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16 Abstract. We describe a simple CSP formalism for handling multi-bttré pref-
17 erence problems with hard constraints, one that combinesk denstraints and
18 preferences so the two are easily distinguished concéyptad for purposes of
19 problem solving. Preferences are represented as a leajgloigrorder over com-
20 plete assignments based on variable importance and rankingalues in each
21 domain. Feasibility constraints are treated in the usualmea Since the prefer-
22 ence representation is ordinal in character, these prabtem be solved with al-
23 gorithms that do not require evaluations to be represemgétily. This includes
24 ordinary CSP algorithms, although these cannot stop segrohtil all solutions
25 have been check(_ed, With_the important except_ion of heqsiﬂu'at foI_Iow the pref-
26 erence order (lexical variable and value ordering). Werilescelations between
27 lexicographic CSPs and more general soft constraint fasmal and show how
8 a full lexicographic ordering can be expressed in the lattér discuss relations
with (T)CP-nets, highlighting the advantages of the pregemmulation, and we
29 discuss the use of lexicographic ordering in multiobjextiptimisation. We also
30 consider strengths and limitations of this form of repréaton with respect to
31 expressiveness and usability. We then show how the simpletste of lexico-
32 graphic CSPs can support specialised algorithms: a bramtib@und algorithm
33 with an implicit cost function, and an iterative algorithhat obtains optimal val-
34 ues for successive variables in the importance orderinthy bbwhich can be
35 combined with appropriate variable ordering heuristicsrtprove performance.
36 We show experimentally that with these procedures a vaoipyoblems can be
37 solved efficiently, including some for which the basic letlg ordered search is
38 infeasible in practice.
39
40
41 1 Introduction
42
43 An important challenge for constraint solving is to incomgte user preferences into the
44 problem representation so that solutions can satisfy thesferences as well as hard
45 constraints. This is necessary if constraint technolody ise used to tackle standard
jg decision making problems with multiple objectives andilites.
48 The constraint satisfaction paradigm appears well-sdi@etepresenting and solv-
49 ing problems composed of a mixture of ‘hard’ feasibility straints and ‘soft’ con-
50 * This work received support from Science Foundation Irelamder Grants 00/P1.1/C075 and
51 05/IN/1886.
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straints, including those that represent user prefereseesh problems are often han-
dled by formulations in which constraint elements are assed with evaluations that
allow comparisons between these elements [1, 2]. In theeptegork, we use a special
soft-constraint strategy in which a preference orderinggosed on complete assign-
ments, in terms of variables and their assigned values.drtexing islexicographian
form, which means that a good assignment for a more-prefeegable is more impor-
tant than a good assignment for a less-preferred variallediding the overall ranking
of solutions. The preference ordering is assumed to be amtsmt of any constraints
that may hold among these variables. The constraints firergestrict the alternatives
given by an ideal preference ordering to those that can icherealized.

This form of soft constraint system is a special case of tagi¢bgraphic CSP” or
“lex-VCSP” defined by [3]. As these authors show, lex-VCSRsia turn equivalent
to a kind of weighted CSP (cf. Section 3). However, becaush@fcharacter of the
ordering in our case, we do not need to represent preferengesrically, and we can
build up partial solutions correctly without reference wanmerical operations such as
addition. In fact, this form of representation is in the gpif the “ordinalist” view of
utility, (i.e. the interpretation of utility functions agpresenting the quantitative struc-
ture of (ordinal) preference relations) [4], as well as f¢fatiVe approaches to repre-
senting preferences that have emerged in Al [5]. So, whilewlidollow [3] and refer
to the present representation as a “lexicographic CSPS,atvery special case of the
class that they describe, with implications both for itsfubeess as a representation in
the context of preferences and its ability to support efficagorithms. For this reason,
we will use the term “lex-VCSP” to refer to the more generaegary of CSPs whose
evaluations can be ordered lexicographically.

Lexicographic CSPs (in the present sense) are potentisdifulin applications that
involve multiple objectives and attributes, where attréualues comprise small finite
sets, and where feasibility constraints impose restnstimn assignments that are actu-
ally possible. We are particularly concerned with problémshich attributes are either
qualitative in nature or take on values from a small discseteln these cases, an ordi-
nal model requiring stringent but reasonable assumptianshba an effective decision
aid.

For example, consider a customer who has the overall obgecfibuying a good-
quality digital camera. This might entail more specific ahijes that can be expressed
as: “| prefer any camera with 2 megapixels over any camenra Winegapixel, but if
they both have the same number of megapixels, I'll choosdigheéer one”. In other
words, pixels has priority over weight, with a larger valuefgrred in the first case and
a smaller in the second. In addition, let us suppose thatitatiipom is preferred to an
optical zoom, and this attribute has a priority between|gigad weight. To round out
this example, we will introduce some feasibility consttairwe suppose that a larger
number of pixels is associated with greater weight, andttiere are also restrictions
between pixels and zoom-type and zoom-type and weight.

We represent these user requirements using a well-knovamigpee from applied
decision analysis, and then show how the same example isseqed as a lexico-
graphic CSP. The decision analysis involves constructitngesarchy of objectives,
starting with a general and rather ill-defined objective thee desires, and dividing or
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specializing it into more specific objectives, which arenthgsociated with measurable
attributes. (In the most common forms of decision analysisyerical preference func-
tions would then be constructed that take into account itigsrand tradeoffs among
these attributes [6, 7].)

good
camera

minimum || maximum
bulk resolution

| | , 1,05

3,0.7
zoom

minimum || maximum
weight pixels

0.5,0.7

Fig. 1. Multiattribute decision problem, represented by a hidraraf objectives on the left with
measurable attributes at the lowest level and by a lexigiicaCSP on the right, which incor-
porates tradeoffs and restrictions as hard constrainemqi€aints are shown as viable tuples.) In
this example, the importance ordering over variables islpixzoom> weight; also, the values
in each domain are ordered from left to right.

Putting this problem in the form of an objectives hierarclvweg the result shown on
the left in Figure 1. Both user requirements and tradeoféstdufeasibility constraints
can be represented by the lexicographic CSP on the righgimr&il. An important ben-
efit that is immediately evident from this example is thatwéxicographic CSPs there
is a clean separation between preferences and feasitlitsti@ints, so the two can be
incorporated into one system in a way that does not obscthrereif them. Another
potential benefit is the ease of merging standard prefergigtation techniques with
this constraint representation.

The lexicographic CSP as defined here is amenable to cex@nstons, each of
which enhances the usefulness of this form of representdtidahe first place, such an
ordering might apply to only a subset of the CSP variables.cdikethis an “embed-
ded preference ordering”. In the second place, as Brewkatogts have shown, it is
sometimes useful to consider the set of lexicographic andstthat are consistent with
a given partial order, which allows more decisive compar$doetween alternatives [8,
9]. More generally, it may be useful to consider differenpartance orderings and their
associated solutions [10], and this can be done if we hawaeeffialgorithms.

Some recent approaches to qualitative representationeéénences have focused
on “conditional preferences”, where the preference ordgnith respect to a given at-
tribute is dependent on selection of a value for a differdtnifate [11]. (Suppose, for
example, that our customer prefers the digital to the opticam with a 3 megapixel
camera, but prefers optical to digital zoom with a 1 megdmamera.) As it turns out,
conditional preferences can also be incorporated intogkiedgraphic CSP represen-
tation; this is especially important because for lexicphia CSPs, comparing alterna-
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tives with respect to preference is always easy, in contoaSP-nets. In addition, there
are important relations between lexicographic orderingktheceteris paribusorder-
ings of “CP-net” representations. In particular, it hasrbekown that acyclic CP-net
orderings are dominated by conditional lexicographic drdgs [12, 13].

A distinctive feature of lexicographic CSPs is that thessbjgms can be solved us-
ing standard algorithms for ordinary CSPs. This contradits tlve general case for soft
constraint systems, where branch and bound techniqueshausted to obtain prov-
ably optimal solutions. In addition, the structure of ledgcaphic CSPs allows efficient
algorithms to be devised that are specialized for this tyfgeablem.

Junker has emphasized that in qualitative preferencemgsts opposed to multi-
criteria optimisation problems (which use globalized oysiation criteria), preferences
can be used to support specific heuristic decisions in oodaake search more efficient
[14,9]. This paper demonstrates that this is particulatlg for lexicographic CSPs.

Although lexicographic orderings have a venerable historthe study of prefer-
ence in such areas as economics and decision making [15, las been relatively
little work on applying this idea to CSPs, and on developilypathms to solve these
problems. [16] introduced the idea of a lexicographic ortgon sets of constraint valu-
ations, an idea developed further in [3], as already notiet].donsidered multi-criteria
preferences in connection with constrained optimizatang lexical orderings were
used in some cases to compare solutions (called “B-prefesih Work on constraint
hierarchies [17] can also be cited, since comparisons lestwssignments depend on
the lexical ordering of the levels of the hierarchy, so thabastraint violation at level
k overrides any number of violations at higher levels. [18]éhatudied consistency
(GAC) algorithms for constraints that induce lexicograpdriderings on paired vectors
of variables. As our introductory example suggests, coimpilexicographic orderings
with constraint-based reasoning may give a useful reptasen for many decision
problems that is also amenable to the powerful algorithnasheruristics developed in
connection with CSPs.

The remainder of the paper is organized as follows. Sectigives a formal defi-
nition of lexicographic CSPs. Section 3 discusses relattorother formal representa-
tions that can be applied to the the kinds of problems we aegdsted in. Section 4
discusses strengths and limitations of a lexicographidalsed representation of con-
strained preferences. Sections 5 and 6 discuss searay#sator lexicographic CSPs,
including experimental comparisons on test problems.i@eét describes search pro-
cedures based on ordinary CSP algorithms. Section 6 desaibranch and bound and
a specialized lexical search algorithm. Section 7 summesitise main conclusions.

This paper incorporates and extends some of the resultsmisgkin [19].

2 Definition of Lexicographic CSP

Definition 1. Lexicographic CSP.A finite CSP is defined in the usual way as a triple
(V,D,C), whereV is a set of variabled) is a set of domains each of which is asso-
ciated with a member df, andC is a set of constraints, or relations holding between
subsets of variables.
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To specify a CSP as lexicographic, we introduce the follgndefinitions. A la-
belling of setV is a bijection betwee#l,...,|V|} andV. A lexicographic structure
L overV is a pair(\, {>x: X € V}), where the second component is a family of
total orders, with>x being a total order on the domain &f, and\ is a labelling of
V. We write the labellingh of V asX;, ..., X,, so that for eachi, X; = A(:), and
n = |V|. The associatelxicographic order>, on (complete) assignments is defined
as follows:ae >, gifand only if & #  anda(X;) >x, 5(X;), whereX; is the first
variable (i.e., with minimumi) such thatx andg differ.

A lexicographic CSRs a tuple(V,D,C,\, {>x: X € V'}), where(V,D, C) is a
finite CSP and\, {>x: X € V'}) is a lexicographic structure ovéf.

A solution to a lexicographic CSP is an assignmehsuch that

(i) «*is asatisfying assignment, that s, it is consistent witlsatisfies, all constraints
in C.
(i) a* > a holds for any other satisfying assignment

3 Comparisons with Other Formulations

3.1 Lexicographic CSPs and soft constraint systems

In constraint-based reasoning, preferences are often letbds soft constraints, in
which failure to satisfy a constraint serves to deprecateoffending values, but does
not lead to outright exclusion. The most important forrmabsare the valued and semir-
ing CSPs, in which evaluations are associated with domairesaand with either con-
straints or constraint tuples [1, 3]. Under the proper aggions (especially preferen-
tial independence and scale equivalence), these evalsatem be used to represent
preferences (in the form of utilities) as well as other sol@ldeatures like importance
or likelihood. The resulting problems are constraint ojtation problems, in which
solutions are sought that optimize some function of theuatans, for example the
minimum sum or the largest minimum value associated witheatye or tuple in an
assignment.

Each soft constraint framework includes several classasate distinguished by
the operators used to combine and compare evaluationse@fiegt relevance here are
the fuzzy CSPs and the weighted CSPs. The former uses thepeaxtor to combine
evaluations and selects the minimum maximum evaluatioocésted with a violated
constraint. The latter combines by summing evaluationssafetts the minimum sum.
Lexicographic CSPs can be classified in these terms as a kimeighted CSP. This can
be shown by embedding a lexicographic ordering within thegiwted CSP framework
as follows:

Lexicographic CSP as a weighted CSH-or eachi = 1,...,n we define a unary
weighted constrainiti’; over variableX;, given byW;(z) = kb" ¢, wherez is thekth
best value in the domain df; andb is the largest domain size. Then for assignments
andg, the sum of the weights associatedu less than the sum associatedtid and
only if a > .



O©CO~NOOOTA~AWNPE

Within this field of research, some previous work has coregiitself specifically
with lexicographic orderings. An evaluation structure f08Ps involving a lexico-
graphic ordering was originally developed within the fuZ28P context, in order to
avoid the limited discriminability between solution vadii@ the normal fuzzy system
due to the use of fuzzy min and max operations for combinirdy@@mparing evalu-
ations [16]. In this formulation, preferences fituples associated with a given con-
straint are ordered by increasing magnitude, and two swistire compared beginning
with the first members of each ordering and proceeding thrdhg lists until a dif-
ference is found. In addition, constraint priorities arearporated into this model by
associating a priority level with each constraint, and mgkhe evaluation for a tuple
the maximum of its preference value and the complement gbtiogity value, i.e.

ps (u, - ug) = max(l —ac, pr(ur, - .-, ur))

whereus andug are evaluations of the fuzzy relations associated with tcaims C,
andag is C's priority level. However, lexicographic CSPs as we deflrent do not fall
under this ‘extended’ fuzzy model, in which priorities anéferences are balanced.

A more general formulation falling within the valued CSPnfrework is the lex-
VCSP model, where evaluations (associated with constvéafdtions) are treated as
multi-sets and the combinator is multiset-union. An additl top (T) value acts as an
absorbing element and can be used to represent violatidresdtonstraints. Compar-
ison involves sorting the multisets associated with eadiitisn by descending value
and comparing them lexicographically, beginning with tlighlest value and choosing
the evaluation with the smaller value for the first differerfiound [3]. These authors
also show that lex-VCSPs are equivalent to weighted CSRB, puisitive co serving
as the top value. Lexicographic CSPs (in our sense) careftivet be subsumed under
the lex-VCSP formulation; however, a different form of erdtimg is required than for
weighted CSPs.

Lexicographic CSP as a lex-VCSFror eachi = 1,...,n and eaclr € D(X;), we
define a unary soft constraint with associated constigjnt x and evaluation;(z) =

(”_jl#, wherez is thekth best value in the domain df; andb is the largest domain
size. In a lex-VCSP, each complete assignmeigt associated with the multiset of all
evaluations of soft constraints whiehviolates, that if¢;(a(X;)) : ¢ =1,...,n}. The
lexicographic comparison of two multisets is performed lst ftomparing the largest
element of each set. In this casés preferred ta? if and only if the multiset associated
with « is lexicographically prior to the multiset associated withas described in the
previous paragraph. Note that under this constructioh«fj thent;(x) > ¢;(y) for
all valuesz andy. Also, t;(z) > t;(y) if and only if z is less-preferred thap. So«

is preferred tg3 if and only if a(X;) is a better value thafi(X;), wherei is minimal
such thatw(X;) and 5(X;) differ. This holds if and only ifa >, / according to the
lexicographic ordering specified in Definition 1.

The procedure involved here can be clarified by a simple el@nBuppose we
have a lexicographic CSP with three variables and threecgaM/e use the integers
1,2,3 to represent each domain, with the ordering 2 > 3. Similarly, variable 1 is
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the most important, variable 3 the least. Then, by the espragust given (split into
three components after multiplying out the terms in the matoe), the evaluations
associated with successive values are:

values: 1 2 3
varl: 1-1/3+1/9 1-1/3+2/9 1-1/3+3/9
var2: 1-2/3+1/9 1-2/3+2/9 1-2/3+3/9

var3: 1-3/3+1/9 1-3/3+2/9 1-3/3+3/9

Or, with simplified expressions:

7/9  8/9 1
4/9  5/9  6/9
1/9 2/9  3/9

As usual with weighted-constraint formulations, the obijecis to minimize the
overall valuation using the combinator described ear{iBy. simplify we ignore hard
constraints, whose violation would override any of thesdweations.) Thus, in forming
multisets of evaluations, any feasible assignment in whiafable 1 has the value 1
will have a lower maximum value (7/9) than any assignmentfiictv this variable has
value 2 or 3, and this comparison will dominate any compassaf evaluations related
to assignments to variables 2 and 3 €l6/9). And so forth.

Lexicographic CSPs can also be associated with the comisitiararchy framework
of [17]. In an embedding of this sort, the feasibility coastts are associated with
level Hy, the level whose constraints must be satisfied in any feasiilution, and the
importance ordering is represented by the subsequenslieMtle hierarchy. In this case
(unlike most constraint hierarchies), the evaluationseafsible solutions collectively
form a total order.

Lexicographic CSP as a constraint hierarchyWe definen+1 levels in the hierarchy.
Hy contains all the feasible constraints. Hor= 1,...,n we define a leveH, of
the constraint hierarchy containing a single unary comdtralated to assignments to
variableX} in the importance ordering. For each le¥ethe locally-better comparator
(such as<) is based on an error function that returns a different dopeach assign-
ment to X, such that an error for valueis less than that for valukif and only if a
comes beforé in the total order forD (X} ). This meets the definition of a constraint
hierarchy valuation: that valuatiom is better than valuatiop if, for all constraints
through some levet — 1, the error associated withis equal to that fof3, and at level
k the error is strictly less for at least one constraint ansltlkan or equal for all the rest
[17]. In addition,« is locally-better thar® if and only if « >, 3.
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In each of these three cases, embedding a lexicographic @BiR the more gen-
eral framework involves making evaluations explicit, eitin the form of specific scalar
values or as a level in a hierarchy. Thus, in the soft corrgtfedmeworks, the origi-
nal n-ary soft constraint is represented hy x d evaluations. But in making this
transformation, the most significant representationgufeaof the lexicographic CSP
- the explicit representation of a lexicographic order -ast] or at least obscured. In
other words, when making evaluations explicit, the moreegaiformulations also do
away with the original ordering, at least with respect to wasy in which they carry
out combinations and comparisons. (Intriguingly, in theN6CSP the original lexico-
graphic ordering is in a sense ‘rediscovered’ in a lexicpgraordering on multisets of
evaluations; but this is still a much more roundabout wayepfresenting the original
problem.) In addition, by explicitly representing the leo@raphic ordering, the lexi-
cographic CSP formulation avoids the need to explicitlyrespnt the evaluations as
separate elements. Nor is this required in order to searabptomal solutions.

The take-home lesson, then, is that when the assignmemtsafdotal order in the
fashion of Definition 1, we do not have to represent constraiights (or a constraint
hierarchy) explicitly. This allows a greatly simplified megentation of these problems
and supports a variety of specialised procedures for sphfiam, as described in later
sections.

3.2 Lexicographic CSPs and CP-nets

CP-nets are a recently proposed formalism for the quai@agpresentation of pref-
erences among outcomes with multiple attributes [11, 18 Thtention in this case
is to representonditionalpreferences. Nonetheless, it can be compared to the lexi-
cal CSP representation at several points. (And, as shovire artd of this section, the
lexicographic CSP framework can be extended to handle tiondl preferences, thus
providing a further point of comparison.)

Like CSPs, CP-net structures are based on assignmentsugisvial variables, or
“features”. As noted, CP-nets encode conditional deperidsnin which the prefer-
ence ordering of values in the domain of variallle depends on values assigned to
other variables, called the “parents” &f. These orderings are stored in a “conditional
preference table” (CPT) associated wixh. A more recent variant, the TCP-net [20,
21], includes elaborations to handle relations of imparéahetween the features of
user-selections. This corresponds to the ranking of viasah lexicographic CSPs.

A critical feature of CP-nets is that preferences are onlindd under teteris
paribus’ conditions. If, for example, feature$ and B each have two values, , a» and
b1, b2, respectively, and we have unconditional prefereges x , a» andb; >x, b,
then we can deduce frogeteris paribusassumptions that;b; >y a2bi, asb; >n
asbs, and hence by >n asbs, but we cannot ordet; b, anda»b; on this basis. As
a result of this feature, preference orders can be estallish the basis of “flipping
sequences” (as illustrated in the last example). Thislististe of TCP-nets, although
in some cases adjacent outcomes in a sequence can be sgjpgratehange in two
variables rather than one.

An important difference between (T)CP-nets and lexicolgimprderings (and also
soft constraints formalisms) is that while comparisonssa®y for lexicographic order-
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ings, since they are based on successive comparisons céfdney can be extremely
hard for (T)CP-nets, since they depend on finding flippingiseges for transforming
one alternative into another [22, 23].

Although (T)CP-nets do not encode feasibility constraitectly, the orderings
that they represent can be combined with such constraimsich the same way that
lexicographic CSPs combine a particular preference andewxiith a constraint repre-
sentation [24]. With (T)CP-nets, the constrained optitidgaproblem involves finding
the undominated feasible outcomes. For an acyclic CP-dét (@nd similarly, for an
acyclic TCP-net [21, 25]) one can use a CSP search algoritiind a single undom-
inated solution, by instantiating variables in an orderognpatible with the parent-
child ordering. A “staged lexical” algorithm (see Sectio)6can also be adapted for
this purpose. To find more than one undominated solutiontoamever, involve com-
putationally complex comparisons between solutions @algih this is not always so:
see e.g., [26]).

Exceptin some trivial cases, the order on assignments gtedoy a CP-net, or by a
TCP-net, is never a lexicographic order. Therefore, ini@mtto the systems discussed
in the previous subsection, lexicographic CSPs cannot iedded in a CP-net, even
when the latter is extended to incorporate feasibility tamsts as in [24]. (See [27] for
a formalism that extends both (T)CP-nets and lexicograptuiers.) The reason for this
is that flipping sequences require that consecutive elestienhe ordering differ by at
most one (CP-nets) or two (TCP-nets) elements. Howevesamiive elements in a
lexicographic ordering can differ by up t&'| elements. More precisely (see [27]),

Theorem 1. Let > be a lexicographic order (as defined above) on the set of cetepl
assignments, and for all € V, | X| > 1. Then (a) if|{V/| > 1, there exists no CP-net
N onV with >y = >, (b) if |[V| > 2, there exists no TCP-nét onV with >, =
>r.

Proof. Consider anyr andg which are consecutive in the order - 3, but there
does not existy with a >x v >=n 5. Becausex >y £, there exists some flipping
sequencer = ag,...,q; = 3 with «; an improving flip froma;,,. But becausex
andf are consecutivd, = 2 and« is an improving flip fromg. By definition of an
improving flip, a and differ on precisely one variable.

The same argument can be used to show thasifidj3 are consecutive in the order
>n WwhenN is a TCP-net, then (using Lemma 5 of [2Q])is an improving (TCP-)flip
from 3, so, by definition of a TCP-flipg andg differ on either one or two variables.

Any lexicographic order on assignments contains consex@iiementsy and 3
which differ on all|V| variables (assuming the domain of each variable has at least
two elements). For example, if the domain of each variabteésset{1, 2} with the
usual ordering, then the assignmefit2, 2, ...,2) and(2, 1,1, ..., 1) are consecutive
assignments in the lexicographic order which differ on gweriable. So if|V| > 2
thens n is not a lexicographic order i is either a CP-net or a TCP-nét.

Conditional Lexicographic OrderingsAs noted above, the lexicographic representa-
tion that we employ can be extended to represent conditfmeférences. This subject
is treated at greater length in [12] and [28]; here, we brigfignmarise the main ideas.
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A conditional lexicographic ordering, like a lexicograploirdering, is based on an
orderingXy, ..., X, of the variables, and to compare two assignments we see which
is better on the first variabl&; on which they differ. In this case, the ordering of the
values of the domain aX; can be conditional on values of previous variables.

A conditional lexicographic CSP can be defined as follows:

Definition 2. Conditional lexicographic CSP.Define aconditional lexicographic struc-
ture overV to be a tupleK’ = (\,G,CPT), whereX is a labelling ofVV, with A(7)
being writtenX;, G is a directed acyclic graph dri which is compatible with\, i.e.,
(Xi,X;) € Gimpliesi < j. CPT is a function which associates a conditional prefer-
ence table®’ PT'(X) to eachX € V. Each conditional preference tall&P?T'(X;) as-
sociates a total order; ¢ with each instantiation of the parent#/; of X; (with respect

to ). The associatedonditional lexicographic order i on assignments is defined as
follows: o =g B if and only if « # B anda(X;) >X B(X;), whereX; is the first
variable (i.e., with smalles) such thai(X;) # 5(X;), andu = a(U;) = S(U;). Itis
easily seen that g is a total order on assignments.

Conditional lexicographic structures as defined above treveequirement that the
graphG is compatible with the importance ordering of variablesthsd the parent¥’;
of a variableX; are more important than the variablg. One can relax this assump-
tion, however, and consider the more general case wheratperid relations in the
conditional preference network do not necessarily conftrimportance relations in
the variable ordering. This is done by a strategy of indiogcthat involves a function
@ which assigns a numbép(z|u) for every valuer of X; and assignment to U;.
The conditional preference order is then defined as follbavsompare assignments
andg we find the firstX; whereQ(a(X;)|a(U;)) is not equal taQ (5(X;)|8(Uy)). If
Q(a(X;)|a(U;)) is less tham) (5(X;)|58(U;)), we prefera to §; else we prefefs to
a. Another way of viewing this is that we are converting eacsigiamenta = (z,,
..., &y,) to ann-tuple of numbersy = (Q(z1|u1),...,Q(z,|us)), Wherew; is the
assignmenty makes toU;. The conditional lexicographic ordef;, is then just the
standard lexicographic order on thes¢uples of numbersx is preferred tg3 if and
only if o' is lexicographically less thaft. Hence>, is still a total order.

This lack of restriction regarding parent-child relatiansans that a user can ex-
press priorities and conditions on preferences indepelhylaithout having to be con-
cerned with making the relations correspond. Moreoverh quoblems can still be
solved efficiently, using extensions of the algorithms diéscl below [12, 28].

3.3 Lexicographic CSPs and multiobjective optimisation

Multiobjective combinatorial optimisation (MOCOQO) and rtiabjective programming
(MOP) are concerned with finding optimal solutions whendhame more than one cri-
teria or objectives, expressed as functions (typicallj-vahued) on subsets of decision
variables. The problem can be stated in the following gdnenas:

min f(z) = (fi(2),---, fp(z))

zeX
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whereX C R" is the feasible set anfl is a vector-valued objectivgé : R — R?,
wheref; : X — R are the objectives [29]. In the basic case, the entire Pénattier
is considered. Recently, this general approach has beeedcaver to CSPs [30, 31, 9].

In other cases, acceptable aggregation functions can lok siseh as a weighted
sum, or the objectives can be ordered. One example of ther iatthe lexicographic
ordering [32]. A feasible solutiot is lexicographically optimal if there isne € X
such thatf (z) <iex f(Z), Where<,ex corresponds te-, in Definition 1. In most cases,
solutions are obtained through some form of weighting seh@uost functions), similar
to that described above in connection with weighted CSPs.

In all these cases, preferences are implicit in that smedieres returned by an ob-
jective function are generally considered to be better. (evgest weight, lowest cost).
However, in order to deal more explicitly with preferencespecially in the form of
utility scales, it is necessary to introduce further speatfons and to follow certain
restrictions. As an obvious instance of the latter, it isamteptable to combine objec-
tives considered as “utilities” with other functions that aimply physical or monetary
objectives. In addition, we cannot simply assume that sorighted additive formula
is an additive utility without establishing the necessanyependence conditions (e.g.
preferential independence) and deriving coefficients givsi) that truly reflect differ-
ences of proportion among attributes [6]. (For a concigestant of this issue, see [33],
p. 646.)

There are different strategies for introducing expliciferences into the multiob-
jective framework. The first involves relegating multiotfige optimisation and multi-
criteria decision analysis to different stages. In thisec#ize output of the MOCO stage
is a non-dominated set of solutions; this is then the inpetiley the multi-criteria deci-
sion making technique, e.g. MAUT or AHP, to order the solugioThis is the approach
advocated by some authorities [32, 29].

A second approach involves transforming each objectiednttility scale or, more
generally a preference ordering, and combining these disapto the requirements for
valid aggregate preferences. This is the approach takemriyed (see [9, 10]), who
in addition considers ordinal structures for preferengeasentation. In his approach,
criteria are defined which are functions of subsets of dewcigariables; unlike MOCO
criteria, these define preference orderings. These erited then added to a CSP rep-
resentation in the form of extra constraints. (A third agmiois also possible, in which
MOP search returns a [usually nondominated] solution gatitiqued’ by the decision
maker, leading to another bout of combinatorial search utteeconstraints inferred
from the critique, and so forth [33]. Since this approachsdnet assume an explicit
preference ordering at the start, it is outside the scopleeoptesent work.)

In the present work, we also follow the second approach.itncdese, a CSP repre-
sentation allows us to use a multiobjective approach withirely ordinal representa-
tion. Here, we consider only feasible solutions (hard a@irsts), but this is not a basic
limitation, since our methods can be extended to cases vehergcographic represen-
tation of preferences is combined with other soft constgain

Lexicographic CSPs can be viewed as a special case of theagtpused by Junker.
The main difference is that we have explored the ramificatafrihis special case more
extensively, including relations to other soft constrapstems and the development
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and testing of specialised algorithms. In addition, thespn¢ exposition distinguishes
between multiobjective optimisation and multiattributeference representations and
presents a more systematic account of their differences.

In his examples, Junker expresses his criteria as extrablas. They are, therefore,
not only distinguished constraints but distinct variabléss is comparable to a version
of the lexicographic CSP in which the lexicographic ordgtiolds for a subset of the
variables (what we call an embedded lexicographic ordgriigwever, in our case we
do not declare extra variables; instead we useaay rather than an-ary constraint to
represent the preference ordering.

4 Representing Preferences with Lexicographic Orders

The previous section served to locate lexicographic CSHsmwihe space of multi-
attribute representations. There are further issues coimggthe manner in which pref-
erences are represented, which are of critical importara/aluating the applicability
of this approach. These are discussed in the present section

4.1 Representational adequacy and expressiveness

Preferences refer to selections of outcomes from setsayfaltives [34]. (Here, we only
consider “riskless choice”, where uncertainty is not repreed explicitly.) We follow
the usual convention in artificial intelligence in not digfuishing between overt choices
and verbal judgments of preference. In either case prefesecan be represented by
binary relations with properties such as transitivity aeflexivity that reflect basic
rationality assumptions. Our definition of lexicographisture is consistent with a
preference relation on the set of full CSP assignments,taré is an associated order-
preserving (utility) function by virtue of this relation ing both transitive and complete
[35]. More precisely, the properties of a lexicographicesidg given in Definition 1
imply that the ordering on full assignments is transitivd aamplete; this follows from
the fact that distinct assignments differ in at least onaezaind that for any two distinct
assignmentse and 3, the ordering of these assignments depends solely on sgme
the variable with the minimum labélon which they differ. Hence, by a well-known
theorem (see [35]), there is a real-valued functisuch that for any two assignments,
« andg:

a > B = ula) > uB)

Moreover, the axiomatic constructions of Fishburn andtPldttle and Parks show
that, given an ordering on vectors of attribute values thdtéansitive, antisymmetric
and complete, together with an independence conditioneofatowing form:

(T1,y ey Tis1, Qi Tig 1y -5 @) >0 (T1,Tic1, ey by Tig1, e o v, Ty)

iff (y17'"7yi717aiayi+17"'7yn) >L (y17'"7yi*17bi7yi+17"'7yn)7

and an axiom of noncompensation between attribute domathghe following form
(where> x, is the projection of>, to X;):

if (z; >x, y; iff z; >x, w;)
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and (y; >x, x; iff w; >x, z;)
then (z >p yiff z > w) and (y > ziff w >, 2),

then this orderingnustbe lexicographic [36, 37} 2 This form of ordinal representa-
tion, therefore, can be given a sound axiomatic foundationhis respect, it can be
distinguished from most if not all other ordinal represéiotzs.

Lexicographic CSPs are associated with an aggregatety dtitiction, since this
function is based on subutilities on individual domains. i&mng a qualitative repre-
sentation in this context, we circumvent many difficult ssuegarding the validity of
a preference representation that arise when one associateical values with CSP
elements and combines them according to standard opesafciisas addition. In par-
ticular, we do not have to worry about whether we meet therapions that, (i) the
aggregate (derived) scale values are consistent withnerefes based on full alterna-
tives, (ii) the scales for distinct attributes are commeat®) so their values can be
meaningfully combined. In the latter case, unless one deters coefficients of pro-
portionality by requiring the user to specify equivalentrgiaal rates of substitution, it
is not clear that summed ‘preference values’ are genuingiaeldtilities (cf. [6]).

In this connection, it should be noted that in our runningregke, while two of
the attributes are quantitative in nature, neither can beciated with marginal rates
of substitution without grossly distorting the charactéthe actual sets of attribute
values, which are finite and small. This would seem to rule ayuat least severely
constrain approaches based on multi-attribute utilitptii€MAUT) in such domains.
Other approaches to multi-attribute scaling, such as AHRrvolve equally stringent
assumptions. Similar criticisms of approaches that involumerical scaling have been
made in the literature on multi-criteria decision making;, ¢38].

On the other hand, this form of qualitative preference repméation has some obvi-
ous limitations. Lexicographic orders are an extreme cdserevthere are no tradeoffs
in preference between the values of any two attributes.rRefeback to the introduc-
tory example, suppose that a 4 megapixel camera is availabie¢he weight of this
camerais 7, a ten-fold increase over the next-highest vaiuais case, our customer
might decide that the extra megapixel does not compensatied@added weight of the
camera,; but this of course violates a lexicographic ordgsirnere any improvementin
number of pixels will outweigh any increase in weight.

Because of such situations, the practical importance aédexaphic orderings has
sometimes been questioned. Perhaps the best-known erdigug these lines is that
of Keeney and Raiffa [6] (but see also [15]). We must admit thech criticisms have

! The axiom of noncompensation says that the ordering on aimpksignments depends just
on which is better on individual attributes, not on how mueltiér or worse they are on each
attribute. This prevents cases where, for example, senex; 2 comparison overrides a
z >x; w comparison, while the correspondipg>x; x comparison does not override the
x >x,; y comparison. In such cases the consequent may not followtlerantecedents.

2 In the description above, we have substituted our notatioritfe original notation of [36].
Since the domain and assignment orderings in the preseat page the same properties as
>~ and>;, respectively, in [36], the theorem on lexicographicitgafollows from the axioms
in their present form.
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merit. Thus, there will be cases, namely those in which t#d®f one sort or another
are important, where a system based on lexicographic oiglexinappropriate.

At the same time, we contend that there are cases where bajdaradeoffs is either
unnecessary or can be finessed. In some cases, the user mg@rdins and variables
in accordance with a lexicographic order as we have defindd ibther cases, the
user may be willing to impose such an order in order to obtiaénrepresentational
and computational benefits. As a special case of this, thenuag be able to specify
a degree of ordering consistent with a small number of lexiaphic orders, so that
a small set of optimal solutions can be derived, with sed@cimong them on other
grounds. (This strategy has been discussed by Junker [8)¥; there are cases, such
as the one given above, where tradeoffs can be finessed bgimgpadditional unary
constraints. This is because such cases tend to occur whemlthes are extreme and,
therefore, will have low preference values and may even hawegative valence.

Thus, while it is to be expected that there will be situatiartgre simple lexico-
graphic CSPs do not capture all aspects of the prefereraterglif they are appropriate
or if there is an acceptable total ordering on variables; tlas noted above, a repre-
sentation can be provided that is transitive and completé, has a sound axiomatic
foundation.

4.2 Preference elicitation

When comparing alternative representations of preferemeanust consider not only

the soundness of the formal representation but also theeddgrwhich the assump-
tions undergirding the representation can be met in pmclibe latter may be called
“soundness-in-use” as opposed to “soundness-in-comeeplihis issue is significant

for the present work because observations of practice aeflit@mpirical assessment
both indicate that fewer inconsistencies arise when peefs elicitation is based on a
representation that is ordinal in character [39] [40] [41]nconsistencies occur, this
means that the assumptions required by the model have notietan practice. These
results therefore show that even when cardinal represensa¢such as MAUT) are

well grounded formally, it is harder to meet the conditiorpressed by the axioms us-
ing this form of representation than is the case with ordieptesentations, including
lexicographic orderings.

Other empirical studies support the idea that simple ragikiof differences and
exclusion of alternatives on the basis of a few attributesrapre natural activities
than value and attribute scaling. Thus, there is a large lbddyprk showing that most
people use “noncompensatory” strategies, such as lexapbgrordering or elimination
by aspects, when they must choose among alternatives tiyadleamg several attributes
[42]. This relative ease of use may explain why lexicograpinderings have been used
in the past in decision-making applications, despite timgibility to express tradeoffs
directly, as noted by the main proponents of MAUT [6].

A useful aspect of the lexicographic CSP framework is thealtdtwvs one to represent
ideal preference orderings in a clearcut fashion whil¢ istilicating why they cannot
be realized. In contrast, these two aspects are not cle@tinglished in the usual
soft constraint formulation. This is the principle of “degming” discussed in [24]. It
is significant that, unlike the CP-net with feasibility ctnagnts, which is a composite
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system, the lexicographic CSP achieves a kind of “presentat decoupling while re-
taining a representational coupling internally by combinpreferences and feasibility
constraints into a single (CSP) framework.

5 Solving Lexicographic CSPs with Ordinary CSP Algorithms

In addition to being well-grounded and perspicuous, theeteyraphic CSP representa-
tion supports a variety of approaches to finding optimaltsmhs. As noted by Junker,
with an ordinal representation such as this, preferenasar compiled into utility
scales prior to search; instead, search methods are ugear¢haased directly on the
original preference orders [10]. This also obviates thelrfee global soft constraint
representations such as those described in [31].

5.1 Basic strategies

The clear division between hard constraints and prefeseincexicographic CSPs al-
lows us to use ordinary CSP search algorithms, which disass@jnments that violate
the former. This, of course, is not a practical strategy feighited CSPs when there
are no hard constraints, because in most cases if searcmaeb®unded, no partial
solutions could be discarded. This is also true for lex-VE3d here one cannot usu-
ally order search in terms of constraint evaluations, sinsiagle variable can be in the
scope of more than one constraint. Thus, we can make theviotjcstatement:

If a lexicographic CSP has a solutiam® (cf. Definition 1), then this solution can be
found and identified as optimal using a complete CSP algarithith any order of
instantiation of the variables.

In this case, a CSP algorithm is used to find all feasible goigt and these can be
compared lexicographically to find the optimal one. Essditithis is a kind of filtered
generate-and-test where we generate all feasible soduitioorder to find the optimal
one.

In addition, we have the following important special case:

If a lexicographic CSP is solved with a complete depth-firSPGlgorithm using an
ordering of variables and values consistent with the legiaphic ordering (“lexical
ordering”), thena* will be the first feasible solution found.

These facts give us considerable flexibility with regarddarsh strategies, so we
can tailor search to fit the problem features. In particufahere are many feasible
solutions, then a simple lexical ordering of variables aallies may be an excellent
strategy. On the other hand, when it is not reasonable to lesécal ordering, this will
be because there are too few feasible solutions, and ittihisscondition where good
CSP heuristics, i.e. those designed to find feasible soisitoquickly, may be useful.
For these reasons, we begin our examination of solving ndsthdgth a study of ordi-
nary CSP algorithms. In addition, since good heuristicaikhbe transferrable to more
sophisticated search techniques, results relevant fdatteg can also be established.
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5.2 Experimental tests

For experimental purposes, a total order can be simulaiaed wndom constraint sat-
isfaction problems, where variables and values are reptedas integers, 1 through
and 1 throughd;|, respectively, whergl;| is the size of théth domain. More specifi-
cally, the numerical labels of the variables and valuesesasithe required indices. In
both cases, lower integer values represent preferred atsmghus the solution, (1/1,
2/1, 3/1, ...,n/1), wherez/y is the variable/value labelling, is the most preferredl (1/
2/1, 3/1, ...,n/2) the next-most preferred, etc. In keeping with the deéinibf a lex-
icographic ordering, a shift of value frokto k& + 1 for a given variable represents a
greater change in preference than a shift fioto & + r for any variable with a higher
index number.

In random problems of this type, the pattern of hard constisdias no relation to
the preference ordering. These problems, therefore, haesual pattern of difficulty,
easy, hard, (relatively) easy, with respect to findinfgasiblesolution as either den-
sity or constraint tightness is varied while the other patanis held constant [43].
Although we are interested in finding the best acceptablatisol, since the number
of feasible solutions changes dramatically as either tepsitightness increases, we
should still see a crossover at some point between lexicatlgred search and search
based on ordinary CSP heuristics.

For our initial experiments, we used random problems witadixalues for number
of variables, domain size, density and constraint tighlen&he number of variables
ranged from 10 to 40 in different experiments, and domaiassizere 10, 20, or 30.
Although other densities were tested, in this section weictsurselves to density 0.5
for varying tightnesses.

In the initial experiments (Figures 2 and 3), algorithmsffomward checking (FC)
[44] and maintained arc consistency with AC-3 (MAC-3) [45¢ne written in C++
(by RH). In later experiments (Tables 1-5), MAC algorithmerescoded in Lisp (by
RJW). Extensive cross-comparisons ensured that resukgéoch nodes and constraint
checks were identical for versions of FC and MAC-3 writterthia two languages. All
experiments were run on a Dell Work Station PWS 330 running.&tGHz. Since
times, search nodes and constraint checks were alway$/pbsiorrelated for a given
experiment, nodes expanded is used for most comparisongirRe data is included in
the Tables to give a more global measure of effort, sinceigndhse the same measure
could be used for both binary and nonbinary problems.

We compared performance of lexically-ordered search Wi of two well-known
variable and value ordering heuristics: (dynamic) minindomain size variable order-
ing, where selection is based on current domain size, anth(dic) minimum-conflicts
value ordering, where values are selected that have thdestailim of conflicts with
values in adjacent future domains [46]. Although value drdpcannot make the all-
solutions problem more efficient, it was of interest to deiiee whether such heuristics
can find good solutions more quickly.

Figure 2 shows the search effort required by lexical ordgviersus search with
good CSP heuiristics for forward checking. As expectedchbsearch ordering is su-
perior when there are many solutions. However, it was soraesirprising that high
efficiency is maintained over a considerable portion of igathess range. In these
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Fig. 2. Effort required, (i) to discover the best solution (“besti)) to prove it optimal (“opt”).
Forward checking algorithm, with either lexical orderinggmod heuristics for ordinary CSPs.
The effort required by a compromise ordering (min domain kexital value) to discover the
best solution is also shown. (The “opt” curve for this stggtés almost identical to that for the
good-heuristics case.) Ten-variable problems, with fixedstty = 0.5 and tightness varying in
steps of 0.05. Sample size at each step is 50 problems. Fonegs> 0.65 problems have no
solutions.

cases, ordinary heuristics are grossly inefficient eitbefihding the best solution or
for determining optimality. However, despite the rigoroeguirement that all solutions
be tested, a crossover effect does occur as the number tibssldecreases, so that al-
gorithms with good CSP heuristics can find the best solutimhpgaove optimality with
less effort than the lexical ordering. The crossover poatuos before the point where
problems no longer have solutions, where lexical orderingtiose any advantage.

Figure 2 also shows the effort required by a compromiseegjyafvariable order-
ing by minimum domain size with ties broken by lexical oragrand lexically-ordered
value selection) to find the best solution (without provihgttitis the best). This strat-
egy is much better at locating such solutions than the glydiased solely on good CSP
heuristics, which makes the former suitable for either bheand bound or anytime pro-
cedures.

With MAC-3, the efficiency of lexical ordering is improvedrther, in relation to
the other algorithms, so that for these small problems thesaver is no longer ap-
parent. This apparent synergy between consistency maimterand lexically ordered
search may occur because arc consistency maintenancecarnfeeater benefit in the
one-solution than the all-solutions case. However, theesenomssover effect can be ob-
served with larger problems, and becomes more pronounceédmasin size increases
(Figure 3, Table 1). Note that the y-axis in Figure 3 is lothamic, so that after two
corresponding curves cross, there is an interval of tigggmehere the heuristic method
improves on the lexical ordering by a factor of 2-4.



O©CO~NOOOTA~AWNPE

1e+06

T T r T
Lexical Search (d=10) ———
Lexical Search (d=20) ——
Lexical Search (d=30) ——
Compromise Heuristics (d=10) ------
100000 F H . Compromise Heuristics (d=20) -
: Compromise Heuristics (d=30) -~

10000

Median Nodes

1000 [

100

10

1 1 1 1 LN 1 1 1
0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1
Tightness

Fig. 3. Effort required by MAC-3 to obtain provably optimal solut®with lexical and compro-
mise ordering. Twenty-variable problems with density = &l domain size = 10, 20 and 30.
Tightness varied in steps of 0.05 for each curve. Sampleasigach step is 50.

6 More Advanced Solving Methods

6.1 Branch and bound with CSP heuristics

An alternative form of search is to combine branch and bouitd @SP heuristics
involving dynamic variable ordering. (Obviously, lexitabrdered search cannot be
improved in this manner, since it orders search in terms afaficit cost function.) We
have already described a cost function for the weighted G88ion of lexicographic
CSPs that uses base arithmetic, but for lexicographic C&R$owmot need to calculate
the actual values of this function, which are quite largedoy but small problems.
Instead, we simply compare successive values followindekieal variable ordering
until we encounter a difference.

Specifically, suppose that variablg is the variable currently being considered for
instantiation, and this variable is thig¢h most important variable in the ordering. To
evaluate the current partial solution, we start from the fiasiable in the lexical order-
ing. If a variable has an assignment, we check this agamgtstantiation in the best
assignment found so far; if it does not yet have an assignmentheck the best re-
maining value in its domain against the best assignmenitherecase, if we encounter
a value greater than the best found so far, then search ckupaPseudocode for this
algorithm is shown in Figure 4.

The efficiency of this procedure could suffer when combinéh wariable ordering
heuristics, if variables of high priority occur late in theasch order, and good values
are still available. Despite this potential limitationigiorm of branch and bound does
well in comparisons with other methods (Table 1). Not onlesldt give further im-
provements in performance when there are few solutionstdbpéerformance degrades
more slowly than the ordinary CSP algorithm when the numlbdeasible solutions
increases, and in these cases it avoids checking a largenimopof solutions. It is also
much less sensitive to increases in domain size than lesidalring. It, therefore, can
be used with less concern about the exact properties of tisdgm.
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initialise values in best-solution to BIGVAL

lexico-bnb (partial-solution, remaining-variables)
if remaining-variables= nil
save partial-solution as new best-solution
and continue /lbacktrack
else
select next-variable and remove from remaining-variables
for each value in its ordered domain
if instantiating next-variable with this value leads to @ao eonsistent problem
and
bounds-check(next-variable, next-value) returns truedér bound
lexico-bnb (new-partial-solution, remaining-variab)les
continue Ilbacktrack

bounds-check (candidate-var, candidate-value)
underbound = true; comparison-succeeded = false
while variables remain to be compared & not comparison-aseded
select next-variable = most important unchecked variable
get value best-value for this variable from current be$itgm
if next-variable == candidate-var
curr-assign = candidate-value
else if next-variable is instantiated
curr-assign = current assignment of next-variable
else /lsmallest value is most-preferred value
curr-assign = smallest value in current domain of nextalde

/lperform comparisons
if curr-assign> best-value
comparison-succeeded = true
underbound = false
else if curr-assigr< best-value
comparison-succeeded = true

if comparison-succeeded
if underbound
return true
else
return false
else
return true

Fig. 4. Branch and bound pseudocode for lexicographic CSPs.

6.2 A specialised lexicographic CSP algorithm

Another strategy for search algorithms in this domain isawise procedures that are
sensitive to the properties of a lexicographic order. Is trg@in, we have implemented
a specialized iterative algorithm for lexicographic CSRattwe call “staged lexical
search”. Search is done repeatedly, in each case until hedilution is found, and for
each repetition or stage of search, one more variable isechioslexical order, i.e. in
accordance with the importance ordering. Values for thigatse are chosen according
to the preference ordering for this domain, starting withithost-preferred value.
Thus, in Stage 1 we first select variabfg according to the lexical (importance)
ordering, and then use any heuristic to select the othersrite have found a feasible
solution, we know that the assignment &y is optimal, so we retain it for the remain-
der of search. In Stage 2, we first select variabile so the first feasible solution found
will include an optimal assignment for this variable. Andfeath. Pseudocode for the
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staged lexical algorithm is shown in Figure 5. Although deped independently, this
algorithm is a special case of preference-based search/yhéte the criteria on which
search is based form a total order.

As noted earlier, methods for lexicographic ordering intiobjective optimisation
generally use a weighting scheme, in contrast to addingessoge constraints accord-
ing to the importance ordering of the criteria. However, acplised technique used to
find Pareto-optimal solutions, called the epsilon-coristsanethod, is based on a sim-
ilar strategy to that used for preference-based searchep$iton-constraint problem is
defined as follows:

min f;(x)

subject to
fk(x) S€k7k:177n k#]

For CSPs with ordered domains, this corresponds to findingpamal value in domain

j» while allowing a choice of values in domaitist+ 1,...,n, subject only to some
minimal difference from the optimal. In the present caggk > j) can be considered
to be set high enough to allow any domain value to be chosewettgr, since the

purpose of the epsilon-constraint method is to find solgtitrat belong to the Pareto
frontier, it does not involve successive addition of caaistis in the manner of the CSP
methods. (A basic description of this method is in [47]; &) for a recent discussion.)

k=1
whilek <n
level =k
while level< n [/Isearch for next solution
if level ==
selectkth variable in importance order
else
select next-variable according to some heuristic
while values remain and viable assignment not found
if level == k
select value according to preference ordering and propagat
else
select value according to some heuristic and propagate
if all assignments have failed at this level
/lcan’'t happen if level =% and there is a solution
backtrack and set level = level - 1
else
level = level + 1
save assignment made at le¥el /lthis is optimal
k=k+1

Fig. 5. Pseudocode for staged lexical algorithm for lexicogra@ses.
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In the form just described, this algorithm also compared wigh other methods
(Table 1). Not only does it do almost as well as branch and 8euren there are few
solutions, but it never does much worse than simple lexigi#iang for problems with
many solutions. In addition, mean runtimes for staged bxiere almost identical to
those for branch and bound in cases where there were few aluioss (when there
were many solutions, staged lexical was faster). It maygfoee, be the algorithm of
choice if only one method is desired for all species of protdelt may also be possible
to improve the algorithm somewhat since often after a aedtige, the same solution
is found repeatedly.

6.3 Further experimental comparisons

In this section, we present results based on other problésnBee first set of results
is for random problems with a larger number of variables. 3&eond is for problems
with heterogeneous structure, consisting of an easy sblgrowith loose constraints
and a hard subproblem with tighter constraints. To fa¢diteomparison with previous
tests, these problems have similar size and density to tit®na 20-variable problems.
The third set of results is for problems derived from a reatd/configuration problem
obtained from the Configuration Benchmarks Library mamgdiby the Computational
Logic and Algorithms Group at the University of CopenhageB8YS Benchmark #7
3
).

For 40-variable problems with the same domain size and geasbefore, the same
trends appear, but the differences are magnified. In p&atidar problems in the critical
complexity region, the branch and bound and staged lexigatithms are an order of
magnitude better on average than the basic lexical ordeditigough the compromise
method is also better than simple lexical ordering for thel lpgoblems (mean nodes =
280,514, using the min domain heuristic), since it is ckeddminated by the advanced
methods, results for this method are omitted from this atet kables. Interestingly,
the difference between the two advanced methods is now grateounced as soon as
one enters the easy portion of the complexity space. (Fgrgsas of comparison, we
include data for these problems based on ordinary CSP sé&arome solution using
the same variable ordering heuristic. This serves to showéftective the advanced
methods are for problems that are also hard as CSPs.)

Problems with heterogeneous structure were like the aigat of homogeneous
random problems in having 20 variables, with domains of $&end the overall graph
density was 0.50. There were two components, each with tegblas: an ‘easy’ com-
ponent with very loose constraints (tightness = 0.05) andaad’” component with
tighter constraints (either 0.60 or 0.65). These compawete linked by constraints
also with a tightness of 0.05. Within each component as wedthathe links, the propor-
tion of edges was 0.5. These problems were of a type that leasdadled “composed”
problems [49].

For the experiments described here, the importance ogless such that the ten
variables in the easy component were designated as the shimpwrtant. (If the order-
ing favored variables in the hard component, the resulte wienilar to those given for

3 http://www.itu.dk/research/cla/externals/clib/egvs.
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Table 1. Search Efficiency Comparisons

hard problems easy problems
domain size 10 20 30 10 20 30
tightness 0.35 0.45 0.50 0.30 0.40 0.45

lexical
median nodes 149 4631 30,959 26 85 292
mean nodes 347 9084 121,786 37 174 1027
mean solns 1 1 1 1 1 1

mean runtime 0.53 20.0 415%.9 0.04 0.28 2.2
CSP compromise
median nodes 1402 7404 26,053373,260 - -
mean nodes 1599 7927 29,858410,654 - -
mean solns 193 35 8 196,731 - -
mean runtime 1.4 19.6 10Q0.6 30.3 - -
branch and bound
median nodes 165 1238 6252 322 945 2381
mean nodes 217 2020 9395 380 1189 2991
mean solns 2 1 1 6 6 6

mean runtime 0.41 5.2 32.5 0.41 2.2 6.9
staged lexical
median nodes 325 1511 7152 230 338 506
mean nodes 390 2330 9778 237 375 607
mean solns 20 20 20 20 20 20
mean runtime 0.39 5.4 31.7 0.14 0.43 0.98

Notes. Twenty-variable problems, sample size 100. MAC ritlgm. “hard problems” are near
the critical complexity peak for lexical ordering. “easyoptems” are near the edge of the hard
region for lexical (cf. Figure 3). “solns” is number of fells solutions found during the entire
search; for CSP compromise this is the total number of smigtper problem. Branch and bound
and staged lexical algorithms employed the compromiserimgleHere and elsewhere run times
are in seconds.

random problems.) In this case, search using a basic lexidatring does very poorly
because of excessive thrashing, since conflicts are notvare until search is deep
in the tree. For this algorithm, search could not be run tometion for all problems,
so it was only possible to derive a lower bound (based on &mtahmulation of nodes
across a problem-set). At the same time, the advanced neettioeh given an appro-
priate heuristic were able to solve these problems effilgigfTthe heuristic used in this
case was the FF2 heuristic of [50], a Brelaz-like heuristitoh is sensitive to relative
constrainedness of different parts of the problem.) Hére staged lexical algorithm
outperformed branch and bound significantly and did not entar any difficult prob-
lems. As a result, the former sometimes outperformed thedatal lexically ordered
search by at least five orders of magnitude with respect tontemn.

The success of these algorithms was not simply due to the fuse appropriate
heuristic, since when FF2 was used with the all-solutiomripromise” strategy de-
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Table 2. Search Comparisons for Larger Problems

hard problemsseasy problems

tightness 0.20 0.15
CSP-1sol
median nodes 38,054 42
mean nodes 62,005 55
mean solns 1 1
mean runtime 323.9 0.10
lexical
median nodes 375,040 68
mean nodes 817,710 120
mean solns 1 1
mean runtime 5768.6 0.24
branch and bound
median nodes 51,301 160,480
mean nodes 76,513 4,385,167
mean solns 1.4 41
mean runtime 444.3 3294.1
staged lexical
median nodes 64,526 969
mean nodes 83,612 1007
mean solns 40 40
mean runtime 526.9 2.0

Notes. Forty-variable problems, domain size 10, densifydample size 100. For reference,
“CSP-1 sol” shows results for ordinary CSP search, usingdoimain and lexical value ordering.
Other notes as in Table 1.

scribed earlier, the algorithm could not be run to completia any of these problems
using a 10 million node cutoff. This is not surprising, sirtbese problems typically
have millions of feasible solutions.

The original ESVS configuration problem has 26 variablegh{domain sizes rang-
ing from two to 61) and 11 constraints with a maximum arity @&filn constructing
preference problems, we first discarded six variables tlfeewlisconnected. (They
were not of interest in the present context since the modees value is always
available). Then the remaining 20 variables were labedaithlly (following the order
of listing in the source file), and 100 Lexicographic CSPsensmnstructed with dif-
ferent lexical orders on these variables by renaming thiabkes according to random
permutations of the original labels. (This particular &gy allowed us to continue us-
ing the lexical labels as indicators of importance in theseoktode.) Doing this, we
were able to test our algorithms over a large sample of plessitportance orderings
with respect to configuration components. For each alguorithe solver code was the
original code updated with code for generalised arc cassist hence the algorithm
employed a generalised form of MAC3.
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Table 3. Search Comparisons for Heterogeneous Problems

tightness of hard component

0.60 0.55
lexical
median nodes 138,999 27
mean nodes > 10M >7M
mean solns 1 1
branch and bound
median nodes 389 1268
mean nodes 109,332 411,791
mean solns 3.0 5.3
mean runtime 7.3 23.3
staged lexical
median nodes 254 243
mean nodes 259 247
mean solns 20 20
mean runtime 0.18 0.13

Notes. Twenty-variable problems, domain size 10, densByWith two components of size 10:
an ‘easy’ part with constraints of tightness = 0.05 and adhpart with tightness as indicated
in the column headers. The two components are linked by i@nit with tightness = 0.05. The
density value given above also holds within each componeaitfar the proportion of possible
links between them. “M” means million. Sample size 100. @tiates as in Table 1.

We generated three sets of problems using the approachgsstilded. The first
set of (easy) problems was generated from the original ES'@Blgm. For the second
set, the original problem was altered by adding new comgsaio that the constraint
graph was a single connected component, and by changing gbthe relations to
reduce difference in support for domain values, espediallynary domains, and finally
by discarding tuples associated with solutions until thebpgem became difficult for
simple lexical search. The 100 most difficult problems wéaentculled from a set of
1000 generated according to the methods described in thimpsgparagraph. Finally,
a third base problem was derived by duplicating the varghbled constraints from
the second (and relabelling the variables) and adding atreamisthat connected the
two sub-problems via corresponding variables with binaméins, that included only
tuples with distinct values (i.e. (0, 1) and (1, 0)). Then H6blems were generated
according to the methods described in the previous parbgrap

The results of these experiments are shown in Table 4. The pattern of results
corresponds to those of previous experiments. Problemedbas the original ESVS
problem have many feasible solutions (3.1 million in thiseja and here branch and
bound algorithms are relatively inefficient. When feasiautions are harder to find,
then the advanced algorithms outperform simple lexicatckehy up to an order of
magnitude. In addition, the disparity between means andansdndicates that while
most problems are still easy, certain importance ordeniwrgsk havoc with the simple
lexically-ordered search, leading to a high mean seardnteff
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Table 4. Search Comparisons for Configuration Problems

original (easy) altered large altered
ESVS ESVS ESVS

lexical

median nodes 20 294 41
mean nodes 20 899 98,707
mean solns 1 1 1
mean runtime 0.01 0.25 32.3
branch and bound

median nodes 789 305 3684
mean nodes 41,294 418 21,170
mean solns 3.1 2.7 6.0
mean runtime 23.9 0.13 8.9
staged lexical

median nodes 210 363 851
mean nodes 210 536 6062
mean solns 20 20 40
mean runtime 0.10 0.17 2.2

Notes. Each set of problems consists of 100 different ingmae orderings derived from an orig-
inal configuration problem. Branch and bound and stageddésiearch employed min domain
variable ordering.

6.4 Problems with embedded lexicographic orders

In a final set of experiments, we considered problems for vpieferences are re-
stricted to a subset of the variables in the CSP representdkiat we call “embedded
preference orderings”. Cases like these may arise oftereictipe, where in addition
to variables representing attributes whose values areesuty) user selection, there
are variables representing constraints of various kindsttie user has no preferences
about, such as physical constraints on design, featuresgilote to the user, etc. These
experiments employed the 20-variable random and heteemgsnproblems used in
previous tests, but now only the first 5 or 10 variables in &xéchl ordering were used
as the basis for preferences. With the heterogeneous prmeptee embedded ordering
was in the easy component; this represents the case whdeegmees are associated
with less constrained parts of a problem that contains odlificult subproblems. (Note
that the alternative case is already modelled by the emloboldierings in the homoge-
neous random problems.) For algorithms that involved kacdering, the procedure
switched to an appropriate heuristic once the variablelsérpteference ordering were
instantiated: minimum domain size for the random problenusF-2 for the composed
problems.

A selection of the results is shown in Table 5. Differencesagnalgorithms are for
the most part similar to those observed in previous exparisyalthough the branch
and bound is more efficient than before on the heterogeneohtems when only 25%
of the variables are in the embedded lexicographic ordestMignificantly, the spe-
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cialised algorithms continue to outperform the standaxitée ordering on these prob-
lems even when only a small proportion of the variables ateérembedding.

Table 5. Search Comparisons for Problems with Embedded Lexicograptuers

problems randorr:20,10,.50>| composed 10-10

tightness 0.35 0.30 0.60 0.60
embedd. size 10 10 10 5
lexical
median nodes 149 26 122,480 29
mean nodes 347 37 > 10M 12,000
mean solns 1 1 1
mean runtime 0.54 0.03 - 14.3
branch and bound
median nodes 171 373 535 209
mean nodes 220 422 109,480 213
mean solns 4 27 6 1
mean runtime 0.27 0.30 9.3 0.21
staged lexical
median nodes 280 185 209 132
mean nodes 345 192 214 135
mean solns 10 10 10 5
mean runtime 0.35 0.10 0.23 0.16

Notes. Twenty-variable problems used in previous exparnmécf. Tables 1 and 3). For com-
posed problems, tightness value is for the hard compon&he émbedded ordering is in the
easy component.) “embedd. size” is the number of varialebé preference ordering. “M”

means million. Sample size 100. Other notes as in Table 1.

7 Conclusions

By combining lexicographic orderings with the classicalRCf8rmalism, we can rep-
resent both preferences and hard feasibility constraggsther in a manner that is
formally well-grounded, easily comprehended, and amengbtobust techniques for
problem solving. A constraint-based representation msy imlake it possible to extend
the application of lexicographic orderings in a significkaghion, by precluding some
types of tradeoffs through feasibility constraints.

The completeness of lexicographic orderings allows monegarisons between al-
ternatives than is possible with other qualitative prefeesformulations, such as CP-
nets. At the same time, such comparisons are often much rraighdéforward. De-
sirable features like conditional preferences can alsmberporated into this form of
representation.

Problem solving methods based on the ordinal propertieesxafdgraphic CSPs are
often very efficient. In our studies of search algorithmslésicographic CSPs, we de-
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vised several search strategies that are effective foagkedf finding optimal solutions,

including a branch and bound strategy and a specializeditiigothat takes advantage
of the lexicographic ordering to find successive optimalgasaents in a series of itera-
tions. These procedures sometimes outperformed a stafodardf search that directly

follows the lexicographic ordering by several orders of magle.
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