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Chapter 1.  Introduction. 

 

1.1  Overview.   

This thesis demonstrates the feasibility of a software environment for the general 

processing of representations of music scores.  The proposed score representation is at a 

level of abstraction that is appropriate for musicological purposes.  In particular it is 

suitable for analysis.  Henceforth this representation and its software environment are 

referred to as scoreView. 

 

The focus of this thesis is on providing a building block that is suitable for use in 

many areas of computational musicology.  The field of computational musicology is 

characterised by a diverse range of studies that has enlarged the scope of musicological 

endeavour over the last two decades.  In an article by Bernard Bel and Bernard 

Vecchione1 these areas of endeavour are characterised as focusing on "the 

anthropological kernel of musical action", on "the task environment of music" and on 

"human music processes" as a subset of "human cognitive processes at large".  This has 

resulted, according to the authors, in the emerging of greater autonomy and 

methodological relevance for "compositional, improvisational and performing and 

mnesic/perceptive activities".  Musicologists are faced with the problems of "merging of 

unifying domains of knowledge, techniques and practices, which are scattered, and to 

some extent, disparate".  Bel and Vecchione claim that  

 
"The challenge of a new cognitive-oriented musicology will be to establish a relevant close bond 

between sciences and techniques applied to music; sound and intelligence engineering; formal, 

experimental, historical and hermeneutic sciences; anthropological and action sciences; and the 

philosophies of aesthetics, praxis and cognition. 

In all these domains of musicology, theoretical computer science is playing a crucial role dealing 

with problems of knowledge acquisition and representation.  Over the last decade, the computation 

paradigm has been brought to the front of the stage, thereby deeply affecting the practice of music and 

musicology and allowing the emergence of a new (transdisciplinary) domain: computational 

musicology" 

 

Over these twenty years of computer-based musicology, projects tended to originate 

with specific musicological goals.  This focusing on task, rather than on tools has had a 

serious downside that has resulted in the almost total lack of appropriate, usable,  music-

                                                           
1  Bernard Bel and Bernard Vecchione "Computational Musicology" Computer and the Humanities, 

volume 27 (1993), pp.1-5 
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theoretic software tools and of computer standards for music representation.  These lacks 

present a very serious barrier to progress.  Projects that deal with one area of computer-

based musicological endeavour that is concerned with bodies of music represented in 

staff notation, have suffered immensely from this lack of basic tools.  These areas of 

endeavour are referred to as corpus-based musicology. 

 

 In order to do general processing of representations of music scores, it is necessary to 

have two representations for each score.  A file-based encoding forms the permanent 

record of the score in the computer.  The main focus in file-based versions is on the issue 

of representation.  A second consideration in the file-based version is ease of encoding.  

In order to facilitate processing however, there must also exist a distinct musicologist-

programmer's version, with a focus on access as well as on representation.  Very little 

effort has been made to focus on this aspect of score representation.  The challenge here 

is in designing a musicologist-programmer's representation, or view of a score, which 

helps simplify whatever tasks are carried out on scores in a computer. 

 

This thesis examines this second aspect of score representation.  That is, it is 

concerned with the design of a musicologist-programmer's view of a score representation.  

The significance of concentrating on this is that it provides a way forward, at a higher and 

more appropriate level than that involved in file-based score representations.  When the 

dust eventually settles on the evolution of file-based standards, such as SMDL2, the issue 

of an appropriate musicologist-programmer's representation will survive as a separate and 

vital concern, which will underlie any effective use of computers for corpus-based 

musicology. 

 

The scoreView environment presupposes the existence of repositories, or corpora of 

encoded music scores in computer files.  The creation of such corpora is a quite separate 

task from that of automatic music analysis.   The difference arises from both the nature of 

the work involved in creating and maintaining corpora and in the associated driving 

goals.  Ideally, corpora should be created in accordance with internationally accepted 

standards, on principles of completeness and objectivity of representation.  

Standardisation, completeness and objectivity are prerequisites for ensuring corpora 

reuse.   

                                                           
2  Donald Sloan  "Aspects of Music Representation in HyTime/SMDL."  Computer Music Journal, volume 

17, no.4 (Winter 1993), pp.51-60. 
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There does not exist any generally accepted standard for score representation at 

present.  Hence the ideal of truly sharable corpora cannot be realised.  This is unfortunate, 

as the effect of having at least one standard for music representation would, in time, give 

a huge impetus to corpus-based studies in computational musicology.  There are in 

existence a number of candidate schemas that show promise of developing into future 

standards for file-based score representation.  It is likely that at least one standard will 

emerge within the next few years. 

 

Some authors refer to a corpus of music scores as a database.  Stephen Dowland 

Page3 says  "Any form of stored musical material - from a short melody to a large 

collection of incipits of a repertoire of complete works - can be regarded as a database".  

The term database is reserved in this thesis for collections of data, such as corpora that 

have associated information retrieval software of considerable sophistication, and will 

not be used in the context of an internal score representation. 

 

The approach to score representation taken in scoreView is to structure the computer 

representation for analysis so as to decouple it from file-based corpora.  This decoupling 

makes scoreView independent of any future standard for corpus representation. Future 

standards can be made compatible with scoreView by the development of a single piece 

of additional software.  This is an input translator that converts file-base representations 

into the internal form used by scoreView. 

 

1.2  Contribution of this Study to the Field of Corpus-Based Musicology. 

The musicologist-programmer's version of a score should have the following 

characteristics: 

 

It should be generable automatically from the file-based version. 

It should carry an objective and informationally complete version of the score. 

It should be modelled in the computer in a sufficiently abstract way that the 

musicologist-programmer's task is made as simple as possible. 

                                                           
3  Stephen Dowland Page  Computer Tools for Music Information Retrieval Dissertation  for University of 

Oxford(Bodelian) 1988, p.56. 
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The musicologist-programmer's environment should be capable of tackling tasks of 

arbitrary complexity. 

In order to foster reuse of software, it should be in a standard form. 

At present all previous systems fall short on at least two of the above criteria.  The 

final criterion listed above is one that all score representations lack.  This is because the 

development of a standard form for both file-based representations and musicologist-

programmer's representations of scores are both in an evolutionary phase.  Some existing 

analytic systems such as those by McLean4 and Brinkman5 exist in a general computing 

environment of arbitrary power, but these representations lack a suitable level of 

abstraction.  On the other hand, the most advanced system, by Stephen Dowland Page6, 

has been devised purposely with a simplified language for user interaction.  The 

computation power of Page's model is that of a finite state recogniser.  Finite state 

recognisers belong to a class of computational models that is less general that a 

programming language such as C++.  The programming language model of scoreView is 

one in which any conceivable computation, including Page's model, can be specified. 

 

1.3  Goals.   

The software environment for modelling scores is designed with a number of goals in 

mind.  These include: 

 

1.3.1  Informational Completeness. 

This means that the representation holds all of the basic information content of music 

scores.  Each grapheme of a score is represented in relation to its position in a sequence.  

Here, completeness of representation of the basic information content does not either 

include or exclude the representation of graphical information that could readily be 

generated automatically.  Examples of information that do not form part of the basic 

information content include details of horizontal spacing, line thickness and slopes of 

beams.  The current implementation supports the goal of informational completeness in 

relation to monophonic scores and for a large subset of polyphonic scores.  Proposals are 

                                                           
4  Bruce Andrew McLean  The Representation of Musical Scores as Data for Applications in Musical 

Computing  Dissertation for  State University of New York at Binghamton 1988. 

 
5  Alexander R. Brinkman Pascal Programming for Music Research (Chicago 1990). 

 
6  Stephen Dowland Page, op.cit. 
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presented in the final chapter for extending the representation to cover all polyphonic 

scores. 

 

1.3.2  Informational Objectivity. 

No interpretation of ambiguous notational entities can be made in the score 

representation without violating the goal of informational objectivity.  For example a 

decision on whether a curved line is a slur or a phrase mark should not be made within 

the score representation. 

 

1.3.3  Multi-Level. 

The building blocks of software are conceived at a series of levels.  The most 

fundamental level is the first level which is basic in nature.  By basic is meant that its 

prime function is limited to giving access to the entire information content of the score.  

This basic level deals with entities in score, such as time signatures, key signatures, clefs, 

barlines, notes and rests.  Higher level theoretical concepts such as those involved in 

harmony, are not allowed to clutter this basic level of representation.  A major chord for 

example, appears in the basic model as an unclassified collection of individual notes, and 

not as any higher level entity of organisation. The current implementation consists of two 

main levels, with the higher level containing classes to represent and manipulate various 

abstractions such as pitch class sets and pitch tuples. 

 

1.3.4  Extendibility of the Environment. 

This goal involves the building of software components that encapsulate theoretical 

concepts not found at the basic level.  The environment within which scoreView exists is 

open.  Additional components of arbitrary complexity may be created and added to 

scoreView by a user as the need arises.  Additionally it is possible to organise the 

resulting complexity into new levels in the hierarchy of levels, as well as packaging them 

for efficient reuse by others. 

 

1.3.5  Extendibility of Score Representation. 

It is desirable to allow for extending the score representation to accommodate 

constructs that were not catered for in the original design.  Such constructs include 

representations used in ethnomusicology and in some 20th century music. 
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1.3.6  Abstraction or Complexity Hiding. 

Implementation details of  the score representation should not be the concern of the 

music analyst, who should be free to deal with musical,  rather than representational 

issues.  scoreView representation allows for all of the information content of a score to 

be accessed using only two constructs.  One of these, the Score object, models the score 

itself, as a container of more elementary objects such as notes, rests and barlines.  The 

second one, the ScoreIterator object,  models an iterator.  An iterator provides a 

mechanism for locating details within the score.  It is also the main mechanism for 

information retrieval on the score.  Resolution of contextual information, such as the 

effects of time signature, key signature, bar positions and accidentals, occurs 

automatically, in a hidden layer of scoreView, and relieves the analyst-musicologist-

programmer of the tedious book-keeping like activities of scope resolution, which would 

otherwise distract attention from the analytic task. 

 

1.4  Structure of Score Representation.   

The system is designed for use by a musicologist who has learned how to program.  

The environment is an object-oriented one, in which a score is conceived as an object of  

class Score.  Class Score itself contains autonomous objects which are members of 

various other classes, such as Note, Rest and Barline.  Automatic analysis is achieved by 

the development and running of user written analytic algorithms which operate on 

aggregates of objects that make up a score. These in turn, form the internal computer 

representation of members of a corpus.  Since the user's environment is a general purpose 

programming language, the user is free to build algorithms of arbitrary complexity.  

There is also the option of incorporating additional external software components, such 

as statistical tools and harmony classes, into the environment. 

 

The basic scoreView representation is built on a number of helpful classes that  

provide useful building blocks for score representation but which are not found in C++.  

These include classes for representing rational numbers whose main use is in dealing 

with time in a score; sets which are used to store various attribute values that attach to 

notes; frequency stores, which are useful for cumulating results of analyses; tuples which 

are useful for storing ordered sets of numbers; and strings for holding textual 

information.  The basic level of score representation gives the user access to the entire 

information content of the score, with the ability to navigate about the score and to 

perform searches.  Above this basic level, a number of additional music abstractions have 
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been implemented to demonstrate the capability for hierarchically building support for 

the activities of an analyst.  These include classes and functions for pitch class sets, pitch 

tuples, a parts expert and various analysis oriented functions.  These levels are shown in 

Fig 1.1. 

 

User activities.   developing of analysis software which  

     typically would include use of lower level  

     components.  Users may develop, to arbitrary  

     levels of complexity, classes to support  

     various music theoretical abstractions, for  

     use in analysis. 

_______________________________________________________________ 

Additional classes and functions. classes for pitch class sets (class  

     PitchClasses), pitch tuples(class PitchTuple),  

     parts expert(class PartsExpert) and  

     difference algorithms. 

_______________________________________________________________ 

Basic classes.   classes to represent music scores and various  

     entities within a music score. 

     class Score, 'glues' these entities together. 

     class ScoreIterator, is the class through  

     which most of the processing is done. 

_______________________________________________________________ 

Classes on which  scoreView sets(class Set), rational numbers  

is built.    (class Rat), strings (class String), 

     frequency stores (class FrequencyStore),  

     tuples (class Tuple). 

Fig.1.1  Relationship between the various classes that are used in scoreView.   

The shaded part is the scoreView kernel. 

 

This thesis also demonstrates some ways in which scoreView may be used.  The 

corpus used in this study is one of Irish folk dance music encoded in ALMA.7  The vast 

                                                           
7  Murray J. Gould and George W. Longemann  "ALMA:  Alphameric Language for Music Analysis."  

Barry S. Brook Musicology and the Computer, Musicology 1966-200: A Practical Program (New York: 

The City University of New York Press 1970), pp.57-90. 
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majority of the scores in this collection are totally monophonic, with the occasional 

representation of double stopping providing the only exceptions.  In the design of 

scoreView, the goal of designing a system that is capable of representing harmonic and 

polyphonic music was ever present.  It is demonstrated that scoreView can be used to 

represent and process harmonic and polyphonic music, although analysis of such scores 

does not form part of this thesis. 

 

1.5  Structure of this Thesis. 

1.5.1  The process of undertaking corpus-based musicology on a computer is 

examined by breaking it down into a series of steps which deal with issues such as corpus 

creation, with the strategy involved in selection of an encoding scheme and with the 

issues involved in the creation of an internal representation.  Factors inhibiting the 

development of corpus-based musicology are discussed, as well as the prerequisites for 

progress.  A series of encoding schemes that are candidates for a score representation 

standard are discussed as well as the potential for building a musicologist-programmer's 

representation of a score using any object-oriented approach.   The centrality of such a 

representation is demonstrated. 

 

1.5.2  Surveys of a series of music systems that use score representations for various 

purposes, including non-analytic applications such as music printing,  sound synthesis 

and computer aided composition are presented.  Five systems for music analysis are 

surveyed in greater detail. 

 

1.5.3  The goals of this project are then discussed in detail.  The various formalisms 

on which the computer model of the score is built are discussed.  These include 

algorithms, functional abstraction, abstract data types, data analysis and object-oriented 

approaches to design and programming. 

 

1.5.4  The score is examined from the musician's view of its information content, and 

the ground is laid for modelling a computer representation.  First the physical score is 

examined and proposals are made for a corresponding musicologist-programmer's view 

of the score.  The score is viewed from a number of aspects.  The score itself is conceived 

as a container object whose components are in the form of separate objects such as notes, 

rests and barlines.  These contained objects are viewed as being structured in time on the 

basis of  horizontal and vertical contiguity.  Proposals are made for dealing with scoping 
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relations within the score, such as the effects of clefs and time and key signatures.  

Following focusing on the linear structure of notes and rests in a score, a construct called 

a score iterator is proposed and its central functions in relation to information retrieval 

and to navigating within the score are discussed. 

 

1.5.5   Detailed descriptions of the classes, functions and types of scoreView are 

given in appendix 1. 

 

1.5.6  A set of applications which demonstrate the use of scoreView to build 

programs for music analysis is given.  The first group of these focuses on the use of the 

system to check the claims of a musicologist.   These applications can be programmed, 

tested, and run in a matter of a few hours by a competent musicologist-programmer with 

a knowledge of scoreView. 

 

1.5.7  A second set of analytic examples are given which demonstrate the potential of 

scoreView for carrying out investigations on a corpus.  These applications include: 

 

Scale Finding which shows how we can find the types and frequencies of scales 

that are used in the corpus. 

 

Feature Extraction which involves extracting and organising information about a 

melodic feature of double jig tunes. 

 

Melodic Difference which illustrates how we may construct algorithms to estimate 

the melodic difference between two segments of music.  A number of 

developments of the basic algorithm are discussed and some of these 

implemented.  A proposal is made for further work including the fine tuning of 

these algorithms. 

 

Form and Exhaustive Search are the fourth and fifth examples which illustrate 

ways in which a melodic difference algorithm may be used to extract meaningful 

information from the corpus.  One example is concerned with an evaluation of 

'crude'  melodic forms present in the corpus, and is followed by an  example 
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which involves exhaustive searching of the corpus for identifying exact copies and 

close tune variants. 

 

1.5.8  A range of further projects are proposed both for the development of basic 

scoreView and for the development of user-specific tools, database application,  

applications in cognitive musicology, and the development of an expert system for 

harmony and for mode identification. 

 

1.6  Achievements. 

1.6.1  This study demonstrates the feasibility of a computationally viable model of a 

music score within an environment which has arbitrary computational power, bounded 

only by the size and speed of the computer hardware, which at the same time, provides an 

appropriate level of abstraction for use by musicologists.   

 

1.6.2  The design demonstrates the appropriateness of an object-oriented environment 

for score representation. 

 

1.6.3  The design demonstrates the benefit accruing from conceiving of a score 

representation in terms of two main classes, one of which models a score and the other, 

an iterator on the score.   

 

1.6.4  The overall design underlying the C++ implementation is general enough to be 

implemented in a range of programming languages that support object-orientation, and is 

usable with a range of the file-base encoding schemes. 

 

1.6.5  The design has potential as a prototype candidate for a future musicologist-

programmer's standard for score representation. 

 



2:  Corpus-based Musicology. 

Chapter 2.  Corpus-based Musicology. 

 

The first section contains an outline of the structure of corpus-based projects for music analysis.  

The final section deals with prerequisites for the development of  corpus-based musicology.  

 

2.1  Corpus-based Music Analysis. 

Corpus-based music analysis is characterised by 

 

1.  The existence of encoded music scores in machine readable form 

2.  The existence of software to process these 

3.  The activities of musicologists who use 2 to process 1 for music analytic  

   purposes. 

 

The prerequisites steps for the creation of corpus-based musicology are represented in 

the flowchart of Fig.2.1.  The flowchart reflects the many steps that historically have been 

part of analytic projects.  It also serves to highlight the enormous potential for the 

deflection of energies of researchers into tasks that should be avoidable.  On the other 

hand it also serves to highlight those areas where developments offer hope for the future 

of corpus-based musicology. 
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Fig.2.1  Steps in corpus-based musicology. 
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Step1.  If the corpus already exists, the musicologist is in the happy position of being 

relieved of an enormous amount of effort, and can proceed immediately to step no.8.  

Furthermore if a suitable internal representation exists, the researcher is able to progress 

to step no.10, the only one in the entire flowchart that is concerned essentially with the 

task in hand.  This last situation is the ideal one.  It will hopefully become commonplace 

in the future, as it enables the musicologist to concentrate on musical issues, to the 

exclusion issues of corpus creation and score representation. 

 

Steps 2 and 3.  Although a corpus suitable for analysis may not exist for a particular 

study, it is becoming increasingly commonplace that machine versions of music exist in 

other forms, and particularly, in forms generated for printing purposes.  This raises the 

prospect of adapting  material from the file-based representation used in printing 

programs  for analytic purposes.8  At a minimum, the utilisation of these sources would 

involve the acquisition or development of software.  This software either transforms the 

file representation used by the printing package into a form suitable for the analytic 

software, or, alternately enables the analytic software to access the printing system's files 

directly.  There are, however at least two obstacles that may prevent a totally automatic 

use of such sources.  One of these obstacles arises from constraints imposed by the 

commercial software developers of music notation systems and the other is intrinsic to 

the score representation itself.  The first obstacle arises from the practice adapted by 

many manufacturers of notation packages of using a proprietary file representation for 

scores, while treating this representation as a company secret.9  In the case of one major 

package, Finale versions V2 for Macintosh computers, much of this structure has been 

                                                           
8  Stephen Dowland Page, op.cit., p.12.  

 

 “Music printing systems are of much greater importance to the musicologist than merely being a 

convenient way to produce musical examples.  As music typesetting techniques reach an acceptable level of 

sophistication, music publishers can begin to use computer techniques to typeset large repertoires of music.  

This may mean, as we shall see in a later chapter, that the musicologist could gain access to large amounts 

of music in a machine-readable form - music which has been entered for typesetting purposes may be used 

for many studies, producing information of musicological significance.” 

 
9  Many of these products are packaged as 'black boxes' as far as score representation is concerned.  

Exceptions to this however include Leland Smith's Score, which allows the user to create alphanumeric 

input for its main features.  The alphanumeric representation used in Score lacks some of the capabilities 

of the internal representation in significant ways.  For example, the range of ornaments available is 

limited.  Another music printing system, "The Note Processor" uses DARMS.   Most music printing 

programs have the capability of importing and exporting MIDI versions of their internal representation.  

However MIDI file format loses too much of the information content of a score to be of general use for 

corpus-based musicology. 
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identified by careful detective work.  This work was done by F. Nelson in his efforts to 

use Finale in conjunction with computer aided composition software.  The resultant 

frustration and some inkling of the associated problems can be gleaned from the 

footnote.10  The fault may well not totally rest with the reluctance of Coda,  Finale's 

manufacturer, to release details of the format.11  Attempts to reuse files from printing 

projects will fail unless the code structures are known in detail.  However, even where 

access to the structure of such codes is available,  there can arise further complications 

which stem from fundamental differences between the natures of score encodings for 

printing and analysis.  It might be argued that  the encoding for music printing purposes 

encapsulates all the basic information content of the music.  This is obvious, as a human 

reader can access the realisation of this information from the resulting printed version.  It 

must follow, surely, one would argue, that the code contains all the information, either 

implicitly, or explicitly, and consequently is suitable for use in computer analysis.  This 

argument is true in most respects, but falls down in those areas where considerable 

                                                           
10  F. Nelson Music-Research Digest volume 8, no.16 (Thu, 10 Jun 93).  Under the heading 'Another Finale 

Diatribe' , Nelson, whose motivation for this investigation lay with his work in computer aided composition, 

reports 

 

Finale's "Enigma Transportable File" (EFT) have the potential to be a kind of music PostScript.  An 

ETF contains every bit of information about a Finale score, including both graphic features and 

performance details if you choose to specify them.  The format of this file is cryptic ("enigma," get it?) 

but readable by humans if you have enough insight and patience.   Writing a file in ETF format is 

child's play compared to writing a program for algorithmic composition.  The catch?  Coda doesn't 

(won't) publish the format. 

 

They fear the loss of commercial advantage and they have a lot of other vague misgivings that still 

don't make sense after more than four years of talking and writing to them about it.  They fear that 

publishing the format will reveal secrets about their methods of data organisation.  In fact, any first 

year CS student who has had a course in data structures will recognise a multiply-linked list in the 

"events" structure with lots of messy (but easily mapped) links to the "details." 

 

I have decoded about 85%-90% of the ETF format in somewhat more than three years of sporadic 

hacking.  The intensity of my efforts increases in proportion to the size and complexity of the project at 

hand.  Several large works for wind ensemble have provided the chief motivation for my code-

breaking.  I can now do quite a lot of what I want to do by directly manipulating elements of an ETF 

with a program I have written in APL. 

 

Can I publish my methods?  Is what I am doing "reverse engineering?"  I don't know.  If Coda is so 

block-headed about sharing this important capability with the musical world they purport to serve I 

suppose they would be equally hard-nosed about my efforts to get my job done even in the face of their 

hindrances.  I would much rather continue to write music than defend against lawsuits. 

 

 11  The fact that Coda has changed ETF format between different releases, and between the Mac and PC 

versions, might be accounted for by lack of maturity in the representation. 

  



2:  Corpus-based Musicology. 

 15 

human knowledge is required to interpret the written score.  One trivial instance of this is 

when the human reader reads textual entries, such as title, name of composer and 

possibly tempo indications at the start of the score. Here the reading brings considerable 

linguistic and domain knowledge into play in identifying these items of text.  Some 

interpretations are immediately obvious to the human reader, as for example, in 

identifying which text at the head of a piece of music is the title.  In most cases the 

human score reader will solve the problem of identifying the title even when the text is in 

an unknown language.  Consider now the case of a music analysis program that uses the 

code from a music printing system such as Score.  If the program is requested to print out 

the name of the piece being analysed, too great a burden would be placed on the software 

to extract this information in an unambiguous fashion.  What is required here with an 

unmodified printing file, is for the program to determine which of the textual entries is 

the title.  There is a simple solution to this problem.  This involves the tagging of this 

information in the original representation in a form that the printing program ignores, if 

such is possible, but that is used by the input component of the analysis system.  A more 

substantial problem is tackled by McLean12 in relation to encoding of polyphonic music 

in DARMS.  He proposes a solution by introducing an additional construct, the 

EffectiveDuration code, into DARMS, to specify the precise duration of notes in cases 

where the human reader would infer the duration from the context.  An example of a 

situation in which this arises is illustrated by McLean and involves detecting the presence 

of unmarked triplets from the context by overriding a strictly literal interpretation of the 

notation.  Inclusion of EffectiveDuration code in the score encoding avoids unduly 

complicating the software.  In summary, it is possible that a corpus for analysis purposes 

can be created from files of code that were originally made for music printing purposes.  

This will normally involve adding a small amount of extra code to the score 

representation and writing, or otherwise sourcing, software to transform the printing code 

into an internal form for processing.  The potential for the dual use of scores encoded for 

printing packages, by reusing them for analysis as well as for printing has rarely been 

realised, although the reverse step, that of generating printed scores from a corpus is 

commonplace.13 

 

                                                           
12  Bruce Andrew McLean, op.cit., 1988, pp.58-68. 

   
13  In the MuseData project at the Centre for Computer Assisted Research in the Humanities in Menlo Park, 

California, an alternative representation in the form of parametric tables has been used for input to the 

Score program.  
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Step 4.  In creating a corpus, a decision must be taken on how much detail from the 

score needs to be represented for the study in question. Ideally all details of the score 

should be encoded.  However because of pressures of time and resources, compromises 

may have to be made.  These arise in cases where the direct goal of the immediate 

analytic task takes precedence over considerations of generality and reusability.  It may 

be adequate to have a simplified representation of musical pitches and durations for a 

study, or to limit representation used in the study to stressed notes only.  The main 

problem that such short cuts may give rise to is that if subsequently it is decided that 

additional structures from the score are important, it may become difficult to make 

progress. Examples of factors that might become important at a later stage in a project 

that limited the representation to pitches and duration might include the positioning of 

barlines or the notating of groupettes.  If such a requirement becomes apparent at a 

relatively late stage in the project, then a substantial amount of backtracking is needed in 

order to re-edit the corpus and to rewrite the software.  One of the worst situations that 

can arise in this case is where the desired extension to the code cannot be accommodated 

as an add-on to the original version, but instead involves drastically altering the working 

schema.   The safest way to guard against such happenings is to opt for a complete 

encoding of the scores in question.  Complete encoding of corpora is a prerequisite for 

the more far sighted objective of their reuse.   

 

Steps 5 and 6.  A musicologist will invent a private encoding only if relatively 

simple features of a score are needed. In other cases, one of the existing codes will be 

used.  For a number of reasons,  the option of using existing codes, has a number of 

associated snags.   The main problem here is the lack of stability and universality in these 

codes. DARMS14, The Plaine and Easie Code15,  ALMA16 and MUSTRAN17 are 

examples of codes that have not achieved universal standardisation.  The Plaine and 

                                                           
14  See Bauer-Mengelberg.  "The Ford-Columbia Input Language" Barry S. Brook Musicology and the 

Computer, Musicology 1966-200: A Practical Program, (New York: The City University of New York 

Press 1970), pp.48-52.  Also for a relatively recent dissertation, see Bruce Andrew McLean, op.cit., pp.1-

10. 

 
15  Barry S. Brook "The Plaine and Easie Code.",  Barry S. Brook, op.cit., pp.53-56. 

 
16  Murray J. Gould and George W. Longemann  "ALMA:  Alphameric Language for Music Analysis",  

ibid.,  pp.57-90. 

 
17  Wenker, Jerome.  "A Computer Oriented Music Notation including Ethnomusicological Symbols", 

ibid.,  pp.91-129. 
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Easie Code has achieved its widest use in the Repertoire International des Sources 

Musicale (RISM) project under the leadership of Barry Brook18.  ALMA code was 

developed by Gould and Longman by extending its forerunner 'The Plaine and Easie 

Code' and, although incomplete, had very good macro facilities that make it easy to type 

into a computer. MUSTRAN facilitated common practice notation extensions for 

ethnomusicology and was used in music analysis work of Jerome Wenker and Dorothy 

Gross.  The lack of stability of these codes can be illustrated by considering DARMS 

code, which is the most common code for corpus creation. One basic problem here lies in 

the fact that the development of a code such as DARMS is not just a once-off task.  In 

fact it is traditional to refer to the DARMS project, as an on-going effort of overlapping 

research and dissertations since 1963.  It is practically inevitable that such a code,  

designed initially with however much foresight,  will reveal ambiguities and inadequacies 

with greater practical use.  Progress may be made by  periodically updating the standard 

code.   It is not enough however, that proposals for change appear in PhD dissertations, or 

in journals.  Unless such proposals are supported by a continuing regulatory agency in the 

form of a highly visible standardisation body, which is acknowledged as such by the 

music community and which polices developments and approves changes, the result will 

be the inevitable development of divergent dialects.19  This lack of standardisation has 

two consequences.   Firstly, the opportunity for creating  music corpora as an end in itself 

is not feasible, and hence no sharable music databases can come into existence that have 

a sufficiently standard form to be of truly general use. Secondly, the development of 

reusable software is frustrated. 

 

Step 7.  Corpus creation was done by encoding and typing a score either by means of 

a card punch machine or, more recently, by entering it directly into a computer.  This 

process is time-consuming, tedious and error-prone.  Experience with the current project 

indicates that the input time per bar of corpus, from the initial encoding and keying to the 

final quality checking, takes an average of the order of 1 minute per encoded bar.  

Experience also shows that this tedious work is difficult to sustain over several hours,  

without the error rate becoming unacceptably high.  The creation of all but small corpora 

                                                           
18  Rita Benton, "Repertiore International des Sources Musicales", in Stanley Sadie The New Grove 

Dictionary of Music and Musicians volume 15 (London:  MacMillan 1980), pp.747-9. 

 
19  In a letter to the Music-Research Digest volume 9, no.34 (Sat,  24 Dec 94), Eleanor Selfridge-Field of 

the Centre for Computer Assisted Research in the Humanities, announced a forthcoming Handbook of 

Musical Codes, which is to cover several dialects of DARMS. 
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takes time that can range from a few person-months to many person-years.  This work, 

which  is not the job of  music analysts, should ideally be delegated to music coders, 

whose training must include appropriate levels of keyboard skills, the ability to read staff 

notation, and knowledge of the encoding scheme.  Improvements in the productivity of 

corpus creation can be achieved from the use of  graphical user interfaces and MIDI-

based tools that have been available since the mid-1980's.  The prospect of automatic 

optical encoding of scores offers hope for the future.20 

 

It is essential that the corpus creating task be done under appropriate editorial and 

quality management.  Again, this activity has no direct connection with music analysis.  

However, many musicologists that use computers for analysis purposes have to undertake 

the corpus creation task. 

 

Step 8 and 9.  Two representations of music scores are required in a music analysis 

system.  The first representation is a file-based corpus.  The second representation is one 

that is based in the main memory of the computer and is used in writing the analytic 

software.  This internal form is created from the external form by a piece of software, an 

input translator.  For processing a score, the internal form is the enabler, not only of 

analytic work, but also of all manipulations such as playing, printing, GUI interaction and 

code translation. 

 

Whatever degree of standardisation exists for representing music at the level of the 

file, practically none exists in representing music scores in the main memory of the 

computer.  One approach is to copy the file-based score representation into main store in 

an unaltered form.   The main problem here is that this form is most unsuitable for 

processing.  The reason for this is that a one-dimensional string of characters is used to 

represent a basically two-dimensional structure.  Using such code imposes constraints on 

the software that makes it most tedious to work with, as it is counter-intuitive and error-

prone.  An analogy could be made of trying to play a game of chess by using a long 

narrow board formed by cutting the rows of a conventional chess board and reassembling 

them end to end.  Relative simple moves on a conventional chess board, such as those of 

a queen or knight would become extremely difficult to visualise in this linear, one-
                                                           
20  See Walter B. Hewlett and Eleanor Selfridge-Field Computing in Musicology volume 9  (Menlo Park: 

Centre for Computer Assisted Research in the Humanities 1994),  pp.109 - 166, which includes the most 

recent survey by Eleanor Selfrige-Field of current work.  It also contains relevant articles by William 

McGee and Nicholas P Carter. 
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dimensional representation of what is basically a two-dimensional structure.  Some early 

analytic work concentrated on processing score representations such as DARMS directly 

in the computer.  This is an approach which imposes a substantial strain on working.  

This arises from the dichotomy between the basically one-dimensional, character string 

type representation used for scores in files, and the two-dimensional representation of 

music notation.  Additionally, the type of context-dependent scoping information for time 

and key signatures, clefs and accidentals, which need a substantial programming effort to 

resolve, becomes more difficult in a one-dimensional representation.  Many of the 

researchers used the Snobol language, which has powerful string handling features.  

Although Snobol helped parse a one-dimensional string, the fundamental data remained 

one-dimensional.  What is needed for the internal version of a score is a two-dimensional 

structure in which scoping information is represented and resolved automatically.   

 

An analysis system can be thought of as consisting of three components.  First there is 

the two-dimensional structure itself.  Although this structure plays a central role in all 

processing,  it is not of any direct relevance to the user, at least not as far as the internals 

of its construction are concerned.  It should not matter to the user, for example, whether 

the internal structure is 'glued' together using pointers or arrays.  This is as it should be, as 

the objective of the user is to do music analysis and not computer science.  However, the 

internal representation plays a central, if somewhat invisible role in making the analysis 

system work.  A second component of an analysis system is a piece of software called an 

input translator, which is required to create the internal representation from the file 

representation.  The input translator processes a file-based score and builds a two 

dimensional representation in main memory.  Again, this software is not something that 

the user of the analytic system need be directly concerned with.  A third component, and 

the only one that ideally, should involve the music analysts, consists of  a musicologist-

programmer's view of the music score.  This is the public interface through which the 

analyst extracts and manipulates information from the score.  In later chapters the concept 

of a musicologist-programmer's view of a score will be developed in detail.   

 

Traditionally, because of the absence of suitable software tools for tackling a job of 

analysis, researchers  had to resort to building up their own main store representations of 

the music under study.  In addition to this,  the non-trivial software task of building a 

program to convert from the file-based computer representation to the main-store based 

representation had to be undertaken. The task of building a computer representation of 

the music should be thought of as a task, separate from that of building the software for 
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analysis.  The reason for this is the same as that for decoupling the corpus creation task 

from the analytic one.  Ideally, the analyst should be concerned only with extracting and 

processing information from the score and not with the internal representations involved.   

 

2.2  Factors Inhibiting the Development of Corpus-based Musicology. 

It will be clear at this stage that the task of computer based music analysis contains a 

minefield of complications for the unwary.  Among the causes of these are 

 

 -  lack of encoding standards, 

 -  lack of reusable corpora, 

 -  magnitude of task of creating corpora, 

 -  lack of software, 

 -  difficulty of specifying goals for computer-based analysis, 

 -  difficulty in arriving at accurate estimates of effort for software development. 

 

Most of the above points can be inferred from the preceding sections.  The new points 

introduced here, include the problem of estimation in software development.  This 

problem  has proved notoriously difficult in the software industry the general, especially 

when dealing with new areas of endeavour.  If the software development time for a 

project is being habitually and grossly underestimated, it will inevitably result in 

demoralisation of the researcher.  The initial design on which estimates are based, often 

proves to be just the tip of the design iceberg.  The ratio involved in this metaphor may 

not be out of place.  As Douglas R. Hofstadter elegantly expressed it (in relation to the 

development of a champion chess playing programme) - 

 
"Hofstadter's Law:  It always takes longer than you expect, even when you take into account 

Hofstadter's law".21 

 

The trap for the musicologist here is that of embarking on a project, to find that, after 

major effort, the potential end result appears at the end of an ever-lengthening tunnel.   

 

                                                           
21  Douglas R Hofstadter  Godel, Escher and Bach: an Eternal Golden Braid (Middlesex: Penguin Books 

1980), p.152. 
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As Walter B. Hewlett and Eleanor Selfridge-Field report22 in outlining the early 

history, reports 

 
"The passage of time, however, introduced certain practical difficulties which had the effect of 

slowing down or even crippling some of these early projects.  In several cases hardware and software 

environments were changed by administrative decree.  This places an extra burden on funding sources 

which, despite generous support for the start-up phases of various projects, were often less willing to 

provide ongoing support.  In consequence, little actual processing ever occurred in some instances.  In 

others, there were no results of significance.  This denouement of the promises of the Sixties had led by 

the early Eighties to widespread scepticism about computing in music scholarship." 

 

Further surveys of the lack of development are given by Page23 
 

"In the 1960s and early 1970s much - maybe too much - was written of the potential of the 

computer as the musicologist's assistant and the music theorist's testing-ground.24  But by now, two 

decades later, very little of this potential has been realised; rather, there is considerable resistance to 

use of a machine in humanistic disciplines." 

 

2.3  Possibilities for Progress. 

The more basic cause of lack of progress, was the lack of vision of two prerequisites 

for constructing a system for the representation and processing of music. 

 

The availability of complete and accurate reusable corpora. 

 

The availability of a musicologist-programmer's view of a score for analytic 

purposes. 

 

There is little evidence that any of the early representations of music scores were 

created as a result of focusing specifically on the question of how to adequately represent 

a score for analysis.  Instead the designs were driven by the application in question, 

whether it was printing, or analysis.   

 

                                                           
22  Walter B. Hewlett and Eleanor Selfridge-Field "Computing in Musicology. 1966-91" in Computer and 

the Humanities volume 25 (1991), pp.381-392.  

 
23  Stephen Dowland Page, op.cit., p.2 (footnote is Page's), also see pp.12-21.   

 
24  IBM's early sponsorship of the humanities - research posts, conferences, publications - led to a rapid 

growth in interest in the mid-1960s.  The literature from 1967-1970 abounds with preliminary reports, 

progress reports, and partial results; but very few of the larger, more ambitious projects were completed. 
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2.4  Prerequisites for the Development of Corpus-based Musicology. 

The first prerequisite is the creation of various corpora in complete, standardised 

forms under conditions of good quality assurance.  The creation of these should be a 

once-off task, quite separate from that of analysis.  A realisable ideal could be the 

eventual encoding of all scores that might be of conceivable interest to musicologists.   

 

The second prerequisite involves the development of appropriate software tools for 

use by  musicologists.   

 

2.4.1  Creation of ReUsable Corpora. 

The evolution of a mature encoding standard that has wide acceptance and has 

continuing monitoring by a visible and accepted standards authority is the main 

prerequisite for the development of reusable corpora.  Lack of standardisation leads to the 

development within a coding system of incompatible variants, with all of the resultant 

inflexibility.   

 

The goals of an encoding standard should include the complete and unambiguous 

representation of the basic information content of a score in a form where the information 

can be readily recognised by computer software.  The order of magnitude of the 

recognition problem should be parsable.  It should not have to depend on software that 

simulates higher human knowledge.  The task may involve complex scans, and 

recognition of context sensitive information, but should not require advanced tasks, such 

as natural language processing. 

 

The current position on the emergence of standards is not totally without hope.  The 

main sources from which a number of standards may emerge include 

 

 National/international standards bodies, 

 The manufacturers of notation software, 

 Institutes specialising in long term corpus creation. 

 

2.4.1.1  SMDL. 



2:  Corpus-based Musicology. 

 23 

  The Standard Music Description Language (SMDL)25 has been under development 

by a committee of the American National Standards Institute (ANSI) since 1986, under 

the chairmanship of Charles F. Goldfarb, and the vice chairmanship of Steven R. 

Newcomb. The project was later transferred to the International Organisation for 

Standardisation (ISO), and the development has reached the Committee Draft 

Stage(ISO/IEC CD 10743).  In a recent letter26 to the Computer-Research Digest, Steven 

R. Newcomb describes the standard as having “not too much left to be done”.  

Unfortunately it would appear that the main thrust of this effort has languished under 

what Newcomb describes as “a continuing lack of understanding and interest on the part 

of the music and entertainment industries”. 

 

2.4.1.2  NIF. 

  In a letter27, Gregory J. Sandell gives details of an inter-industry initiative to develop 

a standard file format for music notation, called Notation Interchange Format (NIF).  This 

is sponsored by Passport Designs and Coda Music Technology.  It is claimed to be a non-

proprietary format, which will be available with no licensing fees whatsoever to anyone 

who wants it.  It is claimed that NIF's exceptionally thorough design is the product of a 

lengthy consensus-building process between a diverse group of notation software 

designers and researchers in the area of music recognition, musicology and computer 

science as well as expert users and publishers. Associated with the project is a list of 

eminent named researchers28 in computational musicology and in notation software 

                                                           
25  Donald Sloan  "Aspects of Music Representation in HyTime/SMDL."  Computer Music Journal volume 

17, no.4 (Winter 1993), pp.51-60. 

 
26  Steven R. Newcomb "ISO CD 10743 Standard Music Description Language (SMDL)"  Music -

Research Digest  volume 9, no.35 (Wed 18 Jan 95). 

 
27  Gregory J. Sandell "Music industry gives us a notation format"  Music-Research Digest   volume 9, 

no.36 (Fri,  27 Jan 95). 

 
28  The original working group includes Nicholas Carter of the University of Surrey, Cindy Grande of 

Grande Software, Wladek Homenda of Musitek, Steve Keller of Passport Designs, Lowell Levinger of 

Passport Designs, Chris Newell of Musitek, Mike Ost of Passport Designs, Leland Smith of San Andreas 

Press, and Randall Stokes of Coda Music Technology. 

 

  The advisory board includes Dave Abrahams of Mark of the Unicorn, Garry Barber of Temporal Acuity 

Products, Alan Belkin of the University of Montreal, Raymond Bily of Midisoft Corporation, Mike 

Brockman of Temporal Acuity Products,  Don Byrd of Advanced Music Notation Systems, Inc, and of 

Temporal Acuity Products, John Cerullo of Hal Leonard Corporation, Daniel Dorff of Theodore Presser, 

John Forbes of Boosey and Hawkes, Tom Hall of A-R Editions, Greg Hendershott of Twelve Tone 

Systems, and William Holab of G. Schirmer. 
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development.  The development is described as being in a state of “now coming to 

fruition”.   

 

As this project has the backing of the notation industry, it does seem to hold a good 

prospect of delivering a standard, although no commitments are given on the time scale 

involved.  If this emerging standard becomes widely established, its adoption by a 

standards body such as ISO becomes a possibility. 

 

2.4.1.3  MuseData. 

The only mechanism of the establishment of real standards out of coding systems is 

by usage.  Such usage could be promoted by having sufficiently large corpora available 

to users.  The MuseData project at the Centre for Computer Assisted Research in the 

Humanities in Meno Park, California,  is a corpora building project that could play a 

central role in the establishment of such.  MuseData is the name of the main score 

representation.  The system allows for translation of scores between a number of 

alternate representations, including Kern, DARMS, Score and MIDI.  Kern is a new 

standard file representation that is usable for processing with the software system called 

Humdrum.  An impressive number of scores has been encoded including practically all 

of the major works of J.S. Bach, as well as multiple works of Beethoven, Corelli, 

Handel, Haydn, Legrenzi, Mozart, Schubert, Telemann and Vivaldi. 

 

2.4.2  Software Tools for Corpus Analysis. 

Four components of a software system for analysis are discussed below.  The first 

relates to the general software environment in which the analysis software works, or the 

'score view' used by the analyst.  The second deals with the multiple representations of 

the score information that are desirable in a music analysis system. The third component 

consists of the supporting software available for analysis.  The fourth component is that 

which provides for the reuse of the software. 

2.4.2.1  General Software Environment and Score View. 

The approach taken in this study  is to consider the most fundamental, but 

nevertheless general tool that gives the musicologist-programmer the highest level of 

abstraction  or complexity-hiding.  The environment used by the analyst should be as 
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simple as possible, while at the same time providing all the power associated with  

imperative programming and access to all the information in the score.  

 

As scoreView exists in a general purpose programming environment, algorithms of 

arbitrary complexity can be constructed.  Apart from software written by a researcher, 

libraries of supporting classes can be incorporated into the programming environment as 

appropriate 

 

Abstraction, that is complexity hiding, is one of the driving forces in arriving at a 

design of a programming environment for a musicologist.  As far as possible, the 

underlying complexity of representation should not be a concern of the user.  Here, 

complexity results from the nature of the notation itself and from the underlying 

computer representation.   As far as is possible, the complexity arising from both of these 

sources should be hidden from the user.  It should not matter to the user, for example, 

whether the score representation uses pointers with dynamically created linked lists, 

arrays or some other construct.  The user view should depend on close analogies with a 

musicologist's view of the paper score, rather than with the computer representation of 

the score.  One useful metaphor is found in some of the underlying structures of object-

oriented programming and design.  Objected-orientation(OO) conceives of autonomous 

objects that are encapsulations of data and procedures.  The internal details of objects are 

hidden from the outside world, in this case the musicologist-programmer.  

Communication with these objects is by means of the mechanism of message passing, or 

invoking member function, to use the C++ terminology.  The principles involved here are 

illustrated by an example.  Suppose that we have a score of the second movement of 

Tschaikovsky's fifth symphony is represented by an object, let us call it 

TschaikovskySymphony5-2.  In an OO environment, the object is created in the 

computer in a form that contains all the essential score information that might be 

conceivably used by an analyst.  This information may be accessed by sending the object 

a message.  We could send messages to it such as  
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 What is the starting time signature? 

 What is the starting key signature? 

 etc. 

 

The object TschaikovskySymphony5-2 will have enough built-in functionality to be 

able to answer questions such as these. 

 

    ----  getTimeSig       --->     TschaikovskySymphony5.2    ---->  (12,8)  

 (message to object)   (object)            (response message)

  

In a C++ program this will appear as the following line of code 

 

  TschaikovskySymphony5-2.getTimeSig() 

 

Using a programming environment that supports encapsulation and message passing 

has a number of benefits over the use of non-objected-oriented environments.  

Encapsulation ensures that it is difficult for the user to corrupt accidentally the internal 

representation of the score.  An arbitrary level of complexity may be hidden by the 

combination of message passing and encapsulation.  For example, the above message, 

getTimeSig() could be implemented as a search for the first time signature on the first 

stave of the score, an action that would involve traversing through the initial information 

of the score, past the clef and the key signature and continuing until the time signature is 

reached.  This complexity, and the complexity of how the score is represented in the first 

place, is hidden from the user.  All the user needs to know is what valid messages or 

member functions to use and of course, to know the format of replies and to be able to 

interpret what they mean.  Here the replies depend for their form on the allowable 

constructs within the programming language and on the way in which they are 

interpreted.  It will not be clear at this stage how we might use the message-passing 

metaphor to access the basic music information internal to the score, such as is found in 

notes and rests.  This will form the main preoccupation of chapter 5. 

 

2.4.2.2  Multiple Representations. 

Internal representation of score is basically two-dimensional; file representations are 

one dimensional.  File representations may be based on alphanumeric code.  

Alphanumeric representation codes include those already discussed such as ALMA, and 
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DARMS.  An advantage of such alphanumeric codes is that they can be created directly 

with a text editor and they can be inspected, although these aspects are becoming less 

important with the development of GUI and MIDI interfaces.  Non-alphabetic file 

representations are possible using 'flattened' versions of internal representations.  File 

versions that are close to the internal version could optimise input/output time efficiency.  

A range of possibilities is illustrated in Fig 2.2. 
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Fig.2.2  Relationships between various representations.
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From Fig 2.2, the centrality of the internal representation can be seen.  An important 

feature to note is that the addition of a new external score input representation involves 

the construction of only one piece of software, an input translator to parse the external 

code and build an internal representation.  Similarly the ability to create a new external 

representation involves the creation of just one extra piece of software, an output 

translator, which generates the external form from the internal one.  This overall structure 

enables the creation of an integrated environment for 

 

 input of score from a range of different codes, 

 output of scores in a range of different codes, 

 hence the ability to translate from one encoding standard to another 

   by inputting in one code and outputting in another, 

 processing scores for purposes such as analysis, printing, multimedia, and  

   performing, 

 the creation of internal form using a GUI/MIDI combination, 

 the editing of the internal from a GUI/MIDI combination, 

 the creation of specialised output for input to other packages such 

   as MIDI sequencers and SCORE29 notation package. 

 

2.4.2.3  Supporting Components. 

Any music analysis system will inevitably require additional tools, such as those for 

playing and printing scores.  Playing tools are essential for checking the accuracy of the 

corpus, and may also be desirable for the building of software for simulating performance 

by the construction of  performer-expert-systems.30  Printing tools are essential for 

                                                           
29  The current implementation of scoreView has the following components 

 

 ALMA to internal form 

 internal form to MIDI 

 internal form to SCORE input code 

 
30  scoreView has been used in a pilot project to generate a MIDI stream from a score representation, using 

mainly  rules from Sundberg's research.  The project was a final-year undergraduate one for the Computer 

Science Department at the University of Limerick:  Thomas Morrow An Expert System for Performing 

Irish Dance Music BSc Dissertation for University of Limerick 1993.  The research work on which this was 

based was drawn from J. Sundberg  Studies of Music Performance.  (Stockholm: Royal Swedish Academy 

of Music 1983). 
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checking the accuracy of the corpus and for producing near-publishable printed output.  

The creation of printing and playing capabilities can be achieved by the construction of 

two software components discussed in the previous section.  An output translator to 

generate code for a music printing package, and another output translator to generate 

code for sound synthesis is all that is needed for these capabilities to be realised.  The 

simplest playing may be achieved by  translating from the internal representation to MIDI 

representation that can then be played on commercial synthesisers. scoreView contains 

facilities for generating MIDI output directly, and for the translation from the internal 

form to MIDIFILE format.  Printing is achieved in scoreView by the generation of a text 

file, using an output translator.  This may then be used with Leland Smith's printing 

program Score. 

 

In addition to printing and playing software, a range of supporting software 

components should be available to facilitate common tasks.  The environment fosters the 

co-usage of other software tools such as databases, parsers, statistical packages and 

specialised packages in the AI domain. 

 

2.4.2.4  Modifiability/ReUsability of Score Representations. 

One important factor in creating a system for score representation is in its ability to 

develop the software by adding new facilities without disrupting existing capabilities.  

Because scoreView is object-oriented, the powerful mechanism of inheritance may be 

used for modification and reusability of the score representation.  The availability of 

inheritance supports the creation of new internal score representations that inherit the 

capabilities of scoreView.  Examples might include the incorporation of facilities for 

handling pitch gamuts other than diatonic/chromatic ones.  
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Chapter 3.  Survey of  Score Representations and 

Computer Analyses. 

 

An overview of score representations in systems whose primary purpose is other than 

music analysis is given in the first section of this chapter.  These systems are important in the 

current study in that they have the potential to contribute either directly or indirectly to 

analysis applications in a number of ways.   This is followed by a section that examines six 

systems  for music analysis.  

 

The next section includes a brief review of systems for music printing whose score 

representations are generally regarded as having much in common with music 

representations for analysis.  Also included are two less directly relevant areas, both of 

which have historical and practical connections with score representation for analysis.  

The first of these is sound-synthesis.  One relevance of sound synthesis to scoreView lies 

in its potential to have the computer play the music under analysis.  The second area that 

is covered in this chapter is that of computer aided composition.  Again, score 

representation systems in computer assisted composition share similar techniques to the 

computer analysis which is concerned with generative studies. 

 

3.1  Score Representation in non-Analysis Applications. 

 

3.1.1  Score Representation in Music Printing.  

In the 1950s, the goal of automatic music printing was identified as one that 

seemed ripe for academic and commercial exploitation.  Progress to real usable 

systems was slow, for a number of reasons.  Firstly the task of constructing a 

printing system from scratch proved to be a substantial one.  To be of real use, 

the output produced has to include the complete complex system of common 

practice notation.  The success of a computer-based music printing system would 

depend inevitably on its capability for producing printed output of a sufficiently 

high quality to be of commercial use.  Mere novelty and experimentation would 

be unlikely to impress.  Success in this task depended on having stable hardware 

and software architecture, especially for graphics.  Neither of these were 
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available until the 1980s.  Concepts such as that of a graphical user 

interface(GUI) still had to achieve currency.31  Additionally printer technology 

was still in its infancy. 

 

A number of early printing projects emerged, including Donald Byrd's 

FORTRAN-based printing program SMUT32, but the project that achieved most 

attention was started in the early 1960's  by Stephen Bauer-Mengelberg and Dr 

Melvin Ferentz.33  It was initially called the Ford-Columbia Input Language, but 

was renamed as the Digital Alternative Representation of Musical Scores.  It 

became widely known under the resulting acronym as DARMS.34  The early 

versions of DARMS code appeared in the early to mid 1960s.  Typically,  instead 

of employing a music typesetter, a music manuscript is transcribed into DARMS.  

A DARMS encoded version of a common practice notation score consists of a 

serial file of alphanumeric characters.  The encoding captures the basic 

information content of a score in enough detail to produce a printed version. 

Optionally some of the details of the score lay-out could be encoded as part of 

DARMS.   A computer program was written to convert the encoded score from 

DARMS into instructions to control a photo composition typesetter, which 

produced the finished printed score and a set of parts.35  The alphanumeric 

representation of DARMS survived the original project, and came to be used in 

                                                           
31  The graphical user interface that became commonly available with the development of the Apple 

Macintosh computer in the late seventies, had its origins in previous systems that originated over half a 

decade earlier at the Xerox Palo Alto Research Centre.  

 
32  In the version of SMUT dated 31-May-85 and distributed by Kimball P. Stickney, it is documented as 

begun in 1968,  Smut version 1.1 in July 1975, polyphonic version 2.0 in September 1977, version 2.8 to 

support shared staves on March 1982.  See also Donald Byrd Music Notation by Computer PhD 

Dissertation for Indiana University 1984. 

 
33  Bauer-Mengelberg  "The Ford-Columbia Input Language"  in  Barry S. Brook, op.cit., pp.48-52.  Also, 

for a relatively recent dissertation see Bruce Andrew McLean, op.cit., pp.1-5. 

 
34  According to Bruce Andrew McLean, op.cit., 1988,  p.7.  The name DARMS was proposed by Melvin 

Ferents, to honour Edward F. D'Arms, an official who sponsored the project at the Ford Foundation. 

 
35  According to Walter B. Hewlett and Eleanor Selfridge-Field "Computing in Musicology, 1966-91" in 

Computers and the Humanities volume 25 (1991), p.386. "..the earliest documented effort at DARMS-

related printing was made by Roskin, who implemented both photon and plotter programs as early as 1967 

on a code of his own device."  
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either its original or in a modified form for subsequent printing and music 

analysis projects.36 

 

Early developments in music printing were overtaken by, or developed into 

commercial products, such as Leland Smith's Score, The Note Processor, which 

uses DARMS input, Professional Composer,  and Finale.  The diffusion of the 

PC and of high quality printing devices resulted in the commercial development 

of notation packages.  Additionally MusicTeX and MuTex37 and Mutation38 

became available for academic use via Internet.  

 

  Most of the later printing systems are designed on the assumption that a 

purely alphanumeric input encoding would prove inadequate or inappropriate for 

specifying all visual features to a level required to produce a good appearance.  It 

was found that graphical aspects, such as the positioning of beams, the length of 

stems, and the shaping of slurs caused problems in the older generation of 

printing programs.  Whereas a computer may be depended on to produce these 

automatically, a good visual result is not always guaranteed, at least within the 

capabilities of current software.  Nowadays, most score printing systems produce 

an automatic result, as a first attempt, and then allow the user to modify the 

resulting appearance by means of graphical editing, using a pointing device such 

as a mouse.  Some of these programs, such as Finale and Professional Composer, 

dispense completely with alphanumeric input and rely solely on the GUI for 

score creation, using a combination of mouse and keyboard, and with the 

optional use of MIDI. 

 

                                                           
36  DARMS code is used in one of the commercially available printing programs "The Note Processor".  

According to Hewlett and Selfrigde-Field, ibid., p 387, this was developed by J. Stephen Dydo, a composer 

educated at Columbia, who undertook to create a DARMS-based music printing program in FORTRAN.  It 

was released for the IBM PC in 1987.  See also Walter B. Hewlitt and Elanor Selfridge-Field  Directory of 

Computer Assisted Research in Musicology 1986  (Menlo Park, California 1986), pp.7-34.   A number of 

theses are concerned with music printing and/or score representation in DARMS, of which the most recent 

one is Bruce Andrew McLean's, op.cit. 

 
37  See Walter B. Hewlett and Eleanor Selfridge-Field Computing in Musicology volume 8 (Menlo Park: 

1992), p.175 for details of the availability of MusicTeX and MuTeX. 

 
38  Mutation by Glen Diener is distributed by CCRMA at Stanford University. 
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The form of score representation used in printing systems has a high level of 

suitability for use in analysis as well.39  

 

3.1.2  Score Representation in Sound Synthesis. 

As early as the 1950s musicians were investigating the potential of their very 

limited computer system for creative musical purposes.  This happened not only 

in the academic world, where it might have been expected, but also in the 

telecommunications industry, where experimentation with music was fostered in 

a search for understanding human communication.  During the late 1950s and 

into the 1960s impressive advances were made in this area.40  Sound synthesis 

systems were developed with a view to using the computer as a creative tool in 

music composition and performance, by exploiting the newly available 

theoretical possibilities of digital sound.  

 

The main users of sound synthesis systems were either composers or 

developers of music instruments.  Composers were motivated by creative intent, 

usually combined with urges to experiment.   The development of computer-

based sound synthesis meant that for the first time in the history of music, it was 

possible to synthesise every possible sound, at least in theory.  The composers in 

the analogue electronic music medium in the 1960s had developed an expertise 

in sound synthesis that was highly constrained by analogue technology.  Many of 

these composers saw in computers the potential to free themselves from the 

limitations of analogue hardware.  In order to generate electronic sound using 

computers instead of analogue electronics, all that is needed is to specify 

algorithms for generating the wave forms of the sound,  and to program 

algorithms on a computer for generating and playing these.  This contrasted 

sharply with electronic music practice that was limited by the available analogue 

hardware, such as filters and sine and square wave tone generators.  Another 

potential that was seized on around the same time arose from the  possibility of 

                                                           
39  Bruce Andrew McLean, op.cit., 1988, p.2.  also Stephen Dowland Page  op.cit., p.iv. 

 
40  For a historical survey see , Gareth Loy  "Composing with Computer - a Survey of Some Compositional 

Formalisms and Music Programming Languages."  Max V. Matthews and John R. Pierce Current 

Directions in Computer Music Research,  (Massachusetts: The MIT Press 1989), pp.291-396.  Also for 

history and techniques of sound synthesis see Charles Dodge and Thomas A. Jerse Computer Music  (New 

York:  Schirmer Books 1985).  For the techniques of computer-based sound synthesis, see F. Richard 

Moore  Elements of Computer Music.  (Englewood Cliffs: Prentice Hall, 1990). 
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recording sounds with a computer and of modifying them in an arbitrary way.  

This gave composers in the converging Musique Concrète and Electronic Music 

traditions, what seemed at the time to be an ideal  tool with virtually unlimited 

potential, although the design of effective algorithms41 turned out to be a much 

bigger task than was suspected by the pioneers.  Early progress in sound 

synthesis was rapid, and a real commercial spin-off resulted in the development 

of mass-produced commercial digital synthesisers in the early 1980's. 

 

 The experimentation with sound synthesis systems served to deepen our 

understanding of some of the processes involved in the creation and perception 

of music and  thus provided a fertile ground for music theory.  However the 

primary  goals of this work were not musicological. These differences were 

reflected in the score representations that were created for sound synthesis.  Most 

computer representations of scores for sound synthesis divide the representation 

scheme into two parts,  the orchestra part and the score part.  The orchestra part 

is involved with expressing sound generating algorithms.  The score part consists 

of a simple structure, a list of notes, arranged one note per line. This one-

dimensional format makes it difficult for human readers, who feel more 

comfortable with music notation through a two-dimensional representation.  The 

task of the score reader is even more awkward to handle when, as is normal in 

sound synthesis applications, the one-dimensional list is not arranged in time 

order.  The score part was not modelled on the pitch and duration structure of 

common practice notation.  Familiar concepts are expressed numerically, with 

pitch expressed in Hz, duration in seconds and dynamics in terms of amplitude.  

Languages of the MUSICx varieties (MUSIC4, MUSIC5, MUSIC11,etc.), 

CSOUND and CMUSIC are examples of such. 

 

For the designers of these systems, the sheer complexity of common practice 

notation proved too much of a burden to base an input language for sound 

synthesis on it.  This was partially because composers did not want to be limited 

by the constraints of common practice notation, which was seen as an 

inappropriate notation for communicating with a computer and for expressing 

possibilities in the new medium.  The possibility of having common practice 

                                                           
41  Risset, Jean-Claude Introductory Catalogue of Computer-Synthesized Sounds (Murray Hill, N.J.: Bell 

Telephone Laboratories, 1969).  
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notation as a subset of the input code for sound synthesis was addressed by 

Leland Smith, when he tried to unify the requirements of sound synthesis and 

music printing.   As Loy42 observes,   "... Smith attempted to make a SCORE-

like notation for his music printing program, MS, which dates from the same 

time (the early 1970s), but it became evident quickly that the useful information 

for synthesis was sufficiently different from that required to typeset a score that 

the notations had to diverge in nontrivial ways".43 

 

Other, more recent composition systems include the object-oriented 

Common Music44, the NeXT Music Kit45 and  MODE and SMOKE46 systems.  

These systems provide general composition environments with possibilities for 

real-time interaction, and are not based on common practice notation. 

 

                                                           
42  Mathews and Pierce op.cit. p.335. 

 
43  Although sound synthesis systems at present do not use CPN notation, it is possible that future systems 

may incorporate such a facility.  However the orientation of these systems will remain compositional.  From 

the musicologist's point of view, it is important to have access to sound generation facilities.  This helps the 

researcher to detect errors in, and to identify and visualize music from the corpus.  Such a facility may be 

realised by having one component in the analysis software, an output translator,  that converts the internal 

score form into one suitable for input to a sound synthesis system.  The simplest form that this takes is by 

means of a MIDI code output translator that may be used with a commercial synthesiser. 

 
44  Common music is a high level composition language built on the Common Lisp Object 

System.  It was developed by Heinrich Taube and based on Bill Schottstaedt's language Pla that 

was developed at CCRMA at Stanford University.  See Heinrich Taube  Common Music:A 

Music Composition Language in Common Lisp and Clos in the Computer Music Journal volume 

15, no.2 (Summer 1991), pp.21-32. 

 
45  The NeXT Music Kit documentation is available in machine form from CCRMA at Stanford University. 

 
46  Stephen T. Pope  "MODE and SMOKE" in Hewlett, Walter B. and Selfridge-Field, Eleanor 

Computing in Musicology volume 8 (Menlo Park 1992), pp.130-2.  This is a Smalltalk-based 

object oriented composition, performance and analysis.   See also Stephen Travis Pope 

"Introduction to MODE: The Musical Object Development Environment" in Stephen Travis 

Pope The Well-Tempered Object (Cambridge Massachesetts: The MIT Press 1991), pp.83-106. 

 



3:  Survey of Representations and Computer Analyses. 

 37 

3.1.3  Score Representation in Computer Aided Composition.47    

The designation 'Computer Aided Composition' is used for cases where a 

computer makes some compositional decisions.  The main aim is to provide 

composers with a very much expanded potential for building models for the 

automatic generation of music.  A second potential of these systems lies in the 

extent to which they illuminate the creative/generative process. Work in 

computer aided composition began in the 1950s, and was characterised by initial 

progress which yielded substantial results in the late 1950s and early 1960s. 

 

   One of the earliest examples is the Illiac Suite by Lejaren Hiller that was 

produced as early as 195848.  Here Hiller succeeded in using the computer to 

generate a music score by programming it to select notes randomly, within the 

rules of species counterpoint.  Computer aided composition has been exploited 

on many subsequent occasions and from various perspectives by composers such 

as Hiller, Xenakis49, Laske50 and Lansky51.  The score representation that is used 

in a typical computer aided composition system is radically different from 

common practice notation.  Here musical knowledge is normally embedded as a 

series of rules.  The rules are incorporated into a computer program that 

generates music.  Although the original dynamic for computer aided composition 

came from experimental music, it is worth pointing out here that its relevance to 

music theory was identified at an early stage.  Generative theories of music 

structure could be used to build a computer model that generated music.  This 

                                                           
47  The first substantial work produced was Lejaren Hiller's Illiac Suite, the score of which appears in the 

first major publication on experimental music,  Lejaren Hiller and Isaacson Experimental Music  (New 

York: McGraw-Hill 1959).  See also Loy, op.cit., pp.291-396, and Dodge and Jerse, op.cit., pp.265-322.  

The IEEE Computer Society has recently formed a Task Force on Computer Generated Music that 

produces three newsletters every year.  For an anthology of developments in computer aided composition, 

see  Denis Biaggi Computer-Generated Music (Los Alamitos: IEEE Computer Society Press 1992).  David 

Cope's Computer and Musical Style (Oxford: OUP 1991), gives details of his own developments in this 

area. 

 
48  See  Lejaren Hiller Computer Music Retrospective in the series Digital Music with Computer WERGO 

CD WER 6128-50;  see also Lejaren Hiller and Isaacson,  op.cit. 

 
49  Iannis Xenakis Formalized Music (Bloomington: Indiana University Press 1971). 

 
50  Otto Laske "Composition Theory: An Enrichment of Music Theory"  in Interface volume 18 (1989), 

pp.45-59. 

 
51  Paul Lansky's Idle Chatter on Wergo CD WER 2010-50.  
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gave a potential for experimental verification of the generative model by creating 

music output for validating the model.   There is a substantial history of work in 

this area, most notably those of Baroni, Dalmonte and Jacoboni52, of Ebcioglu53 

and of Kippen54. 

 

3.2  Survey of Selected Analytic Systems. 

A range of systems is surveyed.  These cover a span of over 30 years, and 

illustrate a variety of approaches for tackling the job of designing an analysis 

system for music scores. 

 

3.2.1  Michael Kassler's MIR.55   

The MIR56 language was developed  by Michael Kassler in early 1964 as part 

of a pilot project concerned with experimenting on ways that a digital computer 

could assist musicologists in answering internal-evidential questions about a 

certain corpus of music and in particular, the Masses of Josquin des Prez. 

 

MIR was a specialised computer language for music analysis.  It was built on 

important concepts such as that of a lyne, which corresponds to a part that is 

performable on an instrument that, at any one time, can produce at most one 

pitch.  There also exists the concept of the current note,  that involves the 

mechanism for making one particular note of the score the current focus of 

attention, with the implicit notion of a current time as the attack time of the 

                                                           
52  Mario Baroni;   Rossana Dalmonte; and Carlo Jacoboni  "Theory and Analysis of European Melody" 

Marsden and Pople, op.cit., pp.187-205.  also Mario Baroni, Ressella Brunetti, Laura Callegari and Carlo 

Jacoboni.  "A Grammar of melody.  Relationships between melody and harmony" in Baroni; and Jacoboni  

Musical Grammars and Computer Analysis.  (Firenze:  Olschki 1896).  Much of this work was based on 

earlier work.  See Mario Baroni and Carlo Jacoboni Proposal For a Grammar of Melody (Montreal: Les 

Presses de l'Universite de Montreal 1978). 

 
53  Kemel Ebcioglu, "An Expert System for Harmonizing Chorales in the Style of J.S. Bach" Mira Balban, 

Kemal Ebcioglu and Otto Laske Understanding Music with AI (Menlo Park: The AAAI Press/The MIT 

Press 1992), pp.294-334. 

 
54  Jim Kippen and Bernard Bel.  "Modelling Music with Grammars: Formal Language Representation in 

the Bol Processor", Marsden and Pople, op.cit. 

 
55  An account of the nature and history of MIR appears in Stephen Dowland Page, op.cit., pp.73-76. 

 
56  Michael Kassler "MIR - A Simple Programming Language for Musical Information Retrieval" in Harry 

Lincoln  The Computer and Music (Ithaca: Cornell University Press 1970), pp.299-327. 
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current note.  MIR allows only one note to be current at any one time.  A set of 

primitives is provided for moving the current position.  MIR allows one to locate 

the current note at the start of lyne 1 of a selected section, to move forward or 

backwards by n notes, to move between lynes, to move to a specific measure or 

to a specific note within a specific measure.  Special primitives are included to 

traverse all the notes of a score.  Additionally, primitives are provided for doing 

comparisons of various entities, for doing arithmetic, for moving data, and for 

performing output.  The main mechanism for retrieving information from the 

score is via a number of  dedicated storage locations consisting of computer 

words which hold information about the score in general, and about the current 

note or rest.  One such word allows the current note to have a unique identifier 

that can be treated as a kind of variable. 

 

MIR represented a remarkable achievement for its time, and contained many of the 

features, if only in embryonic form, which form part of scoreView.  The language 

structure for MIR is not high level, and programs resembled assembler code.  Each 

instruction had the general format of  (1) a normally optional label followed by (2) the 

name of the command followed by (3) one or more operands.  A sample of MIR is 

shown in Fig 2.1.  It locates the highest and lowest notes, in terms of pitch, in lyne 

numbered two of the composition being processed. 
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  TOMEAS 1 

  TOLYNE 2 

ONWARD COMPAR REGCL,=14,REST  TO LOCATION REST IF C.N. A REST. 

  MOVE  MEASNO,WA10 

  MOVE  NOTENO,WA11 

  MOVE  REGCL,WA12 

  MOVE   NOTECL,WA13 

  MOVE  SEMITO,WA14 

NEWLO MOVE  MEASNO,WA15 

  MOVE  NOTENO,WA16 

  MOVE  REGCL,WA17 

  MOVE  NOTECL,WA18 

  MOVE  SEMITO,WA19 

RETURN COMPAR BARLIN,=3, STOP STOP IF AT DOUBLE BARLINE 

  TONOTE +1 

  COMPAR REGCL,=14,RETURN   TO RETURN IF C.C. A REST 

  TRGTH  SEMITO, WA19, NEWHI   TO NEWHI IF ON NEW HIGH 

  TRLTH  SEMITO, WA19, NEWLO  TO NEWLO IF ON NEW LOW 

  TRA  RETURN   GO TO RETURN 

NEWHI MOVE  MEASNO,WA10 

  MOVE  NOTENO,WA11 

  MOVE  REGCL,WA12 

  MOVE  NOTECL,WA13 

  MOVE  SEMITO,WA14 

  TRA  RETURN 

STOP CALL  EXIT 

REST COMPAR BARLIN,=3,STOP 

  TONOTE +1 

  TRA  ONWARD  

Fig.3.157  MIR program that locates the highest and lowest notes, on lyne numbered 2. 

 

Twenty consecutive computer words labelled WA1 through WA20 are 

reserved to the MIR programmer to use as work areas. 

 

MIR represents one of the early giant leaps in imagination, which paralleled 

similar leaps in sound synthesis and computer aided composition that were made 

around the end of the 1950s and the start of the 1960s.  Whereas the form of the 

language was low-level, and hence led to rather long programs, it contained the 

                                                           
57  In comparison with the 29 lines of code above, the scoreView achieves the same in 5 lines of code. 

 

 ScoreIterator si(s, 1), siHigh = si, siLow = si; 

 int hiPitch = 0, loPitch = 10000; 

 while ( si.step(NOTE)) 

 {  

  if ( si.getPitch12() > hiPitch ) { hiPitch = si.getPitch12(); siLow = si;} 

  if ( si.getPitch12() < loPitch)  { loPitch = si.getPitch12(); siHigh = si;} 

 } 
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main fundamental concepts for a usable system for general music analysis.  The 

complexity of how music was represented and of how the associated procedures 

operate is hidden from the musicologist-programmer.  Two factors conspired 

against its general use that have nothing to do with its intrinsic merits.  The first 

was because of the lack of a corpus written in a widely accepted code.58   The 

second reason originated in the immaturity of computer software, in particular in 

language standards.  Attempts at improvement of university computing facilities, 

which kept changing, resulted in great instability in software.  Researchers often 

found that computers were changed without due regard for maintaining 

portability.  When the original computer on which MIR ran was replaced, the 

MIR system ceased to work.59 

 

3.2.2  MUSIKUS at the University of Oslo.60   

This project started in 1974 with a definition of MUSIKODE, an 

alphanumeric music input code by Petter Henriksen and Tor Sverre Lande in co-

operation with Prof. O-J Dahl.  Subsequently Tor Sverre Lande developed the 

music analysis system as his thesis in computer science.  MUSIKODE structures 
                                                           
58  The input language IML (Intermediate Musical Language) was devised by Jones and Howe of Princeton 

University for the Josquin project.  see also Tobias D Robinson, "IML-MIR: A Data-Processing System for 

the Analysis of Music" in Harald Heckman Elektronische Datenverarbeitung in der Musikwissenschaft 

(Regensburg: Bosse, 1967), pp.103-135.    

 

According to Hewlett and Selfridge-Field in "Computing in Musicology, 1966-91" from Computer and the 

Humanities 25 (1991), pp.381-392. 

 

 "The need to keep data very compact encouraged the false economy of providing a pitch name 

without an unambiguous indication of register, which was to be signalled only when changed.  In hindsight 

it was realised that undetected registral errors in the encoded data jeopardised application at every turn.  

This lapse in the data prevented an otherwise commendable series of design projects from reaching 

fruition." 

 
59  Stephen Dowland Page, op.cit., p.28. 

 

 "The IML/MIR system developed at Princeton, for example, which was originally designed as a 

general-purpose music analysis and information retrieval system, was written in a strongly machine-

dependent programming language, and when the university bought a new computer - a different model - 

the task of rewriting all the software was too vast to be undertaken for some time." 

 

Also on page 76, Page reports Kassler as suggesting that difficulties of funding contributed to MIR's lapse 

into disuse. 

  
60  Music encoding and analysis in the MUSIKUS system,  University of Oslo, Dept. of Informatics/Dept. 

of Music 1988.  

 



3:  Survey of Representations and Computer Analyses. 

 42 

the score representation into a series of hierarchies, the note level being the 

lowest level.  These are combined into chords or parts and finally into sections, 

such as a movement of a symphony or an act of an opera.  This level is called the 

composition level.  At the highest level the compositions are combined into 

musical entities.  This is called the catalogue-level.  It would appear from the 

manual, that coding of the total information content of a score is possible within 

the general structure of the code, but that various attributes such as dynamics and 

tempo have not been implemented in the software.  The input form of 

MUSIKODE is converted into an internal form of MUSIKODE by a program 

called MUS.   

 

The analysis system consists of analytical programs that are written by 

professional programmers from the Department of Informatics at the University 

of Oslo.  These programs produce an interactive environment that enables 

musicologists to develop an analysis using a flexible range of built-in facilities.  

The musicologist runs the program that loads music from the set of pieces in the 

database.  This gives possibilities of  performing combinations of actions, 

including 

 

1.  defining horizontal windows for doing thematic or intervallic analysis,  

2.  defining vertical windows for doing harmonic analysis, 

3.  defining recursively embedded windows, 

4.  locating the window, 

5.  moving the window through the material (scanning) and collecting 

observations, where moving can be by a fixed interval of time or by a 

number of changes, 

6.  defining points of interest (IPs) within a window, on various bases, for 

example on all notes within the window or  on stressed notes within the 

window, with the concept of guiding parts introduced to facilitate the 

traversal of two melodic lines in which the changes occur at different 

times, 

7.  selecting some from a series of pre-programmed analytical tools that 

create tables of values, for example TIPS, RIPS, BIPS AND SIFT which 

produce various pitch class set type calculations on collections of notes 

(IPs) within a window, 

8.  saving and restoring tables. 
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The internal score model as viewed by the analyst has a close analogy with 

the visual score.  The windowing/point of interest metaphor can be readily 

visualised, and learning to use the system for analysis of a corpus involves 

considerably less effort than would be the case if the analyst were to learn a 

programming language.   As in all such solutions, this quick road to using a 

computer for music analysis has the downside of inflexibility when compared 

with a full programming environment.  Only analytic tools developed by the 

professional programmers are available to the music analyst.  The music analyst 

using MUSIKUS is limited to selecting the actions that take place, such as 

setting states that influence the effect of subsequent actions, and saving, 

retrieving and displaying data. 

 

3.2.3  The Essen Computer-Aided Research Project.61   

This project uses large databases for the purposes of archiving, classification, 

cataloguing and analyses of ethnomusicological materials.  The project was 

conceived by looking at the possibilities of extending a commercial database 

package (STAIRS/CMS) to store melodies.  A largely text database, ETNO 

contains over 450, 000 items relating to ethnomusicological sound material, and 

three further databases, LIED, LIAO and BALL, contain melodic notations.  

LIED contains more than 4000 German folk songs, LIAO about 1000 Chinese 

folk songs and BALL(ad) more than 1000 German ballads.  The tunes are 

encoded in ESAC (ESsen Associative Code).   The code represents a melody's 

pitch as a series of scale steps, which are represented by numbers, with the 

characters '#' and 'b' used for non-diatonic pitches.  A cipher notation is used for 

Asian music with '+' and '-' symbols representing dots above or below the cipher.  

In ESAC code, scale step 1 is always the tonic.  Durations are encoded in terms 

of the smallest duration in the note, and the underscore is used to denote 

multiples of this duration, with a single underscore representing twice the 

smallest duration.  An encoding of Arne's, Rule Britannia! is given below.  The 

smallest note duration is a quaver. 

 

                                                           
61  Helmut Schaffrath "The Retrieval of Monophonic Melodies and their Variants: Concepts and Strategies 

for Computer-Assisted Analysis" in Marsden and Pople, op.cit., pp.95-109. 

 



3:  Survey of Representations and Computer Analyses. 

 44 

 

 ****ARNE 

 Rule Britannia 

 Grossbritannien 

     g0001  08  g  4/4 

   3__.3_   4_4__3_   4_.32_1_   -7___ 

   5__4__   31435_4_  3__2__   1___ // 

 

Fig.3.2  ESAC encoded version of Arne's 'Rule Britania!'. 

 

Note that the scheme used here encodes pitches and durations only.  Each 

entry may be analysed by calculating 

 

 1.  percentage of intervals, in both ascending and descending form, 

 2.  percentage of scale degrees, 

 3.  rhythmic incipit, 

 4.  scale and mode, 

 5.  range,  including lower and upper limits, 

 6.  succession of finals of phrases or cadence tones, 

 7.  succession of stressed tones or accent tones, 

 8.  formal analysis of phrases:   

  a: comparing succession of pitches,  

  b: comparing the succession of durations,  

  c: upbeats, phrase wise. 

 

Various calculated values are then stored in a database, and these values may 

be used as a basis for retrieval.  Musical phrases are pre-defined, generally in 

correspondence with the words.  The analysis of phrases uses a concept of 

'distance-variant', by counting the number of stressed notes.  For example, a 

phrase is classified as a 'distant-variant' within a deviation of 30% of all stressed 

notes. 

 

Searches can be made for one or more instances of the stored values in the 

database.  For example, when a new tune is encoded, a search may be made to 

see if it, or a related tune exists in the database.  One could search for all tunes 
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with the same rhythmic pattern.  If this search retrieves a small number of tunes, 

they can be examined to see if there are similarities.  If, on the other hand too 

many tunes are retrieved, then one could combine the first criterion with another 

such as a cadential sequence, and in this way retrieve a manageable number of 

melodies that may be similar.  Apart from searching for instances of a specific 

melody, the system provides a rich environment for exploring stylistic 

differences between musics of different origins, such as Chinese music and 

German folksongs. 

 

In this system there is no programmer's model of a music score, apart from 

the ESAC version of the music, which is limited mainly to encoding pitches and 

durations of monophonic music.  The musicologist's tool here consists of the 

ability to make musically meaningful retrieval on the database, possibly based on 

sophisticated strategies according to various criteria.  

 

3.2.4  McLean's System for Score Representation.   

The material discussed here is taken from a PhD dissertation62 of Bruce 

McLean.  The author is concerned with a number of issues, including, notational 

completeness in encoding music scores in DARMS.  With some new language 

additions to DARMS to resolve ambiguities in vertical alignment, the author 

devised a method of creating a version of DARMS in main memory for 

processing.  As an intermediate stage in the process of generating an internal 

version, McLean generates a canonical version of the source DARMS, which is a 

complete representation of the score, in DARMS code,  but converted into a 

form in which subsequent processing becomes simpler.  A number of additional 

facilities are also developed which include provision for attaching extra, 

application-specific data to the internal form of the score, such as might be 

desirable in analysis.  McLean gives the following example: 

 
 "For example, all instances of a specified melodic pattern, e.g., a fugue subject, could be 

located in the Internal Form by a query language such as the one developed by Stephen Page.  

The query would be defined as a sequence of pitches and/or durations.  The data structure 

returned by the search operation for the query would be a data structure which could be 

moulded into an attribute plane and attached at the end of the Internal Form.  The locations 

themselves of the melodic pattern would then be stored in the Internal Form.  Subsequent 

                                                           
62  Bruce Andrew McLean, op.cit., 1988. 
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searches for the same pattern could be carried out by a relatively high-speed retrieval of the 

attribute plane rather than by an exhaustive search through the whole Internal Form."63 

 

  In addition to the internal form of the score, a closely related form is 

generable, the transport version,  for transmission across computer networks. 

 

The authors vision of a retrieval interface is significant. 

 
"A basic set of assumptions is being made about the way in which a musical researcher 

will employ a computer system.  First, it is assumed that a researcher who wishes to engage 

in computer-assisted methods of analysis of musical scores, or who wishes to perform 

transformations on the representation of a musical score for other purposes such as printing 

or translation to an alternate representation, will write an application program in one of  the 

common programming languages (e.g., Pascal, Modula-2, or C).  Second, a general-purpose 

retrieval interface will be made available as a means of searching for and extracting data 

objects from the internal form.  The retrieval interface is a library of functions, or 

subroutines, which may be called from the researcher's application program.  The purpose of 

the retrieval interface is to serve as a software translation layer between high-level requests 

made by an application and the complex body of information in the internal form.  The 

retrieval interface presents to an application-writer a readily understandable and limited set 

of requests, or commands, for the selection of data objects within the internal form.  The 

value of the retrieval interface is that in presenting a sufficiently useful virtual view of the 

score object and its organisation, it also conceals details of the internal form that would 

distract the application-writer from his primary purpose.  Third, the application itself or 

additional layers of software services employed by the application, but not the retrieval 

interface will be responsible for the recognition of patterns in the internal form."64 

 

  Significantly, McLean is here promoting the principle of abstraction, that is 

of complexity-hiding. 

 
"Organization to support direct retrieval of objects (notes, chords, slices, measures, and, 

within analytic applications, voices, instances of themes or rhythmic motives, and others) is 

required.  Types of movement which must be supported are (1) direct access of objects;  (2) 

sequential step-wise traversal, in which the traversal step beyond any particular object could 

be taken in any of several different directions; and (3) automatic search; there must be a 

well-defined linear path through the entire Internal Form which may be followed by a search 

engine.  An organisational requirement imposed by thematic indexing applications is the 

ability to store and access a large number (up to tens of thousands) of small excerpts - the 

incipits - of scores."65 

 

                                                           
63  ibid, p.176. 

 
64  ibid p.159. 

 
65  ibid p.163. 
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Overall the McLean thesis has at its heart the representation of a musical 

score for processing.  The analytic side however, is not developed in this thesis.  

One analytical approach by Page that was developed using McLean's 

representation is given in the second next section.  Overall McLean's approach 

has the integrity resulting from concentrating on the issue of completeness and 

objectivity of score representation.  Time will tell whether the number of extra 

facilities provided is worthwhile.   These facilities include the transport version 

of the score and the ability to attach application specific data.  The ability to 

extend the representation by attaching extra information coupled with the above 

quoted suggestion of attaching analytic information such as themes for use in 

information retrieval suggest that the score representation is verging on a 

database.  This approach runs the risk of  becoming top heavy, by using the score 

representation to support a database, rather than by using database technology for 

storing such relations. 

 

3.2.5  Brinkman.   

One of the most comprehensive attempts to make computers available to 

musicologist-programmers is in Brinkman's 963 page book  "Pascal 

Programming for Music Research".66  It has been used by Brinkman for graduate 

students in music and in seminars for Ph.D. candidates in music theory. The 

book can be looked at from a number of aspects.  First it resembles an 

introductory computer science book in programming which deals with 

representing data and procedures in a computer.  It deals specifically with the 

Pascal language.  Additionally it contains material that would be covered in an 

introductory course on data structures and algorithms. It has a liberal set of 

exercises at the end of each chapter. It differs from a typical undergraduate 

computer science book in two ways.  Firstly, many of the examples and of the 

exercises are based on music applications.  Secondly, there are sections that deal 

with specifics of musical interest.  Among these are a DARMS interpreter, 

functions for handling pitch class set analysis, and a linked list representation for 

music scores.  This book opens up a world of possibilities for the music 

researcher, but at the same time it demands that the researcher makes a major 

effort to come to grips with the material.  On a typical undergraduate computer 

                                                           
66  Alexander R. Brinkman, op.cit. 
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science course, the computing material would take between two and three 

semesters for an average beginner to reach the level of expertise necessary for its 

fluent use.  The material is good training for those who want to become 

developers of software that processes music.  However, there is considerable 

overkill in the effort required from anyone using this book as training ground  for 

computer based music analysis only. 

 

A part of the final chapter in the book is devoted to the design of an 

implementation of an internal score representation.    The score representation is 

not packaged to a sufficient level of abstraction to be of great use to a 

musicologist.  No attempt is made to hide the complexity of the implementation 

from the user/programmer.  The main implications of this are twofold.  Firstly 

the programmer has to know a lot of irrelevant details, that is, details that are 

inessential to solving a music problem, in order to use the material. Secondly, the 

error proneness arising from the possibilities of accidentally modifying some of 

the internals, is significant.  Errors that may arise from the user of the software 

accidentally modifying any of the pointer values that abound in the 

representation.  Such programming errors are notoriously difficult to detect.  

scoreView, on the other hand uses an object oriented approach that solves most 

of the problems associated with Brinkman's approach. 
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3.2.6  Computer Tools for Music Information Retrieval by Stephen Page.   

A PhD thesis67, by Stephen Dowland Page, developed at the University of 

Oxford demonstrates the feasibility of a music information retrieval system.  The 

user interface is based on a non deterministic finite state recogniser, and has an 

associated simple language, of the type used in advanced text editors.  When the 

user specifies a search criterion, the system interprets the user specification and 

uses it to search the database of music scores for matching instances.  Some 

examples of the search criterion are given in Fig.3.3. 

 

 

the note sequence D, E, F.     D.E.F   (1) 

 

the above in the octave from middle C    D4.E4.F4  (2) 

 

the above with time values of quaver, quaver, crotchet  D4/8.D4/8.D4/4  (3) 

 

the same melody in any transposition    N/8.+2/8.+2/4  (4) 

 

a bar commencing with a quaver rest followed by a crotchet %0% R/8.N/16  (5) 

 

any sequence of at least 3 Gs     G.G.G+   (6) 

 

any ascending fifth followed by a descending  

 third, ignoring any intervening rests   N.R*.+7.R*.[-3,-4] (7) 

 

any number of successive notes that do not belong to 

 the key of D major     [^S,E,F#,G,A,B,C#] (8) 

 

Fig.3.3  Sample search criteria as regular expressions proposed by Page.   

Reproduced by permission of S. D. Page. 

 

The name of a note is specified by its alphabetic letter with optional 

accidental and octave registers.  Examples 1 and 2 illustrate the use of pitch 

specifications by means of letters either without or with octave registers.  The '.' 

represents concatenation. The letter R is used for a rest and N is used for any 

note.  Note and rest duration are encoded as a '/' followed by a number ( 8 for 

eighth notes, 4 for quarter notes, etc. ), as in example 3.  Rising relative pitches 

may be specified by a positive integer representing the number of semitones in 

the interval, as in example 4.  Falling pitches are specified by negative numbers.  

                                                           
67  Stephen Dowland Page, op.cit. 
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The construct %0%  in example 5 is called an anchor, and specifies that the 

search should take place at the start of a bar only.  The symbols '*' and '+', when 

they directly follow a construct, are used to specify any number of consecutive 

occurrences of the preceding criterion.  The difference between them is that 

whereas the '+' specifies the occurrence of one or more constructs, the '*' 

specifies the occurrence of zero of more constructs.  Hence the pattern N+ is 

equivalent to N.N*.  Squared brackets are used to specify a single value from a 

range or sequence.  For example [1:4] specifies one of 1, 2, 3 or 4, while the 

sequence [-3,-4] specifies either a -3 or a -4.  Optionality is specified by a 

following question mark.  Hence [B,C]? matches a B, a C or no note.  '|' may be 

used for alteration.  Hence F|G matches any F or G.  Additionally it is proposed 

that expressions formed from these constructs may be combined by means of 

Boolean operators such as 'and' and 'or'.   

 

The thesis demonstrated the feasibility of constructing a useful prototype, 

which has a number of restrictions.  These restrictions include (1) the limitation 

of retrieval to note pitches and note and rest durations, (2) the limitation of 

retrieval to scanning single lines and (3) the limitation associated with the 

anchoring mechanism which allowed for focusing only on a particular position at 

the start of every bar.  It should be pointed out that these limitations are not 

inherent to the design of the system.  They most likely arose from the need to 

keep the original project within the achievable bounds of a university 

dissertation. 

 

Figures on the performance of the system when run on a database containing 

all the preludes and fugues of Book 1 of Das wohltemperierte Klavier are given 

by the author in Table 3.1, where that searches were run on a single fugue and on 

all voices of all of the preludes and fugues. 
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 Query   Single fugue  Entire Database 

 

    Time Count  Time Count       

 N|R   2 776  114 45,703 

 N   1 733  109 41,424 

 N/[1:8]   1 615  110 41,424 

 G.G+   2 5  105 315 

 N.+4.+3  2 0  111 141 

 N.R*.+4.R*.+3 3 0  184 141 

 C.R*.B.R*.A#  3 2  142 13 

 C+.R*.B+.R*.A# 3 2  165 14 

 

Table 3.1  Performance times in seconds for Page's system.   

Reproduced with the permission of S. D. Page. 

 

The times for accessing one tune are well within the limits of usefulness in 

an interactive system.  On the other hand the times for searching the entire 

collection are not, at least for queries that produce a small number of retrievals.  

However, these figures are for hardware of 1988.  Improvements could be 

expected from using more recent hardware. 

 

From the point of view of the music analyst, this system offers the prospect 

of interactive information retrieval that is easy to learn.  With the addition of a 

music oriented graphical user interface, the immediacy of this tool could be 

greatly enhanced.  As well as being a potential tool for computer-literate 

musicologists, it has the highly significant attribute of being usable by those who 

are not computer-literate.  This  ease of use is achieved at the expense of the 

power of modelling all effective procedures.  The computational power of a 

finite state recogniser is significantly less than that of a Turing machine.68 

 

3.3  Summary. 

The systems presented here fall into two categories.  There are those which 

provide general access to all the features of a score representation.  These include 

MIR, McLean's and Brinkman's.  McLean concentrates on issues of 

                                                           
68  William A. Wold, Mary Shaw and Paul N. Hilflinger,  Fundamental Structures of Computer Science 

(Massachusetts 1981), pp.341-364. 
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completeness of representation and does not have an abstract score view, 

although his thinking is close.  He has indicated since completion of his 

dissertation, that a system for analysis will emerge.69  Brinkman's approach does 

not attempt to hide the complexity of his representation.  MIR on the other hand, 

provides a genuine attempt at score representation, but in a form that is dated and 

with a primitive environment for algorithm development.  Both Brinkman's and 

McLean's approaches are embedded within a programming language.  The 

computing power associated with these environments is general.   Such could be 

used to build other more limited information retrieval systems such as the Essen 

and MUSIKUS ones.   The Essen system and MUSIKUS are examples of the 

second and substantially different types of system that do not provide facilities 

for the musicologist to develop general analytic algorithms, but on the other hand 

offer the ability to manipulate the results of processing using a set of pre-written 

programs.  The big advantage of these systems lies in their potential utility for all 

musicologists, irrespective of their level of computer literacy.  The power of 

Page's system lies somewhere between the two.  It is usable by musicologists 

with relatively low levels of computer literacy, and has a relatively low learning 

overhead.  In it, users can express search criteria based on a limited language that 

can be mastered in a short time.  scoreView requires a deeper knowledge of 

computing on the part of the musicologist than is required of Page's system.  

Specifically it requires the mastering of the technique of programming.  The 

benefit to the musicologist of having a general programming environment  lies, 

not in the resulting ease of use, but in the generality and in the potential 

complexity of the analytic algorithms that it is possible to write. 

 

The following chapters develop the framework within which the musicologist-

programmer's view of a score is developed. 

 

 

 

                                                           
69  Bruce McLean, "An Editing System for Analysis of Musical Scores" in Walter B Hewlett and Eleanot 

Selfridge Field Computing in Musicology volume 8 (Menlo Park 1992),  p.133. 
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Chapter 4.  Goals and Formalisms. 

 

This chapter examines the general goals of the project.  It then examines various 

formalisms with a view to structuring the representation of score in a computer. 

 

4.1  Goals. 

The overall goal of this project is to provide a musicologist-programmer's 

environment for representing music scores in a computer in accordance with the sub-

goals of informational completeness, objectivity, extendibility and abstraction. 

 

4.1.1  Informational Completeness. 

By this sub-goal is meant that the basic information content of the score is captured 

in such a way that any question answerable from the basic information content of the 

printed score is also answerable from the computer representation.  By the “basic 

information content of the printed score”  is meant those factors pertaining to an abstract 

view of the symbols, which contain all the information in the physical score, but exclude 

information on incidentals.   Such incidental information includes the font used, 

thickness of line and number of bars per line.  Two type setters working from the basic 

information content only, should produce musically equivalent versions, which may 

look different in various respects.  The overall design of scoreView supports 

unrestricted polyphonic scores.  This implementation has developed various member 

functions such as locate and step for handling a restricted set of polyphonic scores.  It 

supports multi-stave polyphonic scores but there is a restriction on allowable cases of  

multiple simultaneous notes which appear on the same stave.  Multiple simultaneous 

notes can exist on the same stave in cases where they are not rhythmically independent.  

Freeing this restriction to allow for the representation of general polyphonic scores is not 

difficult to achieve.  Some further comments on this appear in 8.2.1.  To implement this 

safely would involve carrying out a substantial amount of testing on a variety of  

polyphonic scores to ensure the reliability of the implementation.  

 

scoreView allows for the representation of a wide variety of the signifiers found in 

common practice notation.  Additional signifiers can be added as required, by using the 

appropriate structures with scoreView. 
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4.1.2  Objectivity. 

The sub-goal of objectivity, means that the computer representation does not commit 

the user to a specific interpretation of symbols of the written score in cases where 

ambiguity exists.  Hence the distinction between slurs and phrase marks should not be 

made in the representation, but instead it should be left to the analysis to disambiguate 

these.  The sub-goal of objectivity does not exclude supplying some additional 

information that may not be overtly present in the physical score.  This arises in cases 

where various liberties have been taken with the notation.  Here it may be essential to 

add information in order to make the score readable by software.  An example of this is 

where groupettes are inadequately represented in the original score.  What is involved 

here is not the resolution of ambiguities, but the unambiguous interpretation of scores 

written by people who take liberties with the notation. 

 

4.1.3  Extendibility. 

The sub-goal of extendibility means that the implementation should be left open to 

being modified for use in new situations.  Here we are concerned with both the 

extendibility of the analytic environment and of the score representation. 

 

Software components that encapsulate high level theoretical concepts are not found 

at the basic level.  Additional components of arbitrary complexity may be created and 

added to scoreView as the needs arise.  This gives users of the system a capability for 

building arbitrary complex analytic software.  Additionally, it is possible to organise the 

resulting complexity into new levels in the hierarchy of levels, as well as packaging 

them for efficient reuse by others. 

 

Also it is desirable to allow for extending the score representation itself to 

accommodate constructs that were not catered for in the original design, such as score 

representations used in ethnomusicology or in some 20th century music. 

 

4.1.4  Abstraction. 

The sub-goal of abstraction means that the representation should aim to achieve the 

greatest amount of complexity hiding.  Abstraction ensures that users of the system are 

not unduly burdened by issues of score representation.  The challenge here is to develop 

a musicologist-programmer's view that parallels the musicologist's view of the physical 
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score.  This complexity hiding should involve the automatic resolution of scoping 

contexts, such as are involved in clefs and in time and key signatures. 

 

The most important question to answer in determining an appropriate level of 

abstraction is not  how the score is represented,  but instead on what actions the 

musicologist might want to carry out on it. 

 

A second aspect of abstraction lies in the ability to structure the analytic tasks 

themselves at a series of levels.  The most fundamental level is the first level which is 

basic in nature.  By basic is meant that its prime function is limited to giving access to 

the entire information content of the score.  This basic level deals with entities in score, 

such as time signatures, key signatures, clefs, barlines, notes and rests.  Higher level 

theoretical concepts such as those involving harmony, are not allowed to clutter this 

basic level of representation.  A major chord for example, appears in the basic model as 

an unclassified collection of individual notes, and not as any higher level entity. The 

current implementation consists of two main levels, with the higher level containing 

classes to represent and manipulate various abstractions such as pitch class sets and 

pitch tuples.  Principles of abstraction can be applied to extendibility of the environment 

where the organising of complex processing above the basic scoreView level is 

involved. 

 

4.2  Usage.   

The main intended use of the musicologist-programmer's environment is by music 

analysts.70  Providing such an environment begs the question of how an analyst might use 

it.  In the following quotation, Gareth Loy71 puts his finger on one of the problems at the 

heart of the fruitful use of computers for music purposes. 
 

  "As an art form, music has high-level expressive requirements that are extremely difficult to 

formalize.  But computers require formal expression for all problems they address.". 

 

                                                           

 
70  scoreView could also be used in any area where a representation of the information content of a music 

score is required.  It could be profitably used to produce more specific analytical tools, as well as in 

computer aided instruction and in multimedia. 

 
71  Gareth Loy, op.cit., pp.291-396. 
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scoreView provides only the basic building blocks on which such formalisations may 

be constructed.  The goal of building highly sophisticated analytic systems is facilitated 

because - 

 

the environment is a general programming one, which gives the analyst the 

potential for processing scores to any conceivable order of complexity, 

 

software engineering techniques such as hierarchical decomposition can be used 

to break complex problems down into successively simpler ones, so that the overall 

task becomes of manageable proportions, 

 

the environment can become a repository for such complex environments, which 

can be reused, or incorporated into ever more complex systems. 

 

Typical usage of the system might start by an analyst proposing a theory about a 

particular music genre.  Initially this theory may be expressed in a semi-formal way in 

natural language.   Next, a model is built to enable the theory to be tested.   The computer 

model, when run on an appropriate corpus,  provides the possibility of experimental 

verification of the theory.  The expression of the model is in the form of some kind of 

algorithm which is expressed as a computer program.  In chapters 6 and 7, examples are 

given of this process. 

 

A number of topics that are of use in the expression of formalisms are presented in 

the following sections. 

 

4.3 Algorithms. 

The algorithm is the basic formalism that is used for specifying the actions to be 

carried out by a computer.  Knuth72, lists 5 properties that a process must have in order to 

be an algorithm.  These are - 

 

Finiteness:  An algorithm must terminate after a finite number of steps. 

 

                                                           
72  Donald E. Knuth.  The Art of Computer Programming volume 1:Fundamental Algorithms  

(Reading:Addison Wesley 1973), pp.1-9 

. 
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Definiteness:  Each step of an algorithm must be precisely defined;  the action to be 

carried out must be rigorously and unambiguously specified for each case. 

 

Input:  An algorithm has zero or more inputs, i.e. quantities that are given to it 

initially before the algorithm begins. 

 

Output:  An algorithm has one or more output, i.e., quantities that have a specified 

relation to the inputs. 

 

Effectiveness:  An algorithm is also generally expected to be effective.  This means 

that all of the operations to be performed in the algorithm must be sufficiently 

basic that they can in principle be done exactly and in a finite length of time by a 

man using pencil and paper. 

Two mini illustrative examples of algorithms are given at the end of the next chapter.  

They are expressed as fragments of C++ programs. 

 

4.4  Functions. 

Functional abstraction was developed in the early history of computer science as a 

way of organising algorithms.  Functional abstraction was supported by some of the first 

high level computer languages, such as FORTRAN and Lisp.  Functions provide a 

structure for the potential hierarchical structuring of algorithms as well as a capability for 

data hiding.  In other words, functions provide a way of hiding complexity.  In order to 

use a function, one has to know only its name, and details of its parameters and return 

values.   

 

4.5  Abstract Data Types. 

One of the first publications to promote the concept of an abstract data type appeared 

in "Notes on Structured Programming" by C.A.R.Hoare in a book that was published in 

1972.73  Although the term 'abstract data type' was not used in this book,  a thorough 

treatment is given for a range of data structures.   Abstract data types(ADTs) are 

                                                           
73  O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare,  Structured Programming (London and New York: 

Academic Press 1972), pp.83-174. 
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generalised mathematical concepts of data, which treat data structures in terms of their 

abstract properties, instead of in terms of how they are constructed. 

 

The most important contribution of ADTs to software environments is that they 

promote complexity hiding.  It becomes possible to deal with a data structure as an 

abstraction, instead of as a mere collection of pieces of information.  ADT's are of great 

benefit to users of the resultant software because they need not be aware of the 

underlying complexity in the ADT. 

 

ADT's are implemented in computer languages, such as Pascal, Modula or C as a 

datatype and a series of functions.  An ADT of a first-in-first-out(FIFO) store of integers, 

or, a queue of integers, might be implemented in C, and used as in the following example 

which inserts the integers 5, 6 and 7 into the queue 

 

  QueueType q; 

  init(q); 

  put(q,5); 

  put(q,6); 

  put(q,7); 

 

This approach had a number of weaknesses, some of which have much to do with the 

language in which the queue is implemented.  Some of the most difficult barriers to 

creating dependable software arise from the potential to misuse ADT constructs.  For 

example, it is possible to pass data other than integers to q using the put member 

function, which has been designed to deal only with integers.  Also, the user of 

QueueType is not restricted to using functions such as init and put, as it is also possible 

to manipulate the internal data in the queue abstraction, with attendant danger of 

corrupting it.  Additional difficulties arise with attempts to reuse such queue 

implementations. 

 

4.6  Data Analysis. 

The score consists of a wide collection of graphemes that we can categorise as being 

of many types.  The desirability arises of structuring these types.  We can draw on 
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techniques that emerged in data analysis in the 1970s for structuring our view of data.74  

The approach developed by Peter Pin-Shan Chen was to define an 'enterprise schema', 

which he describes as 'a pure representation of the real world'.  The techniques evolved 

three steps as follows, and although they are oriented towards structuring a businesses 

database, they have a more general applicability. 

 

(1)  Identify entity sets of interest to the enterprise, where an entity is a 'thing' that can 

be distinctly identified.  An entity set is a group of entities of the same type.  It is the 

responsibility of the enterprise administrator to select the entity types that are most 

suitable to his company. 

 

(2)  Identify the relationship sets of interest to the enterprise.  Entities are related to 

each other,  and different types of relationships may exist between different types of 

entities.  A relationship set is a set of relationships of the same type. 

 

(3)  Identify relevant properties of entities and relationships, i.e. define value sets and 

attributes.   Entities and relationships have properties that can be expressed in terms of 

attribute-value pairs. 

 

Example:  We can identify entities such as Score, Note, Rest, Time Signature.  There 

is a relationship between Score and the rest of these entities in that Score acts as a 

container for entities of type Note, Rest and Time Signature, as well as for other types.  

We could also envisage Note and Rest entities as having a relationship of vertical and 

horizontal contiguity with each other. 

 

Attributes of a note could include its letter name, its octave register and possibly an 

immediately preceding accidental.  Note that this categorisation involves the design 

decision to make the accidental an attribute of the note, instead of giving it status as an 

entity in itself.  Examples of values associated with these attributes might be  

 

  pitch letter = C 

  octave register = 5 

                                                           
74  Peter Pin-Shan Chen "The entity-relationship model - A basis for the enterprise view of data" 

Conference Proceedings of the American Federation of Information Processing Societies (1977), 

pp.77-84. 

 



4:  Goals and Formalisms. 

 60 

  accidental = # 

 

Associated with each attribute is a value set, which is the set of allowable values.  

The value set for the pitch letter attribute is { A B C D E F G }. 

 

The entity-relation model focuses on data.  Entities have internal states.  The ADT, on 

the other hand focuses on activities that are carried out on data, and hides details of the 

data from the user.  In the next section, we will see how these approaches can be unified 

in terms of objects.  This gives the benefit of being able to modify entities as in the 

entity-relationship model, and at the same, time capturing its behaviour.  A number of 

additional benefits accrue from this approach. 

 

4.7  Object Oriented Programming. 

 

4.7.1  Encapsulation and Message Passing. 

The object oriented approach to programming arises from a re-casting the ADT view 

of functions that operate on data.   The shift of focus involves combining both data and 

functions as a single entity called an object.  This packaging of data and functions is call 

encapsulation75 and involves hiding the data so that it cannot interact directly with 

anything external to the object except through the functions which form part of the 

object.  In non object-oriented programming languages actions are carried out by calling 

functions.  This involves passing data to a function in the form of parameters.  The 

function then performs its operations using the data parameters and optionally return a 

piece of data as result.  In the object-oriented approach, an action is carried out by calling 

a member function of the object.  The metaphor used here is that a message is sent to the 

object.  The message takes the form of a function name together with its associated 

parameters.  The object responds by executing the code associated with this message, 

                                                           
75  According to Oscar Nierstrasz  "A Survey of Object-Oriented Concepts" in Won Kim and Frederick H. 

Lochovsky Object-oriented Concepts, Databases , and Applications  (New York: ACM Press 1989), pp.3-

21, encapsulation is the main common element in various approaches to object oriented programming in 

various programming languages. 
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which typically changes the state of the object in some way, and optionally, sends further 

messages to other objects.  The shift of emphasis is, according to Brown76  

 

". . . more closely tuned with the way in which we think about entities in the real world; we rarely 

divorce the concept of what the entity is (i.e. its state) from what we can do with it (i.e. operators with 

manipulate it)." 

 

The word 'class' is used to describe the type of object.  We talk of objects being of a 

particular class.  Object classes are used in a programming language to automatically 

create or instantiate objects of that class. 

 

4.7.2  Specialisation. 

Many object classes have things in common in themselves.  They may have similar 

data components, and also have common operators or functions.  Instead of having to 

define each subclass from scratch, in object oriented programming languages we have a 

mechanism called inheritance which automatically structures this superclass/subclass 

relationship.  Subclasses can inherit some or all of the behaviour of the superclass.  

Additionally new functions and/or data can be added to the subclass.  These additional 

functions can be used to add new capabilities to the subclass or to override some of the 

functionality inherited from the superclass.  The subclass/superclass relation can be 

applied recursively.  Apart from vertical chains of inheritance arrived at in this way, it is 

also possible in some object oriented environments for a class to inherit horizontally from 

more than one class.  This mechanism is called multiple inheritance. 

 

Inheritance may be used for a number of purposes.  As a way of structuring objects, it 

provides a tool for abstraction.  Classes may be constructed at a series of level of 

abstractions.  Inheritance may also be used as an aid to software reuse.  A reuse of 

software often requires modifications.  This leads to the existence of multiple 

incompatible versions.  Inheritance provides a mechanism to avoid this divergence, by 

providing an orderly way to modify classes without having to re-write them.   An 

example of a multiple inheritance structure appears in scoreView where the relationship 

between classes Duration, Pitch, Note and Rest is structured in accordance with the 

inheritance pattern shown in Fig 4.1. 

                                                           
76  Alan W. Brown Object-oriented databases: their applications to software engineering.  (New London: 

McGraw-Hill 1991), pp.18-23. 
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Duration Pitch

R est

Note

                                             

                                             
 

Fig 4.1  Inheritance structure for Note and 

Rest objects. 

 

Class Rest is built by inheriting class Duration.  In building class Note we reuse 

both class Rest and class Pitch.  This is an example of multiple inheritance.  The 

effect of this inheritance is that class Note inherits all the functionality of both class 

Rest and of class Pitch.  Hence class Note can be queried about what its duration is, 

because it inherits this member function from class Rest.  It can also be queried about 

which octave it is in, as it inherits this member function from class Pitch. 

 

In C++ terminology, the superclass is called a base class and the subclass is called a 

derived class.  

 

4.7.3  Polymorphism and Overloading.   

Overloading allows us to attach new meanings to functions and to operators that 

depend on the context in which they are used.  Context can be determined for the 

functions or operators from the parameter types that they use.  Overloading achieves a 

type of polymorphism, a compile time polymorphism, which enables us to use the same 

functions or operators in different contexts.  Hence in scoreView, the function 

getPitch12, which gets the chromatic pitch number, is not restricted to belonging  to only 

one object.  It can be called for a Pitch object, or for a Note object, or for a 

ScoreIterator object.  Late binding, which provides for run-time polymorphism when 

used in conjunction with inheritance, is dealt with in the next section. 
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4.7.4  Late Binding. 

Languages that support inheritance also enables another very powerful facility, that 

of late binding to be handled automatically.  This allows us to defer selection of code 

that acts on an object until run time.  This is particularly useful in representing a score 

that may be thought of as a collection of various objects that are assembled at run time. 

 

An example of the combined advantage of polymorphism and late binding can be 

seen from the following example.  Suppose X is a pointer to an object in a programming 

language that models any entity in a score.  In the non-object oriented version, we will 

assume the existence of a function called getTag() which returns the type of the object 

that X points to.  The code to invoke various functions to draw X on the screen will look 

like 

  if ( getTag(X) == NOTE )  drawNote(); 

  else if ( getTag(X) == REST) drawRest(); 

  else if ( getTag(X) == BARLINE) drawBarline(); 

  else if ( getTag(X) == TIMESIG) drawTimeSignature(); 

  else  ......... etc .......... 

 

The corresponding object oriented construct reduces to  

 

  X -> draw() 

 

which invokes the encapsulated draw function of the object X. 

 

4.7.5  Object Orientation in scoreView. 

The choice of an object-oriented representation for a score came about as an 

evolutionary process. The representation of a score that preceded scoreView77 evolved 

towards the encapsulation of code within a data object.  The conversion to the use of an 

object oriented language has the significant advantage of providing automatic support 

for encapsulation.  In the previous version, encapsulation was implemented as Pascal 

function calls.  The availability of polymorphism in the new version allows for 

                                                           
77  Donncha Ó Maidín "Computer System for Music Analysis" Helene Charnasse Informatique et Musique  

(Paris: ERATTO 1984), and Donncha Ó Maidín  "Representation of Music Scores for Analysis" Alan 

Marsden and Anthony Pople, op.cit., pp.67-93. 
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considerable simplification in the user interface.  The availability of inheritance allows 

for a natural reuse of software, and in particular the availability of multiple inheritance 

allows for a better structuring than would have been possible otherwise. 

 

C++ was chosen as the language of implementation. Unlike some other object 

oriented environments such as Smalltalk, it supports multiple inheritance.  C++ is the de-

facto industry standard.  This means that enough commercial might backs the 

development of C++ environments to ensure that in most cases they work correctly, and 

efficiently.  Also we can be sure that C++ environments keep pace with developments in 

operating systems and user interfaces, across a very wide range of machines.  C++ runs 

efficiently on much less expensive hardware than most other objected oriented systems, a 

fact that is less important now than it was in the past.   Implementations of C++ are 

reasonably portable.  Currently the software runs in 3 environments, DOS, Windows3.1 

and Unix, using the Borland C++ compiler for DOS and Windows and the GNU 

compiler on Unix. Many C++ compilers have good interfaces to AI languages and GUIs, 

which it is hoped to exploit in the future.  
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Chapter 5.  Score Views. 

 

This chapter examines the score from the musician's view of its information 

content, and lays the ground for modelling a computer representation. The first view 

involves the physical score, that is the material record of the score.  At the other 

extreme we have the view of the score from the programmer's vantage.  The process 

of unifying these two views centres on forming a sufficiently abstract view of the 

physical score that encapsulates its basic information content. 

 

5.1  The Score as a semi-formal System of Representation. 

In one aspect of music theory, that involved with the representation of music in scores 

using common practice notation, one might expect to find a formal system.  The 

exigencies of the use of common practice notation for communicating musical ideas 

among composers and performers might imply the existence of a lingua franca that 

possess an unambiguous grammar and semantics.  Although much of common practice 

notation approaches this ideal, there are a number of factors that make it unrealisable. 

 

Score notation is derived from common practice.  Hence it is not the rules that 

generate score notation, but instead the other way round.  Rules come for observing the 

common practice in the first place.  Such common practice has semi-formal  conventions 

that arise from the needs of communication and invention, rather than a fully formalised 

underlying structure. 

 

Staff notation has inconsistencies within itself.  In a study by Huron78, he examines 

staff notation in terms of the signifier and the signified.  A clef, the signified, is signified 

by a symbol, the signifier, located on a stave.  One ideal criterion is laid down by Huron 

is that  no two signifieds may share the same signifier.  Common practice notation 

violates this criterion when a sharp sign is used both in a key signature and as an 

accidental. Although it is possible to distinguish between these two signifieds, in most 

cases by the context, it is not necessarily so.  There exists a similar potential for 

ambiguity in the notation of slur and phrase marks.  Another desirable criterion, that of 

                                                           
78  David Huron  "Design Principles in Computer-based Music Representation"  Alan Marsden and 

Anthony Pople, op.cit., pp.5-39. 
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reversibility between the signifier and the signified,  is not always possible, as for 

example, in the case of crotchet rests, where two signifiers exist. 

 

There are also many examples where norms of the notation are transgressed.  The 

selection of the time values for notes which form groupettes is one such example. 

 

Score notation itself is not a static thing, it continues to evolve.   This yields individual 

notational solutions that may or may not ultimately become part of the common practice. 

 

In scoreView, there is the assumption that the score has been encoded in a manner 

that captures the basic information content of the physical score.  Any ambiguity in the 

score due to incompleteness of the notation must be resolved at the encoding stage.  

Notational incompleteness should be made complete as a separate editorial task, prior to 

encoding.  Provision is made within scoreView for dealing with specific cases of 

reversibility, such as that involving crotchet rests. 

  

The following sections deal with the structure of  the score from different points of 

view.  Many aspects of the score are discussed here in relation to the physical score as 

well as in relation to its representation in a computer.  The first and second sections deal 

with the score both as an entity in itself and in terms of the entities contained within it.  

This is followed by two sections that deal with time and with contiguity relations.  Next, 

there is then a section dealing with scoping relationships.  The sense, or the absence of a 

sense of line is the topic of the following section.  The final three sections deal with the 

score reader, and its computer analogue, the score iterator, and the use of the score 

iterator in locating and scanning actions within a score. 

 

5.2  The Score Entity. 

We can look on the physical score as an entity in itself.  Hence we can talk about 

various kinds of operations on the score, such as playing a score, publishing a score or 

composing a score.  The score itself has a number of attributes.  These include its title, 

name, composer, and if it is a printed score, its publisher. 

 

A musicologist-programmer's version of the score is created in the computer by 

using a score declaration in the processing program. The score is created from the 

contents of a file in which an encoded version of the score exists, in one or other input 
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codes such as ALMA, DARMS or SGML.  This is done by in scoreView for an ALMA 

encoding by means of the following declaration. 

 

 Score s(filename); 

 

where s is the name of the score object and filename is a variable of class String 

that contains the name of the score file. 

 

We will now focus on the kind of things we might want to do with the object s.  We 

might want, for example, to find the name of the score.  This is done by calling the 

member function getString(TITLE).  In a similar way we could ask for other details of 

the score, such as what key it is in, what the initial time signature is, who is the 

composer is, etc.  Such member functions are called in a similar way. 

 

  s.getString(TITLE); 

  s.getString(CMPSR); 

  s.getString(KEYSIG); 

 

There is not a lot of things we can do with a score as a whole.  Two such actions are 

of use however, to get the score to play itself on the local MIDI hardware or to draw 

itself on the screen79 

 

  s.play(); 

  s.draw(); 

 

Most meaningful activities are carried out not on the score as a whole, but instead 

on the various entities that  constitute the score.   

 

5.3  Entities within the Score. 

We consider a score, not holistically, but as an ordered collection of its constituent 

entities.  These entities in the physical score are represented by graphemes or groups of 

graphemes that carry  symbolic or iconic, or a combination of symbolic and iconic 

information.  Iconic representation is partially used in the encoding of pitch and of pitch 

                                                           
79  In the current implementation of scoreView,  the play but not the draw function is implemented. 
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movement in time, where the pitch height corresponds approximately to height of a 

notehead, and the passage of time corresponding to left-to-right note symbol 

sequencing.  Music is arranged on one stave or on a system of staves that appear from 

left to right, starting near the top of the page.  These are repeated to fill the page.  Clefs 

and key signatures appear on the leftmost corner of each stave, but time signatures 

appear with minimal frequency. 

 

The abstract view of the score corresponds to a view of the physical score that is 

stripped of features that pertain to its physical realisation, while retaining at least all 

information of potential relevance to a music analyst.  Hence the abstract score is not 

tied to page layout or to a particular print face  and can be viewed as consisting of staves 

of indefinite length.  The physical score has far more clefs and key signatures than its 

abstraction.   

 

In order to classify the various symbols in the score, it is useful to think of some 

symbols as having a major status,  or as entities, where other symbols may be regarded 

as belonging to those of major status, or as attributes of the entities. 

 

A list of the main score entities and of their attributes is given below.  Most of the 

entities listed exist in the score as combinations of graphemes.  However pitch and 

durations exist within a score as abstractions, which are useful in the structuring of 

notes and rests.  The term scope is used below either in the context of entities that 

influence the interpretation of other entities, or in the context of the affected entities.  A 

section on the nature and types of scoping mechanisms is given later in this chapter.   

 

5.3.1  Entity:  Key Signature. 

Attributes: value, location, open scope. 

 Value: any one from the 24 possible key signatures, also possibly non-standard 

extensions. 

 Default: Key of C. 

 

In the computer, key signature is represented as an object called KeySig, with the 

values of an enumerated type KeySigType used to specify the key. 
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 KeySig(keySigType ks = NOKEY); 

 

where 

 

enum 

keySigType 

{ 

 C, SF, SFSC, SFSCSG, SFSCSGSD, SFSCSGSDSA, SFSCSGSDSASE,  

SFSCSGSDSASESB, FB, FBFE, FBFEFA, FBFEFAFD, FBFEFAFDFG,  

FBFEFAFDFGFC, FBFEFAFDFGFCFF, NOKEY 

}; 

 

The above names are interpretable by treating S as standing for sharp and F for flat.  

F may also denote the note F. 

 

5.3.2  Entity:  Time Signature. 

Attributes:  value, location, open scope. 

 Value: unnormalized rational number (such as 4/4 or 6/8) , or common time (C, 

with ancestry in a semi circle)   or simple duple time(C with line through it). 

 

In the computer, two classes are used to represent time signatures.  The first one, 

TimeSigType is used to model the rational number aspect of time signatures. 

 

 TimeSigType(long n1 = 4, long d1 = 4); 

 

The second  class represents a time signature in a score. 

 

TimeSig(int n1 = 4, int d1 = 4); 

  

TimeSig('C') is used for a common time(4/4) object, and TimeSig('c') is used for 

simple duple time(2/2). 

 

5.3.3  Entity:  Clef. 

Attributes: value, location, open scope. 
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 Value: French violin, soprano, mezzo soprano, treble, bass, alto, tenor or 

baritone. 

 

In the computer, a clef is represented as an object called Clef, with the values of an 

enumerated type ClefType used to specify the clef. 

 

Clef(clefType c = NOCLEF) 

 

where clefType is 

enum       

clefType 

{ 

 FRENCH_VIOLIN, SOPRANO, MEZZO_SOPRANO, TREBLE, BASS, 

ALTO, TENOR, BARITONE, NOCLEF 

}; 

 

The next three entities are represented as character strings in a score.  They are 

created in a score using the overloaded '+' operator of ScoreIterator class with 

class TaggedText.  They are retrieved with the getString(const tagType & tt = 

TAG) member function of ScoreIterator. 

 

5.3.4  Entity:  Metronome. 

Attributes: value, location, open scope. 

 Value:  duration value = number. 

 

The duration value is expressed in ALMA.  An example of a valid entry of 100 

dotted quarter notes per minute is 

 

                               4. = 100 
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5.3.5  Entity:  Tempo. 

Attributes: value, location, open scope. 

 Value: character strings in restricted natural languages, representing 

unambiguous tempo indications. 

 

5.3.6  Entity:  Expression. 

Attributes: value, location, open scope. 

 Value: character strings in restricted natural languages, representing 

unambiguous expression text. 

 

5.3.7  Entity:  Duration. 

Attributes:  nominal value, number of dots  

 Nominal value:  breve, whole note, half note, quarter note, etc. 

 dots:  ., .., ..., etc. 

 

In the computer representation, durations are represented at two levels.  An 

enumerated data type of C++ is used for the first level, for note values that are 

represented in common practice notation by a combination of noteheads, stems 

and positioning.  The representation here is simply a mnemonic mapping from 

normal names. 

 

enum durType  {  N0, N1, N2, N4, N8, N16, N32, N64, N128 } 

 

Additionally a duration can be modified by the presence of dots.  This is modelled 

as class Duration.  Class Duration is a score abstraction.   It is used in 

constructing classes Note and Rest. 

 

Objects of class Duration are created by the constructor 

 

 Duration( durType d = N4, int dot = 0); 
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5.3.8  Entity:  Pitch. 

Attributes:  pitch name, octave register, accidental. 

 pitch name: A, B, C, D, E, F, G. 

 octave register: an integer, with middle C starting  register no 5. 

 accidental: none, flat, sharp, natural, double flat and double  

     sharp. 

 

In the score as well as in its computer representation, pitch is an abstraction.  One of 

its uses is in the internal structure of class Note.  Objects of class Pitch may be 

created using  the constructor 

 

 Pitch( char pa = 'C', int oc = 5, accidType ac = NOACCID); 

 

pa can have any character in the range 'A' to 'G' 

oc is the octave number, with 5 representing the octave upwards from middle C. 

 

accidType is defined as 

enum 

accidType 

{ 

 NOACCID, F, S, N, DF, DS 

}; 

 

where F = flat, S = sharp, N = natural, DF = double flat and DS = double sharp. 

 

5.3.9  Entity:  Rest. 

Attributes:  duration, marks, location. 

 duration: see above, as for Duration entities. 

 marks:   various, including fermata and breath mark. 

 ambiguity: crotchet rests have two signifiers. 

 

Modifications:  The effective time for a rest may be modified by groupette scope. 
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The computer representation of class Rest inherits class Duration.  Objects of class 

Rest are created as follows 

  

 Rest( durType d = N8, int dot = 0, Set e = Set())  

 

Parameters d and dot are similar to the corresponding ones in class Duration.  The 

third parameter, the set e, can contain any relevant combinations of ntAttrType.  

These may include FERMATA, BREATH_MARK and ALTERNATE.  For a 

crotchet rest which uses the English notation, like a reversed '7', the attribute 

ALTERNATE is set, and d is set to N4. 

 

5.3.10  Entity:  Note. 

Attributes: duration, pitch, marks, location. 

 duration: see above, as for Duration. 

 pitch: see above, as for Pitch. 

 marks: any of the large number of marks that can apply to a note (staccato, various 

accents and ornaments, dynamics, octave doubling, etc.). 

 

Modifications: the effective time value for a note can be modified by groupette 

scope.  The effective pitch of a note can be modified by key signature scoping or 

by accidental-within-bar scoping. 

 

Note entities are represented in a score by class Note.  Class Note inherits from 

class Rest and from class Pitch. 

 

Note( char pa = 'C', int oc = 5, accidType ac = NOACCID, 

    durType d = N8, int dot = 0, Set nr = Set()) 

 

Parameters pa, oc and accidType are similar to those in the constructor for class 

Pitch. 

Parameters d and dot are similar to those in the constructor for class Duration. 
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Parameter nr is a set which has appropriate combinations of 

 

 STACCATO, TIE_FROM, TIE_TO, TENUTO, PLUS, FERMATA, BREATH_MARK,  

 COMMA, TREMOLO, TREMOLO_END, GLISSANDO, GLISSANDO_END,    

 SQUARE_NOTEHEAD, DIAMOND_NOTEHEAD, X_NOTEHEAD, OMIT_NOTEHEAD,    

 OCTAVE_UP, OCTAVE_DOWN, OCTAVE_END, ARPA, PIZZ, HARMONIC,       

 COL_LEGNO, PONTICELLO, PED, REL, OCTAVE_DOUBLE_UP,  

OCTAVE_DOUBLE_DOWN, OCTAVE_DOUBLE_END,  TURN0, TURN1, TURN2, TURN3,  

TURN4, TURN5, TURN6, TURN7, TURN8,  TURN9, TURN, SLUR1, SLUR1_UP,  

SLUR1_DOWN, SLUR1_END, SLUR2, SLUR2_UP, SLUR2_DOWN, SLUR2_END,                          

ACCENT, HEAVY_ACCENT, UP_BOW, DOWN_BOW, LETTER_TR,  BAROQUE_TRILL,  

GRACE_NOTE, BEAM, UP_BEAM, DOWN_BEAM, BEAM_END,  REST_ALLIGNMENT, 

ALTERNATE,   PPPP, PPP, PP, PIANO, MF, FORTE, FF, FFF, FFFF, CRESCENDO,    

CRESCENDO_END, DIMINUENDO, DIMINUENDO_END. 

 

Delimited scoping information is carried as attributes of note and rest objects.  The 

first and subsequent objects bear an attribute which is terminated by a special 

marker.  Such sequences involve one or more of the following pairs. 

TREMOLO  -   TREMOLO_END 

GLISSANDO  -  GLISSANDO_END 

OCTAVE_UP  -   OCTAVE_END 

OCTAVE_DOWN  -  OCTAVE_END 

SLUR1  -   SLUR1_END 

SLUR1_UP  -   SLUR1_END 

SLUR1_DOWN, SLUR1_END   

SLUR2  -  SLUR2_END 

SLUR2_UP  -   SLUR2_END 

SLUR2_DOWN  -  SLUR2_END,                          

BEAM  -  BEAM_END 

UP_BEAM  -  BEAM_END 

DOWN_BEAM  -  BEAM_END 

CRESCENDO  -  CRESCENDO_END 

DIMINUENDO  -  DIMINUENDO_END 
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The dynamic marks appear only on the notes against which the letters are to be 

placed.  Dynamic scoping is of the open scoping type, and is not handled by the 

above mechanisms. 

 

5.3.11  Entity:  Barline. 

Attributes: bar type, mark, location. 

 bar type: various combinations of heavy and light lines, possibly with a pair of 

dots arranged vertically at one end or at both sides. 

 Mark: a fermata,  Repeat1, Repeat2, Da Capo, Da Capo ....... 

 

Modifications:  Depending on the context, barlines may be used to separate bars 

and/or  to  separate sections in a score.  If a barline occurs before the metrical end 

of a bar, it automatically represents a section separator instead of the start of a bar. 

 

Barline entities are represented in a computer by class Barline, and an enumerated 

type barType is used to specify the kind of bar in question. 

 

 Barline( barType br = L, int brN = 0); 

 

where br is one of  

enum 

barType 

{ 

CLHLC, CLLC, CLH, HLC, CLL, LLC, CLC, SHORT, INVISIBLE, LL, CL, 

LC, H, L, DOTTED 

}; 

 

 

Here C stands for double dots, H for a heavy line, and L for a light line.  If the score 

does not distinguish between heavy and light lines in barlines, the L should be 

used.  brN is the bar number.  Any notes before the start of the first full bar of the 

score are regarded as being in bar 0. 
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Each barline may have a number of associated attributes, including 

FERMATA,  DA_CAPO, DA_CAPO_AL_SEGNO, DA_CAPO_AL_FINE,  

DA_CAPO_AL_SEGNE_E_POI_AL_CODA, DAL_SEGNO,  

DAL_SEGNO_AL_FINE,  REPEAT1,  REPEAT2,  

 

5.3.12  Entity:  Words. 

Attribute: value, location. 

 value:  text in natural language, words of song, libretto, etc. 

 

Words are retrieved with the getWords(void) member function of class 

ScoreIterator. 

 

5.3.13  Entity:  Texts. 

Attributes:  value, location. 

  Value: text in natural language. 

  Location: linear position, also may be specified as being above or below the stave. 

 

The Class Text entities are represented as character strings in a score.  They are 

created in a score using the overloaded '+' operator of ScoreIterator class with 

class String.  They are retrieved with the getString(TEXT) member function of 

ScoreIterator. 

 

5.4  Time. 

Score entities are arranged in a two dimensional structure that represents simultaneity 

by means of vertical relationships.  Time, and the passage of time is represented by 

horizontal relationships, with left to right corresponding to increasing time in the cases of 

notes and rests. 

 

In a monophonic score, or in a single monophonic stave, time is accounted for by 

notes and rests, according to certain principles. 
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1.  Each note/rest has an ending time which is identical with the starting time of the 

next note/rest. 

 

2.  Duration of notes and rests are measured numerically, in rational numbers. 

 

3.  An absolute score time scale may be constructed by cumulating the durations of 

notes and rests from the start of the score.  More conveniently this absolute score time 

scale can be expressed in terms of the number of bars from the start plus a single rational 

displacement from the start of the current bar.  This measure is used in the locating 

actions in the next section. 

 

4.  At the start of a score, an incomplete bar may be found.  That is one whose 

rational duration is less than the time signature.  In this case the partial bar is given the 

bar number 0.  Rational displacements of entities within this partial bar are measured as if 

the bar were a full one.  Hence a single eight note anacrusis in 6/8 time is regarded as 

starting at a location of 5/8 in bar number 0.  The length of any full bar in rational units 

is, of course, the same rational number that is used to denote the time signature. 

 

A point in score time can correspond to multiple entities in a score.  Hence the score 

location specified by 'one half note distance into bar 2' in Fig. 5.1 specifies a time at 

which a number of entities in the score are current.  These include (1) the end of a quarter 

note rest, (2) the tenor clef and (3) the start of note 'G'.  We see from this that the left to 

right ordering of entities corresponds to simultaneity in time, except when moving across 

a note or rest, that is characterised by having an infinite number of points in time, 

delimited by a starting point and a finishing point.  Here a point in score time need not 

necessarily correspond to the start of a note or rest.  For example, the score location 

specified by 'three quarter notes distance into bar 2  corresponds to a point in time during 

the playing of the note 'G' in Fig 5.1.  If the score were a polyphonic one, there would be 

at least one entity on each stave corresponding to that specific time as well. 
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Fig.5.1  Points in score space and score time. 

 

5.5  Vertical Alignment and Contiguity. 

In a physical score, vertical alignment corresponds to simultaneity.  A definition of 

vertical contiguity will be made in relation to notes and rests.  Notes will be used to 

illustrate the relationships, but the same principles apply to any mixture of notes or rests.  

If we consider a pair of notes, and possible score times that relate to them, we can say 

that notes are vertically contiguous at the score times shown by the red lines in figure 5.2.  

For example, (b) represents two note that start at the same time, but end at different 

times.  The mirror image of (b), which is not illustrated, corresponds to two note that start 

at different times but end at the same time. 

 

 
Note 1

Note 2
Contiguity

(a) (b) (c) (d) (e)  

 

Fig.5.2  Illustration of the possible combinations involved in vertical contiguity. 

 

Note that in case (e) for the coincidence of the end and the start of a note, contiguity 

is defined in such a way that there is no contiguity in this case. 

 

Simultaneity in score notation uses two basic mechanisms.  The first is the 

mechanism of absolute score time.  Notes and rests that are simultaneous share part of the 

same absolute score time.  The second mechanism that is involved is where note onsets 

are made simultaneous by means of vertical connections, as in Fig.5.3. 



5:  Score Views. 

 79 

 

             

 

Fig.5.3  Vertical connections. 

 

In certain cases,  internal points of interest can be created in notes.  This occurs when, 

during a note,  another note has an onset of an offset.  For example, cases (b), (c) and (d) 

in Fig.5.4 contain such points.  A musical manifestation of this is where a suspension is 

resolved.  In dealing with standard traversals in section 5.10, we will see that these 

internal points in the entities are visited. 

 

 

Note 1

Note 2
Contiguity

(a) (b) (c) (d) (e)  

 

Fig.5.4  Internal points of interest indicated in yellow. 

 

5.6  Scoping Relations.   

Certain symbols have an associated scope, that is a range of effectiveness.  Here we 

look at three main scoping mechanisms80 used in common practice notation.   Each stave 

has its own independent scoping mechanism.  

 

The first type of scoping mechanism, which will be called open scoping, comes into 

play by means of the appearance of a scope marker.  Scope markers have types and 

values.  Two different key signatures, for example, belong to the same type, but have 

different values. Open scopes remain in effect until cancelled by the appearance of a next 

scope marker of  the same type, or until the score ends.  Open scoping is used for clefs, 

key and time signatures, and metronome, expression, and tempo markings as well as 

most markings for dynamics.   

                                                           
80  There is a fourth scoping mechanism.  Score attributes, such as title, composer and number could be 

thought of as having global scope.  As they are constant for a score, they do not need any special handling. 
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A second scoping mechanism, called delimited scoping, is explicitly introduced and 

cancelled.  Examples of this are Ped .. Rel,  beam start...beam end, octave up .... end 

octave up, crescendo, with the start  marked by the point of the hairpin, and the end  by 

the end of the lines, or if stretched letters are used as in c - r - e - s - c - e - n - d - o , the 

location of the first c and last o determine the limits of the scope of the crescendo.81  

Delimited scoping is used for calculating the durations of notes within groupettes. 

 

A third scoping mechanism, called bar scoping, is restricted in range to a single bar 

on a single stave.  Scoping mechanisms that operate within the bar include accidental 

alterations that extend beyond the note on which an accidental is placed.  Accidentals can 

be modified by a preceding additional accidental at the same notated pitch within the bar. 

All bar scopes expire by the end of the bar in which they are introduced. 

 

Scopes can overlap in a variety of ways.  Hence they cannot be represented in the 

form of a hierarchy.  In the computer representation, it is most important that scoping be 

resolved automatically, in a hidden layer of the implementation.  This is done in order to 

avoid placing too large a burden on the analyst who would otherwise have to  calculate 

scope values.  With proper automatic resolution of scoping, we should be able to extract 

from a note, its pitch and duration information that is calculated by correctly resolving 

scoping information within its context, due account having been taken of key signature, 

accidental modifications and groupette membership.   

 

Some scopes of the same type can be nested.  Nested groupettes to any level of 

nesting are theoretically possible, but instances to even one level are rare.82 

 

5.7  Sense of Line and Simultaneity. 

Scores may differ in the ways in which the identity of lines is present.  Choral scores 

have complete identity of line.  A score for a stringed instrument may have a more 

                                                           

 
81  Crescendo may also have the side effect of introducing a scope of the first type, in that they may effect 

subsequent dynamics. This is an area where performance practice and artistic interpretation comes into 

play, and is not modelled in scoreView.  Hence there is no automatic interaction between dynamic scopes, 

such as forte or piano, and crescendi or dimuendi. 

 
82  Instances to one level nesting can be found in transcriptions of a descriptive nature where a high level of 

accuracy is attempted.  One example is in Liam de Noraidh Ceol on Mhumhain (Baile Atha Cliath 1965), p. 

53. 
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complicated sense of line, with occurrences of simultaneous notes representing multiple 

stopping.  In piano scores, the linear and harmonic combinations may reach much higher 

levels of complexity.  The resolving of the complexity of line identity is regarded here as 

being apart from the task of score representation.  What should be represented in a corpus 

is simply the information content of the printed score, in accordance with the principle of 

objectivity. It is valid to represent the notes that are present, their values, attributes, 

whether they have up or down stems and how they are beamed and slurred.  The job of 

tracking two implied lines that are written on the same stave is carried out by another, 

independent class, separate from the score class.  Complexity of linear identity is handled 

by one aspect of the class ScoreIterator.  Some simple versions of score iterators are 

found  in scoreView.  For more complicated cases, the user has the ability to construct 

score iterators of arbitrary complexity.  This constructing may be done either by 

inheriting the existing class ScoreIterator, or by building the new iterator from scratch 

using the locate and step member functions of ScoreIterator.  Some of the issues 

concerning the design of a score iterator will be dealt with in the section on score 

traversal, later in this chapter. 

 

5.8  Score Reader. 

The simplest case of a human score reader looking into a score, may be modelled as 

an act of focusing on one entity at any one time.  Hence we may conceive of a score 

reader as having an associated state linked to the entity being viewed. 

 

 In studying the score the human analyst will need to be able to locate a particular 

entity in the score, for example, the first note in bar 100 in the 1st violin line, and to 

interpret what is read.   This will involve, in the first instance, the determining of the key, 

clef and time signature.  Subsequent activities of the analyst may be to scan the notes and 

rests in a score sequentially along the same stave, or to scan simultaneous notes in some 

vertical manner.  Certainly the analyst will also want to access notes on the basis of some 

kind of contiguity, and most likely on a left to right basis.  This suggests that the analyst’s 

entity-locating activities in reading a score can be encapsulated by means of sequences of 

operations such as 

 

   locate first note in bar 100. 

   identify clef, and key and time signatures. 

   step horizontally to next note. 
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   step horizontally to next note.  

   etc. 

 

The state of the score reader associated with these actions can be thought of as being 

closely related to a current position or point of interest in the score.  The main 

significance of this scanning is that it provides a mechanism through which access is 

gained to the contents of the score. 

 

A common artefact used on two dimensional data structures in computer science, 

called an iterator, can be used to allow one to access the internals of a data structure.83  A 

similar object can be used with a computer model of a score.   A score iterator is an 

object that points into a score.  It points to a particular object in the score at any one time.  

It implements something akin to the current position of Kassler's MIR system, or to the 

point of interest of MUSIKUS.  The iterator may be used to model  the act of reading a 

score.  This act may be broken down into the act of reading of individual entities within 

the score.  From the point of view of the reader of the score, various entities within the 

score may be treated as being read one by one.84 

 

The score iterator is an object that points to entities within the score.85  A score 

iterator is implemented which points to a single entity in the score at any one time.  It has 

the capability of being located at any entity in the score.  Also it can be moved about 

from one entity to another and/or from one point in time to another in one of a number of 

general ways.  In the case where the entity pointed to is a note or a rest, both of which 

occupy time, the score iterator is capable of pointing to a time within the entity.  Hence if 

a score iterator points to a note, it may be made to point to the start of a note.  This will 

be the normal case.  It may also be made to point to any time within the duration of the 

note as well.  One such internal point might correspond to the point of resolution of a 

suspension. 

                                                           

 
83  Borland Borland C++ Library Reference Version 4.0 (Scott’s Valley, California 1993), pp.355-462.  

 
84  It is possible that a human score reader has a capability for observing groups of symbols rather than a 

single symbol at a time.  A chord may possibly be read as a unit, for example.  This mode of reading could 

be simulated in the current implementation, by designing and implementing a special score iterator. 

 
85  The assembler-like programming language in Michael Kassler, opus.cit., seems to be the first music 

analysis software system that supported the idea of a current note.  MIR was developed in the Department 

of Music, Princeton University on an IBM-7094 computer.  
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It is possible to have any number of score iterators of varying types for a single score. 

 

Two basic iterators are presented in scoreView.  One iterator, a single stave iterator, 

specialises in visiting entities on a single stave of the score.  The other iterator, a multi-

stave iterator, specialises in a standard traversal of the entire score.  Each of these 

iterators can operate in MONO or POLY mode.  If the score has staves with multiple 

simultaneous notes, then MONO mode limits traversal to the highest-most notes on one 

or more staves.  POLY mode involves traversing all the notes on one or more staves. 

 

Objects of class ScoreIterator may be declared for a score s as follows 

 

   Score s(filename); 

   ScoreIterator si(s); 

 

If the score s has only one stave, a score iterator in MONO mode is created, by 

default.  If the score s is a polyphonic score then the score iterator which is created as a 

result of the above declaration will be a polyphonic score iterator.  This iterator gives a 

standard traversal of the score in POLY mode.  If it is required to traverse a single stave 

of a polyphonic score, a declaration such as the following will create an appropriate score 

iterator, identified by the name si0 in this case. 

 

   ScoreIterator si0(s, 0); 

 

The staves in a score are numbered in sequence starting at 0.  This score iterator will 

be in MONO mode by default and will scan the first stave, that is stave number 0, of the 

score. The mode of a score iterator can be changed by calling the member function 

 

   si.setScanMode(POLY); 

        or 

   si.setScanMode(MONO); 

 

5.9  Locating. 

The starting point for access to a score is normally at the beginning of the score, but 

may also be at some intermediate position.  Starting at the beginning and moving to the 
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right provides all the contextual information required to read the score.  In this way, key 

and time signatures and other score markers are encountered in their proper sequence.  

Starting at some intermediate point inside the score on the other hand, involves some 

backward scanning to establish a context in which to read the score.  For example, to 

discover the clef and key signature in a physical score, it is necessary to scan backwards 

from the score iterator to the last clef and key signature.  Such will, at most, involve 

backward scanning to the leftmost part of the page that is a feature of the physical score 

and not of the abstract version of the score.  For a reader scanning the physical score by 

beginning from a point other than the start, the time signature might be deduced by 

inspection of the bar length, possibly with the help of observations on the beaming 

structure.  Alternately this could be done  by backward scanning to the last time 

signature.  In a computer implementation, it is highly desirable that such scoping 

information be resolved automatically by the software, if the programmer-analyst is to be 

freed from such activities.  Of course, in any computer implementation this automatic 

backward scanning must be done with a view to efficiency as well as transparency. 

 

Using the same objects as in the last section, examples of the use of member 

functions of the ScoreIterator object, si,  for positioning it at a specific entity in a score  

include 

    

  si.locate();    // moves si at the start of score 

  si.locate(NOTE);   // moves si at the first note of score 

  si.locate(BARLINE, 20);  // moves si to the 20th barline 

 

The score iterator object may be made to point to other objects, which may have some 

kind of adjacency relationship with its current position by means of 

 

  si.step();    // moves si to next entity 

  si.step(NOTE)   // moves si to the next NOTE entity 

  si.step(Rat(1,8));   // moves si forward one quaver or  

       // eight note 

  si.stepb();    // moves si back to the previous  

       // entity 

  si.stepb(NOTE);   // moves si back to the previous  

       // note 
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Which entities are selected as being ‘next’ depend on the traversal order, which is 

dealt with in the next section.  Functions of the kind used above can be combined.  For 

example, moving the score iterator, si, to the first object at the middle position of the 11th 

bar of a score in 4/4 time, is achieved by 

 

  locate(BAR, 11);  // locate the start of the 11th bar 

  step( Rat(2,4));   // move forward a distance of 2/4 

 

The entity located by a durational step function, such as step(Rat(2,4)), is always the 

first written entity at that time score time.  The end of a note or rest is never a candidate 

for selection in these cases.  One is always guaranteed to have a score entity after such an 

operation, except in cases where the step function causes the iterator to move off the end 

of the score. 

 

5.10  Traversing. 

 Having established all relevant contexts, the score reader will normally start at the 

beginning and proceed to read the score from right to left for reading lines, or to scan up 

and down, or perhaps in some zig-zag fashion, for harmonies, or in a combination of the 

two for full score reading.  All of this can be broken down into the activities of locating 

and/or stepping and reading basic entities.  In addition to the normal activities of score 

reading, it is not unreasonable that the human score reader might want to read lines in a 

score backwards, or in any other possible sequence of accesses.  In all cases the reading 

of the score involves reading basic entities of the score. 

 

A multi-stave iterator in POLY mode follows a path that is described as a standard 

traversal of the score.  The basic principle of this standard traversal is laid out in the 

following algorithms.  Prior to giving the rules, it is useful to define three types of entity.  

The first type, which includes all entities that have duration, will be referred to as of type 

A.  These  consist of notes and rests.  The second type, type B consists of any barline, and 

entities of type C consists of any entity other than those of type A or B, such as clefs or 

key signatures.  Here 'visiting' an object is interpreted as moving an iterator to the object 

and optionally doing some kind of user-specified processing on it.  For each line in a 

score, the iterator maintains the position of the last entity visited. 
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A standard traversal is described in the following algorithm.  Score iterators of the 

type we are dealing with, have a current position associated with them on each stave.  

The iterator's current position corresponds to an entity on a specific stave and also to a 

point in score time.   In a multistave environment, it is useful to think of each stave as 

having a current position associated with it, which we will call a stave current position to 

distinguish it from an iterator current position.  The system maintains all stave current 

positions at the same points in absolute score time.  When a score iterator moves 

downwards to the next stave, it does not move forward in time, but to the relevant stave 

current position.  The movement of the iterator current position is either from left to right 

or vertically downwards in the score.  All stave current positions are set to the first entity 

in the score before the start of the algorithm.  The following algorithm in Fig.5.5 gives 

the rules for any traversal step. 

 

An assumption that is made in this case is that we are dealing with scores where all 

staves share the same time signature and bar structure.  The internals of scoreView do 

not require this to be the case, but the current implementation of a polyphonic score 

iterator does.  A simple change to the algorithm, by classifying barlines as being of type 

C, would remove this restriction. 
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Condition Action                                                 

At start Visit first entity on first stave. 

 

Last entity of score on last stave. Traversal complete - exit algorithm. 

 

Next candidate entity of type C Move the iterator current position 

or grace note. to next entity on the same stave. 

 

Current entity is of  type A Move the iterator current position 

with a further type A entity  to the vertically contiguous entity 

vertically contiguous underneath  underneath on the same stave. 

it on the same stave. 

 

Last entity or part of an entity Calculate the time slice as the minimum 

processed on the last stave.   of durations of  entities at stave current 

     positions on all staves. 

   Advance all stave current positions by the  

     time slice. 

   Make the uppermost entity on the top  

     stave the iterator current position. 

 

Type B entity encountered. If not on uppermost stave report an error. 

   Visit all the stave current positions. 

   If all stave current positions are not  

     at barlines, report an error. 

   Step current positions on all staves to next 

     entity.   

   Make stave current entity on top barline  

     into the iterator current entity. 

 

Any entity. Move to current position on next stave 

     current position. 

 

Fig.5.5  Algorithm for standard traversal. 
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Comment.  

The above algorithm produces a traversal as shown in Figs 5.6, 5.7 and 5.8.   Exactly 

the same principles apply to scores that have multiple notes/rests on the same stave.  Note 

that this algorithm is compatible with traversing both a single stave and multiple stave 

scores.  The standard multi-stave iterator visits all objects in the score in a reasonably 

natural order.  This iterator may itself be used as a base class for the construction of new 

iterators.  It will not be clear, until extensive work is done using scoreView what 

additional iterators might be useful for polyphonic music.  In appendix table A3.1, an 

example is given of the use of this multi-stave iterator to traverse a polyphonic score. The 

score consists of a section from the start of the sixth movement of Beethoven's string 

quartet in C# minor, op. 131.  The same score iterator is used in the computer to play this 

score. Grace notes require special treatment.  In this implementation of scoreView they 

are treated as if they do not consume any time.   

 

All grace notes on the same stave that are either vertically or horizontally contiguous 

are visited as a special case of standard traversal before any following entities are 

processed.  Cases that may arise with multiple polyphonic grace notes will require some 

further attention. 

 

 

Fig.5.6  Single stave traversal in MONO mode.  

 

 

Fig.5.7  Single stave traversal in POLY mode. 
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         Fig.5.8  Multi-stave traversal in POLY mode. 

     Elongated image of the start of the sixth movement of Beethoven’s string quartet op.131. 
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In the following two sections the material covered to date will be used to construct 

some very simple algorithms for performing actions on scores.  These are intended as 

an introduction to the more musically meaningful algorithms of chapters 7 and 8. 

 

5.11  Algorithm 1. 

The task here is to examine a monophonic score that is held in a file called 

"SCORE.ALM" and to output a message that tells us whether the note immediately 

following the first barline is any 'D'. 

 

 

(1)       Score  s("SCORE.ALM"); 

(2)       ScoreIterator  si(s); 

(3)       si.locate(BARLINE); 

(4)       si.step(); 

(5)       if ( si.isA(NOTE)) 

          { 

(6)        if (si.getAlpha() == "D")   

(7)             cout << " Score starts with a D "; 

(8)        else cout << " Score does not start with a D"; 

          } 

 

Fig.5.9  Algorithm 1 to identify if the note 'D' follows the first barline. 

 

When this program is run, line (1)  causes a model of the score, or a score object 

to be built in computer memory from the contents of the file "SCORE.ALM". The 

name s is associated with this score object.  In order to look at the note which is at the 

start of the first bar, we must have a way of accessing information within the score, of 

looking into the score, so to speak.  A score iterator is used for this.  When created, 

the score iterator is 'looking' at the first object in the score, possibly a clef.  Line (2) 

creates such a score iterator object, called si for the score s.  Line 3 causes the iterator 

to 'look at' the first barline in the score.  Line (4) causes the iterator to step to the next 

entity in the score. Here we have a problem with interpreting what is required. The 

original specification used for the algorithm was incomplete as it did not tell us what 

to do if there is not a note after the first  bar line, as in the case, for example,  where 

the first object after the barline is a rest.  This is an example of  lack of definiteness, 

one of the basic properties of an algorithm, and is a fault of our original specification 

of the algorithm.   The algorithm must be re-specified so as to rectify the defect. 
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5.12  Algorithm 1a. 

Task is to examine the score that is held in a file called "SCORE.ALM" and to  

display the following messages  

 

- "Score starts with any D" if the first barline is followed immediately by the 

note 'D',  

- "Score does not start with any D" if the first barline is followed immediately by 

a note other than 'D' 

output nothing otherwise. 

 

Although algorithm 1a has solved one of the problems with algorithm 1, there is 

still a need to be sure of what the algorithm means.86   

 

In the above implementation, the program simply does nothing when a rest is 

present instead of a note, since line (5) checks that the type of entity being dealt with 

is a note, before line (6) checks if the note is any 'D' and, depending on the outcome 

of this test executes either line (7), if a note 'D' is found, or line (8) if a note other than 

'D' is found.  The input to this algorithm is the score held in the file "SCORE.ALM".  

The output consists of the message displayed on the computer screen. 

  

Writing a program like this is pointless, as we could have answered the question 

by consulting the score.  One case in which automatic analysis becomes useful to a 

musicologist is when dealing with large corpora.  The next program may be used to 

do the same kind of processing on an unlimited number of scores.  It calculates the 

percentage of scores that start with any note 'D' (algorithm 2).  The program uses three 

variables that appear in lines (1) and (2).  fileName is used to hold the names of the 

files containing scores.  countAll and countDs are used for the calculations.  The 

function getNextScoreNames reads a file called NAMES that contains a list of the 

scores for processing.  On its first invocation the variable str is set to the first score in 

the list.  On its second invocation str is set to the second score in the list, and so on 

until all scores are processed.  This function returns the value TRUE if a score was 

found, and FALSE otherwise, and hence can be used to control the while statement. 

                                                           

 
86  Thus the output of the algorithm could be misinterpreted as saying something about the note at the 

start of the first bar in the score.  This results from confusing bars with barlines.  For many scores the 

note at the start of the second bar will be found as a result of this query.  Also we did not check if the 

note ‘D’ was altered in pitch by the key signature or otherwise.  We have interpreted “any D” to include 

D double flat, D flat, D natural, D sharp and D double sharp. 
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   {  

(1)  String str;  

(2)  int countAll = 0,  countDs = 0; 

(3)  while( getNextScoreName("NAMES", str)) 

     { 

(4)   Score s(str); 

(5)   ScoreIterator si(s); 

(6)   countAll++; 

(7)   si.step(NOTE); 

(8)   if ( si.getAlpha()=="D") countDs++; 

     } 

(9)  cout << "Percentage of D's is " << (countDs * 100)/countAll; 

    } 

 

Fig.5.10  Algorithm 2 to calculate the percentage of tunes that start on a note of pitch 

class 'D'.  

 

5.13  Abstraction. 

It is of the greatest importance in designing the system, that we do not require the 

music analyst to carry undue learning or conceptual overheads in the programming 

environment. In other words we must provide the user with a suitable score 

abstraction.  The approach used here is to provide a score representation cast as an 

object with a clear user interface.  The object-oriented paradigm is used here to 

represent a score, and also for the entities that constitute a score, e.g. notes, rests, 

barlines, clefs, time signatures, key signatures, etc.  A set of basic member functions 

and operators are provided which are adequate for  present and envisaged future 

needs. 

 

The principles of abstraction are demonstrated in the above mini-examples that, at 

no stage, deal with the representation issues of a music score.  In order to write a 

program to process a score we need to create the relevant objects, such as the objects 

's' and 'si' above.  We also need to know how functions like 'getNextScoreName',  

'locate', 'step', 'getTag' and 'getAlpha' work.   No internal details of score 

representation were revealed.   The only data that was created was precisely that 

needed to do the job. Integer variables are used for counting, and a character string is 

used for the name of the file that was being retrieved.  These are part and parcel of the 

task of imperative programming.  On the other hand these score constructs are 

examples of a process of abstraction.  These abstractions allow us to perform 

complete operations by using concepts such as 'Score' and 'ScoreIterator', and relieve 

us of the non-productive task of  dealing with the internal complexities of the 

operations in question. 
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As alluded to previously, the process of abstraction need not stop here.  In using a 

score representation ourselves, we can build our own abstractions.  The score 

abstraction presented later defines only a basic and near minimum set of operations 

that can be carried out on a score.  From these building blocks, we can build more 

complex edifices.  For example, although the system can represent polyphonic scores, 

it does not have, as part of its essential structure, any notion of harmony.  However, 

the system can be used to provide building blocks for a 'harmony abstraction'.  This 

process of building a hierarchy of abstractions, is practically limitless, and gives the 

potential for using the score abstraction to build any conceivable system to an 

arbitrary level of complexity.  By means of a divide-and-conquer strategy, complex 

systems can be built.  Hence problems that seem unmanageable and complex  might 

be made tractable if a way can be found to successively decompose them into 

components that are simple enough to be expressed algorithmically. The structures 

are not limited to being a hierarchy.  One could, for example, visualise the score 

representation forming one component in a chain of processing that models the 

activities of performing and listening to music, where separate systems are built to 

model a human performer and to model a human listener. 

 

Score Representation Score Performer Music Listener

 

Fig.5.11  Processing in Cognitive Modelling. 

 

The first component here represents a Score model.  The second one is a model of 

a performer who models the playing of a score and the third component models some 

aspect of human cognition. 
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Chapter  6.  Applications - Verification of 

Hypotheses. 

 

6.1  Introduction.   

A number of applications are given here which use scoreView to build programs 

to do music analysis.  These applications have been selected to demonstrate how the 

system might be used to enable musicologists check the validity of statements made 

about music. All of the applications given here can be programmed, tested, and run in 

a matter of a few hours by a competent programmer with a knowledge of scoreView.  

In most cases it took less than an hour to develop a basic version of each program.  

For clarity, certain simple parts of programs are omitted from most illustrations.  

Excluded from are some initial details, such as ‘include’ statements and some 

declarations, as well as most sections that deal with output.  Code that deals with 

incorrect input has also been removed from the illustrations. 

 

6.2  Structure of Verification.   

The bedrock on which any verification is made is the corpus.  In the current study, 

the corpus of music consists of  365 double jig tunes transcribed from "The Dance 

Music of Ireland" by Frances O'Neill87 and 54 double jig tunes from "Ceol Rince na 

hEireann" by Breandán Breathnach88.  Henceforth these two collections will be 

referred to as O'Neill's and Breathnach's, or alternately as TDMOI and CRNH1 

respectively. 

 

Computer-based verification of a musicologist's hypothesis involves the 

construction of an algorithm to process the music information in the corpus in such a 

way as to produce a result that may verify or contradict the original hypothesis. The 

construction of such an algorithm is not always straightforward.  In order to structure 

this process, it is useful to break the task into a number of steps.  Eight steps are 

proposed here, as one approach to this structuring.   These steps are considered under 

the following headings. 

 

1. Musicologist's text. 

2. Related hypothesis. 

                                                           
87  Capt Frances O'Neill The Dance Music of Ireland  (Chicago 1907). 

 
88  Breandán Breathnach Ceol Rince na hEireann  (Baile Atha Cliath, 1963). 
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3. Algorithm. 

4. Decision criterion. 

5. Construction of software. 

6. Testing of software. 

7. Results. 

8. Conclusions. 

 

6.2.1  Musicologist's Text.   

The first task is to identify statements in the musicologist's text that are suitable 

for verification.    One kind of statement that a musicologist might make is 

 

  all X-types have property Y.  

 

Assuming that both 'type' categories and 'properties' in this statement are 

sufficiently well defined to be identifiable, then we can proceed to the next stage, 

where we specify an algorithm to test the hypothesis.  In the case of the above natural 

language statement, it is sufficiently well structured to act as the related hypothesis, 

and here steps 1 and 2 of our structuring process coincide.  The selection of text is 

intimately bound up with the decision criterion of step 4.  The decision criterion for 

the above simple case is easy to formulate. By finding just one exception, that is by 

finding an X-type with an absent Y-property, we succeed in proving the statement 

false.  If we cannot find such an instance, then we can conclude that the hypothesis is 

verified by our corpus.  This latter case does not exclude the possibility that the 

hypothesis might be falsified in future.  We might, for example increase the number 

of pieces of music in our corpus, and thereby find exceptions.  In the case where a few 

exceptions to the hypothesis are found, they will inevitably deserve scrutiny.  Such 

exceptions might be found to be misclassified or erroneous items that should not have 

been admitted to the original corpus in the first case.  If a small number of exceptions 

persist, the musicologist  might  modify the assertion to something like 

 

        normally X-types have property Y.  

 or   in rare cases property Y is absent from X-types. 

 or   usually X-type have property Y. 

 

Here the quantitative nature of the assertion is much less clear.  Words such as 

“normally” do not always carry the same quantitative implications to different people.  

If a musicologist is claiming that a feature is “usual” in a piece of music, and the 

purpose of the experiment is to establish the validity or falseness of the claim, it is 

difficult to pin this word down to an exact percentage that is usable for the decision 

criterion.  If we assume that everyone is in agreement with a claim that a feature of a 



6:  Applications - Verification of Hypotheses. 

 96 

pieces of music from a genre is “usual” if it occurs in 95% of cases, then an 

experiment that verifies this could be said to support the hypothesis.  Similarly, if the 

feature occurs in only 40% of cases, then the experiment could be said to falsify the 

claim of 'usualness'.  It is not at all clear where, in the intervening percentage 

occurrences, the dividing line between what is “usual” and not “usual” might be.  

50%, 55%, 60%, 70%, 80%, 90%?   In order to make progress here, two basic 

questions might be asked.  The first question concerns what the author meant to 

convey.  One might be able to interview the author with a view to getting a more 

quantified version of what was intended.  There is, of course, no guarantee that the 

author would be able to quantify a claim as a percentage, and may retreat to leaving 

the claim intentionally vague.  A second, and a more basic question could be directed 

at the target audience, to see what the author has succeeded in communicating.  It 

would be perfectly feasible to take a representative sample of readers (the consumers), 

or potential readers (the potential consumers) of the article and to examine reader 

responses to the use of such words.  Thus for a statement about the “usualness” of a 

certain feature, one could sample the set of readers of the statement to establish, in 

quantitative terms, what the statement actually conveyed.  Armed with the results of 

the survey, one could draw on the techniques of statistical sampling theory to quantify 

what the author's claim conveyed.  This would enable the tester of the hypothesis to 

restate the original hypothesis in quantitative terms, and to proceed with an 

experiment to validate the statement.  This kind of activity would, however, be of use 

only to a researcher who wished to go to extremes to verify or falsify the results of 

previous researchers.   

 

An alternate approach, and the one that is adopted in this study, is to avoid 

making any strong claim about such 'fuzzy' adverbs in advance, by categorising the 

results as follows - 

 

1) support the original hypothesis, using a conservatively 'safe' criterion. 

2) contradict the original hypothesis, using a conservatively 'safe' criterion. 

3) for results other than (1) or (2),  modify the hypothesis. 

 

6.2.2  Related Hypothesis. 

If the musicologist’s text contains statement of the type “all X-types have property 

Y”, where the “type” and “property” are unambiguous, then as we have seen, the 

related hypothesis and the original are identical.  Very often the hypothesis may need 

to be extracted from its context and stated afresh.  For example, the hypothesis may 

have to be fished out of more than one sentence of the author.  If the hypothesis uses 
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fuzzy words such as “normally”, it may be useful to specify a schema, giving possible 

conclusions that we may draw from various hypothetical results.  One example of 

such a schema is given below 

 

Hypothesis:  Normally X-types have property Y. 

Experiment: Examine all X-types in our corpus and measure the percentage       

                    of those with property Y. 

 

Schema: 

  If percentage is 90 or more, accept the hypothesis. 

  If percentage is less than 50, reject the hypothesis. 

  Otherwise modify the hypothesis by including a statement of the percentage.  

 

6.2.3  Algorithm. 

The construction of an algorithm involves a formalisation of the hypothesis.  

What is meant by “formalisation” here is arriving at an unambiguous interpretation of 

the natural language statement made in the musicology domain for which 

experimental evidence is being sought, to the level of detail where a program can be 

written to prove or to disprove or to help to refine the hypothesis.  One perspective on 

the above process is important to make here.  We bring our considerable cognitive 

powers to bear in interpreting natural language statements, which always appear 

within a context.  Much of this happens at a subconscious level.  Our software 

environment does not come equipped with such domain knowledge.  Hence the 

burden lies with the algorithm designer to specify unambiguously and completely 

what the computer is to do.  In this study, we will use natural language to express 

these formalisms.  Natural language is so laden with contextual meanings, that 

constant vigilance is necessary to ensure that these algorithms involve clear thinking.  

From the natural language expression of the algorithm, a computer program is 

constructed.   

 

6.2.4  Decision Criterion. 

As discussed in section 6.2.2, the decision rules take the form: 

 

if the percentage is 'x' or more, accept the hypothesis, 

if the percentage is less than 'y', reject the hypothesis ( where y <= x ), 

otherwise modify the hypothesis by including statement of the percentage, 

where the limits 'x' and 'y' for accepting or rejecting the hypothesis are 

picked conservatively. 
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6.2.5  Construction of Software. 

This is the stage at which the transition from the algorithm, expressed in natural 

language, into a formal representation as a computer program is made.   We may well 

discover at this stage that the formalisation process of 6.2.3 may not be a once-off 

task.  It may be necessary to return to step 6.2.3, if incompleteness or other 

inadequacies are discovered in the formalisation.  The end result of this stage is the 

construction of a computer program, the output of which enables us to test the 

hypothesis. 

 

6.2.6  Testing of Software. 

Following the construction of software, it is essential to check that our program 

actually does the analysis that is intended.   Some of the techniques of software 

engineering89 for program testing and verification are desirable.  One approach might 

be to select a small but varied subset of the corpus and to run the automatic analysis 

on it and then to replicate the process manually, thus enabling cross checking between 

the manual results and the output of the computer analysis. 

 

6.2.7  Results. 

Results consist of the computer output. 

 

6.2.8  Conclusions. 

Stating the conclusion involves applying the decision criterion from the output of 

the algorithm. Typically this is followed by a discussion. 

 

6.3  The Corpus. 

The cases presented in this chapter are drawn from a number of statements or 

hypotheses, made about Irish folk dance music in general.  These statements are used 

for the construction of formal hypothesis at a level suitable for implementation in 

software.  This software is then run using a particular corpus of Irish folk dance 

music, which forms the evidence against which the claims are tested.   Obviously, 

selection of a corpus is crucial to validifying statements made about a music genre.  In 

this study we are dealing with folk music, which is orally transmitted and from which 

instances of tunes have been transcribed from musicians by a collector.  One may 

raise here questions about the intent of the transcribers,  the organisation of the 

                                                           
89  G.J. Myers The Art of Software Testing (New York: John Wiley 1979). 
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publications, the accuracy of the music as a historical record,  and about the 

representative nature of the material in the collection. 

 

On the question of general intent, it is beyond doubt that the collectors were 

motivated by a desire to preserve and to protect the tradition.  Both collectors were 

performing musicians in their own right.   O'Neill was a fiddler and Breathnach an 

uillean piper.  The transcriptions can be perceived as having two different intents.  

One is the descriptive intent, which attempts to provide a most detailed record of a 

music performance.  The second one is the prescriptive intent whose aim is to provide 

enough detail to enable a musician to provide a performance90.  In both collections, 

the notation is closer to the prescriptive manner, in which most of the micro-details 

are omitted, with the exception of  some grace notes and specific ornaments, such as 

various rolls and crans.  O'Neill occasionally tried to capture some of the rhythmic 

complexity, using the highly inadequate binary divisions of staff notation.  This 

feature appears in a few tunes in the parent volume91 from which "The Dance Music 

of Ireland" was created, but some of these were abandoned in the later publication.  

 

  Both publications organise their material into categories of “double jigs”, “single 

jigs”, “slip jigs” and “reels”, with, in the case of O'Neills the additional category of 

“long dances, etc” and “miscellaneous”. The Breathnach collection was compiled 

with the help of a thematic index.  Consequently it has no duplication of tunes.  

O'Neill, on the other hand, inadvertently replicated a number of tunes.  This is not 

surprising in a collection of such size that was completed without the use of a 

thematic index.  Breathnach’s collection has a wealth of detail about the contributing 

performers, the instruments used, and about related tunes from other collections.  

However, for a substantial number of tunes, O'Neill also supplied an associated 

wealth of detail that parallels the Breathnach collection.  Although such detail was 

omitted from  O'Neill's "The Dance Music of Ireland",  some of it was included in the 

parent volume, "The Music of Ireland", which was published in 1903.  The parent 

volume contained 1,850 pieces including 1,100 dance tunes.  The later collection 

"The Dance Music of Ireland"  was compiled mainly from tunes printed in 1903, with 

some additional material included.  In  "Music of Ireland" a sizeable portion of the 

tunes bear the name of the musician from whom  the music was transcribed.  

Additional bibliographical information is available about many of the musicians in 

                                                           
90  Charles Seeger "Prescriptive and Descriptive Music Writing" Musical Quarterly, volume 44 (1958), 

pp.184-195. 

 
91  Capt. Frances O'Neill's The Music of Ireland  (Chicago 1903). 
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two books written by O'Neill92.  A small number of Edison cylinder recordings of the 

musicians who contributed to the O'Neill collection have survived from the period. 

 

On the thorny question of accuracy, we would need access to recordings of all the 

original musicians, at the original transcription sessions to verify the material.  

However, in the absence of such evidence, with the exception of a small number of 

surviving Edison wax cylinder recordings by performers who contributed to the 

O'Neill collection, and surviving tapes by contributors to the Breathnach collection, 

we can glean indirect evidence of the general accuracy of the collections. The 

Breathnach collection was first published a little over thirty years ago and was, in the 

main transcribed from tape recordings of contemporary folk musicians, many of 

whom have died in the intervening years.  Many of these musicians were instrumental 

in shaping the style of the current generation of musicians and acted as exemplars for 

these young people.  The Breathnach book was used by such young learners, many of 

whom had access to Breathnach's informants as well.  The lack of criticism of the 

book provides indirect testimony to its overall accuracy.  In the case of the O'Neill 

collection, one may have a few more reservations.  The consistency of the notation is 

not as good as in the Breathnach collection, and it contains a small, but significant 

portion of errors.  However the popularity of the O'Neill publications, in what was a 

predominantly oral tradition, in which a minority of musicians could read music, 

combined with the relative absence of any substantial criticism of the book by 

traditional musicians attest to the validity of its material.   The "Dance Music of 

Ireland" acted as a standard reference to such an extent that  musicians frequently 

referred to it as “The Book”.  The popularity of the O’Neill collection can be gleaned 

from the number of re-issues or re-edited versions of it that have been produced.  This 

contrasts with the fate of reissues of some of the earlier collections, notably the Joyce 

and Petrie publications, which did not gain such widespread acceptability.   

 

Breathnach93 gives us an account of how the work of transcription was made for the 

O'Neill publications. 

 
" .. and the task of notation was undertaken systematically.  Tunes were noted down by James 

O'Neill from the playing, singing, whistling, lilting. and even the humming of contributors, played 

back, and corrected or accepted as the case might be." 

                                                           
92  Capt. Frances O'Neill Irish Folk Music; A fascinating study (Chicago 1910) and Capt. Frances 

O'Neill Irish Minstrels and Musicians (Chicago 1913). 

 
93  Breandán Breathnach Folk Music and Dances of Ireland (Cork:  Mercier Press, Revised Edition 

1977), pp116-117. Breathnach's source of evidence here is not given.  The most likely source is from 

O’Neill’s contemporaries. 
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 The most telling point about the O'Neill collection is that musicians by and large 

feel comfortable with it.  The music in it is close enough to musicians' expectations to 

merit acceptance.  An additional point in favour of acceptance of the material arises 

from the fact that O'Neill and his transcriber were performing musicians, steeped in 

the tradition.  Even if an occasional mis-transcribed note got into some tunes in the 

publication, the end product would, most likely have been filtered by the compiler or 

by his transcriber, and consequently would have been acceptable to them.  In effect, 

they would have acted as a filter that might be expected to reject invalid syntax of the 

style current at the turn of this century.  This last consideration is crucial in cases 

where some material was included in the O'Neill collection that was drawn from 

earlier written sources.94 

 

Assuming that we are in the business of verifying hypotheses about the current 

living tradition, the question arises about the admissibility of  these collections as 

representatives for the purpose of verifying statements about the current living 

tradition.  The Breathnach collection is now over thirty years old.  The main point in 

favour of the validity of use of the Breathnach collection lies in the fact that many of 

the contributors to the Breathnach collection were exemplars for the current 

generation of musicians.  With the O'Neill collection, which was made over 90 years 

ago, we are on shakier ground.  A temporal span of 60 years exists between it and the 

Breathnach collection.  However, the folk tradition during these spans of time was an 

inherently conservative one, which changed at a very slow rate.  No significant new 

genres emerged over the last 100 years.    One source of conservatism reflects itself in 

the way in which practising musicians hold key older players as exemplars to be 

copied.    Additionally, general acceptability by musicians of the O'Neill book, 

suggests that it consists of valid representations of the tradition.  For the purpose of 

the current study, both the Breathnach and the O'Neill collections will be accepted as 

valid corpora in support of proofs.  However separate analyses will be carried out on 

both collections with a view to exercising caution by being vigilant to differences. 

 

                                                           
94  In his introduction to The Dance Music of Ireland, O'Neill give some instances.  "Denis Delaney 

(No.7) is a good specimen of an Irish jig with three parts, forgotten in Ireland, yet preserved in 

"Crosby's Irish Musical Repository," published in London in the year 1810.  Numbers 168, 190 and 

198 were found in the extremely rare "Repository of Scots and Irish Music, " printed in Edinburgh in 

1799.  Number 982 was found in the volume of country dances of 1798 before mentioned, while 

numbers 254, 355, 356 and 357 were discovered in "The Hibernian Muse," published in the year 

1797."  O'Neill also mentions in his introduction,  the inclusion of two tunes from a manuscript  by Mr. 

Timothy Downing. 
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A further issue concerns the representative nature of the corpora and their validity 

for verifying statements about Irish dance music in general.  The corpora used consist 

of double jigs alone, which represent only one genre within the tradition.  It is, 

however,  a major genre, the other main ones include reels, hornpipes, single jigs and 

slip jigs.  Jigs form the second largest genre in both collections.  There are 365 double 

jigs out of a total of 1001 tunes in O'Neill's and 54 out of 214 in Breathnach's.  In both 

collections the most frequent genre is the reel, which is of more recent origin.95  Any 

general, unqualified statement about Irish dance music could be expected to apply to 

all genres, including the double jig. 

 

Yet another issue concerns the accuracy and completeness of the computer 

representation of the corpus.  In the current study, the computer version of the corpus 

was created initially as text files in ALMA code.  Additional checks on the accuracy 

of each entry were made aurally, by checking the original printed source against a 

computer performance using a MIDI synthesiser.  A further visual check was carried 

out by comparing  the original printed source against a computer generated printed 

output.96 

 

6.4  The Text. 

  The following is an extract from “The Creative Process in Irish Traditional 

Dance Music”.97  The author prefaces this extract by focusing on attempts to look at 

systems of performance technique and tackling issues such as improvisation and the 

creative process in general, and declares that  the paragraphs represent an attempt to 

view the tradition from within . "Any insights in this paper are offered in the same 

spirit, in that they stem directly from the subjective experience of performing 

traditional dance music over the past two decades" 

 

 

                                                           
95 Breadnan Breathnach, op.cit., 1989, p. 137. 

 
96  A program A2S.CPP to generate a text input file from scoreView was developed for use with the 

well-known 'SCORE' printing program of Leland Smith. 

 
97  Dr. Micheál Ó Suilleabháin “The Creative Process in Irish Traditional Dance Music” Gerard Gillan 

and Harry White  Irish Musical Studies (Dublin: Irish Academic Press 1990), pp. 117-130. 
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THE FRAMEWORK 

 

Irish traditional dance music, with very few exceptions, is constructed from basic eight-bar units 

which, in the standard piece, are made up as follows: 

 

 8 bars  8 bars  8 bars  8 bars 

 

 A  A  B  B 

 

These units form an important part of the conceptualisation of the musicians and are referred to as 

'parts'.  The concept of bar has little or no significance as far as the musicians are concerned and is only 

used by those who are musically literate ( still a minority ) and, even then, mostly in the context of 

notation.  If such is the case, how do traditional musicians sense the unit in question?  In my opinion, 

the part is perceived on two interactive levels - through the feeling of eight main rhythmic pulses, and 

through the melodic framework pointed by tonal cadences. 

 The standard dance-piece consists of two different parts, each being 'doubled' (i.e. repeated 

with or without some modification).  Occasionally in certain pieces, the parts are 'singled' (i.e. not 

repeated) but this is very much the exception and applies mainly to reels.  Furthermore, in a relatively 

small number of cases, dance-pieces are found with three or more parts.  Regardless of the number of 

parts, however, by playing through the entire piece once, the musician covers what he calls one 'round'  

A round, therefore, may be thirty-two bars in length (if the parts are doubled in standard two-part piece) 

or sixteen bars (if the parts are singled).  Similarly, the length of the round increases with the addition 

of extra parts which normally reach a total of no more than six. 

 In a standard two-part piece with the parts doubled, the thirty-two bar round is perceived by 

the musicians as being in two distinct sections:  the first half (covering the first part and its doubling) 

which is called the 'tune', and the second half (i.e. second part and its doubling) which is called the 

'turn'.  The tune is normally contained with the lower octave, while the turn usually breaks into the 

higher octave.  There is an ambiguity here in folk terminology in that the word 'tune' can refer to the 

first half of a round, and also to the piece itself in its entirety. 

 

Fig.6.1  From “The Creative Process in Irish Traditional Dance Music", pp.115-6. 

 

   This text  is laced with fuzzy words that indicate some of the difficulties that are 

encountered in providing a simple enough picture to capture the main features without 

seriously interrupting the main points being made by including too much detail.  

Relevant words and phrases that are used  are given below, with the numbers 

appearing in brackets indicating repetitions. 

 

 exception(s)(2), standard(4), mostly, occasionally, relatively small number of 

cases, normally(2).  

 

Questions arise about what is conveyed by words like “normally”.  Does 

“normally” correspond to over 99% of cases?  If it does, then we could regard the 

exceptions as being some kind of very special cases that are almost out of the genre 

proper, or as experimental cases.  If, on the other hand, the word “normal” is used to 

represent 80% of cases, then we are in a very different situation.  One could also ask 

how a precise meaning might be attached to the expression "relatively small number 
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of cases".  Intuitively, this might seem to one as being less than about 5% of cases, 

but  there is no way of knowing that this is what the author intended. 

 

Many of the claims made above relate to the body of Irish dance music as 

practised by musicians.  We can look at printed and manuscript sources to verify the 

claims made by the author.  Conclusions drawn are based on the hypothesis that the 

printed versions represent an accurate record of the oral tradition in respect of the 

aspect under test.   

 

Possible sentences for verification include 

 

1.  The standard dance-piece consists of two different parts, each being ‘doubled’ 

(i.e. repeated with or without some modification). 

 

2.  Occasionally in certain pieces, the parts are 'singled' (i.e. not repeated) but this 

is very much the exception and applies mainly to reels. 

 

3.  Furthermore, in a relatively small number of cases, dance-pieces are found 

with three or more parts.  

 

4.  .. the length of the round increases with the addition of extra parts which 

normally reach a total of no more than six. 

 

 5.  The tune is normally contained with the lower octave, while the turn usually 

breaks into the higher octave.  

 

Since the current corpus available for automatic processing consists mainly of 

double jigs, we look for testing of these against double jigs only.  No extra 

programming effort is required to verify the assertions for other dance genres.  All is 

needed is to have a larger and more diverse corpus. 

 

The first step is to arrive at  formalised assertions that might be the subject of 

experimental verification.  Statements 1, 2 and 3 serve to say things about the number 

of parts and whether each part is played once or directly repeated. 
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6.5  Experiment 1:  Singled Versus Doubled. 

 

Ex.1.1  The text: Points no 1 and 2 above, that is: 

 
1.  The standard dance-piece consists of two different parts, each being 'doubled' (i.e. 

repeated with or without some modification). 

 

2.  Occasionally in certain pieces, the parts are 'singled' (i.e. not repeated) but this is very 

much the exception and applies mainly to reels. 

 

Ex.1.2  The Related Hypothesis - Introduction. 

The original text contains a number of points that could be verifiable, including 

that the standard dance-piece consists of two different parts, each being 'doubled', i.e. 

repeated with or without some modification.  The first assertion is that the standard 

piece consists of two parts.  We will defer checking this until later.  The second 

statement gives exception to part of the first rule, but needs some interpretation, as to 

what the author intended to say. 

 

2.  'Occasionally in certain pieces, the parts are 'singled' (i.e. not repeated) but this 

is very much the exception and applies mainly to reels.' 

 

  It is not clear if the second statement applies to two-part standard pieces only, or 

to pieces with more than two parts as well.  We will assume here that it applies to all 

pieces. 

 

Some clash of terminology here is inevitable.  Jigs fall into the categories of single 

jigs, in 6/8 time with a predominant crotchet quaver crotchet quaver rhythm, double 

jigs, in 6/8 time with a predominant 3+3  quaver rhythm, and slip jigs, in 9/8 time 

with a 3+3+3 quaver rhythm.  As these have already been pre-classified by the 

collector, we need not concern ourselves with the classification problem.   A 'singled' 

double jig is a double jig in which each part is played once per round.  A necessary 

condition for a notated singled double jig is the absence of a repeat sign in bar 8.  

However the absence of a repeat sign does not guarantee us that it is a 'singled' double 

jig.  The reason for this is illustrated below, where a, b, a1, a2, b1 and b2 represent 8-

bar segments of pieces. 

 

8 bar segments in a 'singled' double jig with two parts may be represented by 

 

   a b 
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8 bar segments in a 'doubled' double jig with two parts may be represented by 

 

   a a b b 

 

In the manuscript the 'doubled' parts are not written out twice, in cases where they 

are identical, but are represented as shown symbolically below ( '://' represents a 

repeat sign).  

 

Hence  a b gives a 'singled’ double jig 

   a      :// b      ://  gives a 'doubled' double jig. 

 

A problem arises in the case where a 'doubled' double jig has been transcribed 

from a player who has introduced sufficient variation in the repeated 'a' part to merit 

writing out both versions of either/or the first and second 8 bar segments".98   

 

 a1 a2 b :// 

or  a1 a2 b1 b2 

 

Hence,  the notated 'doubled' double jig piece with two parts might be confused 

with a four-part 'singled' double jig piece.  In order to solve this problem, we need a 

piece of software that will identify whether one 8 bar segment is sufficiently close to 

another to be regarded as a variant. 

 

The solution to determining whether a piece is 'singled' or 'doubled' proposed here 

is achieved by implementing the following set of rules or algorithm. The rules are 

searched in order in which they are given, and the first rule that applies is taken as the 

answer. 

 

                                                           
98  Jig tunes are also notated with alternate endings.  For example, a jig tune in which the end of a 

section is varied, but where the first, say, seven out of the eight bars are the same, the part may be 

notated with 9 bars of notation, with two alternative endings following the first seven bars, e.g. as in 

TDMOI nos 1, 71, 90.  This method of notation is more frequently employed in the second parts (the 

turns) of tunes.  The current corpus avoids these complications by fully representing such parts.  Repeat 

signs are used only at the end of eight bar segments. 
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Algorithm 

Rule      Action    

if the piece has a repeat sign in bar 8    classify as 'doubled'. 

else if the piece is exactly 16 bars long   classify as 'singled'.  

else if  bar 1-8 is similar melodically to bar 9-16 classify as 'doubled'. 

else admit all pieces    classify as 'singled'  

  

Fig.6.2  Algorithm for classifying tunes as 'singled' or 'doubled'. 

 

Some comments required about the above rules.99   As a formal statement of the 

algorithm, there is one glaring omission.  We have not given any formal meaning to 

what "similar melodically" means.  For the present, we will hedge the issue by 

proposing the existence of a function, called diff1100, which takes 3 parameters.  The 

function diff1 evaluates the melodic difference between two line segments of music 

and returns a number that is an estimate of the melodic distance between the two line 

segments of music.  The first two parameters in this function are score iterators that 

represent the starting positions of the two melodic lines, and the third parameter is the 

length of the two segments to be compared expressed in rational units.101 

 

The musicologist's text uses the word “occasionally” and “very much the 

exception”  and “applies mainly to reels” in reference to the relative frequency of 

“singling”.  This might imply that we should expect to find a small percentage of reels 

( less than 10%, say ) 'singled', and for other categories, such as double jigs,  we 

should find a still smaller percentage 'singled' ( 5%, say). 

 

                                                           
99  An assumption here is that this algorithm deals only with tunes that are at least 16 bars in length.  

An additional rule to check this would have to be inserted if the algorithm were to be used to check for 

inadmissible tunes, shorter than 16 bars.  For the corpora, this is unnecessary as, in the case of double 

jigs, all are at least 16 bars in length, and a check of this was performed when the corpus was created.  

Also a check is carried out during the creation phase of the corpus that all tunes in the double jig 

section are in multiples of 8 bars. 

 
100  diff1 is a simplified implementation of the more general difference function which is documented 

in Appendix 1.  Melodic difference is calculated by diff1 on the basis of pitch differences weighted by 

window durations.  Contour, metric and note durations are not processed by diff1 and transposition 

processing is not done. 

 
101  From running this function on the corpus of music, it has been found that a returned value of less 

than 300 indicates an appropriate measure of melodic closeness. 
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Ex.1.2  The Related Hypothesis : Statement. 

The  occurrence of  'singled' double jigs tunes is very rare. 

 

Ex.1.3  Algorithm. 

Visit each tune in the corpus. 

 Apply algorithm 1 to each tune, and count the numbers that are classified as 

'singled' and also count the total number of tunes visited. 

When all the tunes have been visited, apply the decision criterion below. 

 

Ex.1.4  Decision Criterion. 

If the percentage of singled tunes is 5 or less, confirm the hypothesis. 

If the percentage of singled tunes is greater than 5 and less than 10, quantify the 

hypothesis. 

Otherwise contradict the hypothesis. 

 

Ex.1.5  Construction of Software. 

The coding for classifying a score as 'singled' or 'doubled' is given below.  The 

implementation is cast as a function that returns TRUE if the piece is 'singled' and 

FALSE otherwise. 
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int isSingled(Score & s) 

{ 

 // does the score have a repeat sign in bar 8 ? 

 ScoreIterator si(s);  // create a score iterator. 

 si.locate(BAR,8);    // locate the start of bar 8, 

                              // move to the start of bar 9. 

 // move to next barline 

 si.step(BARLINE); 

 

 // check if barline is one with a repeat sign. 

 // (first rule of algorithm). 

 if ( si.getBarType() < Set(CLHLC, CLLC, CLH, CLL, CLC, CL)) 

  return FALSE;  

 

 // next we can check if the tune has more than 16 bars, 

 // by searching for bar 18. (second rule of algorithm). 

 if ( ! si.locate(BAR, 18)) return TRUE; 

 

 // next we check for melodic similarity by comparing two segments,  

 // one starting at the beginning of bar no 1, and the other  

 // beginning at the start of bar 9.  The span of the scan is taken 

 // here as seven and a half (or 15/2) bars plus an eight note. 

 Rat span = si.getTimeSig() * Rat ( 15, 2) + Rat(1,8);  

 ScoreIterator si1(s), si2(s); 

 si1.locate(BAR, 1);   // position one iterator at bar 1. 

 si2.locate(BAR,9);    // position the other at bar 9. 

 

 // calculate the melodic distance between the two segemnts.  A 

 // difference of 300 is found to provide a satisfactory dividing 

 // line between 'similarity' and 'difference'.  

 // ( third rule of algorithm). 

 if ( diff1( si1, si2, span ) < 300 ) return FALSE; 

 

 return TRUE;  // last rule of algorithm. 

} 

 

Fig.6.3  Program of algorithm to verify hypothesis of Ex.1. 

 

Ex.1.6  Testing of Software. 

Testing here consisted of printing output on a tune-by-tune basis, for the 54 

double jig tunes in the Breathnach collection, and manually checking the accuracy of 

the results. 

 

Ex.1.7  Results. 

 

 

'singles' analysis on file =\mdb\crnh1\djig.dir 

 

Number of 'singles' is 4 out of 54 (7%) 

 

Table 6.1  Output of program of Ex.1 for CRNH1. 
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'singles' analysis on file =\mdb\tdmoi\djig.dir 

 

Number of 'singles' is 2 out of 365 (1%) 

 

Table 6.2  Output of program of Ex.1 for TDMOI. 

 

Ex.1.8  Conclusions. 

For the combined corpora, we find that (4+2)/(54+365) = 1.4% of the tunes in the 

corpus are singled, and conclude that the hypothesis stated in Ex.1.2 is supported. 

 

On independently comparing the results from Breathnach's and O'Neill's, there 

appears some cause for concern.  We see that the percentage of 'singled' double jigs is 

just under 1% for the O'Neill's and is 7% for Breathnach's.  One interpretation of this 

is that the practice of playing jigs in the 'singled' manner has increased in frequency in 

the time that elapsed between the two collections.   The situation may not be as rigid 

as would be implied by the results.  It is possible that tunes may be played as singled 

or doubled on different occasions.  Breathnach writes about this, mainly in relation to 

reels102, where he indicates a highly variable practice in relation to reels, but does not 

mention jigs in the same context.  This is a little strange, as a significant proportion 

(7%) of 'singled' double jigs appears in his own collections. 

 

In the case of this experiment we have succeeded in verifying the hypothesis in 

Ex.2.1, and at the same time we have raised important questions, that require further 

investigation. 

 

In this experiment we have made the assumption that singled double jig tunes are 

always singled in their first parts.  From observing the corpus this seems always to be 

                                                           
102  Breandán Breathnach: Ceól agus Rince na hEireann (An Gúm, Baile Átha Cliath 1989), pp. 130-

131.  'Faoi dhó a chastar gach cuid sna poit dhúbailte, sna poirt singile agus sna cornphíopaí.  Uair 

amhain a chastar na codanna atá sa phort luascach.  Ar cheachtar den dá bhealach a chastar an ríl anois 

ach fadó, nuair ba le haghaidh damhsa a chastaí í, ní dheantaí na codanna a chasadh ach uair amháin as 

a cheile.  Faoí dhó a chastar gach cuid sna poirt dúbailte, sna poirt shingile and sna cornphiopaí.  Is 

eard a dheantar le ríleanna anois gach cuid a chasadh faoi dhó; ach i gcás ríle nach mbionn aon athrú de 

bhrí idir an dá mhir sa chuid, ní dheantar an cuid nó an chaoince sin a chasadh ach uair amháin as a 

cheile.  Is de ghrá an líostacht a sheachaint a dhéantar e seo.  Fágann sin go bhfuil ríleanna ann a 

gcasfaí cuid amháin iontu faoi dhó agus cuid eile ionta uair amháin'. 

 

Translation:  In double jigs, single jigs and hornpipes each part is doubled.  In slip jigs each part is 

singled.  Nowadays, reels may be played either way, but long ago, when played for dancing, each part 

was played only once.  Each part of double jigs, single jigs and hornpipes was played twice.  Current 

practice with reels is that each part is played twice, except in the case of a reel that has similar sections 

in a part, the tune or the turn is played only once.  It is to avoid monotony that this is done.  Hence 

there are reels in which one part is played twice and another played once. 
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the case.  The algorithm would need to be extended if we are to be absolutely sure 

that no exceptions occur in the form of hybrids that involve the doubling of the first 

part followed by a singled part. 

 

6.6  A Specialised Class. 

It is important, in the analysis of dance music, to have a convenient way of 

identifying the various parts of a dance tune.  Such a facility might be reused 

repeatedly for building various types of analysis.   Hence it is worthwhile to build a 

piece of software to automate this process.  What we need here is a 'parts expert' 

object for a score, which answers questions such as: 

 

 How many distinct parts are played in one round of the piece? 

 In which bar do we find the start of part n? 

 Does the piece have an odd number of parts? 

 Is the piece singled? ( this is an incorporation into the class of the code above). 

 

The code for this class is given in appendix A2.1.  A summary for the public 

interface of this class is given below. 

 

Constructor: 

 

  PartsExpert( Score & s); 

 

Member function to indicate if the piece is singled: 

 

  int isSingled(); 

 

Member function to return the number of parts in a score: 

 

  int numberOfParts(); 

 

Member function to return TRUE if the piece has an odd number of parts present: 

 

  int hasOddPart(); 

  

Member function to return the first bar number of part I: 

 

  int getBarNoForPart(int i); 
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Note that the bar number 1 is from the first complete bar of the tune.  Upbeats are 

ignored. 

 

6.7  Experiment 2:  Number of Parts. 

Ex.2.1  The Text. 

" Furthermore, in a relatively small number of cases, dance-pieces are found with 

three or more parts".  

 

Ex.2.2  The Related Hypothesis. 

The percentage of tunes with more than two parts is relatively small. 

 

Ex.2.3  Algorithm. 

Visit each tune in the corpus. 

 Apply the PartsExpert to each tune and count and record the number of parts in 

the tune and the total number of tunes processed.  Calculate the percentage of tunes 

with more than 2 parts. 

Apply the decision criterion. 

 

Ex.2.4  Decision Criterion. 

If the percentage is 15 or less, confirm the hypothesis. 

If the percentage is greater than 15 modify the hypothesis by quantifying it. 

 

Ex.2.5  Construction of Software. 

  We have already taken a large step in this in that we have a function to determine 

if the piece is singled.  Most of the work in calculating the number of parts is done in 

the parts expert constructor for the class, which counts the number of 8-bar segments.  

A double section count is made when a repeat sign is encountered.  Using the 

partsExpert class makes this task easy to specify.  The entire code consists of the 12 

lines in Fig.6.4. 
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 while (getNextScoreNames(argv[1], fname)) 

 { 

  Score s(fname); 

 

  PartsExpert partsExpert(s); 

  countAll++; 

  if ( partsExpert.hasOddPart() ) countOddOnes++; 

  if ( partsExpert.isSingled() ) countSingles++; 

 

  String sparts; 

  sparts.cvtNs(partsExpert.numberOfParts()); 

  store.put(sparts); 

 } 

Fig.6.4  Program to find the number of parts in a dance tune. 

 

Ex.2.6  Testing of Software. 

Testing here consisted of printing output on a tune-by-tune basis, for the 54 

double jig tunes in the Breathnach collection, and manually checking the accuracy of 

the results. 

 

Ex.2.7  Results. 

The output produced by running this program on the corpus of jig pieces from the 

two collections given previously is given in tables 6.3 and 6.4. 

 

Analysis of Number of Parts in Dance Pieces 

taken from file =d:\mdb\crnh1\djig.dir 

 

     Parts   Frequency     Percentage 

----------------------------------------------- 

 

       5           1              1 

       4           4              7 

       3           5              9 

       2           44            81 

----------------------------------------------- 

Table 6.3  Analysis of the number of parts in jig tunes from CRNH1. 

 

Analysis of Number of Parts in Dance Pieces 

taken from file =d:\mdb\tdmoi\djig.dir 

 

     Parts        Frequency      Percentage 

----------------------------------------------- 

  7      2        0 

  6        5        1 

  5        4        1 

  4        14        3 

  3        49        13 

  2        290        79 

  10        1        0 

----------------------------------------------- 

Table 6.4  Analysis of the number of parts in jig tunes from TDMOI. 
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Ex.2.8  Conclusions. 

We can see here that the number of pieces with two parts is remarkably stable 

between the two collections, with the older one yielding 79% and the more recent one 

yielding 81%.  The percentage from the combined results is (44+290)/(54+365) = 

80%.  Hence out the term used 'relatively small proportion' is close to 1 out of five.  

Our result here leads us to modify the hypothesis to: 

 

Approximately 20% of double jig tunes have more than 2 parts. 

 

One welcome side effect of this analysis is that we can see at a glance, the relative 

frequency distributions of the number of parts, with between two and ten parts per 

tune.  This confirms the assertion that the number of extra parts normally reaches no 

more than six.  Here we interpret some ambiguity in the statement by assuming that it 

refers to a total of six,  and not to eight.  We see that there are no tunes with six parts 

or more in the Breathnach collection and there are 3 out of 365, or 1% in the O'Neill 

collection with more than six parts.  One tune in the O’Neill collection has ten parts. 

 

6.8  Experiment 3:  Ranges of Tune and Turn. 

Ex.3.1  The text. 

 " The tune is normally contained with the lower octave, while the turn usually 

breaks into the higher octave". 

 

Ex.3.2  The Related Hypothesis. 

We already have a clear agreement on what constitutes the 'tune' and 'turn', so we 

can equate the related hypothesis with the text. 

 

Ex.3.3  Algorithm. 

Visit each tune in the corpus. 

Scan all notes in the 'tune' part, then extract the chromatic pitch numbers of the 

highest pitch found, p1, and the lowest pitch found, p2.  Scan all notes in the 'turn' 

part and extract the chromatic pitch number for the highest pitch found, p3.  Count 

the piece as verifying the hypothesis if both of the following conditions are met 

 

 p2 - p1 is less than or equal to 12 

 p3 - p1 is greater than 12 
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Many dance pieces have from one to five notes before the first bar, as an anacrusis 

that precedes the first accentuated beat.  The cumulative duration of these notes is 

never more than a crotchet in the corpora under study.103  In pieces that have this 

phenomenon,  the first eight bar phrase stretches from before the first bar through a 

total distance of exactly 8 bars in duration, and consequently does not reach the end of 

the 8th bar of the tune.  For the present, we will just note that there is a problem here, 

and defer a decision on how we will handle it in the section titled 'decision 1'.  The 

words 'normally' and 'usually' in the sentence "The tune is normally contained with the 

lower octave, while the turn usually breaks into the higher octave" need some 

attention.  Do we have a composite hypothesis here about the range of the tune part, 

in relation to itself, and about the range of the turn, in relation to the range of the tune 

part, or do we have two separate hypotheses, one about the range of the tune part, and 

a second one about the range of the turn part?  The word “breaks” suggest that we are 

dealing with a composite hypothesis, and that a statement is being made about a tune 

which is in the lower octave, with the turn breaking new ground going into the higher 

octave. 

 

Two points of clarification must be made - 

 

Decision 1: This concerns start and stop points of our scans.  In this case we have 

to choose whether to perform our scan so that it covers eight bars from the first note 

of the piece, or whether we omit any introductory notes from consideration.  From an 

examination of different manuscripts, one often finds that there exist different 

versions of the same basic piece in which these notes are omitted.  Many cases can be 

found, for example, by comparing  CRNH1 NO 13 with TDMOI NO 24,  and 

CRNH1 20 with TDMOI 158.  The decision we will take here is to skip such notes in 

our calculations and to use only notes from the start of the first full bar of each 8 bar 

segment, up to and including the note at the centre of the 8th bar. The main 

justification for this lies in the optional nature of these notes at the start.  This enables 

us to carry out comparisons on a standard form of each tune segment from all the 

double jigs.  The above decision also involves ignoring the notes in the last part of bar 

8 also, as these may form an analogous lead in for the second part. 

 

Decision 2:  A further refinement concerns a decision on whether to include grace 

notes in our calculations.  This is an example of the kind of snag about which we have 

to be vigilant. We will ignore grace notes in this case, as they are used for cuts, whose 

                                                           
103  A study of the melodic structure of the anacrusis is given in 7.2. 
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purpose is to give rhythmic emphasis rather than to contribute a purely melodic 

component by their pitch.  As grace notes are normally found above the following 

note, a decision to include grace notes might militate in favour of over-estimating the 

instances of tunes that violate the first clause of the hypothesis, i.e. that the tune part 

is contained within the first octave.  In relation to the second clause, about the turn 

part, inclusion of grace notes might lead to an over-estimation of tunes that support 

the hypothesis. 

 

Ex.3.4  Decision Criterion. 

If the percentage of tunes is greater than or equal to 20, accept the hypothesis, 

else if the percentage of tunes is less than 50, reject the hypothesis. 

else quantify the hypothesis. 

 

Ex.3.5  Construction of Software. 

This is a most straightforward application in which a scan is made of the first 8 

bars in order to find the maximum and minimum pitches present in each part.  A 

simple comparison of the differences between the maxima and minima can then be 

used to verify the results.   A further scan is made of the 8 bars of the turn, and the 

maximum pitch is calculated.  The calculations in Ex.3.3 are performed for each tune.  

An annotated version of the main part of the program is given below in Fig.6.5. 
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 String fname; 

 int countTarget = 0; 

 int countAll = 0; 

 int part1InOctave = 0; 

 int part2OutsideOctave = 0; 

 

 while (getNextScoreNames(argv[1], fname)) 

 { 

  Score s(fname); 

  int highestPitchPart1 = 0; 

  int lowestPitchPart1 = INT_MAX; 

  int highestPitchPart2 = 0; 

  int lowestPitchPart2 = INT_MAX; 

  ScoreIterator si(s, 0); 

 

  while ((si.getBarNo() <= 8 || 

          ( si.getBarNo() == 8 && 

     si.barDist() <= si.getTimeSig() * Rat(1,2) + Rat(1,8))) && 

         !si.isLast()) 

  { 

   if ( si.getTag()==NOTE && !( GRACE_NOTE < si.getAttributeSet()) ) 

   { 

    if ( highestPitchPart1 < si.getPitch12()) 

     highestPitchPart1 = si.getPitch12(); 

    if ( lowestPitchPart1 > si.getPitch12()) 

     lowestPitchPart1 = si.getPitch12(); 

   } 

   si.step(); 

  } 

 

  PartsExpert partsExpert(s); 

  int nextBar = partsExpert.getBarNoForPart(2); 

 

  while ((si.getBarNo() <= nextBar+7 || 

          ( si.getBarNo() == nextBar+8 && 

     si.barDist() <= si.getTimeSig() * Rat(1,2) + Rat(1,8))) && 

         !si.isLast()) 

  { 

   if ( si.getTag() == NOTE && !( GRACE_NOTE < si.getAttributeSet())) 

   { 

    if ( highestPitchPart2 < si.getPitch12() ) 

     highestPitchPart2 = si.getPitch12(); 

    if ( lowestPitchPart2 > si.getPitch12() ) 

     lowestPitchPart2 = si.getPitch12(); 

   } 

   si.step(); 

  } 

  int lowestOverallPitch = lowestPitchPart1 > lowestPitchPart2 ? 

       lowestPitchPart2 : lowestPitchPart1; 

 

  if ( highestPitchPart1 - lowestPitchPart1 <= 12 && 

       highestPitchPart2 - lowestPitchPart1 > 12 )  countTarget++; 

 

  if ( highestPitchPart1 - lowestPitchPart1 <=12 ) part1InOctave++; 

  if ( highestPitchPart2 - lowestPitchPart2 > 12 ) 

                                         part2OutsideOctave++; 

  

  countAll++; 

 } 

Fig.6.5  Program for testing hypothesis of Ex.3. 
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Ex.3.6  Testing of Software.  

A complete listing of the results for each tune in the CRNH1 corpus was printed 

out, and the results verified manually against the manuscript. 

 

Ex.3.7  Results. 

 

Number of pieces with 1st part in lower octave and  

2nd part going into upper octave from =d:\mdb\crnh1\djig.dir 

is 15 out of a total of 54(27%)  

 

Number of pieces with 1st part in octave range is 15(27%) 

 

Number of pieces with 2nd part outside octave range is 51(94%) 

 

Table 6.5  Output of program for Ex.3 using CRNH1. 

 

 

Number of pieces with 1st part in lower octave and  

2nd part going into upper octave from =d:\mdb\tdmoi\djig.dir 

is 76 out of a total of 365(20%)  

 

Number of pieces with 1st part in octave range is 100(27%) 

 

Number of pieces with 2nd part outside octave range is 307(84%) 

 

Table 6.6  Output of program for Ex.3 using TDMOI. 

 

Ex.3.8  Conclusions. 

The average percentage of cases for which the hypothesis is true between both 

collections is 22%.  This is found by a weighted average of the results for CRNH1 at 

27% and for TDMOI at 20%.  Hence we restate the hypothesis - 

 

The tune part is contained in the lower octave, and the turn part breaks 

into the higher octave in approximately 22% of cases. 

 

 Interestingly, the percentage of pieces that meet both criteria is the same as the 

percentage that meets the first criterion in the case of CRNH1.  A quick visual scan of 

printed sources indicates that similar results might be expected from the other main 

form, the reel. 

 

The turn of a piece however, tends to be higher than the first part.  One way in 

which this might be expressed and tested is to assert that, on average, notes in the turn 

are higher in pitch than notes in the first  part.  This could be readily tested,  by a 
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simple algorithm.  The result of such (see algorithm in appendix A2.2) is given below 

for the older collection in Table 6.7. 

 

 

Average pitches analysis of parts 1 and 2 of pieces. 

 

Files used from '=d:\mdb\tdmoi\djig.dir'. 

 

Pieces with higher average pitch in 2nd part = 331 out of 365 (90%).  

 

Table 6.7  Average pitches for TDMOI. 

 

The average taken here is the unweighted average of the chromatic pitch number 

of the notes in the first and second parts. 

 

6.9  Experiment 4:  Set Accented Tones. 

In the same chapter of the previous quotations,  Ó Suilleabháin proposes a theory 

of set accented tones104 as follows - 

 

 

"Within a performance, the musician would appear to be holding on to certain individual tones 

which occur at important accentuated points.  It is the occurrence, or deliberate non-occurrence, of 

these tones which appears to provide the necessary point of reference for the performer.  Illustration 3 

shows a typical setting of the opening of the four bars of the double-jig "The Old Grey Goose" 

(example (a)) with the eight set accented tones boxed.  In order to demonstrate that these tones are at 

the heart of the piece's identity and that any extended interference with them is in the nature of a 

contradiction of the tune itself, I have included five projected variants of my own . . . . ." 

 

Fig.6.6  From "The Creative Process in Irish Traditional Dance Music", p.123. 

 

                                                           
104  In an interview with the author, Professor Micheál Ó Suilleabháin clarified two points about set 

accented tones.   The use of the word set here, means 'fixed'.  In effect “set like a jelly”.  Also the word 

tone refers only to pitch and has not a connotation of timbre. (date: 26.11.94). 
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Fig.6.7  Illustration 3 from "The Creative Process in Irish Traditional Dance Music", 

p.123. 

 

One could infer that each distinctive piece has a unique sequence drawn from the 

accented tones, which occur at the main accentual points in the piece.  In other words 

this implies the existence of an equivalence classes of pieces with identical sequences 

of set accented tones.  We do not know in advance which of the accented tones form 

the set accented tones.  From Fig.6.7, it would appear that most of the accented notes 

participate, at least in the first part of the tune.  We can seek a certain level of 

corroboration of the theory by seeing if all of the sequences of accented tones are 

unique, and hence "at the heart of the identity of the tune".  If this is true, then if we 

extract the sequence of accented tones from each piece, and organise them in a 

frequency distribution, each such sequence should occur only once, unless the 

collection contains duplications.  A simple program can be constructed to test this.  

The main part of this program is given below.  The program and the following results 

are based on analysis of the accented tones only in the first parts of tunes.  The 

program uses two classes to support the task.  The instance of class Store denoted by 

'store' is used to store an ordered  collection of unique objects that are inserted into the 

store by the put member function.  A frequency is associated with each stored object.  

The PitchTuple class stores tuples, and normalises the scalar quantities inserted so 

that the first component is taken as an origin, with a value of zero.  Subsequent 

components are adjusted accordingly to the value of the tone relative to the number of 
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semitones it is distant from the first tone.  Hence the following eight tones yield an 8-

tuple as shown in Fig.6.8. 

 

 

                                                                                                                               

 

  tones:        A     B    A     B    A     E     G     A 

  tuple:   {   0,     2,    0,    2,    0,   -5,    -2,    0   } 

 

Fig.6.8  Pitch 8-tuple example. 

 

Ex.4.1  Text. 

.....these tones are at the heart of the piece's identity....  

 

Ex.4.2  The Related Hypothesis. 

Different tunes have unique sequences of accented tones. 

 

Ex.4.3  Algorithm. 

Visit each tune.   

Calculate a tuple for the accented tones from the 'tune' part. 

When all tunes are visited, examine each tuple for uniqueness. 

Apply the decision criterion below. 

 

Ex.4.4  Decision Criterion. 

If two or more tunes share the same tuple, examine the tunes to see if they are 

closely related.  Support the hypothesis if each different tune has a unique tuple. 

 

Ex.4.5  Construction of Software. 

The program uses two main classes, the Store class for holding tuples and the 

PitchTuple class that is used to represent and normalise the tuples.  Grace notes are 

excluded from the calculations, for the same reasons as were given previously.105 

 

                                                           
105  See section 6.8, ex3.3. 
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 Store<PitchTuple> store; 

 store.init(100, tupleSize); 

 int countAll = 0; 

 String str, fname(argv[argc-1]); 

  

 while (getNextScoreNames(fname, str)) 

 { 

  Score s(str); 

  ScoreIterator si(s, 0); 

  countAll++; 

  cout << "-"; 

  si.locate(BAR,1); 

  PitchTuple tuple(tupleSize); 

  int count = 0; 

   

  while (si.getBarNo() != tupleSize/2 + 1 && ! si.isNullStave()) 

  { 

   if ( si.getTag() == NOTE && 

    !(GRACE_NOTE < si.getAttributeSet()) && 

    ( si.getBarDist() == Rat(0,1) ||     // start of bar 

      si.getBarDist() == (si.getTimeSig()/Rat(2))))// middle of bar    

    tuple.put( si.getPitch12(), count++); 

   si.step(); 

  }  

  store.put(tuple); 

 } 

 

Fig.6.9  Program for testing hypothesis of Ex.4. 

 

Ex.4.6  Testing of Software. 

Classes PitchTuple and Store have been tested individually.  The complete 

algorithm is run on a random sample of 20 pieces from the corpus, and the results are 

checked manually. 

 

Ex.4.7  Results. 
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Accented Tone analysis for pieces in =d:\mdb\crnh1\crnh1j.dir 

 

Frequency    Pitch 16-Tuple 

1            {0,12,5,0,-4,3,8,13,3,3,5,0,-4,3,8,10} 

1            {0,9,10,12,0,9,10,7,0,9,10,12,17,19,10,5} 

1            {0,7,5,10,0,7,5,5,0,7,5,10,14,12,5,5} 

1            {0,7,4,7,0,7,2,4,0,7,4,7,14,7,2,4} 

1            {0,7,2,5,0,7,10,2,0,7,2,5,7,7,10,2} 

1            {0,7,0,5,0,7,10,5,0,7,0,5,3,2,10,2} 

1            {0,5,9,7,12,16,12,10,0,5,9,7,12,17,10,5} 

1            {0,5,9,5,2,5,9,7,2,5,9,5,2,5,9,7} 

1            {0,5,8,0,0,0,3,0,3,0,5,8,0,0,0,-2} 

1            {0,5,7,10,12,9,17,10,4,5,7,9,12,5,0,0} 

1            {0,5,0,10,12,10,4,4,0,5,0,10,12,10,7,5} 

1            {0,5,0,5,-2,-3,-2,-5,0,5,0,5,-2,2,-3,-7} 

1            {0,4,4,4,0,5,-1,2,0,4,4,4,7,5,0,0} 

1            {0,3,1,-5,0,3,1,-4,0,0,-2,-2,3,8,1,-4} 

1            {0,3,0,3,-2,-7,-2,-7,0,3,0,5,9,3,0,5} 

1            {0,2,0,9,0,2,-3,-2,0,2,0,9,0,0,-3,-7} 

1            {0,2,-5,-8,-5,-8,-5,-12,0,2,-5,-8,-5,-12,-10,-12} 

1            {0,1,3,1,-5,-9,-9,-7,0,1,3,0,8,1,-4,-4} 

1            {0,0,15,12,7,12,7,3,0,0,15,12,7,12,7,5} 

1            {0,0,12,14,9,7,2,4,-5,0,12,14,9,7,4,0} 

1            {0,0,5,5,3,8,-2,-2,0,0,5,5,3,8,1,-4} 

1            {0,0,4,2,9,12,9,7,0,0,4,2,9,12,2,0} 

1            {0,0,2,4,-3,0,2,-3,-8,0,2,4,9,7,0,-3} 

1            {0,0,2,2,0,0,10,2,0,0,2,2,5,12,9,2} 

1            {0,0,2,-2,0,-2,7,7,0,0,2,-2,-2,-2,5,2} 

1            {0,0,1,-2,0,0,1,-4,0,0,1,-2,12,10,1,-4} 

1            {0,0,0,5,0,-5,-9,3,0,0,0,5,0,3,-5,-7} 

1            {0,0,0,-2,0,0,-2,-2,0,0,0,-2,0,3,5,-2} 

1            {0,0,0,-4,-4,-4,5,-2,0,0,0,-4,0,5,-4,-9} 

1            {0,0,0,-7,-2,-2,-2,-9,-4,-2,0,8,5,0,0,-7} 

1            {0,0,-2,-2,0,-2,-4,8,0,0,-2,-2,3,1,-2,-4} 

1            {0,0,-2,-7,3,5,3,-3,0,0,-3,3,-7,-7,-7,-7} 

1            {0,0,-5,-5,0,-3,-3,2,0,0,-5,-5,0,4,0,-3} 

1            {0,-1,-3,4,0,-1,-5,2,0,-1,-3,4,0,7,-1,-1} 

1            {0,-2,-4,8,3,0,0,-2,0,-2,-4,8,3,0,0,-4} 

1            {0,-2,-4,5,3,10,12,3,0,-2,-4,5,3,3,0,-4} 

1            {0,-2,-8,-12,-10,-2,-10,-12,0,-2,-3,-5,-8,-2,-8,-12} 

1            {0,-2,-9,-5,0,1,3,7,0,-2,-9,-5,0,1,-2,-4} 

1            {0,-3,0,3,-2,-5,3,3,0,-3,0,3,-2,3,-5,-7} 

1            {0,-3,-3,-5,0,-1,4,7,0,-3,-3,-5,-1,4,0,-3} 

1            {0,-3,-6,-6,0,-1,-3,7,0,-3,-6,-6,-3,6,4,-5} 

1            {0,-4,1,-2,0,-4,1,-4,0,0,1,-2,0,1,-4,-4} 

1            {0,-4,-9,-5,0,3,-5,-2,0,-4,-9,-5,0,3,-4,-4} 

1            {0,-5,0,5,7,0,2,-3,0,-5,0,5,7,0,2,0} 

1            {0,-5,0,-7,0,-5,-2,-9,0,-5,0,-7,-9,-2,-2,-7} 

1            {0,-5,-3,-5,0,-5,-3,-6,0,-5,-3,-5,6,4,6,0} 

1            {0,-5,-7,-7,0,-5,-7,2,0,-5,-7,-7,10,9,0,2} 

1            {0,-5,-8,-5,-1,-1,-8,-3,-1,-5,-8,-5,-1,-3,-5,-5} 

1            {0,-6,-9,-6,-12,-16,-12,-11,-9,-6,-9,-6,0,-6,-9,-4} 

1            {0,-7,5,0,0,0,5,3,0,-7,5,0,-2,0,9,5} 

1            {0,-7,0,5,-2,3,-2,-7,0,-7,0,5,-2,3,-7,-7} 

1            {0,-7,0,0,0,-7,0,-5,0,-7,0,0,-2,3,-2,-5} 

1            {0,-7,-2,-7,-12,-9,-4,-2,0,-7,-2,-7,-12,-9,0,-4} 

1            {0,-7,-5,-7,0,-7,-5,4,0,-7,-5,-7,-7,5,0,-2} 

 

Total number of pieces processed is 54 

Table 6.8  Frequency distribution of tuples for CRNH1 using program of 

Ex.4. 
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Ex.4.8  Conclusions. 

The results for the Breathnach collection of  56 jig pieces, in Table 6.8, show that 

they all have unique sequences of accented tones.  This adds support to our 

hypothesis.  The collection in question is modern and the author, by the use of a card 

index, ensured that no duplicate tunes were included.  Such would have been unlikely 

in any case in such a small collection.  Considerably more significant results may be 

obtained from running the analysis on the 365 pieces in the O'Neill collection, see 

table A3.1 in appendix 3.    All of these entries proved unique except for two 

duplicated pairs.  By manually scanning down through the sorted table of tuples 

produced by the analysis, we see immense diversity in the sequences of accentuated 

tones. 

 

The next step is to examine the pieces corresponding to the pairs and to see if they 

are related.  A small modification to the program that produced these results was 

made to give the user a facility for searching the corpus for instances of specific 

tuples.  The modified version is given in appendix A2.3. 

 

On running this program, the output produced shows that the two pieces that share 

the tuple { 0, 5, 0, 0, 0, 5, 9, 2, 0, 5, 0, 0, 5, 7, 9, 5 ) are 

 

No 16    "ann do tinneas ne tae ta uait? - WHEN SICK IS IT TEA YOU WANT? 

   and    

No 358  "imthigh do'n diabhal's corruidh tu fein - GO TO THE DEVIL AND 

SHAKE YOURSELF" 

 

In spite of the different titles the music parts of these two pieces are identical.  The 

lack of a thematic index led O'Neill to include the same music twice. 

 

The tuple { 0, 3, 5, 3, 0, 3, -2, -2, 0, 3, 5, 3, 0, 1, -4, -4 } appears twice, first in 

 

No. 42  "Biodhg suas liom - MOVE UP TO ME" 

and also 

No. 325 "bo leath-adharcach uí mhartain - MARTIN'S ONEHORNED COW" 

 

In this case, the music has a number of differences, No. 42 is pitched a perfect 

fourth higher, it has a different key signature and has some minor differences in the 

unstressed notes.  They are clearly very closely related. 
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The sequence of accented tones is, in effect, a normalised pitch vector, which is 

tied closely to the identity of the tune in the sense that different tunes have unique 

vectors.106  A further study is needed to check the validity of this from another 

perspective.  We need to establish whether closely related tunes have pitch vectors 

that are similar or possibly identical. 

 

To summarise, we have shown here that -  

 

In general there is an immense diversity of sequences of accented tones. 

 

The only case of sharing of sequences of accented tones between tunes is found 

for closely related tunes. 

 

We have not shown however, that all related tunes have the same or similar 

sequences of accented tones. 

 

                                                           

 
106  A similar technique, that of extracting stressed pitches, is used by Helmut Schaffrath, op.cit., for 

information retrieval purposes. 
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Chapter 7.  Applications - Investigatory Analyses. 

 

The last chapter was concerned with verifying statements that a musicologist 

made about a corpus of music.  In this chapter, examples are presented showing the 

potential of scoreView for carrying out investigations on a corpus. 

 

The main difference between the kind of inquiry that uses a computer  and one 

that is done manually, arises from the ability of a computer to act as a speedy and 

tireless amanuensis which excels in some tasks, in particular in tasks of a 

combinatorially intensive nature.  This pushes out the limits of what it is feasible to 

do, given that humans have limitations to their energy, attentiveness, accuracy and 

time.  It may be recalled that one of the conditions for a set of instructions to be an 

algorithm is that it is capable of being done with a pencil and paper (see 4.2).  The 

computer scores over the pencil and paper in situations where the work would take 

too long and/or be too tedious and/or where manual results might be too unreliable. 

 

Five examples of the use of the system are given below under the following 

headings. 

 

Scale Finding: The first example shows how we can find the types and 

frequencies of scales that are present in the corpus. 

 

Feature Extraction:  The second example illustrates how we might extract and 

organise information about a melodic feature of double jig tunes. 

 

Melodic Difference: The third example illustrates how we might construct 

algorithms to calculate various numerical estimates of melodic difference 

between two segments of music.  A number of developments of the basic 

algorithm are discussed and some of these are implemented. 

 

Form and Exhaustive Search: The fourth and fifth examples illustrate ways in 

which a melodic difference algorithm might be used to extract meaningful 

information from the corpus.  The fourth example is concerned with an 

evaluation of 'crude'  melodic forms of corpus members, and the fifth example 
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concerns itself with exhaustive searches of the corpus for identifying exact 

copies and close variants. 

 

This thesis does not undertake a comprehensive analysis of the corpus of Irish 

double jig tunes.  The algorithms presented here are primarily intended to illustrate 

how scoreView might contribute towards such an analysis. 

 

7.1  Scale of a Double Jig. 

This section demonstrates a method by which the scale of a piece of music may be 

identified and uniquely labelled.  Here the word 'scale' is being used in a very 

restricted sense.107  What is meant here is simply the fundamental intervallic pattern 

of the set of note classes used in the piece.  This section is not about finding which 

note of the scale is the modal one, but instead, it is concerned with working out and 

classifying the basic intervallic relations in the scale of a piece.  We can view this 

process as a procedure which traverses all the notes in a piece and forms a set of all 

the pitch classes encountered.  In order to identify the scale,  these sets of pitch classes 

have to be mapped into a standard form which preserves the intervallic relationships 

of the scale.  The requirements for this standard mapping are that 

 

-  all versions of the same scale in any key should map to the same standard form, 

 

- no two different scales should map to the same standard form. 

 

The pitch class set is an appropriate tool for cumulating and recording the set of 

pitches in a piece.  The pitch class set, as proposed by Forte108 is nothing more than 

the mathematical notion of a set of elements, where the elements are chromatic pitch 

numbers, or their modulo 12 equivalents.  In order to compare two sets, and to 

identify if they are made up of the same intervallic material, Forte proposes a number 

of transformations which reduces any possible set of pitch classes to 220 distinct sets 

called prime forms.  He also provides standard labels for them.  The basis on which 

                                                           

 
107  Stanley Sadie The New Grove Dictionary of Music and Musicians volume 16 (London:  

MacMillan 1980) has the following definition of a scale. by William Drabkin: “A scale is a sequence of 

notes in ascending or descending order of Pitch.”  The usage here corresponds with this definition, and 

not as further refined in Grove - “As a musicological concept, a scale is long enough to define, 

unambiguously a mode, tonality, or some special linear construction, and that begins and ends (where 

appropriate) in the fundamental note of the tonality or mode;...”. 

 
108  Allen Forte The Structure of Atonal Music (New Haven and London:  Yale University Press 

1973). 
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this mapping takes place, and the individual mappings involved are given below.  It 

will be demonstrated, that Forte's prime forms are inappropriate for the task of scale 

classifications, but that a closely related mapping accomplishes the task satisfactorily.   

 

Forte lays out, in steps 1 to 3 below, the axioms under which pitch class sets may 

be transformed while still retaining their basic identity.  Steps 4, and 5 below reduce 

the sets to a standard form, using the preceding axioms.  This standard form may 

appear on Forte's list of prime forms.   If it does not, one further series of 

transformations are introduced, the first of which is based on an axiom of inversional 

equivalence.  This is followed by a repeat of transformations 4 and 5.  These steps are 

described in step 6 below. 

 

1.  The axiom of octave equivalence, states that change of register does not affect 

notation-class membership.  Hence pitch 0 is equivalent to 12, -12, 24  and   -24, for 

example.  Also pitch 1 is equivalent to 13, 25, -11 and -23. 

 

In the case of  the scales under study, each scale repeats its intervallic pattern in 

upper and lower octaves, and hence, for the purpose of scale identification, 

transformations that use octave equivalence maintain the basic scale structure. 

 

2.  Enharmonic notes are equivalent.  Hence C sharp is equivalent to D flat, and 

either can be represented by the same pitch class element, which is also equivalent to 

the number 1. 

 

In the corpus under study, the music is modal, notes outside of the diatonic scale 

are rare, and where they do occur, issues of enharmonic equivalence do not arise in 

any practically important way. 

 

3.  Normal ordering is achieved by successively rearranging the ordered set in 

ascending order.  All circular permutations of the set, with the addition of 12 to a 

shifted element, are regarded as being equivalent normal orderings.  For example the 

normal order of the set { 2 0 5 7 11 9 4 } is { 0 2 4 5 7 9 11 }.  This is also equivalent 

to { 2 4 6 7 9 11 13}. 

 

Note sequence has no effect on determination of scale.  The addition of 12 to a set 

element is covered under 1 above. 
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4.  The  main step for mapping a set into its prime form is done in Forte's 

classification system using the following algorithm, which employs only transforms 

of 1-3 above. 

 

Select the ordered set with the least difference between the first integer  and the 

last from the various circular permutations.  In the case of a tie, select the permutation 

with the least difference between the first and second element. If this is the same for 

more than one permutation, select the permutation with the least difference between 

the first and third element, and so on, until the difference between the first and the 

next to last element has been checked.  If all these differences are the same each time, 

select one ordering arbitrarily as the normal order.     

 

Permuting the notes of a scale in this way, simply changes the order, but leaves all 

relevant intervallic relativities of the set unchanged. 

 

5.  By the transposition operator, which adds a positive or negative constant to 

every element in a set,  one can, in effect, produce a class of transpositionally 

equivalent sets.  The set from step 4 is made into a standard representative by the 

application of the transposition operator so as to make its first element zero. 

 

Transposing the notes of a scale in this way, changes only the key of the scale, and 

leaves all the intervallic relativities, and hence the type of the scale, unchanged. 

 

6.  Forte goes one step further, a step that may be required is some cases to arrive 

at his prime forms.  He proposes the inverse transformation by which pitch numbers 

are transformed into their inversional equivalents.  These are represented below - 

 

   0  <->   0 

   1  <-> 11 

   2  <-> 10 

   3  <->   9 

   4  <->   8 

   5  <->   7 

   6  <->   6 

 

When a set is transformed according to the above mapping, the set is subsequently 

normalised as in 1 - 5 above.   
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If we want to classify a set of pitches according to Forte's scheme, we first 

perform transformations 4 and 5 on the set of pitches, and then look up the resultant 

set in a table of prime forms to find a match.  If the match is absent from the table, we 

perform transformation 6, followed by steps 4 and 5 above on the transformed set, 

and we are then guaranteed that our calculated form will be present in the table of 

prime forms.  We can then find its associated name. 

 

It tuns out that, if we omit one of Forte's transformations, the invertional 

transposition of no.6 above, we will arrive at a unique characterisation of the 

underlying scale of pieces.  The cost of doing this is that we increase the number of 

possible prime forms by a factor less than two. 

 

If transformations 4 and 5 are applied to all the notes in a scale, we find that we do 

not alter the basic intervallic relations in such a way as to change the identity of the 

scale.  If however we apply transformation 6 as well, this will cause unlike scales to 

map to the same prime form.  An example of this occurrence follows, together with a 

definition of a new special prime form, called a non-inversionally equivalent  (NIE) 

prime form. 

 

Non-Inversionally Equivalent (NIE) Prime Form is defined here as the set of 

standard pitch classes together with their names, that any pitch class set is 

transformed to under transformation 4 and 5 above.  In identifying and naming these 

sets we simply use the Forte prime forms and the associated name wherever we can.  

If a set, when transformed under step 4 and 5 above, fails to appear in Forte's table, 

then its transformation under 6 followed by 4 and 5 must, we use the same prime 

form name as Forte, but distinguish it by prefixing it with the letter I followed by a 

hyphen.  Hence corresponding to Forte's name 3-7, we have two non-invertionally 

equivalent prime forms with names 

 

   3-7 for set { 0 3 7 } 

  and I-3-7 for set { 0 4 7 } 

 

The processes involved here can be illustrated by two 3-note scales. 

 

The prime form of the scale D F A is got in the following stages 

 

1.  Express as a pitch-class set { 2 5 9 } 
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2.  Consider the various rotations { 2 5 9 } { 5 9 14 } { 9 14 17 } and select the 

one with minimal distance between the first and last, that is 9 -2 = 7,  14 -5 = 

9, 17 - 9 = 8.  Hence we select the first one. 

3.  Transpose, to make the first element 0, gives  { 0 3 7 }. 

4.  Consult Forte's list of prime forms and we find its name is 3-7.         

We also use the name 3-7 as the NIE prime form. 

If we now repeat this for another distinct 3-note scale, that of C E G, we get 

 

1.  Express as a pitch-class set : { 0 4 7 } 

2.  Consider the various rotations { 0 4 7 } { 4 7 12 } ( 7 12 16 } and select the 

one with minimal distance between the first and last element, that is 7 -0 =  7, 

12 - 4 =  8,  16 - 7 = 9.  Hence we select the first one, as it has the smallest 

difference. 

3.  Transpose to make the first element 0 gives { 0 4  7 } 

4.  Consult Forte's list of prime form, we find it is not present. 

5.  When we invert the set { 0 4 7 } we get the set { 0 8 5 }  

6.  Put into normal form { 0 5 8 } 

7.  Consider the various rotations { 0 5 8 } { 5 8 12 } { 8 12 17 ) and select the 

one with minimal distance between the first and last element, that is 8 -0 = 8, 

12 - 5 = 7, 17 - 8 = 9.  Hence we select the second one. 

8.  Transpose, to make the first element 0 gives { 0 3 7 } 

9.  Consult Forte's list of prime forms and we find its name is 3-7.  The NIE 

prime form name is I-3-7. 

 

Here we have taken two distinct scales and mapped them into the same prime 

form of Forte!  This illustrates that the Forte classification scheme will not do,  but if 

we remove the inversion mapping, and distinguish the two resulting separate prime 

form names, we will uniquely characterise the scales. 

 

In terms of the NIE prime form we find that 

 

 Scale D F A maps to NIE prime form 3-7 for set { 0 3 7 } 

 Scale C E G maps to NIE prime form I-3-7 for set { 0 4 7 } 

  



7:  Applications - Investigatory Analyses. 

 132 

It would be instructive, at this stage to speculate on which NIE prime forms we 

might expect from an examination of the pitches in a double jig tune.  The heptatonic 

major scale { 0 2 4 5 7 9 11 } which maps to 7-35 without using the inversional 

transposition, is one such candidate scale.  A list of some scales that might be 

expected to crop up are given below, in the key D major 

 

 D   E  #F  G  A  B #C   heptatonic 7-35 

 D   E  #F  G  A  B        hexatonic 6-32 

 D   E  #F  A  B #C   hexatonic 6-32 

 D #D   E  #F  G  A   B  #C  8-note109 8-22 

 D   E   #F  G   A   B  C #C  8-note  8-23 

 D   E  #F   G   A   pentatonic 5-35 

 

Note that the two hexatonic cases above are in effect the same scale.  This is 

because they are transpositionally equivalent.  Here we are not considering modality.  

The first 8-note scale above arises mostly in piping, as the chanter has an extra #D.  

The next 8-note scale illustrates the presence of both C and #C in the same tune. 

 

 

 String origFilename(argv[argc-1]); 

 String currentFilename; 

 Store<PitchClasses> spcs(20); 

 

 while ( getNextScoreNames(origFilename, currentFilename)) 

 { 

  Score s(currentFilename); 

 

  ScoreIterator si1(s); 

  ScoreIterator si2(s); 

 

  si1.locate(BAR,1); 

  si2.locate(BAR, SCANLENGTH); // start of 8th bar 

 

  do si2.step(); 

   while ( si2.getBarDist() < (si2.getTimeSig()*Rat(1, 2)) && 

   si2.getBarNo() == SCANLENGTH ); 

 

  PitchClasses pcs; 

  pcs.pitchClass(si1, si2); 

  pcs.NIEPrimeForm(); 

  spcs.put(pcs); 

 } 

 

Fig.7.1  Scale classification program. 

 

                                                           
109  In the current context, the term 'octatonic' is avoided because of its associations with a specific 8-

note scale. 
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The output from running this program on the 54 double jig tunes in Breathnach's 

Ceol Rince na hEireann is given in Table 7.1. 

 

 

Distribution of scales for file(s) =d:\mdb\crnh1\djig.dir 

 

Prime Form                Name         Frequency 

{0 1 2 3 5 7 8 10 }      8-23    3 (6%)     

{0 1 3 5 6 8 10 }        7-35         18 (33%)   

{0 1 2 4 6 7 9 }          7-29         1 (2%) 

{0 2 4 6 7 9 }            I-6-33       5 (9%) 

{0 2 4 5 7 9 }            6-32       18 (33%)   

{0 2 3 5 7 9 }            6-33         1 (2%) 

{0 2 4 7 9 }              5-35       5 (9%)     

{0 1 3 5 6 8 }            6-Z25        2 (4%) 

{0 2 4 5 7 }              I-5-23       1 (2%) 

 

Table 7.1  Distribution of scales for CRNH1. 

 

Observations. 

It can be seen here that most of our predictions are confirmed.  Significant norms 

here include 7-35 and 6-32 which between them, account for the majority of tunes 

(66%) , with a small number for the most common pentatonic scale, 5-35 (9%).  The 

predicted 8-note scale 8-22 did not occur.   

 

Tune no. 44 has key signature of  G major.  The note B is absent, and hence it is 

basically a hexatonic scale, but it carries both variants of C ( C and #C ), yielding a 

NIE prime form of  7-29.   

 

Prime form I-6-33 corresponds to tunes nos. 23, 29, 34, 38 and 45.  No. 23  has 

key signature of G major, but with the note #F absent, but with #C appearing in it 

instead of C.  Nos. 29, 34, 38 and 44 have key signature of G major, with note B 

omitted.  Interestingly, in no. 34 the note B does occur in its initial anacrusis, but it is 

absent from the tune proper and from the turn.  I-6-33 corresponds to the normal 

diatonic major scale with the third of the scale omitted. 

 

  A comparison with the output from O'Neill’s, in table 7.2, shows very interesting 

variations in the occurrences of scales.  The greater diversity of cases with low 

frequencies is due, to a large extent, to misplaced accidentals in tunes which are not 

written out correctly, seemingly because of the difficulty that O'Neill's transcriber had 

in dealing with key signatures other than D and G major.  A detailed study of the 

O'Neill sources would be required, in order to iron out many of these problems.  Note 

that the percentage frequencies have been rounded to the nearest whole number, 
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resulting in showing occurrences of 1 out of 365 as having a frequency of 0%.  One 

interesting fact emerges about the percentage of heptatonic tunes based on the 

diatonic major scale is that it differs significantly between the two collections.  This 

can be seen from NIE prime form 7-35 which occurs in 33% of tunes in Breathnach's 

compared with a 58% occurrence in O'Neill's.  Clearly further investigation is called 

for here. 

 

Distribution of scales for file(s) =d:\mdb\tdmoi\djig.dir 

 

Prime Form                Name         Frequency 

{0 1 2 4 5 7 9 10 }       8-26      2 (1%) 

{0 1 2 3 5 6 7 8 10 }    9-9     1 (0%) 

{0 1 2 3 4 5 7 8 10 }    9-7       2 (1%) 

{0 1 2 3 5 7 8 10 }     8-23      14 (4%) 

{0 1 2 3 5 6 8 10 }      8-22      3 (1%) 

{0 1 3 5 6 8 10 }       7-35      213 (58%) 

{0 2 4 5 7 8 9 }      I-7-27     2 (1%) 

{0 1 2 4 5 6 7 9 }    8-14         1 (0%) 

{0 2 4 5 6 7 9 }     I-7-23       1 (0%) 

{0 1 2 4 6 7 9 }       7-29         1 (0%) 

{0 2 4 6 7 9 }       I-6-33       6 (2%) 

{0 1 2 4 5 7 9 }      7-27         1 (0%) 

{0 2 4 5 7 9 }         6-32       84 (23%) 

{0 2 3 5 7 9 }        6-33         1 (0%) 

{0 1 2 4 7 9 }         6-Z47        1 (0%) 

{0 2 4 7 9 }           5-35       8 (2%) 

{0 1 3 5 7 8 }         6-Z26      1 (0%) 

{0 1 3 5 6 8 }         6-Z25        18 (5%) 

{0 1 3 5 8 }           5-27         2 (1%) 

{0 2 4 5 7 }             I-5-23       3 (1%) 

Table 7.2  Distribution of scales for TDMOI. 

 

Prime Form Notation Extensions. 

In order to allow for a uniform printing of pitch class sets in later examples, the 

following names are used for sets of one or two notes, which Forte does not list. 

 

Set Name 

{ 0 } 1 

{ 0, 1 } 2-1 

{ 0, 2 } 2-2 

{ 0, 3 } 2-3 

{ 0, 4 } 2-4 

{ 0, 5 } 2-5 

{ 0, 6 } 2-6 

Table 7.3  Extensions to list of prime form names. 

 

7.2  The Initial Anacrusis in Double Jigs. 
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In the next analytic example the process of extracting and analysing the structure 

of small melodic features is demonstrated.  Such melodic features that we might want 

to study include the melodic structure at cadence points, or the occurrence of certain 

common melodic formulas.  In this example the subject of attention will be the initial 

notes of tunes. 

 

In many jigs, the initial stressed note may be preceded by one or more notes that 

serve a number of functions.  As these are the first notes of the tune, they provide 

initial cognitive clues to the listener about the type of music.   Apart from possible 

practical uses for musician-dancer interaction, they have a number of significances of 

a musical nature.  In relation to pitch, they narrow down the possibilities of the scale 

of the piece.  Also, taken in conjunction with the first accented note of the tune, they 

give the early clue about its mode.  They set the initial pace of the tune, by 

establishing possibilities for a tactus.  Also, in relation to the overall phrasing of a 

tune, they play an important part.  Tunes which start with an anacrusis, normally 

perpetuate a phrasing of exactly the 8-bars in length  through all of subsequent parts, 

with the turn of the piece having a similar anacrusis, and likewise at the start of any 

additional part.  Hence if we wish to study the development of a listener's sense of 

modal centre, or of a listener's sense of tactus, or of a listener's sense of phrasing, a 

study of the anacrusis part of the first 8-bars, the tune part, of a tune is important.  At 

the outset a number of questions may be posed.  What sequences of pitches are 

allowable in a valid anacrusis?  Which are the most common sequences?  What time 

values are associated with each of these notes?  What scales might be implied by 

these? 

 

Answers to some of the above questions can be got by means of an algorithm.  

The use of the PitchTuple class and the Store class greatly simplifies this task.  The 

code is given in Fig.7.2. 
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  String str; 

  int countInitials[MAXNOTES] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 

 

  // pcst is an array of class Store<PitchClasses> for storing 

  // prime form sets of initial components. Each array element here  

  // stores prime forms of different cardinalities 

  Store<PitchClasses> pcst[MAXNOTES];  

 

  // tst is an array of class Store<PitchTuple> for storing 

  // tumple of initial components. 

  // Each array element here stores tuples of different sizes 

  Store<PitchTuple> tst[MAXNOTES]; 

 

  // Specilize the elements to different pitch class and tuple sizes 

  for ( int count = 0; count <MAXNOTES; count++) 

  { 

   pcst[count].init(100, count+1); 

   tst[count].init(100, count+1); 

  } 

  int countScores = 0; 

 

  while (getNextScoreNames(origFilename, str)) 

  { 

   Score s(str); 

   if ( ! s.isNull() ) 

   { 

    ScoreIterator si(s); 

    countScores++; 

    int count = 0; 

    PitchClasses pcs; 

    int countNotes = -1; 

    int pitchStore[MAXNOTES];   

 

    while (si.getBarNo() == 0) 

    { 

     if ( si.getTag()== NOTE) 

     { 

      pcs.pitchClassInc(si); 

      count++; 

      pitchStore[++countNotes] = si.getPitch12(); 

     } 

     si.step(); 

    } 

 

    // next step to next note and add to our stores 

    while ( si.getTag() != NOTE) si.step(); 

    pcs.pitchClassInc(si); 

    pitchStore[++countNotes] = si.getPitch12(); 

 

    PitchTuple tpl(countNotes+1); 

    for ( int cnt = 0; cnt <=countNotes; cnt++) 

     tpl.put(pitchStore[cnt], cnt); 

    tst[countNotes].put(tpl);  

    countInitials[count]++; 

    pcs.NIEPrimeForm(); 

    pcst[count].put(pcs); 

   } 

  } 

 

Fig.7.2  Program to extract initial anacrusis details. 
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Analysis of Initial Notes  

File: =d:\mdb\crnh1\djig.dir 

54 scores processed 

 

NIEPrimes/Tuples         Frequency 

================================================================= 

Nr. of Notes:1           14 25% 

_________________________________________________________________ 

NIEPF:{0 } 1             14 25% 

_________________________________________________________________ 

Tuple:{0}                14 25% 

================================================================= 

Nr. of Notes:2           18 33% 

_________________________________________________________________ 

NIEPF:{0 5 } 2-5         7 12% 

NIEPF:{0 4 } 2-4         1 1% 

NIEPF:{0 3 } 2-3         1 1% 

NIEPF:{0 2 } 2-2         7 12% 

NIEPF:{0 } 1             2 3% 

_________________________________________________________________ 

Tuple:{0,5}              3 5% 

Tuple:{0,2}              3 5% 

Tuple:{0,0}              2 3% 

Tuple:{0,-2}             4 7% 

Tuple:{0,-3}             1 1% 

Tuple:{0,-4}             1 1% 

Tuple:{0,-5}             1 1% 

Tuple:{0,-7}             3 5% 

================================================================= 

Nr. of Notes:3           21 38% 

_________________________________________________________________ 

NIEPF:{0 4 5 } I-3-4     1 1% 

NIEPF:{0 2 5 } 3-7       4 7% 

NIEPF:{0 2 4 } 3-6       6 11% 

NIEPF:{0 2 3 } I-3-2     2 3% 

NIEPF:{0 1 3 } 3-2       7 12% 

NIEPF:{0 3 } 2-3         1 1% 

_________________________________________________________________ 

Tuple:{0,4,5}            1 1% 

Tuple:{0,2,4}            3 5% 

Tuple:{0,2,3}            1 1% 

Tuple:{0,-1,-3}          1 1% 

Tuple:{0,-2,-3}          7 12% 

Tuple:{0,-2,-4}          3 5% 

Tuple:{0,-3,0}           1 1% 

Tuple:{0,-3,-5}          4 7% 

================================================================= 

Nr. of Notes:4           1 1% 

_________________________________________________________________ 

NIEPF:{0 2 5 7 } 4-23    1 1% 

_________________________________________________________________ 

Tuple:{0,2,5,7}          1 1% 

================================================================= 

 

Table 7.4  Initial anacrusis details for CRNH1. 

 

In the panels in the above, which are delimited by a line of '='s, an analysis is 

given for each case of one note, that is of the first stressed note only or, in other words 

the case of no anacrusis; two notes are given for the case of one note before the first 

stressed note; three notes are given for the case of two notes before the first stressed 
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note, etc.  Each panel is headed by its absolute and relative frequency of occurrence.  

Here we see that 25% of tunes in CRNH1 have no anacrusis.  33% and 38% of tunes 

have respectively, one and two notes before the first stressed note.  No case is found 

in this collection with more than three notes before the first stressed note, and only a 

single case is found with exactly three notes preceding the initial stress.  If we look at 

the panel which shows the two note case, that is one note before the first stressed 

note, we see that tuple { 0, -2 }, representing a falling major second is the most 

commonly occurring interval.  There are only eight ways in this collection of 

providing an initial single note lead in.  There are more cases of falling first intervals 

than rising ones, and surprisingly, a rising minor second is not present in any tune.  

Also, in the case of a single note anacrusis, the only falling intervals are perfect fifths, 

perfect fourths, major and minor thirds and major seconds.  When run on the much 

larger O'Neill collection, we get the results shown in table A3.2 in appendix 3. 

 

In both collections approximately 50% of tunes have either no anacrusis or a 

single note one.  There is a significant difference in the percentage of tunes that have 

no anacrusis between CRNH1(25%) and TDMOI(16%).  Most of the patterns that 

appear in CRNH1 also appear in TDMOI.   

 

It is likely that an interesting relationship can be found between the structure of 

the anacrusis and the scale of a piece.  Note that if the scale in question is gapped, 

then the concept of a ‘consecutive note’ involves intervallic possibilities of minor and 

major thirds as well as minor and major seconds and hence further analysis is required 

to identify patterns that move consecutively.  The inclusion of non inversionally 

equivalent prime forms in the printout facilitates further study of the initial tonal 

relationships. 

 

7.3  Crude Melodic Similarity or Difference Algorithms. 

One of the important areas that computers have been used is in extensively 

searching for instances of melodic borrowings.110  In folk music, two written 
                                                           
110  In a recent article by E. Selfridge-Field: "Music Analysis by Computer" in Goffredo Haus Music 

Processing  (Oxford 1993), p.3,   a review of the activities in music analysis is classified into six 

categories,  she says  

 

" The activities to be discussed fall into five areas of concentration - (1) linguistic analogy; (2) 

attribute description using statistical methods, (3) repertory-specific studies; (4) theory-specific 

implementations; and (5) style-specific simulations.  A sixth and very important area of activity - 

similarity studies - intersects the other but must be excluded here because its inclusion requires 

more detailed consideration than space permits and because in studies to which it is central the 

data on which it depends often consists of very small samples from very large numbers of works.  

This sets it quite apart from studies that deal in a more comprehensive way with smaller groups or 

single features of works."  
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transcriptions of a tune are unlikely to be identical.  Hence a direct comparison of the 

notes of two tunes transcribed from two performances of the same piece will 

inevitably reveal some differences.  Algorithms which deal with the problem of 

identifying exact and near versions of two melodic segments are spoken of as melodic 

difference or melodic similarity algorithms.  The first of the following examples 

illustrates a similarity measure based on contour information.  This measure brings 

identical tunes together, irrespective of the key in which they were notated, but it has 

a number of shortcomings.  All algorithms that deal with interval information only, 

share an inability in handling similar rather than identical tunes.  Additionally they 

ignore perceptually significant information of a durational and  metrical kind.  Most 

of the following sections present an alternate approach which was first proposed in 

1972.111  All of the difference measures discussed assume that the issue of 

segmentation has already been tackled.  In the case of dance music, the bar is taken as 

the smallest unit of segmentation.  This is an approximate, but reasonably effective 

solution to the segmentation problem for the current corpus.  All of the difference 

algorithms totally ignore any structure within the tune segment under comparison.  

They rely on general principles of music perception, but are not deeply based on 

cognitive theory.  For this reason they are referred to as 'crude' difference algorithms.  

They are of use as an initial mechanism of searching for melodic variants.  This 

approach differs significantly from the more sophisticated one of Mongeau and 

Sankoff112 who develop a difference measure in terms of consolidation and 

fragmentation.  They claim that their method will detect melodic differences in line 

despite gross differences in key, mode and tempo.  The methods presented here have 

the advantage over Mongeau's and Sankoff's in being computationally more efficient 

as they do not involve combinatorially extensive processing.    

                                                                                                                                                                      

 

Some of the early history of studies are given in op.cit. Stephen Dowland Page,  pp.35 - 35. 

 

"One of the earliest approaches was to produce interval vectors or sequences for each tune and to 

arrange these vectors in an ordered sequence.  The use of interval vectors get over the problems 

associated with trying to compare two tunes in different keys.  The ordered sequence succeeds in 

bringing together identical tunes.   However it falls down badly in bringing together variants, 

except in cases where the variants occur at the end of each vector.  This scheme was use by 

Benjamin Suchoff   "Serbo-Croatian Folk Songs", see op.cit. Harry Lincoln, pp. 193-206.  Some of 

the basic limitations inherent in the system were overcome in the Suchoff study by the 

development of a program to extract sub sequences from each  sequence of intervals.  One 

additional problem associated with the representation of a tune as a sequence of intervals arises 

from the absence of temporal and metric information." 

 
111  Donncha O Maidin "Computer Analysis of Irish and Scottish Jigs" Baroni and  Caglione, op.cit., 

1984, pp.329-336 

 
112  Marcel Mongeau and David Sankoff “Comparison of Musical Sequences” in Computers and the 

Humanities volume 24(1990), pp.161-175. 
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All of the comparison algorithms given below treat the segments outside of their 

original contexts.  They evaluate melodic difference numerically.  This number can be 

thought of as a measure of the distance between two melodic segments.  Such 

distance measures, when used for comparing two segments of duration r, have a 

number of properties.  Theses include 

 

 difference( si1, si2, r) >= 0, 

 

 difference( si1, si1, r)  == 0, 

 

 difference( si1, si2) == difference( si2, si1). 

 

 where difference is a function which returns the numerical distance between two 

melodic segments of duration r, starting at positions si1 and si2, respectively. 

 

7.3.1  Intervallic Based Difference Measures. 

Intervallic comparisons were used in the earliest difference studies in 

computational musicology.  Benjamin Suchoff113 used an interval sequence approach 

to compare segments from Bartok's Serbo-Croatian folk songs.  Whereas reducing 

tunes to intervals overcomes the problem of bringing together identical segments from 

different keys, a serious problem arises in identifying variants.  Suchoff's solution was 

to compare substrings of the interval sequence for each tune.  One problem of this 

approach lies in the potentially combinatorially explosive possibilities for forming 

different strings for comparison, especially where the melodic segments under 

comparison are long.  Richard E. Overill114 deals with this computational complexity 

in the comparison of interval sequences by applying techniques of Approximate 

String Matching (ASM) to the problem.  

 

Interval comparison is a trivial program to implement in scoreView.  The 

following section illustrates a variation which takes a very simple approach to the 

comparison of melodic segments based on contour information.   

 

7.3.2  Melodic Difference Algorithm with Contour Information. 

                                                           
113  Benjamin Suchoff "Computer Oriented Comparative Musicology" in Harry Lincoln, op.cit. 1970, 

pp.192-205. 

 
114  Richard E. Overill "On the Combinatorial Complexity of Fuzzy Pattern Matching in Music 

Analysis" Computers and the Humanities volume 27 (1993), pp.105-110. 
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Contour information can be viewed as a reduction of intervallic information to 

three states.  These are rising, falling and stationary.  These  contour states may in turn 

be combined into 5 possible different states which represent the juxtopositioning of 

contour information between two melodic segments.  These states are 

 

 w1 = similar motion, i.e. both rising or both falling 

 w2 = contrary motion, i.e. one rising and one falling 

 w3 = one stationary, one moving 

  w4=  both stationary 

  w5=  undefined 

 

If we assign weights to these states, we could select the weight 2 for contrary 

motion between corresponding contours(w2), 1 as a weight if one melody is 

stationary  and the other moving(w3), and zero for all other weights(w1, w4 and w5). 

 

Next we must define which notes from each segment participate in these 

comparisons.  We do this by  placing the melodic segments together in time sequence.  

The time axis is divided into time-windows where each window represents the 

longest time for which both melodic segments have a uniform activity.  This is 

illustrated over in Fig.7.3(c).  The sections of the green line represent window 

durations which are used as weights. 
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Fig.7.3(a)  Start of 'Shandon Bells' from TDMOI. 

 

 

Fig.7.3(b)  Start of  ‘The Yellow Flail’ from TDMOI. 

 

 

Fig.7.3(c)  Segments of 7.3(a) and 7.3(b) are juxtaposed in time window order.   

The dotted vertical lines segment the green line into divisions, each one of which represents a window.
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This approach will be used in all of the comparison algorithms in this section.  It 

works well for the music under study, but it may need modifications in analysis of 

genres where related melodic segments have certain kinds of rhythmical or durational 

variation. 

Some of the one-bar segments shown in Fig.7.4 are used for illustrating the 

operation of various difference algorithms. 

 

 

Fig.7.4  Sample melodic segments for illustrating difference algorithms. 

 

The result of running the contour based difference algorithm is shown in Table 

7.5. 

 

 a b c d 

b 7    

c 0 7   

d 2 7 2  

e 6 3 6 6 

Table 7.5  Differences calculated from contour information only.    

 

This simple algorithm works well in some cases above.  It detects the relationship 

between a and c, but gives rather unsatisfactory results in comparing a with d and c 

with d, both of which yield the second smallest score of 2.   

 

The following algorithms use pitch instead of interval of contour information.  

One apparent disadvantage is that these algorithms fail in identifying transpositionally 

equivalent segments.  Another approach to the transposition problem is to convert the 
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representation of pitches to a common tonic.  Is such schemes115, identifying the tonic 

will have to be done manually.  This approach is likely to run into difficulties where 

the tonic is not uniquely identifiable, and in cases where it is desirable to make 

comparisons between segments at different diatonic transpositions.  We will see, in 

7.3.6, there is a technique for overcoming this. 

 

7.3.3  Simple Window Weighted Melodic Difference Algorithm. 

An algorithm that measures the difference between note pitches can be viewed 

roughly as calculating the sum of the lengths of the red lines in the Fig 7.3.   This 

algorithm has is origin in the idea of representing musical pitch geometrically.116 

 

Intuitively is seems wrong that difference measures should be influenced equally 

by  comparisons between  pairs of long notes as it is for comparisons between pairs of 

short notes.  However, if the length of each individual pitch difference is weighted 

according to the width of the window to which it belongs, we make a provision for 

this inequality.  This ensures that a melodic segment that carries a series of short 

notes, will not contribute unduly to the difference estimate. 

 

The calculations involved are expressed, as follows - 

 

Suppose we have n windows, which we label with integers from 1 to n. 

Let pik be the pitch expressed in chromatic pitch numbers for window k of tune i.  

Then,  

                                 n 

Difference   =   |p1k - p2k | wk 

            k=1 

 

where wk is the weight attaching to this difference and in this case the weights are 

equal to the widths of the corresponding windows. 

 

The running of this algorithm on various combinations of the following melodic 

segments yields117 results shown in Table 7.6. 

 

                                                           
115  Martin Dillon and Michael Hunter "Automated Identification of Melodic Variants in Folk Music" 

Computers and the Humanities, volume 16 (1982), pp.107-117. 

 
116  Carol L. Krumhansl Cognitive Foundations of Musical Pitch (Oxford 1990), pp.112-119. 

 
117  The full matrix is symmetric one about a diagonal of zeroes. 
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 a b c d 

b 538    

c 88 450   

d 438 275 350  

e 575 88 487 213 

Table 7.6  Window-weighted melodic difference results. 

 

This algorithm, in common with all simple algorithms, gives a difference measure 

of 0 if both melodic segments are identical in pitches and in durations.  When such an 

algorithm is used for identifying melodic segments that are similar, rather than 

identical we may have some reservations.  It fails to take account of  important 

cognitive factors such as metrical stress, which, as we saw was so important in the 

case of set accented tones in the last chapter.  We see that segments a and c are close 

with a difference of 88.  However a less satisfactory aspect is that segments b and e 

are evaluated as being equally close. 

 

 The next section shows how a further improvement can be made by incorporating 

information for metrical stress. 

 

7.3.4  Melodic Difference Algorithm with Weighted Stresses. 

The incorporation of metrical stress into the difference measure is achieved by 

assigning differential weights to notes that start at different places in a bar.  These can 

be shown as a weight map which, in the case of a double jig, could be as in Table 7.7. 
 

Distance in 

Bar 

Weight 

0 4 

1/8 2 

2/8 2 

3/8 3 

4/8 2 

5/8 2 

otherwise 1 

Table 7.7  Stress weights for 6/8 time. 
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  The corresponding formula is  

 

              n 

 Difference   =   |p1k - p2k | wkwsk 

         k=1 

 

 Where wsk is the appropriate weight corresponding the start of window k. 

 

 

The difference matrix produced when this algorithm is run using the set of 

weights in Table 7.7 is given in Table 7.8. 

 

 a b c d 

b 446    

c 83 363   

d 342 221 246  

e 475 54 370 208 

Table 7.8  Window and stress weighted melodic difference results. 

 

Note (1) in this case, we have an even greater problem in that a and c are 

evaluated as being more distant that b and e.  This is partially because we fail to take 

account of transpositions, 

 

   (2) by choosing some of the weights to be zero we can use the algorithm to 

select only notes at particular metrical positions and to exclude all others.  For 

example if only weights at positions 0/6 and 4/6 have non zero values, the algorithms 

processes the accented tones of chapter 6. 

 

7.3.5  Melodic Difference Algorithms Combined. 

 

In the last section the different weights were combined by multiplying them 

together. 

                    n 

 Difference   =        |p1k - p2k | wk wsk  

                k = 1 

 

Where 

  wk is the width of window k. 

     wsk is the weight derived from metrical stress for window k. 
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The above formula can be expressed as  

 

         n 

 Difference   =     |p1k - p2k | Wk,   where Wk = wk.wsk 

           k = 1 

 

7.3.6  Key/Transposition Independent Algorithm. 

 

The question of creating a key independent version of the algorithm might be 

derived from a process of transposing one of the segments so as to minimise the 

difference. 

 

From considering various  transposed versions of one of these tune segments, 

such as where the second tune segment has been transposed up m semitones, we get 

 

                         n 

 Difference   =          |p1k  - p2k  -m | Wk 

                      k = 1 

 

One possible way in which we can visualise a key-independent comparison being 

made is as a process of making multiple estimates of the distance by means of one of 

the previous algorithms, where we allow one of the tune segments to be transposed to 

all possible keys in the vicinity of the other segment. A difference is calculated for 

each key.  We can illustrate this as follows, by considering a comparison to the 

following two related bar segments from no.61, "The Humours of Whiskey" from 

TDMOI. 

 

 

Comparison segment 1. 

               

Comparison segment 2. 

             

 

Fig.7.5  Two related tune segments from No. 61 in TDMOI for comparison. 
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             Difference 

 

Segment 2 transposed down a minor third.   138 

   

Segment 2 transposed down a major second.   63 

   

Segment 2 transposed down a minor second.   63 

    

Segment 2 at pitch.       88 

  

Segment 2 transposed up a minor second.    163 

        

Segment 2 transposed up a major second.    238 

   

Segment 2 transposed up a minor third.    313. 

    

 

Fig.7.6  Calculation of a transformationally independent difference.   

The example illustrates the evaluation of difference between segment 1 and 

various transpositions of segment 2. 
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We can see that the difference calculation for the original untransposed method 

gives 88, but that if the second segment is transposed down either a major or a minor 

second, a smaller value of  63 results.  The process of finding this difference is 

equivalent to finding the value of m which minimises  

 

                    n 

 Difference   =      |p1k  - p2k  -m | Wk 

                  k = 1 

  

A well known theorem in statistics118 enables us to find the required value of m 

which minimises the sum, without the repeated calculations involved above.  m is the 

median value of the sequence of pitch differences, (p1k - p2k), with weight Wk 

associated with each difference.  In statistics applications Wk is normally interpreted 

as a frequency.  The use of this theorem gives us a way of arriving at the answer 

efficiently. 

 

The following difference matrix was produced by a transposition independent 

difference algorithm using windows and stress weighting - 

 

 a b c d 

b 217    

c 42 200   

d 133 154 133  

e 188 63 170 92 

Table 7.9  Differences weighted by windows, stresses with transpositions. 

 

If we use stress - note duration weights, where the duration of any note is taken as 

being at its onset, we get 

  

 a b c d 

b 433    

c 82 400   

d 317 292 342  

e 342 108 350 167 

Table 7.10  Differences weighted by durations, stresses with transpositions. 

 

                                                           
118  A, C. Aitken, Statistical Mathematics, volume 1 (Edinburgh: Oliver and Boyd 1939), p.32. 
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We can see that the use of transpositionally independent comparisons have 

resulted in the a-c relationship being closer than the b-e one. 

 

A  program that incorporates all of these algorithms is given in Fig.7.7(c).   The 

algorithm works for either a contour comparison or for a pitch difference 

comparison.  The algorithm is written as a function which takes three parameters,  

two score iterators, representing the start of the two monophonic scores segments  

under comparison, and a rational length argument which specifies the time span over 

which the comparison is to be made.  The algorithm returns a value, which gives an 

estimate of the melodic distance between the two segments.  The work associated 

with windowing, such as the calculation of the window length, and the automatic 

stepping of the score iterators to the start of the windows, is achieved by the 

traverse function which is documented in Appendix 1.  Different factors may be 

taken into account by setting switches, one of which selects contour processing.  

Alternately, various combinations of (1) note durations, (2) window durations, (3) 

stresses and (4) transposition processing may be selected. 

 

 

float Stresses::getStressWeight(ScoreIterator & si) 

{ 

 long tsn = si.getTimeSigNumerator(); 

 long tsd = si.getTimeSigDenominator(); 

 if ( (int)stressWeights[0] != tsn )makeStressVector(tsn); 

 

 float returnWeight = 1.0; 

 

 for (int count = 0; count < tsn; count++) 

  if ( Rat(count, tsd) == si.barDist()) 

   returnWeight = stressWeights[count+1]+1.0; 

 return returnWeight / stressWeights[0]; 

} 

Fig.7.7(a)  Calculation of stress weights. 
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float slopeWeight(int oldPitch1, int newPitch1, int oldPitch2, 

                  int newPitch2) 

{ 

 static float slopeWeight[] = 

 { 0.0,   // same direction 

   2.0,   // contrary motion 

   1.0,   // one stationary, one moving 

   0.0,   // both stationary 

   0.0 }; // undefined 

 int slopeIndex; 

 if ( oldPitch1 == 0 || oldPitch2 == 0 ) slopeIndex = 4; // undefined 

 else if ( (oldPitch1 > newPitch1 && oldPitch2 > newPitch2) || 

           (oldPitch1 < newPitch1 && oldPitch2 < newPitch2)) 

      slopeIndex = 0;                              // similar motion 

 else if ( (oldPitch1 > newPitch1 && oldPitch2 < newPitch2) || 

      (oldPitch1 < newPitch1 && oldPitch2 > newPitch2)) 

      slopeIndex = 1;                              // contrary motion 

 else if ( oldPitch1 == newPitch1 &&  oldPitch2 == newPitch2) 

      slopeIndex = 3;                              // both stationary 

 else slopeIndex = 2;                  // one stationary, one moving 

 return slopeWeight[slopeIndex]; 

} 

 

Fig.7.7(b)  Calculation of slope weights. 
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float difference ( ScoreIterator &si1, ScoreIterator &si2, Rat ln) 

{ 

 

 float diffresult = 0.0; 

 Rat toProcess = ln; 

 int more = TRUE; 

 Rat window = Rat(0,1); 

 const int MAXNOTES = 1000; 

 int noteCount = 0; 

 transposeDist = 0; 

 

 //                               for slopes comparison 

 

 if (isSlopesSet()) 

 { 

  int oldPitch1 = 0, oldPitch2 = 0; 

  float x = 0.0; 

 

  while (more) 

  { 

   traverse(si1, si2, window); 

   if ( isDiatonicSet()) 

   { 

    x +=  slopeWeight(oldPitch1, si1.getPitch7(), oldPitch2, 

                                 si2.getPitch7()); 

    oldPitch1 = si1.getPitch7(); 

    oldPitch2 = si2.getPitch7(); 

   } 

   else 

   { 

    x +=  slopeWeight(oldPitch1, si1.getPitch12(), oldPitch2, 

     si2.getPitch12()); 

    oldPitch1 = si1.getPitch12(); 

    oldPitch2 = si2.getPitch12(); 

   } 

   toProcess = toProcess - window; 

   if ( toProcess <= Rat(0,1)) more = FALSE; 

   if ( si1.isLast() || si2.isLast()) more = FALSE; 

  } 

  return x/float(ln); 

 } 

 //                                 end of slopes comparison 

 

 

 //               here we need to store pitch and weight information 

 

 int * noteAr; 

 float * weightAr; 

 noteAr = new int[MAXNOTES]; 

 weightAr = new float[MAXNOTES]; 

 

 for ( int i  = 0; i < MAXNOTES; i++) weightAr[i] = 1.0; 

 

 Stresses stress(si1.getTimeSigNumerator()); 

 while (more) 

 { 

  traverse(si1, si2, window); 

  if ( window > toProcess ) 

  window = toProcess; // clip window if it exceeds range 

  if (si1.getTag() == NOTE && si2.getTag() == NOTE) 

  { 

   noteAr[noteCount] = si1.getPitch12() - si2.getPitch12(); 
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// calculate and add in stress weights 

 

   if ( isDurationsSet() ) 

   { 

    weightAr[noteCount] = 0; 

    if ( si1.getRDuration() == si1.getRemainder() ) 

     weightAr[noteCount] += double(si1.getRDuration()); 

 

    if ( si2.getRDuration() == si2.getRemainder() ) 

     weightAr[noteCount] += double( si2.getRDuration()); 

   } 

 

// window length weighting 

 

   if ( isWindowsSet() ) 

    weightAr[noteCount] *=  

                         float(window.numer())/float(window.denom()); 

 

// metrical stress weighting 

 

   if (isStressesSet()) weightAr[noteCount] *= 

    stress.getStressWeight(si1) + stress.getStressWeight(si2); 

   noteCount++; 

  } 

  toProcess = toProcess - window; 

  if ( toProcess <= Rat(0,1)) more = FALSE; 

  if ( si1.isLast() || si2.isLast()) more = FALSE; 

 } 

 

 // we now get the median of the pitches, if appropriate 

 

 int medianPitch = 0; 

 diffresult = 0.0; 

 if ( isTransposeSet()) 

  transposeDist = medianPitch = median(noteAr, weightAr, noteCount); 

 for (i = 0; i <  noteCount; i++ ) 

 { 

  diffresult += noteAr[i] > medianPitch ? 

   (noteAr[i] - medianPitch)*weightAr[i]: 

   (medianPitch - noteAr[i])*weightAr[i]; 

 } 

 

 delete [] noteAr; 

 delete [] weightAr; 

 

 diffresult *= 100.0;     // scale up to make more readable 

 return diffresult/float(ln); 

} 

 

Fig 7.7(c)  General difference program. 
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7.3.7  Critical Value. 

Before leaving the design of difference algorithms, a few points must be made.  

First there is a matter of arriving at a critical value in the algorithms so that they 

produce the best results possible.  Let us assume here that we want to calculate a 

yes/no answer to the question, "are two melodic segments related or not."  In the 

rather crude way in which these algorithms work, we have to find some number, 

called a critical value for the dividing line between 'similarity' and 'dissimilarity'.  

Critical values should divide unrelated segments which, ideally, should have a 

calculated difference greater than the critical value.  Similar segments give a 

calculated difference less than or equal to the critical value.  How effective such an 

artificial dividing line might be depends on the nature of the music under study and on 

the effectiveness of the difference algorithm.  Procedures for estimating this dividing 

line or critical value can be manual or automatic.  Manual estimation involves 

examining a sample corpus and classifying pairs of segments as being either similar 

or dissimilar.  This is followed by running the difference algorithm and then by 

manually comparing the calculated difference values with our expectations (the 

'difference' function is implemented in this study in such a way that by setting a 

software switch we can get the algorithm to output the values it calculates to a file).  

Assuming that we are dealing with simple melodic relations, we should be able to 

identify visually, a critical value that will work in most, if not all cases, especially if 

our goal of 'melodic similarity' is limited to exact or very close variants of the melodic 

segment.  In some applications, there appears to be a clear cut numerical difference in 

segments that are similar from those that are not.  In the use of the diff1 function in 

the PartsExpert class, for example, it was possible to pick the value of 300 which 

worked well for double jigs.  The distribution of the values produced by diff1 in this 

case was strongly bi-modal and it was found that 300 divided it in two, in a 

satisfactory way. 

 

7.3.8  Tuning of Melodic Difference Algorithms. 

For the more general algorithms various weights are used, such as those involved 

in stress weights, for which values also have to be estimated.   To do this we run our 

algorithm on a sample set of tunes or tune segments and examine the results 

produced.  We then adjust weights by 'training' the difference algorithms on sample 

material.  In some cases, from inspecting the results, we see instances where the 

algorithm produced the wrong result.  Next we see if by adjusting some of the 

weights, we can eliminate this problem.  We may find, for example, that by giving a 

higher relative weighting to metrical stresses, we may be able to solve a particular 

problem of mismatching.  We follow this with re-running the algorithm, and 
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readjusting the critical value until we reach the best result.  The process here is of a 

hit-and-miss nature.  Often the adjustments which are made to solve one problem, 

result in introducing new ones.   There is no guarantee, that this process will 

necessarily converge and result in a better algorithm. 

 

There is much scope for further work.  The use of mathematical optimising 

techniques is likely to prove fruitful here. 

 

7.3.9  Segmentation for Melodic Difference Algorithms. 

The current study uses an extremely primitive segmentation strategy which works 

reasonably well because of the regularities of the dance music. 

 

7.3.10  Further Development of Melodic Difference Algorithms. 

Difference algorithms in themselves are rather artificial constructs.  In the final 

difference algorithm presented above, the various weights were combined in a 

multiplicative way and the results were added together.  Further work is required to 

consider alternate ways of combining these.  We could use addition or root-mean-

square values, for example.  Alternate approaches are possible in dealing with pitch, 

where it might be appropriate to use diatonic pitch numbers rather than chromatic 

pitch numbers in the calculations.  Some approaches to these problems are outlined in 

8.2.2. 

 

7.4  Application of a Difference Algorithm to the Analysis of Form. 

Using a difference algorithm, we can give a bar-by-bar analysis of a piece.  This is 

done by labelling the first bar 'a', and then comparing bar 1 to every other bar in the 

piece.  If any bar is sufficiently similar, we also label it 'a'.  

 

Next we leave bar 1, and move to the next unlabelled bar, which we label as 'b'. 

We then compare this bar with all subsequent unlabelled bars, and label as 'b' all of 

those that are sufficiently close to the 'b' comparison bar. 

 

We continue in this way, labelling the first still unlabelled bar as 'c' and complete 

similar processes to above.  We continue for 'd', 'e', etc. until we have no unlabelled 

bar.  An algorithm to do this analysis is given in Fig.7.8.  This is followed by a listing 

of the calculated forms for CRNH1 in Table 7.11. 
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void form( String & str, Score &s, Rat In, 

 float(*difference)( ScoreIterator &si1, ScoreIterator &si2, Rat ln), 

 float criticalValue, int lid) 

 

//form calculates the form of s, using the difference algorithm 

//  difference for windows of length In 

{ 

 ScoreIterator si1(s, lid), si2(s, lid); 

 str = String(); 

 si1.locate(); 

 si2 = si1; 

 int more1 = TRUE; 

 int letterCount = -1; 

 int countFirst = 0, countAhead = 0; 

 for ( int count = 0 ; count < MAXCSLEN; count++) str[count] = 0; 

 

 while ( more1 ) 

 { 

  countAhead = countFirst + 1; 

  if ( !si1.locate(BAR, countFirst+1)) more1 = FALSE;   //  end up 

  else 

  { 

   // give label for next section 

   if ( str[countFirst] == 0) 

   { 

    str[countFirst] = letterCount > 25 ? 

       'A' + ++letterCount: 

       'a' + ++letterCount; 

    int more2 = TRUE; 

 

    // search ahead and label all entries that match  

    while (more1 && more2) 

    { 

     if ( ! si2.locate(BAR, countAhead+1)) more2 = FALSE; 

     else if ( !si1.locate(BAR, countFirst+1)) more1 = FALSE; 

     if (si2.isLast() ) more2 = FALSE; 

     if (si1.isLast() ) more1 = FALSE; 

 

     if ( more1 && more2 ) 

     { 

      if ( str[countAhead] == 0 ) 

      { 

       float x = difference(si1, si2, In); 

       if ( x < criticalValue) str[countAhead] = str[countFirst]; 

      } 

      countAhead++; 

     } 

     else if ( !more1 && !more2) str[countFirst] = 0; 

                                          // unset prior allocation 

    } 

   } 

  } 

  if (si1.isLast() ) more1 = FALSE; 

  countFirst++; 

 } 

 // put in the last part, if not already done 

 if ( str[countFirst] == 0) str[countFirst] = 'a' + ++letterCount; 

} 

Fig.7.8  Program of algorithm for the calculation of forms.
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Calculation of forms for file =\mdb\crnh1\djig.dir 

Key transitions processed 

Stresses processed 

Critical Value = 40 

 

1 Cailleach an Tu/irne         abcd aefg hiij hifb klmd klne opqj hifb  

2 Ple/ara/ca na Ce/ise       abcd abce fgcd fgch ficb fice  

3 Carraig an tSoip          abcd abce fghd fghi  

4 Pingmeacha Rua agus Pra/s     aabc adef ghij klmf nonl pqef  

5 Gleanta/n na Samhairci/ni/     abcd abce fghb ijjb  

6 Tolladh an Leathair       abcd aefg abcd aefh fifh fjkl  

7 An Fhuiseog ar an Tra/      abcd aefg hfhd hfdd  

8 Bruacha Thalamh an E/isc    abcd abce fghd fghe fghd abce  

9 Cathaoir an Phi/obaire      abcd abce fghi jkle  

10 Ballai/ Lios Chearbhaill     abcd abef cdcg cdef cdhi jkea  

11 Port Ui/ Cheallaigh        abcd abef ghgi ghjf  

12 Port Liadroma             abac adef gdgf ghif  

13 An Maide Draighin          abca abcd abca abce fgca fgce hgca abcd  

14 Buachcilli/ Bhaile Mhic Annda/in   abcd ebfg hijd hicc  

15 An Boc sa gCoill          abac ddec fbgh fbec abic abjc  

16 Sean-Tiobrad A/rann         abac abde fghi djkl  

17 Bi/mi/d ag o/l is ag po/gadh na mBan  abac adef ghgi gjkf  

18 Ard an Bho/thair          abcd aefg abcd aefh ijck ijlm  

19 I/oc an Reicnea/il         abac adec fghc ijec  

20 An Buachailli/n Ba/n       abcd abce fgcd fgce fgcd abce  

21 Port an Bhra/thar         abcd efgh ijik iglh  

22 Port Shean tSea/in        abcd abef abcd abec ghgi ghec  

23 Scaip an Puiteach         abac adef gcgh gief  

24 An Pi/osa Deich bPi/ngne     abcd cbce fgfh ijkd  

25 Luighseach Nic Cionnaith     abcd abef ddgg ddgf  

26 Droim Chonga             abac abdc efeg edbc  

27 An Buachailli/n Bui/      abac adef ghef gijk lalk lmnf opok opnf  

28 Na Ge/abha sa bPortach     abac adef abac adeg hijk jleg jmjk jmnk opoq oreg stuq sveg  

29 An Gaoth Aniar Andeas      abcd efgh ijij iklh  

30 An Gandal i bPoll na bhFatai/   abac abdc efeg ehdc  

31 Banri/on na Luacra         abac dbef abac dbeg hiji hieg hiji hief kklm kked  

32 Ma/irsea/l na nIoma/naithe    abcd aefg abcd aefh gigj klfm nnop nnqr sagt sufh sagt sufg  
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33 An Bo/thar Mo/r go Sligeach   abcd abef ghij ghkl mhin okpl  

34 Spara/n Airgid na Cailli/    abcd abef abcd abeg hicd jikg hicd jikf  

35 Port an Riaga/naigh         aabc aade fgbh fgde  

36 An Ceolto/ir Fa/nach        abac abde fgfh fgij klmn klfe  

37 An Ro/s sa bhFraoch         abcd abef ghij gklm ghij gkld  

38 Ruaig an Mi/-a/dh           abcd efag chch ehig jklm nfig  

39 Airgead Re/alach           abcd ebcf ghgi ghjf  

40 An Pi/opa ar an mBaic       abcd eefg bbhi bbij bbhi keld  

41 Cailleach an Airgid        abac abde fbfg fhie  

42 Gearrchaile Bhaile Ui/ bhFiacha/in  abcd abef ghgi jbef  

43 Siamsa Mhuilte Faranna/in    abbc abde fggg fghe  

44 Pa/draic Mac Giollarna/th    abcc aded abcc aded fghi fhed  

45 Port Ti/neatha           abcd abce fgcd fgce  

46 Gearo/id de Barra        abcd efgh abij efgk ilmn iogp ilmn iqgh  

47 Fa/inne O/ir Ort          abcd ebcf eghd egij klmn klmo pqrs pqrf  

48 Rogha Liadroma            abac abde bfcg bhig  

49 Port Ui/ Fhaola/in        abac adec fghi fgjk  

50 Port Ui/ Mhuirgheasa       abcd abef ghgi ghjk ghgl mnok  

51 Port Shligigh            abcd abef ghcd ghef  

52 An Cru/ Capaill           abcd ebfg hijg akfg  

53 An La/ i ndiaidh an Aonaigh   abcd efgb hbhd ifgj  

54 An Seanchai/ Muimhneach     abac abde fgac fgde    

 

Table 7.11  Forms in CRNH1.
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7.5  Hierarchical Possibilities of Building more Complex Software. 

What we have done is to take relatively simple tasks and to build hierarchically so 

that we achieve more complex algorithms by assembling aggregates from simpler 

components.  All of this is in turn built upon the score abstraction.  The form function 

itself is built using the difference algorithm, which in turn uses the traverse algorithm.  

None of these individual algorithms are complex.  However, by hierarchically 

decomposing, or by synthesising, we can assemble increasingly complex problems from 

more simple ones.  In the next example, we will now go one step further and use the 

‘form’ function together with the Store class for summarising information about the form 

of tunes in both collections. 

 

7.6  Frequency Distributions of Forms. 

The algorithm in Fig.7.9 uses the form calculating algorithm, but instead of printing 

out individual forms, it calculates the frequency distribution of the form in the tune part 

of a double jig. 

 

 

Store<String> store(100); 

 

while (getNextScoreNames( argv[argc-1], fname)) 

{ 

 Score s1(fname); 

 String str; 

 

 form( str, s1, s1.getTimeSig(), difference, criticalValue); 

 

 str.sub(0,7); 

 store.put(str); 

} 

 

 

Fig.7.9  Program for forms frequency distribution. 
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Calculation of forms for file =d:\mdb\crnh1\djig.dir 

Key transitions processed 

Stresses processed 

Critical Value = 40 

 

 

Form     Frequency 

 

abcd efgh 3 

abcd efgb 1 

abcd efag 1 

abcd eefg 1 

abcd ebfg 2 

abcd ebcf 2 

abcd cbce 1 

abcd aefg 5 

abcd abef 10 

abcd abce 7 

abcc aded 1 

abca abcd 1 

abbc abde 1 

abac ddec 1 

abac dbef 1 

abac adef 5 

abac adec 2 

abac abde 5 

abac abdc 2 

aabc adef 1 

aabc aade 1 

Table 7.12  Frequency distribution of form for the tune part of double jigs in 

CRNH1. 

 

As can be seen from these examples the most commonly occurring forms in CRNH1 

in Table 7.12 are also the most commonly occurring ones in TDMOI.  This is shown in 

table A3.3 in appendix 3. 

 

7.7  A Compute-Intensive Task. 

Suppose we ask the question "How many distinct tunes are there in the collection?".   

The task of defining what we mean by a distinct tune  needs consideration.  How do we 

compare two-part tunes with three-part tunes?  How do we handle the case where in one 

part of the collection, we have a tune that reappears elsewhere but with the tune and the 

turn part in reverse order?  In this section we will ask a simpler question.  We will 

develop an algorithm to list all pairs of tunes with one or more similar 8-bar segments in 

the corpus.  The computer will compare part 1 of tune no.1 with all other 8-bar segments 

in the collection (365 tunes with two or more 8-bar segments in each one in the case of 

O'Neill's).  It will then move onto part 2 of tune no.1 and make a similar comparisons.  

We continue in this way until all 8-bar segments of tune no. 1 has been compared with all 
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other 8-bar segments of other tunes in the corpus. Likewise, when all comparisons of 

segments of tune 1 have been completed, we then process all 8-bar segments of tunes 2, 

3, and so on until all 8-bar segments in the corpus have been compared.  This is repeated 

with the next tune, and so on until every 8-bar segment of each tune is compared with 

every other such segment. A program to do this processing is given below in Fig.7.10. 

 

 

int countOuter = 0; 

int countInner = 0; 

 

while( getNextScoreNames( String(argv[argc-2]), fname1,1)) 

{ 

 countOuter++; 

 Score s1(fname1); 

 ScoreIterator si1(s1); 

 int firstscore1 = TRUE; 

 countInner = 0; 

 

 while (getNextScoreNames(argv[argc-1], fname2)) 

 { 

  countInner++; 

  if ( !identicalContents || countInner > countOuter ) 

  { 

   Score s2(fname2); 

   ScoreIterator si2(s2); 

   int firstscore2 = TRUE; 

   int count1 = 0; 

   int count2 = 0; 

   si1.locate(); 

   si2.locate(); 

   Rat segLength = s1.getTimeSig()*(Rat(nbars,1)); 

   int more1 = TRUE; 

   while ( more1 ) 

   { 

    count2 =  0; 

    if ( !si1.locate(BAR, count1*nbars+1)) more1 = FALSE; 

    else 

    { 

     int more2 = TRUE; 

 

     while (more1 && more2) 

     { 

      if ( ! si2.locate(BAR, count2*nbars+1)) more2 = FALSE; 

      else if ( !si1.locate(BAR, count1*nbars+1)) more1 = FALSE; 

      if (si2.isLast() ) more2 = FALSE; 

      if (si1.isLast() ) more1 = FALSE; 

  

      if ( more1 && more2 ) 

      {       

       float x = difference(si1, si2, segLength); 

       countComparisons++; 

       if ( x < crit ) 

       { 

 if (firstscore1) 

 {           

  fout  << "\n(" << si1.getString(NUMBER) << ")" 
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        <<  si1.getString(TITLE) << " - " 

        << si1.getString(ETITL); 

  firstscore1 = FALSE; 

 } 

 if (firstscore2) 

 {   

  fout  << "\n    (" << si2.getString(NUMBER) << ")" 

        << si2.getString(TITLE) << " - " 

        <<  si2.getString(ETITL); 

  firstscore2 = FALSE; 

 }  

 fout  << "\t" << count1+1 << "=" 

       << count2+1 << " (" << setprecision(1) << x; 

 if ( isTransposeSet() ) fout << ':' << getTransposeDist(); 

 fout << ") "; 

       } 

       count2++; 

      } 

     } 

    } 

    if (si1.isLast() ) more1 = FALSE; 

    count1++; 

   } 

  } 

 } 

} 

Fig.7.10  Program of algorithm for exhaustive search using fixed length similar segments. 

 

When this algorithm is run on a single file of size n, the time taken is O(n2).  For 

bigger corpora this can be expected to take disproportionately longer to run than for 

smaller corpora.  For example, if it takes 10 seconds to compare all 8-bar segments in 

two tunes, then a corpus of 100 tunes of the same length will be processed in 99x98x10 = 

97020 seconds or just over 26 minutes.  A corpus of 1000 tunes would take 999x888x10 

=  8871120 seconds or over 102 days!  A corpus of 419 jig tunes will take 418x417x10 = 

or over 20 days.  The assumption of 10 seconds processing per tune is roughly what can 

be achieved with a 20MHz 386 PC.  Fortunately, machines that are faster by over an 

order of magnitude are now commonplace, and the processing time for 365 tune of 

TDMOI can be reduced to a matter of hours . 

 

7.7.1  Comments. 

 This kind of comparison does an enormous amount of computing.  The current 

applications show which parts of tunes are related, within the limitations of the difference 

algorithm and critical value used.  When the algorithm is run for the systematically 

organised Breathnach collection, it produces little output as, by means of a card index, 

Breathnach eliminated duplicates and closely related tunes, see Table 7.13.  The 
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difference algorithm used here employs metrical stress weights, window weights and the 

transposition algorithm with a critical value of 100.  The pair of tunes identified as being 

related in relation to their first parts is acknowledged as such in the notes on the tunes 

given by Breathnach in CRNH1.119  The difference result in this case was 98.6 which was 

just inside the critical value of 100.  The difference was taken using a transposition of 0 

semitones. 

 

 

Calculation of distances for files =d:\mdb\crnh1\djig.dir and  

                                   =d:\mdb\crnh1\djig1.dir 

Key transitions processed 

Stresses processed 

Window widths processed 

 

(3)Carraig an tSoip -  

    (14)Buachcilli/ Bhaile Mhic Annda/in -  1=1 (98.6:0)  

 

54 items processed from file =d:\mdb\crnh1\djig1.dir 

54 items processed from file =d:\mdb\crnh1\djig.dir 

10578 comparisons made 

 

critical value =100 

 

Table 7.13  Result of exhaustive search of CRNH1. 

 

The situation for O'Neills is far less structured, as shown in table A3.4 of appendix 3.  

This is not solely due to O'Neill's lack of appropriate tools, it is also part of the nature of 

material in an oral tradition. 

 

In addition to using this program for searching through a collection for duplicates or 

closely related tunes, this program can also be used to identify duplicates or closely 

related tunes across two collections.  Table A3.5, in appendix 3, shows some 

interrelationships between TDMOI and CRNH1. 

                                                           
119  Breandan Breathnach, op.cit. 1963, pp.87-88. 
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Chapter 8.  Achievements, Further Work and 

Conclusions. 

 

8.1  Achievements. 

 

8.1.1  The creation of a score representation in accordance with principles of 

informational completeness, objectivity, extendibility and abstraction. 

 

8.1.2  The modelling of a polyphonic score which unifies the physical score with its 

computer representation.  This is achieved by the following mappings and structures. 

 

 Conceiving of the score as a container of various entities. 

 

 Mapping relationships of vertical contiguity to simultaneity. 

 

 Mapping relationships of horizontal contiguity to an absolute score time scale. 

 

 Representing an absolute score time as a rational number displacement from the 

start of the score.  Alternately it may be represented as a bar count and a rational 

displacement within a bar. 

 

 The representation and automatic resolution of scoping information, such as 

occurs in time signatures, slurs and accidental alterations. 

 

 The availability of methods to construct and edit a score. 

 

 The availability of methods to retrieve any information present in a score. 

 

 A mechanism of a score iterator for navigating through a score.  A number of 

basic score iterators are developed within the system. 

 

 The facility for constructing user-defined score iterators. 
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 The identification of the sense of line by means of native and of user written score 

iterators. 

 

8.1.3  The environment in which the score is represented has the following desirable 

characteristics. 

 

 A high level of complexity hiding is involved. 

 

 Algorithms of arbitrary complexity may be expressed in it. 

 

 The user interface is simplified by means of the use of polymorphism. 

 

 Extendibility is facilitated through the mechanism of inheritance. 

 

 The environment has the potential to act as a repository for new components, and 

hence facilitates the building of algorithms of arbitrary complexity by means of 

software reuse. 

 

8.1.4.  Methodologies are proposed and demonstrated which have the following 

characteristics. 

 

 Hypotheses may be formulated in a highly structured manner by expressing them 

as algorithms.  Such structuring necessitates the conscious resolution of 

ambiguities and forces the musicologist into a precise statement of the task 

environment.  This process may result in drawing attention to ambiguities and to 

inconsistencies in the original hypothesis formulation. 

 

 There is a focusing on the corpus as the 'evidence' for proving hypotheses. 

 

 The testing of hypotheses against the corpus is carried out in an objective manner 

which has parallels with scientific method. 

 

 Analytic methods may be combined to form more complex analyses. 

 

 The otherwise limited capabilities of musicologists, because of lack of time, 

energy, attentiveness, and accuracy, is greatly extended. 
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8.1.5  The extendibility of the environment is demonstrated by the construction of 

new components.  These include classes for pitch class sets, non inversionally equivalent 

pitch class sets, pitch tuples and a parts expert.  Use of these classes is demonstrated in 

chapters 6 and 7. 

 

8.2  Proposals for Further Work. 

 

8.2.1  Development of the Basic Level of scoreView. 

Currently scoreView is designed for representing a large subset of all scores written 

in common practice notation.  Individual new score features, such as special symbols, 

which are not currently part of scoreView can readily be added within the code of 

scoreView as the need arises, using existing mechanisms. 

 

One area for augmentation of scoreView is in extending its capacity for processing 

general polyphony.  Currently, the representational capability of scoreView includes 

multi-stave scores.  A limitation arises where polyphony is used on single staves.  Each 

stave can accommodate rhythmically dependent polyphony only.  That is polyphony, in 

which concurrent notes and rests share the same time values.  This limitation makes the 

representation of most piano music infeasible at present, but allows for the representation 

of most choral and orchestral music.  The overcoming of this limitation requires some 

modest augmentation of the internal representations in scoreView, the enhancement of 

the input translator, and extensive testing with polyphonic corpora. 

 

Another target area for augmentation of scoreView is in the provision of new 

iterators that could be of use in the handling of polyphonic music.  The available 

polyphonic iterator traverses the score in standard traversal order.  It is inevitable that 

some kind of parallel traversal of all the simultaneous notes in a score will be found 

desirable in harmonic studies.  The basic mechanism for doing this is already in place in 

the internals of the traverse function, which operates on two melodic lines only.  The 

development of such score iterators, however, is best left to special projects.  Two other 

iterators that should prove useful are (1) an iterator for tracking divisi lines; and (2) an 

iterator which follows two implied lines of polyphony.  This phenomenon is referred to 
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as the ‘streaming effect’.  It is documented by Bregman120 along with general issues of 

sequential integration. 

 

The development of input translators for a range of sources is highly desirable, given 

the volume and diversity of machine encoded scores that are available.  Target encoding 

schemes for these include various dialects of DARMS, as well as for Score and Finale 

code. 

 

The development of a graphical component within scoreView for representing score 

information on a VDU and the provision of an interactive editor and input system are of 

interest. 

 

8.2.2  Development of Basic Tools with scoreView. 

The crude melodic difference algorithms in chapter 7 stand to benefit from a number 

of refinements.  Firstly a number of mathematical optimisation techniques could be 

applied to adjust the weights used for metrical stresses.  Such techniques would enable 

the weights to be arrived at by training the system using a sample corpus in which 

relationships between the tune segments have been classified in advance.  Secondly a 

closely allied problem, that of identifying phrases, could be tackled.  Phrase identification 

is a good target task for algorithmic implementation.  Some approaches to this problem 

can be found in the work of Narmour, Lerdahl and Jackendoff which is discussed in 

sections 8.3.2 and 8.3.3.  The problem of phrase identification in the case of monophonic 

folk melodies has been tackled by Ahlbach.121 

 

Another kind of algorithm that is of great use in corpus analysis is one which 

identifies the mode or tonal centre of a piece of music.  As so much tonal music theory 

depends on knowing the tonal centre in advance, the development of such algorithms is 

essential for initial investigations in many areas of corpus musicology.   There are 

                                                           

 
120  Albert S. Bregman Auditory Scene Analysis (Cambridge, Massachusetts:The MIT Press 1990), pp.47-

211. 

 
121  Sven Ahlback, "A Computer-Aided Method of Analysis of Phrase Structure in Monophonic Melodies" 

Irene Deliege Procedings of the International Conference for Music Perception and Cognition (Liege 

1994), pp.251-2. 
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numerous studies that can be drawn on in designing such algorithms, including the work 

of Longuet-Higgins and Steedman122, and Krumhansl123. 

 

Another area of endeavour is the integration of scoreView  into a database for 

information retrieval applications.  This involves the development of strategies for rapid 

searching and retrieval of information from large databases, and in particular for the 

retrieval of information using music as part of a search criterion.  In addition to having 

the database handle score information, it is desirable to be able to deal with other kinds of  

information.  Such information might be textual, sonic and pictorial in nature, and should 

include possibilities for the representation of music analyses.  

 

The development of a more limited, but easy to use and reasonably powerful tools on 

top of scoreView is another possibility.  Page's124 system is an example.  It embodies a 

search tool which could be usefully implemented in scoreView. 

 

8.3  Use of scoreView in Research. 

The scoreView environment is open.  It does not force the user into any special area 

of research.  It can be characterised as 'a potential solution looking for a problem'.  

Imagination is the main limitation in its use.   

 

There are however, a number of existing areas of activity in which scoreView should 

prove particularly useful.  Some of these are listed in this section.  Corpus-based 

musicology is relevant to all of them in that it could provide a testing ground for models.  

This might be done by having scoreView used to build a simulated ‘performer’ and by 

constructing a cognitive model which ‘listens’ to the music.  This does not necessarily 

mean that ‘performing’ is fully implemented as a performer model.  The performer model 

needs be implemented only to the extent that is required by the ‘listening’ model. 

 

                                                           
122  H. C. Longuet-Higgins and  M. J. Steedman “On the Interpretation of Bach” in Machine Intelligence, 

volume 6 (1971), pp.221-41. 

 
123  Carol L. Krumhansl Cognitive Foundations of Musical Pitch (Oxford 1990), pp.77-110. 

 
124  Stephen Dowland Page, op.cit. 
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8.3.1  Psychomusicology. 

In a number of publications125Otto Laske conceptualises musicology as a science 

comprising three subdisciplines:  music analysis, psychomusicology, and 

sociomusicology.  He introduces the notion of a process model of music. He says: 

 
“Such a model is a joint description of musical structures and of the mental processes required for 

their production, reproduction, and comprehension.  More specifically a process model is a model of the 

process by which musical structures are actually generated by a musician through analysis, 

performances, improvisation, composition or listening.  The process model has a threefold purpose.  

First it is a description of musical structures as they are held in human memory during some task 

performance.  Second, the model describes the “performance program” ( performance taken here in the 

sense of activity) a human musician needs to activate to manipulate musical structures held in memory.  

Third , the model serves to embed the first in the second description, thereby explicating musical 

structures in the medium of processes that generate them.”126 

 

Two such process models of music have been developed to the extent that part of 

them can be modelled on a computer.  They are treated in the following sections. 

 

8.3.2  Narmour's Implication Realisation Model. 

The implication-realisation model was introduced by Eugene Narmour in 1977.127  In 

recent years the first two volumes128 of a planned four volume series have been published 

which greatly develop the model.  The model is one of a listener which is based on 

Gestalt psychology.   Narmour’s primitives are the notes that form melody.  He proposes 

the existence of an input system in a music listener, which operates on a bottom-up level.  

This assumes the existence of an innate syntactic parametric scale. 

 

“As we shall see, a syntactic parametric scale is an automatic, “brute” input system 

that is domain specific, mandatorily operative, and computationally reflexive.”129 

 

                                                           
125  Otto E. Laske Music, Memory and Thought (Ann Arbour: UMI 1977),  Otto E. Laske 

Psychomusicology  (Bombay and Baroda: Indian Musicological Association 1985),  Otto E. Laske  

"Introduction to Cognitive Musicology." Computer Music Journal volume12, no.1 (Spring 1988), pp.43-57. 

 
126  Otto Laske, op.cit., 1985, in preface (page unnumbered). 

 
127  Eugene Narmour Beyond Schenkerism (Chicago 1977). 

 
128  Eugene Narmour The Analysis and Cognition of Basic Melodic Structure (Chicago 1990);  Eugene 

Narmour The Analysis and Cognition of Melodic Complexity (Chicago 1992). 

 
129  Eugene Narmour, op.cit., 1990, p.4. 
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The input system determines the degree of implication between patterns of similarity  

A + A -> A and differentiation A + B -> C, ( where -> = implies), and also determines 

closural and non closural functions. 

 

In melody, these elements A, B and C can stand for either intervallic patterns, or pitch 

elements. 

 

Narmour forms five kinds of melodic archetypes: 

 

 1.  Process or iteraton ( A+A, nonclosural); 

 2.  reversal (A+B, closural); 

 3.  registral return; 

 4.  dyad; 

 5.  monad. 

 

The syntactic parametric scale hypothesises that any pair of melodic pitches transmits 

separate intervallic and registral messages to the listener.  Narmour hypothesises that 

three-note sequences give rise to exactly eight shapes.  In classifying these he 

distinguishes small intervals such as thirds from large intervals such as sixths. 

 

 D   =  small interval to identical small interval, same registral direction; 

 P   =  small interval to similar small interval, same registral direction; 

 R   = large interval to a smaller interval, different registral directions; 

 IP  = small interval to similar small interval, different registral directions; 

 VP = small interval to large interval, same registral direction; 

 ID = small interval to same small interval, different registral directions; 

 IR = large interval to small interval, same registral direction; 

 VR = large interval to even larger interval, different registral directions. 

 

Durational cumulation and/or metric emphasis parses these shapes into contiguous 

structures. 

 

The above structures are bottom-up style shapes.  Top-down style structure interacts 

with these ever-present style shapes.  Narmour specifies various conditions for closure 

such as the effects of intervallic motion and of duration and of metrical emphasis. 
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The style shape constructs are eligible candidates for algorithmic expression.  There 

exists a corpus to test the validity of these rules, in the form of some of the numerous 

examples given by Narmour in his recent pair of books.  This endeavour, if successful, 

could be followed by attempts to model the syntactic parametric scale, and to model 

closure and non closure. 

 

Narmour’s approach has attracted some negative criticism from Stephen Smoliar.130 

 

8.3.3  Lerdahl's and Jackendoff's Model.131 

The Lerdahl and Jackendoff model has origins in Schenkerian analysis, linguistics 

and cognitive psychology, and in particular in Gestalt psychology.  Its main focus is on 

modelling aspects of an idealised listener.  It focuses on "those components of musical 

intuition that are hierarchical in nature".132  It proposes techniques for analysing the 

grouping structure of a piece into a hierarchical segmentation consisting of motives, 

phrases and sections.  Using time span reduction it organises pitches into a hierarchy of 

structural importance with respect to their position in grouping and in metrical structure.  

By means of prolongational reduction it assigns to the pitches, a hierarchy that expresses 

harmonic and melodic tension and relaxation, continuity and progression.  Non 

hierarchical structures, such as those of instrumentation , timbre and dynamics are not 

formalised.   It proposes methods of analysing music using a series of different types of 

rules.  The first type of rule, well-formedness rules, represents possible structural 

descriptions.  Preference rules, on the other hand, determine how selections might be 

made between conflicting rules.  Transformational rules apply certain distortions to the 

otherwise strictly hierarchical structures provided by the well-formedness rules. 

 

                                                           
130  Stephen W. Smoliar “The Analysis and Cognition of Basic Melodic Structures: The Implication-

Realization Model by Eugene Narmour” (Review) in In Theory Only volume 12, nos.1-2 (1991), pp.43-56. 

 
131  Fred Lerdahl and Ray Jackendoff A Generative Theory of Tonal Music (Cambridge, Massachusetts, 

The MIT Press 1983).  See also Nichola Dibben "The Cognitive Reality of Hierarchical Structure in Tonal 

and Atonal Music" in Music Perception volume 12, no.1 (1994), pp.1-25,  and Lloyd Daws, John R. Platt 

and Ronald Racine "Inference of Metrical Structure from Perception of Iterative Pulses within Time Spans 

Defined by Chord Changes" in Music Perception volume 12, no.1 (19994), pp.57-76, and  Irene Deliege 

"Grouping Condition in Listening to Music:  An approach to Lerdahl and Jacklendoff's Grouping 

Preference Rules"  in Music Perception volume 4, no.4 (1987), pp.325-360. 

 
132  Lerdahl and Jackendoff, op.cit., p.8. 

 



8: Achievements, Further Work and Conclusions. 

 172 

A formal grammar is proposed for each component rule.  Such rules cover the 

bottom-up aspects of the generative theory.  Such generative rules have their analytic 

counterparts, which can be used in an analytic manner. 

 

It is over a decade since the publication of this model.  Some experimental evidence 

is emerging, most of which either supports or proposes modifications to aspects of the 

model.  A series of reviews of the model have appeared in print within the last year under 

the collective title of "A Generative Theory of Tonal Music by Lerdahl and Jackendoff: 

10 years on".133  Many related articles have also appeared in Music Perception. 

 

8.3.4  Biomusicology. 

All of the previously described analytic methods depend on introspection to explain 

mental processes.  There is no guarantee that such introspections accurately reflect the 

actual processes involved.  Alternate approaches are available.  One area in which 

progress is being made involves tackling the problem by looking at underlying biological 

systems and  trying to explain mental processes in terms of biological processing.  The 

areas in which this kind of exploration has had the greatest success is in studying 

peripheral mechanisms.  In the case of hearing, quite a lot is known about the 

mechanisms that operate in the ear.  Impressive models have been built.134  Some of these 

model the kinds of processing that the ear does on sound.  Hypotheses on plausible ways 

in which the brain might process pitch exist and can be used to explain some of the 

characteristics of hearing.  There exists a plausible explanation of the processing of 

harmonic sound combinations.   

 

The most comprehensive attempt to take an overview of the wider biological aspect 

of music is made by Wallin.135  He views music as having 

 

                                                           
133  Nattiez; E. Bigand, F. Lerdahl and M.  Pineau; J. London; D. Bettrand; M Botello;  P Halasz and D.R. 

Stammen and R. Pennycook  in "A Generative Theory of Tonal Music by Lerdahl and Jackendoff: 10 years 

on"  in Proceedings of the International Conference for Music Perception and Cognition (Liege 1994), 

pp.255-70. 

 
134  Richard F. Lyon “A Computational Model of Filtering, Detection and Compression in the Cochlea” in 

Preceedings of the IEEE International Conference in Acoustics, Speech and Signal Processing (Paris, 

France May 1982). 

 
135  Nils L. Wallin Biomusicology (Stuyvesant: Pendragon Press 1991). 
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“its primary base in man's biological inheritance, not in his cultural heritage.”136 

 

Wallin arrives at a draft definition of music as follows: 
 

   “Music is an open system of evolving structures growing into sounding artefacts which not only 

consume actual time but also generate virtual time;  the system and its space-time structures are 

ultimately conditioned by bio-geocultural parameters of behaviour and deportment.  Music is 

basically perceived unilaterally in the right cerebral hemisphere through the auditory system in a 

bilateral co-ordination with senso-motoric limbic and associative brain functions (the autonomous 

system included) within a framework of multimodal experiences.”137 

 

Whereas complete biological processes are too complex to model, aspects of them 

have been tackled with some success.  Connectionist models have been successful in 

building systems which mimic some aspects of human capacities in areas such as the 

perception of rhythm.138  In particular those models which use neural networks have been 

found to be appropriate.   Some proposals for such have been made by Smoliar.139 

 

8.4  Conclusions. 

This thesis demonstrates the feasibility of an environment for the development of 

corpus-based musicology.  Such an environment can provide a rich source of new 

musicological possibilities.   It creates the possibility of investigating uncharted 

territories in music theory.  It offers possibilities for supporting sophisticated analytic and 

generative models.  It provides a repository for the incremental building of future analytic 

systems of arbitrary complexity, limited only by the imagination of the user. 

 

                                                           
136  Nils L. Wallin, ibid., p.xx. 

 
137  Nils L. Wallin, ibid., p.16. 

 
138  A cross section of connectionist approaches is found in Peter M. Todd and D. Gareth Loy Music and 

Connectionism (Cambridge, Massachusetts: The MIT Press 1991).  See also Peter Desain and Henkjan 

Honing Music, Mind and Machine (Amsterdam: Thesis Publishers 1992). 

 
139  Stephen W. Smoliar “Elements of a Neuronal Model of Listening to Music” in In Theory Only volume 

12, nos.3-4 (Feb 1992), pp.29-46. 
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  scoreView Users Manual. 
 

Conventions, Data Types and Classes of scoreView. 

 

Conventions 

Lowercase letters are not used in enumerated values and constant names such as TITLE, 

COMPOSER, TIME_SIG, MAXCSLEN and N8. 

All names of classes, structs and unions start with an uppercase letter. 

All variable and function names start with lowercase letters.  Here a single uppercase letter 

indicates a separator in compound names, for example in getString(). 

 

Constants. 

The following constants are defined in score.h 

 

 The symbol TRUE is of type const int with the value 1. 

 The symbol FALSE is of type const int with the value 0. 

 The symbol NULL is of type const int with the value 0. 

 

Analytic use:  Classes representing objects in a score are accessible through class 

ScoreIterator.  All such classes have a member function getTag() which returns an 

identifier for the object.  This enables us to ask what kind of object is at the current 

position.  ScoreIterator has two additional member functions, one of which, 

getString(),  returns a textual version of the values associated with the object.  

getName() returns a string which is descriptive of the class.  For example si is an 

object of class ScoreIterator which is currently pointing to a quaver middle C, the  

 

  si.getTag() returns the value NOTE 

  si.getName() returns the string "NOTE" 

  si.getString() return the value "C5 [4]. 

 

tagType cvtStrTag( const String & s); converts a string version of tag to a tagType. 
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It is anticipated that only a few of the classes in this chapter will be used by analysts.  

With the exception of analysts who are involved in generative studies, only two basic 

classes of scoreView will suffice for most  processing.  These are classes Score and 

ScoreIterator.  Only a small set of member functions and operators of these classes are 

needed for analysis.  These are the ones involved with extracting and processing 

information from the score representations.  Such functions and operators are underlined 

in the manual. 
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Manual Pages for Classes Listed Alphabetically. 

 



Appendix 1:  scoreView User Manual. 

 178 

class Barline 

 

Purpose:  To represent barlines in a score. 

 

Manager Functions and Operators 

 

Barline( barType br = L, int br_n = 0); 

Barline( const Barline & br); 

virtual ~Barline(); 

 

 where barType is one of  

 CLHLC, CLLC, CLH, HLC, CLL, LLC, CLC, SHORT, INVISIBLE, LL, CL, 

LC, H, L, DOTTED 

 

Access Functions 

 

The following function set and retrieve various fields in a Barline object. 

 

void putBarNo ( int bn); 

 Bar number is set to bn. 

void putBar( barType br, int bn); 

 The bar type is set to br and the number to bn. 

int getBarNo(void) const; 

 Returns the bar number. 

barType getBarType(void) const; 

 Returns the bar type. 

 void clearAttributeSet(void); 

 Makes the attribute set of the barline null. 

 void putAttribute(const attrType & nr); 

  Puts the attribute nr into the attribute set of the barline. 

 void putAttributeSet(const Set & s); 

 Copies the set s into the attribute set of the barline. 

 Set getAttributeSet(void) const; 

 Returns a copy of the attribute set of the barline. 
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Valid attributes for a barline include FERMATA,  DA_CAPO, 

DA_CAPO_AL_SEGNO, DA_CAPO_AL_FINE, REPEAT1, and REPEAT2. 

 

String getString(); 

 Returns one of the following. ":/I/:", "://:", ":/I", "I/:", "://", "//:", ":/:", "[|]", "[/]", 

"//", ":/", "/:",   "I",   "/",   "|" 

 These are the textual equivalents of the barType identifiers listed above. 

String getName(); 

 Returns the string "Barline". 
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class Clef  

 

Purpose:  To represent a clef in a score. 

 

Manager Functions and Operators 

 

Clef(clefType c = NOCLEF); 

Clef(const Clef & cl) : Glue(cl), clef(cl.clef); 

virtual ~Clef(); 

 

where clefType is 

enum       

clefType 

{ 

  FRENCH_VIOLIN, SOPRANO, MEZZO_SOPRANO, TREBLE, BASS, 

ALTO, TENOR, BARITONE, NOCLEF 

}; 

 

Access Functions 

 

void putClef( clefType c); 

 Clef is set to c. 

clefType getClef(void) const; 

 Return the clef value. 

String getString();  

 returns one of  

 "FRENCH_VIOLIN", "SOPRANO", "MEZZO_SOPRANO", "TREBLE", "BASS", 

"ALTO", "TENOR",  "BARITONE". 

 These are the textual equivalents of the clefType identifiers listed above. 

 

String getName(); 

 Returns the string "Clef". 

 

Comment 

Clef has an open scoping mechanism.
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class Duration 

 

Purpose:  To represent the duration abstraction of notes and rests. 

 

Manager Functions and Operators 

 

Duration( durType d = N4, int dot = 0); 

Duration( const Duration & dr); 

virtual ~Duration(); 

int operator==(const Duration & dr) const; 

 

where durType is  

enum durType  {  N0, N1, N2, N4, N8, N16, N32, N64, N128 } 

Dot is the number of dots in the duration. 

 

Access Functions 

 

durType getHead(void) const; 

 Returns the duration of the object in whole notes, half notes, quarter notes, etc. 

int getDots(void) const; 

 Returns the number of dots associated with the duration. 

const Duration & getDuration(void) const; 

 Returns a copy of the Duration object. 

void putHead( durType d, int dts = 0); 

 Sets the duration type and the number of dots in the object. 

void putDots( int d); 

 Sets the number of dots for the duration. 

 String getString(); 

 Returns a string description of the duration in the form of  <ordinal durType 

value><number of dots>. 

 String getName(); 

 Returns the string "Duration". 
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Implementer Functions 

 

Rat getRDuration(void) const; 

 Returns the duration as a rational value. 

Associated Functions: 

  

Rat rDur(durType d, int dots = 0);  

 Converts a duration to a rational number. 

 

Constants  

 

A constant of type duration is declared with the name DUMMYDURATION.
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class FrequencyStore 

 

template <class T> 

class FrequencyStore 

 

Purpose:  To store copies of objects in an ordered frequency distribution.  Objects of 

class T must have the operators =, == and > defined, and must have a default 

constructor.  The == operator should compare all relevant components of objects for 

equality.  A function must be defined for objects of class T which is used to initialize 

the class of T and has the following signature. 

 

     void init(int); 

 

Manager Functions and Operators 

 

 FrequencyStore(int storeSize = 0, int cellSize = 0); 

 Creates a store for storeSize objects.  Each of the contained objects is initialized 

by calling its member function init(cellSize). 

 ~FrequencyStore(); 

 void init (int storeSize, int cellSize); 

 Initializes a empty store to be of size storeSize, creates objects of type T for each 

element of the score, and invokes the init(cellSize) function for each of the created 

objects. 

 FrequencyStore & operator = (FrequencyStore<T> &t); 

 

Access Functions 

 

int isEmpty(); 

 Returns TRUE if there are no members in the store. 

void put(T tm); 

 Puts a copy of the object tm in the frequency store, if it is not already present.  

Increments the corresponding frequency.  If the array is inadequate in size, its size 

is effectively doubled, and a message is sent to cerr. 

T getValue(int i); 
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 Gets the value of the i-th element from the frequency store. 

int getFrequency(int i); 

 Gets the value of the i-th frequency from the frequency store. 

int getN(); 

 Gets the total number of elements that have been put into the store (the sum of the 

frequencies). 

int operator ==(FrequencyStore<T> t); 

 Compares the contents of two frequency stores for equality. 

int operator !=(FrequencyStore<T> t); 

 Compares the contents of two frequency stores for inequality. 

int getSize(); 

 Returns the number of distinct items in the frequency store. 

 

Friend Implementor Functions and Operators 

 

friend ostream & operator << (ostream &, FrequencyStore<T>&); 

 Produces a displayable representation of the frequency distribution. 

 

Related Class:  FrequencyStoreIterator
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class FrequencyStoreIterator 

 

template <class TY> 

class FrequencyStoreIterator 

 

Purpose:  To iterate on a frequency store. 

 

Manager Functions and Operators 

 

 FrequencyStoreIterator( FrequencyStore<TY> & s); 

 

Implementor Functions 

 

 int atEnd(); 

 TRUE if iterator is incremented beyond the end of the store, FALSE otherwise. 

 void operator ++ (); 

 Advances the iterator to the next item in the store.  If the current item is the last 

one in the score, calling this function will make the current position of the iterator 

invalid.  The atEnd() function can be used to test for this condition. 

 TY getValue(); 

 Gets the current value from the frequency store. 

 int getFrequency(); 

 Gets the current frequency from the frequency store. 

 

Related Class:  FrequencyStore
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class Group      Inherits from  public Rest 

 

Purpose:  To put a groupette marker in a score.  A groupette consists of notes that are 

inserted in the normal way, but are preceded by a groupette marker which specified the 

number of units in the groupette, the type of units present and the length of the 

groupette in terms of its real duration. 

 

Manager Functions and Operators 

 

Group(void); 

Group(int gn, Duration dr, durType gbu); 

 where gn is the number of basic units in the group, dr is the overall duration of the 

groupette, and gbu is the basic unit of the groupette.  The notated duration of the 

groupette is gn x gbu. The actual duration is dr. 

Group( const Group & gr); 

Group & operator = (const Group & gr); 

virtual ~Group(); 

 

Access Functions 

 

int getGroupetteNumber(void) const; 

 Returns the number of basic units in the groupette. 

void putGroupetteNumber( int n); 

 Sets the number of basic units in the groupette to n. 

durType getGroupetteBasicUnit(void) const; 

 Returns the groupette basic unit. 

void putGroupetteBasicUnit( durType dr); 

 Sets the groupette basic unit. 

String getString(); 

 Returns a string description of the groupette marker. 

String getName(); 

  Returns the string "Group". 
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class Instrument 

 

Purpose:  To associate an instrument with a stave. 

 

Manager Functions and Operators 

 

Instrument(); 

Instrument(const String & s, int tr = 0);  

 Creates an instrument object for instrument s which transposes up tr semitones. 

int operator==(const Instrument & in);  

virtual ~Instrument(); 

 

Access Functions 

 

String getString(); 

 Returns the name of the instrument. 

String getName(); 

 Returns the text “Instrument”. 

int getTranspose(); 

 Returns the number of semitones by which the instrument is transposed up. 

 If a negative number is returned, the instrument is transposed down. 

void putInstrument(const String & s); 

 Sets the name associated with the instrument object to s. 
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class KeySig 

 

Purpose:  To represent key signatures in a score 

 

Manager Functions and Operators 

 

KeySig(keySigType ks = NOKEY) ; 

KeySig(const KeySig & ks); 

virtual ~KeySig(); 

 

where keySigType is 

enum 

keySigType 

{ 

 C, SF, SFSC, SFSCSG, SFSCSGSD, SFSCSGSDSA, SFSCSGSDSASE,  

 SFSCSGSDSASESB, FB, FBFE, FBFEFA, FBFEFAFD, FBFEFAFDFG,  

 FBFEFAFDFGFC, FBFEFAFDFGFCFF, NOKEY 

}; 

 

Access Functions 

 

keySigType getKeySig(void) const; 

 Returns the key signature value. 

void putKeySig( keySigType ks); 

 The key signature is set to ks. 

String getString(); 

returns one of 

"#F#C#G#D#A#E#B", "#F#C#G#D#A#E", "#F#C#G#D#A", 

"#F#C#G#D","#F#C#G",  "#F#C",  "#F", 

  "YBYEYAYDYGYCYF", "YBYEYAYDYGYC", "YBYEYAYDYG",  

"YBYEYAYD", "YBYEYA",  "YBYE", "YB", "" 

 These are the textual equivalents of the keySigType identifiers listed above. 

String getName(); 

Returns the string "Keysig". 
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Associated Function: 

 String ksToText( keySigType k_s);  

  Converts a key signature to a string. 

 

Comment 

Key signature has an open scoping mechanism. 
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 union FAR MIDIMsg 

 

Purpose:  To represent MIDI messages. 

 

Manager Functions and Operators 

 

MIDIMsg(unsigned char m1=0, unsigned char m2 = 0, unsigned char m3 = 0); 

 Creates a one to three byte MIDI message. 

 

Access Functions 

 

void update(unsigned char m1, unsigned char m2, unsigned char m3); 

 Modifies the three data bytes in a MIDI message. 

void update1(unsigned char m1); 

 Modifies the first byte of a MIDI message. 

void update2(unsigned char m2); 

 Modifies the second byte of a MIDI message. 

void update3(unsigned char m3); 

 Modifies the third byte of a MIDI message. 

BYTE & getByte(int i); 

 Returns byte i of a MIDI message. 

DWORD & getWord (); 

 Returns the MIDI message as a double word. 

void putWord(DWORD w); 

 Writes the double word to the MIDI message. 

 

The MIDI bytes are left alligned in the DWORD type.  The righmost byte of the 

DWORD is not used. 
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class MIDIStream 

 

Purpose:  To implement a MIDI output stream. 

 

MIDIoutStream & operator <<  (MIDIoutStream & mo, MIDIMsg 

mm); 

Sends the MIDI message in mm to the MIDI output stream mo. 

MIDIoutStream & operator <<  (MIDIoutStream & mo, unsigned int 

t); 

Sends the three leftmost bytes of t to the MIDI output stream mo. 

MIDIoutStream & operator <<  (MIDIoutStream & mo, int t) 

Sends the three leftmost bytes of t to the MIDI output stream mo. 
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class Note                   Inherits from Rest and Pitch. 

 

Purpose:  To represent a note object in a score. 

 

Manager Functions and Operators 

 

Note( char pa = 'C', int oc = 5, accidType ac = NOACCID,  

      durType d = N8, int dot = 0, Set nr = Set()); 

pa = one of 'A', 'B', 'C', 'D', 'E', 'F', 'G'.  

oc = octave register, with middle C = 5. 

 

accidType is 

enum 

accidType 

{ 

 NOACCID, F, S, N, DF, DS 

}; 

 

durType is 

enum 

durType 

{ 

 N0, N1, N2, N4, N8, N16, N32, N64, N128 

}; 

 

dot = number of dots. 

 

nr is a set which contains combinations of 

 

 STACCATO, TIE_FROM, TIE_TO, TENUTO, PLUS, FERMATA, COMMA,  

PAUSE_MARK, TREMOLO, TREMOLO_END, GLISSANDO, 

GLISSANDO_END, SQUARE_NOTEHEAD, DIAMOND_NOTEHEAD, 

X_NOTEHEAD, OMIT_NOTEHEAD,  OCTAVE_UP, OCTAVE_DOWN, 

OCTAVE_END, ARPA, PIZZ, HARMONIC, COL_LEGNO, PONTICELLO, 

PED, REL,  OCTAVE_DOUBLE_UP, OCTAVE_DOUBLE_DOWN, 
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OCTAVE_DOUBLE_END,  TURN0, TURN1, TURN2, TURN3, TURN4, 

TURN5, TURN6, TURN7, TURN8,  TURN9, TURN,  SLUR1, SLUR1_UP, 

SLUR1_DOWN, SLUR1_END, SLUR2, SLUR2_UP, SLUR2_DOWN, 

SLUR2_END, ACCENT, HEAVY_ACCENT, UP_BOW, DOWN_BOW, 

LETTER_TR, BAROQUE_TRILL, GRACE_NOTE, BEAM, UP_BEAM, 

DOWN_BEAM, BEAM_END,  REST_ALLIGNMENT, ALTERNATE,   

PPPP, PPP, PP, PIANO, MF, FORTE, FF, FFF, FFFF, CRESCENDO,  

CRESCENDO_END, DIMINUENDO, DIMINUENDO_END. 

 

Note( const Note & nt); 

virtual ~Note() { } 

 Note & operator = ( const Note & nt); 

 

Access Functions 

 

char getAlpha(void) const; 

 Returns the alphabetic note class name in the range 'A' to 'G'. 

void putAlpha( char a); 

 Sets the alphabetic note class name to a where a is in the range 'A' to 'G'. 

int getOctave(void) const; 

 Returns the octave register number.  The register starting at middle C is 5. 

void putOctave(int o); 

 Sets the octave register number to o. 

accidType getAccid(void) const; 

 Returns the accidental value associated with the note. 

void putAccid( accidType a); 

 Sets the accidental value of the note to a. 

void clearAttributeSet(void); 

 Clears all attributes of the note. 

void putAttribute(const nrAttrType & nr); 

 Sets the attribute nr in the attributes set of the note. 

void putAttributeSet(const Set & s);     

 Sets the attribute set of the note to the set s. 

Set getAttributeSet(void) const; 

 Returns the attribute set for the note. 

durType getHead(void) const;    
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 Returns the durType value of the note. 

void putHead( durType d, int dts = 0);     

 Sets the time value of the note to a durType value of d and the number of dots to 

dts. 

int getDots(void) const;      

 Returns the number of dots of the note. 

void putDots( int d);      

 Sets the number of dots of the note. 

Rat getRDuration(void) const;     

 Returns the duration as a rational number, without any groupette scoping taken into 

account. 

const Duration & getDuration(void) const;    

 Returns the duration of the note head. 

int getPitch12(void) const; 

 Returns the chromatic pitch number of the current note.  Middle C corresponds to 

60.  No scoping information is taken into account. 

int getPitch7(void) const; 

 Returns the diatonic pitch number.  Middle C corresponds to 35. 

String getString(); 

 Returns a string description of a Note object in the form  

  <Pitch part description><Duration part description><Attributes>. 

String getName(); 

 Returns the string "Note". 

 

Comment 

 The exact placement of a dynamic on a note is not specified.  In some cases, for 

example for creschendi and diminuendi, this may prove inadequate.  A further study is 

called for here. 
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class PartsExpert 

 

Purpose:   To identify the parts in a Irish dance tune.   

 

Manager Functions and Operators 

 

PartsExpert( Score & s); 

 Creates a parts expert object for score s. 

 

Implementor Functions 

 

int isSingled(); 

 Returns TRUE if the tune is singled, FALSE otherwise. 

int numberOfParts(); 

 Returns the number of parts in the tune. 

int hasOddPart(); 

 Returns TRUE if the tune has an uneven number of parts, FALSE otherwise. 

int getBarNoForPart(int i); 

 Returns the bar number at which part i starts.  Prints an error message to cerr if it 

is called for an invalid value of i. 

 

Comment 

See chapter 7.6 for details of this class. 
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class Pitch 

 

Purpose:  To represent a pitch abstraction.  It differs from class Note in that it does not 

have either a duration or a set of attributes, and also does not exist with a scoping 

context. 

 

Manager Functions and Operators 

 

Pitch( char pa = 'C', int oc = 5, accidType ac = NOACCID); 

 

accidType is 

enum 

accidType 

{ 

 NOACCID, F, S, N, DF, DS 

}; 

 

Pitch(const Pitch &); 

virtual ~Pitch(); 

 

Access Functions: 

 

char getAlpha(void) const; 

 Returns the alphabetic note class name of the pitch in the range 'A' to 'G'. 

void putAlpha( char a); 

 Sets the alphabetic note class name of the pitch to a where a is in the range 'A' to 

'G'. 

int getOctave(void) const; 

 Returns the octave register number.  The register starting at middle C is 5. 

void putOctave( int o); 

 Sets the octave register number to o. 

accidType getAccid(void) const; 

 Returns the accidental value associated with the pitch. 

void putAccid( accidType a); 

 Sets the accidental value of the pitch to a. 
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String getString(); 

 Returns a string description of the pitch in the form of <alphabetic Letter> <octave 

Number> <accidental name>. 

String getName(); 

 Returns the string  "Pitch". 

 

Implementor Functions 

 

int getPitch12(void) const; 

 Returns the chromatic pitch number of the current note.  Middle C corresponds to 

60. 

int getPitch7(void) const; 

 Returns the diatonic pitch number.  Middle C corresponds to 35. 

 

 The next set of overloaded operators perform magnitude comparisons of pitch. 

int operator > (const Pitch & pt); 

int operator < (const Pitch & pt); 

int operator == (const Pitch & pt); 

 

Related Classes: Note
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class PitchClasses 

 

Purpose:  To represent pitch class sets. 

 

Manager Functions and Operators 

 

PitchClasses ( int a0 =-1,int a1 =-1,int a2 =-1,int a3 =-1,int a4 =-1, 

   int a5 =-1,int a6 =-1,int a7 =-1,int a8 =-1,int a9 =-1, 

   int a10=-1,int a11=-1,int a12=-1,int a13=-1,int a14=-1, 

   int a15=-1,int a16=-1,int a17=-1,int a18=-1,int a19=-1, 

   int a20=-1,int a21=-1,int a22=-1,int a23=-1,int a24=-1, 

   int a25=-1,int a26=-1,int a27=-1,int a28=-1,int a29=-1, 

   int a30=-1,int a31=-1); 

 PitchClasses( const  PitchClasses &); 

 PitchClasses(const Set & ); 

 PitchClasses & operator = (const PitchClasses & ); 

 

Example 

 

 PitchClasses x(0, 2, 4, 5, 7, 9, 11); 

  Creates a pitch class set of the notes of the diatonic scale. 

 

Access Functions 

 

void init(int i = 0); 

 This function does nothing.  It exists for compatibility with class FrequencyStore. 

 

Implementor Functions 

 

void pitchClass(Score &); 

 Adds the pitch classes found in the score to the set. 
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void pitchClass(ScoreIterator &si1, ScoreIterator &si2); 

 Add the pitch classes to the set that are found in the score of si1, starting with si1, 

and continuing until either si2 is reached, or else until the end of of the score is 

reached.  si2 may be NULL. 

void pitchClassInc(ScoreIterator & si); 

 If si points to a note, the pitch of that note is added to the pitch class set object, 

otherwise no action is taken. 

int bestNormalElement(); 

The pitch of the first normal element calculated and returned.140 

 void primeForm(); 

The set is converted to its prime form. 

 void nIEPrimeForm(); 

The set is converted to its non inversionally equivallent prime form.141 

void invert(); 

Converts the pitch class set to its inversion. 

String getPFName(); 

Returns the name of the pitch class set.142 

String getNIEPFName(); 

Returns the name of the non inversionally equivallent pitch class set.143 

 

Friend Implementor Functions and Operators 

 

 friend ostream& operator << (ostream& , PitchClasses); 

 Outputs a representation of the pitch class set in a form suitable for display.

                                                           

 
140  See Alan Forte The Structure of Atonal Music  (New Haven: Yale UP 1973, 1979 printing), p4. 

 
141  See  8.1. 

 
142 Alan Forte, op.cit., pp179-181. 

 
143  See 8.1. 
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class PitchTuple                Inherits from class Tuple 

 

Purpose:  To represent a set of pitches, relative to the initial one, which is set at 0. 

 

Manager Functions and Operators 

 

 PitchTuple(); 

 PitchTuple(int sz); 

 PitchTuple(const PitchTuple & pt ); 

 

Access Functions 

 

 void put(int t, int i); 

 Puts the value t into position i of the tuple.  The first position in the tuple 

corresponds to i = 0, and this position must be filled first. 

 

Friend Implementor Functions and Operators: 

 

ostream & operator << (ostream & os, const PitchTuple &t); 

 Outputs the tuple in a form suitable for display. 

  

Related class:  Tuple 
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class Q 

 

const int Q_TEMPLATE_SIZE = 10; 

 

template < class QT > 

class Q 

 

Purpose:  To implement an array based implementation of a first in first out store. 

 

Prerequisites:  The type of QT must have a valid assignment, ==, and > operator, and 

a default constructor. 

 

Manager Functions and Operators: 

 

 Q(int sz = Q_TEMPLATE_SIZE); 

 Creates an array-based queue with initial size SZ. 

 ~Q(); 

Q(const Q & q); 

Q & operator = (const Q & qIn); 

 

Access Functions 

 

int isEmpty(); 

 Returns TRUE if queue is empty, FALSE otherwise. 

void put(QT c); 

 Puts a copy of c into the queue. 

QT get(); 

 Returns a copy of the item at the head of the queue, and deletes the item from the 

queue. 

qSize(); 

 Returns the number of items in the queue. 
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class Rat 

 

Purpose:  To represent rational numbers. 

 

Manager Functions and Operators: 

 

 Rat( long n1 = 0 , long d1 = 1); 

 Rat( const Rat & r); 

 virtual Rat & rationalize(); 

 const Rat & operator = ( const Rat & r); 

 

 operator int(); 

 operator long(); 

 operator float(); 

 

Access Functions 

 

 const Rat & rmin(const Rat & r1, const Rat & r2); 

 Returns a reference to the minimum of r1 and r2. 

 const Rat & rmax(const Rat & r1, const Rat & r2); 

 Returns a reference to the maximum of r1 and r2. 

 long numer() const; 

 Returns the value of the numerator. 

 long denom() const; 

 Returns the value of the denominator. 

 void putNumer(int num); 

 Changes the numerator to num. 

 void putDenom(int den); 

  Changes the denominator to den. 

 

Implementor function and operators 

 

Member arithmetic operators. 

const Rat & operator += (const Rat & b); 

const Rat & operator -= (const Rat & b); 
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const Rat & operator *= (const Rat & b); 

const Rat & operator /= (const Rat & b); 

 

Friend Implementor function and operators 

 

Friend arithmetic operators. 

friend Rat operator - (const Rat & a); 

friend Rat operator + (const Rat & a); 

friend Rat operator + (const Rat & a, const Rat & b); 

friend Rat operator - (const Rat & a, const Rat & b); 

friend Rat operator * (const Rat & a, const Rat & b); 

friend Rat  operator / (const Rat & a, const Rat & b); 

friend int  operator > (const Rat & r1, const Rat & r2); 

friend int  operator >= (const Rat & r1, const Rat & r2); 

friend int  operator < (const Rat & r1, const Rat & r2); 

friend int  operator <= (const Rat & r1, const Rat & r2); 

friend int  operator == (const Rat & r1, const Rat & r2); 

friend int  operator != (const Rat & r1, const Rat & r2); 

 

 Stream friend functions. 

friend ostream& operator << (ostream& os, const Rat & r); 

 Outputs the object in a form suitable for display. 

friend istream& operator >> (istream& is, Rat& r); 

 Inputs a rational number expressed in the form  

 

    { <numerator> , <denominator }. 

 

Related Classes: TimeSigType. 
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class Rest      Inherits from Duration 

 

Purpose:  To represent a rest object in a score. 

 

Manager Functions and Operators 

 

Rest( durType d = N8, int dot = 0, Set e = Set()); 

 

where durType is  

enum durType  {  N0, N1, N2, N4, N8, N16, N32, N64, N128 } 

 

dot is the number of dots on the rest 

 

The set e is made up of members with appropriate combinations of the nrAttrTypes, 

possibly FERMATA, BREATH_MARK and ALTERNATE.  The last value is 

used only with crotchet rests to indicate the 'reversed 7' English notation. 

 

Rest( const Rest & r); 

virtual ~Rest(); 

Rest & operator = ( const Rest & rst); 

 

Access Functions 

 

void clearAttributeSet(void); 

 Clears all attributes of the rest. 

void putAttribute(const nrAttrType & nr); 

 Sets the attribute nr in the attributes set of the rest. 

void putAttributeSet(const Set & s);     

 Sets the attribute set of the rest to s. 

Set getAttributeSet(void) const; 

 Returns the attribute set for the rest. 

durType getHead(void) const;    

 Returns the durType value of the rest. 

void putHead( durType d, int dts = 0);     
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 Sets the time value of the rest to a durType value of d and the number of dots to 

dts. 

int getDots(void) const;      

 Returns the number of dots of the rest. 

void putDots( int d);      

 Sets the number of dots of the rest. 

Rat getRDuration(void) const;     

 Returns the duration as a rational number, without any groupette scoping taken into 

account. 

const Duration & getDuration(void) const;    

 Returns the duration of the rest. 

String  getString(); 

 Returns a string description of the Rest in the form of   

  <Duration part description><Attributes>. 

String getName(); 

 Returns the string "Rest". 
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class Score 

 

Purpose:  To represent a score. 

 

Manager Functions and Operators 

 

Score(void); 

 Creates a null score. 

Score( String  filename);  

 Creates a score from the contents of filename. 

Score(const Score &);  

~Score(void); 

Score& operator = ( const Score & s); 

 void operator - (void); 

 The unary operator - is used to make a score null, that is it deletes all the objects in 

the score, but it does not destroy the score object itself. 

  

Access Functions 

 

void setMaxStaves(const int & n);    

 Initialises the number of staves in a score. 

int getNoStavesInScore(void); 

 Returns the number of staves in a score. 

int getInitialBarNo() const;  

 Returns 0 if there is an incomplete 1st bar, and 1 otherwise.  An initial anacrusis is 

regarded as being in bar 0. 

Rat getInitialPosition() const;   

 Returns the location of the first note or rest in the score.  For example a score in 6/8 

time with an initial quaver as an anacrusis, this will return 5/8. 

String getString(const tagType & tt = TAG) const; 

String getString(const String & tt) const; 

 Both of these functions return a string value of the attribute. 

 

Where tt is one of  COMPOSER, PUBLISHER, EDITOR, MANUSCRIPT, 

COLLECTOR, PERFORMER, COMMENTS, CATEGORY, TITLE, ETITL, 
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NUMBER, MOVEMENT, WORDS, METRONOME, TEMPO, 

EXPRESSION, INSTRUMENT. 

 

Note: TITLE and ETITL allow for a main title and a subsidiary title.  The second 

version of the getString functions is provided to allow for future expansion, so that 

new fields may be created, over and above those provided by the system. 

 

void putString( const String & text, tagType tt) 

 Puts the tagged text into the score object.  Valid tags are as for tt above. 

clefType getClef(void) const; 

 Returns the first clef on the first stave of the score. 

keySigType getKeySig(void) const; 

 Returns the first key signature on the first stave of the score. 

long getTimeSigNumerator(void) const; 

 Returns the numerator of the first time signature on the first stave of the score. 

long getTimeSigDenominator(void) const; 

 Returns the denominator of the first time signature of the first stave of the score. 

TimeSigType getTimeSig(void) const; 

 Returns the time signature value of the first time signature of the first stave of the 

score. 

int isNull(void) const;  

 Returns TRUE if the score is a null score  This may arise when an attempt is made 

to get a score from a non-existent file, or when the Score(void) constructor is used. 
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class ScoreIterator 

 

Purpose:  To an iterator on a score. 

 

Manager Functions and Operators 

 

ScoreIterator( const Score  &  s, int  lid = -99); 

 Creates a score iterator for the score s.  The type of score iterator and its associated 

mode depends on the type of score that it is created for. 

   If the second parameter is absent and the score consists of a single stave, then a 

single stave iterator in MONO mode is created.  That is the iterator follows the 

uppermost pitches on the stave.   

 If the second parameter is absent and the score consists of multiple staves, then a 

multi-stave iterator in POLY mode is created. 

 If the second parameter is present it must be a stave number in the range 0 to the 

(maximum number of staves - 1).  In this case a single stave iterator in MONO 

mode is created for the specified stave.  See 5.10 for more details of the operation 

of these operators. 

ScoreIterator( const ScoreIterator & si); 

ScoreIterator( int  lid = 0); 

ScoreIterator::~ScoreIterator(void); 

const Score & score(); 

ScoreIterator& operator = (const ScoreIterator & si); 

 

Access Functions 

 

Information extracting functions. 

 

tagType getTag(); 

 Returns the tag value retrieved, which is one of  

 

NOTE, REST, GROUP,  WORDS, BARLINE, CLEF, TIME_SIG, 

 KEY_SIG, TEXT, METRONOME, TEMPO, 

 EXPRESSION, START, INSTRUMENT 

 



Appendix 1:  scoreView User Manual. 

 209 

int isA(tagType t); 

 Returns TRUE if the current object has type t. 

clefType getClef(void) const; 

 Returns the current clef. 

keySigType getKeySig(void) const; 

 Returns the current key signature. 

long getTimeSigNumerator(void) const; 

 Returns the numerator of the current time signature. 

long getTimeSigDenominator(void) const; 

 Returns the denominator of the current time signature. 

TimeSigType getTimeSig(void) const; 

 Returns the current time signature. 

String getString(const tagType & tt = TAG) const; 

 gets a string description of the object or scope indicated by tt, where  is one of 

COMPOSER, PUBLISHER, EDITOR, MANUSCRIPT, COLLECTOR, 

PERFORMER, COMMENTS, CATEGORY, TITLE, ETITL, NUMBER, 

MOVEMENT,TAG, NOTE, REST,  WORDS, BARLINE, CLEF, 

TIME_SIG, KEY_SIG, TEXT, METRONOME, TEMPO, EXPRESSION,  

INSTRUMENT 

 

String getString(const String & tagString) const; 

 Returns a string representation of the current object. 

String getName() const; 

 Returns the name of the current object.  It is one of  

void putString( const String & text, tagType tt); 

 Puts the tagged string text into the tagged field tt, where tt is one of 

 

COMPOSER, PUBLISHER, EDITOR, MANUSCRIPT, COLLECTOR, 

PERFORMER, COMMENTS, CATEGORY, TITLE, ETITL, NUMBER, 

MOVEMENT, WORDS, METRONOME, TEMPO, EXPRESSION, 

INSTRUMENT. 

 

Functions for retrieving values in notes and rests. 

 

char getAlpha(void) const; 

 Returns the alphabetic note class name in the range 'A' to 'G'. 
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void putAlpha( char a); 

 Sets the alphabetic note class name to a where a is in the range 'A' to 'G'. 

int getOctave(void) const; 

 Returns the octave register number.  The register starting at middle C is 5. 

void putOctave(int o); 

 Sets the octave register number to o. 

accidType getAccid(void) const; 

 Returns the accidental value immediately associated with the note. 

int getKeySigAdjust() const; 

 Returns the number of simitones by which the current key signature displaces the 

pitch of the note. 

accidType getAccidAlterationInBar() const; 

 Returns any local accidental that influences the pitch of the note. 

void putAccid( accidType a); 

 Sets the accidental value of the note to a. 

void clearAttributeSet(void); 

 Clears all attributes of the note or rest. 

void putAttribute(const nrAttrType & nr); 

 Sets the attribute nr in the attributes set of the note or rest. 

void putAttributeSet(const Set & s);     

 Sets the attribute set of the note or rest to s. 

Set getAttributeSet(void) const; 

 Returns the attribute set for the note or rest. 

durType getHead(void) const;    

 Returns the durType value of the note or rest. 

void putHead( durType d, int dts = 0); 

 Sets the time value of the note or rest to a durType value of d and the number of 

dots to dts. 

int getDots(void) const;  

 Returns the number of dots of the note or rest. 

void putDots( int d);    

 Sets the number of dots of the note or rest. 

Rat getRDuration(void) const; 

 Returns the duration as a rational number, with resolution of groupette scoping. 

const Duration & getDuration(void) const; 

 Returns the duration of the note head without resolution of groupette scoping. 
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int hasAttribute(const nrAttrType & na) const; 

 Returns TRUE if the attribute na is present in the current entitiy. 

ScoreIterator getNext(); 

 Returns a score iterator which points to the next entity in traversal order in the 

score. 

Rat getRemainder(void) const; 

 Returns the time distance between the current position and the end of the entitiy 

pointed to. 

int getPitch12(void) const; 

 Returns the chromatic pitch number of the current note, with all scoping taken into 

account.  Middle C corresponds to 60. 

int getPitch7(void) const; 

 Returns the diatonic pitch number.  Middle C corresponds to 35. 

Pitch getPitch() const; 

 Returns the pitch entitiy associated with the current note. 

String getWords(void) const; 

 Retrieves the vocal text. 

long getBarNo(void) const; 

 Returns the current bar number. 

barType getBarType(void) const; 

 If the current entity is a bar, the bar type is returned. 

nrAttrType getDynamics(void); 

 Returns the dynamic value associated with the current note. 

Rat getBarDist(void) const; 

 Returns the rational distance of the scoreIterator from the start of the current bar. 

 

Information relating to groupettes. 

 

Rat getGroupetteRemaining(void); 

 Returns the rational distance from the scoreIterator to the end of the current 

groupette. 

long getGroupetteNumber(int depth = 0) const; 

 Returns the number of units in the groupette. 

durType getGroupetteBasicUnit(void) const; 

 Return the notated time value of the basic units in a groupette. 
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Testing functions and operators returning TRUE(=1) or FALSE (=0). 

 

 int isFirst(void);   

 Returns TRUE if current entity is the first on its stave. 

 int isLast(void);   

 Returns TRUE if current entity is the last on its stave. 

int isNullStave();  

 Returns TRUE if the current stave is empty, FALSE otherwise. 

 Rat getTimeSlice(void); 

 Returns the rational distance between the current position and the nearest entity in 

time. 

 scanModeType getScanMode(); 

 Returns the scan mode of the iterator. 

void putScanMode(scanModeType sm); 

 Set the scan mode for the iterator to sm. 

 

Implementor Functions and Operators 

  

Navigation functions. 

 

int step( tagType gt = ANY); 

 Moves the current position to the next entity in traversal order.  Returns TRUE if 

successful.  See 5.10 for details of traversals.  gt  may have one of the following 

values 

 

 NOTE, REST, WORDS, BARLINE, CLEF, TIME_SIG, 

 KEY_SIG, TEXT, TEXT_OBJECT, START, ANY 

  

int mstepb( tagType gt = ANY); 

 Operates in a manner similar to the last function but moves the iterator in the 

opposite direction.  Returns TRUE if successful. 
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int step(Rat d); 

 Moves the iterator to the first score object that is at a distance d from the current 

position.  Returns TRUE if successful.  Note that the ends of notes or rests are not 

candidate objects for moving the iterator to. 

int locate(const tagType & gt = ANY, const int & n = 1); 

 Moves the iterator to the specified location in the score.  Returns TRUE if 

successful.  gt may be one of 

 

 NOTE, REST,  WORDS, BARLINE, BAR, CLEF, TIME_SIG, KEY_SIG, 

TEXT, METRONOME, TEMPO, EXPRESSION, START, ANY 

 

BARLINE is used to specify a count of actual barlines.  BAR is used to specify a 

specific bar by number. 

 

The locate function locates the nth entity of type gt in the score. 

 

Hence  

   si.locate(NOTE, 20); 

 

will position the score iterator at the start of the 20th note in the score. 

locate() positions the iterator at the start of the score. 

 

Score building and manipulation. 

 

 The binary '^' operator is used for inserting single entities into scores at the current 

position and the corresponding unary operator '!' is used to remove the entity at the 

current position.  The '+' operator inserts a new object after the current position. 

 

void operator + (Instrument & in); 

 Adds an instrument designation to a stave. 

void operator + (Barline & nbl); 

 Adds a barline to the current position on the current stave. 

void operator + (Text & t); 

 Adds a textual entry to the current position on the current stave. 

void operator + (Note & n); 

 Adds a note object to the current position on the current stave. 
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void operator + (Rest & r); 

 Adds a rest object to the current position on the current stave. 

void operator + (Group & g); 

 Adds a groupette marker to the current position on the current stave. 

void operator + (TimeSig & ts); 

 Adds a time signature object to the current position on the current stave. 

void operator + (Clef & cl); 

 Adds a clef object to the current position on the current stave. 

void operator + (KeySig & ks); 

 Adds a key signature object to the current position on the current  

            stave. 

void operator ^ (Note & nt); 

 Attaches a note object vertically to the current note or rest object. 

void operator ^ (Rest & rst); 

 Attaches a rest object vertically to the current note or rest object. 

void operator ^ (Group & gr); 

 Attaches a groupette object vertically to the current groupette object. 

void operator ^ (Words & wd); 

 Attaches words to the current note object. 

void setPlayOn(void); 

 Causes automatic output of each traversed note to the current MIDI device. 

void setPlayOff(void); 

 Switches off automatic MIDI output. 

unsigned long getPlaySpeed(void) const; 

 Returns the curent playing speed setting. 

void putBorrow(long  l); 

 Causes the duration of the MIDI output for the next note to be reduced by l ticks.  

This is used typically to allow for the playing of grace notes while keeping the 

overall rhythm intact. 

long getBorrow(void) const; 

 Returns the duration of the MIDI next note shortening.  See putBorrow(long l). 

void setPlayMetronome(int mm); 

 Sets the play speed to the indicated metronome value, given in terms of the number 

of quarter notes per minute.  The default is 200. 
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Implementor Friend Functions and Operators 

 

IO operators. 

 

friend ostream& operator << (ostream& is, const ScoreIterator & si); 

 Outputs a textual representation of the current object. 

 

 Comparison operators to compare positions on the basis of location in absolute 

score time.  It is the responsibility of the user to ensure that si1 and si2 are positions 

in the same score. 

 

friend int operator >  (const ScoreIterator & si1, const ScoreIterator & si2); 

friend int operator >= (const ScoreIterator & si1, const ScoreIterator & si2); 

friend int operator <  (const ScoreIterator & si,  const ScoreIterator & si2); 

friend int operator <= (const ScoreIterator & si1, const ScoreIterator & si2); 

friend int operator == (const ScoreIterator & si1, const ScoreIterator & si2); 

friend int operator != (const ScoreIterator & si1, const ScoreIterator & si2); 

 

void traverse(ScoreIterator & si1, ScoreIterator & si2, Rat &r); 

 

The traverse function is used to move through two sections of scores, one time slice at a 

time.  Each call to traverse advances the iterators si1 and si2 by the same amount, 

equal to the current time slice. 
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class Set 

 

Purpose: To represent sets of integers or enumerated types. 

 

Manager Functions and Operators: 

  

Set ( 

      int  a0 =-1,int a1 =-1,int a2 =-1,int a3 =-1,int a4 =-1, 

      int  a5 =-1,int a6 =-1,int a7 =-1,int a8 =-1,int a9 =-1, 

      int  a10=-1,int a11=-1,int a12=-1,int a13=-1,int a14=-1, 

      int  a15=-1,int a16=-1,int a17=-1,int a18=-1,int a19=-1, 

      int  a20=-1,int a21=-1,int a22=-1,int a23=-1,int a24=-1, 

      int  a25=-1,int a26=-1,int a27=-1,int a28=-1,int a29=-1, 

      int  a30=-1,int a31=-1,int a32=-1,int a33=-1,int a34=-1); 

 

Constructs a set with the parameters as members. 

Example 

 

 Set s(2, 4, 6, 8);  // creates a set of 4 integers 

 Set s();  // creates a null set. 

 

 enum Weekdays { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, 

FRIDAY, SATURDAY, SUNDAY}; 

 Set workingDays(); 

  

 

Set (const Set &); 

Set & operator = (const Set &); 

operator String(); 

 

Access Functions 

 

void setEnumLimit(int i); 

This function set a guard on the allowable values in the set.  i should be the maximum 

number of enumerated value allowable.  It is advisable to initialise all sets with 
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this functions.  The complement operator will not work properly unless this is 

done. 

 

For example, in the above set, it is desirable to invoke the function 

  

 workingDays.setEnumLimit(FRIDAY); 

 

 Set s1 = Set (MODAY, TUSEDAY, WEDNESDAY, THURSDAY, FRIDAY);   

 

 Set workingDays = Set(SATURDAY);  // Error 

 

  int getEnumLimit(void) const; 

  Returns the ordinal value of the highest constant allowable in the set. 

 

  int card() const; 

  Returns the cardinal number of a set. 

  

Implementor Functions 

 

 String getString(); 

 Returns a textual representation of the set. 

 int operator < (Set &s); 

 Privides an unspecified ordering on the set. 

 

Implementor Friend Functions and Operators 

 

 friend Set operator +  (const Set & s1, const Set & s2); union 

 friend Set operator *  (const Set & s1, const Set & s2); intersection 

 friend Set operator -  (const Set & s1, const Set & s2); difference 

 friend int operator <  ( int i1,  const Set & s1);  membership 

 friend int operator <= (const Set & s1, const Set & s2); subset 

 friend int operator == (const Set & s1, const Set & s2); equality 

 friend int operator != (const Set & s1, const Set & s2); inequality 

 friend Set operator ~  (const Set & s1);   complement 

 

Stream function overloads. 
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friend ostream& operator << (ostream& os, Set s); 

friend istream& operator >> (istream& is, Set& s); 

 

Related Classes:  PitClass and SetIterator
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class SetIterator 

 

Purpose:  To iterate on a set. 

 

Manager Functions and Operators 

 

 SetIterator(Set & s); 

  Creates an iterator for set s. 

 

Access Functions 

 

const int & getCurrent();  

 Gets the ordinal value of the current element. 

void makeCurrent(const int & c); 

 Makes element with ordinal value c the current one. 

int next(); 

 Moves the iterator cyclically to the 'next' element in the set.  

void init(); 

 Sets the iterator to the 'first' element of the set. 

int atEnd(); 

 True if the iterator is at the 'last' element of the set. 
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class Stack 

 

template <class T> 

class Stack  

 

Purpose: To implement a first in last out store. 

 

Manager Functions and Operators 

 

Stack( const int s = 100); 

 Creates a stack using an array of size s. 

Stack( const Stack & s ); 

Stack & operator = (const Stack & s); 

 

~Stack(); 

int inStack(const T & p) const; 

 

void flush(); 

 

Access Functions 

 

void push(T  p);  

 Pushes a copy of p onto the stack.  The array will double in size on overflowing.  If 

there is not enough space for expanding the array, the function sends an error 

message to cerr and terminates the program. 

T pop(); 

 Returns a copy of the entity on the top of the stack, and removes it from the stack. 

int isFull(void); 

 Returns FALSE always.  

int isEmpty(void); 

 Returns TRUE if the stack is empty, FALSE otherwise. 
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class String 

 

Purpose: To represent character strings. 

 

Manager Functions and Operators: 

  

String(int len = MAXCSLEN) 

 Constructs a null string of length specified by len.  

String ( char * st) 

 Constructs an instance of class string from a c string. 

 

 Examples 

   String s1; 

   String s2(20); 

   String s3("demo"); 

 

String( const String & s) 

 Creates a deep copy of string s. 

~String() 

 String operator = (const String & s); 

String operator = ( char c); 

String & cvtNs(int i); 

 Converts the integer to its string representation. 

int num(); 

 Converts a string to its integer representation. 

String & operator = ( const StringIterator & sti);  

 

Access Functions 

 

char & operator[] ( int i) 

 Indexing of individual characters in a string. 
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Implementor Functions 

 

int length() const; 

 Returns the number of characters in a string. 

char * getCString( ) const; 

 Returns a c-string.  Care must be exercised in the use of  the returned pointer 

which should be limited to  within the lifetime of the object. 

String  operator + ( char c) 

 Returns a concatenation of the object and character c. 

String  operator + (const String & s) 

 Returns a concatenation of the object and string s. 

String & operator += ( const String & s);  

 Concatenates the object and s. 

String & operator += ( char c); 

 Concatenates the object and c. 

String & pad( int n, char c) 

 Makes the string to consist of n characters of value c. 

  

The following comparison operators are available which yield TRUE/FALSE 

values, where the ordering is done on the basis of ASCII colating sequences. 

 

int operator == (const String & st) 

int operator != (const String & st) 

int operator > (const String & st) 

int operator < (const String & st) 

int operator >= (const String & st)  

int operator <= (const String & st) 

  

int index(char c) const 

 Returns the index of the first character in the string equal to c.  Returns a negative 

number if the character is not found. 

int index(String & s) 

 Searches the object for the first occurrence of the string s and returns the index of 

the start of the string in the object. Returns a negative number if the character is 

not found. 
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void sub ( int i1, int i2) 

 Converts the object int a new string consisting of its substring from index i1  

to index i2. 

String & upperCase() 

 Converts the object to upper case. 

 

Friend Operators 

 

ostream & operator << (ostream & os, const String & st); 

 Stream output. 

istream & operator >> (istream & is, String & st); 

 Stream input. 

 

Related Classes: StringIterator 

 

Instances 

 

 String NULLSTRING 
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class StringIterator 

 

Purpose: To traverse class String 

 

Manager Functions and Operators and Operators 

 

StringIterator(String & s); 

 Creates an object of class StringIterator for a string s, with it current position set at 

the first character in the string. 

StringIterator(); 

 Creates an unassigned object of class StringIterator. 

Copy Constructors - default used. 

Destructors - default used. 

Assignment - default used. 

 

Access Functions 

 

char * getCString() const; 

 Gets the C-string part of object.  Be careful here with lifetimes here. 

char get() const; 

 Gets character at current position. 

void put(char c); 

 Replaces character at current position.  If current position is at null, then it appends 

the character to the string. 

 

Implementor Functions and Operators 

 

int atEnd() const; 

 Tests for the end of string condition happens, TRUE is returned if  the Iterator is at 

the final null. 

int operator ==(const StringIterator & s); 

 Tests the equality of two substrings, from current position to end of string. 

int operator != (const StringIterator & s); 

 Tests for inequality of two substrings, starting at their current position. 
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StringIterator & operator ++();  

 Increments the current position  Its maximum value corresponds to the final null. 

StringIterator & operator --(); 

 Decrements the current position, if the current position is to the right of the first. 

StringIterator & operator += (int i); 

 Compound of + and =. 

void reset(); 

 Sets the cursor to start of string. 

StringIterator & next(); 

 Advances iterator to first non-blank character in the string. 

int searchFor(char c); 

 Returns TRUE if c in substring and relocates iterator to position of c. 

int isKeyWord(int & count, String const ar[], const int & len); 

 Returns TRUE if object is one of the characters in ar.  len is the length of the 

array, and count is the matching index of the array. 

int nextChar( const char & c); 

 If next non blank character in String is c, it increments p and returns TRUE. 

int heads(String tstr); 

 Returns TRUE if iterator points to part of a string that starts with tstr. 

int betweenBrackets(String & s); 

 BetweenBrackets returns TRUE if the string has a left bracket '(' as its first non 

blank character and has matching right bracket and FALSE otherwise.  If TRUE, 

the String s is a copy of the string that was enclosed between brackets. 

int isNum(); 

 Returns TRUE if the next non-blank entity in the string, starting at the current 

position is an integer. 

int num(); 

 Interprets the characters as a number and returns the value found.  Advances the 

current position to the position following the number. 

void outString( StringIterator si2 = NullString); 

 Writes out the substring, starting at the current position, until the end of the string 

is encountered or until position si2 is reached.  

String  makeString( StringIterator se = NullString); 

 Returns an object of type String consisting of the substring in the iterated object 

from the current position until position se is  reached  or to end of the string. 
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void upperCase(); 

 Converts  characters in the original string to uppercase, starting with the current 

position and ending with the end of string. 

int length(); 

 Returns the length of the original string, starting with the current position. 

int uninstantiated(); 

 Returns TRUE if the StringIterator is not currently associated with a string. 

 

Friends 

 

ostream & operator << (ostream & os, const StringIterator & si); 

 Outputs the original string, starting at the current position. 
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class Text 

 

Purpose:  To represent text objects in a score.  Text objects are those which are not 

handled by class Word and do not use open scoping.  Text entries in a score other than 

tempo, expression and metronome markings are represented by class Text. 

 

Manager Functions and Operators 

 

Text(tagType tg); 

Text(const Text & tx); 

virtual ~Text(); 

 

 Text & operator = (const Text & tx); 

 

 

Access Functions 

 

The following function set and retrieve the information in a Text object. 

String getText(void) const; 

tagType getTextTag(void) const; 

void putText( const String & s); 

void putTextTag(tagType tt); 

String getString(); 

  Is the same as getText. 

String getName(); 

 Returns the string "Text". 
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class TimeSig 

 

Purpose:  To represent time signature in a score. 

 

Manager Functions and Operators 

 

TimeSig(int n1 = 4, int d1 = 4);  

 Creates a time signature of n1/d1. 

TimeSig('C');       

 Creates a common time signature. 

TimeSig('c');      

 Creates a common time signature. 

TimeSig(const TimeSig & ts); 

virtual ~TimeSig(); 

operator Rat() const; 

 

Access Functions 

 

long getTimeSigNumerator(void) const; 

 Returns the time signature numerator. 

long getTimeSigDenominator(void) const; 

 Returns the time signature denominator. 

TimeSigType getTimeSig(); 

 Returns a copy of the time signature. 

void putTimeSig( long n1, long d1); 

 Sets the time signature to n1/d1. 

String getString(); 

 Returns a string description of the key signature.  It is of the form numerator, 

denominator, for example {3,4}. 

String getName(); 

 Returns the string "TimeSig". 

 

Related Classes: TimeSigType 
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class TimeSigType                           Inherits for class Rat 

 

Purpose: To represent rational numbers as in a time signature.  Unlike objects of class 

Rat, the class that represents rational numbers.  TimeSigType rational numbers are 

not automatically made relatively prime.  Hence 6/8 does not automatically become 

3/4, as it would for class Rat. 

  

Manager Functions and Operators 

 

TimeSigType(long n1 = 4, long d1 = 4); 

TimeSigType(Rat rt); 

TimeSigType & operator = ( const TimeSigType & tst); 

 

Access Functions 

 

long getTimeSigNumerator(void) const; 

 Returns the numerator of the time signature. 

long getTimeSigDenominator(void) const; 

 Returns the denominator of the time signature. 

String getString(); 

 Returns a string containing two numbers separated by a comma, for example, {6,8}. 

String getName(); 

 Returns the string "TimeSigType". 

 

Related Classes: Rat, TimeSig.
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class Tuple 

 

Purpose:  To represent Tuples, that is an ordered collection of integers, where the 

position in the tuple is deterimined at input. 

 

Manager Functions and Operators 

 

Tuple(); 

 Used for creating null tuples. 

Tuple(int sz); 

 Used for creating a sz-tuple. 

Tuple(const Tuple & t); 

~Tuple(); 

void init(const int tupleSize); 

 Used to populate a null tuple with tuples of size tupleSize. 

Tuple & operator = (const Tuple & t); 

operator String(); 

 

Access Functions 

 

int operator [](int i);  

 Returns the value of the element at position i. 

void put(int t, int i);  

 Writes t in the element at position i. 

int operator == (const Tuple t);  

 Test for equality. 

int operator != (const Tuple t );  

 Test for inequality. 

int operator < (const Tuple t);  

 Provides an undefined ordering of tuples. 

 

Friend Implementor Functions and Operators 

 

ostream & operator << ( ostream & os, const Tuple & t); 

 Stream output of a tuple in a displayable form. 
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Related Classes:  PitchTuple
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class Words 

 

Purpose:  To represent sung text in a score. 

 

Manager Functions and Operators 

 

Words( const String & t = String() ); 

Words( const Words & wd); 

virtual ~Words() { } 

 

Words & operator = ( const Words & wd); 

 

Access Functions 

 

The following function set and retrieve the field in a Word object. 

String getWords(void) const; 

 Returns the current value. 

void putWords(const String & s); 

Sets the object to value s. 

String getString(); 

 Is the same as getWords(). 

String getName(); 

 Returns the string "Word". 
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Manual Pages for Functions. 
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float diff1 ( ScoreIterator &, ScoreIterator &, Rat ln); 

float difference ( ScoreIterator &, ScoreIterator &, Rat ln); 

 

These functions calculate the arithmetic difference between sections of length, ln, of 

two scores pointed to be si1 and si2.  See 8.3 for details of how the calculations are 

performed.   

 

void setTrace(); 

Causes the of difference values calculated to be output to file ‘out.out’. 

void setDuration(); 

 Causes each windowed difference to be weighted according to the duration of the 

note(s) that start at the beginning of the window. 

Void setWindow(); 

 Causes each windowed difference to be weighted by the width of the window. 

void setSlopes(); 

 Causes contour slopes to be incorporated into calculations. 

void setStresses(); 

 Causes metrical stresses to be incorporated into calculations. 

void setTranspose(); 

Causes transposition independent calculations to be made. 

 

Each function above has corresponding unset function, and query functions.  The 

style of all of these follows the same pattern, as follows - 

 

   void unsetSlope(); 

   int isSlopeSet(); 

 

diff1 is a simplified version of the difference function which estimates a melodic 

difference on the basis of pitch differences weighted by window widths only.  

Transposition processing is not done.
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void form( String & str, Score & s, Rat In,                                  float 

(*diff)( ScoreIterator &si1, ScoreIterator &si2, Rat ln), float 

criticalValue, int lid = 0 ); 

 

Calculates the form of the monophonic score s using the function diff to calculate the 

differences.  ln is the time interval of the segments used to evaluate the form.  See 

8.4 for details. 

 

Various functions influence the effect of the difference calculations.  See manual 

page for difference for details. 
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int getNextScoreNames(String  fname, String & str, int depth = 0); 

 

The purpose of this function is to examine the file fname which may contain either 

(a) an encoded score or (b) a list of files which contain encoded scores. 

 

getNextScoreNames is called repeatedly until it returns FALSE.  It places the name 

of the next file for processing in the string str, and returns TRUE.  If no more files 

exist, the function returns FALSE.  Hence this function may be useful in the 

following context 

 

  while ( getNextScoreNames( fname, str) 

  { 

    Score s(str); 

   

    . . . .   do processing on s 

 

  } 

 

In the case of fname containing a score, getNextScoreNames returns TRUE on the 

first call and copies fname to scr.  In this case, a second call will return FALSE. 

 

If fname contains a list of filenames, one per line, the first call to 

getNextScoreNames will return TRUE, and place the name of the first file in str.  

The subsequent calls will place the name of each next file in str.  After the last file 

name form in fname is processed, the next call will return FALSE. 
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void isort(int inAr[], int outAr[], int size); 

 

Performs an insertion sort on the first size elements of inAr, and produces the results in 

outAr. 
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int median( int values[], float weights[], int size); 

 

Returns the median  of the first size values in the array values, with the associate weights 

in array weight. 
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int sameSection(const Rat & ts, const Rat & p1, const Rat & p2); 

 

 Returns TRUE if p1 and p2 lie within the same primary division of ts. The primary 

division is determined by dividing ts by the lowest prime number of its denominator, 

other than one. 

 

 The function is of use for checking where two position within a bar fall in relation to 

the primary division of the bar. 

 

Example: 

 

 Suppose the time signature is 6/8, then the primary division of the bar is by 2. In this 

case the following results are produced. 

 

   p1 p2 Result  Comment 

  

   1/8 2/8 TRUE  both displacements are in first half. 

   4/8 5/8 TRUE  both displacemants are in second half. 

   1/8 5/8 FALSE p1 is in first half, p2 in second half. 
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A2.1  Code for Parts Expert. 

 

//   partsexp.h 

#include "score.h" 

const int MAXEXPERTSTORE = 50; 

 

struct Limits      // stores lower and upper bar numbers of each 8 bar 

part 

{ 

 int lower, upper;  

}; 

 

class PartsExpert 

{ 

 Limits ar[MAXEXPERTSTORE]; 

 int size;                   // number of expanded 8-bar sections 

 Score * sptr; 

 

 public: 

 

 PartsExpert( Score & s) 

 { 

  size = 0; 

  sptr = &s; 

  int n = 1; 

  ScoreIterator si( s,0 ); 

 

  while (TRUE) 

  { 

   if (size + 1 == MAXEXPERTSTORE ) 

   { 

    cerr << "\nno room in PartsExpert"; 

    return; 

   } 

   if ( !si.locate(BAR, n+7)) return; 

   ar[size].lower = n; 

   ar[size++].upper = n+7; 

   if (si.step(BARLINE)) 

   { 

    if (si.getBarType() < Set (CLHLC, CLLC, CLH, CLL, CLC, CL)) 

    {     

     ar[size].lower = n; 

     ar[size++].upper = n + 7; 

    } 

   } 

   else return; 

   n += 8; 

  } 

 } 

 

 int isSingled() 

 { 

  // false for explicit repeats 

  if ( ar[0].lower == ar[1].lower ) return FALSE; 

 

  // must have at least two parts 

  if ( size <= 2 ) return TRUE; 

 

  // true if bars 1-8 dissimilar to bars 9-16 
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  ScoreIterator si1(*sptr,0), si2(*sptr,0); 

 

  si1.locate(BAR,1); 

 

  //d is distance of 7 1/2 bars + eight note 

  Rat span = si1.getTimeSig() * Rat (15,2) + Rat(1,8); 

  si2.locate(BAR,9); 

  int diff = diff1( si1, si2, span ); 

  if ( diff > 300 ) return TRUE; 

 

  // false otherwise 

  return FALSE; 

 } 

 

 int numberOfParts() 

 { 

  if ( isSingled()) return size; 

  return size/2; 

 } 

 

 int hasOddPart() 

 { 

  if ( !isSingled() && (size % 2) != 0 ) return TRUE; 

  return FALSE; 

 } 

 

 int getBarNoForPart(int i) 

 { 

  int index; 

  if ( isSingled() ) index = i - 1; else index = i*2 - 2; 

  if ( index  < 0 || index >= size ) 

  { 

   cerr << 

"\nPartsExpert::getBarForPart(int) called with impossible part number"; 

   cerr<< "\nParameter value is " << i << " giving index = " << index 

       << ", parameter should be in range 0 to " << size; 

   if ( isSingled() ) cerr << "( tune is singled )"; 

  } 

  return ar[index].lower; 

 } 

}; 

//      end of partexp.h 
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A2.2  Program to Evaluate Average Pitches in Tune and Turn. 

 

// To examine the average pitches in the first and second part of tunes 

// includes provision for case where the the first part has been 

// notated twice. 

 

#define ___MAIN 

 

#include <iostream.h> 

#include <fstream.h> 

#include "score.h" 

#include "almain.h" 

#include "score5.h" 

#include "partsexp.h"" 

 

extern ofstream fout; 

 

int main(int argc, char * argv[]) 

{ 

 

 if (argc != 2) 

 { 

  cout << "\nInvalid command line; should be  ex1 <filename> "; 

  return 1; 

 } 

 

 long countTunes = 0; 

 long countTunesRising = 0; 

 

 String fname; 

 

 while (getNextScoreNames(argv[argc-1], fname)) 

 { 

  Score s(fname); 

  if ( s.isNull() ) 

  { 

   cout << "\nScore " << fname << " does not exist"; 

   return 2; 

  } 

 

  int sumOfPitches[2] = { 0, 0}; 

  int noteCountOfPart[2]    = { 0, 0}; 

 

  cout << "\n" << s.getString(TITLE) << " " << s.getString(ETITL); 

 

  ScoreIterator si(s, 0); 

 

 

  while ( si.getBarNo() <=8 && !si.isLast()) 

  { 

   if ( si.getTag() == NOTE ) 

   { 

    sumOfPitches[0] += si.getPitch12(); 

    noteCountOfPart[0]++; 

   } 

   si.step(); 

  } 

 

  PartsExpert partsExpert(s); 
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  int nextBar = partsExpert.getBarNoForPart(2); 

 

  while ( si.getBarNo() <= nextBar+8 && !si.isLast()) 

  { 

   if ( si.getTag() == NOTE ) 

   { 

    sumOfPitches[1] += si.getPitch12(); 

    noteCountOfPart[1]++; 

   } 

   si.step(); 

  } 

 

  float average[2] = { 0, 0}; 

 

  for ( int count = 0; count < 2; count++ ) 

  { 

   if ( noteCountOfPart[count] > 0 ) 

   { 

    average[count] =  

                  ((float)sumOfPitches[count])/ noteCountOfPart[count]; 

   } 

   else 

   { 

    cerr << "\nno notes in tune!"; 

   } 

  } 

  countTunes++; 

  if ( average[0] < average[1] ) countTunesRising++; 

 } 

 fout << "\n\n\nAverage pitches analysis of parts 1 and 2 of tunes."; 

 fout << "\n\nFiles used from '" << argv[1] << "'." 

      << "\n\nTunes with higher average pitch in 2nd part = " 

      << countTunesRising << " out of " << countTunes << " (" 

      << countTunesRising*100/countTunes << "%). "; 

 

 return 0; 

} 
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A2.3  Program to Search for the Occurrence of a Tuple. 

 

 //                                 ex8.cpp 

 

#define ___MAIN 

 

#include <iostream.h> 

#include <fstream.h> 

#include "score.h" 

#include "store.h" 

#include "tuple.h" 

extern ofstream fout; 

 

void drawLine() 

{ 

 fout << 

"--------------------------------------------------------------------"; 

 return; 

} 

 

int main(int argc, char * argv[]) 

{ 

 

 if (argc < 2 || argc > 3) 

 { 

  cout<<"\nInvalid command line; should be  ex8 [-l<size>] <filename>"; 

  cout << "\nwhere size is the size of the tuple ( default 8)."; 

  return 1; 

 } 

 

 int tupleSize = 16; 

 if ( argc == 3) 

 { 

  if ( *argv[1] == '-' && *(argv[1] +1) == 'l') 

   sscanf(argv[1]+2,"%f",&tupleSize); 

  else 

  { 

   cerr << "\nInvalid parameter " << argv[1] << "\n"; 

   return 1; 

  } 

 } 

 

 cout << "\nSearch for pitch tuple"; 

 

 cout << "\nInput tuple of Size " << tupleSize; 

 PitchTuple target(tupleSize); 

 cout << '\n'; 

 

 for ( int i = 0; i < tupleSize; i++) 

 { 

  cout << i+1 << ':'; 

  int j; 

  cin >> j; 

  target.put(j, i); 

 } 

 cout << "\nSearching"; 
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 int countAll = 0; 

 

 String str, fname(argv[argc-1]); 

  

 while (getNextScoreNames(fname, str)) 

 { 

  Score s(str); 

  ScoreIterator si(s, 0); 

  countAll++; 

  si.locate(BAR,1); 

  PitchTuple tuple(tupleSize); 

  int count = 0; 

   

  while (si.getBarNo() != tupleSize/2 + 1 && ! si.isNullStave()) 

  { 

   if ( si.getTag() == NOTE && 

    !(GRACE_NOTE < si.getAttributeSet()) && 

   ( si.getBarDist() == Rat(0,1) ||  // start of bar 

     si.getBarDist()==(si.getTimeSig()/Rat(2))))// middle of bar    

    tuple.put( si.getPitch12(), count++); 

   si.step(); 

  } 

 

  if ( target == tuple ) 

   cout << '\n' << si.getString(NUMBER) << ' ' << si.getString(TITLE) 

        << ' ' << si.getString(ETITL); 

 } 

 return 0; 

} 
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A2.4  Program used to Traverse and List the Entities in a Polyphonic Score. 

 

 Score s(filename); 

 ScoreIterator si(s); 

 

 printEntries(s, fout); 

 fout << '\n'; 

 

 int more = TRUE; 

 

 while ( more ) 

 { 

  fout << '\n' << si.getStaveId() << ':' 

       << si.getName() << ":" << si.getString(); 

  if ( si.isLast()) more = FALSE; else si.step(); 

 } 

 

  

Sample output of this program is shown in table A3.6 in appendix 3. 
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Program outputAccented Tone analysis for pieces in =d:\mdb\tdmoi\tdmoij.dir 

 

Frequency    Pitch 16-Tuple 

______________________________________________________________ 

1            {0,12,16,9,7,7,2,2,0,12,16,9,7,12,0,0} 

1            {0,12,14,12,0,12,4,2,0,12,14,12,0,12,16,12} 

1            {0,12,14,11,16,17,14,5,0,12,14,14,16,17,14,12} 

1            {0,12,9,7,5,4,2,7,0,12,9,7,5,2,7,12} 

1            {0,12,9,4,0,4,-1,5,0,12,14,5,-5,2,4,0} 

1            {0,12,7,9,0,12,7,17,0,12,7,9,19,21,7,2} 

1            {0,12,7,7,0,12,2,2,0,12,7,12,9,5,0,0} 

1            {0,12,7,4,0,12,5,5,0,4,2,0,16,7,2,5} 

1            {0,12,7,2,-5,4,4,2,0,12,7,2,-5,4,2,0} 

1            {0,11,4,5,0,2,7,2,0,11,12,5,0,0,0,0} 

1            {0,9,12,9,0,9,10,7,5,9,12,9,0,7,9,5} 

1            {0,9,12,9,0,9,4,9,0,9,12,9,0,7,9,5} 

1            {0,9,12,9,0,9,4,7,0,9,12,9,17,12,7,5} 

1            {0,9,10,7,9,5,7,4,0,9,10,7,12,0,9,5} 

1            {0,9,10,4,9,7,5,7,0,9,10,4,9,7,0,5} 

1            {0,9,10,4,0,9,10,5,0,9,10,4,16,16,10,5} 

1            {0,9,9,9,0,12,2,2,0,9,9,9,0,0,4,0} 

1            {0,9,7,9,0,9,7,2,0,9,7,9,9,10,9,2} 

1            {0,9,7,5,14,12,7,9,0,9,7,5,14,12,7,5} 

1            {0,9,7,4,0,9,7,10,0,9,7,4,4,4,7,10} 

1            {0,9,0,0,0,9,0,2,0,9,0,-7,10,9,0,2} 

1            {0,8,8,1,1,10,3,1,0,1,3,8,0,-2,-4,-4} 

1          {0,8,5,8,0,8,8,5,0,8,5,8,13,8,8,5} 

1            {0,8,5,8,0,8,5,0,0,8,5,8,0,8,5,-2} 

1            {0,7,12,7,9,2,9,2,0,4,7,12,7,0,7,0} 

1            {0,7,12,7,9,2,4,0,0,7,12,7,9,14,12,12} 

1            {0,7,12,7,7,4,7,4,0,7,12,7,7,2,7,2} 

1            {0,7,12,7,5,2,4,0,0,7,12,7,9,14,12,4} 

1            {0,7,12,7,3,3,8,3,0,7,12,7,1,1,-4,1} 

1            {0,7,11,11,7,12,16,11,4,5,11,11,7,7,4,0} 

1            {0,7,8,7,0,7,1,5,0,7,8,7,12,7,1,-4} 

1            {0,7,5,10,0,7,5,5,0,7,5,10,14,12,5,5} 

1            {0,7,4,7,0,7,0,0,0,7,4,7,0,4,0,-3} 

1            {0,7,4,4,0,7,7,10,0,7,4,4,9,10,7,5} 

1            {0,7,2,7,0,7,2,4,0,7,4,7,12,7,2,4} 

1            {0,7,2,5,0,7,5,0,0,7,2,5,3,7,5,0} 

1            {0,7,0,3,7,5,7,2,0,7,0,3,5,10,5,-2} 

1            {0,7,-2,5,0,7,3,12,15,10,5,2,0,5,7,0} 

1            {0,6,8,10,12,6,1,1,0,6,8,10,12,6,3,8} 

1            {0,5,12,12,7,5,7,0,0,5,12,12,9,10,5,5} 

1            {0,5,12,10,9,12,17,7,0,5,12,10,9,12,17,5} 

1            {0,5,12,8,7,-2,7,7,0,5,12,17,12,7,12,5} 

1            {0,5,10,4,9,10,7,5,0,5,10,4,12,10,7,5} 

1            {0,5,9,14,12,4,9,7,0,5,9,14,12,4,9,5} 

1            {0,5,9,10,4,0,4,7,0,5,9,7,16,10,5,5} 

1            {0,5,9,9,0,4,7,10,0,5,9,9,16,10,7,5} 

1            {0,5,9,7,9,2,9,2,0,5,9,7,9,0,5,5} 

1            {0,5,8,8,12,12,10,3,0,5,8,8,12,10,8,5} 

1            {0,5,8,0,-2,-2,-2,3,0,5,8,0,0,5,0,-2} 
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1            {0,5,7,12,15,12,10,4,0,5,7,12,15,10,5,5} 

1            {0,5,7,10,12,10,7,3,0,5,7,10,12,10,7,5} 

1            {0,5,7,9,0,5,7,5,0,5,7,9,17,12,7,5} 

1            {0,5,7,8,12,3,1,-2,0,5,7,8,12,3,5,8} 

1            {0,5,7,8,7,0,3,-2,0,5,7,3,12,15,7,5} 

1            {0,5,7,7,12,10,10,3,0,5,7,7,12,10,12,5} 

1            {0,5,7,5,10,10,7,3,0,5,7,5,10,10,7,5} 

1            {0,5,7,5,0,5,12,9,14,12,10,9,0,7,9,5} 

1            {0,5,7,4,9,7,5,0,0,5,9,7,9,10,7,5} 

1            {0,5,7,0,16,14,9,7,0,5,7,0,16,14,7,5} 

1            {0,5,5,7,-2,3,3,5,0,5,7,7,12,10,8,5} 

1            {0,5,4,10,9,14,9,7,0,5,4,10,9,14,9,5} 

1            {0,5,4,7,9,10,9,4,0,5,4,7,9,10,7,5} 

1            {0,5,3,3,0,5,5,0,0,5,3,3,8,7,0,-2} 

1            {0,5,2,-3,-3,-3,-8,-5,0,5,2,-3,9,10,5,5} 

1            {0,5,0,7,5,4,2,-1,0,5,0,7,5,4,11,12} 

2            {0,5,0,0,0,5,9,2,0,5,0,0,5,7,9,5} 

1            {0,5,0,0,0,5,2,2,0,5,5,9,10,5,-3,2} 

1            {0,5,-3,3,-5,-2,-5,-2,0,5,-3,2,-2,3,0,-7} 

1            {0,4,12,12,11,9,7,2,0,4,12,12,9,4,9,2} 

1            {0,4,9,7,0,4,-3,2,0,4,9,7,2,4,0,0} 

1            {0,4,7,12,9,7,-1,-1,0,4,7,12,9,7,-1,0} 

1            {0,4,7,12,0,4,7,2,0,4,7,12,14,12,7,2} 

1            {0,4,7,12,0,4,2,5,0,4,7,12,9,7,5,0} 

1            {0,4,7,4,2,5,9,7,0,4,7,4,2,5,4,-3} 

1            {0,4,7,4,2,2,9,2,0,4,7,4,2,4,0,-3} 

1            {0,4,7,4,0,4,7,2,0,4,7,12,11,9,7,2} 

1            {0,4,7,2,-2,2,5,5,0,4,7,2,7,0,0,0} 

1            {0,4,5,9,0,4,5,2,7,0,5,9,7,5,0,12} 

1            {0,4,5,4,0,5,-1,-5,0,4,5,4,7,5,0,0} 

1            {0,4,4,7,9,7,9,7,0,4,4,7,9,7,2,2} 

1            {0,4,4,7,5,7,4,2,0,4,4,7,5,7,4,0} 

1            {0,4,4,4,0,4,2,-3,0,4,4,4,9,4,4,-3} 

1            {0,4,4,-1,-3,7,4,7,0,4,4,2,9,2,-3,-3} 

1            {0,4,2,5,0,7,12,7,5,4,2,5,7,5,0,0} 

1            {0,4,2,5,0,4,7,9,0,4,2,5,7,10,5,-2} 

1            {0,4,2,5,0,4,7,9,0,4,2,5,0,7,12,5} 

1            {0,4,2,0,7,-1,-1,-5,0,4,2,11,5,-1,4,0} 

1            {0,4,0,4,-1,2,7,2,0,4,0,4,7,2,0,-3} 

1            {0,4,0,4,-3,-7,-3,-2,0,4,0,0,9,7,5,5} 

1            {0,4,0,-3,0,4,-1,-5,0,4,0,4,0,-5,0,-3} 

1            {0,4,0,-3,-1,2,-1,-5,0,5,0,-3,0,0,5,0} 

1            {0,3,8,10,12,13,8,10,0,3,8,10,12,13,3,8} 

1            {0,3,8,10,0,3,8,1,0,3,8,10,12,13,3,8} 

1            {0,3,8,8,3,1,5,-2,0,3,8,8,3,5,0,-4} 

1            {0,3,8,6,0,6,0,3,0,3,8,6,0,1,0,1} 

1            {0,3,8,5,0,3,12,8,0,3,8,5,0,3,12,8} 

1            {0,3,8,3,1,3,8,7,0,3,8,3,1,3,3,-4} 

1            {0,3,8,0,1,0,1,-2,0,3,8,0,-2,7,8,-4} 

1            {0,3,7,10,7,7,3,5,0,3,7,10,7,2,3,0} 

1            {0,3,7,10,2,-2,2,2,0,3,7,10,14,12,14,12} 

1            {0,3,7,7,12,3,7,3,-2,3,7,7,12,15,7,5} 

1            {0,3,7,7,-2,2,5,5,0,3,7,7,12,8,7,0} 



Appendix 3:  Output of Programs. 

 251 

1            {0,3,7,3,-2,2,5,5,0,3,7,15,10,3,3,0} 

1            {0,3,7,0,0,3,7,0,0,3,7,2,-2,10,5,-2} 

1            {0,3,5,7,0,3,5,2,0,3,5,7,12,8,7,2} 

1            {0,3,5,6,5,10,3,0,1,3,5,6,5,10,3,1} 

1            {0,3,5,3,3,3,3,3,0,3,5,3,-4,1,-4,1} 

2            {0,3,5,3,0,3,-2,-2,0,3,5,3,0,1,-4,-4} 

1            {0,3,3,8,1,0,-2,-2,0,3,3,8,3,8,3,-4} 

1            {0,3,3,3,5,3,5,-2,0,3,3,8,5,3,3,-4} 

1            {0,3,3,3,1,0,5,-2,0,3,3,8,5,3,3,-4} 

1            {0,3,3,1,-2,7,8,7,0,3,3,1,-4,8,0,1} 

1            {0,3,2,0,0,3,5,-2,0,3,2,0,10,10,5,-2} 

1            {0,3,1,-5,0,0,1,-4,0,3,1,-5,3,8,1,-4} 

1            {0,3,0,3,1,5,1,5,0,3,0,3,-4,5,8,-2} 

1            {0,3,0,-5,-9,-5,-2,3,0,0,3,8,7,-2,-5,-7} 

1            {0,3,-5,3,2,0,-2,2,0,3,-5,3,2,3,-2,2} 

1            {0,2,9,2,0,2,9,-3,0,2,9,2,7,12,5,0} 

1            {0,2,5,7,0,2,-1,-5,0,2,5,7,-3,2,4,0} 

1            {0,2,5,5,0,2,2,2,0,2,5,5,7,2,0,0} 

1            {0,2,5,4,0,2,-3,2,0,2,4,12,7,2,-5,0} 

1            {0,2,4,9,4,0,0,-3,0,2,4,9,4,0,2,0} 

1            {0,2,4,9,0,2,4,-3,0,2,4,9,7,2,4,0} 

1            {0,2,4,7,12,7,5,2,0,5,4,7,12,7,4,0} 

1            {0,2,4,7,4,0,2,0,0,2,4,7,4,0,2,0} 

1            {0,2,4,7,0,2,4,-3,0,2,4,7,5,4,0,0} 

1            {0,2,4,5,0,2,-5,-1,0,2,4,5,4,2,-5,0} 

1            {0,2,4,2,0,2,0,0,0,2,0,5,7,2,0,0} 

1            {0,2,4,-5,0,2,-5,-5,0,2,4,-3,2,-5,-10,-10} 

1            {0,2,3,5,-2,-9,-5,-5,0,-10,-5,3,-2,3,-5,-7} 

1            {0,2,2,9,0,2,2,5,0,2,2,9,14,12,14,9} 

1            {0,2,0,7,9,12,17,14,0,2,0,7,9,12,16,12} 

1            {0,2,0,7,0,2,0,-5,0,2,0,7,0,0,2,5} 

1            {0,2,0,7,0,2,0,-5,0,2,0,7,0,0,-3,-7} 

1            {0,2,0,4,9,7,2,2,0,2,0,4,9,7,2,0} 

1            {0,2,0,2,0,3,-2,-9,0,2,0,2,5,3,-2,-7} 

1            {0,2,0,-3,0,2,0,-5,0,2,0,-3,-5,-2,0,-5} 

1            {0,2,0,-3,0,2,-1,-5,0,2,4,9,4,-1,0,-3} 

1            {0,2,0,-5,-7,-8,-7,-10,0,2,0,-5,-3,2,4,0} 

1            {0,2,-5,0,9,7,4,2,0,2,-5,0,9,7,4,0} 

1            {0,2,-5,-1,-10,-10,-17,-10,0,2,-5,-1,-10,-10,-17,-12} 

1            {0,2,-5,-10,-8,-5,-3,2,0,2,-5,-10,-8,-5,-3,0} 

1            {0,2,-7,-7,-12,-7,-3,-5,0,0,-7,-7,-12,-5,-3,-7} 

1            {0,1,3,7,3,8,3,8,0,1,3,7,1,3,1,3} 

1            {0,1,3,1,0,1,3,8,0,1,3,3,12,7,3,8} 

1            {0,1,3,-2,-4,5,7,3,8,8,1,3,-4,1,0,-4} 

1            {0,1,3,-4,0,0,-5,-5,0,1,3,-2,0,-2,-9,-4} 

1            {0,1,0,1,0,1,0,-4,0,1,0,3,0,1,0,-4} 

1            {0,1,0,1,0,-2,-7,-7,0,1,0,1,0,-2,-9,-9} 

1            {0,1,-4,0,-9,-4,5,1,0,1,-4,0,-9,-4,0,5} 

1            {0,0,12,9,9,7,2,2,0,0,12,9,9,7,2,0} 

1            {0,0,12,7,4,7,-1,2,0,0,12,7,4,5,0,0} 

1            {0,0,12,0,4,5,0,-1,0,0,12,0,4,5,4,0} 

1            {0,0,9,7,0,0,9,2,0,0,9,12,9,2,4,0} 

1            {0,0,7,12,4,0,7,-1,0,0,7,12,4,9,0,0} 
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1            {0,0,7,12,0,0,2,2,0,0,7,12,9,7,5,0} 

1            {0,0,7,12,0,0,2,2,0,0,7,12,9,7,-1,0} 

1            {0,0,7,10,-2,2,5,0,0,0,7,5,10,9,2,0} 

1            {0,0,7,9,0,0,-5,-5,0,0,7,9,0,9,5,5} 

1            {0,0,7,7,10,10,5,2,0,0,7,7,10,5,0,0} 

1            {0,0,7,7,9,7,5,5,0,0,7,7,9,7,5,0} 

1            {0,0,7,7,9,7,2,4,0,0,7,7,9,7,2,0} 

1            {0,0,7,7,9,7,2,2,0,0,7,7,9,7,0,0} 

1            {0,0,7,5,9,7,2,2,0,12,7,5,9,7,0,0} 

1            {0,0,7,5,3,0,7,1,0,0,7,7,12,7,-2,-4} 

1            {0,0,7,5,0,0,7,1,0,0,7,7,12,8,7,1} 

1            {0,0,7,5,-2,2,5,2,0,0,7,10,7,2,7,0} 

1            {0,0,7,4,0,0,7,4,0,0,7,4,7,-2,-3,-7} 

1            {0,0,7,3,7,12,10,15,12,17,10,3,7,10,7,5} 

1            {0,0,7,2,4,5,4,12,0,0,7,2,4,5,4,0} 

1            {0,0,7,0,-2,-2,5,-2,0,0,7,10,7,2,7,0} 

1            {0,0,5,5,2,5,-2,-5,0,5,2,7,12,7,9,5} 

1            {0,0,5,0,0,0,5,-2,0,0,5,0,5,5,0,-4} 

1            {0,0,4,9,0,0,2,2,0,0,4,7,9,9,2,-5} 

1            {0,0,4,7,0,0,5,4,0,0,4,7,0,0,4,0} 

1            {0,0,4,7,0,0,2,7,0,0,4,2,7,11,2,5} 

1            {0,0,2,2,9,12,2,2,0,0,2,2,9,12,5,0} 

1            {0,0,2,0,-2,-3,-2,-8,0,2,5,4,4,-2,-5,-7} 

1            {0,0,2,-5,0,0,2,5,0,0,2,-5,-1,-1,2,5} 

1            {0,0,2,-5,0,-3,-1,-8,0,0,2,-5,0,-5,-3,-3} 

1            {0,0,1,-2,1,-4,3,8,0,0,1,-2,0,1,-2,-4} 

1            {0,0,1,-4,0,0,3,1,0,0,3,12,8,6,3,1} 

1            {0,0,0,10,12,4,9,7,0,0,0,10,12,4,9,5} 

1            {0,0,0,10,0,0,7,2,0,0,0,10,5,10,7,2} 

1            {0,0,0,7,0,0,-1,2,0,0,0,7,5,4,-1,2} 

1            {0,0,0,5,12,7,9,2,0,0,0,5,12,7,9,5} 

1            {0,0,0,3,0,0,-2,-5,0,2,3,2,0,3,-2,-5} 

1            {0,0,0,0,3,8,-2,-4,0,0,0,0,3,8,-4,-4} 

1            {0,0,0,0,2,2,5,9,7,14,12,5,9,9,5,2} 

1            {0,0,0,0,1,0,-2,-2,0,0,0,0,8,3,-4,-4} 

1            {0,0,0,0,0,0,-2,-2,0,0,0,0,5,0,-2,-2} 

1            {0,0,0,0,0,0,-2,-5,0,0,0,0,-2,3,0,-5} 

1            {0,0,0,0,0,0,-2,-7,0,0,0,0,-2,3,-2,-7} 

1            {0,0,0,-3,-2,2,-3,0,0,0,0,-3,-2,2,3,-2} 

1            {0,0,0,-7,0,0,2,-5,0,0,0,0,2,0,2,-5} 

1            {0,0,0,-7,-2,-2,-2,-9,-3,-2,0,5,5,0,-3,-7} 

1            {0,0,-1,-1,0,7,2,-5,0,0,-1,-1,4,0,-7,-12} 

1            {0,0,-1,-1,0,0,2,5,0,0,-1,-1,5,-1,2,0} 

1            {0,0,-1,-5,0,0,2,-5,0,0,-1,-5,0,-2,-7,-12} 

1            {0,0,-2,3,0,0,-5,-2,0,0,-2,3,-9,1,-2,-4} 

1            {0,0,-2,3,-2,-7,-2,-7,0,0,-2,3,-2,-9,-2,-9} 

1            {0,0,-2,-2,3,1,-4,8,0,0,-2,-2,3,1,-4,-4} 

1            {0,0,-2,-2,-7,0,-2,-2,0,4,-2,-2,-7,3,2,-2} 

1            {0,0,-2,-5,-4,-2,0,0,0,0,-2,-5,-9,3,-5,-7} 

1            {0,0,-2,-5,-9,-5,-5,-7,0,0,-2,-5,-9,-5,-7,-9} 

1            {0,0,-2,-7,-9,-9,-5,-9,2,0,5,0,3,-2,0,-7} 

1            {0,0,-3,0,5,0,-2,-5,0,0,-3,0,5,-5,-3,-7} 

1            {0,0,-3,-3,0,0,-7,5,0,0,-3,-3,-7,-3,-7,5} 
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1            {0,0,-4,8,0,0,0,1,0,0,-4,8,0,0,0,-4} 

1            {0,0,-4,8,0,0,-2,1,0,0,-4,8,1,0,-2,1} 

1            {0,0,-4,8,-2,-2,0,3,0,0,-4,8,5,7,7,3} 

1            {0,0,-4,1,5,1,6,0,5,5,6,3,8,6,3,1} 

1            {0,0,-4,0,0,0,-2,1,0,0,-4,0,5,7,-2,1} 

1            {0,0,-4,-4,5,3,0,-2,0,0,-4,-4,5,3,0,-4} 

1            {0,0,-5,-2,0,0,3,7,0,0,-5,-2,3,10,3,0} 

1            {0,0,-5,-5,0,0,-10,2,0,0,-5,-5,4,0,-3,0} 

1            {0,0,-5,-7,-19,-7,-2,-5,0,0,-5,-7,-19,-7,-2,-7} 

1            {0,0,-5,-9,0,0,-2,3,0,0,-5,-9,-2,3,-5,-7} 

1            {0,0,-7,-5,-8,-7,-8,-1,0,0,-7,-5,-8,-7,-8,-12} 

1            {0,0,-7,-7,-3,2,-3,-5,0,0,-7,-7,-2,-3,-12,-17} 

1            {0,0,-8,-5,0,0,-8,-3,0,0,-8,-5,0,5,0,-3} 

1            {0,0,-8,-12,0,0,-3,2,0,0,-8,-12,0,4,0,-3} 

1            {0,-1,0,-3,-5,7,-1,-5,0,2,4,12,9,4,0,-3} 

1            {0,-1,0,-8,0,-1,-5,-10,0,-1,0,-8,-12,-12,-5,-10} 

1            {0,-1,-3,-1,-10,-5,-3,-1,0,-1,-3,-1,-10,-3,-1,-5} 

1            {0,-1,-3,-5,0,2,-8,-3,0,-1,-3,-5,-8,-8,-8,-3} 

1            {0,-1,-3,-5,0,-1,-1,-3,0,-1,-3,-5,0,2,0,-3} 

1            {0,-1,-3,-8,0,-1,0,-10,0,-3,-5,-8,-12,-12,-5,-10} 

1            {0,-1,-8,0,0,-1,-3,-5,0,-1,-8,0,0,-1,-3,-5} 

1            {0,-1,-8,-12,-10,-1,0,-1,-5,-1,-8,-12,-10,-5,-8,-12} 

1            {0,-2,7,3,0,0,7,1,0,0,7,7,12,8,7,1} 

1            {0,-2,0,-4,-7,-2,-7,-2,0,-2,0,-4,-7,-4,-7,-4} 

1            {0,-2,-2,-2,0,3,7,7,7,5,2,2,7,2,2,0} 

1            {0,-2,-4,-4,5,8,0,-2,0,-2,-4,-4,5,8,1,-4} 

1            {0,-2,-4,-4,5,8,0,-2,0,-2,-4,-4,5,7,8,8} 

1            {0,-2,-4,-5,0,1,3,8,0,-2,-4,-5,0,-5,-9,-4} 

1            {0,-2,-4,-5,0,1,-9,-4,0,-2,-9,-5,7,1,-9,-4} 

1            {0,-2,-4,-5,0,-2,-4,7,0,-2,-4,-5,0,-5,-4,-4} 

1            {0,-2,-4,-9,0,-2,-4,-11,0,-2,0,-2,0,1,-4,-11} 

1            {0,-2,-4,-9,-11,-4,-11,-14,0,-2,-4,-9,-11,-4,-12,-16} 

1            {0,-2,-5,-9,0,-2,-5,-7,0,-2,-5,-9,3,-2,-5,-9} 

1            {0,-2,-9,0,0,3,0,-2,0,-2,-9,0,0,3,-2,-4} 

1            {0,-2,-9,-2,-9,-2,0,5,0,-2,-9,-2,-9,-2,0,-4} 

1            {0,-2,-9,-4,0,1,3,7,0,-2,-9,-5,0,1,-2,-4} 

1            {0,-2,-9,-5,0,0,1,-5,0,-2,-4,8,7,8,1,-4} 

1            {0,-2,-9,-9,-4,1,3,-2,0,-2,-9,-9,0,-2,-4,-4} 

1            {0,-3,4,2,-3,0,4,-2,-3,5,10,4,9,4,-2,-7} 

1            {0,-3,4,-3,-1,-5,2,-5,12,7,4,7,2,-5,0,-3} 

1            {0,-3,0,-3,0,-3,-7,-10,0,-3,0,-3,-5,-3,-7,-10} 

1            {0,-3,0,-7,0,-3,-8,-5,0,-3,0,2,-3,0,5,-7} 

1            {0,-3,-2,-5,-12,-8,-7,-5,0,-3,-2,-5,-12,-8,-3,-7} 

1            {0,-3,-3,-3,-1,-1,-1,-5,0,-3,-3,0,4,2,0,-3} 

1            {0,-3,-3,-5,-7,-7,-3,-7,0,-3,-3,-5,-7,-7,-3,-7} 

1            {0,-3,-5,-10,-17,-10,-8,-10,0,-3,-5,-10,-17,-10,-8,-12} 

1            {0,-3,-7,5,9,0,-8,-5,0,-3,-7,5,7,0,-3,-7} 

1            {0,-3,-8,0,-1,-5,-1,7,0,-3,0,9,7,-1,0,-3} 

1            {0,-3,-8,-3,-1,-5,2,-5,0,-3,-8,9,9,4,0,-3} 

1            {0,-3,-8,-5,-8,-5,-8,-10,0,-3,-8,-5,-8,-5,-8,-12} 

1            {0,-3,-8,-12,-8,-8,-7,-10,0,-3,-8,-12,-7,-10,-8,-12} 

1            {0,-4,8,3,0,-4,1,-2,0,-4,8,3,0,-2,-4,-4} 

1            {0,-4,8,3,-2,-5,7,-5,0,-4,8,3,1,-2,3,-4} 
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1            {0,-4,8,3,-2,-5,-2,-5,0,-4,8,3,1,-2,3,-4} 

1            {0,-4,3,0,0,-4,3,5,0,-4,3,0,-2,8,1,1} 

1            {0,-4,3,-4,-2,-6,1,-2,0,-4,3,-4,1,-2,3,-4} 

1            {0,-4,3,-5,-9,-11,-12,-11,-12,-16,-9,-5,-12,-11,-16,-16} 

1            {0,-4,1,6,8,8,10,3,0,-2,3,6,8,1,-4,-4} 

1            {0,-4,1,3,1,3,-5,-2,0,3,8,3,5,3,-2,-4} 

1            {0,-4,1,-2,0,-4,1,-5,0,-4,1,-2,3,1,-2,-4} 

1            {0,-4,0,2,0,-4,-2,-5,0,-4,0,-5,-9,3,-2,-5} 

1            {0,-4,0,-5,-7,-4,0,0,0,-4,0,-5,-7,3,0,-7} 

1            {0,-4,-2,-4,0,-4,-4,5,0,-4,-2,-4,-2,-5,-5,1} 

1            {0,-4,-2,-5,-2,7,1,-5,0,-4,-2,-5,-2,7,1,-4} 

1            {0,-4,-4,8,1,0,5,-2,0,-4,-4,8,1,-2,0,-4} 

1            {0,-4,-4,7,0,-4,3,1,0,-4,-4,7,0,1,3,1} 

1            {0,-4,-4,5,0,-4,5,3,8,7,5,3,0,-9,-4,-4} 

1            {0,-4,-4,1,3,7,3,8,0,-4,-4,1,3,7,8,8} 

1            {0,-4,-4,-2,0,-4,1,-2,0,-4,-4,-2,0,3,1,-4} 

1            {0,-4,-4,-2,0,-4,1,-2,0,-4,-4,-2,-4,6,1,-2} 

1            {0,-4,-4,-4,1,-4,-2,3,0,-4,-4,-4,8,3,-2,1} 

1            {0,-4,-5,-5,-5,-11,-9,0,1,-4,-5,-5,-5,-11,-9,-4} 

1            {0,-4,-7,-4,0,3,0,-2,0,-4,-7,-4,0,-2,0,-4} 

1            {0,-4,-7,-4,0,0,-4,1,0,-4,-7,-4,5,0,-4,1} 

1            {0,-4,-7,-4,0,-4,5,-2,0,-4,-9,-4,3,3,0,-4} 

1            {0,-4,-7,-4,0,-4,-7,-2,0,-4,-7,-4,3,3,0,-4} 

1            {0,-4,-9,-4,0,3,-2,-2,0,-4,-9,-4,0,3,-9,-4} 

1            {0,-4,-9,-5,-4,-4,1,-5,0,0,-2,-2,3,-2,-4,-4} 

1            {0,-5,2,4,0,-3,0,-3,0,-5,2,4,4,0,4,0} 

1            {0,-5,0,9,12,4,5,-3,0,-5,0,9,12,4,5,0} 

1            {0,-5,0,5,7,2,4,-3,0,-5,0,5,7,2,4,0} 

1            {0,-5,0,-5,0,4,2,-3,0,-5,0,-5,0,7,4,0} 

1            {0,-5,0,-5,0,-5,0,5,0,-5,0,-5,-7,-10,-1,-5} 

1            {0,-5,0,-5,0,-5,0,-6,0,-5,0,-3,-6,6,0,-5} 

1            {0,-5,0,-5,0,-5,-2,-5,0,-5,0,-5,3,-2,-5,-2} 

1            {0,-5,0,-5,-3,-3,-3,-5,0,-5,0,-5,-5,2,4,0} 

1            {0,-5,0,-5,-12,-9,-12,-9,0,-5,0,-5,-12,-11,-12,-16} 

1            {0,-5,0,-7,0,-5,-2,-9,0,-5,0,-7,-9,-5,-2,-7} 

1            {0,-5,-2,-5,0,-5,-7,-4,0,-5,-5,-2,0,1,-4,-7} 

1            {0,-5,-2,-5,0,-5,-12,-7,0,-5,-2,-5,0,4,5,-7} 

1            {0,-5,-2,-9,0,-5,-4,-11,0,-5,-4,-2,3,-2,-5,-9} 

1            {0,-5,-3,-3,0,-5,-3,6,0,-5,-3,-3,0,-5,-3,2} 

1            {0,-5,-3,-7,0,-5,2,2,0,-5,-3,-7,9,7,2,2} 

1            {0,-5,-5,2,0,-5,0,0,0,-5,-5,2,7,2,0,0} 

1            {0,-5,-5,-5,0,-5,-7,-7,0,-5,-5,-5,0,-5,0,-7} 

1            {0,-5,-7,-2,0,-3,-5,2,0,-5,-7,5,0,-5,-7,-7} 

1            {0,-5,-7,-8,0,-5,-8,-10,0,-5,-8,0,0,-5,-8,-12} 

1            {0,-5,-7,-9,-12,-4,1,-2,0,-5,-7,-9,-12,-4,1,-4} 

1            {0,-5,-7,-12,-5,-5,-3,-5,0,-5,-7,-12,-5,-5,-3,-7} 

1            {0,-5,-7,-12,-7,-1,-7,-2,0,-5,-7,-12,-7,-2,-12,-12} 

1            {0,-5,-7,-12,-10,-12,-17,-17,0,-5,-7,-12,-15,-17,-19,-19} 

1            {0,-5,-8,-3,4,2,0,-5,0,-5,-5,-5,4,2,-1,-3} 

1            {0,-5,-8,-3,0,4,-1,-5,7,4,2,-1,4,-5,-8,-3} 

1            {0,-5,-8,-8,0,-5,0,-7,0,-5,-8,-8,0,-5,0,-7} 

1            {0,-5,-9,-2,0,-2,-5,-2,0,-5,-9,-2,0,-2,-4,-7} 

1            {0,-5,-9,-5,-12,-16,-12,-11,-9,-5,-9,-9,0,-2,-4,-4} 
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1            {0,-5,-9,-9,-5,-5,-5,-2,-2,-7,-14,-9,-5,-5,-5,-9} 

1            {0,-5,-10,-5,0,-5,-8,-3,0,-5,-10,-5,0,5,0,-3} 

1            {0,-5,-10,-7,-3,-3,-5,-10,0,-5,-10,-7,-3,-3,-5,-12} 

1            {0,-5,-12,-5,0,-5,-10,-3,0,-5,-12,-5,0,-5,-10,-3} 

1            {0,-5,-12,-5,-3,-7,-7,-7,0,-5,-12,-5,-3,2,4,0} 

1            {0,-6,-13,-13,-13,-5,0,-3,-1,-6,-6,-13,-17,-3,-1,-5} 

1            {0,-7,5,4,2,-5,2,2,0,-7,5,4,2,7,5,5} 

1            {0,-7,3,0,-5,-9,-5,0,0,-7,0,5,8,7,0,5} 

1            {0,-7,2,2,2,0,-2,-5,0,-7,2,2,2,-3,-3,-7} 

1            {0,-7,2,-3,0,-7,-2,-5,0,-7,2,-3,2,-3,-3,-7} 

1            {0,-7,0,5,0,-7,-5,2,0,-7,0,5,2,4,5,5} 

1            {0,-7,0,3,-2,-9,-5,-5,0,-7,0,3,5,-2,-7,-7} 

1            {0,-7,0,3,-2,-9,-9,3,0,-7,0,3,5,-2,-5,-7} 

1            {0,-7,0,2,0,-7,9,2,0,-7,0,2,5,10,9,5} 

1            {0,-7,0,0,2,5,2,2,0,-7,0,0,5,10,9,2} 

1            {0,-7,0,-2,0,-7,0,-5,0,-7,0,-2,-7,2,0,-5} 

1            {0,-7,0,-2,0,-7,-5,-7,0,-7,0,-2,0,5,-5,-7} 

1            {0,-7,0,-3,2,10,4,0,0,-3,2,0,5,10,9,5} 

1            {0,-7,0,-5,0,-7,-2,-5,0,3,0,-5,0,3,-2,-9} 

1            {0,-7,0,-7,0,0,-5,-5,0,-7,0,-7,0,5,-7,-7} 

1            {0,-7,0,-7,0,-7,-2,-5,0,-7,0,5,9,2,0,-7} 

1            {0,-7,0,-10,-12,-7,0,-5,0,-7,-10,-12,-2,0,-5,-7} 

1            {0,-7,-2,-5,0,-7,-5,-2,0,-7,-2,-5,-3,-2,-3,-7} 

1            {0,-7,-2,-8,-3,2,4,-2,0,-7,-2,-5,-3,-2,-5,-7} 

1            {0,-7,-2,-9,0,-4,1,0,0,-7,-2,-9,-7,0,-4,-4} 

1            {0,-7,-2,-9,-3,0,-2,3,0,-7,-2,-9,-3,0,-5,-7} 

1            {0,-7,-2,-9,-12,-4,1,5,0,-7,-2,-9,-12,-4,1,-4} 

1            {0,-7,-4,-7,0,-7,-2,-9,-4,-7,0,-7,2,0,-2,-7} 

1            {0,-7,-5,-12,0,-7,2,4,0,-7,-5,-12,-10,-5,-7,-7} 

1            {0,-7,-5,-12,-10,-5,-3,-8,0,-7,-5,-12,-10,-5,-7,-7} 

1            {0,-7,-7,2,2,0,2,-5,0,-7,-7,2,2,0,-3,-7} 

1            {0,-7,-7,2,0,-7,2,-5,0,-10,-12,-5,0,-3,-3,-7} 

1            {0,-7,-7,-7,0,-7,-7,-2,0,-7,-7,-7,0,-7,-7,-4} 

1            {0,-7,-7,-7,-2,-9,-9,3,0,-7,-7,3,7,-2,-4,-7} 

1            {0,-7,-9,3,1,3,0,-2,0,3,1,3,1,0,0,-4} 

1            {0,-8,0,0,0,-8,-3,-10,0,-8,0,0,2,0,-5,-5} 

1            {0,-8,0,0,0,-8,-3,-10,0,-8,0,-1,4,2,-3,-10} 

1            {0,-8,0,0,0,-8,-5,-10,0,-8,0,0,2,-3,-10,-5} 

1            {0,-8,-5,-5,0,-8,-5,5,0,-8,-5,-5,-10,-10,-3,-3} 

1            {0,-8,-5,-5,-7,-8,-10,-5,0,-8,-5,-5,-7,-8,-10,-12} 

1            {0,-8,-5,-10,0,-8,0,2,-5,-10,-10,-10,-8,-5,0,-1} 

1            {0,-8,-7,-8,0,-8,-3,-10,0,-8,-7,-8,-12,0,-5,-12} 

1            {0,-8,-8,-8,-5,-10,-10,-10,0,-8,-12,0,4,-1,-5,-5} 

1            {0,-8,-12,-8,-5,-10,-10,-10,0,-8,-12,0,4,0,-3,-5} 

1            {0,-9,0,3,1,-5,1,5,0,-9,0,3,1,-2,0,-4} 

1            {0,-9,-5,-12,0,-9,-7,-14,0,-9,-7,-5,0,-2,-7,-12} 

1            {0,-9,-14,-9,-14,-4,-5,-12,0,-9,-14,-9,-7,-4,-5,-9} 

1            {0,-12,-3,-1,0,2,7,-1,0,-12,-3,-1,0,2,4,0} 

1            {0,-12,-15,-17,0,-12,-15,-13,0,-12,-15,-17,-15,-13,-8,-12} 

 

Total number of pieces processed is 365 

Table A3.1  Frequency distribution of tuples for TDMOI using program of Ex.4. 
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Analysis of Initial Notes  

File: =d:\mdb\tdmoi\djig.dir 

365 scores processed 

 

NIEPrimes/Tuples         Frequency 

================================================================= 

Nr. of Notes:1           61 16% 

_________________________________________________________________ 

NIEPF:{0 } 1             61 16% 

_________________________________________________________________ 

Tuple:{0}                61 16% 

================================================================= 

Nr. of Notes:2           181 49% 

_________________________________________________________________ 

NIEPF:{0 5 } 2-5         64 17% 

NIEPF:{0 4 } 2-4         3 0% 

NIEPF:{0 3 } 2-3         12 3% 

NIEPF:{0 2 } 2-2         46 12% 

NIEPF:{0 1 } 2-1         31 8% 

NIEPF:{0 } 1             25 6% 

_________________________________________________________________ 

Tuple:{0,9}              1 0% 

Tuple:{0,7}              2 0% 

Tuple:{0,5}              53 14% 

Tuple:{0,4}              1 0% 

Tuple:{0,3}              2 0% 

Tuple:{0,2}              22 6% 

Tuple:{0,1}              5 1% 

Tuple:{0,0}              23 6% 

Tuple:{0,-1}             26 7% 

Tuple:{0,-2}             24 6% 

Tuple:{0,-3}             9 2% 

Tuple:{0,-4}             2 0% 

Tuple:{0,-5}             8 2% 

Tuple:{0,-7}             1 0% 

Tuple:{0,-12}            2 0% 

================================================================= 

Nr. of Notes:3           112 30% 

_________________________________________________________________ 

NIEPF:{0 4 7 } I-3-11    3 0% 

NIEPF:{0 4 5 } I-3-4     3 0% 

NIEPF:{0 3 5 } I-3-7     7 1% 

NIEPF:{0 2 5 } 3-7       9 2% 

NIEPF:{0 2 4 } 3-6       20 5% 

NIEPF:{0 2 3 } I-3-2     21 5% 

NIEPF:{0 1 3 } 3-2       48 13% 

NIEPF:{0 2 } 2-2         1 0% 

_________________________________________________________________ 

Tuple:{0,2,4}            13 3% 

Tuple:{0,2,3}            13 3% 

Tuple:{0,2,0}            1 0% 

Tuple:{0,1,3}            10 2% 
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Tuple:{0,-1,-3}          8 2% 

Tuple:{0,-1,-5}          3 0% 

Tuple:{0,-2,-3}          37 10% 

Tuple:{0,-2,-4}          7 1% 

Tuple:{0,-2,-5}          7 1% 

Tuple:{0,-3,-2}          1 0% 

Tuple:{0,-3,-5}          9 2% 

Tuple:{0,-3,-7}          3 0% 

================================================================= 

Nr. of Notes:4           11 3% 

________________________________________________________________ 

NIEPF:{0 2 4 5 } I-4-11  10 2% 

NIEPF:{0 1 3 5 } 4-11    1 0% 

________________________________________________________________ 

Tuple:{0,2,4,5}          10 2% 

Tuple:{0,-2,-4,-5}       1 0% 

================================================================= 

 

Table A3.2  Initial anacrusis details for TDMOI. 
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Calculation of forms for file =d:\mdb\tdmoi\djig.dir 

Key transitions processed 

Stresses processed 

Critical Value = 40 

 

 

Form     Frequency 

 

abcd efgh 20 

abcd efgg 1 

abcd efgd 3 

abcd efgb 2 

abcd efdg 1 

abcd ecfg 1 

abcd ebfg 10 

abcd ebcf 3 

abcd ebcb 1 

abcd defg 1 

abcd cefg 3 

abcd cefd 1 

abcd befg 1 

abcd aefg 37 

abcd aefe 1 

abcd aefd 3 

abcd aecf 1 

abcd aeaf 1 

abcd abef 68 

abcd abee 1 

abcd abed 11 

abcd abec 1 

abcd abeb 1 

abcd abce 46 

abcd abcd 1 

abcd abae 2 

abcd aaef 2 

abcc adee 1 

abcc abde 3 

abcc abdd 1 

abcc abcd 1 

abcb defg 1 

abcb decf 1 

abcb abde 2 

abca dbef 1 

abac defg 4 

abac defc 1 

abac dcef 1 

abac dbef 4 

abac dbec 1 

abac bdef 1 

abac adef 27 

abac adec 7 

abac adeb 1 
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abac adae 2 

abac abde 42 

abac abdc 11 

abac abdb 2 

abac abcd 1 

abac abad 3 

abac aadb 1 

abab cdef 1 

abab acde 3 

abab acdb 2 

abab abcd 1 

aabc adce 1 

aabc aade 9 

aabc aadc 1 

aabc aabd 2 

aaba aabc 1 

 

Table A3.3  Frequency distribution of form for tune parts of double jigs in 

TDMOI. 
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Calculation of distances for files =d:\mdb\tdmoi\djig.dir and  

                                   =d:\mdb\tdmoi\djig1.dir 

Key transitions processed 

Stresses processed 

Window widths processed 

 

(6)an doctuir ua neill - DOCTOR O'NEILL 

    (224)brighidin ni mhaoldomhnaigh - BIDDY MALONEY 4=7 (88.2:0)  

(10)rogha ui gadhra - GUIRY'S FAVOURITE 

    (221)briain ua floinn - BRYAN O'LYNN 1=2 (95.8:0)  

(11)bean-cheile ui maoileoin - MALOWNEY'S WIFE 

    (224)brighidin ni mhaoldomhnaigh - BIDDY MALONEY 1=1 (55.2:0) 

 2=2 (96.5:0)  3=3 (64.6:0)  

(13)sugra bheantraighe - THE HUMOURS OF BANTRY 

    (98)an abhraiseach - THE FLAXDRESSER 1=3 (95.8:0)  

(15)an bothar go bhaile-atha-chliath - THE HIGHWAY TO DUBLIN 

    (293)an mor ata aci? - HOW MUCH HAS SHE GOT? 1=1 (75:0)  

(16)ann do tinneas ne tae ta uait? - WHEN SICK IS IT TEA YOU WANT? 

    (358)inthigh do'n diabhal's corruidh tu fein - GO TO THE DEVIL  

      AND SHAKE YOURSELF 1=1 (5.6:0)  2=2 (0:0)  

(29)alltri na mna - CHERRISH THE LADIES 

    (56)sugra an cheapaigh - THE HUMOURS OF CAPPA 2=2 (93.1:0)  

(34)tomas ua gaillimh - GALWAY TOM 

    (144)an teach annsa gleann - THE HOUSE IN THE GLEN 7=2  

      (75.3:0)  

    (199)an bho bhreach - THE SPOTTED COW 7=1 (87.2:0)  

(39)cuairt go h-eirinn - A VISIT TO IRELAND 

    (147)carabhat mhic sheoin - JACKSON'S CRAVAT 2=2 (88.2:0)  

    (284)caitlin ua ubhall-ghort - KITTY OF OULART  2=3 (81.2:5)  

(42)biodhg suas liom - MOVE UP TO ME 

    (151)an cailin deas donn - THE PRETTY BROWN GIRL 2=2 (66:0)  

    (325)bo leath-adharcach ui mhartain - MARTIN'S ONEHORNED COW    

          1=1 (50:5)  

(45)amach leis na buachailibh - OUT WITH THE BOYS 

    (118)peis-rince ui lannagain - LANNIGANS BALL 2=3 (95.1:0)  

(50)domhnall o ruairc - DANIEL O'ROURKE 

    (318)an fiaguidhe suagach - THE MERRY HUNTSMAN  1=1 (66:2)      

          2=2 (6.9:2)  2=3 (36.8:2)  3=2 (94.1:2)  

(57)an teine mona ar lasadh - THE BLAZING TURF FIRE 

    (97)an suidhistin - THE STRAW SEAT 1=1 (94.1:0)  

(59)leim an t-sagairt - THE PRIEST'S LEAP 

    (156)deoch leanna - A DRAUGHT OF ALE 1=1 (23.6:0)  2=2  

         (23.6:0)  

(70)an giolcach faoi bhlath - THE BESOM IN BLOOM 

    (150)anna ni heidhin  - NANCY HYNES 2=2 (81.6:0)  

(71)rogha mhic cuairt - COURTNEY'S FAVOURITE 

    (125)nach raibh gradh aici orm - WASN'T SHE FOND OF ME? 1=1  

         (86.1:-5)  2=1 (93.1:-5)  

(79)luthghair mo bheatha - THE JOY OF MY LIFE 

    (96)ar n-oilean beag fein - OUR OWN LITTLE ISLE 1=1 (80.2:0)  

    (113)ceann is fearr annsa mhala - THE BEST IN THE BAG 1=1  

         (99.3:0)  

(84)ruathar uellington - WELLINGTON'S ADVANCE 



Appendix 3:  Output of Programs. 

 261 

    (239)na buacailli ua leachain-ruadh - THE LACCARUE BOYS 1=1  

         (86.7:0)  

(87)an corcaigheach sugach - THE JOLLY CORKMAN 

    (301)sugra caisleain-chumair - THE HUMOURS OF CASTLE COMER   

         2=2 (93.1:-2)  

(90)cota-mna sgaoilte - PETTYCOAT LOOSE 

    (221)briain ua floinn - BRYAN O'LYNN 3=2 (31.2:0)  

(100)mireog ui chonduin - CONDON'S FROLICS 

    (324)baile-chaislean ui chonchobhair - CASTLETOWN CONNERS   

         1=2 (98.6:5)  2=1 (62.5:5)  

(106)sugra muilleann-na-fauna - THE HUMOURS OF MULLINAFAUNA 

    (150)anna ni heidhin  - NANCY HYNES 1=1 (75:0)  1=4 (63.9:0)  

(110)an bhean do bhi cheana agam - MY FORMER WIFE 

    (305)dromadoiri ui dunlainge - DELANEY'S DRUMMERS 2=2 (74.3:0)  

(115)tiob an fiadh - STAGGER THE BUCK 

    (299)fan go socair a rogaire - BE EASY YOU ROGUE! 1=1  

         (70.5:-2)  

(118)peis-rince ui lannagain - LANNIGANS BALL 

    (333)rogha inghean ni dounaigh - Miss DOWNING'S FANCY 1=2  

         (98.6:0)  

(123)proinseas og ua maenaigh - YOUNG FRANCIS MOONEY 

    (300)ubhalla i geimhreadh - APPLES IN WINTER 2=2 (99.3:0)  

(125)nach raibh gradh aici orm - WASN'T SHE FOND OF ME? 

    (160)an bucla-gluine - THE KNEEBUCKLE 1=1 (92.7:0)  

(129)an cat annsa chuine - THE CAT IN THE CORNER 

    (190)sugacas ui matgamna - O'MAHONY'S FROLICS 1=1 (54.9:0)  

(134)tadhg og ua murchadha - YOUNG TIM MURPHY 

    (296)brian ua neill - BARNEY O'NEILL  2=2 (94.4:0)  

(139)cionus ta tu a chaitilin? - HOW ARE YOU KITTY? 

    (193)an coilleach feadha - THE WOODCOCK 1=1 (71.5:2)    

         1=2 (55.9:2)  

(144)an teach annsa gleann - THE HOUSE IN THE GLEN 

    (199)an bho bhreach - THE SPOTTED COW 2=1 (47.9:0)  

(146)sgaile mhic sheoin - JACKSON'S MORNING BRUSH 

    (152)rogha mhic sheoin - JACKSON'S FANCY 5=2 (31.3:0)  

    (155)triallta mhic sheoin - JACKSON'S RAMBLES 2=2 (93.1:0)  

     2=3 (91:0)  

    (342)port na luinneoige - THE CHORUS JIG 5=4 (92.7:12)  

(163)baintreabhach an iasgaire - THE FISHERMAN'S WIDOW 

    (182)sugra caislean ui liathain - THE HUMORS OF CASTLELYONS     

         1=1 (79.9:-2)  

(177)eilis ni murcadha - BESSY MURPHY 

    (322)an rae lan - THE FULL MOON 2=1 (95.1:0)  

(178)paidin ua rabhartaigh - PADDY O'RAFFERTY 

    (274)siubhal amach as, ua h-ogain - WALK OUT OF IT HOGAN 

         5=2 (90.3:0)  

(189)na tri drumadoiridhe bheaga - THE THREE LITTLE DRUMMERS 

    (305)dromadoiri ui dunlainge - DELANEY'S DRUMMERS 3=2 (94.4:0)  

(190)sugacas ui matgamna - O'MAHONY'S FROLICS 

    (255)feidhlime an gleiceadoir - FELIX THE WRESTLER 2=1  

         (70.1:5)  

(194)na cailini o dun-na-mbeann buidhe - DUNMANWAY LASSES 

    (302)an rogaire dubh - THE BLACK ROGUE 2=2 (79.2:0)  
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(199)an bho bhreach - THE SPOTTED COW 

    (277)an bho leathadharcach - THE ONEHORNED COW 1=1 (99.3:0)  

(210)na tochalaidhe ua cill-mantain - THE MINERS OF WICKLOW 

    (365)maire sugach - MERRY MARY 2=1 (84.7:0)  

(211)tomas mo dhearbhrathair - MY BROTHER TOM 

    (226)port thadhg ui h-ogain - TIM HOGAN'S JIG 2=2  

         (81.3:-7)  

(252)an cocaire annsa cistean - THE COOK IN THE KITCHEN 

    (286)cuir faobhar ar an sgian-bhearrtha - STROP THE RAZOR -  

         2nd Setting 1=2 (80.6:0)  3=3 (86.8:0)  

(253)sugra daingean-ui-chuis - THE HUMORS OF DINGLE 

    (287)ubhalla mhic gealain - GILLAN'S APPLES 1=1 (71.5:0)  

(256)rinnce na oidhche - THE NIGHT DANCE 

    (320)failte an phiobaire - THE PIPER'S WELCOME  

         3=3 (93.4:-2)  

(261)plaeracha caislean na h-aille - THE HUMORS OF AYLE HOUSE 

    (334)an uair theidh tu a bhaile - WHEN YOU GO HOME 1=1  

         (16.7:0)  2=2 (0:0)  

(267)an aindear meighreach - THE MERRY MAIDEN 

    (275)na buachailli ua cum-an-oir - THE BOYS OF COOMANORE 

    2=2 (92.4:0)  

(281)buail an ball sin - WALLOP THE SPOT 

    (360)cailin an mhargaidh - THE MARKET GIRL 2=2 (94.4:2)  

(284)caitlin ua ubhall-ghort - KITTY OF OULART  

    (315)an ros dearg - THE RED ROSE 3=2 (97.2:-5)  

 

365 items processed from file =d:\mdb\tdmoi\djig1.dir 

365 items processed from file =d:\mdb\tdmoi\djig.dir 

440387 comparisons made 

 

critical value =100 

 

Table A3.4  Results of exhaustive search of TDMOI. 
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Calculation of distances for files =d:\mdb\crnh1\djig.dir and  

  =d:\mdb\tdmoi\djig1.dir 

Key transitions processed 

Stresses processed 

Window widths processed 

 

(1)Cailleach an Tu/irne - The Maid at the Spinning Wheel 

    (94)an bothar go lurraga - THE ROAD TO LURGAN 1=1 (63.2:0)  

        2=2 (84:0)  

(3)Carraig an tSoip -  

    (94)an bothar go lurraga - THE ROAD TO LURGAN 1=2 (99.7:0)  

    (165)cathal stuairt - CHARLIE STEWART 2=1 (90.6:-2)  

    (251)an sithmhoar feargach - THE ANGRY PEELER 1=1 (61.8:0)  

(4)Pingmeacha Rua agus Pra/s - Coppers and Brass 

    (3)rogha ui h-artagain - HARTIGAN'S FANCY 3=1 (67.4:0)  

    (132)lamhrais ua grugain - LARRY GROGAN  1=1 (73.2:0)  

(9)Cathaoir an Phi/obaire - The Piper's Chair 

    (158)an buachaillin ban - THE FAIRHEAD BOY 1=1  

        (90.6:-2)  

(10)Ballai/ Lios Chearbhaill - The Walls of Liscarrol 

    (72)an sean bhean sultmhar - THE MERRY OLD WOMAN 1=1  

        (24.3:0)  

(13)An Maide Draighin - The Blackthorn Stick 

    (24)an og-bhean ag an tobar - THE MAID AT THE WELL 1=1  

        (83.3:0)  2=1 (73.6:0)  

(14)Buachcilli/ Bhaile Mhic Annda/in -  

    (251)an sithmhoar feargach - THE ANGRY PEELER 2=2 (79.2:0)  

(15)An Boc sa gCoill -  

    (92)sugra baile-na-garrdha - THE HUMOURS OF BALLINGARRY 

        1=1 (75.7:0)  3=1 (45.8:0)  

(19)I/oc an Reicnea/il - Pay the Reckoning 

    (145)proisdheal brainfhiona mhic sheoin - JACKSON'S BOTTLE  

        OF BRANDY 1=1 (30.6:0)  2=2 (80.6:0)  

(23)Scaip an Puiteach - Scatter the Mud 

    (187)sgaip an munloch - SCATTER THE MUD 1=1 (36.5:0)  

(24)An Pi/osa Deich bPi/ngne - The Tenpenny Piece 

    (162)bonn deich-phinghine - THE TENPENNY BIT 2=2 (63.2:0)  

(26)Droim Chonga -  

    (211)tomas mo dhearbhrathair - MY BROTHER TOM 1=1 (15.3:7)  

        2=2 (29.2:7)  2=3 (87.5:7)  

    (226)port thadhg ui h-ogain - TIM HOGAN'S JIG 2=2 (77.1:0)  

(27)An Buachailli/n Bui/ - The Little Yellow Boy 

    (34)tomas ua gaillimh - GALWAY TOM 3=1 (34:0)  4=7 (77.4:0)  

    (144)an teach annsa gleann - THE HOUSE IN THE GLEN 4=2  

        (38.5:0)  

    (199)an bho bhreach - THE SPOTTED COW 4=1 (21.2:0)  

    (277)an bho leathadharcach - THE ONEHORNED COW 4=1 (97.9:0)  

(28)Na Ge/abha sa bPortach -  

    (279)na geadhna annsa mhointe - THE GEESE IN THE BOGS 

        3=1 (61.8:0)  

(35)Port an Riaga/naigh -  

    (346)inghean ni dubhglas - Miss DOUGLAS 2=1 (64.6:0)  

(36)An Ceolto/ir Fa/nach -  

    (267)an aindear meighreach - THE MERRY MAIDEN 1=1 (70.1:0)  

(38)Ruaig an Mi/-a/dh - Banish Misfortune 

    (5)triallta chaitlin - KITTY'S RAMBLES 2=4 (96.5:0)  

    (106)sugra muilleann-na-fauna - THE HUMOURS OF MULLINAFAUNA  

        1=1 (95.8:0)  2=2 (63.2:0)  

(48)Rogha Liadroma -  

    (226)port thadhg ui h-ogain - TIM HOGAN'S JIG 1=3  
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        (95.1:-5)  

(53)An La/ i ndiaidh an Aonaigh - The Day after the Fair 

    (102)uilliamin bharlaigh - BILLY BARLOW  1=1 (77.8:-5)  

        2=2 (74.1:-5)  

 

54 items processed from file =d:\mdb\tdmoi\djig1.dir 

365 items processed from file =d:\mdb\crnh1\djig.dir 

138180 comparisons made 

 

critical value =100 

Table A3.5  Comparisons between 8 bar segments of double jig tunes in TDMOI 

and CRNH1. 
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+    ENTRY 

COMPOSER:Beethoven TITLE:String Quartet Op 131 in C # minor NUMBER:6  

 

0:Instrument:VIOLIN 

0:Clef:TREBLE 

0:Keysig:ks:#F#C#G#D#A 

0:TimeSig:(3,4)  

 

1:Clef:TREBLE 

1:Keysig:ks:#F#C#G#D#A 

1:TimeSig:(3,4)  

 

2:Clef:ALTO 

2:Keysig:ks:#F#C#G#D#A 

2:TimeSig:(3,4)  

 

3:Clef:BASS 

3:Keysig:ks:#F#C#G#D#A 

3:TimeSig:(3,4)  

 

0:Rest:[3]   {} 

1:Rest:[3]   {} 

2:Rest:[3]   {} 

3:Rest:[3]   {} 

 

0:Note:D5 [2]   {48 } 

1:Note:B4 [2]   {} 

2:Note:G5 [2]   {} 

3:Note:G4 [2]   {} 

 

0:Barline:Bar:/ 2 

1:Barline:Bar:/ 2 

2:Barline:Bar:/ 2 

3:Barline:Bar:/ 2 

 

0:Note:D5 [2]   {48 } 

1:Note:B4 [2]   {} 

2:Note:G5 [2]   {} 

3:Note:G4 [2]   {} 

 

0:Note:D5 [3]   {} 

1:Note:B4 [3]   {} 

2:Note:G5 [3]   {} 

3:Note:G4 [3]   {} 

 

0:Barline:Bar:/ 3 

1:Barline:Bar:/ 3 

2:Barline:Bar:/ 3 

3:Barline:Bar:/ 3 

 

0:Note:D5 [2]   {} 

1:Note:C5 [2]   {} 

2:Note:F5X[3](2){} 

3:Note:A4 [2]   {} 

 

0:Note:D5 [2]   {} 

1:Note:C5 [2]   {} 

2:Note:D5 [5]   {} 

3:Note:A4 [2]   {} 
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0:Note:D5 [3]   {} 

1:Note:B4 [3]   {} 

2:Note:G5 [3]   {} 

3:Note:G4 [3]   {} 

 

0:Barline:Bar:/ 4 

1:Barline:Bar:/ 4 

2:Barline:Bar:/ 4 

3:Barline:Bar:/ 4 

 

0:Note:D5 [3]   {} 

1:Note:C4 [3]   {} 

2:Note:A5 [3]   {} 

3:Note:F4X[3]   {} 

 

0:Note:D5 [3]   {} 

1:Note:B5 [3]   {} 

2:Note:B5 [2]   {} 

3:Note:G4 [3]   {} 

 

0:Note:G5 [3]   {} 

1:Note:E5 [3]   {} 

1:Note:G4 [3]   {} 

2:Note:B5 [2]   {} 

3:Note:E4 [3]   {} 

 

0:Barline:Bar:/ 5 

1:Barline:Bar:/ 5 

2:Barline:Bar:/ 5 

3:Barline:Bar:/ 5 

 

0:Note:E5 [3]   {} 

1:Note:C5 [3]   {} 

2:Note:B5 [4](1){} 

3:Note:C4 [3]   {} 

 

0:Note:E5 [3]   {} 

1:Note:C5 [3]   {} 

2:Note:A5 [5]   {} 

3:Note:C4 [3]   {} 

 

0:Note:B4 [3]   {} 

1:Note:D5 [3]   {} 

2:Note:G5 [3]   {} 

3:Note:D4 [3]   {} 

 

0:Note:C5 [3]   {} 

1:Note:D5 [3]   {} 

1:Note:A4 [3]   {} 

2:Note:F5X[3]   {} 

3:Note:D4 [3]   {} 

 

0:Barline:Bar:/ 6 

1:Barline:Bar:/ 6 

2:Barline:Bar:/ 6 

3:Barline:Bar:/ 6 

 

0:Note:B5 [3]   {} 

1:Note:D5 [3]   {} 

1:Note:G4 [3]   {} 



Appendix 3:  Output of Programs. 

 267 

2:Note:G5 [3]   {} 

3:Note:G4 [3]   {} 

Table A3.6  Polyphonic traverse of start of mvt. 6 of Beethoven’s string quartet 

op.131. 

 

 It was produced by the program in A2.3 of appendix 2.  The start of the score is 

given below in Fig A3.1.  Entities are traversed in standard traversal order.  Internal 

points of notes are visited, for example those created by the E semiquaver in bar 5.  

Single stave polyphony is used in bars 4, 5 and 6. 

 

 

Fig.A3.1  First 10 bars of movement no.6 of Beethoven’s string quartet op.131. 
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