of an 
nanorod array [24, 25] or subwavelength binary diffraction gratings [23]. The nanorods, or  
diffraction grating grooves, are specifically arranged on the metasurface so as to simultaneously 
control in a desired way the amplitude, phase, and polarization of incident light at each point of the 
metasurface.    

Metasurface-aided optical elements based on varying-thickness catenary arrays in a golden film 
and bilayer geometric metasurfaces [26, 27], as well as those based on square-split-ring (SSP) 
nanoantennae or non-parallel double-slit arrays [28,29] have been proposed. A graphene-assisted 
all-optical tunable Mach-Zehnder interferometer based on microfiber has been reported [30]. Many 
of such metasurfaces have been utilized in a teraherz bandwidth. As a rule, the said metasurfaces 
are illuminated by incident fields with tailored characteristics.  

In this connection, a question arises whether it is possible to design a metasurface that would be 
capable of alternately generating a light field with polarization or phase singularity under different 
illumination.   

 In this work, we show theoretically and numerically that a combined metalens composed of a  
binary zone plate with a near-unity NA and an array of subwavelength binary diffraction gratings 
acting as half-wave plates by rotating the polarization vector of the incident beam by angle mφ, 
generate a converging cylindrical vector beam of the m-th order when illuminated by linearly 
polarized light, or a phase vortex carrying the topological charge m when illuminated by circularly 
polarized light. In the sharp focus of the converging light beam, a reverse flow of light energy 
occurs comparable in magnitude with the incident energy.  

 
A metasurface to generate light fields with singularity  
 
      It has been known that metasurface-based photonic elements [19, 23, 31-33] containing 

subwavelength diffraction gratings synthesized in a thin transparent film can operate as local half-
wave plates if the diffraction grating parameters provide a phase shift by π between the incident ТЕ- 
and ТМ-waves. For the wave emerging from such gratings to be inhomogeneously polarized, their 
grooves need to have a varied tilt over the metasurface according to a desired pattern of the 
polarization vector direction [23]. Thus, the metasurface-based half-wave plate rotates the 
polarization vector by an angle of 2θ, where θ is the angle between the grating grooves and the 
linear polarization vector of incident light. Such a half-wave plate (subwavelength diffraction 
grating) is described by a rotation matrix R(φ) for the rotation angle φ=2θ: 
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 May there be a metasurface that rotates the polarization vector parallel to the x-axis by an angle of 
mφ (m is a positive integer) at any point found on a ray drawn from the origin to the x-axis. The 
transmittance of such a metarsurface  depends only on the polar angle:  
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Below, the metasurface with transmittance (2) is shown to have a multiple functionality, being 
capable of generating both light fields with the m-th order polarization singularity and vortex light 
fields with the topological charge m.  

Thus, it can be inferred that the optical metasurface in Eq. (2), which can be referred to as a 
metasurface-assisted polarization converter (MPC), has similar functionality to a half-wave plate 
[34], which converts the incident wave into a radially or azimuthally polarized wave, also acting as 
a spiral phase plate [35] by generating a vortex light field with topological charge m. Actually, the 
MPC converts an incident ТЕ-wave into an m-th order radially polarized output light field:  
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With a normal plane ТМ-wave incident on the MPC, at the output is an m-th order azimuthally 
polarized wave:  
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When illuminated by a plane left-circular polarized wave, the spin-orbit interaction will lead to a 
left-circular polarized optical vortex with the topological charge m emerging from the MPC (2): 
                                                ( ) im

mR LCP e LCPϕϕ = ,                                                           (7)     
    where     
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  Finally, an incident right-circular polarized plane wave is converted by the MPC into the 
emerging right-circular polarized optical vortex with the topological charge –m :  

                                          ( ) im
mR RCP e RCPϕϕ −= ,                                                     (9) 

    where      
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The above analysis leads to a very interesting corollary. Let us, first, remind that the on-axis 
near-focus backflow of light energy was shown to occur when sharply focusing (i) a left-circular 
polarized optical vortex with m=2 [36, 37] or (ii) a second-order azimuthally polarized light wave 



[38]. As can be seen from Eqs. (3) - (10), all four varieties of the light field that result in an on-axis 
energy backflow upon sharp focusing can be generated by means of a single optical element 
comprising the  metasurface in Eq. (2) at m=2. From Eq. (7) it also follows that the (sequential) 
joint use of a spiral phase plate with  topological charge n and an m-th order MPC results in their 
orders being summed up:                                     

                                         ( )( )in i m n
me R LCP e LCPϕ ϕϕ += .                                                      (11)                 

Let us also recall that in Ref. [34], by way of demonstrating the spin-orbit intrcaction, the 
birefringent liquid crystal plate was interpreted as an anisotropic medium, which was described by a 
somewhat different matrix and shown to be capable of generating an optical vortex, performing left-
to-right circular polarization conversion, unlike grating (7):                                                    
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Note that the light fields (3), (7), and (9) are connected via a linear relationship:  

                                                       , / 2 / 2im imRP m e LCP e RCPϕ ϕ−= + ,                           (14) 

from which the backflow of energy is seen to be the same for the fields with phase and polarization 
singularities.  

       Below, using the FDTD-aided simulation (Finite Difference Time Domain), we show that at 
m=2, the MPC (2) generates an energy backflow in the sharp focus at any type of illumination (TE- 
and TM-waves, left- and right-circular polarized waves). We are going to show that with all other 
conditions being the same, the energy backflow in non-vortex and vortex beams is the same in 
magnitude.  
 

Focusing a field with polarization singularity 
In this section, the generation and focusing of a second-order cylindrically polarized light field is 

numerically simulated. In this field, the E-vector is described by Jones vector:  
                                                    , 2AP m= =E .                                                                 (15) 

Projections Ex and Ey of the electric vector are shown in Fig. 1. 

  



 
 
 
 
 
 
Fig. 1. Projections of the E-vector on the X- and Y-axes: the maximum value is marked in white 

(+1), the minimal value - in black (-1), and the zero value is marked in grey.  
 
The polarization pattern of the field is depicted in Fig. 2, with a unitary intensity assumed across 

the entire field.    

a)  b)  
Fig. 2. Pattern of polarization states in the field in Eq. (15) (a) and the Fresnel zone plate used for 

focusing of the light (b). 
Figure 3 depicts the result of focusing the beam of Eq. (15) from Fig. 2a using a binary zone 

plate (Fig.2b). Shown in Fig. 3 a,b are two-dimensional patterns of the intensity:  
                                                     

22 2
x y z x y zI I I I E E E= + + = + +                                       (16) 

and the longitudinal component Sz of the Poynting vector 
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= ×S E H                                                         (17) 

 in the focal plane (z=600 nm). Shown in Fig. 3 c,d are profiles of the intensity and Pointing vector 
along the X- and Y-axes. Using an FDTD-aided approach, we numerically simulated the focusing 
of a beam with polarization singularity (Eq. (15)) with a six-ring binary zone plate on the 
assumption of the incident wavelength λ=633 nm, focal length f=λ, and a λ/30 increment of the 
simulation grid on all three coordinates. The field and the zone plate were limited by a 8-µm 
circular aperture.   

а)  b)   



c)  d)   
Fig. 3. Intensity I of the light field (а,c) and longitudinal component Sz of the Poynting vector (b,d) 

in the focal plane 0.6-µm behind the zone plate.   
It is seen from Fig. 3d that when focusing the field of interest, an on-axis energy backflow occurs 

in the focal spot.  
A metalens for the simultaneous polarization conversion and focusing of light  

The idea is that the MPC in Eq. (2) and a focusing binary zone plate may be combined into a 
single metalens. The individual sectors of the metalens are composed of binary subwavelength 
gratings. A procedure for calculating optimal parameters (such as the microrelief depth, the period 
and fill-factor of the grating), enabling the polarization vector to be rotated by a desired angle was 
described in detail in an earlier work by the present authors [23]. Presented in Fig. 4а is the external 
appearance of a MPC composed of subwavelength 16-sector binary diffraction gratings whose 
transmittance is described by matrix (2).   

а)   b)   
Fig. 4. (a) Optical metasurface to generate a phase or polarization vortex and (b) a combined 

metalens to simultaneously generate and focus a polarization vortex.    
 
Shown in Fig. 4b is a metalens combining the transmittance of the MPC in Fig. 4a and a binary 

zone plate with near-unity NA (Fig.2b). The metalens is composed of 16 sectors, in which the 
diffraction gratings alternate according to the zones of a Fresnel zone plate with the focal length 
f=λ: with the polarization vector in each subsequent zone rotating by π relative to the previous zone. 
Note that on the zone boundary, the grooves of adjacent diffraction gratings are mutually 
perpendicular. Putting the refractive index of the metasurface to be n=4.352+0.486i (amorphous 
silicon), we find that the optimal microrelief height is 120 nm. The gratings have a  200-nm period. 
The metalens is built on the basis of the optical metasurface in Fig. 4a, whose transmittance is 
described by matrix (2). If the MPC in Fig. 4a is illuminated by a linearly polarized plane wave, the 
emerging field at a wavelength distance behind the metasurface will be described by the intensity 
and polarization vector patterns shown in Fig. 5.   



 
 
 
 
 
 

a)    b)  
Fig. 5. (a) The intensity of light (negative) emerging from the optical metasurface shown in Fig. 4а 

для линейно-поляризованного падающего поля (Ex=1, Ey=0). The polarization vectors are 
marked with arrows and (b) Phase of a light field transmitted by the metasurface in Fig. 4a for a 

left-circular polarized incident beam.   
 
From Fig. 5a, the intensity of light emerging from the metasurface-assisted polarization 

converter is seen to be non-uniform because the amount of light energy passing through different 
metasurface segments is different. Note that rotating the polarization pattern in Fig. 5 by 180 
degrees yields the pattern in Fig. 2. It is also worth noting that being non-vortex, the light field in 
Fig. 5 has a constant phase. Shown in Fig. 5b is the phase of the light field immediately behind the 
metalens in Fig. 4а upon illumination by a circularly polarized plane wave. The emerging field has 
a spiral phase characterized by two phase jumps of 2π (Fig. 5b), suggesting the generation of a 
circularly polarized optical vortex with the topological charge +2, the polarization state being not 
indicated in Fig. 5b.  

  Figure 6 depicts results of the metalens-aided (Fig. 4b) focusing of a linearly polarized plane 
wave limited by a 8-µm aperture, in a similar way to the previous example.  

а)  b)  



c)  d)   

e)   f)  
Fig. 6. (a) Intensity of light I and (b) longitudinal projection Sz of the Poynting vector in the focal 
plane 0.6-µm behind the metalens (Fig. 4b) and (c,d) their respective profiles drawn through the 
center of the focal spot for a linearly polarized incident wave, (e) the longitudinal pattern of the 

projection Sz of the Poynting vector in the XZ-plane, and (f) its on-axis profile.  
 
From Fig. 6b, the pattern of the on-axis projection of the Poynting vector in the focal plane is 

seen to be rotated clockwise by some angle relative to an ideal pattern in Fig. 3b. This is related to 
the inhomogeneous distribution of light transmitted by the metalens and light-conversion errors 
introduced by separate metalens sectors (Fig. 5). Meanwhile, the rotation of the linear polarization 
vector is not a contributing factor here because the said rotation results in the both patterns (Fig. 6a 
and Fig. 6b) being rotated by the same angle. From Figs. 6 e,f, the magnitude of the energy 
backflow is seen to be maximum at a distance of ~ 600 nm behind the metalens surface, with its on-
axis length at full-width of half-maximum intensity measuring ~1 µm.  

  
  The energy backflow at the center of the focal spot is seen to occur in both cases (Fig. 3d and 

Fig. 6d). In the XY-plane, the region of the energy backflow is in the form of an ellipse with on-axis 
measurements of 0.27 µm and 0.35 µm for a 0.633-µm incident wave. When focusing with the 
metalens of Fig. 4b, the projections of the Poynting vector along the X- and Y-axes are 
unsymmetrical, which may be owing to a different efficiency of polarization conversion depending 
on the rotation vector of the E-field.  

In magnitude, the energy backflow in Fig. 3d is seen to be nearly twice that in Fig. 6d. The 
reason is that the metalens of Fig. 4b has the energy efficiency of about 30%. 



 
 
 
 
 
 

 
Comparison of magnitudes of the energy backflow for beams with polarization and phase 

singularity  
 
This section deals with a comparative numerical simulation. Shown in Figs. 7 and 8 are patterns 

and respective profiles of the intensity I and longitudinal component of the Poynting vector Sz  in a 
sharp focus  generated by the metalens of Fig. 4b under illumination by a left-circular (Fig. 7) and 
right-circular (Fig. 8) polarized plane wave. Figures 7 and 8 suggest that in both cases an on-axis 
energy backflow occurs at the center of the focal spot. From the comparison of the maximum 
absolute values of the energy backflow for the three examples above (0.9 in Fig. 6d, 1.0 in Fig. 7d, 
and 0.83 in Fig. 8d), we can see that when focusing a left-circular polarized optical vortex with 
topological charge 2 and an optical beam with second-order polarization singularity, the energy 
backflows are nearly the same in magnitude.   

а)  b)   

c)  d)   
Fig. 7. (a) Intensity of light I and (b) longitudinal projection of the Poynting vector Sz in the focal 
plane 0.6-µm behind the metalens (fig. 4b) and (c,d) their respective profiles drawn through the 

center of the focal spot for a left-circular polarized incident wave. 



а)   b)   

c)  d)   
Fig. 8. (a) Intensity of light I and (b) longitudinal projection Sz of the Poynting vector in the focal 

plane 0.6-µm away from the metalens (fig. 4b) and (c,d) their respective profiles drawn through the 
center of the focal spot for a right-circular polarized incident wave.  

 
Fabrication of a metalens  

 
The metalens was fabricated using electron beam lithography (Fig.9). A 130-nm-thick 

amorphous silicon film (a-Si) (with refractive index n=4.35 + i0.486) was deposited on a 
transparent pyrex substrate (with refractive index n=1.5) coated with a 320-nm-thick PMMA resist, 
and baked at a temperature of 180С°. The thickness of the resist was chosen to give a combination 
of good etch resistance and high-resolution patterning. To prevent charging, the surface was 
sputtered with a gold layer 15 nm in thickness. A binary template was transferred onto the resist 
surface using a 30 kV electron beam. The specimen was developed in water blended with 
isopropanol in the ratio 3:7, and the template was then transferred from the resist into an a-Si film, 
using reactive ion etching in a gaseous atmosphere of CHF3 and SF6. The aspect ratio of the etch 
rate of the material and the photomask was found to be 1:2.5. As a result of this process, the gold 
was completely washed out from the PMMA surface. An electron microscope image of the 
metalens is shown in Fig. 9a. 

The focusing of light by the fabricated spiral metalens was investigated experimentally using a 
scanning near-field optical microscope (Ntegra Spectra, NT-MDT). The intensity distribution is 
shown in Fig. 9b. It can be seen that the difference between the intensities of two central lobes is 
almost two-fold. Therefore, the agreement between the theory (Fig. 6a) and the experiment (Fig. 9b) 
is just qualitative. The reason may be not just in imperfections of the metalens fabrication process 
but also in alignment difficulties, because the centers of the focused linearly polarized Gaussian 
beam and the metalens need to be precisely aligned (Fig. 9b). The authors are planning to conduct a 



 
 
 
 
 
 

detailed characterization of the fabricated metalens in a future study. In the meantime, the plots in 
Fig. 9 should be looked upon as a proof of principle for the metalens fabrication.   

a) b)  

Fig 9: Atomic force microscope images of a spiral metalens in an a-Si film (a) and measured 
intensity of the focal spot: 2D intensity pattern (b) 

 
A model for generating an on-axis energy backflow in the sharp focus  

 

     A rigorous theory that accounts for the generation of an on-axis energy backflow in the focus of 
an left-circular polarized optical vortex with the topological charge 2 can be found in Ref. [37]. The 
existence of an on-axis energy backflow in the focus of a metalens can be explained most simply 
for focusing a second-order azimuthally polarized light field (Fig. 2a). From Fig. 2a, the 
polarization vectors of the E-field are seen to be directed vertically downwards on the optical axis 
and vertically upwards on the x-axis. Figure 10 schematically shows the superposition of four plane 
waves with their polarization vectors directed similarly to the vectors in Fig.2a, though rotated by 
90 degrees.   
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Fig. 10. Schematic of superposition of four linearly polarized plane waves.  

 



For the four plane waves in Fig. 10, the resultant amplitudes of the Е- and H- vectors and the 
Poynting vector S=ck on the optical axis (x=y=0) are given by  
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where k is the wavevector of the light field and α is the angle of incidence of plane waves on the 
optical axis. In Eq. (18), the unit vectors (ex, ey, ez) define a right-handed triplet in the Cartesian 
coordinates, suggesting that the vectors -S=-ck, E, H form right-handed triplet vectors, defining a 
plane wave propagating along the optical axis in the negative direction.  

 
 

Conclusion 
In this work, we have designed, studied, and fabricated a multi-sector metalens in a thin 

transparent film (e.g. amorphous silicon). Boasting a double functionality, the metalens is capable 
of (i) converting an incident linearly polarized wave into an m-th order azimuthally/radially 
polarized wave and an incident circularly polarized plane wave into a circularly polarized optical 
vortex with the topological charge m and (ii) generating a sharp focus of the transmitted beam at an 
incident-wavelength distance behind the metalens. It has been numerically shown that at m=2, for 
both the polarization and phase singularities, the on-axis near-focus reverse flow of light energy is 
comparable in magnitude with the incident energy. In magnitude, the reverse energy flow has been 
shown to be nearly the same when focusing a phase vortex and a beam with polarization singularity. 
Theoretically, it follows from Eq. (14) that the magnitude of the non-vortex energy backflow should 
exactly equal that of the vortex energy backflow. 
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