
Title A programmer's environment for music analysis

Authors Ó Maidín, Donncha Seán

Publication date 1995

Original Citation Ó Maidín, D. S. 1995. A programmer's environment for music
analysis. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Link to publisher's
version

http://library.ucc.ie/record=b1230585~S0 -
10.13140/2.1.3387.2969

Rights © 1995, Donncha S. Ó Maidín - http://creativecommons.org/
licenses/by-nc-nd/3.0/

Download date 2024-05-03 15:26:41

Item downloaded
from

https://hdl.handle.net/10468/1629

https://hdl.handle.net/10468/1629

A Programmer’s Environment for Music Analysis

by

Donncha Seán Ó Maidín, M.Sc., B.Mus.

Submitted in May 1995 to

The National University of Ireland

for the degree of

Doctor of Philosophy

and revised in September 1995.

This thesis was registered in

The Department of Music, Faculty of Arts,

University College, Cork,

and was completed under the internal supervision of

Professor David Cox

and under the external examination of

Professor Anthony Pople of the University of Lancaster.

Copyright Donncha Ó Maidín 1995.

scoreView.

 ii

Table of Contents.

ACKNOWLEDGEMENTS. IX

CHAPTER 1. INTRODUCTION. 1

1.1 Overview. 1

1.2 Contribution of this Study to the Field of Corpus-Based Musicology. 3

1.3 Goals. 4
1.3.1 Informational Completeness. 4
1.3.2 Informational Objectivity. 5
1.3.3 Multi-Level. 5
1.3.4 Extendibility of the Environment. 5
1.3.5 Extendibility of Score Representation. 5
1.3.6 Abstraction or Complexity Hiding. 6

1.4 Structure of Score Representation. 6

1.5 Structure of this Thesis. 8

1.6 Achievements. 10

CHAPTER 2. CORPUS-BASED MUSICOLOGY. 11

2.1 Corpus-based Music Analysis. 11

2.2 Factors Inhibiting the Development of Corpus-based Musicology. 20

2.3 Possibilities for Progress. 21

2.4 Prerequisites for the Development of Corpus-based Musicology. 22
2.4.1 Creation of ReUsable Corpora. 22

2.4.1.1 SMDL. 22
2.4.1.2 NIF. 23
2.4.1.3 MuseData. 24

2.4.2 Software Tools for Corpus Analysis. 24
2.4.2.1 General Software Environment and Score View. 24
2.4.2.2 Multiple Representations. 26
2.4.2.3 Supporting Components. 29
2.4.2.4 Modifiability/ReUsability of Score Representations. 30

CHAPTER 3. SURVEY OF SCORE REPRESENTATIONS AND COMPUTER

ANALYSES. 31

3.1 Score Representation in non-Analysis Applications. 31
3.1.1 Score Representation in Music Printing. 31
3.1.2 Score Representation in Sound Synthesis. 34

scoreView.

 iii

3.1.3 Score Representation in Computer Aided Composition. 37

3.2 Survey of Selected Analytic Systems. 38
3.2.1 Michael Kassler's MIR. 38
3.2.2 MUSIKUS at the University of Oslo. 41
3.2.3 The Essen Computer-Aided Research Project. 43
3.2.4 McLean's System for Score Representation. 45
3.2.5 Brinkman. 47
3.2.6 Computer Tools for Music Information Retrieval by Stephen Page. 49

3.3 Summary. 51

CHAPTER 4. GOALS AND FORMALISMS. 53

4.1 Goals. 53
4.1.1 Informational Completeness. 53
4.1.2 Objectivity. 54
4.1.3 Extendibility. 54
4.1.4 Abstraction. 54

4.2 Usage. 55

4.3 Algorithms. 56

4.4 Functions. 57

4.5 Abstract Data Types. 57

4.6 Data Analysis. 58

4.7 Object Oriented Programming. 60
4.7.1 Encapsulation and Message Passing. 60
4.7.2 Specialisation. 61
4.7.3 Polymorphism and Overloading. 62
4.7.4 Late Binding. 63
4.7.5 Object Orientation in scoreView. 63

CHAPTER 5. SCORE VIEWS. 65

5.1 The Score as a semi-formal System of Representation. 65

5.2 The Score Entity. 66

5.3 Entities within the Score. 67
5.3.1 Entity: Key Signature. 68
5.3.2 Entity: Time Signature. 69
5.3.3 Entity: Clef. 69
5.3.4 Entity: Metronome. 70
5.3.5 Entity: Tempo. 71
5.3.6 Entity: Expression. 71
5.3.7 Entity: Duration. 71
5.3.8 Entity: Pitch. 72
5.3.9 Entity: Rest. 72

scoreView.

 iv

5.3.10 Entity: Note. 73
5.3.11 Entity: Barline. 75
5.3.12 Entity: Words. 76
5.3.13 Entity: Texts. 76

5.4 Time. 76

5.5 Vertical Alignment and Contiguity. 78

5.6 Scoping Relations. 79

5.7 Sense of Line and Simultaneity. 80

5.8 Score Reader. 81

5.9 Locating. 83

5.10 Traversing. 85

5.11 Algorithm 1. 90

5.12 Algorithm 1a. 91

5.13 Abstraction. 92

CHAPTER 6. APPLICATIONS - VERIFICATION OF HYPOTHESES. 94

6.1 Introduction. 94

6.2 Structure of Verification. 94
6.2.1 Musicologist's Text. 95
6.2.2 Related Hypothesis. 96
6.2.3 Algorithm. 97
6.2.4 Decision Criterion. 97
6.2.5 Construction of Software. 98
6.2.6 Testing of Software. 98
6.2.7 Results. 98
6.2.8 Conclusions. 98

6.3 The Corpus. 98

6.4 The Text. 102

6.5 Experiment 1: Singled Versus Doubled. 105

6.6 A Specialised Class. 111

6.7 Experiment 2: Number of Parts. 112

6.8 Experiment 3: Ranges of Tune and Turn. 114

6.9 Experiment 4: Set Accented Tones. 119

scoreView.

 v

CHAPTER 7. APPLICATIONS - INVESTIGATORY ANALYSES. 126

7.1 Scale of a Double Jig. 127

7.2 The Initial Anacrusis in Double Jigs. 134

7.3 Crude Melodic Similarity or Difference Algorithms. 138
7.3.1 Intervallic Based Difference Measures. 140
7.3.2 Melodic Difference Algorithm with Contour Information. 140
7.3.3 Simple Window Weighted Melodic Difference Algorithm. 144
7.3.4 Melodic Difference Algorithm with Weighted Stresses. 145
7.3.5 Melodic Difference Algorithms Combined. 146
7.3.6 Key/Transposition Independent Algorithm. 147
7.3.7 Critical Value. 154
7.3.8 Tuning of Melodic Difference Algorithms. 154
7.3.9 Segmentation for Melodic Difference Algorithms. 155
7.3.10 Further Development of Melodic Difference Algorithms. 155

7.4 Application of a Difference Algorithm to the Analysis of Form. 155

7.5 Hierarchical Possibilities of Building more Complex Software. 159

7.6 Frequency Distributions of Forms. 159

7.7 A Compute-Intensive Task. 160
7.7.1 Comments. 162

CHAPTER 8. ACHIEVEMENTS, FURTHER WORK AND CONCLUSIONS. 164

8.1 Achievements. 164

8.2 Proposals for Further Work. 166
8.2.1 Development of the Basic Level of scoreView. 166
8.2.2 Development of Basic Tools with scoreView. 167

8.3 Use of scoreView in Research. 168
8.3.1 Psychomusicology. 169
8.3.2 Narmour's Implication Realisation Model. 169
8.3.3 Lerdahl's and Jackendoff's Model. 171
8.3.4 Biomusicology. 172

8.4 Conclusions. 173

APPENDIX 1 - SCOREVIEW USER MANUAL. 174

Conventions, Data Types and Classes of scoreView. 175

APPENDIX 2 - PROGRAMS. 240

A2.1 Code for Parts Expert. 241

A2.2 Program to Evaluate Average Pitches in Tune and Turn. 243

scoreView.

 vi

A2.3 Program to Search for the Occurrence of a Tuple. 245

A2.4 Program used to Traverse and List the Entities in a Polyphonic Score. 247

APPENDIX 3 - OUTPUT OF PROGRAMS. 248

BIBLIOGRAPHY. 268

scoreView.

 vii

Table of Tables

Table 3.1 Performance times in seconds for Page's system. 51
Table 6.1 Output of program of Ex.1 for CRNH1. 109
Table 6.2 Output of program of Ex.1 for TDMOI. 110
Table 6.3 Analysis of the number of parts in jig tunes from CRNH1. 113
Table 6.4 Analysis of the number of parts in jig tunes from TDMOI. 113
Table 6.5 Output of program for Ex.3 using CRNH1. 118
Table 6.6 Output of program for Ex.3 using TDMOI. 118
Table 6.7 Average pitches for TDMOI. 119
Table 6.8 Frequency distribution of tuples for CRNH1 using program of Ex.4. 123
Table 7.1 Distribution of scales for CRNH1. 133
Table 7.2 Distribution of scales for TDMOI. 134
Table 7.3 Extensions to list of prime form names. 134
Table 7.4 Initial anacrusis details for CRNH1. 137
Table 7.5 Differences calculated from contour information only. 143
Table 7.6 Window-weighted melodic difference results. 145
Table 7.7 Stress weights for 6/8 time. 145
Table 7.8 Window and stress weighted melodic difference results. 146
Table 7.9 Differences weighted by windows, stresses with transpositions. 149
Table 7.10 Differences weighted by durations, stresses with transpositions. 149
Table 7.11 Forms in CRNH1. 158
Table 7.12 Frequency distribution of form for the tune part of double jigs in CRNH1. 160
Table 7.13 Result of exhaustive search of CRNH1. 163
Table A3.1 Frequency distribution of tuples for TDMOI using program of Ex.4. 255
Table A3.2 Initial anacrusis details for TDMOI. 257
Table A3.3 Frequency distribution of form for tune parts of double jigs in TDMOI. 259
Table A3.4 Results of exhaustive search of TDMOI. 262
Table A3.5 Comparisons between 8 bar segments of double jig tunes in TDMOI and CRNH1. 264
Table A3.6 Polyphonic traverse of start of mvt. 6 of Beethoven’s string quartet op.131. 267

scoreView.

 viii

Table of Figures

Fig.1.1 Relationship between the various classes that are used in scoreView. 7
Fig.2.1 Steps in corpus-based musicology. 12
Fig.2.2 Relationships between various representations. 28
Fig.3.1 MIR program that locates the highest and lowest notes, on lyne numbered 2. 40
Fig.3.2 ESAC encoded version of Arne's 'Rule Britania!'. 44
Fig.3.3 Sample search criteria as regular expressions proposed by Page. 49
Fig.5.1 Points in score space and score time. 78
Fig.5.2 Illustration of the possible combinations involved in vertical contiguity. 78
Fig.5.3 Vertical connections. 79
Fig.5.4 Internal points of interest indicated in yellow. 79
Fig.5.5 Algorithm for standard traversal. 87
Fig.5.6 Single stave traversal in MONO mode. 88
Fig.5.7 Single stave traversal in POLY mode. 88
Fig.5.8 Multi-stave traversal in POLY mode. 89
Fig.5.9 Algorithm 1 to identify if the note 'D' follows the first barline. 90
Fig.5.10 Algorithm 2 to calculate the percentage of tunes that start on a note of pitch class 'D'. 92
Fig.5.11 Processing in Cognitive Modelling. 93
Fig.6.1 From “The Creative Process in Irish Traditional Dance Music", pp.115-6. 103
Fig.6.2 Algorithm for classifying tunes as 'singled' or 'doubled'. 107
Fig.6.3 Program of algorithm to verify hypothesis of Ex.1. 109
Fig.6.4 Program to find the number of parts in a dance tune. 113
Fig.6.5 Program for testing hypothesis of Ex.3. 117
Fig.6.6 From "The Creative Process in Irish Traditional Dance Music", p.123. 119
Fig.6.7 Illustration 3 from "The Creative Process in Irish Traditional Dance Music", p.123. 120
Fig.6.8 Pitch 8-tuple example. 121
Fig.6.9 Program for testing hypothesis of Ex.4. 122
Fig.7.1 Scale classification program. 132
Fig.7.2 Program to extract initial anacrusis details. 136
Fig.7.3(a) Start of 'Shandon Bells' from TDMOI. 142
Fig.7.3(b) Start of ‘The Yellow Flail’ from TDMOI. 142
Fig.7.4 Sample melodic segments for illustrating difference algorithms. 143
Fig.7.5 Two related tune segments from No. 61 in TDMOI for comparison. 147
Fig.7.6 Calculation of a transformationally independent difference. 148
Fig.7.7(a) Calculation of stress weights. 150
Fig.7.7(b) Calculation of slope weights. 151
Fig 7.7(c) General difference program. 153
Fig.7.8 Program of algorithm for the calculation of forms. 156
Fig.7.9 Program for forms frequency distribution. 159
Fig.7.10 Program of algorithm for exhaustive search using fixed length similar segments. 162
Fig.A3.1 First 10 bars of movement no.6 of Beethoven’s string quartet op.131. 267

scoreView.

 ix

Acknowledgements.

I would like to acknowledge many people who helped, over the space of more than

two decades, with the realisation of this work. Firstly I would like to mention two people

who provided help in the early stages and have since died. Professor Aloys Fleischmann

was my first supervisor. His energy and dedication proved an inspiration. The second

person was Breandán Breathnach who was always forthcoming with help by making

material available. Thanks are due to Professor Nick Sandon, who supervised my work

for over a year, and to Professor David Cox for his valuable assistance at a crucial stage

of the work and for supervising its completion. Thanks to my wife Deirdre, for her

constant support during the project, and for help in proof-reading the manuscript. There

are a number of people and bodies at the University of Limerick whose contribution I

would like to acknowledge. Support from Professor Kevin Ryan and Dr. Seamus

O’Shea was always forthcoming in facilitating my work. Thanks for advice on layout

must go to Dr. Richard Sutcliffe and Professor Tony Cahill and also to Dr. Gareth Cox of

Mary Immaculate College who made valuable recommendations on an early draft.

Thanks also to Professor Micheál Ó Suilleabháin for help with the work in Chapter 6.

Help in the production of the manuscript and for locating reference information was

always forthcoming from Norah Power, Hilary Kenna and Patty Puch. Thanks also to

Gemma Ryan for doing the final proof-reading and to the University of Limerick for

financial support.

I am indebted to Professor Anthony Pople for suggesting many improvements which I

incorporated into this revised version.

1: Introduction.

 1

Chapter 1. Introduction.

1.1 Overview.

This thesis demonstrates the feasibility of a software environment for the general

processing of representations of music scores. The proposed score representation is at a

level of abstraction that is appropriate for musicological purposes. In particular it is

suitable for analysis. Henceforth this representation and its software environment are

referred to as scoreView.

The focus of this thesis is on providing a building block that is suitable for use in

many areas of computational musicology. The field of computational musicology is

characterised by a diverse range of studies that has enlarged the scope of musicological

endeavour over the last two decades. In an article by Bernard Bel and Bernard

Vecchione1 these areas of endeavour are characterised as focusing on "the

anthropological kernel of musical action", on "the task environment of music" and on

"human music processes" as a subset of "human cognitive processes at large". This has

resulted, according to the authors, in the emerging of greater autonomy and

methodological relevance for "compositional, improvisational and performing and

mnesic/perceptive activities". Musicologists are faced with the problems of "merging of

unifying domains of knowledge, techniques and practices, which are scattered, and to

some extent, disparate". Bel and Vecchione claim that

"The challenge of a new cognitive-oriented musicology will be to establish a relevant close bond

between sciences and techniques applied to music; sound and intelligence engineering; formal,

experimental, historical and hermeneutic sciences; anthropological and action sciences; and the

philosophies of aesthetics, praxis and cognition.

In all these domains of musicology, theoretical computer science is playing a crucial role dealing

with problems of knowledge acquisition and representation. Over the last decade, the computation

paradigm has been brought to the front of the stage, thereby deeply affecting the practice of music and

musicology and allowing the emergence of a new (transdisciplinary) domain: computational

musicology"

Over these twenty years of computer-based musicology, projects tended to originate

with specific musicological goals. This focusing on task, rather than on tools has had a

serious downside that has resulted in the almost total lack of appropriate, usable, music-

1 Bernard Bel and Bernard Vecchione "Computational Musicology" Computer and the Humanities,

volume 27 (1993), pp.1-5

1: Introduction.

 2

theoretic software tools and of computer standards for music representation. These lacks

present a very serious barrier to progress. Projects that deal with one area of computer-

based musicological endeavour that is concerned with bodies of music represented in

staff notation, have suffered immensely from this lack of basic tools. These areas of

endeavour are referred to as corpus-based musicology.

 In order to do general processing of representations of music scores, it is necessary to

have two representations for each score. A file-based encoding forms the permanent

record of the score in the computer. The main focus in file-based versions is on the issue

of representation. A second consideration in the file-based version is ease of encoding.

In order to facilitate processing however, there must also exist a distinct musicologist-

programmer's version, with a focus on access as well as on representation. Very little

effort has been made to focus on this aspect of score representation. The challenge here

is in designing a musicologist-programmer's representation, or view of a score, which

helps simplify whatever tasks are carried out on scores in a computer.

This thesis examines this second aspect of score representation. That is, it is

concerned with the design of a musicologist-programmer's view of a score representation.

The significance of concentrating on this is that it provides a way forward, at a higher and

more appropriate level than that involved in file-based score representations. When the

dust eventually settles on the evolution of file-based standards, such as SMDL2, the issue

of an appropriate musicologist-programmer's representation will survive as a separate and

vital concern, which will underlie any effective use of computers for corpus-based

musicology.

The scoreView environment presupposes the existence of repositories, or corpora of

encoded music scores in computer files. The creation of such corpora is a quite separate

task from that of automatic music analysis. The difference arises from both the nature of

the work involved in creating and maintaining corpora and in the associated driving

goals. Ideally, corpora should be created in accordance with internationally accepted

standards, on principles of completeness and objectivity of representation.

Standardisation, completeness and objectivity are prerequisites for ensuring corpora

reuse.

2 Donald Sloan "Aspects of Music Representation in HyTime/SMDL." Computer Music Journal, volume

17, no.4 (Winter 1993), pp.51-60.

1: Introduction.

 3

There does not exist any generally accepted standard for score representation at

present. Hence the ideal of truly sharable corpora cannot be realised. This is unfortunate,

as the effect of having at least one standard for music representation would, in time, give

a huge impetus to corpus-based studies in computational musicology. There are in

existence a number of candidate schemas that show promise of developing into future

standards for file-based score representation. It is likely that at least one standard will

emerge within the next few years.

Some authors refer to a corpus of music scores as a database. Stephen Dowland

Page3 says "Any form of stored musical material - from a short melody to a large

collection of incipits of a repertoire of complete works - can be regarded as a database".

The term database is reserved in this thesis for collections of data, such as corpora that

have associated information retrieval software of considerable sophistication, and will

not be used in the context of an internal score representation.

The approach to score representation taken in scoreView is to structure the computer

representation for analysis so as to decouple it from file-based corpora. This decoupling

makes scoreView independent of any future standard for corpus representation. Future

standards can be made compatible with scoreView by the development of a single piece

of additional software. This is an input translator that converts file-base representations

into the internal form used by scoreView.

1.2 Contribution of this Study to the Field of Corpus-Based Musicology.

The musicologist-programmer's version of a score should have the following

characteristics:

It should be generable automatically from the file-based version.

It should carry an objective and informationally complete version of the score.

It should be modelled in the computer in a sufficiently abstract way that the

musicologist-programmer's task is made as simple as possible.

3 Stephen Dowland Page Computer Tools for Music Information Retrieval Dissertation for University of

Oxford(Bodelian) 1988, p.56.

1: Introduction.

 4

The musicologist-programmer's environment should be capable of tackling tasks of

arbitrary complexity.

In order to foster reuse of software, it should be in a standard form.

At present all previous systems fall short on at least two of the above criteria. The

final criterion listed above is one that all score representations lack. This is because the

development of a standard form for both file-based representations and musicologist-

programmer's representations of scores are both in an evolutionary phase. Some existing

analytic systems such as those by McLean4 and Brinkman5 exist in a general computing

environment of arbitrary power, but these representations lack a suitable level of

abstraction. On the other hand, the most advanced system, by Stephen Dowland Page6,

has been devised purposely with a simplified language for user interaction. The

computation power of Page's model is that of a finite state recogniser. Finite state

recognisers belong to a class of computational models that is less general that a

programming language such as C++. The programming language model of scoreView is

one in which any conceivable computation, including Page's model, can be specified.

1.3 Goals.

The software environment for modelling scores is designed with a number of goals in

mind. These include:

1.3.1 Informational Completeness.

This means that the representation holds all of the basic information content of music

scores. Each grapheme of a score is represented in relation to its position in a sequence.

Here, completeness of representation of the basic information content does not either

include or exclude the representation of graphical information that could readily be

generated automatically. Examples of information that do not form part of the basic

information content include details of horizontal spacing, line thickness and slopes of

beams. The current implementation supports the goal of informational completeness in

relation to monophonic scores and for a large subset of polyphonic scores. Proposals are

4 Bruce Andrew McLean The Representation of Musical Scores as Data for Applications in Musical

Computing Dissertation for State University of New York at Binghamton 1988.

5 Alexander R. Brinkman Pascal Programming for Music Research (Chicago 1990).

6 Stephen Dowland Page, op.cit.

1: Introduction.

 5

presented in the final chapter for extending the representation to cover all polyphonic

scores.

1.3.2 Informational Objectivity.

No interpretation of ambiguous notational entities can be made in the score

representation without violating the goal of informational objectivity. For example a

decision on whether a curved line is a slur or a phrase mark should not be made within

the score representation.

1.3.3 Multi-Level.

The building blocks of software are conceived at a series of levels. The most

fundamental level is the first level which is basic in nature. By basic is meant that its

prime function is limited to giving access to the entire information content of the score.

This basic level deals with entities in score, such as time signatures, key signatures, clefs,

barlines, notes and rests. Higher level theoretical concepts such as those involved in

harmony, are not allowed to clutter this basic level of representation. A major chord for

example, appears in the basic model as an unclassified collection of individual notes, and

not as any higher level entity of organisation. The current implementation consists of two

main levels, with the higher level containing classes to represent and manipulate various

abstractions such as pitch class sets and pitch tuples.

1.3.4 Extendibility of the Environment.

This goal involves the building of software components that encapsulate theoretical

concepts not found at the basic level. The environment within which scoreView exists is

open. Additional components of arbitrary complexity may be created and added to

scoreView by a user as the need arises. Additionally it is possible to organise the

resulting complexity into new levels in the hierarchy of levels, as well as packaging them

for efficient reuse by others.

1.3.5 Extendibility of Score Representation.

It is desirable to allow for extending the score representation to accommodate

constructs that were not catered for in the original design. Such constructs include

representations used in ethnomusicology and in some 20th century music.

1: Introduction.

 6

1.3.6 Abstraction or Complexity Hiding.

Implementation details of the score representation should not be the concern of the

music analyst, who should be free to deal with musical, rather than representational

issues. scoreView representation allows for all of the information content of a score to

be accessed using only two constructs. One of these, the Score object, models the score

itself, as a container of more elementary objects such as notes, rests and barlines. The

second one, the ScoreIterator object, models an iterator. An iterator provides a

mechanism for locating details within the score. It is also the main mechanism for

information retrieval on the score. Resolution of contextual information, such as the

effects of time signature, key signature, bar positions and accidentals, occurs

automatically, in a hidden layer of scoreView, and relieves the analyst-musicologist-

programmer of the tedious book-keeping like activities of scope resolution, which would

otherwise distract attention from the analytic task.

1.4 Structure of Score Representation.

The system is designed for use by a musicologist who has learned how to program.

The environment is an object-oriented one, in which a score is conceived as an object of

class Score. Class Score itself contains autonomous objects which are members of

various other classes, such as Note, Rest and Barline. Automatic analysis is achieved by

the development and running of user written analytic algorithms which operate on

aggregates of objects that make up a score. These in turn, form the internal computer

representation of members of a corpus. Since the user's environment is a general purpose

programming language, the user is free to build algorithms of arbitrary complexity.

There is also the option of incorporating additional external software components, such

as statistical tools and harmony classes, into the environment.

The basic scoreView representation is built on a number of helpful classes that

provide useful building blocks for score representation but which are not found in C++.

These include classes for representing rational numbers whose main use is in dealing

with time in a score; sets which are used to store various attribute values that attach to

notes; frequency stores, which are useful for cumulating results of analyses; tuples which

are useful for storing ordered sets of numbers; and strings for holding textual

information. The basic level of score representation gives the user access to the entire

information content of the score, with the ability to navigate about the score and to

perform searches. Above this basic level, a number of additional music abstractions have

1: Introduction.

 7

been implemented to demonstrate the capability for hierarchically building support for

the activities of an analyst. These include classes and functions for pitch class sets, pitch

tuples, a parts expert and various analysis oriented functions. These levels are shown in

Fig 1.1.

User activities. developing of analysis software which

 typically would include use of lower level

 components. Users may develop, to arbitrary

 levels of complexity, classes to support

 various music theoretical abstractions, for

 use in analysis.

Additional classes and functions. classes for pitch class sets (class

 PitchClasses), pitch tuples(class PitchTuple),

 parts expert(class PartsExpert) and

 difference algorithms.

Basic classes. classes to represent music scores and various

 entities within a music score.

 class Score, 'glues' these entities together.

 class ScoreIterator, is the class through

 which most of the processing is done.

Classes on which scoreView sets(class Set), rational numbers

is built. (class Rat), strings (class String),

 frequency stores (class FrequencyStore),

 tuples (class Tuple).

Fig.1.1 Relationship between the various classes that are used in scoreView.

The shaded part is the scoreView kernel.

This thesis also demonstrates some ways in which scoreView may be used. The

corpus used in this study is one of Irish folk dance music encoded in ALMA.7 The vast

7 Murray J. Gould and George W. Longemann "ALMA: Alphameric Language for Music Analysis."

Barry S. Brook Musicology and the Computer, Musicology 1966-200: A Practical Program (New York:

The City University of New York Press 1970), pp.57-90.

1: Introduction.

 8

majority of the scores in this collection are totally monophonic, with the occasional

representation of double stopping providing the only exceptions. In the design of

scoreView, the goal of designing a system that is capable of representing harmonic and

polyphonic music was ever present. It is demonstrated that scoreView can be used to

represent and process harmonic and polyphonic music, although analysis of such scores

does not form part of this thesis.

1.5 Structure of this Thesis.

1.5.1 The process of undertaking corpus-based musicology on a computer is

examined by breaking it down into a series of steps which deal with issues such as corpus

creation, with the strategy involved in selection of an encoding scheme and with the

issues involved in the creation of an internal representation. Factors inhibiting the

development of corpus-based musicology are discussed, as well as the prerequisites for

progress. A series of encoding schemes that are candidates for a score representation

standard are discussed as well as the potential for building a musicologist-programmer's

representation of a score using any object-oriented approach. The centrality of such a

representation is demonstrated.

1.5.2 Surveys of a series of music systems that use score representations for various

purposes, including non-analytic applications such as music printing, sound synthesis

and computer aided composition are presented. Five systems for music analysis are

surveyed in greater detail.

1.5.3 The goals of this project are then discussed in detail. The various formalisms

on which the computer model of the score is built are discussed. These include

algorithms, functional abstraction, abstract data types, data analysis and object-oriented

approaches to design and programming.

1.5.4 The score is examined from the musician's view of its information content, and

the ground is laid for modelling a computer representation. First the physical score is

examined and proposals are made for a corresponding musicologist-programmer's view

of the score. The score is viewed from a number of aspects. The score itself is conceived

as a container object whose components are in the form of separate objects such as notes,

rests and barlines. These contained objects are viewed as being structured in time on the

basis of horizontal and vertical contiguity. Proposals are made for dealing with scoping

1: Introduction.

 9

relations within the score, such as the effects of clefs and time and key signatures.

Following focusing on the linear structure of notes and rests in a score, a construct called

a score iterator is proposed and its central functions in relation to information retrieval

and to navigating within the score are discussed.

1.5.5 Detailed descriptions of the classes, functions and types of scoreView are

given in appendix 1.

1.5.6 A set of applications which demonstrate the use of scoreView to build

programs for music analysis is given. The first group of these focuses on the use of the

system to check the claims of a musicologist. These applications can be programmed,

tested, and run in a matter of a few hours by a competent musicologist-programmer with

a knowledge of scoreView.

1.5.7 A second set of analytic examples are given which demonstrate the potential of

scoreView for carrying out investigations on a corpus. These applications include:

Scale Finding which shows how we can find the types and frequencies of scales

that are used in the corpus.

Feature Extraction which involves extracting and organising information about a

melodic feature of double jig tunes.

Melodic Difference which illustrates how we may construct algorithms to estimate

the melodic difference between two segments of music. A number of

developments of the basic algorithm are discussed and some of these

implemented. A proposal is made for further work including the fine tuning of

these algorithms.

Form and Exhaustive Search are the fourth and fifth examples which illustrate

ways in which a melodic difference algorithm may be used to extract meaningful

information from the corpus. One example is concerned with an evaluation of

'crude' melodic forms present in the corpus, and is followed by an example

1: Introduction.

 10

which involves exhaustive searching of the corpus for identifying exact copies and

close tune variants.

1.5.8 A range of further projects are proposed both for the development of basic

scoreView and for the development of user-specific tools, database application,

applications in cognitive musicology, and the development of an expert system for

harmony and for mode identification.

1.6 Achievements.

1.6.1 This study demonstrates the feasibility of a computationally viable model of a

music score within an environment which has arbitrary computational power, bounded

only by the size and speed of the computer hardware, which at the same time, provides an

appropriate level of abstraction for use by musicologists.

1.6.2 The design demonstrates the appropriateness of an object-oriented environment

for score representation.

1.6.3 The design demonstrates the benefit accruing from conceiving of a score

representation in terms of two main classes, one of which models a score and the other,

an iterator on the score.

1.6.4 The overall design underlying the C++ implementation is general enough to be

implemented in a range of programming languages that support object-orientation, and is

usable with a range of the file-base encoding schemes.

1.6.5 The design has potential as a prototype candidate for a future musicologist-

programmer's standard for score representation.

2: Corpus-based Musicology.

Chapter 2. Corpus-based Musicology.

The first section contains an outline of the structure of corpus-based projects for music analysis.

The final section deals with prerequisites for the development of corpus-based musicology.

2.1 Corpus-based Music Analysis.

Corpus-based music analysis is characterised by

1. The existence of encoded music scores in machine readable form

2. The existence of software to process these

3. The activities of musicologists who use 2 to process 1 for music analytic

 purposes.

The prerequisites steps for the creation of corpus-based musicology are represented in

the flowchart of Fig.2.1. The flowchart reflects the many steps that historically have been

part of analytic projects. It also serves to highlight the enormous potential for the

deflection of energies of researchers into tasks that should be avoidable. On the other

hand it also serves to highlight those areas where developments offer hope for the future

of corpus-based musicology.

2: Corpus-based Musicology.

 12

Start

Corpus
Exists?

 Modifyable
 version
 available?

M odify
corpus

Decide on
completeness
requirement

 Suitable

input code

 exists?

Create new
input code

Create
corpus.

 Internal
representation
 exists?

Create

internal

representation

Do analysis
and
interpret
results

Finish

1 2

3

4

5
6

7

8
9

10

Fig.2.1 Steps in corpus-based musicology.

2: Corpus-based Musicology.

 13

Step1. If the corpus already exists, the musicologist is in the happy position of being

relieved of an enormous amount of effort, and can proceed immediately to step no.8.

Furthermore if a suitable internal representation exists, the researcher is able to progress

to step no.10, the only one in the entire flowchart that is concerned essentially with the

task in hand. This last situation is the ideal one. It will hopefully become commonplace

in the future, as it enables the musicologist to concentrate on musical issues, to the

exclusion issues of corpus creation and score representation.

Steps 2 and 3. Although a corpus suitable for analysis may not exist for a particular

study, it is becoming increasingly commonplace that machine versions of music exist in

other forms, and particularly, in forms generated for printing purposes. This raises the

prospect of adapting material from the file-based representation used in printing

programs for analytic purposes.8 At a minimum, the utilisation of these sources would

involve the acquisition or development of software. This software either transforms the

file representation used by the printing package into a form suitable for the analytic

software, or, alternately enables the analytic software to access the printing system's files

directly. There are, however at least two obstacles that may prevent a totally automatic

use of such sources. One of these obstacles arises from constraints imposed by the

commercial software developers of music notation systems and the other is intrinsic to

the score representation itself. The first obstacle arises from the practice adapted by

many manufacturers of notation packages of using a proprietary file representation for

scores, while treating this representation as a company secret.9 In the case of one major

package, Finale versions V2 for Macintosh computers, much of this structure has been

8 Stephen Dowland Page, op.cit., p.12.

 “Music printing systems are of much greater importance to the musicologist than merely being a

convenient way to produce musical examples. As music typesetting techniques reach an acceptable level of

sophistication, music publishers can begin to use computer techniques to typeset large repertoires of music.

This may mean, as we shall see in a later chapter, that the musicologist could gain access to large amounts

of music in a machine-readable form - music which has been entered for typesetting purposes may be used

for many studies, producing information of musicological significance.”

9 Many of these products are packaged as 'black boxes' as far as score representation is concerned.

Exceptions to this however include Leland Smith's Score, which allows the user to create alphanumeric

input for its main features. The alphanumeric representation used in Score lacks some of the capabilities

of the internal representation in significant ways. For example, the range of ornaments available is

limited. Another music printing system, "The Note Processor" uses DARMS. Most music printing

programs have the capability of importing and exporting MIDI versions of their internal representation.

However MIDI file format loses too much of the information content of a score to be of general use for

corpus-based musicology.

2: Corpus-based Musicology.

 14

identified by careful detective work. This work was done by F. Nelson in his efforts to

use Finale in conjunction with computer aided composition software. The resultant

frustration and some inkling of the associated problems can be gleaned from the

footnote.10 The fault may well not totally rest with the reluctance of Coda, Finale's

manufacturer, to release details of the format.11 Attempts to reuse files from printing

projects will fail unless the code structures are known in detail. However, even where

access to the structure of such codes is available, there can arise further complications

which stem from fundamental differences between the natures of score encodings for

printing and analysis. It might be argued that the encoding for music printing purposes

encapsulates all the basic information content of the music. This is obvious, as a human

reader can access the realisation of this information from the resulting printed version. It

must follow, surely, one would argue, that the code contains all the information, either

implicitly, or explicitly, and consequently is suitable for use in computer analysis. This

argument is true in most respects, but falls down in those areas where considerable

10 F. Nelson Music-Research Digest volume 8, no.16 (Thu, 10 Jun 93). Under the heading 'Another Finale

Diatribe' , Nelson, whose motivation for this investigation lay with his work in computer aided composition,

reports

Finale's "Enigma Transportable File" (EFT) have the potential to be a kind of music PostScript. An

ETF contains every bit of information about a Finale score, including both graphic features and

performance details if you choose to specify them. The format of this file is cryptic ("enigma," get it?)

but readable by humans if you have enough insight and patience. Writing a file in ETF format is

child's play compared to writing a program for algorithmic composition. The catch? Coda doesn't

(won't) publish the format.

They fear the loss of commercial advantage and they have a lot of other vague misgivings that still

don't make sense after more than four years of talking and writing to them about it. They fear that

publishing the format will reveal secrets about their methods of data organisation. In fact, any first

year CS student who has had a course in data structures will recognise a multiply-linked list in the

"events" structure with lots of messy (but easily mapped) links to the "details."

I have decoded about 85%-90% of the ETF format in somewhat more than three years of sporadic

hacking. The intensity of my efforts increases in proportion to the size and complexity of the project at

hand. Several large works for wind ensemble have provided the chief motivation for my code-

breaking. I can now do quite a lot of what I want to do by directly manipulating elements of an ETF

with a program I have written in APL.

Can I publish my methods? Is what I am doing "reverse engineering?" I don't know. If Coda is so

block-headed about sharing this important capability with the musical world they purport to serve I

suppose they would be equally hard-nosed about my efforts to get my job done even in the face of their

hindrances. I would much rather continue to write music than defend against lawsuits.

 11 The fact that Coda has changed ETF format between different releases, and between the Mac and PC

versions, might be accounted for by lack of maturity in the representation.

2: Corpus-based Musicology.

 15

human knowledge is required to interpret the written score. One trivial instance of this is

when the human reader reads textual entries, such as title, name of composer and

possibly tempo indications at the start of the score. Here the reading brings considerable

linguistic and domain knowledge into play in identifying these items of text. Some

interpretations are immediately obvious to the human reader, as for example, in

identifying which text at the head of a piece of music is the title. In most cases the

human score reader will solve the problem of identifying the title even when the text is in

an unknown language. Consider now the case of a music analysis program that uses the

code from a music printing system such as Score. If the program is requested to print out

the name of the piece being analysed, too great a burden would be placed on the software

to extract this information in an unambiguous fashion. What is required here with an

unmodified printing file, is for the program to determine which of the textual entries is

the title. There is a simple solution to this problem. This involves the tagging of this

information in the original representation in a form that the printing program ignores, if

such is possible, but that is used by the input component of the analysis system. A more

substantial problem is tackled by McLean12 in relation to encoding of polyphonic music

in DARMS. He proposes a solution by introducing an additional construct, the

EffectiveDuration code, into DARMS, to specify the precise duration of notes in cases

where the human reader would infer the duration from the context. An example of a

situation in which this arises is illustrated by McLean and involves detecting the presence

of unmarked triplets from the context by overriding a strictly literal interpretation of the

notation. Inclusion of EffectiveDuration code in the score encoding avoids unduly

complicating the software. In summary, it is possible that a corpus for analysis purposes

can be created from files of code that were originally made for music printing purposes.

This will normally involve adding a small amount of extra code to the score

representation and writing, or otherwise sourcing, software to transform the printing code

into an internal form for processing. The potential for the dual use of scores encoded for

printing packages, by reusing them for analysis as well as for printing has rarely been

realised, although the reverse step, that of generating printed scores from a corpus is

commonplace.13

12 Bruce Andrew McLean, op.cit., 1988, pp.58-68.

13 In the MuseData project at the Centre for Computer Assisted Research in the Humanities in Menlo Park,

California, an alternative representation in the form of parametric tables has been used for input to the

Score program.

2: Corpus-based Musicology.

 16

Step 4. In creating a corpus, a decision must be taken on how much detail from the

score needs to be represented for the study in question. Ideally all details of the score

should be encoded. However because of pressures of time and resources, compromises

may have to be made. These arise in cases where the direct goal of the immediate

analytic task takes precedence over considerations of generality and reusability. It may

be adequate to have a simplified representation of musical pitches and durations for a

study, or to limit representation used in the study to stressed notes only. The main

problem that such short cuts may give rise to is that if subsequently it is decided that

additional structures from the score are important, it may become difficult to make

progress. Examples of factors that might become important at a later stage in a project

that limited the representation to pitches and duration might include the positioning of

barlines or the notating of groupettes. If such a requirement becomes apparent at a

relatively late stage in the project, then a substantial amount of backtracking is needed in

order to re-edit the corpus and to rewrite the software. One of the worst situations that

can arise in this case is where the desired extension to the code cannot be accommodated

as an add-on to the original version, but instead involves drastically altering the working

schema. The safest way to guard against such happenings is to opt for a complete

encoding of the scores in question. Complete encoding of corpora is a prerequisite for

the more far sighted objective of their reuse.

Steps 5 and 6. A musicologist will invent a private encoding only if relatively

simple features of a score are needed. In other cases, one of the existing codes will be

used. For a number of reasons, the option of using existing codes, has a number of

associated snags. The main problem here is the lack of stability and universality in these

codes. DARMS14, The Plaine and Easie Code15, ALMA16 and MUSTRAN17 are

examples of codes that have not achieved universal standardisation. The Plaine and

14 See Bauer-Mengelberg. "The Ford-Columbia Input Language" Barry S. Brook Musicology and the

Computer, Musicology 1966-200: A Practical Program, (New York: The City University of New York

Press 1970), pp.48-52. Also for a relatively recent dissertation, see Bruce Andrew McLean, op.cit., pp.1-

10.

15 Barry S. Brook "The Plaine and Easie Code.", Barry S. Brook, op.cit., pp.53-56.

16 Murray J. Gould and George W. Longemann "ALMA: Alphameric Language for Music Analysis",

ibid., pp.57-90.

17 Wenker, Jerome. "A Computer Oriented Music Notation including Ethnomusicological Symbols",

ibid., pp.91-129.

2: Corpus-based Musicology.

 17

Easie Code has achieved its widest use in the Repertoire International des Sources

Musicale (RISM) project under the leadership of Barry Brook18. ALMA code was

developed by Gould and Longman by extending its forerunner 'The Plaine and Easie

Code' and, although incomplete, had very good macro facilities that make it easy to type

into a computer. MUSTRAN facilitated common practice notation extensions for

ethnomusicology and was used in music analysis work of Jerome Wenker and Dorothy

Gross. The lack of stability of these codes can be illustrated by considering DARMS

code, which is the most common code for corpus creation. One basic problem here lies in

the fact that the development of a code such as DARMS is not just a once-off task. In

fact it is traditional to refer to the DARMS project, as an on-going effort of overlapping

research and dissertations since 1963. It is practically inevitable that such a code,

designed initially with however much foresight, will reveal ambiguities and inadequacies

with greater practical use. Progress may be made by periodically updating the standard

code. It is not enough however, that proposals for change appear in PhD dissertations, or

in journals. Unless such proposals are supported by a continuing regulatory agency in the

form of a highly visible standardisation body, which is acknowledged as such by the

music community and which polices developments and approves changes, the result will

be the inevitable development of divergent dialects.19 This lack of standardisation has

two consequences. Firstly, the opportunity for creating music corpora as an end in itself

is not feasible, and hence no sharable music databases can come into existence that have

a sufficiently standard form to be of truly general use. Secondly, the development of

reusable software is frustrated.

Step 7. Corpus creation was done by encoding and typing a score either by means of

a card punch machine or, more recently, by entering it directly into a computer. This

process is time-consuming, tedious and error-prone. Experience with the current project

indicates that the input time per bar of corpus, from the initial encoding and keying to the

final quality checking, takes an average of the order of 1 minute per encoded bar.

Experience also shows that this tedious work is difficult to sustain over several hours,

without the error rate becoming unacceptably high. The creation of all but small corpora

18 Rita Benton, "Repertiore International des Sources Musicales", in Stanley Sadie The New Grove

Dictionary of Music and Musicians volume 15 (London: MacMillan 1980), pp.747-9.

19 In a letter to the Music-Research Digest volume 9, no.34 (Sat, 24 Dec 94), Eleanor Selfridge-Field of

the Centre for Computer Assisted Research in the Humanities, announced a forthcoming Handbook of

Musical Codes, which is to cover several dialects of DARMS.

2: Corpus-based Musicology.

 18

takes time that can range from a few person-months to many person-years. This work,

which is not the job of music analysts, should ideally be delegated to music coders,

whose training must include appropriate levels of keyboard skills, the ability to read staff

notation, and knowledge of the encoding scheme. Improvements in the productivity of

corpus creation can be achieved from the use of graphical user interfaces and MIDI-

based tools that have been available since the mid-1980's. The prospect of automatic

optical encoding of scores offers hope for the future.20

It is essential that the corpus creating task be done under appropriate editorial and

quality management. Again, this activity has no direct connection with music analysis.

However, many musicologists that use computers for analysis purposes have to undertake

the corpus creation task.

Step 8 and 9. Two representations of music scores are required in a music analysis

system. The first representation is a file-based corpus. The second representation is one

that is based in the main memory of the computer and is used in writing the analytic

software. This internal form is created from the external form by a piece of software, an

input translator. For processing a score, the internal form is the enabler, not only of

analytic work, but also of all manipulations such as playing, printing, GUI interaction and

code translation.

Whatever degree of standardisation exists for representing music at the level of the

file, practically none exists in representing music scores in the main memory of the

computer. One approach is to copy the file-based score representation into main store in

an unaltered form. The main problem here is that this form is most unsuitable for

processing. The reason for this is that a one-dimensional string of characters is used to

represent a basically two-dimensional structure. Using such code imposes constraints on

the software that makes it most tedious to work with, as it is counter-intuitive and error-

prone. An analogy could be made of trying to play a game of chess by using a long

narrow board formed by cutting the rows of a conventional chess board and reassembling

them end to end. Relative simple moves on a conventional chess board, such as those of

a queen or knight would become extremely difficult to visualise in this linear, one-

20 See Walter B. Hewlett and Eleanor Selfridge-Field Computing in Musicology volume 9 (Menlo Park:

Centre for Computer Assisted Research in the Humanities 1994), pp.109 - 166, which includes the most

recent survey by Eleanor Selfrige-Field of current work. It also contains relevant articles by William

McGee and Nicholas P Carter.

2: Corpus-based Musicology.

 19

dimensional representation of what is basically a two-dimensional structure. Some early

analytic work concentrated on processing score representations such as DARMS directly

in the computer. This is an approach which imposes a substantial strain on working.

This arises from the dichotomy between the basically one-dimensional, character string

type representation used for scores in files, and the two-dimensional representation of

music notation. Additionally, the type of context-dependent scoping information for time

and key signatures, clefs and accidentals, which need a substantial programming effort to

resolve, becomes more difficult in a one-dimensional representation. Many of the

researchers used the Snobol language, which has powerful string handling features.

Although Snobol helped parse a one-dimensional string, the fundamental data remained

one-dimensional. What is needed for the internal version of a score is a two-dimensional

structure in which scoping information is represented and resolved automatically.

An analysis system can be thought of as consisting of three components. First there is

the two-dimensional structure itself. Although this structure plays a central role in all

processing, it is not of any direct relevance to the user, at least not as far as the internals

of its construction are concerned. It should not matter to the user, for example, whether

the internal structure is 'glued' together using pointers or arrays. This is as it should be, as

the objective of the user is to do music analysis and not computer science. However, the

internal representation plays a central, if somewhat invisible role in making the analysis

system work. A second component of an analysis system is a piece of software called an

input translator, which is required to create the internal representation from the file

representation. The input translator processes a file-based score and builds a two

dimensional representation in main memory. Again, this software is not something that

the user of the analytic system need be directly concerned with. A third component, and

the only one that ideally, should involve the music analysts, consists of a musicologist-

programmer's view of the music score. This is the public interface through which the

analyst extracts and manipulates information from the score. In later chapters the concept

of a musicologist-programmer's view of a score will be developed in detail.

Traditionally, because of the absence of suitable software tools for tackling a job of

analysis, researchers had to resort to building up their own main store representations of

the music under study. In addition to this, the non-trivial software task of building a

program to convert from the file-based computer representation to the main-store based

representation had to be undertaken. The task of building a computer representation of

the music should be thought of as a task, separate from that of building the software for

2: Corpus-based Musicology.

 20

analysis. The reason for this is the same as that for decoupling the corpus creation task

from the analytic one. Ideally, the analyst should be concerned only with extracting and

processing information from the score and not with the internal representations involved.

2.2 Factors Inhibiting the Development of Corpus-based Musicology.

It will be clear at this stage that the task of computer based music analysis contains a

minefield of complications for the unwary. Among the causes of these are

 - lack of encoding standards,

 - lack of reusable corpora,

 - magnitude of task of creating corpora,

 - lack of software,

 - difficulty of specifying goals for computer-based analysis,

 - difficulty in arriving at accurate estimates of effort for software development.

Most of the above points can be inferred from the preceding sections. The new points

introduced here, include the problem of estimation in software development. This

problem has proved notoriously difficult in the software industry the general, especially

when dealing with new areas of endeavour. If the software development time for a

project is being habitually and grossly underestimated, it will inevitably result in

demoralisation of the researcher. The initial design on which estimates are based, often

proves to be just the tip of the design iceberg. The ratio involved in this metaphor may

not be out of place. As Douglas R. Hofstadter elegantly expressed it (in relation to the

development of a champion chess playing programme) -

"Hofstadter's Law: It always takes longer than you expect, even when you take into account

Hofstadter's law".21

The trap for the musicologist here is that of embarking on a project, to find that, after

major effort, the potential end result appears at the end of an ever-lengthening tunnel.

21 Douglas R Hofstadter Godel, Escher and Bach: an Eternal Golden Braid (Middlesex: Penguin Books

1980), p.152.

2: Corpus-based Musicology.

 21

As Walter B. Hewlett and Eleanor Selfridge-Field report22 in outlining the early

history, reports

"The passage of time, however, introduced certain practical difficulties which had the effect of

slowing down or even crippling some of these early projects. In several cases hardware and software

environments were changed by administrative decree. This places an extra burden on funding sources

which, despite generous support for the start-up phases of various projects, were often less willing to

provide ongoing support. In consequence, little actual processing ever occurred in some instances. In

others, there were no results of significance. This denouement of the promises of the Sixties had led by

the early Eighties to widespread scepticism about computing in music scholarship."

Further surveys of the lack of development are given by Page23

"In the 1960s and early 1970s much - maybe too much - was written of the potential of the

computer as the musicologist's assistant and the music theorist's testing-ground.24 But by now, two

decades later, very little of this potential has been realised; rather, there is considerable resistance to

use of a machine in humanistic disciplines."

2.3 Possibilities for Progress.

The more basic cause of lack of progress, was the lack of vision of two prerequisites

for constructing a system for the representation and processing of music.

The availability of complete and accurate reusable corpora.

The availability of a musicologist-programmer's view of a score for analytic

purposes.

There is little evidence that any of the early representations of music scores were

created as a result of focusing specifically on the question of how to adequately represent

a score for analysis. Instead the designs were driven by the application in question,

whether it was printing, or analysis.

22 Walter B. Hewlett and Eleanor Selfridge-Field "Computing in Musicology. 1966-91" in Computer and

the Humanities volume 25 (1991), pp.381-392.

23 Stephen Dowland Page, op.cit., p.2 (footnote is Page's), also see pp.12-21.

24 IBM's early sponsorship of the humanities - research posts, conferences, publications - led to a rapid

growth in interest in the mid-1960s. The literature from 1967-1970 abounds with preliminary reports,

progress reports, and partial results; but very few of the larger, more ambitious projects were completed.

2: Corpus-based Musicology.

 22

2.4 Prerequisites for the Development of Corpus-based Musicology.

The first prerequisite is the creation of various corpora in complete, standardised

forms under conditions of good quality assurance. The creation of these should be a

once-off task, quite separate from that of analysis. A realisable ideal could be the

eventual encoding of all scores that might be of conceivable interest to musicologists.

The second prerequisite involves the development of appropriate software tools for

use by musicologists.

2.4.1 Creation of ReUsable Corpora.

The evolution of a mature encoding standard that has wide acceptance and has

continuing monitoring by a visible and accepted standards authority is the main

prerequisite for the development of reusable corpora. Lack of standardisation leads to the

development within a coding system of incompatible variants, with all of the resultant

inflexibility.

The goals of an encoding standard should include the complete and unambiguous

representation of the basic information content of a score in a form where the information

can be readily recognised by computer software. The order of magnitude of the

recognition problem should be parsable. It should not have to depend on software that

simulates higher human knowledge. The task may involve complex scans, and

recognition of context sensitive information, but should not require advanced tasks, such

as natural language processing.

The current position on the emergence of standards is not totally without hope. The

main sources from which a number of standards may emerge include

 National/international standards bodies,

 The manufacturers of notation software,

 Institutes specialising in long term corpus creation.

2.4.1.1 SMDL.

2: Corpus-based Musicology.

 23

 The Standard Music Description Language (SMDL)25 has been under development

by a committee of the American National Standards Institute (ANSI) since 1986, under

the chairmanship of Charles F. Goldfarb, and the vice chairmanship of Steven R.

Newcomb. The project was later transferred to the International Organisation for

Standardisation (ISO), and the development has reached the Committee Draft

Stage(ISO/IEC CD 10743). In a recent letter26 to the Computer-Research Digest, Steven

R. Newcomb describes the standard as having “not too much left to be done”.

Unfortunately it would appear that the main thrust of this effort has languished under

what Newcomb describes as “a continuing lack of understanding and interest on the part

of the music and entertainment industries”.

2.4.1.2 NIF.

 In a letter27, Gregory J. Sandell gives details of an inter-industry initiative to develop

a standard file format for music notation, called Notation Interchange Format (NIF). This

is sponsored by Passport Designs and Coda Music Technology. It is claimed to be a non-

proprietary format, which will be available with no licensing fees whatsoever to anyone

who wants it. It is claimed that NIF's exceptionally thorough design is the product of a

lengthy consensus-building process between a diverse group of notation software

designers and researchers in the area of music recognition, musicology and computer

science as well as expert users and publishers. Associated with the project is a list of

eminent named researchers28 in computational musicology and in notation software

25 Donald Sloan "Aspects of Music Representation in HyTime/SMDL." Computer Music Journal volume

17, no.4 (Winter 1993), pp.51-60.

26 Steven R. Newcomb "ISO CD 10743 Standard Music Description Language (SMDL)" Music -

Research Digest volume 9, no.35 (Wed 18 Jan 95).

27 Gregory J. Sandell "Music industry gives us a notation format" Music-Research Digest volume 9,

no.36 (Fri, 27 Jan 95).

28 The original working group includes Nicholas Carter of the University of Surrey, Cindy Grande of

Grande Software, Wladek Homenda of Musitek, Steve Keller of Passport Designs, Lowell Levinger of

Passport Designs, Chris Newell of Musitek, Mike Ost of Passport Designs, Leland Smith of San Andreas

Press, and Randall Stokes of Coda Music Technology.

 The advisory board includes Dave Abrahams of Mark of the Unicorn, Garry Barber of Temporal Acuity

Products, Alan Belkin of the University of Montreal, Raymond Bily of Midisoft Corporation, Mike

Brockman of Temporal Acuity Products, Don Byrd of Advanced Music Notation Systems, Inc, and of

Temporal Acuity Products, John Cerullo of Hal Leonard Corporation, Daniel Dorff of Theodore Presser,

John Forbes of Boosey and Hawkes, Tom Hall of A-R Editions, Greg Hendershott of Twelve Tone

Systems, and William Holab of G. Schirmer.

2: Corpus-based Musicology.

 24

development. The development is described as being in a state of “now coming to

fruition”.

As this project has the backing of the notation industry, it does seem to hold a good

prospect of delivering a standard, although no commitments are given on the time scale

involved. If this emerging standard becomes widely established, its adoption by a

standards body such as ISO becomes a possibility.

2.4.1.3 MuseData.

The only mechanism of the establishment of real standards out of coding systems is

by usage. Such usage could be promoted by having sufficiently large corpora available

to users. The MuseData project at the Centre for Computer Assisted Research in the

Humanities in Meno Park, California, is a corpora building project that could play a

central role in the establishment of such. MuseData is the name of the main score

representation. The system allows for translation of scores between a number of

alternate representations, including Kern, DARMS, Score and MIDI. Kern is a new

standard file representation that is usable for processing with the software system called

Humdrum. An impressive number of scores has been encoded including practically all

of the major works of J.S. Bach, as well as multiple works of Beethoven, Corelli,

Handel, Haydn, Legrenzi, Mozart, Schubert, Telemann and Vivaldi.

2.4.2 Software Tools for Corpus Analysis.

Four components of a software system for analysis are discussed below. The first

relates to the general software environment in which the analysis software works, or the

'score view' used by the analyst. The second deals with the multiple representations of

the score information that are desirable in a music analysis system. The third component

consists of the supporting software available for analysis. The fourth component is that

which provides for the reuse of the software.

2.4.2.1 General Software Environment and Score View.

The approach taken in this study is to consider the most fundamental, but

nevertheless general tool that gives the musicologist-programmer the highest level of

abstraction or complexity-hiding. The environment used by the analyst should be as

2: Corpus-based Musicology.

 25

simple as possible, while at the same time providing all the power associated with

imperative programming and access to all the information in the score.

As scoreView exists in a general purpose programming environment, algorithms of

arbitrary complexity can be constructed. Apart from software written by a researcher,

libraries of supporting classes can be incorporated into the programming environment as

appropriate

Abstraction, that is complexity hiding, is one of the driving forces in arriving at a

design of a programming environment for a musicologist. As far as possible, the

underlying complexity of representation should not be a concern of the user. Here,

complexity results from the nature of the notation itself and from the underlying

computer representation. As far as is possible, the complexity arising from both of these

sources should be hidden from the user. It should not matter to the user, for example,

whether the score representation uses pointers with dynamically created linked lists,

arrays or some other construct. The user view should depend on close analogies with a

musicologist's view of the paper score, rather than with the computer representation of

the score. One useful metaphor is found in some of the underlying structures of object-

oriented programming and design. Objected-orientation(OO) conceives of autonomous

objects that are encapsulations of data and procedures. The internal details of objects are

hidden from the outside world, in this case the musicologist-programmer.

Communication with these objects is by means of the mechanism of message passing, or

invoking member function, to use the C++ terminology. The principles involved here are

illustrated by an example. Suppose that we have a score of the second movement of

Tschaikovsky's fifth symphony is represented by an object, let us call it

TschaikovskySymphony5-2. In an OO environment, the object is created in the

computer in a form that contains all the essential score information that might be

conceivably used by an analyst. This information may be accessed by sending the object

a message. We could send messages to it such as

2: Corpus-based Musicology.

 26

 What is the starting time signature?

 What is the starting key signature?

 etc.

The object TschaikovskySymphony5-2 will have enough built-in functionality to be

able to answer questions such as these.

 ---- getTimeSig ---> TschaikovskySymphony5.2 ----> (12,8)

 (message to object) (object) (response message)

In a C++ program this will appear as the following line of code

 TschaikovskySymphony5-2.getTimeSig()

Using a programming environment that supports encapsulation and message passing

has a number of benefits over the use of non-objected-oriented environments.

Encapsulation ensures that it is difficult for the user to corrupt accidentally the internal

representation of the score. An arbitrary level of complexity may be hidden by the

combination of message passing and encapsulation. For example, the above message,

getTimeSig() could be implemented as a search for the first time signature on the first

stave of the score, an action that would involve traversing through the initial information

of the score, past the clef and the key signature and continuing until the time signature is

reached. This complexity, and the complexity of how the score is represented in the first

place, is hidden from the user. All the user needs to know is what valid messages or

member functions to use and of course, to know the format of replies and to be able to

interpret what they mean. Here the replies depend for their form on the allowable

constructs within the programming language and on the way in which they are

interpreted. It will not be clear at this stage how we might use the message-passing

metaphor to access the basic music information internal to the score, such as is found in

notes and rests. This will form the main preoccupation of chapter 5.

2.4.2.2 Multiple Representations.

Internal representation of score is basically two-dimensional; file representations are

one dimensional. File representations may be based on alphanumeric code.

Alphanumeric representation codes include those already discussed such as ALMA, and

2: Corpus-based Musicology.

 27

DARMS. An advantage of such alphanumeric codes is that they can be created directly

with a text editor and they can be inspected, although these aspects are becoming less

important with the development of GUI and MIDI interfaces. Non-alphabetic file

representations are possible using 'flattened' versions of internal representations. File

versions that are close to the internal version could optimise input/output time efficiency.

A range of possibilities is illustrated in Fig 2.2.

2: Corpus-based Musicology.

Input Main Store Output Further Processing

 D ARM S

 ALMA

 plaine and

 easie code

 SM DL

 GUI

Optical score

 Reader

 Internal

 Form

 DARMS

 ALM A

 plaine and

 easie code

 SM DL

 M IDI

 Notation

 input file

 Synthesiser Sound

 M usic

 P rinting

 Printed

 score

Fig.2.2 Relationships between various representations.

2: Corpus-based Musicology.

 29

From Fig 2.2, the centrality of the internal representation can be seen. An important

feature to note is that the addition of a new external score input representation involves

the construction of only one piece of software, an input translator to parse the external

code and build an internal representation. Similarly the ability to create a new external

representation involves the creation of just one extra piece of software, an output

translator, which generates the external form from the internal one. This overall structure

enables the creation of an integrated environment for

 input of score from a range of different codes,

 output of scores in a range of different codes,

 hence the ability to translate from one encoding standard to another

 by inputting in one code and outputting in another,

 processing scores for purposes such as analysis, printing, multimedia, and

 performing,

 the creation of internal form using a GUI/MIDI combination,

 the editing of the internal from a GUI/MIDI combination,

 the creation of specialised output for input to other packages such

 as MIDI sequencers and SCORE29 notation package.

2.4.2.3 Supporting Components.

Any music analysis system will inevitably require additional tools, such as those for

playing and printing scores. Playing tools are essential for checking the accuracy of the

corpus, and may also be desirable for the building of software for simulating performance

by the construction of performer-expert-systems.30 Printing tools are essential for

29 The current implementation of scoreView has the following components

 ALMA to internal form

 internal form to MIDI

 internal form to SCORE input code

30 scoreView has been used in a pilot project to generate a MIDI stream from a score representation, using

mainly rules from Sundberg's research. The project was a final-year undergraduate one for the Computer

Science Department at the University of Limerick: Thomas Morrow An Expert System for Performing

Irish Dance Music BSc Dissertation for University of Limerick 1993. The research work on which this was

based was drawn from J. Sundberg Studies of Music Performance. (Stockholm: Royal Swedish Academy

of Music 1983).

2: Corpus-based Musicology.

 30

checking the accuracy of the corpus and for producing near-publishable printed output.

The creation of printing and playing capabilities can be achieved by the construction of

two software components discussed in the previous section. An output translator to

generate code for a music printing package, and another output translator to generate

code for sound synthesis is all that is needed for these capabilities to be realised. The

simplest playing may be achieved by translating from the internal representation to MIDI

representation that can then be played on commercial synthesisers. scoreView contains

facilities for generating MIDI output directly, and for the translation from the internal

form to MIDIFILE format. Printing is achieved in scoreView by the generation of a text

file, using an output translator. This may then be used with Leland Smith's printing

program Score.

In addition to printing and playing software, a range of supporting software

components should be available to facilitate common tasks. The environment fosters the

co-usage of other software tools such as databases, parsers, statistical packages and

specialised packages in the AI domain.

2.4.2.4 Modifiability/ReUsability of Score Representations.

One important factor in creating a system for score representation is in its ability to

develop the software by adding new facilities without disrupting existing capabilities.

Because scoreView is object-oriented, the powerful mechanism of inheritance may be

used for modification and reusability of the score representation. The availability of

inheritance supports the creation of new internal score representations that inherit the

capabilities of scoreView. Examples might include the incorporation of facilities for

handling pitch gamuts other than diatonic/chromatic ones.

3: Survey of Representations and Computer Analyses.

 31

Chapter 3. Survey of Score Representations and

Computer Analyses.

An overview of score representations in systems whose primary purpose is other than

music analysis is given in the first section of this chapter. These systems are important in the

current study in that they have the potential to contribute either directly or indirectly to

analysis applications in a number of ways. This is followed by a section that examines six

systems for music analysis.

The next section includes a brief review of systems for music printing whose score

representations are generally regarded as having much in common with music

representations for analysis. Also included are two less directly relevant areas, both of

which have historical and practical connections with score representation for analysis.

The first of these is sound-synthesis. One relevance of sound synthesis to scoreView lies

in its potential to have the computer play the music under analysis. The second area that

is covered in this chapter is that of computer aided composition. Again, score

representation systems in computer assisted composition share similar techniques to the

computer analysis which is concerned with generative studies.

3.1 Score Representation in non-Analysis Applications.

3.1.1 Score Representation in Music Printing.

In the 1950s, the goal of automatic music printing was identified as one that

seemed ripe for academic and commercial exploitation. Progress to real usable

systems was slow, for a number of reasons. Firstly the task of constructing a

printing system from scratch proved to be a substantial one. To be of real use,

the output produced has to include the complete complex system of common

practice notation. The success of a computer-based music printing system would

depend inevitably on its capability for producing printed output of a sufficiently

high quality to be of commercial use. Mere novelty and experimentation would

be unlikely to impress. Success in this task depended on having stable hardware

and software architecture, especially for graphics. Neither of these were

3: Survey of Representations and Computer Analyses.

 32

available until the 1980s. Concepts such as that of a graphical user

interface(GUI) still had to achieve currency.31 Additionally printer technology

was still in its infancy.

A number of early printing projects emerged, including Donald Byrd's

FORTRAN-based printing program SMUT32, but the project that achieved most

attention was started in the early 1960's by Stephen Bauer-Mengelberg and Dr

Melvin Ferentz.33 It was initially called the Ford-Columbia Input Language, but

was renamed as the Digital Alternative Representation of Musical Scores. It

became widely known under the resulting acronym as DARMS.34 The early

versions of DARMS code appeared in the early to mid 1960s. Typically, instead

of employing a music typesetter, a music manuscript is transcribed into DARMS.

A DARMS encoded version of a common practice notation score consists of a

serial file of alphanumeric characters. The encoding captures the basic

information content of a score in enough detail to produce a printed version.

Optionally some of the details of the score lay-out could be encoded as part of

DARMS. A computer program was written to convert the encoded score from

DARMS into instructions to control a photo composition typesetter, which

produced the finished printed score and a set of parts.35 The alphanumeric

representation of DARMS survived the original project, and came to be used in

31 The graphical user interface that became commonly available with the development of the Apple

Macintosh computer in the late seventies, had its origins in previous systems that originated over half a

decade earlier at the Xerox Palo Alto Research Centre.

32 In the version of SMUT dated 31-May-85 and distributed by Kimball P. Stickney, it is documented as

begun in 1968, Smut version 1.1 in July 1975, polyphonic version 2.0 in September 1977, version 2.8 to

support shared staves on March 1982. See also Donald Byrd Music Notation by Computer PhD

Dissertation for Indiana University 1984.

33 Bauer-Mengelberg "The Ford-Columbia Input Language" in Barry S. Brook, op.cit., pp.48-52. Also,

for a relatively recent dissertation see Bruce Andrew McLean, op.cit., pp.1-5.

34 According to Bruce Andrew McLean, op.cit., 1988, p.7. The name DARMS was proposed by Melvin

Ferents, to honour Edward F. D'Arms, an official who sponsored the project at the Ford Foundation.

35 According to Walter B. Hewlett and Eleanor Selfridge-Field "Computing in Musicology, 1966-91" in

Computers and the Humanities volume 25 (1991), p.386. "..the earliest documented effort at DARMS-

related printing was made by Roskin, who implemented both photon and plotter programs as early as 1967

on a code of his own device."

3: Survey of Representations and Computer Analyses.

 33

either its original or in a modified form for subsequent printing and music

analysis projects.36

Early developments in music printing were overtaken by, or developed into

commercial products, such as Leland Smith's Score, The Note Processor, which

uses DARMS input, Professional Composer, and Finale. The diffusion of the

PC and of high quality printing devices resulted in the commercial development

of notation packages. Additionally MusicTeX and MuTex37 and Mutation38

became available for academic use via Internet.

 Most of the later printing systems are designed on the assumption that a

purely alphanumeric input encoding would prove inadequate or inappropriate for

specifying all visual features to a level required to produce a good appearance. It

was found that graphical aspects, such as the positioning of beams, the length of

stems, and the shaping of slurs caused problems in the older generation of

printing programs. Whereas a computer may be depended on to produce these

automatically, a good visual result is not always guaranteed, at least within the

capabilities of current software. Nowadays, most score printing systems produce

an automatic result, as a first attempt, and then allow the user to modify the

resulting appearance by means of graphical editing, using a pointing device such

as a mouse. Some of these programs, such as Finale and Professional Composer,

dispense completely with alphanumeric input and rely solely on the GUI for

score creation, using a combination of mouse and keyboard, and with the

optional use of MIDI.

36 DARMS code is used in one of the commercially available printing programs "The Note Processor".

According to Hewlett and Selfrigde-Field, ibid., p 387, this was developed by J. Stephen Dydo, a composer

educated at Columbia, who undertook to create a DARMS-based music printing program in FORTRAN. It

was released for the IBM PC in 1987. See also Walter B. Hewlitt and Elanor Selfridge-Field Directory of

Computer Assisted Research in Musicology 1986 (Menlo Park, California 1986), pp.7-34. A number of

theses are concerned with music printing and/or score representation in DARMS, of which the most recent

one is Bruce Andrew McLean's, op.cit.

37 See Walter B. Hewlett and Eleanor Selfridge-Field Computing in Musicology volume 8 (Menlo Park:

1992), p.175 for details of the availability of MusicTeX and MuTeX.

38 Mutation by Glen Diener is distributed by CCRMA at Stanford University.

3: Survey of Representations and Computer Analyses.

 34

The form of score representation used in printing systems has a high level of

suitability for use in analysis as well.39

3.1.2 Score Representation in Sound Synthesis.

As early as the 1950s musicians were investigating the potential of their very

limited computer system for creative musical purposes. This happened not only

in the academic world, where it might have been expected, but also in the

telecommunications industry, where experimentation with music was fostered in

a search for understanding human communication. During the late 1950s and

into the 1960s impressive advances were made in this area.40 Sound synthesis

systems were developed with a view to using the computer as a creative tool in

music composition and performance, by exploiting the newly available

theoretical possibilities of digital sound.

The main users of sound synthesis systems were either composers or

developers of music instruments. Composers were motivated by creative intent,

usually combined with urges to experiment. The development of computer-

based sound synthesis meant that for the first time in the history of music, it was

possible to synthesise every possible sound, at least in theory. The composers in

the analogue electronic music medium in the 1960s had developed an expertise

in sound synthesis that was highly constrained by analogue technology. Many of

these composers saw in computers the potential to free themselves from the

limitations of analogue hardware. In order to generate electronic sound using

computers instead of analogue electronics, all that is needed is to specify

algorithms for generating the wave forms of the sound, and to program

algorithms on a computer for generating and playing these. This contrasted

sharply with electronic music practice that was limited by the available analogue

hardware, such as filters and sine and square wave tone generators. Another

potential that was seized on around the same time arose from the possibility of

39 Bruce Andrew McLean, op.cit., 1988, p.2. also Stephen Dowland Page op.cit., p.iv.

40 For a historical survey see , Gareth Loy "Composing with Computer - a Survey of Some Compositional

Formalisms and Music Programming Languages." Max V. Matthews and John R. Pierce Current

Directions in Computer Music Research, (Massachusetts: The MIT Press 1989), pp.291-396. Also for

history and techniques of sound synthesis see Charles Dodge and Thomas A. Jerse Computer Music (New

York: Schirmer Books 1985). For the techniques of computer-based sound synthesis, see F. Richard

Moore Elements of Computer Music. (Englewood Cliffs: Prentice Hall, 1990).

3: Survey of Representations and Computer Analyses.

 35

recording sounds with a computer and of modifying them in an arbitrary way.

This gave composers in the converging Musique Concrète and Electronic Music

traditions, what seemed at the time to be an ideal tool with virtually unlimited

potential, although the design of effective algorithms41 turned out to be a much

bigger task than was suspected by the pioneers. Early progress in sound

synthesis was rapid, and a real commercial spin-off resulted in the development

of mass-produced commercial digital synthesisers in the early 1980's.

 The experimentation with sound synthesis systems served to deepen our

understanding of some of the processes involved in the creation and perception

of music and thus provided a fertile ground for music theory. However the

primary goals of this work were not musicological. These differences were

reflected in the score representations that were created for sound synthesis. Most

computer representations of scores for sound synthesis divide the representation

scheme into two parts, the orchestra part and the score part. The orchestra part

is involved with expressing sound generating algorithms. The score part consists

of a simple structure, a list of notes, arranged one note per line. This one-

dimensional format makes it difficult for human readers, who feel more

comfortable with music notation through a two-dimensional representation. The

task of the score reader is even more awkward to handle when, as is normal in

sound synthesis applications, the one-dimensional list is not arranged in time

order. The score part was not modelled on the pitch and duration structure of

common practice notation. Familiar concepts are expressed numerically, with

pitch expressed in Hz, duration in seconds and dynamics in terms of amplitude.

Languages of the MUSICx varieties (MUSIC4, MUSIC5, MUSIC11,etc.),

CSOUND and CMUSIC are examples of such.

For the designers of these systems, the sheer complexity of common practice

notation proved too much of a burden to base an input language for sound

synthesis on it. This was partially because composers did not want to be limited

by the constraints of common practice notation, which was seen as an

inappropriate notation for communicating with a computer and for expressing

possibilities in the new medium. The possibility of having common practice

41 Risset, Jean-Claude Introductory Catalogue of Computer-Synthesized Sounds (Murray Hill, N.J.: Bell

Telephone Laboratories, 1969).

3: Survey of Representations and Computer Analyses.

 36

notation as a subset of the input code for sound synthesis was addressed by

Leland Smith, when he tried to unify the requirements of sound synthesis and

music printing. As Loy42 observes, "... Smith attempted to make a SCORE-

like notation for his music printing program, MS, which dates from the same

time (the early 1970s), but it became evident quickly that the useful information

for synthesis was sufficiently different from that required to typeset a score that

the notations had to diverge in nontrivial ways".43

Other, more recent composition systems include the object-oriented

Common Music44, the NeXT Music Kit45 and MODE and SMOKE46 systems.

These systems provide general composition environments with possibilities for

real-time interaction, and are not based on common practice notation.

42 Mathews and Pierce op.cit. p.335.

43 Although sound synthesis systems at present do not use CPN notation, it is possible that future systems

may incorporate such a facility. However the orientation of these systems will remain compositional. From

the musicologist's point of view, it is important to have access to sound generation facilities. This helps the

researcher to detect errors in, and to identify and visualize music from the corpus. Such a facility may be

realised by having one component in the analysis software, an output translator, that converts the internal

score form into one suitable for input to a sound synthesis system. The simplest form that this takes is by

means of a MIDI code output translator that may be used with a commercial synthesiser.

44 Common music is a high level composition language built on the Common Lisp Object

System. It was developed by Heinrich Taube and based on Bill Schottstaedt's language Pla that

was developed at CCRMA at Stanford University. See Heinrich Taube Common Music:A

Music Composition Language in Common Lisp and Clos in the Computer Music Journal volume

15, no.2 (Summer 1991), pp.21-32.

45 The NeXT Music Kit documentation is available in machine form from CCRMA at Stanford University.

46 Stephen T. Pope "MODE and SMOKE" in Hewlett, Walter B. and Selfridge-Field, Eleanor

Computing in Musicology volume 8 (Menlo Park 1992), pp.130-2. This is a Smalltalk-based

object oriented composition, performance and analysis. See also Stephen Travis Pope

"Introduction to MODE: The Musical Object Development Environment" in Stephen Travis

Pope The Well-Tempered Object (Cambridge Massachesetts: The MIT Press 1991), pp.83-106.

3: Survey of Representations and Computer Analyses.

 37

3.1.3 Score Representation in Computer Aided Composition.47

The designation 'Computer Aided Composition' is used for cases where a

computer makes some compositional decisions. The main aim is to provide

composers with a very much expanded potential for building models for the

automatic generation of music. A second potential of these systems lies in the

extent to which they illuminate the creative/generative process. Work in

computer aided composition began in the 1950s, and was characterised by initial

progress which yielded substantial results in the late 1950s and early 1960s.

 One of the earliest examples is the Illiac Suite by Lejaren Hiller that was

produced as early as 195848. Here Hiller succeeded in using the computer to

generate a music score by programming it to select notes randomly, within the

rules of species counterpoint. Computer aided composition has been exploited

on many subsequent occasions and from various perspectives by composers such

as Hiller, Xenakis49, Laske50 and Lansky51. The score representation that is used

in a typical computer aided composition system is radically different from

common practice notation. Here musical knowledge is normally embedded as a

series of rules. The rules are incorporated into a computer program that

generates music. Although the original dynamic for computer aided composition

came from experimental music, it is worth pointing out here that its relevance to

music theory was identified at an early stage. Generative theories of music

structure could be used to build a computer model that generated music. This

47 The first substantial work produced was Lejaren Hiller's Illiac Suite, the score of which appears in the

first major publication on experimental music, Lejaren Hiller and Isaacson Experimental Music (New

York: McGraw-Hill 1959). See also Loy, op.cit., pp.291-396, and Dodge and Jerse, op.cit., pp.265-322.

The IEEE Computer Society has recently formed a Task Force on Computer Generated Music that

produces three newsletters every year. For an anthology of developments in computer aided composition,

see Denis Biaggi Computer-Generated Music (Los Alamitos: IEEE Computer Society Press 1992). David

Cope's Computer and Musical Style (Oxford: OUP 1991), gives details of his own developments in this

area.

48 See Lejaren Hiller Computer Music Retrospective in the series Digital Music with Computer WERGO

CD WER 6128-50; see also Lejaren Hiller and Isaacson, op.cit.

49 Iannis Xenakis Formalized Music (Bloomington: Indiana University Press 1971).

50 Otto Laske "Composition Theory: An Enrichment of Music Theory" in Interface volume 18 (1989),

pp.45-59.

51 Paul Lansky's Idle Chatter on Wergo CD WER 2010-50.

3: Survey of Representations and Computer Analyses.

 38

gave a potential for experimental verification of the generative model by creating

music output for validating the model. There is a substantial history of work in

this area, most notably those of Baroni, Dalmonte and Jacoboni52, of Ebcioglu53

and of Kippen54.

3.2 Survey of Selected Analytic Systems.

A range of systems is surveyed. These cover a span of over 30 years, and

illustrate a variety of approaches for tackling the job of designing an analysis

system for music scores.

3.2.1 Michael Kassler's MIR.55

The MIR56 language was developed by Michael Kassler in early 1964 as part

of a pilot project concerned with experimenting on ways that a digital computer

could assist musicologists in answering internal-evidential questions about a

certain corpus of music and in particular, the Masses of Josquin des Prez.

MIR was a specialised computer language for music analysis. It was built on

important concepts such as that of a lyne, which corresponds to a part that is

performable on an instrument that, at any one time, can produce at most one

pitch. There also exists the concept of the current note, that involves the

mechanism for making one particular note of the score the current focus of

attention, with the implicit notion of a current time as the attack time of the

52 Mario Baroni; Rossana Dalmonte; and Carlo Jacoboni "Theory and Analysis of European Melody"

Marsden and Pople, op.cit., pp.187-205. also Mario Baroni, Ressella Brunetti, Laura Callegari and Carlo

Jacoboni. "A Grammar of melody. Relationships between melody and harmony" in Baroni; and Jacoboni

Musical Grammars and Computer Analysis. (Firenze: Olschki 1896). Much of this work was based on

earlier work. See Mario Baroni and Carlo Jacoboni Proposal For a Grammar of Melody (Montreal: Les

Presses de l'Universite de Montreal 1978).

53 Kemel Ebcioglu, "An Expert System for Harmonizing Chorales in the Style of J.S. Bach" Mira Balban,

Kemal Ebcioglu and Otto Laske Understanding Music with AI (Menlo Park: The AAAI Press/The MIT

Press 1992), pp.294-334.

54 Jim Kippen and Bernard Bel. "Modelling Music with Grammars: Formal Language Representation in

the Bol Processor", Marsden and Pople, op.cit.

55 An account of the nature and history of MIR appears in Stephen Dowland Page, op.cit., pp.73-76.

56 Michael Kassler "MIR - A Simple Programming Language for Musical Information Retrieval" in Harry

Lincoln The Computer and Music (Ithaca: Cornell University Press 1970), pp.299-327.

3: Survey of Representations and Computer Analyses.

 39

current note. MIR allows only one note to be current at any one time. A set of

primitives is provided for moving the current position. MIR allows one to locate

the current note at the start of lyne 1 of a selected section, to move forward or

backwards by n notes, to move between lynes, to move to a specific measure or

to a specific note within a specific measure. Special primitives are included to

traverse all the notes of a score. Additionally, primitives are provided for doing

comparisons of various entities, for doing arithmetic, for moving data, and for

performing output. The main mechanism for retrieving information from the

score is via a number of dedicated storage locations consisting of computer

words which hold information about the score in general, and about the current

note or rest. One such word allows the current note to have a unique identifier

that can be treated as a kind of variable.

MIR represented a remarkable achievement for its time, and contained many of the

features, if only in embryonic form, which form part of scoreView. The language

structure for MIR is not high level, and programs resembled assembler code. Each

instruction had the general format of (1) a normally optional label followed by (2) the

name of the command followed by (3) one or more operands. A sample of MIR is

shown in Fig 2.1. It locates the highest and lowest notes, in terms of pitch, in lyne

numbered two of the composition being processed.

3: Survey of Representations and Computer Analyses.

 40

 TOMEAS 1

 TOLYNE 2

ONWARD COMPAR REGCL,=14,REST TO LOCATION REST IF C.N. A REST.

 MOVE MEASNO,WA10

 MOVE NOTENO,WA11

 MOVE REGCL,WA12

 MOVE NOTECL,WA13

 MOVE SEMITO,WA14

NEWLO MOVE MEASNO,WA15

 MOVE NOTENO,WA16

 MOVE REGCL,WA17

 MOVE NOTECL,WA18

 MOVE SEMITO,WA19

RETURN COMPAR BARLIN,=3, STOP STOP IF AT DOUBLE BARLINE

 TONOTE +1

 COMPAR REGCL,=14,RETURN TO RETURN IF C.C. A REST

 TRGTH SEMITO, WA19, NEWHI TO NEWHI IF ON NEW HIGH

 TRLTH SEMITO, WA19, NEWLO TO NEWLO IF ON NEW LOW

 TRA RETURN GO TO RETURN

NEWHI MOVE MEASNO,WA10

 MOVE NOTENO,WA11

 MOVE REGCL,WA12

 MOVE NOTECL,WA13

 MOVE SEMITO,WA14

 TRA RETURN

STOP CALL EXIT

REST COMPAR BARLIN,=3,STOP

 TONOTE +1

 TRA ONWARD

Fig.3.157 MIR program that locates the highest and lowest notes, on lyne numbered 2.

Twenty consecutive computer words labelled WA1 through WA20 are

reserved to the MIR programmer to use as work areas.

MIR represents one of the early giant leaps in imagination, which paralleled

similar leaps in sound synthesis and computer aided composition that were made

around the end of the 1950s and the start of the 1960s. Whereas the form of the

language was low-level, and hence led to rather long programs, it contained the

57 In comparison with the 29 lines of code above, the scoreView achieves the same in 5 lines of code.

 ScoreIterator si(s, 1), siHigh = si, siLow = si;

 int hiPitch = 0, loPitch = 10000;

 while (si.step(NOTE))

 {

 if (si.getPitch12() > hiPitch) { hiPitch = si.getPitch12(); siLow = si;}

 if (si.getPitch12() < loPitch) { loPitch = si.getPitch12(); siHigh = si;}

 }

3: Survey of Representations and Computer Analyses.

 41

main fundamental concepts for a usable system for general music analysis. The

complexity of how music was represented and of how the associated procedures

operate is hidden from the musicologist-programmer. Two factors conspired

against its general use that have nothing to do with its intrinsic merits. The first

was because of the lack of a corpus written in a widely accepted code.58 The

second reason originated in the immaturity of computer software, in particular in

language standards. Attempts at improvement of university computing facilities,

which kept changing, resulted in great instability in software. Researchers often

found that computers were changed without due regard for maintaining

portability. When the original computer on which MIR ran was replaced, the

MIR system ceased to work.59

3.2.2 MUSIKUS at the University of Oslo.60

This project started in 1974 with a definition of MUSIKODE, an

alphanumeric music input code by Petter Henriksen and Tor Sverre Lande in co-

operation with Prof. O-J Dahl. Subsequently Tor Sverre Lande developed the

music analysis system as his thesis in computer science. MUSIKODE structures

58 The input language IML (Intermediate Musical Language) was devised by Jones and Howe of Princeton

University for the Josquin project. see also Tobias D Robinson, "IML-MIR: A Data-Processing System for

the Analysis of Music" in Harald Heckman Elektronische Datenverarbeitung in der Musikwissenschaft

(Regensburg: Bosse, 1967), pp.103-135.

According to Hewlett and Selfridge-Field in "Computing in Musicology, 1966-91" from Computer and the

Humanities 25 (1991), pp.381-392.

 "The need to keep data very compact encouraged the false economy of providing a pitch name

without an unambiguous indication of register, which was to be signalled only when changed. In hindsight

it was realised that undetected registral errors in the encoded data jeopardised application at every turn.

This lapse in the data prevented an otherwise commendable series of design projects from reaching

fruition."

59 Stephen Dowland Page, op.cit., p.28.

 "The IML/MIR system developed at Princeton, for example, which was originally designed as a

general-purpose music analysis and information retrieval system, was written in a strongly machine-

dependent programming language, and when the university bought a new computer - a different model -

the task of rewriting all the software was too vast to be undertaken for some time."

Also on page 76, Page reports Kassler as suggesting that difficulties of funding contributed to MIR's lapse

into disuse.

60 Music encoding and analysis in the MUSIKUS system, University of Oslo, Dept. of Informatics/Dept.

of Music 1988.

3: Survey of Representations and Computer Analyses.

 42

the score representation into a series of hierarchies, the note level being the

lowest level. These are combined into chords or parts and finally into sections,

such as a movement of a symphony or an act of an opera. This level is called the

composition level. At the highest level the compositions are combined into

musical entities. This is called the catalogue-level. It would appear from the

manual, that coding of the total information content of a score is possible within

the general structure of the code, but that various attributes such as dynamics and

tempo have not been implemented in the software. The input form of

MUSIKODE is converted into an internal form of MUSIKODE by a program

called MUS.

The analysis system consists of analytical programs that are written by

professional programmers from the Department of Informatics at the University

of Oslo. These programs produce an interactive environment that enables

musicologists to develop an analysis using a flexible range of built-in facilities.

The musicologist runs the program that loads music from the set of pieces in the

database. This gives possibilities of performing combinations of actions,

including

1. defining horizontal windows for doing thematic or intervallic analysis,

2. defining vertical windows for doing harmonic analysis,

3. defining recursively embedded windows,

4. locating the window,

5. moving the window through the material (scanning) and collecting

observations, where moving can be by a fixed interval of time or by a

number of changes,

6. defining points of interest (IPs) within a window, on various bases, for

example on all notes within the window or on stressed notes within the

window, with the concept of guiding parts introduced to facilitate the

traversal of two melodic lines in which the changes occur at different

times,

7. selecting some from a series of pre-programmed analytical tools that

create tables of values, for example TIPS, RIPS, BIPS AND SIFT which

produce various pitch class set type calculations on collections of notes

(IPs) within a window,

8. saving and restoring tables.

3: Survey of Representations and Computer Analyses.

 43

The internal score model as viewed by the analyst has a close analogy with

the visual score. The windowing/point of interest metaphor can be readily

visualised, and learning to use the system for analysis of a corpus involves

considerably less effort than would be the case if the analyst were to learn a

programming language. As in all such solutions, this quick road to using a

computer for music analysis has the downside of inflexibility when compared

with a full programming environment. Only analytic tools developed by the

professional programmers are available to the music analyst. The music analyst

using MUSIKUS is limited to selecting the actions that take place, such as

setting states that influence the effect of subsequent actions, and saving,

retrieving and displaying data.

3.2.3 The Essen Computer-Aided Research Project.61

This project uses large databases for the purposes of archiving, classification,

cataloguing and analyses of ethnomusicological materials. The project was

conceived by looking at the possibilities of extending a commercial database

package (STAIRS/CMS) to store melodies. A largely text database, ETNO

contains over 450, 000 items relating to ethnomusicological sound material, and

three further databases, LIED, LIAO and BALL, contain melodic notations.

LIED contains more than 4000 German folk songs, LIAO about 1000 Chinese

folk songs and BALL(ad) more than 1000 German ballads. The tunes are

encoded in ESAC (ESsen Associative Code). The code represents a melody's

pitch as a series of scale steps, which are represented by numbers, with the

characters '#' and 'b' used for non-diatonic pitches. A cipher notation is used for

Asian music with '+' and '-' symbols representing dots above or below the cipher.

In ESAC code, scale step 1 is always the tonic. Durations are encoded in terms

of the smallest duration in the note, and the underscore is used to denote

multiples of this duration, with a single underscore representing twice the

smallest duration. An encoding of Arne's, Rule Britannia! is given below. The

smallest note duration is a quaver.

61 Helmut Schaffrath "The Retrieval of Monophonic Melodies and their Variants: Concepts and Strategies

for Computer-Assisted Analysis" in Marsden and Pople, op.cit., pp.95-109.

3: Survey of Representations and Computer Analyses.

 44

 ****ARNE

 Rule Britannia

 Grossbritannien

 g0001 08 g 4/4

 3__.3_ 4_4__3_ 4_.32_1_ -7___

 5__4__ 31435_4_ 3__2__ 1___ //

Fig.3.2 ESAC encoded version of Arne's 'Rule Britania!'.

Note that the scheme used here encodes pitches and durations only. Each

entry may be analysed by calculating

 1. percentage of intervals, in both ascending and descending form,

 2. percentage of scale degrees,

 3. rhythmic incipit,

 4. scale and mode,

 5. range, including lower and upper limits,

 6. succession of finals of phrases or cadence tones,

 7. succession of stressed tones or accent tones,

 8. formal analysis of phrases:

 a: comparing succession of pitches,

 b: comparing the succession of durations,

 c: upbeats, phrase wise.

Various calculated values are then stored in a database, and these values may

be used as a basis for retrieval. Musical phrases are pre-defined, generally in

correspondence with the words. The analysis of phrases uses a concept of

'distance-variant', by counting the number of stressed notes. For example, a

phrase is classified as a 'distant-variant' within a deviation of 30% of all stressed

notes.

Searches can be made for one or more instances of the stored values in the

database. For example, when a new tune is encoded, a search may be made to

see if it, or a related tune exists in the database. One could search for all tunes

3: Survey of Representations and Computer Analyses.

 45

with the same rhythmic pattern. If this search retrieves a small number of tunes,

they can be examined to see if there are similarities. If, on the other hand too

many tunes are retrieved, then one could combine the first criterion with another

such as a cadential sequence, and in this way retrieve a manageable number of

melodies that may be similar. Apart from searching for instances of a specific

melody, the system provides a rich environment for exploring stylistic

differences between musics of different origins, such as Chinese music and

German folksongs.

In this system there is no programmer's model of a music score, apart from

the ESAC version of the music, which is limited mainly to encoding pitches and

durations of monophonic music. The musicologist's tool here consists of the

ability to make musically meaningful retrieval on the database, possibly based on

sophisticated strategies according to various criteria.

3.2.4 McLean's System for Score Representation.

The material discussed here is taken from a PhD dissertation62 of Bruce

McLean. The author is concerned with a number of issues, including, notational

completeness in encoding music scores in DARMS. With some new language

additions to DARMS to resolve ambiguities in vertical alignment, the author

devised a method of creating a version of DARMS in main memory for

processing. As an intermediate stage in the process of generating an internal

version, McLean generates a canonical version of the source DARMS, which is a

complete representation of the score, in DARMS code, but converted into a

form in which subsequent processing becomes simpler. A number of additional

facilities are also developed which include provision for attaching extra,

application-specific data to the internal form of the score, such as might be

desirable in analysis. McLean gives the following example:

 "For example, all instances of a specified melodic pattern, e.g., a fugue subject, could be

located in the Internal Form by a query language such as the one developed by Stephen Page.

The query would be defined as a sequence of pitches and/or durations. The data structure

returned by the search operation for the query would be a data structure which could be

moulded into an attribute plane and attached at the end of the Internal Form. The locations

themselves of the melodic pattern would then be stored in the Internal Form. Subsequent

62 Bruce Andrew McLean, op.cit., 1988.

3: Survey of Representations and Computer Analyses.

 46

searches for the same pattern could be carried out by a relatively high-speed retrieval of the

attribute plane rather than by an exhaustive search through the whole Internal Form."63

 In addition to the internal form of the score, a closely related form is

generable, the transport version, for transmission across computer networks.

The authors vision of a retrieval interface is significant.

"A basic set of assumptions is being made about the way in which a musical researcher

will employ a computer system. First, it is assumed that a researcher who wishes to engage

in computer-assisted methods of analysis of musical scores, or who wishes to perform

transformations on the representation of a musical score for other purposes such as printing

or translation to an alternate representation, will write an application program in one of the

common programming languages (e.g., Pascal, Modula-2, or C). Second, a general-purpose

retrieval interface will be made available as a means of searching for and extracting data

objects from the internal form. The retrieval interface is a library of functions, or

subroutines, which may be called from the researcher's application program. The purpose of

the retrieval interface is to serve as a software translation layer between high-level requests

made by an application and the complex body of information in the internal form. The

retrieval interface presents to an application-writer a readily understandable and limited set

of requests, or commands, for the selection of data objects within the internal form. The

value of the retrieval interface is that in presenting a sufficiently useful virtual view of the

score object and its organisation, it also conceals details of the internal form that would

distract the application-writer from his primary purpose. Third, the application itself or

additional layers of software services employed by the application, but not the retrieval

interface will be responsible for the recognition of patterns in the internal form."64

 Significantly, McLean is here promoting the principle of abstraction, that is

of complexity-hiding.

"Organization to support direct retrieval of objects (notes, chords, slices, measures, and,

within analytic applications, voices, instances of themes or rhythmic motives, and others) is

required. Types of movement which must be supported are (1) direct access of objects; (2)

sequential step-wise traversal, in which the traversal step beyond any particular object could

be taken in any of several different directions; and (3) automatic search; there must be a

well-defined linear path through the entire Internal Form which may be followed by a search

engine. An organisational requirement imposed by thematic indexing applications is the

ability to store and access a large number (up to tens of thousands) of small excerpts - the

incipits - of scores."65

63 ibid, p.176.

64 ibid p.159.

65 ibid p.163.

3: Survey of Representations and Computer Analyses.

 47

Overall the McLean thesis has at its heart the representation of a musical

score for processing. The analytic side however, is not developed in this thesis.

One analytical approach by Page that was developed using McLean's

representation is given in the second next section. Overall McLean's approach

has the integrity resulting from concentrating on the issue of completeness and

objectivity of score representation. Time will tell whether the number of extra

facilities provided is worthwhile. These facilities include the transport version

of the score and the ability to attach application specific data. The ability to

extend the representation by attaching extra information coupled with the above

quoted suggestion of attaching analytic information such as themes for use in

information retrieval suggest that the score representation is verging on a

database. This approach runs the risk of becoming top heavy, by using the score

representation to support a database, rather than by using database technology for

storing such relations.

3.2.5 Brinkman.

One of the most comprehensive attempts to make computers available to

musicologist-programmers is in Brinkman's 963 page book "Pascal

Programming for Music Research".66 It has been used by Brinkman for graduate

students in music and in seminars for Ph.D. candidates in music theory. The

book can be looked at from a number of aspects. First it resembles an

introductory computer science book in programming which deals with

representing data and procedures in a computer. It deals specifically with the

Pascal language. Additionally it contains material that would be covered in an

introductory course on data structures and algorithms. It has a liberal set of

exercises at the end of each chapter. It differs from a typical undergraduate

computer science book in two ways. Firstly, many of the examples and of the

exercises are based on music applications. Secondly, there are sections that deal

with specifics of musical interest. Among these are a DARMS interpreter,

functions for handling pitch class set analysis, and a linked list representation for

music scores. This book opens up a world of possibilities for the music

researcher, but at the same time it demands that the researcher makes a major

effort to come to grips with the material. On a typical undergraduate computer

66 Alexander R. Brinkman, op.cit.

3: Survey of Representations and Computer Analyses.

 48

science course, the computing material would take between two and three

semesters for an average beginner to reach the level of expertise necessary for its

fluent use. The material is good training for those who want to become

developers of software that processes music. However, there is considerable

overkill in the effort required from anyone using this book as training ground for

computer based music analysis only.

A part of the final chapter in the book is devoted to the design of an

implementation of an internal score representation. The score representation is

not packaged to a sufficient level of abstraction to be of great use to a

musicologist. No attempt is made to hide the complexity of the implementation

from the user/programmer. The main implications of this are twofold. Firstly

the programmer has to know a lot of irrelevant details, that is, details that are

inessential to solving a music problem, in order to use the material. Secondly, the

error proneness arising from the possibilities of accidentally modifying some of

the internals, is significant. Errors that may arise from the user of the software

accidentally modifying any of the pointer values that abound in the

representation. Such programming errors are notoriously difficult to detect.

scoreView, on the other hand uses an object oriented approach that solves most

of the problems associated with Brinkman's approach.

3: Survey of Representations and Computer Analyses.

 49

3.2.6 Computer Tools for Music Information Retrieval by Stephen Page.

A PhD thesis67, by Stephen Dowland Page, developed at the University of

Oxford demonstrates the feasibility of a music information retrieval system. The

user interface is based on a non deterministic finite state recogniser, and has an

associated simple language, of the type used in advanced text editors. When the

user specifies a search criterion, the system interprets the user specification and

uses it to search the database of music scores for matching instances. Some

examples of the search criterion are given in Fig.3.3.

the note sequence D, E, F. D.E.F (1)

the above in the octave from middle C D4.E4.F4 (2)

the above with time values of quaver, quaver, crotchet D4/8.D4/8.D4/4 (3)

the same melody in any transposition N/8.+2/8.+2/4 (4)

a bar commencing with a quaver rest followed by a crotchet %0% R/8.N/16 (5)

any sequence of at least 3 Gs G.G.G+ (6)

any ascending fifth followed by a descending

 third, ignoring any intervening rests N.R*.+7.R*.[-3,-4] (7)

any number of successive notes that do not belong to

 the key of D major [^S,E,F#,G,A,B,C#] (8)

Fig.3.3 Sample search criteria as regular expressions proposed by Page.

Reproduced by permission of S. D. Page.

The name of a note is specified by its alphabetic letter with optional

accidental and octave registers. Examples 1 and 2 illustrate the use of pitch

specifications by means of letters either without or with octave registers. The '.'

represents concatenation. The letter R is used for a rest and N is used for any

note. Note and rest duration are encoded as a '/' followed by a number (8 for

eighth notes, 4 for quarter notes, etc.), as in example 3. Rising relative pitches

may be specified by a positive integer representing the number of semitones in

the interval, as in example 4. Falling pitches are specified by negative numbers.

67 Stephen Dowland Page, op.cit.

3: Survey of Representations and Computer Analyses.

 50

The construct %0% in example 5 is called an anchor, and specifies that the

search should take place at the start of a bar only. The symbols '*' and '+', when

they directly follow a construct, are used to specify any number of consecutive

occurrences of the preceding criterion. The difference between them is that

whereas the '+' specifies the occurrence of one or more constructs, the '*'

specifies the occurrence of zero of more constructs. Hence the pattern N+ is

equivalent to N.N*. Squared brackets are used to specify a single value from a

range or sequence. For example [1:4] specifies one of 1, 2, 3 or 4, while the

sequence [-3,-4] specifies either a -3 or a -4. Optionality is specified by a

following question mark. Hence [B,C]? matches a B, a C or no note. '|' may be

used for alteration. Hence F|G matches any F or G. Additionally it is proposed

that expressions formed from these constructs may be combined by means of

Boolean operators such as 'and' and 'or'.

The thesis demonstrated the feasibility of constructing a useful prototype,

which has a number of restrictions. These restrictions include (1) the limitation

of retrieval to note pitches and note and rest durations, (2) the limitation of

retrieval to scanning single lines and (3) the limitation associated with the

anchoring mechanism which allowed for focusing only on a particular position at

the start of every bar. It should be pointed out that these limitations are not

inherent to the design of the system. They most likely arose from the need to

keep the original project within the achievable bounds of a university

dissertation.

Figures on the performance of the system when run on a database containing

all the preludes and fugues of Book 1 of Das wohltemperierte Klavier are given

by the author in Table 3.1, where that searches were run on a single fugue and on

all voices of all of the preludes and fugues.

3: Survey of Representations and Computer Analyses.

 51

 Query Single fugue Entire Database

 Time Count Time Count

 N|R 2 776 114 45,703

 N 1 733 109 41,424

 N/[1:8] 1 615 110 41,424

 G.G+ 2 5 105 315

 N.+4.+3 2 0 111 141

 N.R*.+4.R*.+3 3 0 184 141

 C.R*.B.R*.A# 3 2 142 13

 C+.R*.B+.R*.A# 3 2 165 14

Table 3.1 Performance times in seconds for Page's system.

Reproduced with the permission of S. D. Page.

The times for accessing one tune are well within the limits of usefulness in

an interactive system. On the other hand the times for searching the entire

collection are not, at least for queries that produce a small number of retrievals.

However, these figures are for hardware of 1988. Improvements could be

expected from using more recent hardware.

From the point of view of the music analyst, this system offers the prospect

of interactive information retrieval that is easy to learn. With the addition of a

music oriented graphical user interface, the immediacy of this tool could be

greatly enhanced. As well as being a potential tool for computer-literate

musicologists, it has the highly significant attribute of being usable by those who

are not computer-literate. This ease of use is achieved at the expense of the

power of modelling all effective procedures. The computational power of a

finite state recogniser is significantly less than that of a Turing machine.68

3.3 Summary.

The systems presented here fall into two categories. There are those which

provide general access to all the features of a score representation. These include

MIR, McLean's and Brinkman's. McLean concentrates on issues of

68 William A. Wold, Mary Shaw and Paul N. Hilflinger, Fundamental Structures of Computer Science

(Massachusetts 1981), pp.341-364.

3: Survey of Representations and Computer Analyses.

 52

completeness of representation and does not have an abstract score view,

although his thinking is close. He has indicated since completion of his

dissertation, that a system for analysis will emerge.69 Brinkman's approach does

not attempt to hide the complexity of his representation. MIR on the other hand,

provides a genuine attempt at score representation, but in a form that is dated and

with a primitive environment for algorithm development. Both Brinkman's and

McLean's approaches are embedded within a programming language. The

computing power associated with these environments is general. Such could be

used to build other more limited information retrieval systems such as the Essen

and MUSIKUS ones. The Essen system and MUSIKUS are examples of the

second and substantially different types of system that do not provide facilities

for the musicologist to develop general analytic algorithms, but on the other hand

offer the ability to manipulate the results of processing using a set of pre-written

programs. The big advantage of these systems lies in their potential utility for all

musicologists, irrespective of their level of computer literacy. The power of

Page's system lies somewhere between the two. It is usable by musicologists

with relatively low levels of computer literacy, and has a relatively low learning

overhead. In it, users can express search criteria based on a limited language that

can be mastered in a short time. scoreView requires a deeper knowledge of

computing on the part of the musicologist than is required of Page's system.

Specifically it requires the mastering of the technique of programming. The

benefit to the musicologist of having a general programming environment lies,

not in the resulting ease of use, but in the generality and in the potential

complexity of the analytic algorithms that it is possible to write.

The following chapters develop the framework within which the musicologist-

programmer's view of a score is developed.

69 Bruce McLean, "An Editing System for Analysis of Musical Scores" in Walter B Hewlett and Eleanot

Selfridge Field Computing in Musicology volume 8 (Menlo Park 1992), p.133.

4: Goals and Formalisms.

 53

Chapter 4. Goals and Formalisms.

This chapter examines the general goals of the project. It then examines various

formalisms with a view to structuring the representation of score in a computer.

4.1 Goals.

The overall goal of this project is to provide a musicologist-programmer's

environment for representing music scores in a computer in accordance with the sub-

goals of informational completeness, objectivity, extendibility and abstraction.

4.1.1 Informational Completeness.

By this sub-goal is meant that the basic information content of the score is captured

in such a way that any question answerable from the basic information content of the

printed score is also answerable from the computer representation. By the “basic

information content of the printed score” is meant those factors pertaining to an abstract

view of the symbols, which contain all the information in the physical score, but exclude

information on incidentals. Such incidental information includes the font used,

thickness of line and number of bars per line. Two type setters working from the basic

information content only, should produce musically equivalent versions, which may

look different in various respects. The overall design of scoreView supports

unrestricted polyphonic scores. This implementation has developed various member

functions such as locate and step for handling a restricted set of polyphonic scores. It

supports multi-stave polyphonic scores but there is a restriction on allowable cases of

multiple simultaneous notes which appear on the same stave. Multiple simultaneous

notes can exist on the same stave in cases where they are not rhythmically independent.

Freeing this restriction to allow for the representation of general polyphonic scores is not

difficult to achieve. Some further comments on this appear in 8.2.1. To implement this

safely would involve carrying out a substantial amount of testing on a variety of

polyphonic scores to ensure the reliability of the implementation.

scoreView allows for the representation of a wide variety of the signifiers found in

common practice notation. Additional signifiers can be added as required, by using the

appropriate structures with scoreView.

4: Goals and Formalisms.

 54

4.1.2 Objectivity.

The sub-goal of objectivity, means that the computer representation does not commit

the user to a specific interpretation of symbols of the written score in cases where

ambiguity exists. Hence the distinction between slurs and phrase marks should not be

made in the representation, but instead it should be left to the analysis to disambiguate

these. The sub-goal of objectivity does not exclude supplying some additional

information that may not be overtly present in the physical score. This arises in cases

where various liberties have been taken with the notation. Here it may be essential to

add information in order to make the score readable by software. An example of this is

where groupettes are inadequately represented in the original score. What is involved

here is not the resolution of ambiguities, but the unambiguous interpretation of scores

written by people who take liberties with the notation.

4.1.3 Extendibility.

The sub-goal of extendibility means that the implementation should be left open to

being modified for use in new situations. Here we are concerned with both the

extendibility of the analytic environment and of the score representation.

Software components that encapsulate high level theoretical concepts are not found

at the basic level. Additional components of arbitrary complexity may be created and

added to scoreView as the needs arise. This gives users of the system a capability for

building arbitrary complex analytic software. Additionally, it is possible to organise the

resulting complexity into new levels in the hierarchy of levels, as well as packaging

them for efficient reuse by others.

Also it is desirable to allow for extending the score representation itself to

accommodate constructs that were not catered for in the original design, such as score

representations used in ethnomusicology or in some 20th century music.

4.1.4 Abstraction.

The sub-goal of abstraction means that the representation should aim to achieve the

greatest amount of complexity hiding. Abstraction ensures that users of the system are

not unduly burdened by issues of score representation. The challenge here is to develop

a musicologist-programmer's view that parallels the musicologist's view of the physical

4: Goals and Formalisms.

 55

score. This complexity hiding should involve the automatic resolution of scoping

contexts, such as are involved in clefs and in time and key signatures.

The most important question to answer in determining an appropriate level of

abstraction is not how the score is represented, but instead on what actions the

musicologist might want to carry out on it.

A second aspect of abstraction lies in the ability to structure the analytic tasks

themselves at a series of levels. The most fundamental level is the first level which is

basic in nature. By basic is meant that its prime function is limited to giving access to

the entire information content of the score. This basic level deals with entities in score,

such as time signatures, key signatures, clefs, barlines, notes and rests. Higher level

theoretical concepts such as those involving harmony, are not allowed to clutter this

basic level of representation. A major chord for example, appears in the basic model as

an unclassified collection of individual notes, and not as any higher level entity. The

current implementation consists of two main levels, with the higher level containing

classes to represent and manipulate various abstractions such as pitch class sets and

pitch tuples. Principles of abstraction can be applied to extendibility of the environment

where the organising of complex processing above the basic scoreView level is

involved.

4.2 Usage.

The main intended use of the musicologist-programmer's environment is by music

analysts.70 Providing such an environment begs the question of how an analyst might use

it. In the following quotation, Gareth Loy71 puts his finger on one of the problems at the

heart of the fruitful use of computers for music purposes.

 "As an art form, music has high-level expressive requirements that are extremely difficult to

formalize. But computers require formal expression for all problems they address.".

70 scoreView could also be used in any area where a representation of the information content of a music

score is required. It could be profitably used to produce more specific analytical tools, as well as in

computer aided instruction and in multimedia.

71 Gareth Loy, op.cit., pp.291-396.

4: Goals and Formalisms.

 56

scoreView provides only the basic building blocks on which such formalisations may

be constructed. The goal of building highly sophisticated analytic systems is facilitated

because -

the environment is a general programming one, which gives the analyst the

potential for processing scores to any conceivable order of complexity,

software engineering techniques such as hierarchical decomposition can be used

to break complex problems down into successively simpler ones, so that the overall

task becomes of manageable proportions,

the environment can become a repository for such complex environments, which

can be reused, or incorporated into ever more complex systems.

Typical usage of the system might start by an analyst proposing a theory about a

particular music genre. Initially this theory may be expressed in a semi-formal way in

natural language. Next, a model is built to enable the theory to be tested. The computer

model, when run on an appropriate corpus, provides the possibility of experimental

verification of the theory. The expression of the model is in the form of some kind of

algorithm which is expressed as a computer program. In chapters 6 and 7, examples are

given of this process.

A number of topics that are of use in the expression of formalisms are presented in

the following sections.

4.3 Algorithms.

The algorithm is the basic formalism that is used for specifying the actions to be

carried out by a computer. Knuth72, lists 5 properties that a process must have in order to

be an algorithm. These are -

Finiteness: An algorithm must terminate after a finite number of steps.

72 Donald E. Knuth. The Art of Computer Programming volume 1:Fundamental Algorithms

(Reading:Addison Wesley 1973), pp.1-9

.

4: Goals and Formalisms.

 57

Definiteness: Each step of an algorithm must be precisely defined; the action to be

carried out must be rigorously and unambiguously specified for each case.

Input: An algorithm has zero or more inputs, i.e. quantities that are given to it

initially before the algorithm begins.

Output: An algorithm has one or more output, i.e., quantities that have a specified

relation to the inputs.

Effectiveness: An algorithm is also generally expected to be effective. This means

that all of the operations to be performed in the algorithm must be sufficiently

basic that they can in principle be done exactly and in a finite length of time by a

man using pencil and paper.

Two mini illustrative examples of algorithms are given at the end of the next chapter.

They are expressed as fragments of C++ programs.

4.4 Functions.

Functional abstraction was developed in the early history of computer science as a

way of organising algorithms. Functional abstraction was supported by some of the first

high level computer languages, such as FORTRAN and Lisp. Functions provide a

structure for the potential hierarchical structuring of algorithms as well as a capability for

data hiding. In other words, functions provide a way of hiding complexity. In order to

use a function, one has to know only its name, and details of its parameters and return

values.

4.5 Abstract Data Types.

One of the first publications to promote the concept of an abstract data type appeared

in "Notes on Structured Programming" by C.A.R.Hoare in a book that was published in

1972.73 Although the term 'abstract data type' was not used in this book, a thorough

treatment is given for a range of data structures. Abstract data types(ADTs) are

73 O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Structured Programming (London and New York:

Academic Press 1972), pp.83-174.

4: Goals and Formalisms.

 58

generalised mathematical concepts of data, which treat data structures in terms of their

abstract properties, instead of in terms of how they are constructed.

The most important contribution of ADTs to software environments is that they

promote complexity hiding. It becomes possible to deal with a data structure as an

abstraction, instead of as a mere collection of pieces of information. ADT's are of great

benefit to users of the resultant software because they need not be aware of the

underlying complexity in the ADT.

ADT's are implemented in computer languages, such as Pascal, Modula or C as a

datatype and a series of functions. An ADT of a first-in-first-out(FIFO) store of integers,

or, a queue of integers, might be implemented in C, and used as in the following example

which inserts the integers 5, 6 and 7 into the queue

 QueueType q;

 init(q);

 put(q,5);

 put(q,6);

 put(q,7);

This approach had a number of weaknesses, some of which have much to do with the

language in which the queue is implemented. Some of the most difficult barriers to

creating dependable software arise from the potential to misuse ADT constructs. For

example, it is possible to pass data other than integers to q using the put member

function, which has been designed to deal only with integers. Also, the user of

QueueType is not restricted to using functions such as init and put, as it is also possible

to manipulate the internal data in the queue abstraction, with attendant danger of

corrupting it. Additional difficulties arise with attempts to reuse such queue

implementations.

4.6 Data Analysis.

The score consists of a wide collection of graphemes that we can categorise as being

of many types. The desirability arises of structuring these types. We can draw on

4: Goals and Formalisms.

 59

techniques that emerged in data analysis in the 1970s for structuring our view of data.74

The approach developed by Peter Pin-Shan Chen was to define an 'enterprise schema',

which he describes as 'a pure representation of the real world'. The techniques evolved

three steps as follows, and although they are oriented towards structuring a businesses

database, they have a more general applicability.

(1) Identify entity sets of interest to the enterprise, where an entity is a 'thing' that can

be distinctly identified. An entity set is a group of entities of the same type. It is the

responsibility of the enterprise administrator to select the entity types that are most

suitable to his company.

(2) Identify the relationship sets of interest to the enterprise. Entities are related to

each other, and different types of relationships may exist between different types of

entities. A relationship set is a set of relationships of the same type.

(3) Identify relevant properties of entities and relationships, i.e. define value sets and

attributes. Entities and relationships have properties that can be expressed in terms of

attribute-value pairs.

Example: We can identify entities such as Score, Note, Rest, Time Signature. There

is a relationship between Score and the rest of these entities in that Score acts as a

container for entities of type Note, Rest and Time Signature, as well as for other types.

We could also envisage Note and Rest entities as having a relationship of vertical and

horizontal contiguity with each other.

Attributes of a note could include its letter name, its octave register and possibly an

immediately preceding accidental. Note that this categorisation involves the design

decision to make the accidental an attribute of the note, instead of giving it status as an

entity in itself. Examples of values associated with these attributes might be

 pitch letter = C

 octave register = 5

74 Peter Pin-Shan Chen "The entity-relationship model - A basis for the enterprise view of data"

Conference Proceedings of the American Federation of Information Processing Societies (1977),

pp.77-84.

4: Goals and Formalisms.

 60

 accidental = #

Associated with each attribute is a value set, which is the set of allowable values.

The value set for the pitch letter attribute is { A B C D E F G }.

The entity-relation model focuses on data. Entities have internal states. The ADT, on

the other hand focuses on activities that are carried out on data, and hides details of the

data from the user. In the next section, we will see how these approaches can be unified

in terms of objects. This gives the benefit of being able to modify entities as in the

entity-relationship model, and at the same, time capturing its behaviour. A number of

additional benefits accrue from this approach.

4.7 Object Oriented Programming.

4.7.1 Encapsulation and Message Passing.

The object oriented approach to programming arises from a re-casting the ADT view

of functions that operate on data. The shift of focus involves combining both data and

functions as a single entity called an object. This packaging of data and functions is call

encapsulation75 and involves hiding the data so that it cannot interact directly with

anything external to the object except through the functions which form part of the

object. In non object-oriented programming languages actions are carried out by calling

functions. This involves passing data to a function in the form of parameters. The

function then performs its operations using the data parameters and optionally return a

piece of data as result. In the object-oriented approach, an action is carried out by calling

a member function of the object. The metaphor used here is that a message is sent to the

object. The message takes the form of a function name together with its associated

parameters. The object responds by executing the code associated with this message,

75 According to Oscar Nierstrasz "A Survey of Object-Oriented Concepts" in Won Kim and Frederick H.

Lochovsky Object-oriented Concepts, Databases , and Applications (New York: ACM Press 1989), pp.3-

21, encapsulation is the main common element in various approaches to object oriented programming in

various programming languages.

4: Goals and Formalisms.

 61

which typically changes the state of the object in some way, and optionally, sends further

messages to other objects. The shift of emphasis is, according to Brown76

". . . more closely tuned with the way in which we think about entities in the real world; we rarely

divorce the concept of what the entity is (i.e. its state) from what we can do with it (i.e. operators with

manipulate it)."

The word 'class' is used to describe the type of object. We talk of objects being of a

particular class. Object classes are used in a programming language to automatically

create or instantiate objects of that class.

4.7.2 Specialisation.

Many object classes have things in common in themselves. They may have similar

data components, and also have common operators or functions. Instead of having to

define each subclass from scratch, in object oriented programming languages we have a

mechanism called inheritance which automatically structures this superclass/subclass

relationship. Subclasses can inherit some or all of the behaviour of the superclass.

Additionally new functions and/or data can be added to the subclass. These additional

functions can be used to add new capabilities to the subclass or to override some of the

functionality inherited from the superclass. The subclass/superclass relation can be

applied recursively. Apart from vertical chains of inheritance arrived at in this way, it is

also possible in some object oriented environments for a class to inherit horizontally from

more than one class. This mechanism is called multiple inheritance.

Inheritance may be used for a number of purposes. As a way of structuring objects, it

provides a tool for abstraction. Classes may be constructed at a series of level of

abstractions. Inheritance may also be used as an aid to software reuse. A reuse of

software often requires modifications. This leads to the existence of multiple

incompatible versions. Inheritance provides a mechanism to avoid this divergence, by

providing an orderly way to modify classes without having to re-write them. An

example of a multiple inheritance structure appears in scoreView where the relationship

between classes Duration, Pitch, Note and Rest is structured in accordance with the

inheritance pattern shown in Fig 4.1.

76 Alan W. Brown Object-oriented databases: their applications to software engineering. (New London:

McGraw-Hill 1991), pp.18-23.

4: Goals and Formalisms.

 62

Duration Pitch

R est

Note

Fig 4.1 Inheritance structure for Note and

Rest objects.

Class Rest is built by inheriting class Duration. In building class Note we reuse

both class Rest and class Pitch. This is an example of multiple inheritance. The

effect of this inheritance is that class Note inherits all the functionality of both class

Rest and of class Pitch. Hence class Note can be queried about what its duration is,

because it inherits this member function from class Rest. It can also be queried about

which octave it is in, as it inherits this member function from class Pitch.

In C++ terminology, the superclass is called a base class and the subclass is called a

derived class.

4.7.3 Polymorphism and Overloading.

Overloading allows us to attach new meanings to functions and to operators that

depend on the context in which they are used. Context can be determined for the

functions or operators from the parameter types that they use. Overloading achieves a

type of polymorphism, a compile time polymorphism, which enables us to use the same

functions or operators in different contexts. Hence in scoreView, the function

getPitch12, which gets the chromatic pitch number, is not restricted to belonging to only

one object. It can be called for a Pitch object, or for a Note object, or for a

ScoreIterator object. Late binding, which provides for run-time polymorphism when

used in conjunction with inheritance, is dealt with in the next section.

4: Goals and Formalisms.

 63

4.7.4 Late Binding.

Languages that support inheritance also enables another very powerful facility, that

of late binding to be handled automatically. This allows us to defer selection of code

that acts on an object until run time. This is particularly useful in representing a score

that may be thought of as a collection of various objects that are assembled at run time.

An example of the combined advantage of polymorphism and late binding can be

seen from the following example. Suppose X is a pointer to an object in a programming

language that models any entity in a score. In the non-object oriented version, we will

assume the existence of a function called getTag() which returns the type of the object

that X points to. The code to invoke various functions to draw X on the screen will look

like

 if (getTag(X) == NOTE) drawNote();

 else if (getTag(X) == REST) drawRest();

 else if (getTag(X) == BARLINE) drawBarline();

 else if (getTag(X) == TIMESIG) drawTimeSignature();

 else etc

The corresponding object oriented construct reduces to

 X -> draw()

which invokes the encapsulated draw function of the object X.

4.7.5 Object Orientation in scoreView.

The choice of an object-oriented representation for a score came about as an

evolutionary process. The representation of a score that preceded scoreView77 evolved

towards the encapsulation of code within a data object. The conversion to the use of an

object oriented language has the significant advantage of providing automatic support

for encapsulation. In the previous version, encapsulation was implemented as Pascal

function calls. The availability of polymorphism in the new version allows for

77 Donncha Ó Maidín "Computer System for Music Analysis" Helene Charnasse Informatique et Musique

(Paris: ERATTO 1984), and Donncha Ó Maidín "Representation of Music Scores for Analysis" Alan

Marsden and Anthony Pople, op.cit., pp.67-93.

4: Goals and Formalisms.

 64

considerable simplification in the user interface. The availability of inheritance allows

for a natural reuse of software, and in particular the availability of multiple inheritance

allows for a better structuring than would have been possible otherwise.

C++ was chosen as the language of implementation. Unlike some other object

oriented environments such as Smalltalk, it supports multiple inheritance. C++ is the de-

facto industry standard. This means that enough commercial might backs the

development of C++ environments to ensure that in most cases they work correctly, and

efficiently. Also we can be sure that C++ environments keep pace with developments in

operating systems and user interfaces, across a very wide range of machines. C++ runs

efficiently on much less expensive hardware than most other objected oriented systems, a

fact that is less important now than it was in the past. Implementations of C++ are

reasonably portable. Currently the software runs in 3 environments, DOS, Windows3.1

and Unix, using the Borland C++ compiler for DOS and Windows and the GNU

compiler on Unix. Many C++ compilers have good interfaces to AI languages and GUIs,

which it is hoped to exploit in the future.

5: Score Views.

 65

Chapter 5. Score Views.

This chapter examines the score from the musician's view of its information

content, and lays the ground for modelling a computer representation. The first view

involves the physical score, that is the material record of the score. At the other

extreme we have the view of the score from the programmer's vantage. The process

of unifying these two views centres on forming a sufficiently abstract view of the

physical score that encapsulates its basic information content.

5.1 The Score as a semi-formal System of Representation.

In one aspect of music theory, that involved with the representation of music in scores

using common practice notation, one might expect to find a formal system. The

exigencies of the use of common practice notation for communicating musical ideas

among composers and performers might imply the existence of a lingua franca that

possess an unambiguous grammar and semantics. Although much of common practice

notation approaches this ideal, there are a number of factors that make it unrealisable.

Score notation is derived from common practice. Hence it is not the rules that

generate score notation, but instead the other way round. Rules come for observing the

common practice in the first place. Such common practice has semi-formal conventions

that arise from the needs of communication and invention, rather than a fully formalised

underlying structure.

Staff notation has inconsistencies within itself. In a study by Huron78, he examines

staff notation in terms of the signifier and the signified. A clef, the signified, is signified

by a symbol, the signifier, located on a stave. One ideal criterion is laid down by Huron

is that no two signifieds may share the same signifier. Common practice notation

violates this criterion when a sharp sign is used both in a key signature and as an

accidental. Although it is possible to distinguish between these two signifieds, in most

cases by the context, it is not necessarily so. There exists a similar potential for

ambiguity in the notation of slur and phrase marks. Another desirable criterion, that of

78 David Huron "Design Principles in Computer-based Music Representation" Alan Marsden and

Anthony Pople, op.cit., pp.5-39.

5: Score Views.

 66

reversibility between the signifier and the signified, is not always possible, as for

example, in the case of crotchet rests, where two signifiers exist.

There are also many examples where norms of the notation are transgressed. The

selection of the time values for notes which form groupettes is one such example.

Score notation itself is not a static thing, it continues to evolve. This yields individual

notational solutions that may or may not ultimately become part of the common practice.

In scoreView, there is the assumption that the score has been encoded in a manner

that captures the basic information content of the physical score. Any ambiguity in the

score due to incompleteness of the notation must be resolved at the encoding stage.

Notational incompleteness should be made complete as a separate editorial task, prior to

encoding. Provision is made within scoreView for dealing with specific cases of

reversibility, such as that involving crotchet rests.

The following sections deal with the structure of the score from different points of

view. Many aspects of the score are discussed here in relation to the physical score as

well as in relation to its representation in a computer. The first and second sections deal

with the score both as an entity in itself and in terms of the entities contained within it.

This is followed by two sections that deal with time and with contiguity relations. Next,

there is then a section dealing with scoping relationships. The sense, or the absence of a

sense of line is the topic of the following section. The final three sections deal with the

score reader, and its computer analogue, the score iterator, and the use of the score

iterator in locating and scanning actions within a score.

5.2 The Score Entity.

We can look on the physical score as an entity in itself. Hence we can talk about

various kinds of operations on the score, such as playing a score, publishing a score or

composing a score. The score itself has a number of attributes. These include its title,

name, composer, and if it is a printed score, its publisher.

A musicologist-programmer's version of the score is created in the computer by

using a score declaration in the processing program. The score is created from the

contents of a file in which an encoded version of the score exists, in one or other input

5: Score Views.

 67

codes such as ALMA, DARMS or SGML. This is done by in scoreView for an ALMA

encoding by means of the following declaration.

 Score s(filename);

where s is the name of the score object and filename is a variable of class String

that contains the name of the score file.

We will now focus on the kind of things we might want to do with the object s. We

might want, for example, to find the name of the score. This is done by calling the

member function getString(TITLE). In a similar way we could ask for other details of

the score, such as what key it is in, what the initial time signature is, who is the

composer is, etc. Such member functions are called in a similar way.

 s.getString(TITLE);

 s.getString(CMPSR);

 s.getString(KEYSIG);

There is not a lot of things we can do with a score as a whole. Two such actions are

of use however, to get the score to play itself on the local MIDI hardware or to draw

itself on the screen79

 s.play();

 s.draw();

Most meaningful activities are carried out not on the score as a whole, but instead

on the various entities that constitute the score.

5.3 Entities within the Score.

We consider a score, not holistically, but as an ordered collection of its constituent

entities. These entities in the physical score are represented by graphemes or groups of

graphemes that carry symbolic or iconic, or a combination of symbolic and iconic

information. Iconic representation is partially used in the encoding of pitch and of pitch

79 In the current implementation of scoreView, the play but not the draw function is implemented.

5: Score Views.

 68

movement in time, where the pitch height corresponds approximately to height of a

notehead, and the passage of time corresponding to left-to-right note symbol

sequencing. Music is arranged on one stave or on a system of staves that appear from

left to right, starting near the top of the page. These are repeated to fill the page. Clefs

and key signatures appear on the leftmost corner of each stave, but time signatures

appear with minimal frequency.

The abstract view of the score corresponds to a view of the physical score that is

stripped of features that pertain to its physical realisation, while retaining at least all

information of potential relevance to a music analyst. Hence the abstract score is not

tied to page layout or to a particular print face and can be viewed as consisting of staves

of indefinite length. The physical score has far more clefs and key signatures than its

abstraction.

In order to classify the various symbols in the score, it is useful to think of some

symbols as having a major status, or as entities, where other symbols may be regarded

as belonging to those of major status, or as attributes of the entities.

A list of the main score entities and of their attributes is given below. Most of the

entities listed exist in the score as combinations of graphemes. However pitch and

durations exist within a score as abstractions, which are useful in the structuring of

notes and rests. The term scope is used below either in the context of entities that

influence the interpretation of other entities, or in the context of the affected entities. A

section on the nature and types of scoping mechanisms is given later in this chapter.

5.3.1 Entity: Key Signature.

Attributes: value, location, open scope.

 Value: any one from the 24 possible key signatures, also possibly non-standard

extensions.

 Default: Key of C.

In the computer, key signature is represented as an object called KeySig, with the

values of an enumerated type KeySigType used to specify the key.

5: Score Views.

 69

 KeySig(keySigType ks = NOKEY);

where

enum

keySigType

{

 C, SF, SFSC, SFSCSG, SFSCSGSD, SFSCSGSDSA, SFSCSGSDSASE,

SFSCSGSDSASESB, FB, FBFE, FBFEFA, FBFEFAFD, FBFEFAFDFG,

FBFEFAFDFGFC, FBFEFAFDFGFCFF, NOKEY

};

The above names are interpretable by treating S as standing for sharp and F for flat.

F may also denote the note F.

5.3.2 Entity: Time Signature.

Attributes: value, location, open scope.

 Value: unnormalized rational number (such as 4/4 or 6/8) , or common time (C,

with ancestry in a semi circle) or simple duple time(C with line through it).

In the computer, two classes are used to represent time signatures. The first one,

TimeSigType is used to model the rational number aspect of time signatures.

 TimeSigType(long n1 = 4, long d1 = 4);

The second class represents a time signature in a score.

TimeSig(int n1 = 4, int d1 = 4);

TimeSig('C') is used for a common time(4/4) object, and TimeSig('c') is used for

simple duple time(2/2).

5.3.3 Entity: Clef.

Attributes: value, location, open scope.

5: Score Views.

 70

 Value: French violin, soprano, mezzo soprano, treble, bass, alto, tenor or

baritone.

In the computer, a clef is represented as an object called Clef, with the values of an

enumerated type ClefType used to specify the clef.

Clef(clefType c = NOCLEF)

where clefType is

enum

clefType

{

 FRENCH_VIOLIN, SOPRANO, MEZZO_SOPRANO, TREBLE, BASS,

ALTO, TENOR, BARITONE, NOCLEF

};

The next three entities are represented as character strings in a score. They are

created in a score using the overloaded '+' operator of ScoreIterator class with

class TaggedText. They are retrieved with the getString(const tagType & tt =

TAG) member function of ScoreIterator.

5.3.4 Entity: Metronome.

Attributes: value, location, open scope.

 Value: duration value = number.

The duration value is expressed in ALMA. An example of a valid entry of 100

dotted quarter notes per minute is

 4. = 100

5: Score Views.

 71

5.3.5 Entity: Tempo.

Attributes: value, location, open scope.

 Value: character strings in restricted natural languages, representing

unambiguous tempo indications.

5.3.6 Entity: Expression.

Attributes: value, location, open scope.

 Value: character strings in restricted natural languages, representing

unambiguous expression text.

5.3.7 Entity: Duration.

Attributes: nominal value, number of dots

 Nominal value: breve, whole note, half note, quarter note, etc.

 dots: ., .., ..., etc.

In the computer representation, durations are represented at two levels. An

enumerated data type of C++ is used for the first level, for note values that are

represented in common practice notation by a combination of noteheads, stems

and positioning. The representation here is simply a mnemonic mapping from

normal names.

enum durType { N0, N1, N2, N4, N8, N16, N32, N64, N128 }

Additionally a duration can be modified by the presence of dots. This is modelled

as class Duration. Class Duration is a score abstraction. It is used in

constructing classes Note and Rest.

Objects of class Duration are created by the constructor

 Duration(durType d = N4, int dot = 0);

5: Score Views.

 72

5.3.8 Entity: Pitch.

Attributes: pitch name, octave register, accidental.

 pitch name: A, B, C, D, E, F, G.

 octave register: an integer, with middle C starting register no 5.

 accidental: none, flat, sharp, natural, double flat and double

 sharp.

In the score as well as in its computer representation, pitch is an abstraction. One of

its uses is in the internal structure of class Note. Objects of class Pitch may be

created using the constructor

 Pitch(char pa = 'C', int oc = 5, accidType ac = NOACCID);

pa can have any character in the range 'A' to 'G'

oc is the octave number, with 5 representing the octave upwards from middle C.

accidType is defined as

enum

accidType

{

 NOACCID, F, S, N, DF, DS

};

where F = flat, S = sharp, N = natural, DF = double flat and DS = double sharp.

5.3.9 Entity: Rest.

Attributes: duration, marks, location.

 duration: see above, as for Duration entities.

 marks: various, including fermata and breath mark.

 ambiguity: crotchet rests have two signifiers.

Modifications: The effective time for a rest may be modified by groupette scope.

5: Score Views.

 73

The computer representation of class Rest inherits class Duration. Objects of class

Rest are created as follows

 Rest(durType d = N8, int dot = 0, Set e = Set())

Parameters d and dot are similar to the corresponding ones in class Duration. The

third parameter, the set e, can contain any relevant combinations of ntAttrType.

These may include FERMATA, BREATH_MARK and ALTERNATE. For a

crotchet rest which uses the English notation, like a reversed '7', the attribute

ALTERNATE is set, and d is set to N4.

5.3.10 Entity: Note.

Attributes: duration, pitch, marks, location.

 duration: see above, as for Duration.

 pitch: see above, as for Pitch.

 marks: any of the large number of marks that can apply to a note (staccato, various

accents and ornaments, dynamics, octave doubling, etc.).

Modifications: the effective time value for a note can be modified by groupette

scope. The effective pitch of a note can be modified by key signature scoping or

by accidental-within-bar scoping.

Note entities are represented in a score by class Note. Class Note inherits from

class Rest and from class Pitch.

Note(char pa = 'C', int oc = 5, accidType ac = NOACCID,

 durType d = N8, int dot = 0, Set nr = Set())

Parameters pa, oc and accidType are similar to those in the constructor for class

Pitch.

Parameters d and dot are similar to those in the constructor for class Duration.

5: Score Views.

 74

Parameter nr is a set which has appropriate combinations of

 STACCATO, TIE_FROM, TIE_TO, TENUTO, PLUS, FERMATA, BREATH_MARK,

 COMMA, TREMOLO, TREMOLO_END, GLISSANDO, GLISSANDO_END,

 SQUARE_NOTEHEAD, DIAMOND_NOTEHEAD, X_NOTEHEAD, OMIT_NOTEHEAD,

 OCTAVE_UP, OCTAVE_DOWN, OCTAVE_END, ARPA, PIZZ, HARMONIC,

 COL_LEGNO, PONTICELLO, PED, REL, OCTAVE_DOUBLE_UP,

OCTAVE_DOUBLE_DOWN, OCTAVE_DOUBLE_END, TURN0, TURN1, TURN2, TURN3,

TURN4, TURN5, TURN6, TURN7, TURN8, TURN9, TURN, SLUR1, SLUR1_UP,

SLUR1_DOWN, SLUR1_END, SLUR2, SLUR2_UP, SLUR2_DOWN, SLUR2_END,

ACCENT, HEAVY_ACCENT, UP_BOW, DOWN_BOW, LETTER_TR, BAROQUE_TRILL,

GRACE_NOTE, BEAM, UP_BEAM, DOWN_BEAM, BEAM_END, REST_ALLIGNMENT,

ALTERNATE, PPPP, PPP, PP, PIANO, MF, FORTE, FF, FFF, FFFF, CRESCENDO,

CRESCENDO_END, DIMINUENDO, DIMINUENDO_END.

Delimited scoping information is carried as attributes of note and rest objects. The

first and subsequent objects bear an attribute which is terminated by a special

marker. Such sequences involve one or more of the following pairs.

TREMOLO - TREMOLO_END

GLISSANDO - GLISSANDO_END

OCTAVE_UP - OCTAVE_END

OCTAVE_DOWN - OCTAVE_END

SLUR1 - SLUR1_END

SLUR1_UP - SLUR1_END

SLUR1_DOWN, SLUR1_END

SLUR2 - SLUR2_END

SLUR2_UP - SLUR2_END

SLUR2_DOWN - SLUR2_END,

BEAM - BEAM_END

UP_BEAM - BEAM_END

DOWN_BEAM - BEAM_END

CRESCENDO - CRESCENDO_END

DIMINUENDO - DIMINUENDO_END

5: Score Views.

 75

The dynamic marks appear only on the notes against which the letters are to be

placed. Dynamic scoping is of the open scoping type, and is not handled by the

above mechanisms.

5.3.11 Entity: Barline.

Attributes: bar type, mark, location.

 bar type: various combinations of heavy and light lines, possibly with a pair of

dots arranged vertically at one end or at both sides.

 Mark: a fermata, Repeat1, Repeat2, Da Capo, Da Capo

Modifications: Depending on the context, barlines may be used to separate bars

and/or to separate sections in a score. If a barline occurs before the metrical end

of a bar, it automatically represents a section separator instead of the start of a bar.

Barline entities are represented in a computer by class Barline, and an enumerated

type barType is used to specify the kind of bar in question.

 Barline(barType br = L, int brN = 0);

where br is one of

enum

barType

{

CLHLC, CLLC, CLH, HLC, CLL, LLC, CLC, SHORT, INVISIBLE, LL, CL,

LC, H, L, DOTTED

};

Here C stands for double dots, H for a heavy line, and L for a light line. If the score

does not distinguish between heavy and light lines in barlines, the L should be

used. brN is the bar number. Any notes before the start of the first full bar of the

score are regarded as being in bar 0.

5: Score Views.

 76

Each barline may have a number of associated attributes, including

FERMATA, DA_CAPO, DA_CAPO_AL_SEGNO, DA_CAPO_AL_FINE,

DA_CAPO_AL_SEGNE_E_POI_AL_CODA, DAL_SEGNO,

DAL_SEGNO_AL_FINE, REPEAT1, REPEAT2,

5.3.12 Entity: Words.

Attribute: value, location.

 value: text in natural language, words of song, libretto, etc.

Words are retrieved with the getWords(void) member function of class

ScoreIterator.

5.3.13 Entity: Texts.

Attributes: value, location.

 Value: text in natural language.

 Location: linear position, also may be specified as being above or below the stave.

The Class Text entities are represented as character strings in a score. They are

created in a score using the overloaded '+' operator of ScoreIterator class with

class String. They are retrieved with the getString(TEXT) member function of

ScoreIterator.

5.4 Time.

Score entities are arranged in a two dimensional structure that represents simultaneity

by means of vertical relationships. Time, and the passage of time is represented by

horizontal relationships, with left to right corresponding to increasing time in the cases of

notes and rests.

In a monophonic score, or in a single monophonic stave, time is accounted for by

notes and rests, according to certain principles.

5: Score Views.

 77

1. Each note/rest has an ending time which is identical with the starting time of the

next note/rest.

2. Duration of notes and rests are measured numerically, in rational numbers.

3. An absolute score time scale may be constructed by cumulating the durations of

notes and rests from the start of the score. More conveniently this absolute score time

scale can be expressed in terms of the number of bars from the start plus a single rational

displacement from the start of the current bar. This measure is used in the locating

actions in the next section.

4. At the start of a score, an incomplete bar may be found. That is one whose

rational duration is less than the time signature. In this case the partial bar is given the

bar number 0. Rational displacements of entities within this partial bar are measured as if

the bar were a full one. Hence a single eight note anacrusis in 6/8 time is regarded as

starting at a location of 5/8 in bar number 0. The length of any full bar in rational units

is, of course, the same rational number that is used to denote the time signature.

A point in score time can correspond to multiple entities in a score. Hence the score

location specified by 'one half note distance into bar 2' in Fig. 5.1 specifies a time at

which a number of entities in the score are current. These include (1) the end of a quarter

note rest, (2) the tenor clef and (3) the start of note 'G'. We see from this that the left to

right ordering of entities corresponds to simultaneity in time, except when moving across

a note or rest, that is characterised by having an infinite number of points in time,

delimited by a starting point and a finishing point. Here a point in score time need not

necessarily correspond to the start of a note or rest. For example, the score location

specified by 'three quarter notes distance into bar 2 corresponds to a point in time during

the playing of the note 'G' in Fig 5.1. If the score were a polyphonic one, there would be

at least one entity on each stave corresponding to that specific time as well.

5: Score Views.

 78

Fig.5.1 Points in score space and score time.

5.5 Vertical Alignment and Contiguity.

In a physical score, vertical alignment corresponds to simultaneity. A definition of

vertical contiguity will be made in relation to notes and rests. Notes will be used to

illustrate the relationships, but the same principles apply to any mixture of notes or rests.

If we consider a pair of notes, and possible score times that relate to them, we can say

that notes are vertically contiguous at the score times shown by the red lines in figure 5.2.

For example, (b) represents two note that start at the same time, but end at different

times. The mirror image of (b), which is not illustrated, corresponds to two note that start

at different times but end at the same time.

Note 1

Note 2
Contiguity

(a) (b) (c) (d) (e)

Fig.5.2 Illustration of the possible combinations involved in vertical contiguity.

Note that in case (e) for the coincidence of the end and the start of a note, contiguity

is defined in such a way that there is no contiguity in this case.

Simultaneity in score notation uses two basic mechanisms. The first is the

mechanism of absolute score time. Notes and rests that are simultaneous share part of the

same absolute score time. The second mechanism that is involved is where note onsets

are made simultaneous by means of vertical connections, as in Fig.5.3.

5: Score Views.

 79

Fig.5.3 Vertical connections.

In certain cases, internal points of interest can be created in notes. This occurs when,

during a note, another note has an onset of an offset. For example, cases (b), (c) and (d)

in Fig.5.4 contain such points. A musical manifestation of this is where a suspension is

resolved. In dealing with standard traversals in section 5.10, we will see that these

internal points in the entities are visited.

Note 1

Note 2
Contiguity

(a) (b) (c) (d) (e)

Fig.5.4 Internal points of interest indicated in yellow.

5.6 Scoping Relations.

Certain symbols have an associated scope, that is a range of effectiveness. Here we

look at three main scoping mechanisms80 used in common practice notation. Each stave

has its own independent scoping mechanism.

The first type of scoping mechanism, which will be called open scoping, comes into

play by means of the appearance of a scope marker. Scope markers have types and

values. Two different key signatures, for example, belong to the same type, but have

different values. Open scopes remain in effect until cancelled by the appearance of a next

scope marker of the same type, or until the score ends. Open scoping is used for clefs,

key and time signatures, and metronome, expression, and tempo markings as well as

most markings for dynamics.

80 There is a fourth scoping mechanism. Score attributes, such as title, composer and number could be

thought of as having global scope. As they are constant for a score, they do not need any special handling.

5: Score Views.

 80

A second scoping mechanism, called delimited scoping, is explicitly introduced and

cancelled. Examples of this are Ped .. Rel, beam start...beam end, octave up end

octave up, crescendo, with the start marked by the point of the hairpin, and the end by

the end of the lines, or if stretched letters are used as in c - r - e - s - c - e - n - d - o , the

location of the first c and last o determine the limits of the scope of the crescendo.81

Delimited scoping is used for calculating the durations of notes within groupettes.

A third scoping mechanism, called bar scoping, is restricted in range to a single bar

on a single stave. Scoping mechanisms that operate within the bar include accidental

alterations that extend beyond the note on which an accidental is placed. Accidentals can

be modified by a preceding additional accidental at the same notated pitch within the bar.

All bar scopes expire by the end of the bar in which they are introduced.

Scopes can overlap in a variety of ways. Hence they cannot be represented in the

form of a hierarchy. In the computer representation, it is most important that scoping be

resolved automatically, in a hidden layer of the implementation. This is done in order to

avoid placing too large a burden on the analyst who would otherwise have to calculate

scope values. With proper automatic resolution of scoping, we should be able to extract

from a note, its pitch and duration information that is calculated by correctly resolving

scoping information within its context, due account having been taken of key signature,

accidental modifications and groupette membership.

Some scopes of the same type can be nested. Nested groupettes to any level of

nesting are theoretically possible, but instances to even one level are rare.82

5.7 Sense of Line and Simultaneity.

Scores may differ in the ways in which the identity of lines is present. Choral scores

have complete identity of line. A score for a stringed instrument may have a more

81 Crescendo may also have the side effect of introducing a scope of the first type, in that they may effect

subsequent dynamics. This is an area where performance practice and artistic interpretation comes into

play, and is not modelled in scoreView. Hence there is no automatic interaction between dynamic scopes,

such as forte or piano, and crescendi or dimuendi.

82 Instances to one level nesting can be found in transcriptions of a descriptive nature where a high level of

accuracy is attempted. One example is in Liam de Noraidh Ceol on Mhumhain (Baile Atha Cliath 1965), p.

53.

5: Score Views.

 81

complicated sense of line, with occurrences of simultaneous notes representing multiple

stopping. In piano scores, the linear and harmonic combinations may reach much higher

levels of complexity. The resolving of the complexity of line identity is regarded here as

being apart from the task of score representation. What should be represented in a corpus

is simply the information content of the printed score, in accordance with the principle of

objectivity. It is valid to represent the notes that are present, their values, attributes,

whether they have up or down stems and how they are beamed and slurred. The job of

tracking two implied lines that are written on the same stave is carried out by another,

independent class, separate from the score class. Complexity of linear identity is handled

by one aspect of the class ScoreIterator. Some simple versions of score iterators are

found in scoreView. For more complicated cases, the user has the ability to construct

score iterators of arbitrary complexity. This constructing may be done either by

inheriting the existing class ScoreIterator, or by building the new iterator from scratch

using the locate and step member functions of ScoreIterator. Some of the issues

concerning the design of a score iterator will be dealt with in the section on score

traversal, later in this chapter.

5.8 Score Reader.

The simplest case of a human score reader looking into a score, may be modelled as

an act of focusing on one entity at any one time. Hence we may conceive of a score

reader as having an associated state linked to the entity being viewed.

 In studying the score the human analyst will need to be able to locate a particular

entity in the score, for example, the first note in bar 100 in the 1st violin line, and to

interpret what is read. This will involve, in the first instance, the determining of the key,

clef and time signature. Subsequent activities of the analyst may be to scan the notes and

rests in a score sequentially along the same stave, or to scan simultaneous notes in some

vertical manner. Certainly the analyst will also want to access notes on the basis of some

kind of contiguity, and most likely on a left to right basis. This suggests that the analyst’s

entity-locating activities in reading a score can be encapsulated by means of sequences of

operations such as

 locate first note in bar 100.

 identify clef, and key and time signatures.

 step horizontally to next note.

5: Score Views.

 82

 step horizontally to next note.

 etc.

The state of the score reader associated with these actions can be thought of as being

closely related to a current position or point of interest in the score. The main

significance of this scanning is that it provides a mechanism through which access is

gained to the contents of the score.

A common artefact used on two dimensional data structures in computer science,

called an iterator, can be used to allow one to access the internals of a data structure.83 A

similar object can be used with a computer model of a score. A score iterator is an

object that points into a score. It points to a particular object in the score at any one time.

It implements something akin to the current position of Kassler's MIR system, or to the

point of interest of MUSIKUS. The iterator may be used to model the act of reading a

score. This act may be broken down into the act of reading of individual entities within

the score. From the point of view of the reader of the score, various entities within the

score may be treated as being read one by one.84

The score iterator is an object that points to entities within the score.85 A score

iterator is implemented which points to a single entity in the score at any one time. It has

the capability of being located at any entity in the score. Also it can be moved about

from one entity to another and/or from one point in time to another in one of a number of

general ways. In the case where the entity pointed to is a note or a rest, both of which

occupy time, the score iterator is capable of pointing to a time within the entity. Hence if

a score iterator points to a note, it may be made to point to the start of a note. This will

be the normal case. It may also be made to point to any time within the duration of the

note as well. One such internal point might correspond to the point of resolution of a

suspension.

83 Borland Borland C++ Library Reference Version 4.0 (Scott’s Valley, California 1993), pp.355-462.

84 It is possible that a human score reader has a capability for observing groups of symbols rather than a

single symbol at a time. A chord may possibly be read as a unit, for example. This mode of reading could

be simulated in the current implementation, by designing and implementing a special score iterator.

85 The assembler-like programming language in Michael Kassler, opus.cit., seems to be the first music

analysis software system that supported the idea of a current note. MIR was developed in the Department

of Music, Princeton University on an IBM-7094 computer.

5: Score Views.

 83

It is possible to have any number of score iterators of varying types for a single score.

Two basic iterators are presented in scoreView. One iterator, a single stave iterator,

specialises in visiting entities on a single stave of the score. The other iterator, a multi-

stave iterator, specialises in a standard traversal of the entire score. Each of these

iterators can operate in MONO or POLY mode. If the score has staves with multiple

simultaneous notes, then MONO mode limits traversal to the highest-most notes on one

or more staves. POLY mode involves traversing all the notes on one or more staves.

Objects of class ScoreIterator may be declared for a score s as follows

 Score s(filename);

 ScoreIterator si(s);

If the score s has only one stave, a score iterator in MONO mode is created, by

default. If the score s is a polyphonic score then the score iterator which is created as a

result of the above declaration will be a polyphonic score iterator. This iterator gives a

standard traversal of the score in POLY mode. If it is required to traverse a single stave

of a polyphonic score, a declaration such as the following will create an appropriate score

iterator, identified by the name si0 in this case.

 ScoreIterator si0(s, 0);

The staves in a score are numbered in sequence starting at 0. This score iterator will

be in MONO mode by default and will scan the first stave, that is stave number 0, of the

score. The mode of a score iterator can be changed by calling the member function

 si.setScanMode(POLY);

 or

 si.setScanMode(MONO);

5.9 Locating.

The starting point for access to a score is normally at the beginning of the score, but

may also be at some intermediate position. Starting at the beginning and moving to the

5: Score Views.

 84

right provides all the contextual information required to read the score. In this way, key

and time signatures and other score markers are encountered in their proper sequence.

Starting at some intermediate point inside the score on the other hand, involves some

backward scanning to establish a context in which to read the score. For example, to

discover the clef and key signature in a physical score, it is necessary to scan backwards

from the score iterator to the last clef and key signature. Such will, at most, involve

backward scanning to the leftmost part of the page that is a feature of the physical score

and not of the abstract version of the score. For a reader scanning the physical score by

beginning from a point other than the start, the time signature might be deduced by

inspection of the bar length, possibly with the help of observations on the beaming

structure. Alternately this could be done by backward scanning to the last time

signature. In a computer implementation, it is highly desirable that such scoping

information be resolved automatically by the software, if the programmer-analyst is to be

freed from such activities. Of course, in any computer implementation this automatic

backward scanning must be done with a view to efficiency as well as transparency.

Using the same objects as in the last section, examples of the use of member

functions of the ScoreIterator object, si, for positioning it at a specific entity in a score

include

 si.locate(); // moves si at the start of score

 si.locate(NOTE); // moves si at the first note of score

 si.locate(BARLINE, 20); // moves si to the 20th barline

The score iterator object may be made to point to other objects, which may have some

kind of adjacency relationship with its current position by means of

 si.step(); // moves si to next entity

 si.step(NOTE) // moves si to the next NOTE entity

 si.step(Rat(1,8)); // moves si forward one quaver or

 // eight note

 si.stepb(); // moves si back to the previous

 // entity

 si.stepb(NOTE); // moves si back to the previous

 // note

5: Score Views.

 85

Which entities are selected as being ‘next’ depend on the traversal order, which is

dealt with in the next section. Functions of the kind used above can be combined. For

example, moving the score iterator, si, to the first object at the middle position of the 11th

bar of a score in 4/4 time, is achieved by

 locate(BAR, 11); // locate the start of the 11th bar

 step(Rat(2,4)); // move forward a distance of 2/4

The entity located by a durational step function, such as step(Rat(2,4)), is always the

first written entity at that time score time. The end of a note or rest is never a candidate

for selection in these cases. One is always guaranteed to have a score entity after such an

operation, except in cases where the step function causes the iterator to move off the end

of the score.

5.10 Traversing.

 Having established all relevant contexts, the score reader will normally start at the

beginning and proceed to read the score from right to left for reading lines, or to scan up

and down, or perhaps in some zig-zag fashion, for harmonies, or in a combination of the

two for full score reading. All of this can be broken down into the activities of locating

and/or stepping and reading basic entities. In addition to the normal activities of score

reading, it is not unreasonable that the human score reader might want to read lines in a

score backwards, or in any other possible sequence of accesses. In all cases the reading

of the score involves reading basic entities of the score.

A multi-stave iterator in POLY mode follows a path that is described as a standard

traversal of the score. The basic principle of this standard traversal is laid out in the

following algorithms. Prior to giving the rules, it is useful to define three types of entity.

The first type, which includes all entities that have duration, will be referred to as of type

A. These consist of notes and rests. The second type, type B consists of any barline, and

entities of type C consists of any entity other than those of type A or B, such as clefs or

key signatures. Here 'visiting' an object is interpreted as moving an iterator to the object

and optionally doing some kind of user-specified processing on it. For each line in a

score, the iterator maintains the position of the last entity visited.

5: Score Views.

 86

A standard traversal is described in the following algorithm. Score iterators of the

type we are dealing with, have a current position associated with them on each stave.

The iterator's current position corresponds to an entity on a specific stave and also to a

point in score time. In a multistave environment, it is useful to think of each stave as

having a current position associated with it, which we will call a stave current position to

distinguish it from an iterator current position. The system maintains all stave current

positions at the same points in absolute score time. When a score iterator moves

downwards to the next stave, it does not move forward in time, but to the relevant stave

current position. The movement of the iterator current position is either from left to right

or vertically downwards in the score. All stave current positions are set to the first entity

in the score before the start of the algorithm. The following algorithm in Fig.5.5 gives

the rules for any traversal step.

An assumption that is made in this case is that we are dealing with scores where all

staves share the same time signature and bar structure. The internals of scoreView do

not require this to be the case, but the current implementation of a polyphonic score

iterator does. A simple change to the algorithm, by classifying barlines as being of type

C, would remove this restriction.

5: Score Views.

 87

Condition Action

At start Visit first entity on first stave.

Last entity of score on last stave. Traversal complete - exit algorithm.

Next candidate entity of type C Move the iterator current position

or grace note. to next entity on the same stave.

Current entity is of type A Move the iterator current position

with a further type A entity to the vertically contiguous entity

vertically contiguous underneath underneath on the same stave.

it on the same stave.

Last entity or part of an entity Calculate the time slice as the minimum

processed on the last stave. of durations of entities at stave current

 positions on all staves.

 Advance all stave current positions by the

 time slice.

 Make the uppermost entity on the top

 stave the iterator current position.

Type B entity encountered. If not on uppermost stave report an error.

 Visit all the stave current positions.

 If all stave current positions are not

 at barlines, report an error.

 Step current positions on all staves to next

 entity.

 Make stave current entity on top barline

 into the iterator current entity.

Any entity. Move to current position on next stave

 current position.

Fig.5.5 Algorithm for standard traversal.

5: Score Views.

 88

Comment.

The above algorithm produces a traversal as shown in Figs 5.6, 5.7 and 5.8. Exactly

the same principles apply to scores that have multiple notes/rests on the same stave. Note

that this algorithm is compatible with traversing both a single stave and multiple stave

scores. The standard multi-stave iterator visits all objects in the score in a reasonably

natural order. This iterator may itself be used as a base class for the construction of new

iterators. It will not be clear, until extensive work is done using scoreView what

additional iterators might be useful for polyphonic music. In appendix table A3.1, an

example is given of the use of this multi-stave iterator to traverse a polyphonic score. The

score consists of a section from the start of the sixth movement of Beethoven's string

quartet in C# minor, op. 131. The same score iterator is used in the computer to play this

score. Grace notes require special treatment. In this implementation of scoreView they

are treated as if they do not consume any time.

All grace notes on the same stave that are either vertically or horizontally contiguous

are visited as a special case of standard traversal before any following entities are

processed. Cases that may arise with multiple polyphonic grace notes will require some

further attention.

Fig.5.6 Single stave traversal in MONO mode.

Fig.5.7 Single stave traversal in POLY mode.

5: Score Views.

 Fig.5.8 Multi-stave traversal in POLY mode.

 Elongated image of the start of the sixth movement of Beethoven’s string quartet op.131.

5: Score Views.

 90

In the following two sections the material covered to date will be used to construct

some very simple algorithms for performing actions on scores. These are intended as

an introduction to the more musically meaningful algorithms of chapters 7 and 8.

5.11 Algorithm 1.

The task here is to examine a monophonic score that is held in a file called

"SCORE.ALM" and to output a message that tells us whether the note immediately

following the first barline is any 'D'.

(1) Score s("SCORE.ALM");

(2) ScoreIterator si(s);

(3) si.locate(BARLINE);

(4) si.step();

(5) if (si.isA(NOTE))

 {

(6) if (si.getAlpha() == "D")

(7) cout << " Score starts with a D ";

(8) else cout << " Score does not start with a D";

 }

Fig.5.9 Algorithm 1 to identify if the note 'D' follows the first barline.

When this program is run, line (1) causes a model of the score, or a score object

to be built in computer memory from the contents of the file "SCORE.ALM". The

name s is associated with this score object. In order to look at the note which is at the

start of the first bar, we must have a way of accessing information within the score, of

looking into the score, so to speak. A score iterator is used for this. When created,

the score iterator is 'looking' at the first object in the score, possibly a clef. Line (2)

creates such a score iterator object, called si for the score s. Line 3 causes the iterator

to 'look at' the first barline in the score. Line (4) causes the iterator to step to the next

entity in the score. Here we have a problem with interpreting what is required. The

original specification used for the algorithm was incomplete as it did not tell us what

to do if there is not a note after the first bar line, as in the case, for example, where

the first object after the barline is a rest. This is an example of lack of definiteness,

one of the basic properties of an algorithm, and is a fault of our original specification

of the algorithm. The algorithm must be re-specified so as to rectify the defect.

5: Score Views.

 91

5.12 Algorithm 1a.

Task is to examine the score that is held in a file called "SCORE.ALM" and to

display the following messages

- "Score starts with any D" if the first barline is followed immediately by the

note 'D',

- "Score does not start with any D" if the first barline is followed immediately by

a note other than 'D'

output nothing otherwise.

Although algorithm 1a has solved one of the problems with algorithm 1, there is

still a need to be sure of what the algorithm means.86

In the above implementation, the program simply does nothing when a rest is

present instead of a note, since line (5) checks that the type of entity being dealt with

is a note, before line (6) checks if the note is any 'D' and, depending on the outcome

of this test executes either line (7), if a note 'D' is found, or line (8) if a note other than

'D' is found. The input to this algorithm is the score held in the file "SCORE.ALM".

The output consists of the message displayed on the computer screen.

Writing a program like this is pointless, as we could have answered the question

by consulting the score. One case in which automatic analysis becomes useful to a

musicologist is when dealing with large corpora. The next program may be used to

do the same kind of processing on an unlimited number of scores. It calculates the

percentage of scores that start with any note 'D' (algorithm 2). The program uses three

variables that appear in lines (1) and (2). fileName is used to hold the names of the

files containing scores. countAll and countDs are used for the calculations. The

function getNextScoreNames reads a file called NAMES that contains a list of the

scores for processing. On its first invocation the variable str is set to the first score in

the list. On its second invocation str is set to the second score in the list, and so on

until all scores are processed. This function returns the value TRUE if a score was

found, and FALSE otherwise, and hence can be used to control the while statement.

86 Thus the output of the algorithm could be misinterpreted as saying something about the note at the

start of the first bar in the score. This results from confusing bars with barlines. For many scores the

note at the start of the second bar will be found as a result of this query. Also we did not check if the

note ‘D’ was altered in pitch by the key signature or otherwise. We have interpreted “any D” to include

D double flat, D flat, D natural, D sharp and D double sharp.

5: Score Views.

 92

 {

(1) String str;

(2) int countAll = 0, countDs = 0;

(3) while(getNextScoreName("NAMES", str))

 {

(4) Score s(str);

(5) ScoreIterator si(s);

(6) countAll++;

(7) si.step(NOTE);

(8) if (si.getAlpha()=="D") countDs++;

 }

(9) cout << "Percentage of D's is " << (countDs * 100)/countAll;

 }

Fig.5.10 Algorithm 2 to calculate the percentage of tunes that start on a note of pitch

class 'D'.

5.13 Abstraction.

It is of the greatest importance in designing the system, that we do not require the

music analyst to carry undue learning or conceptual overheads in the programming

environment. In other words we must provide the user with a suitable score

abstraction. The approach used here is to provide a score representation cast as an

object with a clear user interface. The object-oriented paradigm is used here to

represent a score, and also for the entities that constitute a score, e.g. notes, rests,

barlines, clefs, time signatures, key signatures, etc. A set of basic member functions

and operators are provided which are adequate for present and envisaged future

needs.

The principles of abstraction are demonstrated in the above mini-examples that, at

no stage, deal with the representation issues of a music score. In order to write a

program to process a score we need to create the relevant objects, such as the objects

's' and 'si' above. We also need to know how functions like 'getNextScoreName',

'locate', 'step', 'getTag' and 'getAlpha' work. No internal details of score

representation were revealed. The only data that was created was precisely that

needed to do the job. Integer variables are used for counting, and a character string is

used for the name of the file that was being retrieved. These are part and parcel of the

task of imperative programming. On the other hand these score constructs are

examples of a process of abstraction. These abstractions allow us to perform

complete operations by using concepts such as 'Score' and 'ScoreIterator', and relieve

us of the non-productive task of dealing with the internal complexities of the

operations in question.

5: Score Views.

 93

As alluded to previously, the process of abstraction need not stop here. In using a

score representation ourselves, we can build our own abstractions. The score

abstraction presented later defines only a basic and near minimum set of operations

that can be carried out on a score. From these building blocks, we can build more

complex edifices. For example, although the system can represent polyphonic scores,

it does not have, as part of its essential structure, any notion of harmony. However,

the system can be used to provide building blocks for a 'harmony abstraction'. This

process of building a hierarchy of abstractions, is practically limitless, and gives the

potential for using the score abstraction to build any conceivable system to an

arbitrary level of complexity. By means of a divide-and-conquer strategy, complex

systems can be built. Hence problems that seem unmanageable and complex might

be made tractable if a way can be found to successively decompose them into

components that are simple enough to be expressed algorithmically. The structures

are not limited to being a hierarchy. One could, for example, visualise the score

representation forming one component in a chain of processing that models the

activities of performing and listening to music, where separate systems are built to

model a human performer and to model a human listener.

Score Representation Score Performer Music Listener

Fig.5.11 Processing in Cognitive Modelling.

The first component here represents a Score model. The second one is a model of

a performer who models the playing of a score and the third component models some

aspect of human cognition.

6: Applications - Verification of Hypotheses.

Chapter 6. Applications - Verification of

Hypotheses.

6.1 Introduction.

A number of applications are given here which use scoreView to build programs

to do music analysis. These applications have been selected to demonstrate how the

system might be used to enable musicologists check the validity of statements made

about music. All of the applications given here can be programmed, tested, and run in

a matter of a few hours by a competent programmer with a knowledge of scoreView.

In most cases it took less than an hour to develop a basic version of each program.

For clarity, certain simple parts of programs are omitted from most illustrations.

Excluded from are some initial details, such as ‘include’ statements and some

declarations, as well as most sections that deal with output. Code that deals with

incorrect input has also been removed from the illustrations.

6.2 Structure of Verification.

The bedrock on which any verification is made is the corpus. In the current study,

the corpus of music consists of 365 double jig tunes transcribed from "The Dance

Music of Ireland" by Frances O'Neill87 and 54 double jig tunes from "Ceol Rince na

hEireann" by Breandán Breathnach88. Henceforth these two collections will be

referred to as O'Neill's and Breathnach's, or alternately as TDMOI and CRNH1

respectively.

Computer-based verification of a musicologist's hypothesis involves the

construction of an algorithm to process the music information in the corpus in such a

way as to produce a result that may verify or contradict the original hypothesis. The

construction of such an algorithm is not always straightforward. In order to structure

this process, it is useful to break the task into a number of steps. Eight steps are

proposed here, as one approach to this structuring. These steps are considered under

the following headings.

1. Musicologist's text.

2. Related hypothesis.

87 Capt Frances O'Neill The Dance Music of Ireland (Chicago 1907).

88 Breandán Breathnach Ceol Rince na hEireann (Baile Atha Cliath, 1963).

6: Applications - Verification of Hypotheses.

 95

3. Algorithm.

4. Decision criterion.

5. Construction of software.

6. Testing of software.

7. Results.

8. Conclusions.

6.2.1 Musicologist's Text.

The first task is to identify statements in the musicologist's text that are suitable

for verification. One kind of statement that a musicologist might make is

 all X-types have property Y.

Assuming that both 'type' categories and 'properties' in this statement are

sufficiently well defined to be identifiable, then we can proceed to the next stage,

where we specify an algorithm to test the hypothesis. In the case of the above natural

language statement, it is sufficiently well structured to act as the related hypothesis,

and here steps 1 and 2 of our structuring process coincide. The selection of text is

intimately bound up with the decision criterion of step 4. The decision criterion for

the above simple case is easy to formulate. By finding just one exception, that is by

finding an X-type with an absent Y-property, we succeed in proving the statement

false. If we cannot find such an instance, then we can conclude that the hypothesis is

verified by our corpus. This latter case does not exclude the possibility that the

hypothesis might be falsified in future. We might, for example increase the number

of pieces of music in our corpus, and thereby find exceptions. In the case where a few

exceptions to the hypothesis are found, they will inevitably deserve scrutiny. Such

exceptions might be found to be misclassified or erroneous items that should not have

been admitted to the original corpus in the first case. If a small number of exceptions

persist, the musicologist might modify the assertion to something like

 normally X-types have property Y.

 or in rare cases property Y is absent from X-types.

 or usually X-type have property Y.

Here the quantitative nature of the assertion is much less clear. Words such as

“normally” do not always carry the same quantitative implications to different people.

If a musicologist is claiming that a feature is “usual” in a piece of music, and the

purpose of the experiment is to establish the validity or falseness of the claim, it is

difficult to pin this word down to an exact percentage that is usable for the decision

criterion. If we assume that everyone is in agreement with a claim that a feature of a

6: Applications - Verification of Hypotheses.

 96

pieces of music from a genre is “usual” if it occurs in 95% of cases, then an

experiment that verifies this could be said to support the hypothesis. Similarly, if the

feature occurs in only 40% of cases, then the experiment could be said to falsify the

claim of 'usualness'. It is not at all clear where, in the intervening percentage

occurrences, the dividing line between what is “usual” and not “usual” might be.

50%, 55%, 60%, 70%, 80%, 90%? In order to make progress here, two basic

questions might be asked. The first question concerns what the author meant to

convey. One might be able to interview the author with a view to getting a more

quantified version of what was intended. There is, of course, no guarantee that the

author would be able to quantify a claim as a percentage, and may retreat to leaving

the claim intentionally vague. A second, and a more basic question could be directed

at the target audience, to see what the author has succeeded in communicating. It

would be perfectly feasible to take a representative sample of readers (the consumers),

or potential readers (the potential consumers) of the article and to examine reader

responses to the use of such words. Thus for a statement about the “usualness” of a

certain feature, one could sample the set of readers of the statement to establish, in

quantitative terms, what the statement actually conveyed. Armed with the results of

the survey, one could draw on the techniques of statistical sampling theory to quantify

what the author's claim conveyed. This would enable the tester of the hypothesis to

restate the original hypothesis in quantitative terms, and to proceed with an

experiment to validate the statement. This kind of activity would, however, be of use

only to a researcher who wished to go to extremes to verify or falsify the results of

previous researchers.

An alternate approach, and the one that is adopted in this study, is to avoid

making any strong claim about such 'fuzzy' adverbs in advance, by categorising the

results as follows -

1) support the original hypothesis, using a conservatively 'safe' criterion.

2) contradict the original hypothesis, using a conservatively 'safe' criterion.

3) for results other than (1) or (2), modify the hypothesis.

6.2.2 Related Hypothesis.

If the musicologist’s text contains statement of the type “all X-types have property

Y”, where the “type” and “property” are unambiguous, then as we have seen, the

related hypothesis and the original are identical. Very often the hypothesis may need

to be extracted from its context and stated afresh. For example, the hypothesis may

have to be fished out of more than one sentence of the author. If the hypothesis uses

6: Applications - Verification of Hypotheses.

 97

fuzzy words such as “normally”, it may be useful to specify a schema, giving possible

conclusions that we may draw from various hypothetical results. One example of

such a schema is given below

Hypothesis: Normally X-types have property Y.

Experiment: Examine all X-types in our corpus and measure the percentage

 of those with property Y.

Schema:

 If percentage is 90 or more, accept the hypothesis.

 If percentage is less than 50, reject the hypothesis.

 Otherwise modify the hypothesis by including a statement of the percentage.

6.2.3 Algorithm.

The construction of an algorithm involves a formalisation of the hypothesis.

What is meant by “formalisation” here is arriving at an unambiguous interpretation of

the natural language statement made in the musicology domain for which

experimental evidence is being sought, to the level of detail where a program can be

written to prove or to disprove or to help to refine the hypothesis. One perspective on

the above process is important to make here. We bring our considerable cognitive

powers to bear in interpreting natural language statements, which always appear

within a context. Much of this happens at a subconscious level. Our software

environment does not come equipped with such domain knowledge. Hence the

burden lies with the algorithm designer to specify unambiguously and completely

what the computer is to do. In this study, we will use natural language to express

these formalisms. Natural language is so laden with contextual meanings, that

constant vigilance is necessary to ensure that these algorithms involve clear thinking.

From the natural language expression of the algorithm, a computer program is

constructed.

6.2.4 Decision Criterion.

As discussed in section 6.2.2, the decision rules take the form:

if the percentage is 'x' or more, accept the hypothesis,

if the percentage is less than 'y', reject the hypothesis (where y <= x),

otherwise modify the hypothesis by including statement of the percentage,

where the limits 'x' and 'y' for accepting or rejecting the hypothesis are

picked conservatively.

6: Applications - Verification of Hypotheses.

 98

6.2.5 Construction of Software.

This is the stage at which the transition from the algorithm, expressed in natural

language, into a formal representation as a computer program is made. We may well

discover at this stage that the formalisation process of 6.2.3 may not be a once-off

task. It may be necessary to return to step 6.2.3, if incompleteness or other

inadequacies are discovered in the formalisation. The end result of this stage is the

construction of a computer program, the output of which enables us to test the

hypothesis.

6.2.6 Testing of Software.

Following the construction of software, it is essential to check that our program

actually does the analysis that is intended. Some of the techniques of software

engineering89 for program testing and verification are desirable. One approach might

be to select a small but varied subset of the corpus and to run the automatic analysis

on it and then to replicate the process manually, thus enabling cross checking between

the manual results and the output of the computer analysis.

6.2.7 Results.

Results consist of the computer output.

6.2.8 Conclusions.

Stating the conclusion involves applying the decision criterion from the output of

the algorithm. Typically this is followed by a discussion.

6.3 The Corpus.

The cases presented in this chapter are drawn from a number of statements or

hypotheses, made about Irish folk dance music in general. These statements are used

for the construction of formal hypothesis at a level suitable for implementation in

software. This software is then run using a particular corpus of Irish folk dance

music, which forms the evidence against which the claims are tested. Obviously,

selection of a corpus is crucial to validifying statements made about a music genre. In

this study we are dealing with folk music, which is orally transmitted and from which

instances of tunes have been transcribed from musicians by a collector. One may

raise here questions about the intent of the transcribers, the organisation of the

89 G.J. Myers The Art of Software Testing (New York: John Wiley 1979).

6: Applications - Verification of Hypotheses.

 99

publications, the accuracy of the music as a historical record, and about the

representative nature of the material in the collection.

On the question of general intent, it is beyond doubt that the collectors were

motivated by a desire to preserve and to protect the tradition. Both collectors were

performing musicians in their own right. O'Neill was a fiddler and Breathnach an

uillean piper. The transcriptions can be perceived as having two different intents.

One is the descriptive intent, which attempts to provide a most detailed record of a

music performance. The second one is the prescriptive intent whose aim is to provide

enough detail to enable a musician to provide a performance90. In both collections,

the notation is closer to the prescriptive manner, in which most of the micro-details

are omitted, with the exception of some grace notes and specific ornaments, such as

various rolls and crans. O'Neill occasionally tried to capture some of the rhythmic

complexity, using the highly inadequate binary divisions of staff notation. This

feature appears in a few tunes in the parent volume91 from which "The Dance Music

of Ireland" was created, but some of these were abandoned in the later publication.

 Both publications organise their material into categories of “double jigs”, “single

jigs”, “slip jigs” and “reels”, with, in the case of O'Neills the additional category of

“long dances, etc” and “miscellaneous”. The Breathnach collection was compiled

with the help of a thematic index. Consequently it has no duplication of tunes.

O'Neill, on the other hand, inadvertently replicated a number of tunes. This is not

surprising in a collection of such size that was completed without the use of a

thematic index. Breathnach’s collection has a wealth of detail about the contributing

performers, the instruments used, and about related tunes from other collections.

However, for a substantial number of tunes, O'Neill also supplied an associated

wealth of detail that parallels the Breathnach collection. Although such detail was

omitted from O'Neill's "The Dance Music of Ireland", some of it was included in the

parent volume, "The Music of Ireland", which was published in 1903. The parent

volume contained 1,850 pieces including 1,100 dance tunes. The later collection

"The Dance Music of Ireland" was compiled mainly from tunes printed in 1903, with

some additional material included. In "Music of Ireland" a sizeable portion of the

tunes bear the name of the musician from whom the music was transcribed.

Additional bibliographical information is available about many of the musicians in

90 Charles Seeger "Prescriptive and Descriptive Music Writing" Musical Quarterly, volume 44 (1958),

pp.184-195.

91 Capt. Frances O'Neill's The Music of Ireland (Chicago 1903).

6: Applications - Verification of Hypotheses.

 100

two books written by O'Neill92. A small number of Edison cylinder recordings of the

musicians who contributed to the O'Neill collection have survived from the period.

On the thorny question of accuracy, we would need access to recordings of all the

original musicians, at the original transcription sessions to verify the material.

However, in the absence of such evidence, with the exception of a small number of

surviving Edison wax cylinder recordings by performers who contributed to the

O'Neill collection, and surviving tapes by contributors to the Breathnach collection,

we can glean indirect evidence of the general accuracy of the collections. The

Breathnach collection was first published a little over thirty years ago and was, in the

main transcribed from tape recordings of contemporary folk musicians, many of

whom have died in the intervening years. Many of these musicians were instrumental

in shaping the style of the current generation of musicians and acted as exemplars for

these young people. The Breathnach book was used by such young learners, many of

whom had access to Breathnach's informants as well. The lack of criticism of the

book provides indirect testimony to its overall accuracy. In the case of the O'Neill

collection, one may have a few more reservations. The consistency of the notation is

not as good as in the Breathnach collection, and it contains a small, but significant

portion of errors. However the popularity of the O'Neill publications, in what was a

predominantly oral tradition, in which a minority of musicians could read music,

combined with the relative absence of any substantial criticism of the book by

traditional musicians attest to the validity of its material. The "Dance Music of

Ireland" acted as a standard reference to such an extent that musicians frequently

referred to it as “The Book”. The popularity of the O’Neill collection can be gleaned

from the number of re-issues or re-edited versions of it that have been produced. This

contrasts with the fate of reissues of some of the earlier collections, notably the Joyce

and Petrie publications, which did not gain such widespread acceptability.

Breathnach93 gives us an account of how the work of transcription was made for the

O'Neill publications.

" .. and the task of notation was undertaken systematically. Tunes were noted down by James

O'Neill from the playing, singing, whistling, lilting. and even the humming of contributors, played

back, and corrected or accepted as the case might be."

92 Capt. Frances O'Neill Irish Folk Music; A fascinating study (Chicago 1910) and Capt. Frances

O'Neill Irish Minstrels and Musicians (Chicago 1913).

93 Breandán Breathnach Folk Music and Dances of Ireland (Cork: Mercier Press, Revised Edition

1977), pp116-117. Breathnach's source of evidence here is not given. The most likely source is from

O’Neill’s contemporaries.

6: Applications - Verification of Hypotheses.

 101

 The most telling point about the O'Neill collection is that musicians by and large

feel comfortable with it. The music in it is close enough to musicians' expectations to

merit acceptance. An additional point in favour of acceptance of the material arises

from the fact that O'Neill and his transcriber were performing musicians, steeped in

the tradition. Even if an occasional mis-transcribed note got into some tunes in the

publication, the end product would, most likely have been filtered by the compiler or

by his transcriber, and consequently would have been acceptable to them. In effect,

they would have acted as a filter that might be expected to reject invalid syntax of the

style current at the turn of this century. This last consideration is crucial in cases

where some material was included in the O'Neill collection that was drawn from

earlier written sources.94

Assuming that we are in the business of verifying hypotheses about the current

living tradition, the question arises about the admissibility of these collections as

representatives for the purpose of verifying statements about the current living

tradition. The Breathnach collection is now over thirty years old. The main point in

favour of the validity of use of the Breathnach collection lies in the fact that many of

the contributors to the Breathnach collection were exemplars for the current

generation of musicians. With the O'Neill collection, which was made over 90 years

ago, we are on shakier ground. A temporal span of 60 years exists between it and the

Breathnach collection. However, the folk tradition during these spans of time was an

inherently conservative one, which changed at a very slow rate. No significant new

genres emerged over the last 100 years. One source of conservatism reflects itself in

the way in which practising musicians hold key older players as exemplars to be

copied. Additionally, general acceptability by musicians of the O'Neill book,

suggests that it consists of valid representations of the tradition. For the purpose of

the current study, both the Breathnach and the O'Neill collections will be accepted as

valid corpora in support of proofs. However separate analyses will be carried out on

both collections with a view to exercising caution by being vigilant to differences.

94 In his introduction to The Dance Music of Ireland, O'Neill give some instances. "Denis Delaney

(No.7) is a good specimen of an Irish jig with three parts, forgotten in Ireland, yet preserved in

"Crosby's Irish Musical Repository," published in London in the year 1810. Numbers 168, 190 and

198 were found in the extremely rare "Repository of Scots and Irish Music, " printed in Edinburgh in

1799. Number 982 was found in the volume of country dances of 1798 before mentioned, while

numbers 254, 355, 356 and 357 were discovered in "The Hibernian Muse," published in the year

1797." O'Neill also mentions in his introduction, the inclusion of two tunes from a manuscript by Mr.

Timothy Downing.

6: Applications - Verification of Hypotheses.

 102

A further issue concerns the representative nature of the corpora and their validity

for verifying statements about Irish dance music in general. The corpora used consist

of double jigs alone, which represent only one genre within the tradition. It is,

however, a major genre, the other main ones include reels, hornpipes, single jigs and

slip jigs. Jigs form the second largest genre in both collections. There are 365 double

jigs out of a total of 1001 tunes in O'Neill's and 54 out of 214 in Breathnach's. In both

collections the most frequent genre is the reel, which is of more recent origin.95 Any

general, unqualified statement about Irish dance music could be expected to apply to

all genres, including the double jig.

Yet another issue concerns the accuracy and completeness of the computer

representation of the corpus. In the current study, the computer version of the corpus

was created initially as text files in ALMA code. Additional checks on the accuracy

of each entry were made aurally, by checking the original printed source against a

computer performance using a MIDI synthesiser. A further visual check was carried

out by comparing the original printed source against a computer generated printed

output.96

6.4 The Text.

 The following is an extract from “The Creative Process in Irish Traditional

Dance Music”.97 The author prefaces this extract by focusing on attempts to look at

systems of performance technique and tackling issues such as improvisation and the

creative process in general, and declares that the paragraphs represent an attempt to

view the tradition from within . "Any insights in this paper are offered in the same

spirit, in that they stem directly from the subjective experience of performing

traditional dance music over the past two decades"

95 Breadnan Breathnach, op.cit., 1989, p. 137.

96 A program A2S.CPP to generate a text input file from scoreView was developed for use with the

well-known 'SCORE' printing program of Leland Smith.

97 Dr. Micheál Ó Suilleabháin “The Creative Process in Irish Traditional Dance Music” Gerard Gillan

and Harry White Irish Musical Studies (Dublin: Irish Academic Press 1990), pp. 117-130.

6: Applications - Verification of Hypotheses.

 103

THE FRAMEWORK

Irish traditional dance music, with very few exceptions, is constructed from basic eight-bar units

which, in the standard piece, are made up as follows:

 8 bars 8 bars 8 bars 8 bars

 A A B B

These units form an important part of the conceptualisation of the musicians and are referred to as

'parts'. The concept of bar has little or no significance as far as the musicians are concerned and is only

used by those who are musically literate (still a minority) and, even then, mostly in the context of

notation. If such is the case, how do traditional musicians sense the unit in question? In my opinion,

the part is perceived on two interactive levels - through the feeling of eight main rhythmic pulses, and

through the melodic framework pointed by tonal cadences.

 The standard dance-piece consists of two different parts, each being 'doubled' (i.e. repeated

with or without some modification). Occasionally in certain pieces, the parts are 'singled' (i.e. not

repeated) but this is very much the exception and applies mainly to reels. Furthermore, in a relatively

small number of cases, dance-pieces are found with three or more parts. Regardless of the number of

parts, however, by playing through the entire piece once, the musician covers what he calls one 'round'

A round, therefore, may be thirty-two bars in length (if the parts are doubled in standard two-part piece)

or sixteen bars (if the parts are singled). Similarly, the length of the round increases with the addition

of extra parts which normally reach a total of no more than six.

 In a standard two-part piece with the parts doubled, the thirty-two bar round is perceived by

the musicians as being in two distinct sections: the first half (covering the first part and its doubling)

which is called the 'tune', and the second half (i.e. second part and its doubling) which is called the

'turn'. The tune is normally contained with the lower octave, while the turn usually breaks into the

higher octave. There is an ambiguity here in folk terminology in that the word 'tune' can refer to the

first half of a round, and also to the piece itself in its entirety.

Fig.6.1 From “The Creative Process in Irish Traditional Dance Music", pp.115-6.

 This text is laced with fuzzy words that indicate some of the difficulties that are

encountered in providing a simple enough picture to capture the main features without

seriously interrupting the main points being made by including too much detail.

Relevant words and phrases that are used are given below, with the numbers

appearing in brackets indicating repetitions.

 exception(s)(2), standard(4), mostly, occasionally, relatively small number of

cases, normally(2).

Questions arise about what is conveyed by words like “normally”. Does

“normally” correspond to over 99% of cases? If it does, then we could regard the

exceptions as being some kind of very special cases that are almost out of the genre

proper, or as experimental cases. If, on the other hand, the word “normal” is used to

represent 80% of cases, then we are in a very different situation. One could also ask

how a precise meaning might be attached to the expression "relatively small number

6: Applications - Verification of Hypotheses.

 104

of cases". Intuitively, this might seem to one as being less than about 5% of cases,

but there is no way of knowing that this is what the author intended.

Many of the claims made above relate to the body of Irish dance music as

practised by musicians. We can look at printed and manuscript sources to verify the

claims made by the author. Conclusions drawn are based on the hypothesis that the

printed versions represent an accurate record of the oral tradition in respect of the

aspect under test.

Possible sentences for verification include

1. The standard dance-piece consists of two different parts, each being ‘doubled’

(i.e. repeated with or without some modification).

2. Occasionally in certain pieces, the parts are 'singled' (i.e. not repeated) but this

is very much the exception and applies mainly to reels.

3. Furthermore, in a relatively small number of cases, dance-pieces are found

with three or more parts.

4. .. the length of the round increases with the addition of extra parts which

normally reach a total of no more than six.

 5. The tune is normally contained with the lower octave, while the turn usually

breaks into the higher octave.

Since the current corpus available for automatic processing consists mainly of

double jigs, we look for testing of these against double jigs only. No extra

programming effort is required to verify the assertions for other dance genres. All is

needed is to have a larger and more diverse corpus.

The first step is to arrive at formalised assertions that might be the subject of

experimental verification. Statements 1, 2 and 3 serve to say things about the number

of parts and whether each part is played once or directly repeated.

6: Applications - Verification of Hypotheses.

 105

6.5 Experiment 1: Singled Versus Doubled.

Ex.1.1 The text: Points no 1 and 2 above, that is:

1. The standard dance-piece consists of two different parts, each being 'doubled' (i.e.

repeated with or without some modification).

2. Occasionally in certain pieces, the parts are 'singled' (i.e. not repeated) but this is very

much the exception and applies mainly to reels.

Ex.1.2 The Related Hypothesis - Introduction.

The original text contains a number of points that could be verifiable, including

that the standard dance-piece consists of two different parts, each being 'doubled', i.e.

repeated with or without some modification. The first assertion is that the standard

piece consists of two parts. We will defer checking this until later. The second

statement gives exception to part of the first rule, but needs some interpretation, as to

what the author intended to say.

2. 'Occasionally in certain pieces, the parts are 'singled' (i.e. not repeated) but this

is very much the exception and applies mainly to reels.'

 It is not clear if the second statement applies to two-part standard pieces only, or

to pieces with more than two parts as well. We will assume here that it applies to all

pieces.

Some clash of terminology here is inevitable. Jigs fall into the categories of single

jigs, in 6/8 time with a predominant crotchet quaver crotchet quaver rhythm, double

jigs, in 6/8 time with a predominant 3+3 quaver rhythm, and slip jigs, in 9/8 time

with a 3+3+3 quaver rhythm. As these have already been pre-classified by the

collector, we need not concern ourselves with the classification problem. A 'singled'

double jig is a double jig in which each part is played once per round. A necessary

condition for a notated singled double jig is the absence of a repeat sign in bar 8.

However the absence of a repeat sign does not guarantee us that it is a 'singled' double

jig. The reason for this is illustrated below, where a, b, a1, a2, b1 and b2 represent 8-

bar segments of pieces.

8 bar segments in a 'singled' double jig with two parts may be represented by

 a b

6: Applications - Verification of Hypotheses.

 106

8 bar segments in a 'doubled' double jig with two parts may be represented by

 a a b b

In the manuscript the 'doubled' parts are not written out twice, in cases where they

are identical, but are represented as shown symbolically below ('://' represents a

repeat sign).

Hence a b gives a 'singled’ double jig

 a :// b :// gives a 'doubled' double jig.

A problem arises in the case where a 'doubled' double jig has been transcribed

from a player who has introduced sufficient variation in the repeated 'a' part to merit

writing out both versions of either/or the first and second 8 bar segments".98

 a1 a2 b ://

or a1 a2 b1 b2

Hence, the notated 'doubled' double jig piece with two parts might be confused

with a four-part 'singled' double jig piece. In order to solve this problem, we need a

piece of software that will identify whether one 8 bar segment is sufficiently close to

another to be regarded as a variant.

The solution to determining whether a piece is 'singled' or 'doubled' proposed here

is achieved by implementing the following set of rules or algorithm. The rules are

searched in order in which they are given, and the first rule that applies is taken as the

answer.

98 Jig tunes are also notated with alternate endings. For example, a jig tune in which the end of a

section is varied, but where the first, say, seven out of the eight bars are the same, the part may be

notated with 9 bars of notation, with two alternative endings following the first seven bars, e.g. as in

TDMOI nos 1, 71, 90. This method of notation is more frequently employed in the second parts (the

turns) of tunes. The current corpus avoids these complications by fully representing such parts. Repeat

signs are used only at the end of eight bar segments.

6: Applications - Verification of Hypotheses.

 107

Algorithm

Rule Action

if the piece has a repeat sign in bar 8 classify as 'doubled'.

else if the piece is exactly 16 bars long classify as 'singled'.

else if bar 1-8 is similar melodically to bar 9-16 classify as 'doubled'.

else admit all pieces classify as 'singled'

Fig.6.2 Algorithm for classifying tunes as 'singled' or 'doubled'.

Some comments required about the above rules.99 As a formal statement of the

algorithm, there is one glaring omission. We have not given any formal meaning to

what "similar melodically" means. For the present, we will hedge the issue by

proposing the existence of a function, called diff1100, which takes 3 parameters. The

function diff1 evaluates the melodic difference between two line segments of music

and returns a number that is an estimate of the melodic distance between the two line

segments of music. The first two parameters in this function are score iterators that

represent the starting positions of the two melodic lines, and the third parameter is the

length of the two segments to be compared expressed in rational units.101

The musicologist's text uses the word “occasionally” and “very much the

exception” and “applies mainly to reels” in reference to the relative frequency of

“singling”. This might imply that we should expect to find a small percentage of reels

(less than 10%, say) 'singled', and for other categories, such as double jigs, we

should find a still smaller percentage 'singled' (5%, say).

99 An assumption here is that this algorithm deals only with tunes that are at least 16 bars in length.

An additional rule to check this would have to be inserted if the algorithm were to be used to check for

inadmissible tunes, shorter than 16 bars. For the corpora, this is unnecessary as, in the case of double

jigs, all are at least 16 bars in length, and a check of this was performed when the corpus was created.

Also a check is carried out during the creation phase of the corpus that all tunes in the double jig

section are in multiples of 8 bars.

100 diff1 is a simplified implementation of the more general difference function which is documented

in Appendix 1. Melodic difference is calculated by diff1 on the basis of pitch differences weighted by

window durations. Contour, metric and note durations are not processed by diff1 and transposition

processing is not done.

101 From running this function on the corpus of music, it has been found that a returned value of less

than 300 indicates an appropriate measure of melodic closeness.

6: Applications - Verification of Hypotheses.

 108

Ex.1.2 The Related Hypothesis : Statement.

The occurrence of 'singled' double jigs tunes is very rare.

Ex.1.3 Algorithm.

Visit each tune in the corpus.

 Apply algorithm 1 to each tune, and count the numbers that are classified as

'singled' and also count the total number of tunes visited.

When all the tunes have been visited, apply the decision criterion below.

Ex.1.4 Decision Criterion.

If the percentage of singled tunes is 5 or less, confirm the hypothesis.

If the percentage of singled tunes is greater than 5 and less than 10, quantify the

hypothesis.

Otherwise contradict the hypothesis.

Ex.1.5 Construction of Software.

The coding for classifying a score as 'singled' or 'doubled' is given below. The

implementation is cast as a function that returns TRUE if the piece is 'singled' and

FALSE otherwise.

6: Applications - Verification of Hypotheses.

 109

int isSingled(Score & s)

{

 // does the score have a repeat sign in bar 8 ?

 ScoreIterator si(s); // create a score iterator.

 si.locate(BAR,8); // locate the start of bar 8,

 // move to the start of bar 9.

 // move to next barline

 si.step(BARLINE);

 // check if barline is one with a repeat sign.

 // (first rule of algorithm).

 if (si.getBarType() < Set(CLHLC, CLLC, CLH, CLL, CLC, CL))

 return FALSE;

 // next we can check if the tune has more than 16 bars,

 // by searching for bar 18. (second rule of algorithm).

 if (! si.locate(BAR, 18)) return TRUE;

 // next we check for melodic similarity by comparing two segments,

 // one starting at the beginning of bar no 1, and the other

 // beginning at the start of bar 9. The span of the scan is taken

 // here as seven and a half (or 15/2) bars plus an eight note.

 Rat span = si.getTimeSig() * Rat (15, 2) + Rat(1,8);

 ScoreIterator si1(s), si2(s);

 si1.locate(BAR, 1); // position one iterator at bar 1.

 si2.locate(BAR,9); // position the other at bar 9.

 // calculate the melodic distance between the two segemnts. A

 // difference of 300 is found to provide a satisfactory dividing

 // line between 'similarity' and 'difference'.

 // (third rule of algorithm).

 if (diff1(si1, si2, span) < 300) return FALSE;

 return TRUE; // last rule of algorithm.

}

Fig.6.3 Program of algorithm to verify hypothesis of Ex.1.

Ex.1.6 Testing of Software.

Testing here consisted of printing output on a tune-by-tune basis, for the 54

double jig tunes in the Breathnach collection, and manually checking the accuracy of

the results.

Ex.1.7 Results.

'singles' analysis on file =\mdb\crnh1\djig.dir

Number of 'singles' is 4 out of 54 (7%)

Table 6.1 Output of program of Ex.1 for CRNH1.

6: Applications - Verification of Hypotheses.

 110

'singles' analysis on file =\mdb\tdmoi\djig.dir

Number of 'singles' is 2 out of 365 (1%)

Table 6.2 Output of program of Ex.1 for TDMOI.

Ex.1.8 Conclusions.

For the combined corpora, we find that (4+2)/(54+365) = 1.4% of the tunes in the

corpus are singled, and conclude that the hypothesis stated in Ex.1.2 is supported.

On independently comparing the results from Breathnach's and O'Neill's, there

appears some cause for concern. We see that the percentage of 'singled' double jigs is

just under 1% for the O'Neill's and is 7% for Breathnach's. One interpretation of this

is that the practice of playing jigs in the 'singled' manner has increased in frequency in

the time that elapsed between the two collections. The situation may not be as rigid

as would be implied by the results. It is possible that tunes may be played as singled

or doubled on different occasions. Breathnach writes about this, mainly in relation to

reels102, where he indicates a highly variable practice in relation to reels, but does not

mention jigs in the same context. This is a little strange, as a significant proportion

(7%) of 'singled' double jigs appears in his own collections.

In the case of this experiment we have succeeded in verifying the hypothesis in

Ex.2.1, and at the same time we have raised important questions, that require further

investigation.

In this experiment we have made the assumption that singled double jig tunes are

always singled in their first parts. From observing the corpus this seems always to be

102 Breandán Breathnach: Ceól agus Rince na hEireann (An Gúm, Baile Átha Cliath 1989), pp. 130-

131. 'Faoi dhó a chastar gach cuid sna poit dhúbailte, sna poirt singile agus sna cornphíopaí. Uair

amhain a chastar na codanna atá sa phort luascach. Ar cheachtar den dá bhealach a chastar an ríl anois

ach fadó, nuair ba le haghaidh damhsa a chastaí í, ní dheantaí na codanna a chasadh ach uair amháin as

a cheile. Faoí dhó a chastar gach cuid sna poirt dúbailte, sna poirt shingile and sna cornphiopaí. Is

eard a dheantar le ríleanna anois gach cuid a chasadh faoi dhó; ach i gcás ríle nach mbionn aon athrú de

bhrí idir an dá mhir sa chuid, ní dheantar an cuid nó an chaoince sin a chasadh ach uair amháin as a

cheile. Is de ghrá an líostacht a sheachaint a dhéantar e seo. Fágann sin go bhfuil ríleanna ann a

gcasfaí cuid amháin iontu faoi dhó agus cuid eile ionta uair amháin'.

Translation: In double jigs, single jigs and hornpipes each part is doubled. In slip jigs each part is

singled. Nowadays, reels may be played either way, but long ago, when played for dancing, each part

was played only once. Each part of double jigs, single jigs and hornpipes was played twice. Current

practice with reels is that each part is played twice, except in the case of a reel that has similar sections

in a part, the tune or the turn is played only once. It is to avoid monotony that this is done. Hence

there are reels in which one part is played twice and another played once.

6: Applications - Verification of Hypotheses.

 111

the case. The algorithm would need to be extended if we are to be absolutely sure

that no exceptions occur in the form of hybrids that involve the doubling of the first

part followed by a singled part.

6.6 A Specialised Class.

It is important, in the analysis of dance music, to have a convenient way of

identifying the various parts of a dance tune. Such a facility might be reused

repeatedly for building various types of analysis. Hence it is worthwhile to build a

piece of software to automate this process. What we need here is a 'parts expert'

object for a score, which answers questions such as:

 How many distinct parts are played in one round of the piece?

 In which bar do we find the start of part n?

 Does the piece have an odd number of parts?

 Is the piece singled? (this is an incorporation into the class of the code above).

The code for this class is given in appendix A2.1. A summary for the public

interface of this class is given below.

Constructor:

 PartsExpert(Score & s);

Member function to indicate if the piece is singled:

 int isSingled();

Member function to return the number of parts in a score:

 int numberOfParts();

Member function to return TRUE if the piece has an odd number of parts present:

 int hasOddPart();

Member function to return the first bar number of part I:

 int getBarNoForPart(int i);

6: Applications - Verification of Hypotheses.

 112

Note that the bar number 1 is from the first complete bar of the tune. Upbeats are

ignored.

6.7 Experiment 2: Number of Parts.

Ex.2.1 The Text.

" Furthermore, in a relatively small number of cases, dance-pieces are found with

three or more parts".

Ex.2.2 The Related Hypothesis.

The percentage of tunes with more than two parts is relatively small.

Ex.2.3 Algorithm.

Visit each tune in the corpus.

 Apply the PartsExpert to each tune and count and record the number of parts in

the tune and the total number of tunes processed. Calculate the percentage of tunes

with more than 2 parts.

Apply the decision criterion.

Ex.2.4 Decision Criterion.

If the percentage is 15 or less, confirm the hypothesis.

If the percentage is greater than 15 modify the hypothesis by quantifying it.

Ex.2.5 Construction of Software.

 We have already taken a large step in this in that we have a function to determine

if the piece is singled. Most of the work in calculating the number of parts is done in

the parts expert constructor for the class, which counts the number of 8-bar segments.

A double section count is made when a repeat sign is encountered. Using the

partsExpert class makes this task easy to specify. The entire code consists of the 12

lines in Fig.6.4.

6: Applications - Verification of Hypotheses.

 113

 while (getNextScoreNames(argv[1], fname))

 {

 Score s(fname);

 PartsExpert partsExpert(s);

 countAll++;

 if (partsExpert.hasOddPart()) countOddOnes++;

 if (partsExpert.isSingled()) countSingles++;

 String sparts;

 sparts.cvtNs(partsExpert.numberOfParts());

 store.put(sparts);

 }

Fig.6.4 Program to find the number of parts in a dance tune.

Ex.2.6 Testing of Software.

Testing here consisted of printing output on a tune-by-tune basis, for the 54

double jig tunes in the Breathnach collection, and manually checking the accuracy of

the results.

Ex.2.7 Results.

The output produced by running this program on the corpus of jig pieces from the

two collections given previously is given in tables 6.3 and 6.4.

Analysis of Number of Parts in Dance Pieces

taken from file =d:\mdb\crnh1\djig.dir

 Parts Frequency Percentage

 5 1 1

 4 4 7

 3 5 9

 2 44 81

Table 6.3 Analysis of the number of parts in jig tunes from CRNH1.

Analysis of Number of Parts in Dance Pieces

taken from file =d:\mdb\tdmoi\djig.dir

 Parts Frequency Percentage

 7 2 0

 6 5 1

 5 4 1

 4 14 3

 3 49 13

 2 290 79

 10 1 0

Table 6.4 Analysis of the number of parts in jig tunes from TDMOI.

6: Applications - Verification of Hypotheses.

 114

Ex.2.8 Conclusions.

We can see here that the number of pieces with two parts is remarkably stable

between the two collections, with the older one yielding 79% and the more recent one

yielding 81%. The percentage from the combined results is (44+290)/(54+365) =

80%. Hence out the term used 'relatively small proportion' is close to 1 out of five.

Our result here leads us to modify the hypothesis to:

Approximately 20% of double jig tunes have more than 2 parts.

One welcome side effect of this analysis is that we can see at a glance, the relative

frequency distributions of the number of parts, with between two and ten parts per

tune. This confirms the assertion that the number of extra parts normally reaches no

more than six. Here we interpret some ambiguity in the statement by assuming that it

refers to a total of six, and not to eight. We see that there are no tunes with six parts

or more in the Breathnach collection and there are 3 out of 365, or 1% in the O'Neill

collection with more than six parts. One tune in the O’Neill collection has ten parts.

6.8 Experiment 3: Ranges of Tune and Turn.

Ex.3.1 The text.

 " The tune is normally contained with the lower octave, while the turn usually

breaks into the higher octave".

Ex.3.2 The Related Hypothesis.

We already have a clear agreement on what constitutes the 'tune' and 'turn', so we

can equate the related hypothesis with the text.

Ex.3.3 Algorithm.

Visit each tune in the corpus.

Scan all notes in the 'tune' part, then extract the chromatic pitch numbers of the

highest pitch found, p1, and the lowest pitch found, p2. Scan all notes in the 'turn'

part and extract the chromatic pitch number for the highest pitch found, p3. Count

the piece as verifying the hypothesis if both of the following conditions are met

 p2 - p1 is less than or equal to 12

 p3 - p1 is greater than 12

6: Applications - Verification of Hypotheses.

 115

Many dance pieces have from one to five notes before the first bar, as an anacrusis

that precedes the first accentuated beat. The cumulative duration of these notes is

never more than a crotchet in the corpora under study.103 In pieces that have this

phenomenon, the first eight bar phrase stretches from before the first bar through a

total distance of exactly 8 bars in duration, and consequently does not reach the end of

the 8th bar of the tune. For the present, we will just note that there is a problem here,

and defer a decision on how we will handle it in the section titled 'decision 1'. The

words 'normally' and 'usually' in the sentence "The tune is normally contained with the

lower octave, while the turn usually breaks into the higher octave" need some

attention. Do we have a composite hypothesis here about the range of the tune part,

in relation to itself, and about the range of the turn, in relation to the range of the tune

part, or do we have two separate hypotheses, one about the range of the tune part, and

a second one about the range of the turn part? The word “breaks” suggest that we are

dealing with a composite hypothesis, and that a statement is being made about a tune

which is in the lower octave, with the turn breaking new ground going into the higher

octave.

Two points of clarification must be made -

Decision 1: This concerns start and stop points of our scans. In this case we have

to choose whether to perform our scan so that it covers eight bars from the first note

of the piece, or whether we omit any introductory notes from consideration. From an

examination of different manuscripts, one often finds that there exist different

versions of the same basic piece in which these notes are omitted. Many cases can be

found, for example, by comparing CRNH1 NO 13 with TDMOI NO 24, and

CRNH1 20 with TDMOI 158. The decision we will take here is to skip such notes in

our calculations and to use only notes from the start of the first full bar of each 8 bar

segment, up to and including the note at the centre of the 8th bar. The main

justification for this lies in the optional nature of these notes at the start. This enables

us to carry out comparisons on a standard form of each tune segment from all the

double jigs. The above decision also involves ignoring the notes in the last part of bar

8 also, as these may form an analogous lead in for the second part.

Decision 2: A further refinement concerns a decision on whether to include grace

notes in our calculations. This is an example of the kind of snag about which we have

to be vigilant. We will ignore grace notes in this case, as they are used for cuts, whose

103 A study of the melodic structure of the anacrusis is given in 7.2.

6: Applications - Verification of Hypotheses.

 116

purpose is to give rhythmic emphasis rather than to contribute a purely melodic

component by their pitch. As grace notes are normally found above the following

note, a decision to include grace notes might militate in favour of over-estimating the

instances of tunes that violate the first clause of the hypothesis, i.e. that the tune part

is contained within the first octave. In relation to the second clause, about the turn

part, inclusion of grace notes might lead to an over-estimation of tunes that support

the hypothesis.

Ex.3.4 Decision Criterion.

If the percentage of tunes is greater than or equal to 20, accept the hypothesis,

else if the percentage of tunes is less than 50, reject the hypothesis.

else quantify the hypothesis.

Ex.3.5 Construction of Software.

This is a most straightforward application in which a scan is made of the first 8

bars in order to find the maximum and minimum pitches present in each part. A

simple comparison of the differences between the maxima and minima can then be

used to verify the results. A further scan is made of the 8 bars of the turn, and the

maximum pitch is calculated. The calculations in Ex.3.3 are performed for each tune.

An annotated version of the main part of the program is given below in Fig.6.5.

6: Applications - Verification of Hypotheses.

 117

 String fname;

 int countTarget = 0;

 int countAll = 0;

 int part1InOctave = 0;

 int part2OutsideOctave = 0;

 while (getNextScoreNames(argv[1], fname))

 {

 Score s(fname);

 int highestPitchPart1 = 0;

 int lowestPitchPart1 = INT_MAX;

 int highestPitchPart2 = 0;

 int lowestPitchPart2 = INT_MAX;

 ScoreIterator si(s, 0);

 while ((si.getBarNo() <= 8 ||

 (si.getBarNo() == 8 &&

 si.barDist() <= si.getTimeSig() * Rat(1,2) + Rat(1,8))) &&

 !si.isLast())

 {

 if (si.getTag()==NOTE && !(GRACE_NOTE < si.getAttributeSet()))

 {

 if (highestPitchPart1 < si.getPitch12())

 highestPitchPart1 = si.getPitch12();

 if (lowestPitchPart1 > si.getPitch12())

 lowestPitchPart1 = si.getPitch12();

 }

 si.step();

 }

 PartsExpert partsExpert(s);

 int nextBar = partsExpert.getBarNoForPart(2);

 while ((si.getBarNo() <= nextBar+7 ||

 (si.getBarNo() == nextBar+8 &&

 si.barDist() <= si.getTimeSig() * Rat(1,2) + Rat(1,8))) &&

 !si.isLast())

 {

 if (si.getTag() == NOTE && !(GRACE_NOTE < si.getAttributeSet()))

 {

 if (highestPitchPart2 < si.getPitch12())

 highestPitchPart2 = si.getPitch12();

 if (lowestPitchPart2 > si.getPitch12())

 lowestPitchPart2 = si.getPitch12();

 }

 si.step();

 }

 int lowestOverallPitch = lowestPitchPart1 > lowestPitchPart2 ?

 lowestPitchPart2 : lowestPitchPart1;

 if (highestPitchPart1 - lowestPitchPart1 <= 12 &&

 highestPitchPart2 - lowestPitchPart1 > 12) countTarget++;

 if (highestPitchPart1 - lowestPitchPart1 <=12) part1InOctave++;

 if (highestPitchPart2 - lowestPitchPart2 > 12)

 part2OutsideOctave++;

 countAll++;

 }

Fig.6.5 Program for testing hypothesis of Ex.3.

6: Applications - Verification of Hypotheses.

 118

Ex.3.6 Testing of Software.

A complete listing of the results for each tune in the CRNH1 corpus was printed

out, and the results verified manually against the manuscript.

Ex.3.7 Results.

Number of pieces with 1st part in lower octave and

2nd part going into upper octave from =d:\mdb\crnh1\djig.dir

is 15 out of a total of 54(27%)

Number of pieces with 1st part in octave range is 15(27%)

Number of pieces with 2nd part outside octave range is 51(94%)

Table 6.5 Output of program for Ex.3 using CRNH1.

Number of pieces with 1st part in lower octave and

2nd part going into upper octave from =d:\mdb\tdmoi\djig.dir

is 76 out of a total of 365(20%)

Number of pieces with 1st part in octave range is 100(27%)

Number of pieces with 2nd part outside octave range is 307(84%)

Table 6.6 Output of program for Ex.3 using TDMOI.

Ex.3.8 Conclusions.

The average percentage of cases for which the hypothesis is true between both

collections is 22%. This is found by a weighted average of the results for CRNH1 at

27% and for TDMOI at 20%. Hence we restate the hypothesis -

The tune part is contained in the lower octave, and the turn part breaks

into the higher octave in approximately 22% of cases.

 Interestingly, the percentage of pieces that meet both criteria is the same as the

percentage that meets the first criterion in the case of CRNH1. A quick visual scan of

printed sources indicates that similar results might be expected from the other main

form, the reel.

The turn of a piece however, tends to be higher than the first part. One way in

which this might be expressed and tested is to assert that, on average, notes in the turn

are higher in pitch than notes in the first part. This could be readily tested, by a

6: Applications - Verification of Hypotheses.

 119

simple algorithm. The result of such (see algorithm in appendix A2.2) is given below

for the older collection in Table 6.7.

Average pitches analysis of parts 1 and 2 of pieces.

Files used from '=d:\mdb\tdmoi\djig.dir'.

Pieces with higher average pitch in 2nd part = 331 out of 365 (90%).

Table 6.7 Average pitches for TDMOI.

The average taken here is the unweighted average of the chromatic pitch number

of the notes in the first and second parts.

6.9 Experiment 4: Set Accented Tones.

In the same chapter of the previous quotations, Ó Suilleabháin proposes a theory

of set accented tones104 as follows -

"Within a performance, the musician would appear to be holding on to certain individual tones

which occur at important accentuated points. It is the occurrence, or deliberate non-occurrence, of

these tones which appears to provide the necessary point of reference for the performer. Illustration 3

shows a typical setting of the opening of the four bars of the double-jig "The Old Grey Goose"

(example (a)) with the eight set accented tones boxed. In order to demonstrate that these tones are at

the heart of the piece's identity and that any extended interference with them is in the nature of a

contradiction of the tune itself, I have included five projected variants of my own"

Fig.6.6 From "The Creative Process in Irish Traditional Dance Music", p.123.

104 In an interview with the author, Professor Micheál Ó Suilleabháin clarified two points about set

accented tones. The use of the word set here, means 'fixed'. In effect “set like a jelly”. Also the word

tone refers only to pitch and has not a connotation of timbre. (date: 26.11.94).

6: Applications - Verification of Hypotheses.

 120

Fig.6.7 Illustration 3 from "The Creative Process in Irish Traditional Dance Music",

p.123.

One could infer that each distinctive piece has a unique sequence drawn from the

accented tones, which occur at the main accentual points in the piece. In other words

this implies the existence of an equivalence classes of pieces with identical sequences

of set accented tones. We do not know in advance which of the accented tones form

the set accented tones. From Fig.6.7, it would appear that most of the accented notes

participate, at least in the first part of the tune. We can seek a certain level of

corroboration of the theory by seeing if all of the sequences of accented tones are

unique, and hence "at the heart of the identity of the tune". If this is true, then if we

extract the sequence of accented tones from each piece, and organise them in a

frequency distribution, each such sequence should occur only once, unless the

collection contains duplications. A simple program can be constructed to test this.

The main part of this program is given below. The program and the following results

are based on analysis of the accented tones only in the first parts of tunes. The

program uses two classes to support the task. The instance of class Store denoted by

'store' is used to store an ordered collection of unique objects that are inserted into the

store by the put member function. A frequency is associated with each stored object.

The PitchTuple class stores tuples, and normalises the scalar quantities inserted so

that the first component is taken as an origin, with a value of zero. Subsequent

components are adjusted accordingly to the value of the tone relative to the number of

6: Applications - Verification of Hypotheses.

 121

semitones it is distant from the first tone. Hence the following eight tones yield an 8-

tuple as shown in Fig.6.8.

 tones: A B A B A E G A

 tuple: { 0, 2, 0, 2, 0, -5, -2, 0 }

Fig.6.8 Pitch 8-tuple example.

Ex.4.1 Text.

.....these tones are at the heart of the piece's identity....

Ex.4.2 The Related Hypothesis.

Different tunes have unique sequences of accented tones.

Ex.4.3 Algorithm.

Visit each tune.

Calculate a tuple for the accented tones from the 'tune' part.

When all tunes are visited, examine each tuple for uniqueness.

Apply the decision criterion below.

Ex.4.4 Decision Criterion.

If two or more tunes share the same tuple, examine the tunes to see if they are

closely related. Support the hypothesis if each different tune has a unique tuple.

Ex.4.5 Construction of Software.

The program uses two main classes, the Store class for holding tuples and the

PitchTuple class that is used to represent and normalise the tuples. Grace notes are

excluded from the calculations, for the same reasons as were given previously.105

105 See section 6.8, ex3.3.

6: Applications - Verification of Hypotheses.

 122

 Store<PitchTuple> store;

 store.init(100, tupleSize);

 int countAll = 0;

 String str, fname(argv[argc-1]);

 while (getNextScoreNames(fname, str))

 {

 Score s(str);

 ScoreIterator si(s, 0);

 countAll++;

 cout << "-";

 si.locate(BAR,1);

 PitchTuple tuple(tupleSize);

 int count = 0;

 while (si.getBarNo() != tupleSize/2 + 1 && ! si.isNullStave())

 {

 if (si.getTag() == NOTE &&

 !(GRACE_NOTE < si.getAttributeSet()) &&

 (si.getBarDist() == Rat(0,1) || // start of bar

 si.getBarDist() == (si.getTimeSig()/Rat(2))))// middle of bar

 tuple.put(si.getPitch12(), count++);

 si.step();

 }

 store.put(tuple);

 }

Fig.6.9 Program for testing hypothesis of Ex.4.

Ex.4.6 Testing of Software.

Classes PitchTuple and Store have been tested individually. The complete

algorithm is run on a random sample of 20 pieces from the corpus, and the results are

checked manually.

Ex.4.7 Results.

6: Applications - Verification of Hypotheses.

 123

Accented Tone analysis for pieces in =d:\mdb\crnh1\crnh1j.dir

Frequency Pitch 16-Tuple

1 {0,12,5,0,-4,3,8,13,3,3,5,0,-4,3,8,10}

1 {0,9,10,12,0,9,10,7,0,9,10,12,17,19,10,5}

1 {0,7,5,10,0,7,5,5,0,7,5,10,14,12,5,5}

1 {0,7,4,7,0,7,2,4,0,7,4,7,14,7,2,4}

1 {0,7,2,5,0,7,10,2,0,7,2,5,7,7,10,2}

1 {0,7,0,5,0,7,10,5,0,7,0,5,3,2,10,2}

1 {0,5,9,7,12,16,12,10,0,5,9,7,12,17,10,5}

1 {0,5,9,5,2,5,9,7,2,5,9,5,2,5,9,7}

1 {0,5,8,0,0,0,3,0,3,0,5,8,0,0,0,-2}

1 {0,5,7,10,12,9,17,10,4,5,7,9,12,5,0,0}

1 {0,5,0,10,12,10,4,4,0,5,0,10,12,10,7,5}

1 {0,5,0,5,-2,-3,-2,-5,0,5,0,5,-2,2,-3,-7}

1 {0,4,4,4,0,5,-1,2,0,4,4,4,7,5,0,0}

1 {0,3,1,-5,0,3,1,-4,0,0,-2,-2,3,8,1,-4}

1 {0,3,0,3,-2,-7,-2,-7,0,3,0,5,9,3,0,5}

1 {0,2,0,9,0,2,-3,-2,0,2,0,9,0,0,-3,-7}

1 {0,2,-5,-8,-5,-8,-5,-12,0,2,-5,-8,-5,-12,-10,-12}

1 {0,1,3,1,-5,-9,-9,-7,0,1,3,0,8,1,-4,-4}

1 {0,0,15,12,7,12,7,3,0,0,15,12,7,12,7,5}

1 {0,0,12,14,9,7,2,4,-5,0,12,14,9,7,4,0}

1 {0,0,5,5,3,8,-2,-2,0,0,5,5,3,8,1,-4}

1 {0,0,4,2,9,12,9,7,0,0,4,2,9,12,2,0}

1 {0,0,2,4,-3,0,2,-3,-8,0,2,4,9,7,0,-3}

1 {0,0,2,2,0,0,10,2,0,0,2,2,5,12,9,2}

1 {0,0,2,-2,0,-2,7,7,0,0,2,-2,-2,-2,5,2}

1 {0,0,1,-2,0,0,1,-4,0,0,1,-2,12,10,1,-4}

1 {0,0,0,5,0,-5,-9,3,0,0,0,5,0,3,-5,-7}

1 {0,0,0,-2,0,0,-2,-2,0,0,0,-2,0,3,5,-2}

1 {0,0,0,-4,-4,-4,5,-2,0,0,0,-4,0,5,-4,-9}

1 {0,0,0,-7,-2,-2,-2,-9,-4,-2,0,8,5,0,0,-7}

1 {0,0,-2,-2,0,-2,-4,8,0,0,-2,-2,3,1,-2,-4}

1 {0,0,-2,-7,3,5,3,-3,0,0,-3,3,-7,-7,-7,-7}

1 {0,0,-5,-5,0,-3,-3,2,0,0,-5,-5,0,4,0,-3}

1 {0,-1,-3,4,0,-1,-5,2,0,-1,-3,4,0,7,-1,-1}

1 {0,-2,-4,8,3,0,0,-2,0,-2,-4,8,3,0,0,-4}

1 {0,-2,-4,5,3,10,12,3,0,-2,-4,5,3,3,0,-4}

1 {0,-2,-8,-12,-10,-2,-10,-12,0,-2,-3,-5,-8,-2,-8,-12}

1 {0,-2,-9,-5,0,1,3,7,0,-2,-9,-5,0,1,-2,-4}

1 {0,-3,0,3,-2,-5,3,3,0,-3,0,3,-2,3,-5,-7}

1 {0,-3,-3,-5,0,-1,4,7,0,-3,-3,-5,-1,4,0,-3}

1 {0,-3,-6,-6,0,-1,-3,7,0,-3,-6,-6,-3,6,4,-5}

1 {0,-4,1,-2,0,-4,1,-4,0,0,1,-2,0,1,-4,-4}

1 {0,-4,-9,-5,0,3,-5,-2,0,-4,-9,-5,0,3,-4,-4}

1 {0,-5,0,5,7,0,2,-3,0,-5,0,5,7,0,2,0}

1 {0,-5,0,-7,0,-5,-2,-9,0,-5,0,-7,-9,-2,-2,-7}

1 {0,-5,-3,-5,0,-5,-3,-6,0,-5,-3,-5,6,4,6,0}

1 {0,-5,-7,-7,0,-5,-7,2,0,-5,-7,-7,10,9,0,2}

1 {0,-5,-8,-5,-1,-1,-8,-3,-1,-5,-8,-5,-1,-3,-5,-5}

1 {0,-6,-9,-6,-12,-16,-12,-11,-9,-6,-9,-6,0,-6,-9,-4}

1 {0,-7,5,0,0,0,5,3,0,-7,5,0,-2,0,9,5}

1 {0,-7,0,5,-2,3,-2,-7,0,-7,0,5,-2,3,-7,-7}

1 {0,-7,0,0,0,-7,0,-5,0,-7,0,0,-2,3,-2,-5}

1 {0,-7,-2,-7,-12,-9,-4,-2,0,-7,-2,-7,-12,-9,0,-4}

1 {0,-7,-5,-7,0,-7,-5,4,0,-7,-5,-7,-7,5,0,-2}

Total number of pieces processed is 54

Table 6.8 Frequency distribution of tuples for CRNH1 using program of

Ex.4.

6: Applications - Verification of Hypotheses.

 124

Ex.4.8 Conclusions.

The results for the Breathnach collection of 56 jig pieces, in Table 6.8, show that

they all have unique sequences of accented tones. This adds support to our

hypothesis. The collection in question is modern and the author, by the use of a card

index, ensured that no duplicate tunes were included. Such would have been unlikely

in any case in such a small collection. Considerably more significant results may be

obtained from running the analysis on the 365 pieces in the O'Neill collection, see

table A3.1 in appendix 3. All of these entries proved unique except for two

duplicated pairs. By manually scanning down through the sorted table of tuples

produced by the analysis, we see immense diversity in the sequences of accentuated

tones.

The next step is to examine the pieces corresponding to the pairs and to see if they

are related. A small modification to the program that produced these results was

made to give the user a facility for searching the corpus for instances of specific

tuples. The modified version is given in appendix A2.3.

On running this program, the output produced shows that the two pieces that share

the tuple { 0, 5, 0, 0, 0, 5, 9, 2, 0, 5, 0, 0, 5, 7, 9, 5) are

No 16 "ann do tinneas ne tae ta uait? - WHEN SICK IS IT TEA YOU WANT?

 and

No 358 "imthigh do'n diabhal's corruidh tu fein - GO TO THE DEVIL AND

SHAKE YOURSELF"

In spite of the different titles the music parts of these two pieces are identical. The

lack of a thematic index led O'Neill to include the same music twice.

The tuple { 0, 3, 5, 3, 0, 3, -2, -2, 0, 3, 5, 3, 0, 1, -4, -4 } appears twice, first in

No. 42 "Biodhg suas liom - MOVE UP TO ME"

and also

No. 325 "bo leath-adharcach uí mhartain - MARTIN'S ONEHORNED COW"

In this case, the music has a number of differences, No. 42 is pitched a perfect

fourth higher, it has a different key signature and has some minor differences in the

unstressed notes. They are clearly very closely related.

6: Applications - Verification of Hypotheses.

 125

The sequence of accented tones is, in effect, a normalised pitch vector, which is

tied closely to the identity of the tune in the sense that different tunes have unique

vectors.106 A further study is needed to check the validity of this from another

perspective. We need to establish whether closely related tunes have pitch vectors

that are similar or possibly identical.

To summarise, we have shown here that -

In general there is an immense diversity of sequences of accented tones.

The only case of sharing of sequences of accented tones between tunes is found

for closely related tunes.

We have not shown however, that all related tunes have the same or similar

sequences of accented tones.

106 A similar technique, that of extracting stressed pitches, is used by Helmut Schaffrath, op.cit., for

information retrieval purposes.

7: Applications - Investigatory Analyses.

 126

Chapter 7. Applications - Investigatory Analyses.

The last chapter was concerned with verifying statements that a musicologist

made about a corpus of music. In this chapter, examples are presented showing the

potential of scoreView for carrying out investigations on a corpus.

The main difference between the kind of inquiry that uses a computer and one

that is done manually, arises from the ability of a computer to act as a speedy and

tireless amanuensis which excels in some tasks, in particular in tasks of a

combinatorially intensive nature. This pushes out the limits of what it is feasible to

do, given that humans have limitations to their energy, attentiveness, accuracy and

time. It may be recalled that one of the conditions for a set of instructions to be an

algorithm is that it is capable of being done with a pencil and paper (see 4.2). The

computer scores over the pencil and paper in situations where the work would take

too long and/or be too tedious and/or where manual results might be too unreliable.

Five examples of the use of the system are given below under the following

headings.

Scale Finding: The first example shows how we can find the types and

frequencies of scales that are present in the corpus.

Feature Extraction: The second example illustrates how we might extract and

organise information about a melodic feature of double jig tunes.

Melodic Difference: The third example illustrates how we might construct

algorithms to calculate various numerical estimates of melodic difference

between two segments of music. A number of developments of the basic

algorithm are discussed and some of these are implemented.

Form and Exhaustive Search: The fourth and fifth examples illustrate ways in

which a melodic difference algorithm might be used to extract meaningful

information from the corpus. The fourth example is concerned with an

evaluation of 'crude' melodic forms of corpus members, and the fifth example

7: Applications - Investigatory Analyses.

 127

concerns itself with exhaustive searches of the corpus for identifying exact

copies and close variants.

This thesis does not undertake a comprehensive analysis of the corpus of Irish

double jig tunes. The algorithms presented here are primarily intended to illustrate

how scoreView might contribute towards such an analysis.

7.1 Scale of a Double Jig.

This section demonstrates a method by which the scale of a piece of music may be

identified and uniquely labelled. Here the word 'scale' is being used in a very

restricted sense.107 What is meant here is simply the fundamental intervallic pattern

of the set of note classes used in the piece. This section is not about finding which

note of the scale is the modal one, but instead, it is concerned with working out and

classifying the basic intervallic relations in the scale of a piece. We can view this

process as a procedure which traverses all the notes in a piece and forms a set of all

the pitch classes encountered. In order to identify the scale, these sets of pitch classes

have to be mapped into a standard form which preserves the intervallic relationships

of the scale. The requirements for this standard mapping are that

- all versions of the same scale in any key should map to the same standard form,

- no two different scales should map to the same standard form.

The pitch class set is an appropriate tool for cumulating and recording the set of

pitches in a piece. The pitch class set, as proposed by Forte108 is nothing more than

the mathematical notion of a set of elements, where the elements are chromatic pitch

numbers, or their modulo 12 equivalents. In order to compare two sets, and to

identify if they are made up of the same intervallic material, Forte proposes a number

of transformations which reduces any possible set of pitch classes to 220 distinct sets

called prime forms. He also provides standard labels for them. The basis on which

107 Stanley Sadie The New Grove Dictionary of Music and Musicians volume 16 (London:

MacMillan 1980) has the following definition of a scale. by William Drabkin: “A scale is a sequence of

notes in ascending or descending order of Pitch.” The usage here corresponds with this definition, and

not as further refined in Grove - “As a musicological concept, a scale is long enough to define,

unambiguously a mode, tonality, or some special linear construction, and that begins and ends (where

appropriate) in the fundamental note of the tonality or mode;...”.

108 Allen Forte The Structure of Atonal Music (New Haven and London: Yale University Press

1973).

7: Applications - Investigatory Analyses.

 128

this mapping takes place, and the individual mappings involved are given below. It

will be demonstrated, that Forte's prime forms are inappropriate for the task of scale

classifications, but that a closely related mapping accomplishes the task satisfactorily.

Forte lays out, in steps 1 to 3 below, the axioms under which pitch class sets may

be transformed while still retaining their basic identity. Steps 4, and 5 below reduce

the sets to a standard form, using the preceding axioms. This standard form may

appear on Forte's list of prime forms. If it does not, one further series of

transformations are introduced, the first of which is based on an axiom of inversional

equivalence. This is followed by a repeat of transformations 4 and 5. These steps are

described in step 6 below.

1. The axiom of octave equivalence, states that change of register does not affect

notation-class membership. Hence pitch 0 is equivalent to 12, -12, 24 and -24, for

example. Also pitch 1 is equivalent to 13, 25, -11 and -23.

In the case of the scales under study, each scale repeats its intervallic pattern in

upper and lower octaves, and hence, for the purpose of scale identification,

transformations that use octave equivalence maintain the basic scale structure.

2. Enharmonic notes are equivalent. Hence C sharp is equivalent to D flat, and

either can be represented by the same pitch class element, which is also equivalent to

the number 1.

In the corpus under study, the music is modal, notes outside of the diatonic scale

are rare, and where they do occur, issues of enharmonic equivalence do not arise in

any practically important way.

3. Normal ordering is achieved by successively rearranging the ordered set in

ascending order. All circular permutations of the set, with the addition of 12 to a

shifted element, are regarded as being equivalent normal orderings. For example the

normal order of the set { 2 0 5 7 11 9 4 } is { 0 2 4 5 7 9 11 }. This is also equivalent

to { 2 4 6 7 9 11 13}.

Note sequence has no effect on determination of scale. The addition of 12 to a set

element is covered under 1 above.

7: Applications - Investigatory Analyses.

 129

4. The main step for mapping a set into its prime form is done in Forte's

classification system using the following algorithm, which employs only transforms

of 1-3 above.

Select the ordered set with the least difference between the first integer and the

last from the various circular permutations. In the case of a tie, select the permutation

with the least difference between the first and second element. If this is the same for

more than one permutation, select the permutation with the least difference between

the first and third element, and so on, until the difference between the first and the

next to last element has been checked. If all these differences are the same each time,

select one ordering arbitrarily as the normal order.

Permuting the notes of a scale in this way, simply changes the order, but leaves all

relevant intervallic relativities of the set unchanged.

5. By the transposition operator, which adds a positive or negative constant to

every element in a set, one can, in effect, produce a class of transpositionally

equivalent sets. The set from step 4 is made into a standard representative by the

application of the transposition operator so as to make its first element zero.

Transposing the notes of a scale in this way, changes only the key of the scale, and

leaves all the intervallic relativities, and hence the type of the scale, unchanged.

6. Forte goes one step further, a step that may be required is some cases to arrive

at his prime forms. He proposes the inverse transformation by which pitch numbers

are transformed into their inversional equivalents. These are represented below -

 0 <-> 0

 1 <-> 11

 2 <-> 10

 3 <-> 9

 4 <-> 8

 5 <-> 7

 6 <-> 6

When a set is transformed according to the above mapping, the set is subsequently

normalised as in 1 - 5 above.

7: Applications - Investigatory Analyses.

 130

If we want to classify a set of pitches according to Forte's scheme, we first

perform transformations 4 and 5 on the set of pitches, and then look up the resultant

set in a table of prime forms to find a match. If the match is absent from the table, we

perform transformation 6, followed by steps 4 and 5 above on the transformed set,

and we are then guaranteed that our calculated form will be present in the table of

prime forms. We can then find its associated name.

It tuns out that, if we omit one of Forte's transformations, the invertional

transposition of no.6 above, we will arrive at a unique characterisation of the

underlying scale of pieces. The cost of doing this is that we increase the number of

possible prime forms by a factor less than two.

If transformations 4 and 5 are applied to all the notes in a scale, we find that we do

not alter the basic intervallic relations in such a way as to change the identity of the

scale. If however we apply transformation 6 as well, this will cause unlike scales to

map to the same prime form. An example of this occurrence follows, together with a

definition of a new special prime form, called a non-inversionally equivalent (NIE)

prime form.

Non-Inversionally Equivalent (NIE) Prime Form is defined here as the set of

standard pitch classes together with their names, that any pitch class set is

transformed to under transformation 4 and 5 above. In identifying and naming these

sets we simply use the Forte prime forms and the associated name wherever we can.

If a set, when transformed under step 4 and 5 above, fails to appear in Forte's table,

then its transformation under 6 followed by 4 and 5 must, we use the same prime

form name as Forte, but distinguish it by prefixing it with the letter I followed by a

hyphen. Hence corresponding to Forte's name 3-7, we have two non-invertionally

equivalent prime forms with names

 3-7 for set { 0 3 7 }

 and I-3-7 for set { 0 4 7 }

The processes involved here can be illustrated by two 3-note scales.

The prime form of the scale D F A is got in the following stages

1. Express as a pitch-class set { 2 5 9 }

7: Applications - Investigatory Analyses.

 131

2. Consider the various rotations { 2 5 9 } { 5 9 14 } { 9 14 17 } and select the

one with minimal distance between the first and last, that is 9 -2 = 7, 14 -5 =

9, 17 - 9 = 8. Hence we select the first one.

3. Transpose, to make the first element 0, gives { 0 3 7 }.

4. Consult Forte's list of prime forms and we find its name is 3-7.

We also use the name 3-7 as the NIE prime form.

If we now repeat this for another distinct 3-note scale, that of C E G, we get

1. Express as a pitch-class set : { 0 4 7 }

2. Consider the various rotations { 0 4 7 } { 4 7 12 } (7 12 16 } and select the

one with minimal distance between the first and last element, that is 7 -0 = 7,

12 - 4 = 8, 16 - 7 = 9. Hence we select the first one, as it has the smallest

difference.

3. Transpose to make the first element 0 gives { 0 4 7 }

4. Consult Forte's list of prime form, we find it is not present.

5. When we invert the set { 0 4 7 } we get the set { 0 8 5 }

6. Put into normal form { 0 5 8 }

7. Consider the various rotations { 0 5 8 } { 5 8 12 } { 8 12 17) and select the

one with minimal distance between the first and last element, that is 8 -0 = 8,

12 - 5 = 7, 17 - 8 = 9. Hence we select the second one.

8. Transpose, to make the first element 0 gives { 0 3 7 }

9. Consult Forte's list of prime forms and we find its name is 3-7. The NIE

prime form name is I-3-7.

Here we have taken two distinct scales and mapped them into the same prime

form of Forte! This illustrates that the Forte classification scheme will not do, but if

we remove the inversion mapping, and distinguish the two resulting separate prime

form names, we will uniquely characterise the scales.

In terms of the NIE prime form we find that

 Scale D F A maps to NIE prime form 3-7 for set { 0 3 7 }

 Scale C E G maps to NIE prime form I-3-7 for set { 0 4 7 }

7: Applications - Investigatory Analyses.

 132

It would be instructive, at this stage to speculate on which NIE prime forms we

might expect from an examination of the pitches in a double jig tune. The heptatonic

major scale { 0 2 4 5 7 9 11 } which maps to 7-35 without using the inversional

transposition, is one such candidate scale. A list of some scales that might be

expected to crop up are given below, in the key D major

 D E #F G A B #C heptatonic 7-35

 D E #F G A B hexatonic 6-32

 D E #F A B #C hexatonic 6-32

 D #D E #F G A B #C 8-note109 8-22

 D E #F G A B C #C 8-note 8-23

 D E #F G A pentatonic 5-35

Note that the two hexatonic cases above are in effect the same scale. This is

because they are transpositionally equivalent. Here we are not considering modality.

The first 8-note scale above arises mostly in piping, as the chanter has an extra #D.

The next 8-note scale illustrates the presence of both C and #C in the same tune.

 String origFilename(argv[argc-1]);

 String currentFilename;

 Store<PitchClasses> spcs(20);

 while (getNextScoreNames(origFilename, currentFilename))

 {

 Score s(currentFilename);

 ScoreIterator si1(s);

 ScoreIterator si2(s);

 si1.locate(BAR,1);

 si2.locate(BAR, SCANLENGTH); // start of 8th bar

 do si2.step();

 while (si2.getBarDist() < (si2.getTimeSig()*Rat(1, 2)) &&

 si2.getBarNo() == SCANLENGTH);

 PitchClasses pcs;

 pcs.pitchClass(si1, si2);

 pcs.NIEPrimeForm();

 spcs.put(pcs);

 }

Fig.7.1 Scale classification program.

109 In the current context, the term 'octatonic' is avoided because of its associations with a specific 8-

note scale.

7: Applications - Investigatory Analyses.

 133

The output from running this program on the 54 double jig tunes in Breathnach's

Ceol Rince na hEireann is given in Table 7.1.

Distribution of scales for file(s) =d:\mdb\crnh1\djig.dir

Prime Form Name Frequency

{0 1 2 3 5 7 8 10 } 8-23 3 (6%)

{0 1 3 5 6 8 10 } 7-35 18 (33%)

{0 1 2 4 6 7 9 } 7-29 1 (2%)

{0 2 4 6 7 9 } I-6-33 5 (9%)

{0 2 4 5 7 9 } 6-32 18 (33%)

{0 2 3 5 7 9 } 6-33 1 (2%)

{0 2 4 7 9 } 5-35 5 (9%)

{0 1 3 5 6 8 } 6-Z25 2 (4%)

{0 2 4 5 7 } I-5-23 1 (2%)

Table 7.1 Distribution of scales for CRNH1.

Observations.

It can be seen here that most of our predictions are confirmed. Significant norms

here include 7-35 and 6-32 which between them, account for the majority of tunes

(66%) , with a small number for the most common pentatonic scale, 5-35 (9%). The

predicted 8-note scale 8-22 did not occur.

Tune no. 44 has key signature of G major. The note B is absent, and hence it is

basically a hexatonic scale, but it carries both variants of C (C and #C), yielding a

NIE prime form of 7-29.

Prime form I-6-33 corresponds to tunes nos. 23, 29, 34, 38 and 45. No. 23 has

key signature of G major, but with the note #F absent, but with #C appearing in it

instead of C. Nos. 29, 34, 38 and 44 have key signature of G major, with note B

omitted. Interestingly, in no. 34 the note B does occur in its initial anacrusis, but it is

absent from the tune proper and from the turn. I-6-33 corresponds to the normal

diatonic major scale with the third of the scale omitted.

 A comparison with the output from O'Neill’s, in table 7.2, shows very interesting

variations in the occurrences of scales. The greater diversity of cases with low

frequencies is due, to a large extent, to misplaced accidentals in tunes which are not

written out correctly, seemingly because of the difficulty that O'Neill's transcriber had

in dealing with key signatures other than D and G major. A detailed study of the

O'Neill sources would be required, in order to iron out many of these problems. Note

that the percentage frequencies have been rounded to the nearest whole number,

7: Applications - Investigatory Analyses.

 134

resulting in showing occurrences of 1 out of 365 as having a frequency of 0%. One

interesting fact emerges about the percentage of heptatonic tunes based on the

diatonic major scale is that it differs significantly between the two collections. This

can be seen from NIE prime form 7-35 which occurs in 33% of tunes in Breathnach's

compared with a 58% occurrence in O'Neill's. Clearly further investigation is called

for here.

Distribution of scales for file(s) =d:\mdb\tdmoi\djig.dir

Prime Form Name Frequency

{0 1 2 4 5 7 9 10 } 8-26 2 (1%)

{0 1 2 3 5 6 7 8 10 } 9-9 1 (0%)

{0 1 2 3 4 5 7 8 10 } 9-7 2 (1%)

{0 1 2 3 5 7 8 10 } 8-23 14 (4%)

{0 1 2 3 5 6 8 10 } 8-22 3 (1%)

{0 1 3 5 6 8 10 } 7-35 213 (58%)

{0 2 4 5 7 8 9 } I-7-27 2 (1%)

{0 1 2 4 5 6 7 9 } 8-14 1 (0%)

{0 2 4 5 6 7 9 } I-7-23 1 (0%)

{0 1 2 4 6 7 9 } 7-29 1 (0%)

{0 2 4 6 7 9 } I-6-33 6 (2%)

{0 1 2 4 5 7 9 } 7-27 1 (0%)

{0 2 4 5 7 9 } 6-32 84 (23%)

{0 2 3 5 7 9 } 6-33 1 (0%)

{0 1 2 4 7 9 } 6-Z47 1 (0%)

{0 2 4 7 9 } 5-35 8 (2%)

{0 1 3 5 7 8 } 6-Z26 1 (0%)

{0 1 3 5 6 8 } 6-Z25 18 (5%)

{0 1 3 5 8 } 5-27 2 (1%)

{0 2 4 5 7 } I-5-23 3 (1%)

Table 7.2 Distribution of scales for TDMOI.

Prime Form Notation Extensions.

In order to allow for a uniform printing of pitch class sets in later examples, the

following names are used for sets of one or two notes, which Forte does not list.

Set Name

{ 0 } 1

{ 0, 1 } 2-1

{ 0, 2 } 2-2

{ 0, 3 } 2-3

{ 0, 4 } 2-4

{ 0, 5 } 2-5

{ 0, 6 } 2-6

Table 7.3 Extensions to list of prime form names.

7.2 The Initial Anacrusis in Double Jigs.

7: Applications - Investigatory Analyses.

 135

In the next analytic example the process of extracting and analysing the structure

of small melodic features is demonstrated. Such melodic features that we might want

to study include the melodic structure at cadence points, or the occurrence of certain

common melodic formulas. In this example the subject of attention will be the initial

notes of tunes.

In many jigs, the initial stressed note may be preceded by one or more notes that

serve a number of functions. As these are the first notes of the tune, they provide

initial cognitive clues to the listener about the type of music. Apart from possible

practical uses for musician-dancer interaction, they have a number of significances of

a musical nature. In relation to pitch, they narrow down the possibilities of the scale

of the piece. Also, taken in conjunction with the first accented note of the tune, they

give the early clue about its mode. They set the initial pace of the tune, by

establishing possibilities for a tactus. Also, in relation to the overall phrasing of a

tune, they play an important part. Tunes which start with an anacrusis, normally

perpetuate a phrasing of exactly the 8-bars in length through all of subsequent parts,

with the turn of the piece having a similar anacrusis, and likewise at the start of any

additional part. Hence if we wish to study the development of a listener's sense of

modal centre, or of a listener's sense of tactus, or of a listener's sense of phrasing, a

study of the anacrusis part of the first 8-bars, the tune part, of a tune is important. At

the outset a number of questions may be posed. What sequences of pitches are

allowable in a valid anacrusis? Which are the most common sequences? What time

values are associated with each of these notes? What scales might be implied by

these?

Answers to some of the above questions can be got by means of an algorithm.

The use of the PitchTuple class and the Store class greatly simplifies this task. The

code is given in Fig.7.2.

7: Applications - Investigatory Analyses.

 136

 String str;

 int countInitials[MAXNOTES] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

 // pcst is an array of class Store<PitchClasses> for storing

 // prime form sets of initial components. Each array element here

 // stores prime forms of different cardinalities

 Store<PitchClasses> pcst[MAXNOTES];

 // tst is an array of class Store<PitchTuple> for storing

 // tumple of initial components.

 // Each array element here stores tuples of different sizes

 Store<PitchTuple> tst[MAXNOTES];

 // Specilize the elements to different pitch class and tuple sizes

 for (int count = 0; count <MAXNOTES; count++)

 {

 pcst[count].init(100, count+1);

 tst[count].init(100, count+1);

 }

 int countScores = 0;

 while (getNextScoreNames(origFilename, str))

 {

 Score s(str);

 if (! s.isNull())

 {

 ScoreIterator si(s);

 countScores++;

 int count = 0;

 PitchClasses pcs;

 int countNotes = -1;

 int pitchStore[MAXNOTES];

 while (si.getBarNo() == 0)

 {

 if (si.getTag()== NOTE)

 {

 pcs.pitchClassInc(si);

 count++;

 pitchStore[++countNotes] = si.getPitch12();

 }

 si.step();

 }

 // next step to next note and add to our stores

 while (si.getTag() != NOTE) si.step();

 pcs.pitchClassInc(si);

 pitchStore[++countNotes] = si.getPitch12();

 PitchTuple tpl(countNotes+1);

 for (int cnt = 0; cnt <=countNotes; cnt++)

 tpl.put(pitchStore[cnt], cnt);

 tst[countNotes].put(tpl);

 countInitials[count]++;

 pcs.NIEPrimeForm();

 pcst[count].put(pcs);

 }

 }

Fig.7.2 Program to extract initial anacrusis details.

7: Applications - Investigatory Analyses.

 137

Analysis of Initial Notes

File: =d:\mdb\crnh1\djig.dir

54 scores processed

NIEPrimes/Tuples Frequency

===

Nr. of Notes:1 14 25%

NIEPF:{0 } 1 14 25%

Tuple:{0} 14 25%

===

Nr. of Notes:2 18 33%

NIEPF:{0 5 } 2-5 7 12%

NIEPF:{0 4 } 2-4 1 1%

NIEPF:{0 3 } 2-3 1 1%

NIEPF:{0 2 } 2-2 7 12%

NIEPF:{0 } 1 2 3%

Tuple:{0,5} 3 5%

Tuple:{0,2} 3 5%

Tuple:{0,0} 2 3%

Tuple:{0,-2} 4 7%

Tuple:{0,-3} 1 1%

Tuple:{0,-4} 1 1%

Tuple:{0,-5} 1 1%

Tuple:{0,-7} 3 5%

===

Nr. of Notes:3 21 38%

NIEPF:{0 4 5 } I-3-4 1 1%

NIEPF:{0 2 5 } 3-7 4 7%

NIEPF:{0 2 4 } 3-6 6 11%

NIEPF:{0 2 3 } I-3-2 2 3%

NIEPF:{0 1 3 } 3-2 7 12%

NIEPF:{0 3 } 2-3 1 1%

Tuple:{0,4,5} 1 1%

Tuple:{0,2,4} 3 5%

Tuple:{0,2,3} 1 1%

Tuple:{0,-1,-3} 1 1%

Tuple:{0,-2,-3} 7 12%

Tuple:{0,-2,-4} 3 5%

Tuple:{0,-3,0} 1 1%

Tuple:{0,-3,-5} 4 7%

===

Nr. of Notes:4 1 1%

NIEPF:{0 2 5 7 } 4-23 1 1%

Tuple:{0,2,5,7} 1 1%

===

Table 7.4 Initial anacrusis details for CRNH1.

In the panels in the above, which are delimited by a line of '='s, an analysis is

given for each case of one note, that is of the first stressed note only or, in other words

the case of no anacrusis; two notes are given for the case of one note before the first

stressed note; three notes are given for the case of two notes before the first stressed

7: Applications - Investigatory Analyses.

 138

note, etc. Each panel is headed by its absolute and relative frequency of occurrence.

Here we see that 25% of tunes in CRNH1 have no anacrusis. 33% and 38% of tunes

have respectively, one and two notes before the first stressed note. No case is found

in this collection with more than three notes before the first stressed note, and only a

single case is found with exactly three notes preceding the initial stress. If we look at

the panel which shows the two note case, that is one note before the first stressed

note, we see that tuple { 0, -2 }, representing a falling major second is the most

commonly occurring interval. There are only eight ways in this collection of

providing an initial single note lead in. There are more cases of falling first intervals

than rising ones, and surprisingly, a rising minor second is not present in any tune.

Also, in the case of a single note anacrusis, the only falling intervals are perfect fifths,

perfect fourths, major and minor thirds and major seconds. When run on the much

larger O'Neill collection, we get the results shown in table A3.2 in appendix 3.

In both collections approximately 50% of tunes have either no anacrusis or a

single note one. There is a significant difference in the percentage of tunes that have

no anacrusis between CRNH1(25%) and TDMOI(16%). Most of the patterns that

appear in CRNH1 also appear in TDMOI.

It is likely that an interesting relationship can be found between the structure of

the anacrusis and the scale of a piece. Note that if the scale in question is gapped,

then the concept of a ‘consecutive note’ involves intervallic possibilities of minor and

major thirds as well as minor and major seconds and hence further analysis is required

to identify patterns that move consecutively. The inclusion of non inversionally

equivalent prime forms in the printout facilitates further study of the initial tonal

relationships.

7.3 Crude Melodic Similarity or Difference Algorithms.

One of the important areas that computers have been used is in extensively

searching for instances of melodic borrowings.110 In folk music, two written

110 In a recent article by E. Selfridge-Field: "Music Analysis by Computer" in Goffredo Haus Music

Processing (Oxford 1993), p.3, a review of the activities in music analysis is classified into six

categories, she says

" The activities to be discussed fall into five areas of concentration - (1) linguistic analogy; (2)

attribute description using statistical methods, (3) repertory-specific studies; (4) theory-specific

implementations; and (5) style-specific simulations. A sixth and very important area of activity -

similarity studies - intersects the other but must be excluded here because its inclusion requires

more detailed consideration than space permits and because in studies to which it is central the

data on which it depends often consists of very small samples from very large numbers of works.

This sets it quite apart from studies that deal in a more comprehensive way with smaller groups or

single features of works."

7: Applications - Investigatory Analyses.

 139

transcriptions of a tune are unlikely to be identical. Hence a direct comparison of the

notes of two tunes transcribed from two performances of the same piece will

inevitably reveal some differences. Algorithms which deal with the problem of

identifying exact and near versions of two melodic segments are spoken of as melodic

difference or melodic similarity algorithms. The first of the following examples

illustrates a similarity measure based on contour information. This measure brings

identical tunes together, irrespective of the key in which they were notated, but it has

a number of shortcomings. All algorithms that deal with interval information only,

share an inability in handling similar rather than identical tunes. Additionally they

ignore perceptually significant information of a durational and metrical kind. Most

of the following sections present an alternate approach which was first proposed in

1972.111 All of the difference measures discussed assume that the issue of

segmentation has already been tackled. In the case of dance music, the bar is taken as

the smallest unit of segmentation. This is an approximate, but reasonably effective

solution to the segmentation problem for the current corpus. All of the difference

algorithms totally ignore any structure within the tune segment under comparison.

They rely on general principles of music perception, but are not deeply based on

cognitive theory. For this reason they are referred to as 'crude' difference algorithms.

They are of use as an initial mechanism of searching for melodic variants. This

approach differs significantly from the more sophisticated one of Mongeau and

Sankoff112 who develop a difference measure in terms of consolidation and

fragmentation. They claim that their method will detect melodic differences in line

despite gross differences in key, mode and tempo. The methods presented here have

the advantage over Mongeau's and Sankoff's in being computationally more efficient

as they do not involve combinatorially extensive processing.

Some of the early history of studies are given in op.cit. Stephen Dowland Page, pp.35 - 35.

"One of the earliest approaches was to produce interval vectors or sequences for each tune and to

arrange these vectors in an ordered sequence. The use of interval vectors get over the problems

associated with trying to compare two tunes in different keys. The ordered sequence succeeds in

bringing together identical tunes. However it falls down badly in bringing together variants,

except in cases where the variants occur at the end of each vector. This scheme was use by

Benjamin Suchoff "Serbo-Croatian Folk Songs", see op.cit. Harry Lincoln, pp. 193-206. Some of

the basic limitations inherent in the system were overcome in the Suchoff study by the

development of a program to extract sub sequences from each sequence of intervals. One

additional problem associated with the representation of a tune as a sequence of intervals arises

from the absence of temporal and metric information."

111 Donncha O Maidin "Computer Analysis of Irish and Scottish Jigs" Baroni and Caglione, op.cit.,

1984, pp.329-336

112 Marcel Mongeau and David Sankoff “Comparison of Musical Sequences” in Computers and the

Humanities volume 24(1990), pp.161-175.

7: Applications - Investigatory Analyses.

 140

All of the comparison algorithms given below treat the segments outside of their

original contexts. They evaluate melodic difference numerically. This number can be

thought of as a measure of the distance between two melodic segments. Such

distance measures, when used for comparing two segments of duration r, have a

number of properties. Theses include

 difference(si1, si2, r) >= 0,

 difference(si1, si1, r) == 0,

 difference(si1, si2) == difference(si2, si1).

 where difference is a function which returns the numerical distance between two

melodic segments of duration r, starting at positions si1 and si2, respectively.

7.3.1 Intervallic Based Difference Measures.

Intervallic comparisons were used in the earliest difference studies in

computational musicology. Benjamin Suchoff113 used an interval sequence approach

to compare segments from Bartok's Serbo-Croatian folk songs. Whereas reducing

tunes to intervals overcomes the problem of bringing together identical segments from

different keys, a serious problem arises in identifying variants. Suchoff's solution was

to compare substrings of the interval sequence for each tune. One problem of this

approach lies in the potentially combinatorially explosive possibilities for forming

different strings for comparison, especially where the melodic segments under

comparison are long. Richard E. Overill114 deals with this computational complexity

in the comparison of interval sequences by applying techniques of Approximate

String Matching (ASM) to the problem.

Interval comparison is a trivial program to implement in scoreView. The

following section illustrates a variation which takes a very simple approach to the

comparison of melodic segments based on contour information.

7.3.2 Melodic Difference Algorithm with Contour Information.

113 Benjamin Suchoff "Computer Oriented Comparative Musicology" in Harry Lincoln, op.cit. 1970,

pp.192-205.

114 Richard E. Overill "On the Combinatorial Complexity of Fuzzy Pattern Matching in Music

Analysis" Computers and the Humanities volume 27 (1993), pp.105-110.

7: Applications - Investigatory Analyses.

 141

Contour information can be viewed as a reduction of intervallic information to

three states. These are rising, falling and stationary. These contour states may in turn

be combined into 5 possible different states which represent the juxtopositioning of

contour information between two melodic segments. These states are

 w1 = similar motion, i.e. both rising or both falling

 w2 = contrary motion, i.e. one rising and one falling

 w3 = one stationary, one moving

 w4= both stationary

 w5= undefined

If we assign weights to these states, we could select the weight 2 for contrary

motion between corresponding contours(w2), 1 as a weight if one melody is

stationary and the other moving(w3), and zero for all other weights(w1, w4 and w5).

Next we must define which notes from each segment participate in these

comparisons. We do this by placing the melodic segments together in time sequence.

The time axis is divided into time-windows where each window represents the

longest time for which both melodic segments have a uniform activity. This is

illustrated over in Fig.7.3(c). The sections of the green line represent window

durations which are used as weights.

7: Applications - Investigatory Analyses.

Fig.7.3(a) Start of 'Shandon Bells' from TDMOI.

Fig.7.3(b) Start of ‘The Yellow Flail’ from TDMOI.

Fig.7.3(c) Segments of 7.3(a) and 7.3(b) are juxtaposed in time window order.

The dotted vertical lines segment the green line into divisions, each one of which represents a window.

7: Applications - Investigatory Analyses.

This approach will be used in all of the comparison algorithms in this section. It

works well for the music under study, but it may need modifications in analysis of

genres where related melodic segments have certain kinds of rhythmical or durational

variation.

Some of the one-bar segments shown in Fig.7.4 are used for illustrating the

operation of various difference algorithms.

Fig.7.4 Sample melodic segments for illustrating difference algorithms.

The result of running the contour based difference algorithm is shown in Table

7.5.

 a b c d

b 7

c 0 7

d 2 7 2

e 6 3 6 6

Table 7.5 Differences calculated from contour information only.

This simple algorithm works well in some cases above. It detects the relationship

between a and c, but gives rather unsatisfactory results in comparing a with d and c

with d, both of which yield the second smallest score of 2.

The following algorithms use pitch instead of interval of contour information.

One apparent disadvantage is that these algorithms fail in identifying transpositionally

equivalent segments. Another approach to the transposition problem is to convert the

7: Applications - Investigatory Analyses.

 144

representation of pitches to a common tonic. Is such schemes115, identifying the tonic

will have to be done manually. This approach is likely to run into difficulties where

the tonic is not uniquely identifiable, and in cases where it is desirable to make

comparisons between segments at different diatonic transpositions. We will see, in

7.3.6, there is a technique for overcoming this.

7.3.3 Simple Window Weighted Melodic Difference Algorithm.

An algorithm that measures the difference between note pitches can be viewed

roughly as calculating the sum of the lengths of the red lines in the Fig 7.3. This

algorithm has is origin in the idea of representing musical pitch geometrically.116

Intuitively is seems wrong that difference measures should be influenced equally

by comparisons between pairs of long notes as it is for comparisons between pairs of

short notes. However, if the length of each individual pitch difference is weighted

according to the width of the window to which it belongs, we make a provision for

this inequality. This ensures that a melodic segment that carries a series of short

notes, will not contribute unduly to the difference estimate.

The calculations involved are expressed, as follows -

Suppose we have n windows, which we label with integers from 1 to n.

Let pik be the pitch expressed in chromatic pitch numbers for window k of tune i.

Then,

 n

Difference = |p1k - p2k | wk

 k=1

where wk is the weight attaching to this difference and in this case the weights are

equal to the widths of the corresponding windows.

The running of this algorithm on various combinations of the following melodic

segments yields117 results shown in Table 7.6.

115 Martin Dillon and Michael Hunter "Automated Identification of Melodic Variants in Folk Music"

Computers and the Humanities, volume 16 (1982), pp.107-117.

116 Carol L. Krumhansl Cognitive Foundations of Musical Pitch (Oxford 1990), pp.112-119.

117 The full matrix is symmetric one about a diagonal of zeroes.

7: Applications - Investigatory Analyses.

 145

 a b c d

b 538

c 88 450

d 438 275 350

e 575 88 487 213

Table 7.6 Window-weighted melodic difference results.

This algorithm, in common with all simple algorithms, gives a difference measure

of 0 if both melodic segments are identical in pitches and in durations. When such an

algorithm is used for identifying melodic segments that are similar, rather than

identical we may have some reservations. It fails to take account of important

cognitive factors such as metrical stress, which, as we saw was so important in the

case of set accented tones in the last chapter. We see that segments a and c are close

with a difference of 88. However a less satisfactory aspect is that segments b and e

are evaluated as being equally close.

 The next section shows how a further improvement can be made by incorporating

information for metrical stress.

7.3.4 Melodic Difference Algorithm with Weighted Stresses.

The incorporation of metrical stress into the difference measure is achieved by

assigning differential weights to notes that start at different places in a bar. These can

be shown as a weight map which, in the case of a double jig, could be as in Table 7.7.

Distance in

Bar

Weight

0 4

1/8 2

2/8 2

3/8 3

4/8 2

5/8 2

otherwise 1

Table 7.7 Stress weights for 6/8 time.

7: Applications - Investigatory Analyses.

 146

 The corresponding formula is

 n

 Difference = |p1k - p2k | wkwsk

 k=1

 Where wsk is the appropriate weight corresponding the start of window k.

The difference matrix produced when this algorithm is run using the set of

weights in Table 7.7 is given in Table 7.8.

 a b c d

b 446

c 83 363

d 342 221 246

e 475 54 370 208

Table 7.8 Window and stress weighted melodic difference results.

Note (1) in this case, we have an even greater problem in that a and c are

evaluated as being more distant that b and e. This is partially because we fail to take

account of transpositions,

 (2) by choosing some of the weights to be zero we can use the algorithm to

select only notes at particular metrical positions and to exclude all others. For

example if only weights at positions 0/6 and 4/6 have non zero values, the algorithms

processes the accented tones of chapter 6.

7.3.5 Melodic Difference Algorithms Combined.

In the last section the different weights were combined by multiplying them

together.

 n

 Difference = |p1k - p2k | wk wsk

 k = 1

Where

 wk is the width of window k.

 wsk is the weight derived from metrical stress for window k.

7: Applications - Investigatory Analyses.

 147

The above formula can be expressed as

 n

 Difference = |p1k - p2k | Wk, where Wk = wk.wsk

 k = 1

7.3.6 Key/Transposition Independent Algorithm.

The question of creating a key independent version of the algorithm might be

derived from a process of transposing one of the segments so as to minimise the

difference.

From considering various transposed versions of one of these tune segments,

such as where the second tune segment has been transposed up m semitones, we get

 n

 Difference = |p1k - p2k -m | Wk

 k = 1

One possible way in which we can visualise a key-independent comparison being

made is as a process of making multiple estimates of the distance by means of one of

the previous algorithms, where we allow one of the tune segments to be transposed to

all possible keys in the vicinity of the other segment. A difference is calculated for

each key. We can illustrate this as follows, by considering a comparison to the

following two related bar segments from no.61, "The Humours of Whiskey" from

TDMOI.

Comparison segment 1.

Comparison segment 2.

Fig.7.5 Two related tune segments from No. 61 in TDMOI for comparison.

7: Applications - Investigatory Analyses.

 148

 Difference

Segment 2 transposed down a minor third. 138

Segment 2 transposed down a major second. 63

Segment 2 transposed down a minor second. 63

Segment 2 at pitch. 88

Segment 2 transposed up a minor second. 163

Segment 2 transposed up a major second. 238

Segment 2 transposed up a minor third. 313.

Fig.7.6 Calculation of a transformationally independent difference.

The example illustrates the evaluation of difference between segment 1 and

various transpositions of segment 2.

7: Applications - Investigatory Analyses.

 149

We can see that the difference calculation for the original untransposed method

gives 88, but that if the second segment is transposed down either a major or a minor

second, a smaller value of 63 results. The process of finding this difference is

equivalent to finding the value of m which minimises

 n

 Difference = |p1k - p2k -m | Wk

 k = 1

A well known theorem in statistics118 enables us to find the required value of m

which minimises the sum, without the repeated calculations involved above. m is the

median value of the sequence of pitch differences, (p1k - p2k), with weight Wk

associated with each difference. In statistics applications Wk is normally interpreted

as a frequency. The use of this theorem gives us a way of arriving at the answer

efficiently.

The following difference matrix was produced by a transposition independent

difference algorithm using windows and stress weighting -

 a b c d

b 217

c 42 200

d 133 154 133

e 188 63 170 92

Table 7.9 Differences weighted by windows, stresses with transpositions.

If we use stress - note duration weights, where the duration of any note is taken as

being at its onset, we get

 a b c d

b 433

c 82 400

d 317 292 342

e 342 108 350 167

Table 7.10 Differences weighted by durations, stresses with transpositions.

118 A, C. Aitken, Statistical Mathematics, volume 1 (Edinburgh: Oliver and Boyd 1939), p.32.

7: Applications - Investigatory Analyses.

 150

We can see that the use of transpositionally independent comparisons have

resulted in the a-c relationship being closer than the b-e one.

A program that incorporates all of these algorithms is given in Fig.7.7(c). The

algorithm works for either a contour comparison or for a pitch difference

comparison. The algorithm is written as a function which takes three parameters,

two score iterators, representing the start of the two monophonic scores segments

under comparison, and a rational length argument which specifies the time span over

which the comparison is to be made. The algorithm returns a value, which gives an

estimate of the melodic distance between the two segments. The work associated

with windowing, such as the calculation of the window length, and the automatic

stepping of the score iterators to the start of the windows, is achieved by the

traverse function which is documented in Appendix 1. Different factors may be

taken into account by setting switches, one of which selects contour processing.

Alternately, various combinations of (1) note durations, (2) window durations, (3)

stresses and (4) transposition processing may be selected.

float Stresses::getStressWeight(ScoreIterator & si)

{

 long tsn = si.getTimeSigNumerator();

 long tsd = si.getTimeSigDenominator();

 if ((int)stressWeights[0] != tsn)makeStressVector(tsn);

 float returnWeight = 1.0;

 for (int count = 0; count < tsn; count++)

 if (Rat(count, tsd) == si.barDist())

 returnWeight = stressWeights[count+1]+1.0;

 return returnWeight / stressWeights[0];

}

Fig.7.7(a) Calculation of stress weights.

7: Applications - Investigatory Analyses.

 151

float slopeWeight(int oldPitch1, int newPitch1, int oldPitch2,

 int newPitch2)

{

 static float slopeWeight[] =

 { 0.0, // same direction

 2.0, // contrary motion

 1.0, // one stationary, one moving

 0.0, // both stationary

 0.0 }; // undefined

 int slopeIndex;

 if (oldPitch1 == 0 || oldPitch2 == 0) slopeIndex = 4; // undefined

 else if ((oldPitch1 > newPitch1 && oldPitch2 > newPitch2) ||

 (oldPitch1 < newPitch1 && oldPitch2 < newPitch2))

 slopeIndex = 0; // similar motion

 else if ((oldPitch1 > newPitch1 && oldPitch2 < newPitch2) ||

 (oldPitch1 < newPitch1 && oldPitch2 > newPitch2))

 slopeIndex = 1; // contrary motion

 else if (oldPitch1 == newPitch1 && oldPitch2 == newPitch2)

 slopeIndex = 3; // both stationary

 else slopeIndex = 2; // one stationary, one moving

 return slopeWeight[slopeIndex];

}

Fig.7.7(b) Calculation of slope weights.

7: Applications - Investigatory Analyses.

 152

float difference (ScoreIterator &si1, ScoreIterator &si2, Rat ln)

{

 float diffresult = 0.0;

 Rat toProcess = ln;

 int more = TRUE;

 Rat window = Rat(0,1);

 const int MAXNOTES = 1000;

 int noteCount = 0;

 transposeDist = 0;

 // for slopes comparison

 if (isSlopesSet())

 {

 int oldPitch1 = 0, oldPitch2 = 0;

 float x = 0.0;

 while (more)

 {

 traverse(si1, si2, window);

 if (isDiatonicSet())

 {

 x += slopeWeight(oldPitch1, si1.getPitch7(), oldPitch2,

 si2.getPitch7());

 oldPitch1 = si1.getPitch7();

 oldPitch2 = si2.getPitch7();

 }

 else

 {

 x += slopeWeight(oldPitch1, si1.getPitch12(), oldPitch2,

 si2.getPitch12());

 oldPitch1 = si1.getPitch12();

 oldPitch2 = si2.getPitch12();

 }

 toProcess = toProcess - window;

 if (toProcess <= Rat(0,1)) more = FALSE;

 if (si1.isLast() || si2.isLast()) more = FALSE;

 }

 return x/float(ln);

 }

 // end of slopes comparison

 // here we need to store pitch and weight information

 int * noteAr;

 float * weightAr;

 noteAr = new int[MAXNOTES];

 weightAr = new float[MAXNOTES];

 for (int i = 0; i < MAXNOTES; i++) weightAr[i] = 1.0;

 Stresses stress(si1.getTimeSigNumerator());

 while (more)

 {

 traverse(si1, si2, window);

 if (window > toProcess)

 window = toProcess; // clip window if it exceeds range

 if (si1.getTag() == NOTE && si2.getTag() == NOTE)

 {

 noteAr[noteCount] = si1.getPitch12() - si2.getPitch12();

7: Applications - Investigatory Analyses.

 153

// calculate and add in stress weights

 if (isDurationsSet())

 {

 weightAr[noteCount] = 0;

 if (si1.getRDuration() == si1.getRemainder())

 weightAr[noteCount] += double(si1.getRDuration());

 if (si2.getRDuration() == si2.getRemainder())

 weightAr[noteCount] += double(si2.getRDuration());

 }

// window length weighting

 if (isWindowsSet())

 weightAr[noteCount] *=

 float(window.numer())/float(window.denom());

// metrical stress weighting

 if (isStressesSet()) weightAr[noteCount] *=

 stress.getStressWeight(si1) + stress.getStressWeight(si2);

 noteCount++;

 }

 toProcess = toProcess - window;

 if (toProcess <= Rat(0,1)) more = FALSE;

 if (si1.isLast() || si2.isLast()) more = FALSE;

 }

 // we now get the median of the pitches, if appropriate

 int medianPitch = 0;

 diffresult = 0.0;

 if (isTransposeSet())

 transposeDist = medianPitch = median(noteAr, weightAr, noteCount);

 for (i = 0; i < noteCount; i++)

 {

 diffresult += noteAr[i] > medianPitch ?

 (noteAr[i] - medianPitch)*weightAr[i]:

 (medianPitch - noteAr[i])*weightAr[i];

 }

 delete [] noteAr;

 delete [] weightAr;

 diffresult *= 100.0; // scale up to make more readable

 return diffresult/float(ln);

}

Fig 7.7(c) General difference program.

7: Applications - Investigatory Analyses.

 154

7.3.7 Critical Value.

Before leaving the design of difference algorithms, a few points must be made.

First there is a matter of arriving at a critical value in the algorithms so that they

produce the best results possible. Let us assume here that we want to calculate a

yes/no answer to the question, "are two melodic segments related or not." In the

rather crude way in which these algorithms work, we have to find some number,

called a critical value for the dividing line between 'similarity' and 'dissimilarity'.

Critical values should divide unrelated segments which, ideally, should have a

calculated difference greater than the critical value. Similar segments give a

calculated difference less than or equal to the critical value. How effective such an

artificial dividing line might be depends on the nature of the music under study and on

the effectiveness of the difference algorithm. Procedures for estimating this dividing

line or critical value can be manual or automatic. Manual estimation involves

examining a sample corpus and classifying pairs of segments as being either similar

or dissimilar. This is followed by running the difference algorithm and then by

manually comparing the calculated difference values with our expectations (the

'difference' function is implemented in this study in such a way that by setting a

software switch we can get the algorithm to output the values it calculates to a file).

Assuming that we are dealing with simple melodic relations, we should be able to

identify visually, a critical value that will work in most, if not all cases, especially if

our goal of 'melodic similarity' is limited to exact or very close variants of the melodic

segment. In some applications, there appears to be a clear cut numerical difference in

segments that are similar from those that are not. In the use of the diff1 function in

the PartsExpert class, for example, it was possible to pick the value of 300 which

worked well for double jigs. The distribution of the values produced by diff1 in this

case was strongly bi-modal and it was found that 300 divided it in two, in a

satisfactory way.

7.3.8 Tuning of Melodic Difference Algorithms.

For the more general algorithms various weights are used, such as those involved

in stress weights, for which values also have to be estimated. To do this we run our

algorithm on a sample set of tunes or tune segments and examine the results

produced. We then adjust weights by 'training' the difference algorithms on sample

material. In some cases, from inspecting the results, we see instances where the

algorithm produced the wrong result. Next we see if by adjusting some of the

weights, we can eliminate this problem. We may find, for example, that by giving a

higher relative weighting to metrical stresses, we may be able to solve a particular

problem of mismatching. We follow this with re-running the algorithm, and

7: Applications - Investigatory Analyses.

 155

readjusting the critical value until we reach the best result. The process here is of a

hit-and-miss nature. Often the adjustments which are made to solve one problem,

result in introducing new ones. There is no guarantee, that this process will

necessarily converge and result in a better algorithm.

There is much scope for further work. The use of mathematical optimising

techniques is likely to prove fruitful here.

7.3.9 Segmentation for Melodic Difference Algorithms.

The current study uses an extremely primitive segmentation strategy which works

reasonably well because of the regularities of the dance music.

7.3.10 Further Development of Melodic Difference Algorithms.

Difference algorithms in themselves are rather artificial constructs. In the final

difference algorithm presented above, the various weights were combined in a

multiplicative way and the results were added together. Further work is required to

consider alternate ways of combining these. We could use addition or root-mean-

square values, for example. Alternate approaches are possible in dealing with pitch,

where it might be appropriate to use diatonic pitch numbers rather than chromatic

pitch numbers in the calculations. Some approaches to these problems are outlined in

8.2.2.

7.4 Application of a Difference Algorithm to the Analysis of Form.

Using a difference algorithm, we can give a bar-by-bar analysis of a piece. This is

done by labelling the first bar 'a', and then comparing bar 1 to every other bar in the

piece. If any bar is sufficiently similar, we also label it 'a'.

Next we leave bar 1, and move to the next unlabelled bar, which we label as 'b'.

We then compare this bar with all subsequent unlabelled bars, and label as 'b' all of

those that are sufficiently close to the 'b' comparison bar.

We continue in this way, labelling the first still unlabelled bar as 'c' and complete

similar processes to above. We continue for 'd', 'e', etc. until we have no unlabelled

bar. An algorithm to do this analysis is given in Fig.7.8. This is followed by a listing

of the calculated forms for CRNH1 in Table 7.11.

7: Applications - Investigatory Analyses.

 156

void form(String & str, Score &s, Rat In,

 float(*difference)(ScoreIterator &si1, ScoreIterator &si2, Rat ln),

 float criticalValue, int lid)

//form calculates the form of s, using the difference algorithm

// difference for windows of length In

{

 ScoreIterator si1(s, lid), si2(s, lid);

 str = String();

 si1.locate();

 si2 = si1;

 int more1 = TRUE;

 int letterCount = -1;

 int countFirst = 0, countAhead = 0;

 for (int count = 0 ; count < MAXCSLEN; count++) str[count] = 0;

 while (more1)

 {

 countAhead = countFirst + 1;

 if (!si1.locate(BAR, countFirst+1)) more1 = FALSE; // end up

 else

 {

 // give label for next section

 if (str[countFirst] == 0)

 {

 str[countFirst] = letterCount > 25 ?

 'A' + ++letterCount:

 'a' + ++letterCount;

 int more2 = TRUE;

 // search ahead and label all entries that match

 while (more1 && more2)

 {

 if (! si2.locate(BAR, countAhead+1)) more2 = FALSE;

 else if (!si1.locate(BAR, countFirst+1)) more1 = FALSE;

 if (si2.isLast()) more2 = FALSE;

 if (si1.isLast()) more1 = FALSE;

 if (more1 && more2)

 {

 if (str[countAhead] == 0)

 {

 float x = difference(si1, si2, In);

 if (x < criticalValue) str[countAhead] = str[countFirst];

 }

 countAhead++;

 }

 else if (!more1 && !more2) str[countFirst] = 0;

 // unset prior allocation

 }

 }

 }

 if (si1.isLast()) more1 = FALSE;

 countFirst++;

 }

 // put in the last part, if not already done

 if (str[countFirst] == 0) str[countFirst] = 'a' + ++letterCount;

}

Fig.7.8 Program of algorithm for the calculation of forms.

7: Applications: Investigatory Analyses.

Calculation of forms for file =\mdb\crnh1\djig.dir

Key transitions processed

Stresses processed

Critical Value = 40

1 Cailleach an Tu/irne abcd aefg hiij hifb klmd klne opqj hifb

2 Ple/ara/ca na Ce/ise abcd abce fgcd fgch ficb fice

3 Carraig an tSoip abcd abce fghd fghi

4 Pingmeacha Rua agus Pra/s aabc adef ghij klmf nonl pqef

5 Gleanta/n na Samhairci/ni/ abcd abce fghb ijjb

6 Tolladh an Leathair abcd aefg abcd aefh fifh fjkl

7 An Fhuiseog ar an Tra/ abcd aefg hfhd hfdd

8 Bruacha Thalamh an E/isc abcd abce fghd fghe fghd abce

9 Cathaoir an Phi/obaire abcd abce fghi jkle

10 Ballai/ Lios Chearbhaill abcd abef cdcg cdef cdhi jkea

11 Port Ui/ Cheallaigh abcd abef ghgi ghjf

12 Port Liadroma abac adef gdgf ghif

13 An Maide Draighin abca abcd abca abce fgca fgce hgca abcd

14 Buachcilli/ Bhaile Mhic Annda/in abcd ebfg hijd hicc

15 An Boc sa gCoill abac ddec fbgh fbec abic abjc

16 Sean-Tiobrad A/rann abac abde fghi djkl

17 Bi/mi/d ag o/l is ag po/gadh na mBan abac adef ghgi gjkf

18 Ard an Bho/thair abcd aefg abcd aefh ijck ijlm

19 I/oc an Reicnea/il abac adec fghc ijec

20 An Buachailli/n Ba/n abcd abce fgcd fgce fgcd abce

21 Port an Bhra/thar abcd efgh ijik iglh

22 Port Shean tSea/in abcd abef abcd abec ghgi ghec

23 Scaip an Puiteach abac adef gcgh gief

24 An Pi/osa Deich bPi/ngne abcd cbce fgfh ijkd

25 Luighseach Nic Cionnaith abcd abef ddgg ddgf

26 Droim Chonga abac abdc efeg edbc

27 An Buachailli/n Bui/ abac adef ghef gijk lalk lmnf opok opnf

28 Na Ge/abha sa bPortach abac adef abac adeg hijk jleg jmjk jmnk opoq oreg stuq sveg

29 An Gaoth Aniar Andeas abcd efgh ijij iklh

30 An Gandal i bPoll na bhFatai/ abac abdc efeg ehdc

31 Banri/on na Luacra abac dbef abac dbeg hiji hieg hiji hief kklm kked

32 Ma/irsea/l na nIoma/naithe abcd aefg abcd aefh gigj klfm nnop nnqr sagt sufh sagt sufg

7: Applications - Investigatory Analyses.

 158

33 An Bo/thar Mo/r go Sligeach abcd abef ghij ghkl mhin okpl

34 Spara/n Airgid na Cailli/ abcd abef abcd abeg hicd jikg hicd jikf

35 Port an Riaga/naigh aabc aade fgbh fgde

36 An Ceolto/ir Fa/nach abac abde fgfh fgij klmn klfe

37 An Ro/s sa bhFraoch abcd abef ghij gklm ghij gkld

38 Ruaig an Mi/-a/dh abcd efag chch ehig jklm nfig

39 Airgead Re/alach abcd ebcf ghgi ghjf

40 An Pi/opa ar an mBaic abcd eefg bbhi bbij bbhi keld

41 Cailleach an Airgid abac abde fbfg fhie

42 Gearrchaile Bhaile Ui/ bhFiacha/in abcd abef ghgi jbef

43 Siamsa Mhuilte Faranna/in abbc abde fggg fghe

44 Pa/draic Mac Giollarna/th abcc aded abcc aded fghi fhed

45 Port Ti/neatha abcd abce fgcd fgce

46 Gearo/id de Barra abcd efgh abij efgk ilmn iogp ilmn iqgh

47 Fa/inne O/ir Ort abcd ebcf eghd egij klmn klmo pqrs pqrf

48 Rogha Liadroma abac abde bfcg bhig

49 Port Ui/ Fhaola/in abac adec fghi fgjk

50 Port Ui/ Mhuirgheasa abcd abef ghgi ghjk ghgl mnok

51 Port Shligigh abcd abef ghcd ghef

52 An Cru/ Capaill abcd ebfg hijg akfg

53 An La/ i ndiaidh an Aonaigh abcd efgb hbhd ifgj

54 An Seanchai/ Muimhneach abac abde fgac fgde

Table 7.11 Forms in CRNH1.

7: Applications: Investigatory Analyses.

7.5 Hierarchical Possibilities of Building more Complex Software.

What we have done is to take relatively simple tasks and to build hierarchically so

that we achieve more complex algorithms by assembling aggregates from simpler

components. All of this is in turn built upon the score abstraction. The form function

itself is built using the difference algorithm, which in turn uses the traverse algorithm.

None of these individual algorithms are complex. However, by hierarchically

decomposing, or by synthesising, we can assemble increasingly complex problems from

more simple ones. In the next example, we will now go one step further and use the

‘form’ function together with the Store class for summarising information about the form

of tunes in both collections.

7.6 Frequency Distributions of Forms.

The algorithm in Fig.7.9 uses the form calculating algorithm, but instead of printing

out individual forms, it calculates the frequency distribution of the form in the tune part

of a double jig.

Store<String> store(100);

while (getNextScoreNames(argv[argc-1], fname))

{

 Score s1(fname);

 String str;

 form(str, s1, s1.getTimeSig(), difference, criticalValue);

 str.sub(0,7);

 store.put(str);

}

Fig.7.9 Program for forms frequency distribution.

7: Applications - Investigatory Analyses

 160

Calculation of forms for file =d:\mdb\crnh1\djig.dir

Key transitions processed

Stresses processed

Critical Value = 40

Form Frequency

abcd efgh 3

abcd efgb 1

abcd efag 1

abcd eefg 1

abcd ebfg 2

abcd ebcf 2

abcd cbce 1

abcd aefg 5

abcd abef 10

abcd abce 7

abcc aded 1

abca abcd 1

abbc abde 1

abac ddec 1

abac dbef 1

abac adef 5

abac adec 2

abac abde 5

abac abdc 2

aabc adef 1

aabc aade 1

Table 7.12 Frequency distribution of form for the tune part of double jigs in

CRNH1.

As can be seen from these examples the most commonly occurring forms in CRNH1

in Table 7.12 are also the most commonly occurring ones in TDMOI. This is shown in

table A3.3 in appendix 3.

7.7 A Compute-Intensive Task.

Suppose we ask the question "How many distinct tunes are there in the collection?".

The task of defining what we mean by a distinct tune needs consideration. How do we

compare two-part tunes with three-part tunes? How do we handle the case where in one

part of the collection, we have a tune that reappears elsewhere but with the tune and the

turn part in reverse order? In this section we will ask a simpler question. We will

develop an algorithm to list all pairs of tunes with one or more similar 8-bar segments in

the corpus. The computer will compare part 1 of tune no.1 with all other 8-bar segments

in the collection (365 tunes with two or more 8-bar segments in each one in the case of

O'Neill's). It will then move onto part 2 of tune no.1 and make a similar comparisons.

We continue in this way until all 8-bar segments of tune no. 1 has been compared with all

7: Applications - Investigatory Analyses

 161

other 8-bar segments of other tunes in the corpus. Likewise, when all comparisons of

segments of tune 1 have been completed, we then process all 8-bar segments of tunes 2,

3, and so on until all 8-bar segments in the corpus have been compared. This is repeated

with the next tune, and so on until every 8-bar segment of each tune is compared with

every other such segment. A program to do this processing is given below in Fig.7.10.

int countOuter = 0;

int countInner = 0;

while(getNextScoreNames(String(argv[argc-2]), fname1,1))

{

 countOuter++;

 Score s1(fname1);

 ScoreIterator si1(s1);

 int firstscore1 = TRUE;

 countInner = 0;

 while (getNextScoreNames(argv[argc-1], fname2))

 {

 countInner++;

 if (!identicalContents || countInner > countOuter)

 {

 Score s2(fname2);

 ScoreIterator si2(s2);

 int firstscore2 = TRUE;

 int count1 = 0;

 int count2 = 0;

 si1.locate();

 si2.locate();

 Rat segLength = s1.getTimeSig()*(Rat(nbars,1));

 int more1 = TRUE;

 while (more1)

 {

 count2 = 0;

 if (!si1.locate(BAR, count1*nbars+1)) more1 = FALSE;

 else

 {

 int more2 = TRUE;

 while (more1 && more2)

 {

 if (! si2.locate(BAR, count2*nbars+1)) more2 = FALSE;

 else if (!si1.locate(BAR, count1*nbars+1)) more1 = FALSE;

 if (si2.isLast()) more2 = FALSE;

 if (si1.isLast()) more1 = FALSE;

 if (more1 && more2)

 {

 float x = difference(si1, si2, segLength);

 countComparisons++;

 if (x < crit)

 {

 if (firstscore1)

 {

 fout << "\n(" << si1.getString(NUMBER) << ")"

7: Applications - Investigatory Analyses

 162

 << si1.getString(TITLE) << " - "

 << si1.getString(ETITL);

 firstscore1 = FALSE;

 }

 if (firstscore2)

 {

 fout << "\n (" << si2.getString(NUMBER) << ")"

 << si2.getString(TITLE) << " - "

 << si2.getString(ETITL);

 firstscore2 = FALSE;

 }

 fout << "\t" << count1+1 << "="

 << count2+1 << " (" << setprecision(1) << x;

 if (isTransposeSet()) fout << ':' << getTransposeDist();

 fout << ") ";

 }

 count2++;

 }

 }

 }

 if (si1.isLast()) more1 = FALSE;

 count1++;

 }

 }

 }

}

Fig.7.10 Program of algorithm for exhaustive search using fixed length similar segments.

When this algorithm is run on a single file of size n, the time taken is O(n2). For

bigger corpora this can be expected to take disproportionately longer to run than for

smaller corpora. For example, if it takes 10 seconds to compare all 8-bar segments in

two tunes, then a corpus of 100 tunes of the same length will be processed in 99x98x10 =

97020 seconds or just over 26 minutes. A corpus of 1000 tunes would take 999x888x10

= 8871120 seconds or over 102 days! A corpus of 419 jig tunes will take 418x417x10 =

or over 20 days. The assumption of 10 seconds processing per tune is roughly what can

be achieved with a 20MHz 386 PC. Fortunately, machines that are faster by over an

order of magnitude are now commonplace, and the processing time for 365 tune of

TDMOI can be reduced to a matter of hours .

7.7.1 Comments.

 This kind of comparison does an enormous amount of computing. The current

applications show which parts of tunes are related, within the limitations of the difference

algorithm and critical value used. When the algorithm is run for the systematically

organised Breathnach collection, it produces little output as, by means of a card index,

Breathnach eliminated duplicates and closely related tunes, see Table 7.13. The

7: Applications - Investigatory Analyses

 163

difference algorithm used here employs metrical stress weights, window weights and the

transposition algorithm with a critical value of 100. The pair of tunes identified as being

related in relation to their first parts is acknowledged as such in the notes on the tunes

given by Breathnach in CRNH1.119 The difference result in this case was 98.6 which was

just inside the critical value of 100. The difference was taken using a transposition of 0

semitones.

Calculation of distances for files =d:\mdb\crnh1\djig.dir and

 =d:\mdb\crnh1\djig1.dir

Key transitions processed

Stresses processed

Window widths processed

(3)Carraig an tSoip -

 (14)Buachcilli/ Bhaile Mhic Annda/in - 1=1 (98.6:0)

54 items processed from file =d:\mdb\crnh1\djig1.dir

54 items processed from file =d:\mdb\crnh1\djig.dir

10578 comparisons made

critical value =100

Table 7.13 Result of exhaustive search of CRNH1.

The situation for O'Neills is far less structured, as shown in table A3.4 of appendix 3.

This is not solely due to O'Neill's lack of appropriate tools, it is also part of the nature of

material in an oral tradition.

In addition to using this program for searching through a collection for duplicates or

closely related tunes, this program can also be used to identify duplicates or closely

related tunes across two collections. Table A3.5, in appendix 3, shows some

interrelationships between TDMOI and CRNH1.

119 Breandan Breathnach, op.cit. 1963, pp.87-88.

8: Achievements, Further Work and Conclusions.

Chapter 8. Achievements, Further Work and

Conclusions.

8.1 Achievements.

8.1.1 The creation of a score representation in accordance with principles of

informational completeness, objectivity, extendibility and abstraction.

8.1.2 The modelling of a polyphonic score which unifies the physical score with its

computer representation. This is achieved by the following mappings and structures.

 Conceiving of the score as a container of various entities.

 Mapping relationships of vertical contiguity to simultaneity.

 Mapping relationships of horizontal contiguity to an absolute score time scale.

 Representing an absolute score time as a rational number displacement from the

start of the score. Alternately it may be represented as a bar count and a rational

displacement within a bar.

 The representation and automatic resolution of scoping information, such as

occurs in time signatures, slurs and accidental alterations.

 The availability of methods to construct and edit a score.

 The availability of methods to retrieve any information present in a score.

 A mechanism of a score iterator for navigating through a score. A number of

basic score iterators are developed within the system.

 The facility for constructing user-defined score iterators.

8: Achievements, Further Work and Conclusions.

 165

 The identification of the sense of line by means of native and of user written score

iterators.

8.1.3 The environment in which the score is represented has the following desirable

characteristics.

 A high level of complexity hiding is involved.

 Algorithms of arbitrary complexity may be expressed in it.

 The user interface is simplified by means of the use of polymorphism.

 Extendibility is facilitated through the mechanism of inheritance.

 The environment has the potential to act as a repository for new components, and

hence facilitates the building of algorithms of arbitrary complexity by means of

software reuse.

8.1.4. Methodologies are proposed and demonstrated which have the following

characteristics.

 Hypotheses may be formulated in a highly structured manner by expressing them

as algorithms. Such structuring necessitates the conscious resolution of

ambiguities and forces the musicologist into a precise statement of the task

environment. This process may result in drawing attention to ambiguities and to

inconsistencies in the original hypothesis formulation.

 There is a focusing on the corpus as the 'evidence' for proving hypotheses.

 The testing of hypotheses against the corpus is carried out in an objective manner

which has parallels with scientific method.

 Analytic methods may be combined to form more complex analyses.

 The otherwise limited capabilities of musicologists, because of lack of time,

energy, attentiveness, and accuracy, is greatly extended.

8: Achievements, Further Work and Conclusions.

 166

8.1.5 The extendibility of the environment is demonstrated by the construction of

new components. These include classes for pitch class sets, non inversionally equivalent

pitch class sets, pitch tuples and a parts expert. Use of these classes is demonstrated in

chapters 6 and 7.

8.2 Proposals for Further Work.

8.2.1 Development of the Basic Level of scoreView.

Currently scoreView is designed for representing a large subset of all scores written

in common practice notation. Individual new score features, such as special symbols,

which are not currently part of scoreView can readily be added within the code of

scoreView as the need arises, using existing mechanisms.

One area for augmentation of scoreView is in extending its capacity for processing

general polyphony. Currently, the representational capability of scoreView includes

multi-stave scores. A limitation arises where polyphony is used on single staves. Each

stave can accommodate rhythmically dependent polyphony only. That is polyphony, in

which concurrent notes and rests share the same time values. This limitation makes the

representation of most piano music infeasible at present, but allows for the representation

of most choral and orchestral music. The overcoming of this limitation requires some

modest augmentation of the internal representations in scoreView, the enhancement of

the input translator, and extensive testing with polyphonic corpora.

Another target area for augmentation of scoreView is in the provision of new

iterators that could be of use in the handling of polyphonic music. The available

polyphonic iterator traverses the score in standard traversal order. It is inevitable that

some kind of parallel traversal of all the simultaneous notes in a score will be found

desirable in harmonic studies. The basic mechanism for doing this is already in place in

the internals of the traverse function, which operates on two melodic lines only. The

development of such score iterators, however, is best left to special projects. Two other

iterators that should prove useful are (1) an iterator for tracking divisi lines; and (2) an

iterator which follows two implied lines of polyphony. This phenomenon is referred to

8: Achievements, Further Work and Conclusions.

 167

as the ‘streaming effect’. It is documented by Bregman120 along with general issues of

sequential integration.

The development of input translators for a range of sources is highly desirable, given

the volume and diversity of machine encoded scores that are available. Target encoding

schemes for these include various dialects of DARMS, as well as for Score and Finale

code.

The development of a graphical component within scoreView for representing score

information on a VDU and the provision of an interactive editor and input system are of

interest.

8.2.2 Development of Basic Tools with scoreView.

The crude melodic difference algorithms in chapter 7 stand to benefit from a number

of refinements. Firstly a number of mathematical optimisation techniques could be

applied to adjust the weights used for metrical stresses. Such techniques would enable

the weights to be arrived at by training the system using a sample corpus in which

relationships between the tune segments have been classified in advance. Secondly a

closely allied problem, that of identifying phrases, could be tackled. Phrase identification

is a good target task for algorithmic implementation. Some approaches to this problem

can be found in the work of Narmour, Lerdahl and Jackendoff which is discussed in

sections 8.3.2 and 8.3.3. The problem of phrase identification in the case of monophonic

folk melodies has been tackled by Ahlbach.121

Another kind of algorithm that is of great use in corpus analysis is one which

identifies the mode or tonal centre of a piece of music. As so much tonal music theory

depends on knowing the tonal centre in advance, the development of such algorithms is

essential for initial investigations in many areas of corpus musicology. There are

120 Albert S. Bregman Auditory Scene Analysis (Cambridge, Massachusetts:The MIT Press 1990), pp.47-

211.

121 Sven Ahlback, "A Computer-Aided Method of Analysis of Phrase Structure in Monophonic Melodies"

Irene Deliege Procedings of the International Conference for Music Perception and Cognition (Liege

1994), pp.251-2.

8: Achievements, Further Work and Conclusions.

 168

numerous studies that can be drawn on in designing such algorithms, including the work

of Longuet-Higgins and Steedman122, and Krumhansl123.

Another area of endeavour is the integration of scoreView into a database for

information retrieval applications. This involves the development of strategies for rapid

searching and retrieval of information from large databases, and in particular for the

retrieval of information using music as part of a search criterion. In addition to having

the database handle score information, it is desirable to be able to deal with other kinds of

information. Such information might be textual, sonic and pictorial in nature, and should

include possibilities for the representation of music analyses.

The development of a more limited, but easy to use and reasonably powerful tools on

top of scoreView is another possibility. Page's124 system is an example. It embodies a

search tool which could be usefully implemented in scoreView.

8.3 Use of scoreView in Research.

The scoreView environment is open. It does not force the user into any special area

of research. It can be characterised as 'a potential solution looking for a problem'.

Imagination is the main limitation in its use.

There are however, a number of existing areas of activity in which scoreView should

prove particularly useful. Some of these are listed in this section. Corpus-based

musicology is relevant to all of them in that it could provide a testing ground for models.

This might be done by having scoreView used to build a simulated ‘performer’ and by

constructing a cognitive model which ‘listens’ to the music. This does not necessarily

mean that ‘performing’ is fully implemented as a performer model. The performer model

needs be implemented only to the extent that is required by the ‘listening’ model.

122 H. C. Longuet-Higgins and M. J. Steedman “On the Interpretation of Bach” in Machine Intelligence,

volume 6 (1971), pp.221-41.

123 Carol L. Krumhansl Cognitive Foundations of Musical Pitch (Oxford 1990), pp.77-110.

124 Stephen Dowland Page, op.cit.

8: Achievements, Further Work and Conclusions.

 169

8.3.1 Psychomusicology.

In a number of publications125Otto Laske conceptualises musicology as a science

comprising three subdisciplines: music analysis, psychomusicology, and

sociomusicology. He introduces the notion of a process model of music. He says:

“Such a model is a joint description of musical structures and of the mental processes required for

their production, reproduction, and comprehension. More specifically a process model is a model of the

process by which musical structures are actually generated by a musician through analysis,

performances, improvisation, composition or listening. The process model has a threefold purpose.

First it is a description of musical structures as they are held in human memory during some task

performance. Second, the model describes the “performance program” (performance taken here in the

sense of activity) a human musician needs to activate to manipulate musical structures held in memory.

Third , the model serves to embed the first in the second description, thereby explicating musical

structures in the medium of processes that generate them.”126

Two such process models of music have been developed to the extent that part of

them can be modelled on a computer. They are treated in the following sections.

8.3.2 Narmour's Implication Realisation Model.

The implication-realisation model was introduced by Eugene Narmour in 1977.127 In

recent years the first two volumes128 of a planned four volume series have been published

which greatly develop the model. The model is one of a listener which is based on

Gestalt psychology. Narmour’s primitives are the notes that form melody. He proposes

the existence of an input system in a music listener, which operates on a bottom-up level.

This assumes the existence of an innate syntactic parametric scale.

“As we shall see, a syntactic parametric scale is an automatic, “brute” input system

that is domain specific, mandatorily operative, and computationally reflexive.”129

125 Otto E. Laske Music, Memory and Thought (Ann Arbour: UMI 1977), Otto E. Laske

Psychomusicology (Bombay and Baroda: Indian Musicological Association 1985), Otto E. Laske

"Introduction to Cognitive Musicology." Computer Music Journal volume12, no.1 (Spring 1988), pp.43-57.

126 Otto Laske, op.cit., 1985, in preface (page unnumbered).

127 Eugene Narmour Beyond Schenkerism (Chicago 1977).

128 Eugene Narmour The Analysis and Cognition of Basic Melodic Structure (Chicago 1990); Eugene

Narmour The Analysis and Cognition of Melodic Complexity (Chicago 1992).

129 Eugene Narmour, op.cit., 1990, p.4.

8: Achievements, Further Work and Conclusions.

 170

The input system determines the degree of implication between patterns of similarity

A + A -> A and differentiation A + B -> C, (where -> = implies), and also determines

closural and non closural functions.

In melody, these elements A, B and C can stand for either intervallic patterns, or pitch

elements.

Narmour forms five kinds of melodic archetypes:

 1. Process or iteraton (A+A, nonclosural);

 2. reversal (A+B, closural);

 3. registral return;

 4. dyad;

 5. monad.

The syntactic parametric scale hypothesises that any pair of melodic pitches transmits

separate intervallic and registral messages to the listener. Narmour hypothesises that

three-note sequences give rise to exactly eight shapes. In classifying these he

distinguishes small intervals such as thirds from large intervals such as sixths.

 D = small interval to identical small interval, same registral direction;

 P = small interval to similar small interval, same registral direction;

 R = large interval to a smaller interval, different registral directions;

 IP = small interval to similar small interval, different registral directions;

 VP = small interval to large interval, same registral direction;

 ID = small interval to same small interval, different registral directions;

 IR = large interval to small interval, same registral direction;

 VR = large interval to even larger interval, different registral directions.

Durational cumulation and/or metric emphasis parses these shapes into contiguous

structures.

The above structures are bottom-up style shapes. Top-down style structure interacts

with these ever-present style shapes. Narmour specifies various conditions for closure

such as the effects of intervallic motion and of duration and of metrical emphasis.

8: Achievements, Further Work and Conclusions.

 171

The style shape constructs are eligible candidates for algorithmic expression. There

exists a corpus to test the validity of these rules, in the form of some of the numerous

examples given by Narmour in his recent pair of books. This endeavour, if successful,

could be followed by attempts to model the syntactic parametric scale, and to model

closure and non closure.

Narmour’s approach has attracted some negative criticism from Stephen Smoliar.130

8.3.3 Lerdahl's and Jackendoff's Model.131

The Lerdahl and Jackendoff model has origins in Schenkerian analysis, linguistics

and cognitive psychology, and in particular in Gestalt psychology. Its main focus is on

modelling aspects of an idealised listener. It focuses on "those components of musical

intuition that are hierarchical in nature".132 It proposes techniques for analysing the

grouping structure of a piece into a hierarchical segmentation consisting of motives,

phrases and sections. Using time span reduction it organises pitches into a hierarchy of

structural importance with respect to their position in grouping and in metrical structure.

By means of prolongational reduction it assigns to the pitches, a hierarchy that expresses

harmonic and melodic tension and relaxation, continuity and progression. Non

hierarchical structures, such as those of instrumentation , timbre and dynamics are not

formalised. It proposes methods of analysing music using a series of different types of

rules. The first type of rule, well-formedness rules, represents possible structural

descriptions. Preference rules, on the other hand, determine how selections might be

made between conflicting rules. Transformational rules apply certain distortions to the

otherwise strictly hierarchical structures provided by the well-formedness rules.

130 Stephen W. Smoliar “The Analysis and Cognition of Basic Melodic Structures: The Implication-

Realization Model by Eugene Narmour” (Review) in In Theory Only volume 12, nos.1-2 (1991), pp.43-56.

131 Fred Lerdahl and Ray Jackendoff A Generative Theory of Tonal Music (Cambridge, Massachusetts,

The MIT Press 1983). See also Nichola Dibben "The Cognitive Reality of Hierarchical Structure in Tonal

and Atonal Music" in Music Perception volume 12, no.1 (1994), pp.1-25, and Lloyd Daws, John R. Platt

and Ronald Racine "Inference of Metrical Structure from Perception of Iterative Pulses within Time Spans

Defined by Chord Changes" in Music Perception volume 12, no.1 (19994), pp.57-76, and Irene Deliege

"Grouping Condition in Listening to Music: An approach to Lerdahl and Jacklendoff's Grouping

Preference Rules" in Music Perception volume 4, no.4 (1987), pp.325-360.

132 Lerdahl and Jackendoff, op.cit., p.8.

8: Achievements, Further Work and Conclusions.

 172

A formal grammar is proposed for each component rule. Such rules cover the

bottom-up aspects of the generative theory. Such generative rules have their analytic

counterparts, which can be used in an analytic manner.

It is over a decade since the publication of this model. Some experimental evidence

is emerging, most of which either supports or proposes modifications to aspects of the

model. A series of reviews of the model have appeared in print within the last year under

the collective title of "A Generative Theory of Tonal Music by Lerdahl and Jackendoff:

10 years on".133 Many related articles have also appeared in Music Perception.

8.3.4 Biomusicology.

All of the previously described analytic methods depend on introspection to explain

mental processes. There is no guarantee that such introspections accurately reflect the

actual processes involved. Alternate approaches are available. One area in which

progress is being made involves tackling the problem by looking at underlying biological

systems and trying to explain mental processes in terms of biological processing. The

areas in which this kind of exploration has had the greatest success is in studying

peripheral mechanisms. In the case of hearing, quite a lot is known about the

mechanisms that operate in the ear. Impressive models have been built.134 Some of these

model the kinds of processing that the ear does on sound. Hypotheses on plausible ways

in which the brain might process pitch exist and can be used to explain some of the

characteristics of hearing. There exists a plausible explanation of the processing of

harmonic sound combinations.

The most comprehensive attempt to take an overview of the wider biological aspect

of music is made by Wallin.135 He views music as having

133 Nattiez; E. Bigand, F. Lerdahl and M. Pineau; J. London; D. Bettrand; M Botello; P Halasz and D.R.

Stammen and R. Pennycook in "A Generative Theory of Tonal Music by Lerdahl and Jackendoff: 10 years

on" in Proceedings of the International Conference for Music Perception and Cognition (Liege 1994),

pp.255-70.

134 Richard F. Lyon “A Computational Model of Filtering, Detection and Compression in the Cochlea” in

Preceedings of the IEEE International Conference in Acoustics, Speech and Signal Processing (Paris,

France May 1982).

135 Nils L. Wallin Biomusicology (Stuyvesant: Pendragon Press 1991).

8: Achievements, Further Work and Conclusions.

 173

“its primary base in man's biological inheritance, not in his cultural heritage.”136

Wallin arrives at a draft definition of music as follows:

 “Music is an open system of evolving structures growing into sounding artefacts which not only

consume actual time but also generate virtual time; the system and its space-time structures are

ultimately conditioned by bio-geocultural parameters of behaviour and deportment. Music is

basically perceived unilaterally in the right cerebral hemisphere through the auditory system in a

bilateral co-ordination with senso-motoric limbic and associative brain functions (the autonomous

system included) within a framework of multimodal experiences.”137

Whereas complete biological processes are too complex to model, aspects of them

have been tackled with some success. Connectionist models have been successful in

building systems which mimic some aspects of human capacities in areas such as the

perception of rhythm.138 In particular those models which use neural networks have been

found to be appropriate. Some proposals for such have been made by Smoliar.139

8.4 Conclusions.

This thesis demonstrates the feasibility of an environment for the development of

corpus-based musicology. Such an environment can provide a rich source of new

musicological possibilities. It creates the possibility of investigating uncharted

territories in music theory. It offers possibilities for supporting sophisticated analytic and

generative models. It provides a repository for the incremental building of future analytic

systems of arbitrary complexity, limited only by the imagination of the user.

136 Nils L. Wallin, ibid., p.xx.

137 Nils L. Wallin, ibid., p.16.

138 A cross section of connectionist approaches is found in Peter M. Todd and D. Gareth Loy Music and

Connectionism (Cambridge, Massachusetts: The MIT Press 1991). See also Peter Desain and Henkjan

Honing Music, Mind and Machine (Amsterdam: Thesis Publishers 1992).

139 Stephen W. Smoliar “Elements of a Neuronal Model of Listening to Music” in In Theory Only volume

12, nos.3-4 (Feb 1992), pp.29-46.

Appendix 1 - scoreView User Manual.

Appendix 1: scoreView User Manual.

 175

 scoreView Users Manual.

Conventions, Data Types and Classes of scoreView.

Conventions

Lowercase letters are not used in enumerated values and constant names such as TITLE,

COMPOSER, TIME_SIG, MAXCSLEN and N8.

All names of classes, structs and unions start with an uppercase letter.

All variable and function names start with lowercase letters. Here a single uppercase letter

indicates a separator in compound names, for example in getString().

Constants.

The following constants are defined in score.h

 The symbol TRUE is of type const int with the value 1.

 The symbol FALSE is of type const int with the value 0.

 The symbol NULL is of type const int with the value 0.

Analytic use: Classes representing objects in a score are accessible through class

ScoreIterator. All such classes have a member function getTag() which returns an

identifier for the object. This enables us to ask what kind of object is at the current

position. ScoreIterator has two additional member functions, one of which,

getString(), returns a textual version of the values associated with the object.

getName() returns a string which is descriptive of the class. For example si is an

object of class ScoreIterator which is currently pointing to a quaver middle C, the

 si.getTag() returns the value NOTE

 si.getName() returns the string "NOTE"

 si.getString() return the value "C5 [4].

tagType cvtStrTag(const String & s); converts a string version of tag to a tagType.

Appendix 1: scoreView User Manual.

 176

It is anticipated that only a few of the classes in this chapter will be used by analysts.

With the exception of analysts who are involved in generative studies, only two basic

classes of scoreView will suffice for most processing. These are classes Score and

ScoreIterator. Only a small set of member functions and operators of these classes are

needed for analysis. These are the ones involved with extracting and processing

information from the score representations. Such functions and operators are underlined

in the manual.

Appendix 1: scoreView User Manual.

 177

Manual Pages for Classes Listed Alphabetically.

Appendix 1: scoreView User Manual.

 178

class Barline

Purpose: To represent barlines in a score.

Manager Functions and Operators

Barline(barType br = L, int br_n = 0);

Barline(const Barline & br);

virtual ~Barline();

 where barType is one of

 CLHLC, CLLC, CLH, HLC, CLL, LLC, CLC, SHORT, INVISIBLE, LL, CL,

LC, H, L, DOTTED

Access Functions

The following function set and retrieve various fields in a Barline object.

void putBarNo (int bn);

 Bar number is set to bn.

void putBar(barType br, int bn);

 The bar type is set to br and the number to bn.

int getBarNo(void) const;

 Returns the bar number.

barType getBarType(void) const;

 Returns the bar type.

 void clearAttributeSet(void);

 Makes the attribute set of the barline null.

 void putAttribute(const attrType & nr);

 Puts the attribute nr into the attribute set of the barline.

 void putAttributeSet(const Set & s);

 Copies the set s into the attribute set of the barline.

 Set getAttributeSet(void) const;

 Returns a copy of the attribute set of the barline.

Appendix 1: scoreView User Manual.

 179

Valid attributes for a barline include FERMATA, DA_CAPO,

DA_CAPO_AL_SEGNO, DA_CAPO_AL_FINE, REPEAT1, and REPEAT2.

String getString();

 Returns one of the following. ":/I/:", "://:", ":/I", "I/:", "://", "//:", ":/:", "[|]", "[/]",

"//", ":/", "/:", "I", "/", "|"

 These are the textual equivalents of the barType identifiers listed above.

String getName();

 Returns the string "Barline".

Appendix 1: scoreView User Manual.

 180

class Clef

Purpose: To represent a clef in a score.

Manager Functions and Operators

Clef(clefType c = NOCLEF);

Clef(const Clef & cl) : Glue(cl), clef(cl.clef);

virtual ~Clef();

where clefType is

enum

clefType

{

 FRENCH_VIOLIN, SOPRANO, MEZZO_SOPRANO, TREBLE, BASS,

ALTO, TENOR, BARITONE, NOCLEF

};

Access Functions

void putClef(clefType c);

 Clef is set to c.

clefType getClef(void) const;

 Return the clef value.

String getString();

 returns one of

 "FRENCH_VIOLIN", "SOPRANO", "MEZZO_SOPRANO", "TREBLE", "BASS",

"ALTO", "TENOR", "BARITONE".

 These are the textual equivalents of the clefType identifiers listed above.

String getName();

 Returns the string "Clef".

Comment

Clef has an open scoping mechanism.

Appendix 1: scoreView User Manual.

 181

class Duration

Purpose: To represent the duration abstraction of notes and rests.

Manager Functions and Operators

Duration(durType d = N4, int dot = 0);

Duration(const Duration & dr);

virtual ~Duration();

int operator==(const Duration & dr) const;

where durType is

enum durType { N0, N1, N2, N4, N8, N16, N32, N64, N128 }

Dot is the number of dots in the duration.

Access Functions

durType getHead(void) const;

 Returns the duration of the object in whole notes, half notes, quarter notes, etc.

int getDots(void) const;

 Returns the number of dots associated with the duration.

const Duration & getDuration(void) const;

 Returns a copy of the Duration object.

void putHead(durType d, int dts = 0);

 Sets the duration type and the number of dots in the object.

void putDots(int d);

 Sets the number of dots for the duration.

 String getString();

 Returns a string description of the duration in the form of <ordinal durType

value><number of dots>.

 String getName();

 Returns the string "Duration".

Appendix 1: scoreView User Manual.

 182

Implementer Functions

Rat getRDuration(void) const;

 Returns the duration as a rational value.

Associated Functions:

Rat rDur(durType d, int dots = 0);

 Converts a duration to a rational number.

Constants

A constant of type duration is declared with the name DUMMYDURATION.

Appendix 1: scoreView User Manual.

 183

class FrequencyStore

template <class T>

class FrequencyStore

Purpose: To store copies of objects in an ordered frequency distribution. Objects of

class T must have the operators =, == and > defined, and must have a default

constructor. The == operator should compare all relevant components of objects for

equality. A function must be defined for objects of class T which is used to initialize

the class of T and has the following signature.

 void init(int);

Manager Functions and Operators

 FrequencyStore(int storeSize = 0, int cellSize = 0);

 Creates a store for storeSize objects. Each of the contained objects is initialized

by calling its member function init(cellSize).

 ~FrequencyStore();

 void init (int storeSize, int cellSize);

 Initializes a empty store to be of size storeSize, creates objects of type T for each

element of the score, and invokes the init(cellSize) function for each of the created

objects.

 FrequencyStore & operator = (FrequencyStore<T> &t);

Access Functions

int isEmpty();

 Returns TRUE if there are no members in the store.

void put(T tm);

 Puts a copy of the object tm in the frequency store, if it is not already present.

Increments the corresponding frequency. If the array is inadequate in size, its size

is effectively doubled, and a message is sent to cerr.

T getValue(int i);

Appendix 1: scoreView User Manual.

 184

 Gets the value of the i-th element from the frequency store.

int getFrequency(int i);

 Gets the value of the i-th frequency from the frequency store.

int getN();

 Gets the total number of elements that have been put into the store (the sum of the

frequencies).

int operator ==(FrequencyStore<T> t);

 Compares the contents of two frequency stores for equality.

int operator !=(FrequencyStore<T> t);

 Compares the contents of two frequency stores for inequality.

int getSize();

 Returns the number of distinct items in the frequency store.

Friend Implementor Functions and Operators

friend ostream & operator << (ostream &, FrequencyStore<T>&);

 Produces a displayable representation of the frequency distribution.

Related Class: FrequencyStoreIterator

Appendix 1: scoreView User Manual.

 185

class FrequencyStoreIterator

template <class TY>

class FrequencyStoreIterator

Purpose: To iterate on a frequency store.

Manager Functions and Operators

 FrequencyStoreIterator(FrequencyStore<TY> & s);

Implementor Functions

 int atEnd();

 TRUE if iterator is incremented beyond the end of the store, FALSE otherwise.

 void operator ++ ();

 Advances the iterator to the next item in the store. If the current item is the last

one in the score, calling this function will make the current position of the iterator

invalid. The atEnd() function can be used to test for this condition.

 TY getValue();

 Gets the current value from the frequency store.

 int getFrequency();

 Gets the current frequency from the frequency store.

Related Class: FrequencyStore

Appendix 1: scoreView User Manual.

 186

class Group Inherits from public Rest

Purpose: To put a groupette marker in a score. A groupette consists of notes that are

inserted in the normal way, but are preceded by a groupette marker which specified the

number of units in the groupette, the type of units present and the length of the

groupette in terms of its real duration.

Manager Functions and Operators

Group(void);

Group(int gn, Duration dr, durType gbu);

 where gn is the number of basic units in the group, dr is the overall duration of the

groupette, and gbu is the basic unit of the groupette. The notated duration of the

groupette is gn x gbu. The actual duration is dr.

Group(const Group & gr);

Group & operator = (const Group & gr);

virtual ~Group();

Access Functions

int getGroupetteNumber(void) const;

 Returns the number of basic units in the groupette.

void putGroupetteNumber(int n);

 Sets the number of basic units in the groupette to n.

durType getGroupetteBasicUnit(void) const;

 Returns the groupette basic unit.

void putGroupetteBasicUnit(durType dr);

 Sets the groupette basic unit.

String getString();

 Returns a string description of the groupette marker.

String getName();

 Returns the string "Group".

Appendix 1: scoreView User Manual.

 187

class Instrument

Purpose: To associate an instrument with a stave.

Manager Functions and Operators

Instrument();

Instrument(const String & s, int tr = 0);

 Creates an instrument object for instrument s which transposes up tr semitones.

int operator==(const Instrument & in);

virtual ~Instrument();

Access Functions

String getString();

 Returns the name of the instrument.

String getName();

 Returns the text “Instrument”.

int getTranspose();

 Returns the number of semitones by which the instrument is transposed up.

 If a negative number is returned, the instrument is transposed down.

void putInstrument(const String & s);

 Sets the name associated with the instrument object to s.

Appendix 1: scoreView User Manual.

 188

class KeySig

Purpose: To represent key signatures in a score

Manager Functions and Operators

KeySig(keySigType ks = NOKEY) ;

KeySig(const KeySig & ks);

virtual ~KeySig();

where keySigType is

enum

keySigType

{

 C, SF, SFSC, SFSCSG, SFSCSGSD, SFSCSGSDSA, SFSCSGSDSASE,

 SFSCSGSDSASESB, FB, FBFE, FBFEFA, FBFEFAFD, FBFEFAFDFG,

 FBFEFAFDFGFC, FBFEFAFDFGFCFF, NOKEY

};

Access Functions

keySigType getKeySig(void) const;

 Returns the key signature value.

void putKeySig(keySigType ks);

 The key signature is set to ks.

String getString();

returns one of

"#F#C#G#D#A#E#B", "#F#C#G#D#A#E", "#F#C#G#D#A",

"#F#C#G#D","#F#C#G", "#F#C", "#F",

 "YBYEYAYDYGYCYF", "YBYEYAYDYGYC", "YBYEYAYDYG",

"YBYEYAYD", "YBYEYA", "YBYE", "YB", ""

 These are the textual equivalents of the keySigType identifiers listed above.

String getName();

Returns the string "Keysig".

Appendix 1: scoreView User Manual.

 189

Associated Function:

 String ksToText(keySigType k_s);

 Converts a key signature to a string.

Comment

Key signature has an open scoping mechanism.

Appendix 1: scoreView User Manual.

 190

 union FAR MIDIMsg

Purpose: To represent MIDI messages.

Manager Functions and Operators

MIDIMsg(unsigned char m1=0, unsigned char m2 = 0, unsigned char m3 = 0);

 Creates a one to three byte MIDI message.

Access Functions

void update(unsigned char m1, unsigned char m2, unsigned char m3);

 Modifies the three data bytes in a MIDI message.

void update1(unsigned char m1);

 Modifies the first byte of a MIDI message.

void update2(unsigned char m2);

 Modifies the second byte of a MIDI message.

void update3(unsigned char m3);

 Modifies the third byte of a MIDI message.

BYTE & getByte(int i);

 Returns byte i of a MIDI message.

DWORD & getWord ();

 Returns the MIDI message as a double word.

void putWord(DWORD w);

 Writes the double word to the MIDI message.

The MIDI bytes are left alligned in the DWORD type. The righmost byte of the

DWORD is not used.

Appendix 1: scoreView User Manual.

 191

class MIDIStream

Purpose: To implement a MIDI output stream.

MIDIoutStream & operator << (MIDIoutStream & mo, MIDIMsg

mm);

Sends the MIDI message in mm to the MIDI output stream mo.

MIDIoutStream & operator << (MIDIoutStream & mo, unsigned int

t);

Sends the three leftmost bytes of t to the MIDI output stream mo.

MIDIoutStream & operator << (MIDIoutStream & mo, int t)

Sends the three leftmost bytes of t to the MIDI output stream mo.

Appendix 1: scoreView User Manual.

 192

class Note Inherits from Rest and Pitch.

Purpose: To represent a note object in a score.

Manager Functions and Operators

Note(char pa = 'C', int oc = 5, accidType ac = NOACCID,

 durType d = N8, int dot = 0, Set nr = Set());

pa = one of 'A', 'B', 'C', 'D', 'E', 'F', 'G'.

oc = octave register, with middle C = 5.

accidType is

enum

accidType

{

 NOACCID, F, S, N, DF, DS

};

durType is

enum

durType

{

 N0, N1, N2, N4, N8, N16, N32, N64, N128

};

dot = number of dots.

nr is a set which contains combinations of

 STACCATO, TIE_FROM, TIE_TO, TENUTO, PLUS, FERMATA, COMMA,

PAUSE_MARK, TREMOLO, TREMOLO_END, GLISSANDO,

GLISSANDO_END, SQUARE_NOTEHEAD, DIAMOND_NOTEHEAD,

X_NOTEHEAD, OMIT_NOTEHEAD, OCTAVE_UP, OCTAVE_DOWN,

OCTAVE_END, ARPA, PIZZ, HARMONIC, COL_LEGNO, PONTICELLO,

PED, REL, OCTAVE_DOUBLE_UP, OCTAVE_DOUBLE_DOWN,

Appendix 1: scoreView User Manual.

 193

OCTAVE_DOUBLE_END, TURN0, TURN1, TURN2, TURN3, TURN4,

TURN5, TURN6, TURN7, TURN8, TURN9, TURN, SLUR1, SLUR1_UP,

SLUR1_DOWN, SLUR1_END, SLUR2, SLUR2_UP, SLUR2_DOWN,

SLUR2_END, ACCENT, HEAVY_ACCENT, UP_BOW, DOWN_BOW,

LETTER_TR, BAROQUE_TRILL, GRACE_NOTE, BEAM, UP_BEAM,

DOWN_BEAM, BEAM_END, REST_ALLIGNMENT, ALTERNATE,

PPPP, PPP, PP, PIANO, MF, FORTE, FF, FFF, FFFF, CRESCENDO,

CRESCENDO_END, DIMINUENDO, DIMINUENDO_END.

Note(const Note & nt);

virtual ~Note() { }

 Note & operator = (const Note & nt);

Access Functions

char getAlpha(void) const;

 Returns the alphabetic note class name in the range 'A' to 'G'.

void putAlpha(char a);

 Sets the alphabetic note class name to a where a is in the range 'A' to 'G'.

int getOctave(void) const;

 Returns the octave register number. The register starting at middle C is 5.

void putOctave(int o);

 Sets the octave register number to o.

accidType getAccid(void) const;

 Returns the accidental value associated with the note.

void putAccid(accidType a);

 Sets the accidental value of the note to a.

void clearAttributeSet(void);

 Clears all attributes of the note.

void putAttribute(const nrAttrType & nr);

 Sets the attribute nr in the attributes set of the note.

void putAttributeSet(const Set & s);

 Sets the attribute set of the note to the set s.

Set getAttributeSet(void) const;

 Returns the attribute set for the note.

durType getHead(void) const;

Appendix 1: scoreView User Manual.

 194

 Returns the durType value of the note.

void putHead(durType d, int dts = 0);

 Sets the time value of the note to a durType value of d and the number of dots to

dts.

int getDots(void) const;

 Returns the number of dots of the note.

void putDots(int d);

 Sets the number of dots of the note.

Rat getRDuration(void) const;

 Returns the duration as a rational number, without any groupette scoping taken into

account.

const Duration & getDuration(void) const;

 Returns the duration of the note head.

int getPitch12(void) const;

 Returns the chromatic pitch number of the current note. Middle C corresponds to

60. No scoping information is taken into account.

int getPitch7(void) const;

 Returns the diatonic pitch number. Middle C corresponds to 35.

String getString();

 Returns a string description of a Note object in the form

 <Pitch part description><Duration part description><Attributes>.

String getName();

 Returns the string "Note".

Comment

 The exact placement of a dynamic on a note is not specified. In some cases, for

example for creschendi and diminuendi, this may prove inadequate. A further study is

called for here.

Appendix 1: scoreView User Manual.

 195

class PartsExpert

Purpose: To identify the parts in a Irish dance tune.

Manager Functions and Operators

PartsExpert(Score & s);

 Creates a parts expert object for score s.

Implementor Functions

int isSingled();

 Returns TRUE if the tune is singled, FALSE otherwise.

int numberOfParts();

 Returns the number of parts in the tune.

int hasOddPart();

 Returns TRUE if the tune has an uneven number of parts, FALSE otherwise.

int getBarNoForPart(int i);

 Returns the bar number at which part i starts. Prints an error message to cerr if it

is called for an invalid value of i.

Comment

See chapter 7.6 for details of this class.

Appendix 1: scoreView User Manual.

 196

class Pitch

Purpose: To represent a pitch abstraction. It differs from class Note in that it does not

have either a duration or a set of attributes, and also does not exist with a scoping

context.

Manager Functions and Operators

Pitch(char pa = 'C', int oc = 5, accidType ac = NOACCID);

accidType is

enum

accidType

{

 NOACCID, F, S, N, DF, DS

};

Pitch(const Pitch &);

virtual ~Pitch();

Access Functions:

char getAlpha(void) const;

 Returns the alphabetic note class name of the pitch in the range 'A' to 'G'.

void putAlpha(char a);

 Sets the alphabetic note class name of the pitch to a where a is in the range 'A' to

'G'.

int getOctave(void) const;

 Returns the octave register number. The register starting at middle C is 5.

void putOctave(int o);

 Sets the octave register number to o.

accidType getAccid(void) const;

 Returns the accidental value associated with the pitch.

void putAccid(accidType a);

 Sets the accidental value of the pitch to a.

Appendix 1: scoreView User Manual.

 197

String getString();

 Returns a string description of the pitch in the form of <alphabetic Letter> <octave

Number> <accidental name>.

String getName();

 Returns the string "Pitch".

Implementor Functions

int getPitch12(void) const;

 Returns the chromatic pitch number of the current note. Middle C corresponds to

60.

int getPitch7(void) const;

 Returns the diatonic pitch number. Middle C corresponds to 35.

 The next set of overloaded operators perform magnitude comparisons of pitch.

int operator > (const Pitch & pt);

int operator < (const Pitch & pt);

int operator == (const Pitch & pt);

Related Classes: Note

Appendix 1: scoreView User Manual.

 198

class PitchClasses

Purpose: To represent pitch class sets.

Manager Functions and Operators

PitchClasses (int a0 =-1,int a1 =-1,int a2 =-1,int a3 =-1,int a4 =-1,

 int a5 =-1,int a6 =-1,int a7 =-1,int a8 =-1,int a9 =-1,

 int a10=-1,int a11=-1,int a12=-1,int a13=-1,int a14=-1,

 int a15=-1,int a16=-1,int a17=-1,int a18=-1,int a19=-1,

 int a20=-1,int a21=-1,int a22=-1,int a23=-1,int a24=-1,

 int a25=-1,int a26=-1,int a27=-1,int a28=-1,int a29=-1,

 int a30=-1,int a31=-1);

 PitchClasses(const PitchClasses &);

 PitchClasses(const Set &);

 PitchClasses & operator = (const PitchClasses &);

Example

 PitchClasses x(0, 2, 4, 5, 7, 9, 11);

 Creates a pitch class set of the notes of the diatonic scale.

Access Functions

void init(int i = 0);

 This function does nothing. It exists for compatibility with class FrequencyStore.

Implementor Functions

void pitchClass(Score &);

 Adds the pitch classes found in the score to the set.

Appendix 1: scoreView User Manual.

 199

void pitchClass(ScoreIterator &si1, ScoreIterator &si2);

 Add the pitch classes to the set that are found in the score of si1, starting with si1,

and continuing until either si2 is reached, or else until the end of of the score is

reached. si2 may be NULL.

void pitchClassInc(ScoreIterator & si);

 If si points to a note, the pitch of that note is added to the pitch class set object,

otherwise no action is taken.

int bestNormalElement();

The pitch of the first normal element calculated and returned.140

 void primeForm();

The set is converted to its prime form.

 void nIEPrimeForm();

The set is converted to its non inversionally equivallent prime form.141

void invert();

Converts the pitch class set to its inversion.

String getPFName();

Returns the name of the pitch class set.142

String getNIEPFName();

Returns the name of the non inversionally equivallent pitch class set.143

Friend Implementor Functions and Operators

 friend ostream& operator << (ostream& , PitchClasses);

 Outputs a representation of the pitch class set in a form suitable for display.

140 See Alan Forte The Structure of Atonal Music (New Haven: Yale UP 1973, 1979 printing), p4.

141 See 8.1.

142 Alan Forte, op.cit., pp179-181.

143 See 8.1.

Appendix 1: scoreView User Manual.

 200

class PitchTuple Inherits from class Tuple

Purpose: To represent a set of pitches, relative to the initial one, which is set at 0.

Manager Functions and Operators

 PitchTuple();

 PitchTuple(int sz);

 PitchTuple(const PitchTuple & pt);

Access Functions

 void put(int t, int i);

 Puts the value t into position i of the tuple. The first position in the tuple

corresponds to i = 0, and this position must be filled first.

Friend Implementor Functions and Operators:

ostream & operator << (ostream & os, const PitchTuple &t);

 Outputs the tuple in a form suitable for display.

Related class: Tuple

Appendix 1: scoreView User Manual.

 201

class Q

const int Q_TEMPLATE_SIZE = 10;

template < class QT >

class Q

Purpose: To implement an array based implementation of a first in first out store.

Prerequisites: The type of QT must have a valid assignment, ==, and > operator, and

a default constructor.

Manager Functions and Operators:

 Q(int sz = Q_TEMPLATE_SIZE);

 Creates an array-based queue with initial size SZ.

 ~Q();

Q(const Q & q);

Q & operator = (const Q & qIn);

Access Functions

int isEmpty();

 Returns TRUE if queue is empty, FALSE otherwise.

void put(QT c);

 Puts a copy of c into the queue.

QT get();

 Returns a copy of the item at the head of the queue, and deletes the item from the

queue.

qSize();

 Returns the number of items in the queue.

Appendix 1: scoreView User Manual.

 202

class Rat

Purpose: To represent rational numbers.

Manager Functions and Operators:

 Rat(long n1 = 0 , long d1 = 1);

 Rat(const Rat & r);

 virtual Rat & rationalize();

 const Rat & operator = (const Rat & r);

 operator int();

 operator long();

 operator float();

Access Functions

 const Rat & rmin(const Rat & r1, const Rat & r2);

 Returns a reference to the minimum of r1 and r2.

 const Rat & rmax(const Rat & r1, const Rat & r2);

 Returns a reference to the maximum of r1 and r2.

 long numer() const;

 Returns the value of the numerator.

 long denom() const;

 Returns the value of the denominator.

 void putNumer(int num);

 Changes the numerator to num.

 void putDenom(int den);

 Changes the denominator to den.

Implementor function and operators

Member arithmetic operators.

const Rat & operator += (const Rat & b);

const Rat & operator -= (const Rat & b);

Appendix 1: scoreView User Manual.

 203

const Rat & operator *= (const Rat & b);

const Rat & operator /= (const Rat & b);

Friend Implementor function and operators

Friend arithmetic operators.

friend Rat operator - (const Rat & a);

friend Rat operator + (const Rat & a);

friend Rat operator + (const Rat & a, const Rat & b);

friend Rat operator - (const Rat & a, const Rat & b);

friend Rat operator * (const Rat & a, const Rat & b);

friend Rat operator / (const Rat & a, const Rat & b);

friend int operator > (const Rat & r1, const Rat & r2);

friend int operator >= (const Rat & r1, const Rat & r2);

friend int operator < (const Rat & r1, const Rat & r2);

friend int operator <= (const Rat & r1, const Rat & r2);

friend int operator == (const Rat & r1, const Rat & r2);

friend int operator != (const Rat & r1, const Rat & r2);

 Stream friend functions.

friend ostream& operator << (ostream& os, const Rat & r);

 Outputs the object in a form suitable for display.

friend istream& operator >> (istream& is, Rat& r);

 Inputs a rational number expressed in the form

 { <numerator> , <denominator }.

Related Classes: TimeSigType.

Appendix 1: scoreView User Manual.

 204

class Rest Inherits from Duration

Purpose: To represent a rest object in a score.

Manager Functions and Operators

Rest(durType d = N8, int dot = 0, Set e = Set());

where durType is

enum durType { N0, N1, N2, N4, N8, N16, N32, N64, N128 }

dot is the number of dots on the rest

The set e is made up of members with appropriate combinations of the nrAttrTypes,

possibly FERMATA, BREATH_MARK and ALTERNATE. The last value is

used only with crotchet rests to indicate the 'reversed 7' English notation.

Rest(const Rest & r);

virtual ~Rest();

Rest & operator = (const Rest & rst);

Access Functions

void clearAttributeSet(void);

 Clears all attributes of the rest.

void putAttribute(const nrAttrType & nr);

 Sets the attribute nr in the attributes set of the rest.

void putAttributeSet(const Set & s);

 Sets the attribute set of the rest to s.

Set getAttributeSet(void) const;

 Returns the attribute set for the rest.

durType getHead(void) const;

 Returns the durType value of the rest.

void putHead(durType d, int dts = 0);

Appendix 1: scoreView User Manual.

 205

 Sets the time value of the rest to a durType value of d and the number of dots to

dts.

int getDots(void) const;

 Returns the number of dots of the rest.

void putDots(int d);

 Sets the number of dots of the rest.

Rat getRDuration(void) const;

 Returns the duration as a rational number, without any groupette scoping taken into

account.

const Duration & getDuration(void) const;

 Returns the duration of the rest.

String getString();

 Returns a string description of the Rest in the form of

 <Duration part description><Attributes>.

String getName();

 Returns the string "Rest".

Appendix 1: scoreView User Manual.

 206

class Score

Purpose: To represent a score.

Manager Functions and Operators

Score(void);

 Creates a null score.

Score(String filename);

 Creates a score from the contents of filename.

Score(const Score &);

~Score(void);

Score& operator = (const Score & s);

 void operator - (void);

 The unary operator - is used to make a score null, that is it deletes all the objects in

the score, but it does not destroy the score object itself.

Access Functions

void setMaxStaves(const int & n);

 Initialises the number of staves in a score.

int getNoStavesInScore(void);

 Returns the number of staves in a score.

int getInitialBarNo() const;

 Returns 0 if there is an incomplete 1st bar, and 1 otherwise. An initial anacrusis is

regarded as being in bar 0.

Rat getInitialPosition() const;

 Returns the location of the first note or rest in the score. For example a score in 6/8

time with an initial quaver as an anacrusis, this will return 5/8.

String getString(const tagType & tt = TAG) const;

String getString(const String & tt) const;

 Both of these functions return a string value of the attribute.

Where tt is one of COMPOSER, PUBLISHER, EDITOR, MANUSCRIPT,

COLLECTOR, PERFORMER, COMMENTS, CATEGORY, TITLE, ETITL,

Appendix 1: scoreView User Manual.

 207

NUMBER, MOVEMENT, WORDS, METRONOME, TEMPO,

EXPRESSION, INSTRUMENT.

Note: TITLE and ETITL allow for a main title and a subsidiary title. The second

version of the getString functions is provided to allow for future expansion, so that

new fields may be created, over and above those provided by the system.

void putString(const String & text, tagType tt)

 Puts the tagged text into the score object. Valid tags are as for tt above.

clefType getClef(void) const;

 Returns the first clef on the first stave of the score.

keySigType getKeySig(void) const;

 Returns the first key signature on the first stave of the score.

long getTimeSigNumerator(void) const;

 Returns the numerator of the first time signature on the first stave of the score.

long getTimeSigDenominator(void) const;

 Returns the denominator of the first time signature of the first stave of the score.

TimeSigType getTimeSig(void) const;

 Returns the time signature value of the first time signature of the first stave of the

score.

int isNull(void) const;

 Returns TRUE if the score is a null score This may arise when an attempt is made

to get a score from a non-existent file, or when the Score(void) constructor is used.

Appendix 1: scoreView User Manual.

 208

class ScoreIterator

Purpose: To an iterator on a score.

Manager Functions and Operators

ScoreIterator(const Score & s, int lid = -99);

 Creates a score iterator for the score s. The type of score iterator and its associated

mode depends on the type of score that it is created for.

 If the second parameter is absent and the score consists of a single stave, then a

single stave iterator in MONO mode is created. That is the iterator follows the

uppermost pitches on the stave.

 If the second parameter is absent and the score consists of multiple staves, then a

multi-stave iterator in POLY mode is created.

 If the second parameter is present it must be a stave number in the range 0 to the

(maximum number of staves - 1). In this case a single stave iterator in MONO

mode is created for the specified stave. See 5.10 for more details of the operation

of these operators.

ScoreIterator(const ScoreIterator & si);

ScoreIterator(int lid = 0);

ScoreIterator::~ScoreIterator(void);

const Score & score();

ScoreIterator& operator = (const ScoreIterator & si);

Access Functions

Information extracting functions.

tagType getTag();

 Returns the tag value retrieved, which is one of

NOTE, REST, GROUP, WORDS, BARLINE, CLEF, TIME_SIG,

 KEY_SIG, TEXT, METRONOME, TEMPO,

 EXPRESSION, START, INSTRUMENT

Appendix 1: scoreView User Manual.

 209

int isA(tagType t);

 Returns TRUE if the current object has type t.

clefType getClef(void) const;

 Returns the current clef.

keySigType getKeySig(void) const;

 Returns the current key signature.

long getTimeSigNumerator(void) const;

 Returns the numerator of the current time signature.

long getTimeSigDenominator(void) const;

 Returns the denominator of the current time signature.

TimeSigType getTimeSig(void) const;

 Returns the current time signature.

String getString(const tagType & tt = TAG) const;

 gets a string description of the object or scope indicated by tt, where is one of

COMPOSER, PUBLISHER, EDITOR, MANUSCRIPT, COLLECTOR,

PERFORMER, COMMENTS, CATEGORY, TITLE, ETITL, NUMBER,

MOVEMENT,TAG, NOTE, REST, WORDS, BARLINE, CLEF,

TIME_SIG, KEY_SIG, TEXT, METRONOME, TEMPO, EXPRESSION,

INSTRUMENT

String getString(const String & tagString) const;

 Returns a string representation of the current object.

String getName() const;

 Returns the name of the current object. It is one of

void putString(const String & text, tagType tt);

 Puts the tagged string text into the tagged field tt, where tt is one of

COMPOSER, PUBLISHER, EDITOR, MANUSCRIPT, COLLECTOR,

PERFORMER, COMMENTS, CATEGORY, TITLE, ETITL, NUMBER,

MOVEMENT, WORDS, METRONOME, TEMPO, EXPRESSION,

INSTRUMENT.

Functions for retrieving values in notes and rests.

char getAlpha(void) const;

 Returns the alphabetic note class name in the range 'A' to 'G'.

Appendix 1: scoreView User Manual.

 210

void putAlpha(char a);

 Sets the alphabetic note class name to a where a is in the range 'A' to 'G'.

int getOctave(void) const;

 Returns the octave register number. The register starting at middle C is 5.

void putOctave(int o);

 Sets the octave register number to o.

accidType getAccid(void) const;

 Returns the accidental value immediately associated with the note.

int getKeySigAdjust() const;

 Returns the number of simitones by which the current key signature displaces the

pitch of the note.

accidType getAccidAlterationInBar() const;

 Returns any local accidental that influences the pitch of the note.

void putAccid(accidType a);

 Sets the accidental value of the note to a.

void clearAttributeSet(void);

 Clears all attributes of the note or rest.

void putAttribute(const nrAttrType & nr);

 Sets the attribute nr in the attributes set of the note or rest.

void putAttributeSet(const Set & s);

 Sets the attribute set of the note or rest to s.

Set getAttributeSet(void) const;

 Returns the attribute set for the note or rest.

durType getHead(void) const;

 Returns the durType value of the note or rest.

void putHead(durType d, int dts = 0);

 Sets the time value of the note or rest to a durType value of d and the number of

dots to dts.

int getDots(void) const;

 Returns the number of dots of the note or rest.

void putDots(int d);

 Sets the number of dots of the note or rest.

Rat getRDuration(void) const;

 Returns the duration as a rational number, with resolution of groupette scoping.

const Duration & getDuration(void) const;

 Returns the duration of the note head without resolution of groupette scoping.

Appendix 1: scoreView User Manual.

 211

int hasAttribute(const nrAttrType & na) const;

 Returns TRUE if the attribute na is present in the current entitiy.

ScoreIterator getNext();

 Returns a score iterator which points to the next entity in traversal order in the

score.

Rat getRemainder(void) const;

 Returns the time distance between the current position and the end of the entitiy

pointed to.

int getPitch12(void) const;

 Returns the chromatic pitch number of the current note, with all scoping taken into

account. Middle C corresponds to 60.

int getPitch7(void) const;

 Returns the diatonic pitch number. Middle C corresponds to 35.

Pitch getPitch() const;

 Returns the pitch entitiy associated with the current note.

String getWords(void) const;

 Retrieves the vocal text.

long getBarNo(void) const;

 Returns the current bar number.

barType getBarType(void) const;

 If the current entity is a bar, the bar type is returned.

nrAttrType getDynamics(void);

 Returns the dynamic value associated with the current note.

Rat getBarDist(void) const;

 Returns the rational distance of the scoreIterator from the start of the current bar.

Information relating to groupettes.

Rat getGroupetteRemaining(void);

 Returns the rational distance from the scoreIterator to the end of the current

groupette.

long getGroupetteNumber(int depth = 0) const;

 Returns the number of units in the groupette.

durType getGroupetteBasicUnit(void) const;

 Return the notated time value of the basic units in a groupette.

Appendix 1: scoreView User Manual.

 212

Testing functions and operators returning TRUE(=1) or FALSE (=0).

 int isFirst(void);

 Returns TRUE if current entity is the first on its stave.

 int isLast(void);

 Returns TRUE if current entity is the last on its stave.

int isNullStave();

 Returns TRUE if the current stave is empty, FALSE otherwise.

 Rat getTimeSlice(void);

 Returns the rational distance between the current position and the nearest entity in

time.

 scanModeType getScanMode();

 Returns the scan mode of the iterator.

void putScanMode(scanModeType sm);

 Set the scan mode for the iterator to sm.

Implementor Functions and Operators

Navigation functions.

int step(tagType gt = ANY);

 Moves the current position to the next entity in traversal order. Returns TRUE if

successful. See 5.10 for details of traversals. gt may have one of the following

values

 NOTE, REST, WORDS, BARLINE, CLEF, TIME_SIG,

 KEY_SIG, TEXT, TEXT_OBJECT, START, ANY

int mstepb(tagType gt = ANY);

 Operates in a manner similar to the last function but moves the iterator in the

opposite direction. Returns TRUE if successful.

Appendix 1: scoreView User Manual.

 213

int step(Rat d);

 Moves the iterator to the first score object that is at a distance d from the current

position. Returns TRUE if successful. Note that the ends of notes or rests are not

candidate objects for moving the iterator to.

int locate(const tagType & gt = ANY, const int & n = 1);

 Moves the iterator to the specified location in the score. Returns TRUE if

successful. gt may be one of

 NOTE, REST, WORDS, BARLINE, BAR, CLEF, TIME_SIG, KEY_SIG,

TEXT, METRONOME, TEMPO, EXPRESSION, START, ANY

BARLINE is used to specify a count of actual barlines. BAR is used to specify a

specific bar by number.

The locate function locates the nth entity of type gt in the score.

Hence

 si.locate(NOTE, 20);

will position the score iterator at the start of the 20th note in the score.

locate() positions the iterator at the start of the score.

Score building and manipulation.

 The binary '^' operator is used for inserting single entities into scores at the current

position and the corresponding unary operator '!' is used to remove the entity at the

current position. The '+' operator inserts a new object after the current position.

void operator + (Instrument & in);

 Adds an instrument designation to a stave.

void operator + (Barline & nbl);

 Adds a barline to the current position on the current stave.

void operator + (Text & t);

 Adds a textual entry to the current position on the current stave.

void operator + (Note & n);

 Adds a note object to the current position on the current stave.

Appendix 1: scoreView User Manual.

 214

void operator + (Rest & r);

 Adds a rest object to the current position on the current stave.

void operator + (Group & g);

 Adds a groupette marker to the current position on the current stave.

void operator + (TimeSig & ts);

 Adds a time signature object to the current position on the current stave.

void operator + (Clef & cl);

 Adds a clef object to the current position on the current stave.

void operator + (KeySig & ks);

 Adds a key signature object to the current position on the current

 stave.

void operator ^ (Note & nt);

 Attaches a note object vertically to the current note or rest object.

void operator ^ (Rest & rst);

 Attaches a rest object vertically to the current note or rest object.

void operator ^ (Group & gr);

 Attaches a groupette object vertically to the current groupette object.

void operator ^ (Words & wd);

 Attaches words to the current note object.

void setPlayOn(void);

 Causes automatic output of each traversed note to the current MIDI device.

void setPlayOff(void);

 Switches off automatic MIDI output.

unsigned long getPlaySpeed(void) const;

 Returns the curent playing speed setting.

void putBorrow(long l);

 Causes the duration of the MIDI output for the next note to be reduced by l ticks.

This is used typically to allow for the playing of grace notes while keeping the

overall rhythm intact.

long getBorrow(void) const;

 Returns the duration of the MIDI next note shortening. See putBorrow(long l).

void setPlayMetronome(int mm);

 Sets the play speed to the indicated metronome value, given in terms of the number

of quarter notes per minute. The default is 200.

Appendix 1: scoreView User Manual.

 215

Implementor Friend Functions and Operators

IO operators.

friend ostream& operator << (ostream& is, const ScoreIterator & si);

 Outputs a textual representation of the current object.

 Comparison operators to compare positions on the basis of location in absolute

score time. It is the responsibility of the user to ensure that si1 and si2 are positions

in the same score.

friend int operator > (const ScoreIterator & si1, const ScoreIterator & si2);

friend int operator >= (const ScoreIterator & si1, const ScoreIterator & si2);

friend int operator < (const ScoreIterator & si, const ScoreIterator & si2);

friend int operator <= (const ScoreIterator & si1, const ScoreIterator & si2);

friend int operator == (const ScoreIterator & si1, const ScoreIterator & si2);

friend int operator != (const ScoreIterator & si1, const ScoreIterator & si2);

void traverse(ScoreIterator & si1, ScoreIterator & si2, Rat &r);

The traverse function is used to move through two sections of scores, one time slice at a

time. Each call to traverse advances the iterators si1 and si2 by the same amount,

equal to the current time slice.

Appendix 1: scoreView User Manual.

 216

class Set

Purpose: To represent sets of integers or enumerated types.

Manager Functions and Operators:

Set (

 int a0 =-1,int a1 =-1,int a2 =-1,int a3 =-1,int a4 =-1,

 int a5 =-1,int a6 =-1,int a7 =-1,int a8 =-1,int a9 =-1,

 int a10=-1,int a11=-1,int a12=-1,int a13=-1,int a14=-1,

 int a15=-1,int a16=-1,int a17=-1,int a18=-1,int a19=-1,

 int a20=-1,int a21=-1,int a22=-1,int a23=-1,int a24=-1,

 int a25=-1,int a26=-1,int a27=-1,int a28=-1,int a29=-1,

 int a30=-1,int a31=-1,int a32=-1,int a33=-1,int a34=-1);

Constructs a set with the parameters as members.

Example

 Set s(2, 4, 6, 8); // creates a set of 4 integers

 Set s(); // creates a null set.

 enum Weekdays { MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY, SUNDAY};

 Set workingDays();

Set (const Set &);

Set & operator = (const Set &);

operator String();

Access Functions

void setEnumLimit(int i);

This function set a guard on the allowable values in the set. i should be the maximum

number of enumerated value allowable. It is advisable to initialise all sets with

Appendix 1: scoreView User Manual.

 217

this functions. The complement operator will not work properly unless this is

done.

For example, in the above set, it is desirable to invoke the function

 workingDays.setEnumLimit(FRIDAY);

 Set s1 = Set (MODAY, TUSEDAY, WEDNESDAY, THURSDAY, FRIDAY);

 Set workingDays = Set(SATURDAY); // Error

 int getEnumLimit(void) const;

 Returns the ordinal value of the highest constant allowable in the set.

 int card() const;

 Returns the cardinal number of a set.

Implementor Functions

 String getString();

 Returns a textual representation of the set.

 int operator < (Set &s);

 Privides an unspecified ordering on the set.

Implementor Friend Functions and Operators

 friend Set operator + (const Set & s1, const Set & s2); union

 friend Set operator * (const Set & s1, const Set & s2); intersection

 friend Set operator - (const Set & s1, const Set & s2); difference

 friend int operator < (int i1, const Set & s1); membership

 friend int operator <= (const Set & s1, const Set & s2); subset

 friend int operator == (const Set & s1, const Set & s2); equality

 friend int operator != (const Set & s1, const Set & s2); inequality

 friend Set operator ~ (const Set & s1); complement

Stream function overloads.

Appendix 1: scoreView User Manual.

 218

friend ostream& operator << (ostream& os, Set s);

friend istream& operator >> (istream& is, Set& s);

Related Classes: PitClass and SetIterator

Appendix 1: scoreView User Manual.

 219

class SetIterator

Purpose: To iterate on a set.

Manager Functions and Operators

 SetIterator(Set & s);

 Creates an iterator for set s.

Access Functions

const int & getCurrent();

 Gets the ordinal value of the current element.

void makeCurrent(const int & c);

 Makes element with ordinal value c the current one.

int next();

 Moves the iterator cyclically to the 'next' element in the set.

void init();

 Sets the iterator to the 'first' element of the set.

int atEnd();

 True if the iterator is at the 'last' element of the set.

Appendix 1: scoreView User Manual.

 220

class Stack

template <class T>

class Stack

Purpose: To implement a first in last out store.

Manager Functions and Operators

Stack(const int s = 100);

 Creates a stack using an array of size s.

Stack(const Stack & s);

Stack & operator = (const Stack & s);

~Stack();

int inStack(const T & p) const;

void flush();

Access Functions

void push(T p);

 Pushes a copy of p onto the stack. The array will double in size on overflowing. If

there is not enough space for expanding the array, the function sends an error

message to cerr and terminates the program.

T pop();

 Returns a copy of the entity on the top of the stack, and removes it from the stack.

int isFull(void);

 Returns FALSE always.

int isEmpty(void);

 Returns TRUE if the stack is empty, FALSE otherwise.

Appendix 1: scoreView User Manual.

 221

class String

Purpose: To represent character strings.

Manager Functions and Operators:

String(int len = MAXCSLEN)

 Constructs a null string of length specified by len.

String (char * st)

 Constructs an instance of class string from a c string.

 Examples

 String s1;

 String s2(20);

 String s3("demo");

String(const String & s)

 Creates a deep copy of string s.

~String()

 String operator = (const String & s);

String operator = (char c);

String & cvtNs(int i);

 Converts the integer to its string representation.

int num();

 Converts a string to its integer representation.

String & operator = (const StringIterator & sti);

Access Functions

char & operator[] (int i)

 Indexing of individual characters in a string.

Appendix 1: scoreView User Manual.

 222

Implementor Functions

int length() const;

 Returns the number of characters in a string.

char * getCString() const;

 Returns a c-string. Care must be exercised in the use of the returned pointer

which should be limited to within the lifetime of the object.

String operator + (char c)

 Returns a concatenation of the object and character c.

String operator + (const String & s)

 Returns a concatenation of the object and string s.

String & operator += (const String & s);

 Concatenates the object and s.

String & operator += (char c);

 Concatenates the object and c.

String & pad(int n, char c)

 Makes the string to consist of n characters of value c.

The following comparison operators are available which yield TRUE/FALSE

values, where the ordering is done on the basis of ASCII colating sequences.

int operator == (const String & st)

int operator != (const String & st)

int operator > (const String & st)

int operator < (const String & st)

int operator >= (const String & st)

int operator <= (const String & st)

int index(char c) const

 Returns the index of the first character in the string equal to c. Returns a negative

number if the character is not found.

int index(String & s)

 Searches the object for the first occurrence of the string s and returns the index of

the start of the string in the object. Returns a negative number if the character is

not found.

Appendix 1: scoreView User Manual.

 223

void sub (int i1, int i2)

 Converts the object int a new string consisting of its substring from index i1

to index i2.

String & upperCase()

 Converts the object to upper case.

Friend Operators

ostream & operator << (ostream & os, const String & st);

 Stream output.

istream & operator >> (istream & is, String & st);

 Stream input.

Related Classes: StringIterator

Instances

 String NULLSTRING

Appendix 1: scoreView User Manual.

 224

class StringIterator

Purpose: To traverse class String

Manager Functions and Operators and Operators

StringIterator(String & s);

 Creates an object of class StringIterator for a string s, with it current position set at

the first character in the string.

StringIterator();

 Creates an unassigned object of class StringIterator.

Copy Constructors - default used.

Destructors - default used.

Assignment - default used.

Access Functions

char * getCString() const;

 Gets the C-string part of object. Be careful here with lifetimes here.

char get() const;

 Gets character at current position.

void put(char c);

 Replaces character at current position. If current position is at null, then it appends

the character to the string.

Implementor Functions and Operators

int atEnd() const;

 Tests for the end of string condition happens, TRUE is returned if the Iterator is at

the final null.

int operator ==(const StringIterator & s);

 Tests the equality of two substrings, from current position to end of string.

int operator != (const StringIterator & s);

 Tests for inequality of two substrings, starting at their current position.

Appendix 1: scoreView User Manual.

 225

StringIterator & operator ++();

 Increments the current position Its maximum value corresponds to the final null.

StringIterator & operator --();

 Decrements the current position, if the current position is to the right of the first.

StringIterator & operator += (int i);

 Compound of + and =.

void reset();

 Sets the cursor to start of string.

StringIterator & next();

 Advances iterator to first non-blank character in the string.

int searchFor(char c);

 Returns TRUE if c in substring and relocates iterator to position of c.

int isKeyWord(int & count, String const ar[], const int & len);

 Returns TRUE if object is one of the characters in ar. len is the length of the

array, and count is the matching index of the array.

int nextChar(const char & c);

 If next non blank character in String is c, it increments p and returns TRUE.

int heads(String tstr);

 Returns TRUE if iterator points to part of a string that starts with tstr.

int betweenBrackets(String & s);

 BetweenBrackets returns TRUE if the string has a left bracket '(' as its first non

blank character and has matching right bracket and FALSE otherwise. If TRUE,

the String s is a copy of the string that was enclosed between brackets.

int isNum();

 Returns TRUE if the next non-blank entity in the string, starting at the current

position is an integer.

int num();

 Interprets the characters as a number and returns the value found. Advances the

current position to the position following the number.

void outString(StringIterator si2 = NullString);

 Writes out the substring, starting at the current position, until the end of the string

is encountered or until position si2 is reached.

String makeString(StringIterator se = NullString);

 Returns an object of type String consisting of the substring in the iterated object

from the current position until position se is reached or to end of the string.

Appendix 1: scoreView User Manual.

 226

void upperCase();

 Converts characters in the original string to uppercase, starting with the current

position and ending with the end of string.

int length();

 Returns the length of the original string, starting with the current position.

int uninstantiated();

 Returns TRUE if the StringIterator is not currently associated with a string.

Friends

ostream & operator << (ostream & os, const StringIterator & si);

 Outputs the original string, starting at the current position.

Appendix 1: scoreView User Manual.

 227

class Text

Purpose: To represent text objects in a score. Text objects are those which are not

handled by class Word and do not use open scoping. Text entries in a score other than

tempo, expression and metronome markings are represented by class Text.

Manager Functions and Operators

Text(tagType tg);

Text(const Text & tx);

virtual ~Text();

 Text & operator = (const Text & tx);

Access Functions

The following function set and retrieve the information in a Text object.

String getText(void) const;

tagType getTextTag(void) const;

void putText(const String & s);

void putTextTag(tagType tt);

String getString();

 Is the same as getText.

String getName();

 Returns the string "Text".

Appendix 1: scoreView User Manual.

 228

class TimeSig

Purpose: To represent time signature in a score.

Manager Functions and Operators

TimeSig(int n1 = 4, int d1 = 4);

 Creates a time signature of n1/d1.

TimeSig('C');

 Creates a common time signature.

TimeSig('c');

 Creates a common time signature.

TimeSig(const TimeSig & ts);

virtual ~TimeSig();

operator Rat() const;

Access Functions

long getTimeSigNumerator(void) const;

 Returns the time signature numerator.

long getTimeSigDenominator(void) const;

 Returns the time signature denominator.

TimeSigType getTimeSig();

 Returns a copy of the time signature.

void putTimeSig(long n1, long d1);

 Sets the time signature to n1/d1.

String getString();

 Returns a string description of the key signature. It is of the form numerator,

denominator, for example {3,4}.

String getName();

 Returns the string "TimeSig".

Related Classes: TimeSigType

Appendix 1: scoreView User Manual.

 229

class TimeSigType Inherits for class Rat

Purpose: To represent rational numbers as in a time signature. Unlike objects of class

Rat, the class that represents rational numbers. TimeSigType rational numbers are

not automatically made relatively prime. Hence 6/8 does not automatically become

3/4, as it would for class Rat.

Manager Functions and Operators

TimeSigType(long n1 = 4, long d1 = 4);

TimeSigType(Rat rt);

TimeSigType & operator = (const TimeSigType & tst);

Access Functions

long getTimeSigNumerator(void) const;

 Returns the numerator of the time signature.

long getTimeSigDenominator(void) const;

 Returns the denominator of the time signature.

String getString();

 Returns a string containing two numbers separated by a comma, for example, {6,8}.

String getName();

 Returns the string "TimeSigType".

Related Classes: Rat, TimeSig.

Appendix 1: scoreView User Manual.

 230

class Tuple

Purpose: To represent Tuples, that is an ordered collection of integers, where the

position in the tuple is deterimined at input.

Manager Functions and Operators

Tuple();

 Used for creating null tuples.

Tuple(int sz);

 Used for creating a sz-tuple.

Tuple(const Tuple & t);

~Tuple();

void init(const int tupleSize);

 Used to populate a null tuple with tuples of size tupleSize.

Tuple & operator = (const Tuple & t);

operator String();

Access Functions

int operator [](int i);

 Returns the value of the element at position i.

void put(int t, int i);

 Writes t in the element at position i.

int operator == (const Tuple t);

 Test for equality.

int operator != (const Tuple t);

 Test for inequality.

int operator < (const Tuple t);

 Provides an undefined ordering of tuples.

Friend Implementor Functions and Operators

ostream & operator << (ostream & os, const Tuple & t);

 Stream output of a tuple in a displayable form.

Appendix 1: scoreView User Manual.

 231

Related Classes: PitchTuple

Appendix 1: scoreView User Manual.

 232

class Words

Purpose: To represent sung text in a score.

Manager Functions and Operators

Words(const String & t = String());

Words(const Words & wd);

virtual ~Words() { }

Words & operator = (const Words & wd);

Access Functions

The following function set and retrieve the field in a Word object.

String getWords(void) const;

 Returns the current value.

void putWords(const String & s);

Sets the object to value s.

String getString();

 Is the same as getWords().

String getName();

 Returns the string "Word".

Appendix 1: scoreView User Manual.

 233

Manual Pages for Functions.

Appendix 1: scoreView User Manual.

 234

float diff1 (ScoreIterator &, ScoreIterator &, Rat ln);

float difference (ScoreIterator &, ScoreIterator &, Rat ln);

These functions calculate the arithmetic difference between sections of length, ln, of

two scores pointed to be si1 and si2. See 8.3 for details of how the calculations are

performed.

void setTrace();

Causes the of difference values calculated to be output to file ‘out.out’.

void setDuration();

 Causes each windowed difference to be weighted according to the duration of the

note(s) that start at the beginning of the window.

Void setWindow();

 Causes each windowed difference to be weighted by the width of the window.

void setSlopes();

 Causes contour slopes to be incorporated into calculations.

void setStresses();

 Causes metrical stresses to be incorporated into calculations.

void setTranspose();

Causes transposition independent calculations to be made.

Each function above has corresponding unset function, and query functions. The

style of all of these follows the same pattern, as follows -

 void unsetSlope();

 int isSlopeSet();

diff1 is a simplified version of the difference function which estimates a melodic

difference on the basis of pitch differences weighted by window widths only.

Transposition processing is not done.

Appendix 1: scoreView User Manual.

 235

void form(String & str, Score & s, Rat In, float

(*diff)(ScoreIterator &si1, ScoreIterator &si2, Rat ln), float

criticalValue, int lid = 0);

Calculates the form of the monophonic score s using the function diff to calculate the

differences. ln is the time interval of the segments used to evaluate the form. See

8.4 for details.

Various functions influence the effect of the difference calculations. See manual

page for difference for details.

Appendix 1: scoreView User Manual.

 236

int getNextScoreNames(String fname, String & str, int depth = 0);

The purpose of this function is to examine the file fname which may contain either

(a) an encoded score or (b) a list of files which contain encoded scores.

getNextScoreNames is called repeatedly until it returns FALSE. It places the name

of the next file for processing in the string str, and returns TRUE. If no more files

exist, the function returns FALSE. Hence this function may be useful in the

following context

 while (getNextScoreNames(fname, str)

 {

 Score s(str);

 do processing on s

 }

In the case of fname containing a score, getNextScoreNames returns TRUE on the

first call and copies fname to scr. In this case, a second call will return FALSE.

If fname contains a list of filenames, one per line, the first call to

getNextScoreNames will return TRUE, and place the name of the first file in str.

The subsequent calls will place the name of each next file in str. After the last file

name form in fname is processed, the next call will return FALSE.

Appendix 1: scoreView User Manual.

 237

void isort(int inAr[], int outAr[], int size);

Performs an insertion sort on the first size elements of inAr, and produces the results in

outAr.

Appendix 1: scoreView User Manual.

 238

int median(int values[], float weights[], int size);

Returns the median of the first size values in the array values, with the associate weights

in array weight.

Appendix 1: scoreView User Manual.

 239

int sameSection(const Rat & ts, const Rat & p1, const Rat & p2);

 Returns TRUE if p1 and p2 lie within the same primary division of ts. The primary

division is determined by dividing ts by the lowest prime number of its denominator,

other than one.

 The function is of use for checking where two position within a bar fall in relation to

the primary division of the bar.

Example:

 Suppose the time signature is 6/8, then the primary division of the bar is by 2. In this

case the following results are produced.

 p1 p2 Result Comment

 1/8 2/8 TRUE both displacements are in first half.

 4/8 5/8 TRUE both displacemants are in second half.

 1/8 5/8 FALSE p1 is in first half, p2 in second half.

Appendix 2 - Programs.

Appendix 2: Programs.

 241

A2.1 Code for Parts Expert.

// partsexp.h

#include "score.h"

const int MAXEXPERTSTORE = 50;

struct Limits // stores lower and upper bar numbers of each 8 bar

part

{

 int lower, upper;

};

class PartsExpert

{

 Limits ar[MAXEXPERTSTORE];

 int size; // number of expanded 8-bar sections

 Score * sptr;

 public:

 PartsExpert(Score & s)

 {

 size = 0;

 sptr = &s;

 int n = 1;

 ScoreIterator si(s,0);

 while (TRUE)

 {

 if (size + 1 == MAXEXPERTSTORE)

 {

 cerr << "\nno room in PartsExpert";

 return;

 }

 if (!si.locate(BAR, n+7)) return;

 ar[size].lower = n;

 ar[size++].upper = n+7;

 if (si.step(BARLINE))

 {

 if (si.getBarType() < Set (CLHLC, CLLC, CLH, CLL, CLC, CL))

 {

 ar[size].lower = n;

 ar[size++].upper = n + 7;

 }

 }

 else return;

 n += 8;

 }

 }

 int isSingled()

 {

 // false for explicit repeats

 if (ar[0].lower == ar[1].lower) return FALSE;

 // must have at least two parts

 if (size <= 2) return TRUE;

 // true if bars 1-8 dissimilar to bars 9-16

Appendix 2: Programs.

 242

 ScoreIterator si1(*sptr,0), si2(*sptr,0);

 si1.locate(BAR,1);

 //d is distance of 7 1/2 bars + eight note

 Rat span = si1.getTimeSig() * Rat (15,2) + Rat(1,8);

 si2.locate(BAR,9);

 int diff = diff1(si1, si2, span);

 if (diff > 300) return TRUE;

 // false otherwise

 return FALSE;

 }

 int numberOfParts()

 {

 if (isSingled()) return size;

 return size/2;

 }

 int hasOddPart()

 {

 if (!isSingled() && (size % 2) != 0) return TRUE;

 return FALSE;

 }

 int getBarNoForPart(int i)

 {

 int index;

 if (isSingled()) index = i - 1; else index = i*2 - 2;

 if (index < 0 || index >= size)

 {

 cerr <<

"\nPartsExpert::getBarForPart(int) called with impossible part number";

 cerr<< "\nParameter value is " << i << " giving index = " << index

 << ", parameter should be in range 0 to " << size;

 if (isSingled()) cerr << "(tune is singled)";

 }

 return ar[index].lower;

 }

};

// end of partexp.h

Appendix 2: Programs.

 243

A2.2 Program to Evaluate Average Pitches in Tune and Turn.

// To examine the average pitches in the first and second part of tunes

// includes provision for case where the the first part has been

// notated twice.

#define ___MAIN

#include <iostream.h>

#include <fstream.h>

#include "score.h"

#include "almain.h"

#include "score5.h"

#include "partsexp.h""

extern ofstream fout;

int main(int argc, char * argv[])

{

 if (argc != 2)

 {

 cout << "\nInvalid command line; should be ex1 <filename> ";

 return 1;

 }

 long countTunes = 0;

 long countTunesRising = 0;

 String fname;

 while (getNextScoreNames(argv[argc-1], fname))

 {

 Score s(fname);

 if (s.isNull())

 {

 cout << "\nScore " << fname << " does not exist";

 return 2;

 }

 int sumOfPitches[2] = { 0, 0};

 int noteCountOfPart[2] = { 0, 0};

 cout << "\n" << s.getString(TITLE) << " " << s.getString(ETITL);

 ScoreIterator si(s, 0);

 while (si.getBarNo() <=8 && !si.isLast())

 {

 if (si.getTag() == NOTE)

 {

 sumOfPitches[0] += si.getPitch12();

 noteCountOfPart[0]++;

 }

 si.step();

 }

 PartsExpert partsExpert(s);

Appendix 2: Programs.

 244

 int nextBar = partsExpert.getBarNoForPart(2);

 while (si.getBarNo() <= nextBar+8 && !si.isLast())

 {

 if (si.getTag() == NOTE)

 {

 sumOfPitches[1] += si.getPitch12();

 noteCountOfPart[1]++;

 }

 si.step();

 }

 float average[2] = { 0, 0};

 for (int count = 0; count < 2; count++)

 {

 if (noteCountOfPart[count] > 0)

 {

 average[count] =

 ((float)sumOfPitches[count])/ noteCountOfPart[count];

 }

 else

 {

 cerr << "\nno notes in tune!";

 }

 }

 countTunes++;

 if (average[0] < average[1]) countTunesRising++;

 }

 fout << "\n\n\nAverage pitches analysis of parts 1 and 2 of tunes.";

 fout << "\n\nFiles used from '" << argv[1] << "'."

 << "\n\nTunes with higher average pitch in 2nd part = "

 << countTunesRising << " out of " << countTunes << " ("

 << countTunesRising*100/countTunes << "%). ";

 return 0;

}

Appendix 2: Programs.

 245

A2.3 Program to Search for the Occurrence of a Tuple.

 // ex8.cpp

#define ___MAIN

#include <iostream.h>

#include <fstream.h>

#include "score.h"

#include "store.h"

#include "tuple.h"

extern ofstream fout;

void drawLine()

{

 fout <<

"--";

 return;

}

int main(int argc, char * argv[])

{

 if (argc < 2 || argc > 3)

 {

 cout<<"\nInvalid command line; should be ex8 [-l<size>] <filename>";

 cout << "\nwhere size is the size of the tuple (default 8).";

 return 1;

 }

 int tupleSize = 16;

 if (argc == 3)

 {

 if (*argv[1] == '-' && *(argv[1] +1) == 'l')

 sscanf(argv[1]+2,"%f",&tupleSize);

 else

 {

 cerr << "\nInvalid parameter " << argv[1] << "\n";

 return 1;

 }

 }

 cout << "\nSearch for pitch tuple";

 cout << "\nInput tuple of Size " << tupleSize;

 PitchTuple target(tupleSize);

 cout << '\n';

 for (int i = 0; i < tupleSize; i++)

 {

 cout << i+1 << ':';

 int j;

 cin >> j;

 target.put(j, i);

 }

 cout << "\nSearching";

Appendix 2: Programs.

 246

 int countAll = 0;

 String str, fname(argv[argc-1]);

 while (getNextScoreNames(fname, str))

 {

 Score s(str);

 ScoreIterator si(s, 0);

 countAll++;

 si.locate(BAR,1);

 PitchTuple tuple(tupleSize);

 int count = 0;

 while (si.getBarNo() != tupleSize/2 + 1 && ! si.isNullStave())

 {

 if (si.getTag() == NOTE &&

 !(GRACE_NOTE < si.getAttributeSet()) &&

 (si.getBarDist() == Rat(0,1) || // start of bar

 si.getBarDist()==(si.getTimeSig()/Rat(2))))// middle of bar

 tuple.put(si.getPitch12(), count++);

 si.step();

 }

 if (target == tuple)

 cout << '\n' << si.getString(NUMBER) << ' ' << si.getString(TITLE)

 << ' ' << si.getString(ETITL);

 }

 return 0;

}

Appendix 2: Programs.

 247

A2.4 Program used to Traverse and List the Entities in a Polyphonic Score.

 Score s(filename);

 ScoreIterator si(s);

 printEntries(s, fout);

 fout << '\n';

 int more = TRUE;

 while (more)

 {

 fout << '\n' << si.getStaveId() << ':'

 << si.getName() << ":" << si.getString();

 if (si.isLast()) more = FALSE; else si.step();

 }

Sample output of this program is shown in table A3.6 in appendix 3.

Appendix 3 - Output of Programs.

Appendix 3: Output of Programs.

 249

Program outputAccented Tone analysis for pieces in =d:\mdb\tdmoi\tdmoij.dir

Frequency Pitch 16-Tuple

__

1 {0,12,16,9,7,7,2,2,0,12,16,9,7,12,0,0}

1 {0,12,14,12,0,12,4,2,0,12,14,12,0,12,16,12}

1 {0,12,14,11,16,17,14,5,0,12,14,14,16,17,14,12}

1 {0,12,9,7,5,4,2,7,0,12,9,7,5,2,7,12}

1 {0,12,9,4,0,4,-1,5,0,12,14,5,-5,2,4,0}

1 {0,12,7,9,0,12,7,17,0,12,7,9,19,21,7,2}

1 {0,12,7,7,0,12,2,2,0,12,7,12,9,5,0,0}

1 {0,12,7,4,0,12,5,5,0,4,2,0,16,7,2,5}

1 {0,12,7,2,-5,4,4,2,0,12,7,2,-5,4,2,0}

1 {0,11,4,5,0,2,7,2,0,11,12,5,0,0,0,0}

1 {0,9,12,9,0,9,10,7,5,9,12,9,0,7,9,5}

1 {0,9,12,9,0,9,4,9,0,9,12,9,0,7,9,5}

1 {0,9,12,9,0,9,4,7,0,9,12,9,17,12,7,5}

1 {0,9,10,7,9,5,7,4,0,9,10,7,12,0,9,5}

1 {0,9,10,4,9,7,5,7,0,9,10,4,9,7,0,5}

1 {0,9,10,4,0,9,10,5,0,9,10,4,16,16,10,5}

1 {0,9,9,9,0,12,2,2,0,9,9,9,0,0,4,0}

1 {0,9,7,9,0,9,7,2,0,9,7,9,9,10,9,2}

1 {0,9,7,5,14,12,7,9,0,9,7,5,14,12,7,5}

1 {0,9,7,4,0,9,7,10,0,9,7,4,4,4,7,10}

1 {0,9,0,0,0,9,0,2,0,9,0,-7,10,9,0,2}

1 {0,8,8,1,1,10,3,1,0,1,3,8,0,-2,-4,-4}

1 {0,8,5,8,0,8,8,5,0,8,5,8,13,8,8,5}

1 {0,8,5,8,0,8,5,0,0,8,5,8,0,8,5,-2}

1 {0,7,12,7,9,2,9,2,0,4,7,12,7,0,7,0}

1 {0,7,12,7,9,2,4,0,0,7,12,7,9,14,12,12}

1 {0,7,12,7,7,4,7,4,0,7,12,7,7,2,7,2}

1 {0,7,12,7,5,2,4,0,0,7,12,7,9,14,12,4}

1 {0,7,12,7,3,3,8,3,0,7,12,7,1,1,-4,1}

1 {0,7,11,11,7,12,16,11,4,5,11,11,7,7,4,0}

1 {0,7,8,7,0,7,1,5,0,7,8,7,12,7,1,-4}

1 {0,7,5,10,0,7,5,5,0,7,5,10,14,12,5,5}

1 {0,7,4,7,0,7,0,0,0,7,4,7,0,4,0,-3}

1 {0,7,4,4,0,7,7,10,0,7,4,4,9,10,7,5}

1 {0,7,2,7,0,7,2,4,0,7,4,7,12,7,2,4}

1 {0,7,2,5,0,7,5,0,0,7,2,5,3,7,5,0}

1 {0,7,0,3,7,5,7,2,0,7,0,3,5,10,5,-2}

1 {0,7,-2,5,0,7,3,12,15,10,5,2,0,5,7,0}

1 {0,6,8,10,12,6,1,1,0,6,8,10,12,6,3,8}

1 {0,5,12,12,7,5,7,0,0,5,12,12,9,10,5,5}

1 {0,5,12,10,9,12,17,7,0,5,12,10,9,12,17,5}

1 {0,5,12,8,7,-2,7,7,0,5,12,17,12,7,12,5}

1 {0,5,10,4,9,10,7,5,0,5,10,4,12,10,7,5}

1 {0,5,9,14,12,4,9,7,0,5,9,14,12,4,9,5}

1 {0,5,9,10,4,0,4,7,0,5,9,7,16,10,5,5}

1 {0,5,9,9,0,4,7,10,0,5,9,9,16,10,7,5}

1 {0,5,9,7,9,2,9,2,0,5,9,7,9,0,5,5}

1 {0,5,8,8,12,12,10,3,0,5,8,8,12,10,8,5}

1 {0,5,8,0,-2,-2,-2,3,0,5,8,0,0,5,0,-2}

Appendix 3: Output of Programs.

 250

1 {0,5,7,12,15,12,10,4,0,5,7,12,15,10,5,5}

1 {0,5,7,10,12,10,7,3,0,5,7,10,12,10,7,5}

1 {0,5,7,9,0,5,7,5,0,5,7,9,17,12,7,5}

1 {0,5,7,8,12,3,1,-2,0,5,7,8,12,3,5,8}

1 {0,5,7,8,7,0,3,-2,0,5,7,3,12,15,7,5}

1 {0,5,7,7,12,10,10,3,0,5,7,7,12,10,12,5}

1 {0,5,7,5,10,10,7,3,0,5,7,5,10,10,7,5}

1 {0,5,7,5,0,5,12,9,14,12,10,9,0,7,9,5}

1 {0,5,7,4,9,7,5,0,0,5,9,7,9,10,7,5}

1 {0,5,7,0,16,14,9,7,0,5,7,0,16,14,7,5}

1 {0,5,5,7,-2,3,3,5,0,5,7,7,12,10,8,5}

1 {0,5,4,10,9,14,9,7,0,5,4,10,9,14,9,5}

1 {0,5,4,7,9,10,9,4,0,5,4,7,9,10,7,5}

1 {0,5,3,3,0,5,5,0,0,5,3,3,8,7,0,-2}

1 {0,5,2,-3,-3,-3,-8,-5,0,5,2,-3,9,10,5,5}

1 {0,5,0,7,5,4,2,-1,0,5,0,7,5,4,11,12}

2 {0,5,0,0,0,5,9,2,0,5,0,0,5,7,9,5}

1 {0,5,0,0,0,5,2,2,0,5,5,9,10,5,-3,2}

1 {0,5,-3,3,-5,-2,-5,-2,0,5,-3,2,-2,3,0,-7}

1 {0,4,12,12,11,9,7,2,0,4,12,12,9,4,9,2}

1 {0,4,9,7,0,4,-3,2,0,4,9,7,2,4,0,0}

1 {0,4,7,12,9,7,-1,-1,0,4,7,12,9,7,-1,0}

1 {0,4,7,12,0,4,7,2,0,4,7,12,14,12,7,2}

1 {0,4,7,12,0,4,2,5,0,4,7,12,9,7,5,0}

1 {0,4,7,4,2,5,9,7,0,4,7,4,2,5,4,-3}

1 {0,4,7,4,2,2,9,2,0,4,7,4,2,4,0,-3}

1 {0,4,7,4,0,4,7,2,0,4,7,12,11,9,7,2}

1 {0,4,7,2,-2,2,5,5,0,4,7,2,7,0,0,0}

1 {0,4,5,9,0,4,5,2,7,0,5,9,7,5,0,12}

1 {0,4,5,4,0,5,-1,-5,0,4,5,4,7,5,0,0}

1 {0,4,4,7,9,7,9,7,0,4,4,7,9,7,2,2}

1 {0,4,4,7,5,7,4,2,0,4,4,7,5,7,4,0}

1 {0,4,4,4,0,4,2,-3,0,4,4,4,9,4,4,-3}

1 {0,4,4,-1,-3,7,4,7,0,4,4,2,9,2,-3,-3}

1 {0,4,2,5,0,7,12,7,5,4,2,5,7,5,0,0}

1 {0,4,2,5,0,4,7,9,0,4,2,5,7,10,5,-2}

1 {0,4,2,5,0,4,7,9,0,4,2,5,0,7,12,5}

1 {0,4,2,0,7,-1,-1,-5,0,4,2,11,5,-1,4,0}

1 {0,4,0,4,-1,2,7,2,0,4,0,4,7,2,0,-3}

1 {0,4,0,4,-3,-7,-3,-2,0,4,0,0,9,7,5,5}

1 {0,4,0,-3,0,4,-1,-5,0,4,0,4,0,-5,0,-3}

1 {0,4,0,-3,-1,2,-1,-5,0,5,0,-3,0,0,5,0}

1 {0,3,8,10,12,13,8,10,0,3,8,10,12,13,3,8}

1 {0,3,8,10,0,3,8,1,0,3,8,10,12,13,3,8}

1 {0,3,8,8,3,1,5,-2,0,3,8,8,3,5,0,-4}

1 {0,3,8,6,0,6,0,3,0,3,8,6,0,1,0,1}

1 {0,3,8,5,0,3,12,8,0,3,8,5,0,3,12,8}

1 {0,3,8,3,1,3,8,7,0,3,8,3,1,3,3,-4}

1 {0,3,8,0,1,0,1,-2,0,3,8,0,-2,7,8,-4}

1 {0,3,7,10,7,7,3,5,0,3,7,10,7,2,3,0}

1 {0,3,7,10,2,-2,2,2,0,3,7,10,14,12,14,12}

1 {0,3,7,7,12,3,7,3,-2,3,7,7,12,15,7,5}

1 {0,3,7,7,-2,2,5,5,0,3,7,7,12,8,7,0}

Appendix 3: Output of Programs.

 251

1 {0,3,7,3,-2,2,5,5,0,3,7,15,10,3,3,0}

1 {0,3,7,0,0,3,7,0,0,3,7,2,-2,10,5,-2}

1 {0,3,5,7,0,3,5,2,0,3,5,7,12,8,7,2}

1 {0,3,5,6,5,10,3,0,1,3,5,6,5,10,3,1}

1 {0,3,5,3,3,3,3,3,0,3,5,3,-4,1,-4,1}

2 {0,3,5,3,0,3,-2,-2,0,3,5,3,0,1,-4,-4}

1 {0,3,3,8,1,0,-2,-2,0,3,3,8,3,8,3,-4}

1 {0,3,3,3,5,3,5,-2,0,3,3,8,5,3,3,-4}

1 {0,3,3,3,1,0,5,-2,0,3,3,8,5,3,3,-4}

1 {0,3,3,1,-2,7,8,7,0,3,3,1,-4,8,0,1}

1 {0,3,2,0,0,3,5,-2,0,3,2,0,10,10,5,-2}

1 {0,3,1,-5,0,0,1,-4,0,3,1,-5,3,8,1,-4}

1 {0,3,0,3,1,5,1,5,0,3,0,3,-4,5,8,-2}

1 {0,3,0,-5,-9,-5,-2,3,0,0,3,8,7,-2,-5,-7}

1 {0,3,-5,3,2,0,-2,2,0,3,-5,3,2,3,-2,2}

1 {0,2,9,2,0,2,9,-3,0,2,9,2,7,12,5,0}

1 {0,2,5,7,0,2,-1,-5,0,2,5,7,-3,2,4,0}

1 {0,2,5,5,0,2,2,2,0,2,5,5,7,2,0,0}

1 {0,2,5,4,0,2,-3,2,0,2,4,12,7,2,-5,0}

1 {0,2,4,9,4,0,0,-3,0,2,4,9,4,0,2,0}

1 {0,2,4,9,0,2,4,-3,0,2,4,9,7,2,4,0}

1 {0,2,4,7,12,7,5,2,0,5,4,7,12,7,4,0}

1 {0,2,4,7,4,0,2,0,0,2,4,7,4,0,2,0}

1 {0,2,4,7,0,2,4,-3,0,2,4,7,5,4,0,0}

1 {0,2,4,5,0,2,-5,-1,0,2,4,5,4,2,-5,0}

1 {0,2,4,2,0,2,0,0,0,2,0,5,7,2,0,0}

1 {0,2,4,-5,0,2,-5,-5,0,2,4,-3,2,-5,-10,-10}

1 {0,2,3,5,-2,-9,-5,-5,0,-10,-5,3,-2,3,-5,-7}

1 {0,2,2,9,0,2,2,5,0,2,2,9,14,12,14,9}

1 {0,2,0,7,9,12,17,14,0,2,0,7,9,12,16,12}

1 {0,2,0,7,0,2,0,-5,0,2,0,7,0,0,2,5}

1 {0,2,0,7,0,2,0,-5,0,2,0,7,0,0,-3,-7}

1 {0,2,0,4,9,7,2,2,0,2,0,4,9,7,2,0}

1 {0,2,0,2,0,3,-2,-9,0,2,0,2,5,3,-2,-7}

1 {0,2,0,-3,0,2,0,-5,0,2,0,-3,-5,-2,0,-5}

1 {0,2,0,-3,0,2,-1,-5,0,2,4,9,4,-1,0,-3}

1 {0,2,0,-5,-7,-8,-7,-10,0,2,0,-5,-3,2,4,0}

1 {0,2,-5,0,9,7,4,2,0,2,-5,0,9,7,4,0}

1 {0,2,-5,-1,-10,-10,-17,-10,0,2,-5,-1,-10,-10,-17,-12}

1 {0,2,-5,-10,-8,-5,-3,2,0,2,-5,-10,-8,-5,-3,0}

1 {0,2,-7,-7,-12,-7,-3,-5,0,0,-7,-7,-12,-5,-3,-7}

1 {0,1,3,7,3,8,3,8,0,1,3,7,1,3,1,3}

1 {0,1,3,1,0,1,3,8,0,1,3,3,12,7,3,8}

1 {0,1,3,-2,-4,5,7,3,8,8,1,3,-4,1,0,-4}

1 {0,1,3,-4,0,0,-5,-5,0,1,3,-2,0,-2,-9,-4}

1 {0,1,0,1,0,1,0,-4,0,1,0,3,0,1,0,-4}

1 {0,1,0,1,0,-2,-7,-7,0,1,0,1,0,-2,-9,-9}

1 {0,1,-4,0,-9,-4,5,1,0,1,-4,0,-9,-4,0,5}

1 {0,0,12,9,9,7,2,2,0,0,12,9,9,7,2,0}

1 {0,0,12,7,4,7,-1,2,0,0,12,7,4,5,0,0}

1 {0,0,12,0,4,5,0,-1,0,0,12,0,4,5,4,0}

1 {0,0,9,7,0,0,9,2,0,0,9,12,9,2,4,0}

1 {0,0,7,12,4,0,7,-1,0,0,7,12,4,9,0,0}

Appendix 3: Output of Programs.

 252

1 {0,0,7,12,0,0,2,2,0,0,7,12,9,7,5,0}

1 {0,0,7,12,0,0,2,2,0,0,7,12,9,7,-1,0}

1 {0,0,7,10,-2,2,5,0,0,0,7,5,10,9,2,0}

1 {0,0,7,9,0,0,-5,-5,0,0,7,9,0,9,5,5}

1 {0,0,7,7,10,10,5,2,0,0,7,7,10,5,0,0}

1 {0,0,7,7,9,7,5,5,0,0,7,7,9,7,5,0}

1 {0,0,7,7,9,7,2,4,0,0,7,7,9,7,2,0}

1 {0,0,7,7,9,7,2,2,0,0,7,7,9,7,0,0}

1 {0,0,7,5,9,7,2,2,0,12,7,5,9,7,0,0}

1 {0,0,7,5,3,0,7,1,0,0,7,7,12,7,-2,-4}

1 {0,0,7,5,0,0,7,1,0,0,7,7,12,8,7,1}

1 {0,0,7,5,-2,2,5,2,0,0,7,10,7,2,7,0}

1 {0,0,7,4,0,0,7,4,0,0,7,4,7,-2,-3,-7}

1 {0,0,7,3,7,12,10,15,12,17,10,3,7,10,7,5}

1 {0,0,7,2,4,5,4,12,0,0,7,2,4,5,4,0}

1 {0,0,7,0,-2,-2,5,-2,0,0,7,10,7,2,7,0}

1 {0,0,5,5,2,5,-2,-5,0,5,2,7,12,7,9,5}

1 {0,0,5,0,0,0,5,-2,0,0,5,0,5,5,0,-4}

1 {0,0,4,9,0,0,2,2,0,0,4,7,9,9,2,-5}

1 {0,0,4,7,0,0,5,4,0,0,4,7,0,0,4,0}

1 {0,0,4,7,0,0,2,7,0,0,4,2,7,11,2,5}

1 {0,0,2,2,9,12,2,2,0,0,2,2,9,12,5,0}

1 {0,0,2,0,-2,-3,-2,-8,0,2,5,4,4,-2,-5,-7}

1 {0,0,2,-5,0,0,2,5,0,0,2,-5,-1,-1,2,5}

1 {0,0,2,-5,0,-3,-1,-8,0,0,2,-5,0,-5,-3,-3}

1 {0,0,1,-2,1,-4,3,8,0,0,1,-2,0,1,-2,-4}

1 {0,0,1,-4,0,0,3,1,0,0,3,12,8,6,3,1}

1 {0,0,0,10,12,4,9,7,0,0,0,10,12,4,9,5}

1 {0,0,0,10,0,0,7,2,0,0,0,10,5,10,7,2}

1 {0,0,0,7,0,0,-1,2,0,0,0,7,5,4,-1,2}

1 {0,0,0,5,12,7,9,2,0,0,0,5,12,7,9,5}

1 {0,0,0,3,0,0,-2,-5,0,2,3,2,0,3,-2,-5}

1 {0,0,0,0,3,8,-2,-4,0,0,0,0,3,8,-4,-4}

1 {0,0,0,0,2,2,5,9,7,14,12,5,9,9,5,2}

1 {0,0,0,0,1,0,-2,-2,0,0,0,0,8,3,-4,-4}

1 {0,0,0,0,0,0,-2,-2,0,0,0,0,5,0,-2,-2}

1 {0,0,0,0,0,0,-2,-5,0,0,0,0,-2,3,0,-5}

1 {0,0,0,0,0,0,-2,-7,0,0,0,0,-2,3,-2,-7}

1 {0,0,0,-3,-2,2,-3,0,0,0,0,-3,-2,2,3,-2}

1 {0,0,0,-7,0,0,2,-5,0,0,0,0,2,0,2,-5}

1 {0,0,0,-7,-2,-2,-2,-9,-3,-2,0,5,5,0,-3,-7}

1 {0,0,-1,-1,0,7,2,-5,0,0,-1,-1,4,0,-7,-12}

1 {0,0,-1,-1,0,0,2,5,0,0,-1,-1,5,-1,2,0}

1 {0,0,-1,-5,0,0,2,-5,0,0,-1,-5,0,-2,-7,-12}

1 {0,0,-2,3,0,0,-5,-2,0,0,-2,3,-9,1,-2,-4}

1 {0,0,-2,3,-2,-7,-2,-7,0,0,-2,3,-2,-9,-2,-9}

1 {0,0,-2,-2,3,1,-4,8,0,0,-2,-2,3,1,-4,-4}

1 {0,0,-2,-2,-7,0,-2,-2,0,4,-2,-2,-7,3,2,-2}

1 {0,0,-2,-5,-4,-2,0,0,0,0,-2,-5,-9,3,-5,-7}

1 {0,0,-2,-5,-9,-5,-5,-7,0,0,-2,-5,-9,-5,-7,-9}

1 {0,0,-2,-7,-9,-9,-5,-9,2,0,5,0,3,-2,0,-7}

1 {0,0,-3,0,5,0,-2,-5,0,0,-3,0,5,-5,-3,-7}

1 {0,0,-3,-3,0,0,-7,5,0,0,-3,-3,-7,-3,-7,5}

Appendix 3: Output of Programs.

 253

1 {0,0,-4,8,0,0,0,1,0,0,-4,8,0,0,0,-4}

1 {0,0,-4,8,0,0,-2,1,0,0,-4,8,1,0,-2,1}

1 {0,0,-4,8,-2,-2,0,3,0,0,-4,8,5,7,7,3}

1 {0,0,-4,1,5,1,6,0,5,5,6,3,8,6,3,1}

1 {0,0,-4,0,0,0,-2,1,0,0,-4,0,5,7,-2,1}

1 {0,0,-4,-4,5,3,0,-2,0,0,-4,-4,5,3,0,-4}

1 {0,0,-5,-2,0,0,3,7,0,0,-5,-2,3,10,3,0}

1 {0,0,-5,-5,0,0,-10,2,0,0,-5,-5,4,0,-3,0}

1 {0,0,-5,-7,-19,-7,-2,-5,0,0,-5,-7,-19,-7,-2,-7}

1 {0,0,-5,-9,0,0,-2,3,0,0,-5,-9,-2,3,-5,-7}

1 {0,0,-7,-5,-8,-7,-8,-1,0,0,-7,-5,-8,-7,-8,-12}

1 {0,0,-7,-7,-3,2,-3,-5,0,0,-7,-7,-2,-3,-12,-17}

1 {0,0,-8,-5,0,0,-8,-3,0,0,-8,-5,0,5,0,-3}

1 {0,0,-8,-12,0,0,-3,2,0,0,-8,-12,0,4,0,-3}

1 {0,-1,0,-3,-5,7,-1,-5,0,2,4,12,9,4,0,-3}

1 {0,-1,0,-8,0,-1,-5,-10,0,-1,0,-8,-12,-12,-5,-10}

1 {0,-1,-3,-1,-10,-5,-3,-1,0,-1,-3,-1,-10,-3,-1,-5}

1 {0,-1,-3,-5,0,2,-8,-3,0,-1,-3,-5,-8,-8,-8,-3}

1 {0,-1,-3,-5,0,-1,-1,-3,0,-1,-3,-5,0,2,0,-3}

1 {0,-1,-3,-8,0,-1,0,-10,0,-3,-5,-8,-12,-12,-5,-10}

1 {0,-1,-8,0,0,-1,-3,-5,0,-1,-8,0,0,-1,-3,-5}

1 {0,-1,-8,-12,-10,-1,0,-1,-5,-1,-8,-12,-10,-5,-8,-12}

1 {0,-2,7,3,0,0,7,1,0,0,7,7,12,8,7,1}

1 {0,-2,0,-4,-7,-2,-7,-2,0,-2,0,-4,-7,-4,-7,-4}

1 {0,-2,-2,-2,0,3,7,7,7,5,2,2,7,2,2,0}

1 {0,-2,-4,-4,5,8,0,-2,0,-2,-4,-4,5,8,1,-4}

1 {0,-2,-4,-4,5,8,0,-2,0,-2,-4,-4,5,7,8,8}

1 {0,-2,-4,-5,0,1,3,8,0,-2,-4,-5,0,-5,-9,-4}

1 {0,-2,-4,-5,0,1,-9,-4,0,-2,-9,-5,7,1,-9,-4}

1 {0,-2,-4,-5,0,-2,-4,7,0,-2,-4,-5,0,-5,-4,-4}

1 {0,-2,-4,-9,0,-2,-4,-11,0,-2,0,-2,0,1,-4,-11}

1 {0,-2,-4,-9,-11,-4,-11,-14,0,-2,-4,-9,-11,-4,-12,-16}

1 {0,-2,-5,-9,0,-2,-5,-7,0,-2,-5,-9,3,-2,-5,-9}

1 {0,-2,-9,0,0,3,0,-2,0,-2,-9,0,0,3,-2,-4}

1 {0,-2,-9,-2,-9,-2,0,5,0,-2,-9,-2,-9,-2,0,-4}

1 {0,-2,-9,-4,0,1,3,7,0,-2,-9,-5,0,1,-2,-4}

1 {0,-2,-9,-5,0,0,1,-5,0,-2,-4,8,7,8,1,-4}

1 {0,-2,-9,-9,-4,1,3,-2,0,-2,-9,-9,0,-2,-4,-4}

1 {0,-3,4,2,-3,0,4,-2,-3,5,10,4,9,4,-2,-7}

1 {0,-3,4,-3,-1,-5,2,-5,12,7,4,7,2,-5,0,-3}

1 {0,-3,0,-3,0,-3,-7,-10,0,-3,0,-3,-5,-3,-7,-10}

1 {0,-3,0,-7,0,-3,-8,-5,0,-3,0,2,-3,0,5,-7}

1 {0,-3,-2,-5,-12,-8,-7,-5,0,-3,-2,-5,-12,-8,-3,-7}

1 {0,-3,-3,-3,-1,-1,-1,-5,0,-3,-3,0,4,2,0,-3}

1 {0,-3,-3,-5,-7,-7,-3,-7,0,-3,-3,-5,-7,-7,-3,-7}

1 {0,-3,-5,-10,-17,-10,-8,-10,0,-3,-5,-10,-17,-10,-8,-12}

1 {0,-3,-7,5,9,0,-8,-5,0,-3,-7,5,7,0,-3,-7}

1 {0,-3,-8,0,-1,-5,-1,7,0,-3,0,9,7,-1,0,-3}

1 {0,-3,-8,-3,-1,-5,2,-5,0,-3,-8,9,9,4,0,-3}

1 {0,-3,-8,-5,-8,-5,-8,-10,0,-3,-8,-5,-8,-5,-8,-12}

1 {0,-3,-8,-12,-8,-8,-7,-10,0,-3,-8,-12,-7,-10,-8,-12}

1 {0,-4,8,3,0,-4,1,-2,0,-4,8,3,0,-2,-4,-4}

1 {0,-4,8,3,-2,-5,7,-5,0,-4,8,3,1,-2,3,-4}

Appendix 3: Output of Programs.

 254

1 {0,-4,8,3,-2,-5,-2,-5,0,-4,8,3,1,-2,3,-4}

1 {0,-4,3,0,0,-4,3,5,0,-4,3,0,-2,8,1,1}

1 {0,-4,3,-4,-2,-6,1,-2,0,-4,3,-4,1,-2,3,-4}

1 {0,-4,3,-5,-9,-11,-12,-11,-12,-16,-9,-5,-12,-11,-16,-16}

1 {0,-4,1,6,8,8,10,3,0,-2,3,6,8,1,-4,-4}

1 {0,-4,1,3,1,3,-5,-2,0,3,8,3,5,3,-2,-4}

1 {0,-4,1,-2,0,-4,1,-5,0,-4,1,-2,3,1,-2,-4}

1 {0,-4,0,2,0,-4,-2,-5,0,-4,0,-5,-9,3,-2,-5}

1 {0,-4,0,-5,-7,-4,0,0,0,-4,0,-5,-7,3,0,-7}

1 {0,-4,-2,-4,0,-4,-4,5,0,-4,-2,-4,-2,-5,-5,1}

1 {0,-4,-2,-5,-2,7,1,-5,0,-4,-2,-5,-2,7,1,-4}

1 {0,-4,-4,8,1,0,5,-2,0,-4,-4,8,1,-2,0,-4}

1 {0,-4,-4,7,0,-4,3,1,0,-4,-4,7,0,1,3,1}

1 {0,-4,-4,5,0,-4,5,3,8,7,5,3,0,-9,-4,-4}

1 {0,-4,-4,1,3,7,3,8,0,-4,-4,1,3,7,8,8}

1 {0,-4,-4,-2,0,-4,1,-2,0,-4,-4,-2,0,3,1,-4}

1 {0,-4,-4,-2,0,-4,1,-2,0,-4,-4,-2,-4,6,1,-2}

1 {0,-4,-4,-4,1,-4,-2,3,0,-4,-4,-4,8,3,-2,1}

1 {0,-4,-5,-5,-5,-11,-9,0,1,-4,-5,-5,-5,-11,-9,-4}

1 {0,-4,-7,-4,0,3,0,-2,0,-4,-7,-4,0,-2,0,-4}

1 {0,-4,-7,-4,0,0,-4,1,0,-4,-7,-4,5,0,-4,1}

1 {0,-4,-7,-4,0,-4,5,-2,0,-4,-9,-4,3,3,0,-4}

1 {0,-4,-7,-4,0,-4,-7,-2,0,-4,-7,-4,3,3,0,-4}

1 {0,-4,-9,-4,0,3,-2,-2,0,-4,-9,-4,0,3,-9,-4}

1 {0,-4,-9,-5,-4,-4,1,-5,0,0,-2,-2,3,-2,-4,-4}

1 {0,-5,2,4,0,-3,0,-3,0,-5,2,4,4,0,4,0}

1 {0,-5,0,9,12,4,5,-3,0,-5,0,9,12,4,5,0}

1 {0,-5,0,5,7,2,4,-3,0,-5,0,5,7,2,4,0}

1 {0,-5,0,-5,0,4,2,-3,0,-5,0,-5,0,7,4,0}

1 {0,-5,0,-5,0,-5,0,5,0,-5,0,-5,-7,-10,-1,-5}

1 {0,-5,0,-5,0,-5,0,-6,0,-5,0,-3,-6,6,0,-5}

1 {0,-5,0,-5,0,-5,-2,-5,0,-5,0,-5,3,-2,-5,-2}

1 {0,-5,0,-5,-3,-3,-3,-5,0,-5,0,-5,-5,2,4,0}

1 {0,-5,0,-5,-12,-9,-12,-9,0,-5,0,-5,-12,-11,-12,-16}

1 {0,-5,0,-7,0,-5,-2,-9,0,-5,0,-7,-9,-5,-2,-7}

1 {0,-5,-2,-5,0,-5,-7,-4,0,-5,-5,-2,0,1,-4,-7}

1 {0,-5,-2,-5,0,-5,-12,-7,0,-5,-2,-5,0,4,5,-7}

1 {0,-5,-2,-9,0,-5,-4,-11,0,-5,-4,-2,3,-2,-5,-9}

1 {0,-5,-3,-3,0,-5,-3,6,0,-5,-3,-3,0,-5,-3,2}

1 {0,-5,-3,-7,0,-5,2,2,0,-5,-3,-7,9,7,2,2}

1 {0,-5,-5,2,0,-5,0,0,0,-5,-5,2,7,2,0,0}

1 {0,-5,-5,-5,0,-5,-7,-7,0,-5,-5,-5,0,-5,0,-7}

1 {0,-5,-7,-2,0,-3,-5,2,0,-5,-7,5,0,-5,-7,-7}

1 {0,-5,-7,-8,0,-5,-8,-10,0,-5,-8,0,0,-5,-8,-12}

1 {0,-5,-7,-9,-12,-4,1,-2,0,-5,-7,-9,-12,-4,1,-4}

1 {0,-5,-7,-12,-5,-5,-3,-5,0,-5,-7,-12,-5,-5,-3,-7}

1 {0,-5,-7,-12,-7,-1,-7,-2,0,-5,-7,-12,-7,-2,-12,-12}

1 {0,-5,-7,-12,-10,-12,-17,-17,0,-5,-7,-12,-15,-17,-19,-19}

1 {0,-5,-8,-3,4,2,0,-5,0,-5,-5,-5,4,2,-1,-3}

1 {0,-5,-8,-3,0,4,-1,-5,7,4,2,-1,4,-5,-8,-3}

1 {0,-5,-8,-8,0,-5,0,-7,0,-5,-8,-8,0,-5,0,-7}

1 {0,-5,-9,-2,0,-2,-5,-2,0,-5,-9,-2,0,-2,-4,-7}

1 {0,-5,-9,-5,-12,-16,-12,-11,-9,-5,-9,-9,0,-2,-4,-4}

Appendix 3: Output of Programs.

 255

1 {0,-5,-9,-9,-5,-5,-5,-2,-2,-7,-14,-9,-5,-5,-5,-9}

1 {0,-5,-10,-5,0,-5,-8,-3,0,-5,-10,-5,0,5,0,-3}

1 {0,-5,-10,-7,-3,-3,-5,-10,0,-5,-10,-7,-3,-3,-5,-12}

1 {0,-5,-12,-5,0,-5,-10,-3,0,-5,-12,-5,0,-5,-10,-3}

1 {0,-5,-12,-5,-3,-7,-7,-7,0,-5,-12,-5,-3,2,4,0}

1 {0,-6,-13,-13,-13,-5,0,-3,-1,-6,-6,-13,-17,-3,-1,-5}

1 {0,-7,5,4,2,-5,2,2,0,-7,5,4,2,7,5,5}

1 {0,-7,3,0,-5,-9,-5,0,0,-7,0,5,8,7,0,5}

1 {0,-7,2,2,2,0,-2,-5,0,-7,2,2,2,-3,-3,-7}

1 {0,-7,2,-3,0,-7,-2,-5,0,-7,2,-3,2,-3,-3,-7}

1 {0,-7,0,5,0,-7,-5,2,0,-7,0,5,2,4,5,5}

1 {0,-7,0,3,-2,-9,-5,-5,0,-7,0,3,5,-2,-7,-7}

1 {0,-7,0,3,-2,-9,-9,3,0,-7,0,3,5,-2,-5,-7}

1 {0,-7,0,2,0,-7,9,2,0,-7,0,2,5,10,9,5}

1 {0,-7,0,0,2,5,2,2,0,-7,0,0,5,10,9,2}

1 {0,-7,0,-2,0,-7,0,-5,0,-7,0,-2,-7,2,0,-5}

1 {0,-7,0,-2,0,-7,-5,-7,0,-7,0,-2,0,5,-5,-7}

1 {0,-7,0,-3,2,10,4,0,0,-3,2,0,5,10,9,5}

1 {0,-7,0,-5,0,-7,-2,-5,0,3,0,-5,0,3,-2,-9}

1 {0,-7,0,-7,0,0,-5,-5,0,-7,0,-7,0,5,-7,-7}

1 {0,-7,0,-7,0,-7,-2,-5,0,-7,0,5,9,2,0,-7}

1 {0,-7,0,-10,-12,-7,0,-5,0,-7,-10,-12,-2,0,-5,-7}

1 {0,-7,-2,-5,0,-7,-5,-2,0,-7,-2,-5,-3,-2,-3,-7}

1 {0,-7,-2,-8,-3,2,4,-2,0,-7,-2,-5,-3,-2,-5,-7}

1 {0,-7,-2,-9,0,-4,1,0,0,-7,-2,-9,-7,0,-4,-4}

1 {0,-7,-2,-9,-3,0,-2,3,0,-7,-2,-9,-3,0,-5,-7}

1 {0,-7,-2,-9,-12,-4,1,5,0,-7,-2,-9,-12,-4,1,-4}

1 {0,-7,-4,-7,0,-7,-2,-9,-4,-7,0,-7,2,0,-2,-7}

1 {0,-7,-5,-12,0,-7,2,4,0,-7,-5,-12,-10,-5,-7,-7}

1 {0,-7,-5,-12,-10,-5,-3,-8,0,-7,-5,-12,-10,-5,-7,-7}

1 {0,-7,-7,2,2,0,2,-5,0,-7,-7,2,2,0,-3,-7}

1 {0,-7,-7,2,0,-7,2,-5,0,-10,-12,-5,0,-3,-3,-7}

1 {0,-7,-7,-7,0,-7,-7,-2,0,-7,-7,-7,0,-7,-7,-4}

1 {0,-7,-7,-7,-2,-9,-9,3,0,-7,-7,3,7,-2,-4,-7}

1 {0,-7,-9,3,1,3,0,-2,0,3,1,3,1,0,0,-4}

1 {0,-8,0,0,0,-8,-3,-10,0,-8,0,0,2,0,-5,-5}

1 {0,-8,0,0,0,-8,-3,-10,0,-8,0,-1,4,2,-3,-10}

1 {0,-8,0,0,0,-8,-5,-10,0,-8,0,0,2,-3,-10,-5}

1 {0,-8,-5,-5,0,-8,-5,5,0,-8,-5,-5,-10,-10,-3,-3}

1 {0,-8,-5,-5,-7,-8,-10,-5,0,-8,-5,-5,-7,-8,-10,-12}

1 {0,-8,-5,-10,0,-8,0,2,-5,-10,-10,-10,-8,-5,0,-1}

1 {0,-8,-7,-8,0,-8,-3,-10,0,-8,-7,-8,-12,0,-5,-12}

1 {0,-8,-8,-8,-5,-10,-10,-10,0,-8,-12,0,4,-1,-5,-5}

1 {0,-8,-12,-8,-5,-10,-10,-10,0,-8,-12,0,4,0,-3,-5}

1 {0,-9,0,3,1,-5,1,5,0,-9,0,3,1,-2,0,-4}

1 {0,-9,-5,-12,0,-9,-7,-14,0,-9,-7,-5,0,-2,-7,-12}

1 {0,-9,-14,-9,-14,-4,-5,-12,0,-9,-14,-9,-7,-4,-5,-9}

1 {0,-12,-3,-1,0,2,7,-1,0,-12,-3,-1,0,2,4,0}

1 {0,-12,-15,-17,0,-12,-15,-13,0,-12,-15,-17,-15,-13,-8,-12}

Total number of pieces processed is 365

Table A3.1 Frequency distribution of tuples for TDMOI using program of Ex.4.

Appendix 3: Output of Programs.

 256

Analysis of Initial Notes

File: =d:\mdb\tdmoi\djig.dir

365 scores processed

NIEPrimes/Tuples Frequency

===

Nr. of Notes:1 61 16%

NIEPF:{0 } 1 61 16%

Tuple:{0} 61 16%

===

Nr. of Notes:2 181 49%

NIEPF:{0 5 } 2-5 64 17%

NIEPF:{0 4 } 2-4 3 0%

NIEPF:{0 3 } 2-3 12 3%

NIEPF:{0 2 } 2-2 46 12%

NIEPF:{0 1 } 2-1 31 8%

NIEPF:{0 } 1 25 6%

Tuple:{0,9} 1 0%

Tuple:{0,7} 2 0%

Tuple:{0,5} 53 14%

Tuple:{0,4} 1 0%

Tuple:{0,3} 2 0%

Tuple:{0,2} 22 6%

Tuple:{0,1} 5 1%

Tuple:{0,0} 23 6%

Tuple:{0,-1} 26 7%

Tuple:{0,-2} 24 6%

Tuple:{0,-3} 9 2%

Tuple:{0,-4} 2 0%

Tuple:{0,-5} 8 2%

Tuple:{0,-7} 1 0%

Tuple:{0,-12} 2 0%

===

Nr. of Notes:3 112 30%

NIEPF:{0 4 7 } I-3-11 3 0%

NIEPF:{0 4 5 } I-3-4 3 0%

NIEPF:{0 3 5 } I-3-7 7 1%

NIEPF:{0 2 5 } 3-7 9 2%

NIEPF:{0 2 4 } 3-6 20 5%

NIEPF:{0 2 3 } I-3-2 21 5%

NIEPF:{0 1 3 } 3-2 48 13%

NIEPF:{0 2 } 2-2 1 0%

Tuple:{0,2,4} 13 3%

Tuple:{0,2,3} 13 3%

Tuple:{0,2,0} 1 0%

Tuple:{0,1,3} 10 2%

Appendix 3: Output of Programs.

 257

Tuple:{0,-1,-3} 8 2%

Tuple:{0,-1,-5} 3 0%

Tuple:{0,-2,-3} 37 10%

Tuple:{0,-2,-4} 7 1%

Tuple:{0,-2,-5} 7 1%

Tuple:{0,-3,-2} 1 0%

Tuple:{0,-3,-5} 9 2%

Tuple:{0,-3,-7} 3 0%

===

Nr. of Notes:4 11 3%

__

NIEPF:{0 2 4 5 } I-4-11 10 2%

NIEPF:{0 1 3 5 } 4-11 1 0%

__

Tuple:{0,2,4,5} 10 2%

Tuple:{0,-2,-4,-5} 1 0%

===

Table A3.2 Initial anacrusis details for TDMOI.

Appendix 3: Output of Programs.

 258

Calculation of forms for file =d:\mdb\tdmoi\djig.dir

Key transitions processed

Stresses processed

Critical Value = 40

Form Frequency

abcd efgh 20

abcd efgg 1

abcd efgd 3

abcd efgb 2

abcd efdg 1

abcd ecfg 1

abcd ebfg 10

abcd ebcf 3

abcd ebcb 1

abcd defg 1

abcd cefg 3

abcd cefd 1

abcd befg 1

abcd aefg 37

abcd aefe 1

abcd aefd 3

abcd aecf 1

abcd aeaf 1

abcd abef 68

abcd abee 1

abcd abed 11

abcd abec 1

abcd abeb 1

abcd abce 46

abcd abcd 1

abcd abae 2

abcd aaef 2

abcc adee 1

abcc abde 3

abcc abdd 1

abcc abcd 1

abcb defg 1

abcb decf 1

abcb abde 2

abca dbef 1

abac defg 4

abac defc 1

abac dcef 1

abac dbef 4

abac dbec 1

abac bdef 1

abac adef 27

abac adec 7

abac adeb 1

Appendix 3: Output of Programs.

 259

abac adae 2

abac abde 42

abac abdc 11

abac abdb 2

abac abcd 1

abac abad 3

abac aadb 1

abab cdef 1

abab acde 3

abab acdb 2

abab abcd 1

aabc adce 1

aabc aade 9

aabc aadc 1

aabc aabd 2

aaba aabc 1

Table A3.3 Frequency distribution of form for tune parts of double jigs in

TDMOI.

Appendix 3: Output of Programs.

 260

Calculation of distances for files =d:\mdb\tdmoi\djig.dir and

 =d:\mdb\tdmoi\djig1.dir

Key transitions processed

Stresses processed

Window widths processed

(6)an doctuir ua neill - DOCTOR O'NEILL

 (224)brighidin ni mhaoldomhnaigh - BIDDY MALONEY 4=7 (88.2:0)

(10)rogha ui gadhra - GUIRY'S FAVOURITE

 (221)briain ua floinn - BRYAN O'LYNN 1=2 (95.8:0)

(11)bean-cheile ui maoileoin - MALOWNEY'S WIFE

 (224)brighidin ni mhaoldomhnaigh - BIDDY MALONEY 1=1 (55.2:0)

 2=2 (96.5:0) 3=3 (64.6:0)

(13)sugra bheantraighe - THE HUMOURS OF BANTRY

 (98)an abhraiseach - THE FLAXDRESSER 1=3 (95.8:0)

(15)an bothar go bhaile-atha-chliath - THE HIGHWAY TO DUBLIN

 (293)an mor ata aci? - HOW MUCH HAS SHE GOT? 1=1 (75:0)

(16)ann do tinneas ne tae ta uait? - WHEN SICK IS IT TEA YOU WANT?

 (358)inthigh do'n diabhal's corruidh tu fein - GO TO THE DEVIL

 AND SHAKE YOURSELF 1=1 (5.6:0) 2=2 (0:0)

(29)alltri na mna - CHERRISH THE LADIES

 (56)sugra an cheapaigh - THE HUMOURS OF CAPPA 2=2 (93.1:0)

(34)tomas ua gaillimh - GALWAY TOM

 (144)an teach annsa gleann - THE HOUSE IN THE GLEN 7=2

 (75.3:0)

 (199)an bho bhreach - THE SPOTTED COW 7=1 (87.2:0)

(39)cuairt go h-eirinn - A VISIT TO IRELAND

 (147)carabhat mhic sheoin - JACKSON'S CRAVAT 2=2 (88.2:0)

 (284)caitlin ua ubhall-ghort - KITTY OF OULART 2=3 (81.2:5)

(42)biodhg suas liom - MOVE UP TO ME

 (151)an cailin deas donn - THE PRETTY BROWN GIRL 2=2 (66:0)

 (325)bo leath-adharcach ui mhartain - MARTIN'S ONEHORNED COW

 1=1 (50:5)

(45)amach leis na buachailibh - OUT WITH THE BOYS

 (118)peis-rince ui lannagain - LANNIGANS BALL 2=3 (95.1:0)

(50)domhnall o ruairc - DANIEL O'ROURKE

 (318)an fiaguidhe suagach - THE MERRY HUNTSMAN 1=1 (66:2)

 2=2 (6.9:2) 2=3 (36.8:2) 3=2 (94.1:2)

(57)an teine mona ar lasadh - THE BLAZING TURF FIRE

 (97)an suidhistin - THE STRAW SEAT 1=1 (94.1:0)

(59)leim an t-sagairt - THE PRIEST'S LEAP

 (156)deoch leanna - A DRAUGHT OF ALE 1=1 (23.6:0) 2=2

 (23.6:0)

(70)an giolcach faoi bhlath - THE BESOM IN BLOOM

 (150)anna ni heidhin - NANCY HYNES 2=2 (81.6:0)

(71)rogha mhic cuairt - COURTNEY'S FAVOURITE

 (125)nach raibh gradh aici orm - WASN'T SHE FOND OF ME? 1=1

 (86.1:-5) 2=1 (93.1:-5)

(79)luthghair mo bheatha - THE JOY OF MY LIFE

 (96)ar n-oilean beag fein - OUR OWN LITTLE ISLE 1=1 (80.2:0)

 (113)ceann is fearr annsa mhala - THE BEST IN THE BAG 1=1

 (99.3:0)

(84)ruathar uellington - WELLINGTON'S ADVANCE

Appendix 3: Output of Programs.

 261

 (239)na buacailli ua leachain-ruadh - THE LACCARUE BOYS 1=1

 (86.7:0)

(87)an corcaigheach sugach - THE JOLLY CORKMAN

 (301)sugra caisleain-chumair - THE HUMOURS OF CASTLE COMER

 2=2 (93.1:-2)

(90)cota-mna sgaoilte - PETTYCOAT LOOSE

 (221)briain ua floinn - BRYAN O'LYNN 3=2 (31.2:0)

(100)mireog ui chonduin - CONDON'S FROLICS

 (324)baile-chaislean ui chonchobhair - CASTLETOWN CONNERS

 1=2 (98.6:5) 2=1 (62.5:5)

(106)sugra muilleann-na-fauna - THE HUMOURS OF MULLINAFAUNA

 (150)anna ni heidhin - NANCY HYNES 1=1 (75:0) 1=4 (63.9:0)

(110)an bhean do bhi cheana agam - MY FORMER WIFE

 (305)dromadoiri ui dunlainge - DELANEY'S DRUMMERS 2=2 (74.3:0)

(115)tiob an fiadh - STAGGER THE BUCK

 (299)fan go socair a rogaire - BE EASY YOU ROGUE! 1=1

 (70.5:-2)

(118)peis-rince ui lannagain - LANNIGANS BALL

 (333)rogha inghean ni dounaigh - Miss DOWNING'S FANCY 1=2

 (98.6:0)

(123)proinseas og ua maenaigh - YOUNG FRANCIS MOONEY

 (300)ubhalla i geimhreadh - APPLES IN WINTER 2=2 (99.3:0)

(125)nach raibh gradh aici orm - WASN'T SHE FOND OF ME?

 (160)an bucla-gluine - THE KNEEBUCKLE 1=1 (92.7:0)

(129)an cat annsa chuine - THE CAT IN THE CORNER

 (190)sugacas ui matgamna - O'MAHONY'S FROLICS 1=1 (54.9:0)

(134)tadhg og ua murchadha - YOUNG TIM MURPHY

 (296)brian ua neill - BARNEY O'NEILL 2=2 (94.4:0)

(139)cionus ta tu a chaitilin? - HOW ARE YOU KITTY?

 (193)an coilleach feadha - THE WOODCOCK 1=1 (71.5:2)

 1=2 (55.9:2)

(144)an teach annsa gleann - THE HOUSE IN THE GLEN

 (199)an bho bhreach - THE SPOTTED COW 2=1 (47.9:0)

(146)sgaile mhic sheoin - JACKSON'S MORNING BRUSH

 (152)rogha mhic sheoin - JACKSON'S FANCY 5=2 (31.3:0)

 (155)triallta mhic sheoin - JACKSON'S RAMBLES 2=2 (93.1:0)

 2=3 (91:0)

 (342)port na luinneoige - THE CHORUS JIG 5=4 (92.7:12)

(163)baintreabhach an iasgaire - THE FISHERMAN'S WIDOW

 (182)sugra caislean ui liathain - THE HUMORS OF CASTLELYONS

 1=1 (79.9:-2)

(177)eilis ni murcadha - BESSY MURPHY

 (322)an rae lan - THE FULL MOON 2=1 (95.1:0)

(178)paidin ua rabhartaigh - PADDY O'RAFFERTY

 (274)siubhal amach as, ua h-ogain - WALK OUT OF IT HOGAN

 5=2 (90.3:0)

(189)na tri drumadoiridhe bheaga - THE THREE LITTLE DRUMMERS

 (305)dromadoiri ui dunlainge - DELANEY'S DRUMMERS 3=2 (94.4:0)

(190)sugacas ui matgamna - O'MAHONY'S FROLICS

 (255)feidhlime an gleiceadoir - FELIX THE WRESTLER 2=1

 (70.1:5)

(194)na cailini o dun-na-mbeann buidhe - DUNMANWAY LASSES

 (302)an rogaire dubh - THE BLACK ROGUE 2=2 (79.2:0)

Appendix 3: Output of Programs.

 262

(199)an bho bhreach - THE SPOTTED COW

 (277)an bho leathadharcach - THE ONEHORNED COW 1=1 (99.3:0)

(210)na tochalaidhe ua cill-mantain - THE MINERS OF WICKLOW

 (365)maire sugach - MERRY MARY 2=1 (84.7:0)

(211)tomas mo dhearbhrathair - MY BROTHER TOM

 (226)port thadhg ui h-ogain - TIM HOGAN'S JIG 2=2

 (81.3:-7)

(252)an cocaire annsa cistean - THE COOK IN THE KITCHEN

 (286)cuir faobhar ar an sgian-bhearrtha - STROP THE RAZOR -

 2nd Setting 1=2 (80.6:0) 3=3 (86.8:0)

(253)sugra daingean-ui-chuis - THE HUMORS OF DINGLE

 (287)ubhalla mhic gealain - GILLAN'S APPLES 1=1 (71.5:0)

(256)rinnce na oidhche - THE NIGHT DANCE

 (320)failte an phiobaire - THE PIPER'S WELCOME

 3=3 (93.4:-2)

(261)plaeracha caislean na h-aille - THE HUMORS OF AYLE HOUSE

 (334)an uair theidh tu a bhaile - WHEN YOU GO HOME 1=1

 (16.7:0) 2=2 (0:0)

(267)an aindear meighreach - THE MERRY MAIDEN

 (275)na buachailli ua cum-an-oir - THE BOYS OF COOMANORE

 2=2 (92.4:0)

(281)buail an ball sin - WALLOP THE SPOT

 (360)cailin an mhargaidh - THE MARKET GIRL 2=2 (94.4:2)

(284)caitlin ua ubhall-ghort - KITTY OF OULART

 (315)an ros dearg - THE RED ROSE 3=2 (97.2:-5)

365 items processed from file =d:\mdb\tdmoi\djig1.dir

365 items processed from file =d:\mdb\tdmoi\djig.dir

440387 comparisons made

critical value =100

Table A3.4 Results of exhaustive search of TDMOI.

Appendix 3: Output of Programs.

 263

Calculation of distances for files =d:\mdb\crnh1\djig.dir and

 =d:\mdb\tdmoi\djig1.dir

Key transitions processed

Stresses processed

Window widths processed

(1)Cailleach an Tu/irne - The Maid at the Spinning Wheel

 (94)an bothar go lurraga - THE ROAD TO LURGAN 1=1 (63.2:0)

 2=2 (84:0)

(3)Carraig an tSoip -

 (94)an bothar go lurraga - THE ROAD TO LURGAN 1=2 (99.7:0)

 (165)cathal stuairt - CHARLIE STEWART 2=1 (90.6:-2)

 (251)an sithmhoar feargach - THE ANGRY PEELER 1=1 (61.8:0)

(4)Pingmeacha Rua agus Pra/s - Coppers and Brass

 (3)rogha ui h-artagain - HARTIGAN'S FANCY 3=1 (67.4:0)

 (132)lamhrais ua grugain - LARRY GROGAN 1=1 (73.2:0)

(9)Cathaoir an Phi/obaire - The Piper's Chair

 (158)an buachaillin ban - THE FAIRHEAD BOY 1=1

 (90.6:-2)

(10)Ballai/ Lios Chearbhaill - The Walls of Liscarrol

 (72)an sean bhean sultmhar - THE MERRY OLD WOMAN 1=1

 (24.3:0)

(13)An Maide Draighin - The Blackthorn Stick

 (24)an og-bhean ag an tobar - THE MAID AT THE WELL 1=1

 (83.3:0) 2=1 (73.6:0)

(14)Buachcilli/ Bhaile Mhic Annda/in -

 (251)an sithmhoar feargach - THE ANGRY PEELER 2=2 (79.2:0)

(15)An Boc sa gCoill -

 (92)sugra baile-na-garrdha - THE HUMOURS OF BALLINGARRY

 1=1 (75.7:0) 3=1 (45.8:0)

(19)I/oc an Reicnea/il - Pay the Reckoning

 (145)proisdheal brainfhiona mhic sheoin - JACKSON'S BOTTLE

 OF BRANDY 1=1 (30.6:0) 2=2 (80.6:0)

(23)Scaip an Puiteach - Scatter the Mud

 (187)sgaip an munloch - SCATTER THE MUD 1=1 (36.5:0)

(24)An Pi/osa Deich bPi/ngne - The Tenpenny Piece

 (162)bonn deich-phinghine - THE TENPENNY BIT 2=2 (63.2:0)

(26)Droim Chonga -

 (211)tomas mo dhearbhrathair - MY BROTHER TOM 1=1 (15.3:7)

 2=2 (29.2:7) 2=3 (87.5:7)

 (226)port thadhg ui h-ogain - TIM HOGAN'S JIG 2=2 (77.1:0)

(27)An Buachailli/n Bui/ - The Little Yellow Boy

 (34)tomas ua gaillimh - GALWAY TOM 3=1 (34:0) 4=7 (77.4:0)

 (144)an teach annsa gleann - THE HOUSE IN THE GLEN 4=2

 (38.5:0)

 (199)an bho bhreach - THE SPOTTED COW 4=1 (21.2:0)

 (277)an bho leathadharcach - THE ONEHORNED COW 4=1 (97.9:0)

(28)Na Ge/abha sa bPortach -

 (279)na geadhna annsa mhointe - THE GEESE IN THE BOGS

 3=1 (61.8:0)

(35)Port an Riaga/naigh -

 (346)inghean ni dubhglas - Miss DOUGLAS 2=1 (64.6:0)

(36)An Ceolto/ir Fa/nach -

 (267)an aindear meighreach - THE MERRY MAIDEN 1=1 (70.1:0)

(38)Ruaig an Mi/-a/dh - Banish Misfortune

 (5)triallta chaitlin - KITTY'S RAMBLES 2=4 (96.5:0)

 (106)sugra muilleann-na-fauna - THE HUMOURS OF MULLINAFAUNA

 1=1 (95.8:0) 2=2 (63.2:0)

(48)Rogha Liadroma -

 (226)port thadhg ui h-ogain - TIM HOGAN'S JIG 1=3

Appendix 3: Output of Programs.

 264

 (95.1:-5)

(53)An La/ i ndiaidh an Aonaigh - The Day after the Fair

 (102)uilliamin bharlaigh - BILLY BARLOW 1=1 (77.8:-5)

 2=2 (74.1:-5)

54 items processed from file =d:\mdb\tdmoi\djig1.dir

365 items processed from file =d:\mdb\crnh1\djig.dir

138180 comparisons made

critical value =100

Table A3.5 Comparisons between 8 bar segments of double jig tunes in TDMOI

and CRNH1.

Appendix 3: Output of Programs.

 265

+ ENTRY

COMPOSER:Beethoven TITLE:String Quartet Op 131 in C # minor NUMBER:6

0:Instrument:VIOLIN

0:Clef:TREBLE

0:Keysig:ks:#F#C#G#D#A

0:TimeSig:(3,4)

1:Clef:TREBLE

1:Keysig:ks:#F#C#G#D#A

1:TimeSig:(3,4)

2:Clef:ALTO

2:Keysig:ks:#F#C#G#D#A

2:TimeSig:(3,4)

3:Clef:BASS

3:Keysig:ks:#F#C#G#D#A

3:TimeSig:(3,4)

0:Rest:[3] {}

1:Rest:[3] {}

2:Rest:[3] {}

3:Rest:[3] {}

0:Note:D5 [2] {48 }

1:Note:B4 [2] {}

2:Note:G5 [2] {}

3:Note:G4 [2] {}

0:Barline:Bar:/ 2

1:Barline:Bar:/ 2

2:Barline:Bar:/ 2

3:Barline:Bar:/ 2

0:Note:D5 [2] {48 }

1:Note:B4 [2] {}

2:Note:G5 [2] {}

3:Note:G4 [2] {}

0:Note:D5 [3] {}

1:Note:B4 [3] {}

2:Note:G5 [3] {}

3:Note:G4 [3] {}

0:Barline:Bar:/ 3

1:Barline:Bar:/ 3

2:Barline:Bar:/ 3

3:Barline:Bar:/ 3

0:Note:D5 [2] {}

1:Note:C5 [2] {}

2:Note:F5X[3](2){}

3:Note:A4 [2] {}

0:Note:D5 [2] {}

1:Note:C5 [2] {}

2:Note:D5 [5] {}

3:Note:A4 [2] {}

Appendix 3: Output of Programs.

 266

0:Note:D5 [3] {}

1:Note:B4 [3] {}

2:Note:G5 [3] {}

3:Note:G4 [3] {}

0:Barline:Bar:/ 4

1:Barline:Bar:/ 4

2:Barline:Bar:/ 4

3:Barline:Bar:/ 4

0:Note:D5 [3] {}

1:Note:C4 [3] {}

2:Note:A5 [3] {}

3:Note:F4X[3] {}

0:Note:D5 [3] {}

1:Note:B5 [3] {}

2:Note:B5 [2] {}

3:Note:G4 [3] {}

0:Note:G5 [3] {}

1:Note:E5 [3] {}

1:Note:G4 [3] {}

2:Note:B5 [2] {}

3:Note:E4 [3] {}

0:Barline:Bar:/ 5

1:Barline:Bar:/ 5

2:Barline:Bar:/ 5

3:Barline:Bar:/ 5

0:Note:E5 [3] {}

1:Note:C5 [3] {}

2:Note:B5 [4](1){}

3:Note:C4 [3] {}

0:Note:E5 [3] {}

1:Note:C5 [3] {}

2:Note:A5 [5] {}

3:Note:C4 [3] {}

0:Note:B4 [3] {}

1:Note:D5 [3] {}

2:Note:G5 [3] {}

3:Note:D4 [3] {}

0:Note:C5 [3] {}

1:Note:D5 [3] {}

1:Note:A4 [3] {}

2:Note:F5X[3] {}

3:Note:D4 [3] {}

0:Barline:Bar:/ 6

1:Barline:Bar:/ 6

2:Barline:Bar:/ 6

3:Barline:Bar:/ 6

0:Note:B5 [3] {}

1:Note:D5 [3] {}

1:Note:G4 [3] {}

Appendix 3: Output of Programs.

 267

2:Note:G5 [3] {}

3:Note:G4 [3] {}

Table A3.6 Polyphonic traverse of start of mvt. 6 of Beethoven’s string quartet

op.131.

 It was produced by the program in A2.3 of appendix 2. The start of the score is

given below in Fig A3.1. Entities are traversed in standard traversal order. Internal

points of notes are visited, for example those created by the E semiquaver in bar 5.

Single stave polyphony is used in bars 4, 5 and 6.

Fig.A3.1 First 10 bars of movement no.6 of Beethoven’s string quartet op.131.

Bibliography.

 268

Bibliography.

Bibliography.

 269

 Sven Ahlback, "A Computer-Aided Method of Analysis of Phrase Structure in

Monophonic Melodies" Irene Deliege Procedings of the International Conference for

Music Perception and Cognition (Liege 1994), pp.251-2.

A. C. Aitken, Statistical Mathematics volume 1 (Edinburgh: Oliver and Boyd 1939).

Mario Baroni, Ressella Brunetti, Laura Callegari and Carlo Jacoboni. "A Grammar of

melody. Relationships between melody and harmony" in Baroni; and Jacoboni

Musical Grammars and Computer Analysis (Firenze: Olschki 1896), pp.201-218.

Mario Baroni, Rossana Dalmonte and Carlo Jacoboni "Theory and Analysis of European

Melody” Alan Marsden and Anthony Pople in Computer Representations and Models

in Music (London: Academic Press 1992), pp.187-205.

Mario Baroni and Carlo Jacoboni Musical Grammars and Computer Analysis (Firenze:

Olschki 1896).

Mario Baroni and Carlo Jacoboni Proposal For a Grammar of Melody (Montreal: Les

Presses de l'Universite de Montreal 1978).

Stephen Bauer-Mengelberg. "The Ford-Columbia Input Language" Barry S. Brook

Musicology and the Computer, Musicology 1966-200: A Practical Program (New

York: The City University of New York Press 1970), pp.48-52.

Bernard Bel and Bernard Vecchione "Computational Musicology" Computer and the

Humanities volume 27 (1993), pp 1-5.

Denis Biaggi Computer-Generated Music IEEE (Los Alamitos: Computer Society Press

1992).

Bibliography.

 270

Borland Borland C++ Library Reference Version 4.0 (Scott’s Valley, California 1993).

Breandán Breathnach: Ceol agus Rince na hEireann (Baile Atha Cliath: An Gum 1989).

Breandán Breathnach: Ceol Rince na hEireann (Baile Atha Cliath, 1963).

Albert S. Bregman Auditory Scene Analysis (Cambridge, Massachusetts:The MIT Press

1990).

Alexander R. Brinkman Pascal Programming for Music Research (Chicago 1990).

Barry S. Brook Musicology and the Computer, Musicology 1966-200: A Practical

Program (New York: The City University of New York Press 1970).

Barry S. Brook "The Plaine and Easie Code.", in Barry S. Brook Musicology and the

Computer, Musicology 1966-200: A Practical Program (New York: The City

University of New York Press 1970), pp.53-56.

Alan W. Brown Object-oriented databases: their applications to software engineering

(London: McGraw-Hill 1991).

Donald Byrd Music Notation by Computer PhD dissertation for Indiana University 1984.

Helene Charnasse Informatique et Musique (Paris: ERATTO 1984).

Peter Pin-Shan Chen "The entity-relationship model - A basis for the enterprise view of

data" in Conference Procedings of the American Federation of Information Processing

Societies (1977), pp.77-84.

Dereck Cooke The Language of Music (Oxford: OUP 1959).

Bibliography.

 271

Nicholas Cook A Guide to Musical Analysis (London: Dent 1987).

David Cope's Computer and Musical Style (Oxford: OUP 1991).

O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare Structured Programming (London and New

York: Academic Press 1972).

Lloyd Daws, John R. Platt and Ronald Racine "Inference of Metrical Structure from

Perception of Iterative Pulses within Time Spans Defined by Chord Changes" Music

Perception volume 12, no.1 (1994), pp.57-76.

Irene Deliege "Grouping Condition in Listening to Music: An approach to Lerdahl and

Jacklendoff's Grouping Preference Rules" Music Perception volume 4, no.4 (1987),

pp.325-360.

Irene Deliege Procedings of the International Conference for Music Perception and

Cognition (Liege 1994).

Liam de Noraidh Ceol on Mhumhain (Baile Atha Cliath 1965).

Nichola Dibben "The Cognitive Reality of Hierarchical Structure in Tonal and Atonal

Music" in Music Perception volume 12, no.1 (1994), pp.1-25.

Martin Dillon and Michael Hunter "Automated Identification of Melodic Variants in Folk

Music" Computers and the Humanities volume 16 (1982), pp.107-117.

Charles Dodge and Thomas A. Jerse Computer Music (New York: Schirmer Books

1985).

Bibliography.

 272

William Drabkin “Scale” in Stanley Sadie The New Grove Dictionary of Music and

Musicians volume 16 (London: MacMillan 1980).

Kemel Ebcioglu "An Expert System for Harmonizing Chorales in the Style of J.S. Bach"

Understanding Music with AI (Menlo Park: The AAAI Press/The MIT Press 1992),

pp.294-334.

Michael W. Eysinck A Handbook of Cognitive Psychology (Londen: LEA 1984).

Allen Forte The Structure of Atonal Music (New Haven and London: Yale University

Press 1973).

Gerard Gillan and Harry White Irish Musical Studies (Dublin: Irish Academic Press

1990).

Murray J. Gould and George W. Longemann "ALMA: Alphameric Language for Music

Analysis." Barry S. Brook Musicology and the Computer, Musicology 1966-200: A

Practical Program (New York: The City University of New York Press 1970), pp.57-

90.

Goffredo Haus Music Processing (Oxford 1993).

Walter B. Hewlett and Eleanor Selfridge-Field Computing in Musicology Volume 9

(Menlo Park: Centre for Computer Assisted Research in the Humanities, 1994).

Walter B. Hewlett and Eleanor Selfridge-Field "Computing in Musicology. 1966-91"

Computer and the Humanities 25, (1991), pp 381-392.

Walter B Hewlitt and Elanor Selfridge-Field Directory of Computer Assisted Research

in Musicology 1986 (Menlo Park, California 1986).

Bibliography.

 273

Lejaren Hiller Computer Music Retrospective CD in the series Digital Music with

Computer WERGO CD WER 6128-50.

Lejaren Hiller and Isaacson Experimental Music (New York: McGraw-Hill 1959).

Douglas R Hofstadter Godel, Escher and Bach: an Eternal Golden Braid (Middlesex:

Penguin Books 1980).

Henkjan Honing Music, Mind and Machine (Amsterdam: Thesis Publishers 1992).

Peter Howell, Robert West and Ian Cross Representing Musical Structure (London:

Academic Press 1991).

David Huron "Design Principles in Computer-based Music Representation" in Alan

Marsden and Anthony Pople in Computer Representations and Models in Music

(London: Academic Press 1992), pp.5-39.

Michael Kassler "MIR - A Simple Programming Language for Musical Information

Retrieval" Harry Lincoln The Computer and Music (Ithaca: Cornell University Press

1970), pp.299-327.

Jim Kippen and Bernard Bel. "Modelling Music with Grammars: Formal Language

Representation in the Bol Processor" Alan Marsden and Anthony Pople Computer

Representations and Models in Music (London: Academic Press 1992), pp.207-238.

Donald E. Knuth. The Art of Computer Programming volume 1:Fundamental

Algorithms (Reading:Addison Wesley 1973).

Carol L. Krumhansl Cognitive Foundations of Musical Pitch (Oxford 1990).

Bibliography.

 274

Paul Lansky's Idle Chatter on Wergo CD WER 2010-50.

Otto Laske "Composition Theory: An Enrighment of Music Theory" Interface volume 18

(1989), pp.45-59.

Otto E. Laske "Introduction to Cognitive Musicology." Computer Music Journal

volume12, no.1 (Spring 1988), pp.43-57.

Otto E. Laske Music, Memory and Thought (Ann Arbour: UMI 1977).

Otto E. Laske Psychomusicology (Bombay and Baroda: Indian Musicological

Association 1985).

Fred Lerdahl and Ray Jackendoff A Generative Theory of Tonal Music (Cambridge,

Massachusetts, The MIT Press 1983).

Harry Lincoln The Computer and Music (Ithica and London: Cornell University Press

1970).

H. C. Longuet-Higgins and M. J. Steedman “On the Interpretation of Bach” Machine

Intelligence volume 6 (1971), pp.221-41.

Stephen McAdams and Emmanuel Bigand Thinking in Sound (Oxford:Clarendon Press

1993).

Bruce Andrew McLean The Representation of Musical Scores as Data for Applications

in Musical Computing Dissertation for State University of New York at Binghamton

1988.

Bibliography.

 275

Alan Marsden and Anthony Pople Computer Representations and Models in Music

(London: Academic Press 1992).

Max V. Matthews and John R. Pierce Current Directions in Computer Music Research

(Massachusetts: The MIT Press 1989).

Marcel Mongeau and David Sankoff “Comparison of Musical Sequences” in Computers

and the Humanities volume 24(1990), pp.161-175.

F. Richard Moore Elements of Computer Music (Englewood Cliffs: Prentice Hall,

1990).

Thomas Morrow An Expert System for Performing Irish Dance Music BSc Dissertation

for University of Limerick (1993).

Music encoding and analysis in the MUSIKUS system University of Oslo, Dept. of

Informatics/Dept. of Music 1988.

Eugene Narmour Beyond Schenkerism (Chicago 1977).

Eugene Narmour The Analysis and Cognition of Basic Melodic Structure (Chicago

1990).

Eugene Narmour The Analysis and Cognition of Melodic Complexity (Chicago 1992).

F. Nelson Music-Research Digest vol 8, no.16 (Thu, 10 Jun 93).

Steven R. Newcomb "ISO CD 10743 Standard Music Description Language (SMDL)"

Music -Research Digest volume 9, no 35 (Wed 18 Jan 95).

Bibliography.

 276

Oscar Nierstrasz "A Survey of Object-Oriented Concepts" in Won Kim and Frederick H.

Lochovsky Object-oriented Concepts, Databases , and Applications (New York:

ACM Press 1989), pp 3-21.

Donncha Ó Maidín "Computer Analysis of Irish and Scottish Jigs" Mario Baroni,

Ressella Brunetti, Laura Callegari and Carlo Jacoboni Musical Grammars and

Computer Analysis (Firenze: Olschki 1896), pp.329-336.

Donncha Ó Maidín "Representation of Music Scores for Analysis" in Alan Marsden and

Anthony Pople in Computer Representations and Models in Music (London:

Academic Press 1992), pp.67-93.

Capt. Frances O'Neill Irish Folk Music; A fascinating study (Chicago 1910).

Capt. Frances O'Neill Irish Minstrels and Musicians (Chicago 1913).

Capt Frances O'Neill The Dance Music of Ireland (Chicago 1907).

Capt. Frances O'Neill's The Music of Ireland (Chicago 1903).

Micheál Ó Suilleabháin “The Creative Process in Irish Traditional Dance Music” in

Gerard Gillan and Harry White Irish Musical Studies (Dublin: Irish Academic Press

1990), pp. 117-130.

Richard E. Overill "On the Combinatorial Complexity of Fuzzy Pattern Matching in

Music Analysis" Computers and the Humanities volume 27 (1993), pp.105-110.

Stephen Dowland Page Computer Tools for Music Information Retrieval Dissertation

for University of Oxford(Bodelian) 1988.

Bibliography.

 277

Stephen T. Pope "MODE and SMOKE" in Hewlett, Walter B. and Selfridge-Field,

Eleanor Computing in Musicology volume 8 (Menlo Park 1992), pp.130-2.

Jean-Claude Risset Introductory Catalogue of Computer-Synthesized Sounds (Murray

Hill, N.J.: Bell Telephone Laboratories, 1969).

Tobias D Robinson, "IML-MIR: A Data-Processing System for the Analysis of Music"

Harald Heckman Elektronische Datenverarbeitung in der Musikwissenschaft

(Regensburg: Bosse, 1967) pp 103-135.

Stanley Sadie The New Grove Dictionary of Music and Musicians (London: MacMillan

1980).

Felix Salzer Structural Hearing volumes 1 and 2 (New York: Dover 1952).

Gregory J. Sandell “Music industry gives us a notation format” Music-Research Digest

volume 9, no.36 (Fri, 27 Jan 95).

Helmut Schaffrath "The Retrieval of Monophonic Melodies and their Variants: Concepts

and Strategies for Computer-Assisted Analysis" Alan Marsden and Anthony Pople in

Computer Representations and Models in Music (London: Academic Press 1992),

pp.95-109.

Charles Seeger "Prescriptive and Descriptive Music Writing" Musical Quarterly volume

44 (1958), pp.184-195.

Eleanor Selfridge-Field: "Music Analysis by Computer" Goffredo Haus Music

Processing (Oxford 1993) p.3.

Eleanor Selfridge-Field Music-Research Digest volume 9, no.34 (Sat, 24 Dec 94).

Bibliography.

 278

M. Slaney “Lyons Cochlear Model” Apple Technical Report #13 (Apple Corporate

Library 1988).

Donald Sloan "Aspects of Music Representation in HyTime/SMDL." Computer Music

Journal volume 17, no.4 (Winter 1993), pp.51-60.

John A. Slobada The Musical Mind (Oxford: Clarendon Press 1985).

Stephen W. Smoliar “Elements of a Neuronal Model of Listening to Music” in In Theory

Only volume 12, nos.3-4 (Feb 1992), pp.29-46.

Stephen W. Smoliar “The Analysis and Cognition of Basic Melodic Structures: The

Implication-Realization Model by Eugene Narmour” (Review) in In Theory Only

volume 12, nos.1-2 (1991), pp.43-56.

D.R. Stammen and R. Pennycook in "A Generative Theory of Tonal Music by Lerdahl

and Jackendoff: 10 years on" in Procedings of the International Conference for Music

Perception and Cognition (Liege 1994), pp.255-70.

Benjamin Suchoff "Serbo-Croatian Folk Songs", in Harry Lincoln The Computer and

Music (Ithica and London: Cornell University Press 1970), pp. 193-206.

Sundberg, J. Studies of Music Performance (Stockholm: Royal Swedish Academy of

Music 1983).

Peter M. Todd and D. Gareth Loy Music and Connectionism (Cambridge, Massachusetts:

The MIT Press 1991).

Bibliography.

 279

Heinrich Taube “Common Music:A Music Composition Language in Common Lisp and

Clos” Computer Music Journal volume 15, no.2, (Summer 1991), pp.21-32.

Nils L. Wallin Biomusicology (Stuyvesant: Pendragon Press 1991).

Jerome Wenker "A Computer Oriented Music Notation including Ethnomusicological

Symbols" Barry S. Brook Musicology and the Computer, Musicology 1966-200: A

Practical Program (New York: The City University of New York Press 1970), pp.91-

129.

William A. Wold, Mary Shaw and Paul N. Hilflinger. Fundamental Structures of

Computer Science (Massachusetts 1981).

Maury Yeston Reading in Schenker Analysis and Other Approaches (New Haven: Yale

UP 1977).

Iannis Xenakis Formalized Music (Bloomington: Indiana University Press 1971).

Index.

 280

Index.

Index.

 281

—A—

Abstract data type, 8, 57

Abstraction, 1, 4, 6, 8, 10, 25, 46, 48, 53, 54, 55, 57,

58, 61, 68, 71, 72, 92, 93, 159, 164, 165, 182, 197

Algorithm, 9, 34, 52, 56, 57, 86, 87, 88, 90, 91, 94,

95, 97, 98, 106, 107, 108, 109, 111, 119, 122, 126,

129, 133, 135, 141, 143, 144, 145, 146, 147, 149,

150, 154, 155, 156, 159, 160, 162, 167, 171

ALMA, 7, 16, 27, 29, 67, 70, 102, 273

Ambiguity, 54, 65, 66, 72, 103, 114

ANSI, 23

Attribute, 6, 46, 51, 59, 60, 73, 74, 138, 179, 194,

205, 211, 212

—B—

Bar scoping, 73, 80

Barline, 75, 76, 84, 85, 87, 90, 91, 179, 180, 214

Baroni, Mario, 38, 139, 270, 277

Breathnach, Breandan, ix, 94, 99, 100, 101, 102, 109,

110, 113, 114, 124, 133, 134, 162, 163, 271

Brinkman, Alexander R., 4, 47, 48, 51, 271

—C—

Chen, Peter Pin-Shan, 59, 271

class Barline, 75, 179

class Clef, 181

class Duration, 62, 71, 73, 74, 182

class FrequencyStore, 7, 184, 186, 199

class FrequencyStoreIterator, 186

class Group, 187

class KeySig, 189

class MIDIStream, 192

class Note, 62, 72, 73, 193, 197

class PartsExpert, 7, 196

class Pitch, 7, 62, 72, 73, 197, 199, 201

class PitchClases, 199

class PitchTuple, 7, 201

class Q, 202

class Rat, 7, 203, 230

class Rest, 62, 73, 205

class Score, 6, 7, 76, 81, 83, 176, 207, 209

class ScoreIterator, 7, 76, 81, 83, 176, 209

class Set, 7, 217, 220

class SetIterator, 220

class Stack, 221

class String, 7, 67, 76, 222, 225

class StringIterator, 225

class Text, 228

class TimeSig, 229, 230

class TimeSigType, 230

class Tuple, 7, 201, 231

class Words, 233

Clef, 26, 65, 68, 70, 77, 81, 84, 90, 181, 208, 210, 215

CMUSIC, 35

Common Music, 36, 280

Computational musicology, 1, 3, 23, 140

Computational power, 10, 51

Computer Aided Composition, 37

Contiguity, 8, 59, 66, 78, 81, 164

Contour, melodic, 139, 141, 143, 150, 235

Corpus, 2, 3, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21,

22, 23, 24, 29, 36, 38, 41, 43, 56, 81, 91, 94, 95,

97, 98, 101, 102, 104, 106, 107, 108, 110, 112,

113, 114, 115, 118, 122, 126, 127, 128, 139, 155,

160, 162, 165, 166, 167, 171, 173

Corpus-based musicology, 2, 8, 11, 12, 13, 20, 22,

173

Critical value, 154, 162, 163, 263, 265

CRNH1, 94, 109, 113, 115, 118, 123, 133, 137, 138,

155, 158, 160, 163, 265

CSOUND, 35

Current position, 22, 39, 82, 84, 86, 87, 176, 186, 212,

213, 214, 215, 225, 226, 227

—D—

Dalmonte, Rossana, 38, 270

DARMS, 13, 15, 16, 17, 19, 24, 27, 32, 33, 45, 47,

67, 167

Data hiding, 57

Database, 3, 10, 42, 43, 44, 45, 47, 49, 50, 59, 124,

168

Decision criterion, 95, 98, 108, 112, 121

Delimited scoping, 80

diff1, 107, 154, 235

Doubled, 103, 104, 105, 106, 107, 108, 110, 184

Duration, 61, 62, 71, 72, 73, 74, 77, 182, 187, 195,

205, 206, 211

—E—

Ebcioglu, Kemal, 38, 273

Encapsulation, 26, 60, 63

Encoding standards, 20

ESsen Associative Code, 43, 44, 45

Exhaustive Search, 9, 10, 46, 126, 127, 162, 163, 263

Expression, 49, 55, 56, 71, 79, 97, 103, 228

Extendibility, 53, 54, 55, 164, 166

—F—

Feature Extraction, 9, 126

Ferentz, Dr Melvin, 32

Form, 3, 4, 6, 8, 9, 11, 13, 14, 15, 17, 18, 22, 25, 26,

29, 30, 33, 34, 36, 39, 40, 42, 44, 45, 46, 52, 55,

56, 60, 66, 80, 97, 101, 103, 115, 118, 120, 126,

127, 128, 129, 130, 131, 132, 133, 134, 136, 138,

155, 156, 159, 160, 165, 169, 171, 182, 195, 198,

200, 201, 204, 206, 229, 231, 236, 237, 259, 260

Forte Alan, 200

FORTRAN, 32, 33, 57

Functional abstraction, 8

Index.

 282

—G—

Gestalt psychology, 169, 171

Graphical User Interfaces, 18

—H—

Harmony, 5, 6, 10, 38, 55, 93, 270

Henriksen, Petter, 41

Hewlett, Walter B., 18, 21, 32, 33, 36, 41, 52, 273,

278

Hiller, Lejaren, 37, 274

Hoare, C.A.R., 57, 272

Hofstadter, Douglas R., 20, 274

Humdrum, 24

Hypothesis, 94, 95, 96, 97, 98, 104, 108, 109, 110,

112, 114, 115, 116, 117, 118, 121, 122, 124, 165

—I—

Information retrieval, 3, 6, 9, 41, 47, 49, 51, 52, 125,

168

Informational completeness, 4, 53, 164

inheritance, 30, 61, 62, 63, 64, 165, 173

Input translator, 3, 18, 19, 29, 166, 167

Internal score representation, 3, 30, 48

ISO, 23, 24, 276

—J—

Jackendoff, Ray, 167, 171, 172, 275, 279

Jacoboni, Carlo, 38, 270, 277

Jig, 9, 94, 101, 102, 105, 106, 107, 109, 110, 113,

114, 119, 124, 126, 127, 132, 133, 145, 159, 162,

265

—K—

Kassler, Michael, 38, 41, 82, 274

Kern, 24

Key Signature, 5, 6, 8, 19, 26, 55, 65, 68, 73, 79, 80,

84, 85, 91, 92, 124, 133, 189, 190, 208, 210, 215,

229

Knuth, Donald, 56, 274

Krumhansl, Carol L., 144, 168, 274

—L—

Lansky, Paul, 37, 275

Laske, Otto, 37, 38, 169, 275

Late binding, 63

Lerdahl, Fred, 167, 171, 172, 272, 275, 279

Lisp, 36, 57, 280

Loy, Gareth, 34, 36, 37, 55, 173, 279

Lyne, 38, 39, 40

—M—

McLean, Bruce Andrew, 4, 15, 16, 32, 33, 34, 45, 46,

47, 51, 52, 275

Melodic Difference, 9, 107, 126, 139, 140, 141, 144,

145, 146, 154, 155, 167

Melodic similarity, 139, 154

Message passing, 25, 26

Metronome, 79, 215, 228

MIDI, 13, 18, 24, 27, 29, 30, 33, 36, 67, 102, 191,

192, 215

MIDIFILE, 30

MIR, 38, 39, 40, 41, 51, 82, 274, 278

Model, 4, 8, 51, 65, 164, 171

MONO, 83, 88, 209

Multiple inheritance, 61, 62, 64

MuseData, 15, 24

Music analysis, 2, 8, 9, 11, 15, 17, 18, 19, 20, 24, 29,

31, 33, 38, 41, 42, 43, 48, 82, 94, 138, 169

Music printing, 8, 13, 14, 30, 31, 33, 36

MusicTeX, 33

MUSIKUS, 41, 43, 52, 82, 276

MUSTRAN, 17

Mutation, 33

MuTex, 33

—N—

Narmour, Eugene, 167, 169, 170, 171, 276, 279

Navigating, 9, 164

Newcomb, Steven R., 23, 276

NeXT Music Kit, 36

NIF, 23

Non-inversionally equivallent prime forms, 130, 131,

132, 133, 134

Normal form, 131

Notation, 2, 13, 17, 18, 19, 22, 23, 24, 25, 29, 31, 32,

33, 35, 36, 37, 43, 53, 54, 65, 66, 71, 73, 78, 79,

99, 100, 103, 106, 128, 166, 205, 278

Notation packages, 13, 33

Note, 6, 13, 33, 44, 49, 59, 61, 62, 71, 72, 73, 78, 88,

112, 132, 133, 138, 145, 146, 193, 194, 195, 197,

198, 208, 214, 215

—O—

O’Neill, Capt. Frances, 100

O Suilleabhain, Micheal, ix, 102, 119, 277

Objectivity, 2, 5, 47, 53, 54, 81, 164

Open scope, 75, 79, 181, 190, 228

Overloading, 62, 63, 165

—P—

parts expert, 7, 111, 112, 113, 154, 166, 196

Pascal, 4, 46, 47, 58, 63, 271

Phrase identification, 139, 155, 167, 171

Pitch, 7, 61, 62, 72, 73, 121, 123, 127, 144, 168, 193,

195, 197, 198, 199, 201, 212, 250, 274

Pitch class set, 5, 7, 43, 47, 55, 127, 128, 130, 134,

166, 199, 200

Pitch tuple, 5, 7, 55, 166

POLY, 83, 85, 88, 89, 209

Index.

 283

Polyphonic, 4, 8, 15, 32, 53, 77, 83, 88, 93, 164, 166,

248

Polyphony, 4, 8, 15, 32, 53, 77, 83, 88, 93, 164, 166,

248

Prime form, 127, 128, 129, 130, 131, 132, 133, 134,

136, 138, 200

Psychomusicology, 169, 275

—R—

Rest, 6, 59, 61, 62, 71, 72, 73, 187, 193, 205, 206,

215

Reuse, 2, 4, 5, 14, 16, 24, 54, 58, 61, 62, 64, 165

RISM, 17

—S—

scale, 24, 43, 44, 77, 127, 128, 129, 130, 131, 132,

133, 134, 135, 138, 153, 164, 169, 170, 171, 199

Scale Finding, 9, 126

Schaffrath, Helmut, 43, 278

Scope, 1, 6, 68, 69, 70, 71, 72, 73, 79, 80, 155, 210

Score iterator, 6, 9, 40, 62, 66, 70, 76, 81, 82, 83, 84,

85, 86, 88, 90, 92, 107, 132, 136, 150, 152, 156,

161, 164, 165, 166, 176, 177, 200, 209, 212, 214,

216, 235, 236

Score Reader, 15, 35, 66, 81, 82, 85

ScoreIterator, 6, 40, 62, 70, 76, 81, 83, 84, 90, 92,

132, 136, 150, 152, 156, 161, 176, 177, 200, 209,

212, 216, 235, 236

sequence of accented tones, 120

set accented tones, 119, 120

Signified, 65

Signifier, 65

Singled, 103, 104, 105, 106, 107, 108, 110, 111, 112,

196

SMDL, 2, 23, 276, 279

Smith, Lelend, 30

SMUT, 32

Snobol, 19

Software environment, 1, 4, 21, 24, 58, 97

Sound synthesis, 8, 30, 31, 34, 35, 36, 40

Standard traversal, 79, 83, 85, 86, 87, 88, 166

Steedman, M. J., 168, 275

Stephen Dowland Page, 3, 4, 13, 21, 34, 38, 46, 49,

139, 168, 277

—T—

TDMOI, 94, 106, 110, 113, 115, 118, 119, 134, 138,

142, 147, 160, 162, 163, 256, 258, 260, 263, 265

Tempo, 15, 42, 71, 79, 139, 228

Testing, 21, 53, 98, 104, 117, 122, 165, 166, 168, 213

Text, 15, 27, 30, 43, 49, 71, 76, 94, 95, 96, 102, 103,

105, 107, 114, 208, 210, 212, 228, 233

The Essen Computer-Aided Research Project, 43, 52

The Plaine and Easie Code, 16, 271

Time, 3, 5, 6, 8, 10, 16, 17, 19, 20, 21, 24, 25, 26, 27,

34, 35, 36, 38, 39, 41, 42, 48, 49, 52, 55, 57, 60,

62, 63, 66, 67, 68, 69, 72, 73, 76, 77, 78, 79, 81,

82, 84, 85, 86, 87, 88, 92, 101, 105, 110, 126, 129,

135, 141, 142, 145, 150, 162, 164, 165, 166, 171,

173, 195, 206, 207, 208, 210, 211, 212, 213, 215,

216, 229, 230, 236, 240

Time Signature, 5, 6, 26, 55, 67, 68, 69, 77, 79, 81,

84, 92, 164, 208, 210, 215, 229, 230, 240

Traversal, 26, 83, 88

Traverse, 39, 83, 88, 150, 152, 159, 166, 216, 225,

248, 268

Tuple, 5, 7, 55, 121, 124, 136, 138, 166, 201, 231

—U—

union FAR MIDIMsg, 191

—W—

Wallin, Nils, 172, 173, 280

Weighted difference, 144, 145, 146, 149

Word, 39, 61, 95, 103, 107, 115, 119, 127, 191

—X—

Xenakis, Iannis, 37, 280

