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Abstract  

Background: Glucagon-like peptide (GLP-1) can modify colonic function, with beneficial 

effects reported in the functional bowel disorder, Irritable Bowel Syndrome (IBS). IBS 

pathophysiology is characterized by hyper-activation of the hypothalamic-pituitary-adrenal 

stress axis and altered microbial profiles. This study aims to characterize the neuronal and 

functional effects of GLP-1 in healthy rat colons to aid understanding of its beneficial effects 

in moderating bowel dysfunction. 

Methods: Immunofluorescent and calcium imaging of myenteric neurons prepared from 

Sprague Dawley rat colons was carried out to elucidate the neuromodulatory actions of the 

GLP-1 receptor agonist, exendin-4 (Ex-4). Colonic contractile activity was assessed using 

organ bath physiological recordings. 

Key Results: Ex-4 induced an elevation of intracellular calcium arising from store release 

and influx via voltage-gated calcium channels. Ex-4 activated both ERK-MAPK and PI 3-

kinase signaling cascades. Neuronal activation was found to underlie suppression of 

contractile activity in colonic circular muscle. Although the stress hormone, corticotropin-

releasing factor (CRF) potentiated the neuronal response to Ex-4, the functional effects of Ex-

4 on colonic circular muscle activity were not altered.  

Conclusions & Inferences: Ex-4 evoked neurally-regulated suppression of rat colonic 

circular muscle activity. In myenteric neurons, the neurostimluatory effects of Ex-4 was 

dependent upon activation of PI 3-kinase and ERK-MAPK signaling cascades. No further 

change in circular muscle function was noted in the presence of CRF suggesting that stress 

does not impact on colonic function in health. Further studies in a model of IBS are needed to 

determine if mechanisms are modified in the context of bowel dysfunction.  
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Key points (max 80 words) 

 GLP-1 receptor agonists have been shown to be beneficial in the treatment of 

functional bowel disorders, but the underlying cellular mechanisms are unclear. 

 Activation of myenteric neurons by the GLP-1 receptor agonist induced activation of 

PI 3-kinase and ERK-MAPK signaling cascades. 

 The GLP-1 receptor agonist modified colonic circular muscle contractile activity in 

healthy rats, an effect that was not further exacerbated by the stress hormone, 

corticotropin-releasing factor. 
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Chemosensory activation of enteroendocrine L-cells by ingested nutrients causes membrane 

depolarization, action potential firing and enhanced basolateral exocytosis of glucagon-like 

peptide-1 (GLP-1) 1. Acting in its capacity as an incretin hormone, GLP-1 regulates glucose 

homeostasis. However, GLP-1 also exerts regulatory effects on the gastrointestinal (GI) tract, 

inhibiting motility, gastric emptying and the migrating motor complex; actions that have been 

reported both in both healthy controls and in patients with Irritable Bowel Syndrome (IBS) 2-

5. A common, functional GI disorder 6, IBS is characterized by abdominal pain, bloating, 

diarrhea and/or constipation. Administration of a GLP-1 mimetic to female IBS patients 

showed efficacy in reducing spasmodic and visceral pain symptoms 7. Moreover, in 

constipation-predominant IBS (IBS-C) patients, decreased circulating GLP-1 and decreased 

mucosal expression of GLP-1Rs was correlated with the severity of abdominal pain 8. Animal 

models of IBS suggest differential receptor expression levels in colons from animals with 

diarrhea or constipation 9.  

 

The endocrine system has a recognized role in IBS symptom flares. Indeed, hormonal 

fluctuations associated with menstrual cycles, and activation of the Hypothalamic-Pituitary-

Adrenal (HPA) stress axis, which is dysfunctional in IBS patients 10-13, have been linked to 

exacerbation of symptoms 14-16. Interestingly, crosstalk between GLP-1 and corticotropin-

releasing factor (CRF), a key stress hormone, has been demonstrated in central neurons. 

GLP-1 stimulates the HPA axis activation through CRF neurons 17. Moreover, stress-induced 

defecation is attenuated by antagonists of both CRF 18 and GLP-1 19, and GLP-1 accelerates 

stress-induced changes in colonic motility though vagal signaling 20. Mechanistically, the 

modulatory effects of GLP-1 on GI function may be centrally orchestrated 21, with high levels 

of expression of GLP-1 receptors (GLP-1Rs) in the nucleus tractus solitarius, the 

ventrolateral medulla 22, the area postrema and hypothalamus 23. Central administration of 
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GLP-1 increased colonic transit, also through vagal signaling 20, whereas peripherally applied 

GLP-1 has a mollifying effect on GI motility, which is likely to be mediated through local 

release of nitric oxide 24,25, regulated by myenteric neurons 8,26,27. 

 

Somewhat counterintuitively, despite the reduced probability of nutrients being present at the 

more distal end of the GI tract, the abundance of GLP-1-secreting L-cells increases 28. In fact, 

the chemosensory properties of GLP-1-secreting L-cells in the colon are likely to differ from 

those in more proximal regions, being activated by microbial products rather than nutrients 

29,30. Indeed, specific commensal bacteria increase intestinal and circulating GLP-1 31,32. In 

the context of IBS pathophysiology, altered microbial profiles have been reported 33, which 

could result in modified circulating GLP-18. However, few studies have been carried out on 

the cellular mechanisms underlying the inhibitory effects of GLP-1 in the colon and how this 

may be impacted by other hormones in the context of bowel dysfunction. Thus, the aim of 

our study was to investigate the intracellular signaling mechanisms evoked by GLP-1 in 

myenteric neurons in rat colon and relate this to changes in colonic smooth muscle activity. 

We further investigated the potential exacerbation of gut function by the stress hormone, 

CRF.  
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Materials and Methods 

Ethical approval 

All experiments were in full accordance with the European Community Council Directive 

(86/609/EEC). Rats were euthanized by CO2 overdose and cervical dislocation, which was 

approved by the local University College Cork animal ethical committee (ref. #2011/015). 

Rodents were euthanized at the same time of day (~9-10.30am) for all experiments. 

 

Animals and Tissue collecting 

Sprague Dawley (SD) rats approximately 10-12 weeks old (250-350g) were bred in the 

Biological Services Unit, University College Cork, Ireland. Rats were group-housed 3 per 

cage and maintained on a 12 / 12-hour dark-light cycle (08.00-20.00) with a room 

temperature of 22 ±1oC. Food and water were available ad libitum.  

 

A section of distal colon was excised from each rat and stored in ice-cold Krebs solution 

containing in mmolL-1: 117 NaCl, 4.8 KCl, 2.5 CaCl2, 1.2 MgCl2, 25 NaHCO3, 1.2 NaH2PO4 

and 11 D-glucose (pH 7.4). The colon was opened out along the mesenteric border and 

pinned out into a Sylgard-lined petri dish. To prepare a longitudinal muscle myenteric plexus 

(LMMP) tissue preparation for calcium and immunofluorescent imaging, the mucosal layer 

was removed and the circular muscle layer was peeled back to expose the myenteric plexus. 

For gut bath electrophysiology, distal colonic sections opened along the mesentery with 

mucosa removed, were suspended transversely to measure circular muscle contractility and 

longitudinally to measure longitudinal muscle contractile activity. 

 

Calcium Imaging 
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For calcium imaging studies, LMMP tissue from the distal colon of Sprague Dawley rats was 

tightly pinned out in Sylgard (Sylgard 184 silicone elastomer kit, WPI, Sarasota FL, USA)-

lined petri dishes and loaded with the ratiometic dye, Fura-2AM (7μM, 1 hr, Sigma Aldrich, 

UK). The calcium indicator was washed out and the tissue was continuously superfused with 

carbogen-bubbled Krebs saline solution containing nifedipine (1μM, Sigma Aldrich, UK) to 

inhibit smooth muscle contractions. Cytosolic changes in calcium were recorded from 

neuronal cell bodies using Cell R software (Olympus Soft imaging solutions, 1986-2009). 

Images were captured at 3Hz using a Xenon/Mercury arc burner (Olympus, Melville, NY, 

US), a charge-coupled device digital camera (F-view II, Soft imaging system, Munster, 

Germany) and a 40x water-immersion objective on a fixed stage upright microscope 

(Olympus BX51WI). The excitation or emission wavelengths of ratiometric Ca2+ indicators 

such as Fura-2 AM shift as concentrations of cytosolic Ca2+ change, and thereby allow 

dynamic measurements of intracellular Ca2+ in the selected cells. Excitation filters of 

340/380nm and emission wavelengths of 510nm were used. Ganglionic neurons were 

identified based on morphology and responsivity to 75mM KCl, which was added at the end 

of each experiment. Neurons were considered to be responders if the Fura-2 AM signal 

increased by more than two standard deviations from baseline for each neuron. The baseline 

values were calculated as the average ratio during the 150 seconds preceding the stimulus. 

The tissue was incubated with pharmacological reagents for 20-30 mins under continuous 

perfusion. 

 

Immunofluorescence and confocal microscopy 

LMMP preparations were pinned out on Sylgard-lined petri dishes and fixed in 4% 

paraformaldehyde (4oC, overnight), permeabilized with Triton X-100 (0.1%, 1 hour, room 

temperature) and blocked with 1% donkey serum (1 hour, room temperature). LMMP tissue 
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was incubated overnight at 4oC with anti-GLP-1 receptor (GLP-1R) primary antibody (1:250, 

affinity purified rabbit polyclonal antibody; Abcam, Cambridge, UK) and a TRITC-

conjugated secondary fluorophore (1:250, 2 hrs, 37oC, Jackson Immunoresearch, PA, US). 

Tissues were dual-labelled with primary antibodies against cholinergic afferent and efferent 

neurons with calbindin (1:300, mouse, Swant, Bellinzona, Switzerland) and calretinin (1:300, 

goat, Swant), respectively. Neuronal nitric oxide synthase (nNOS, 1:300, goat, Abcam) was 

used to label nitrergic inhibitory efferent neurons. The glial cell marker, S100 (1:300, mouse; 

Sigma-Aldrich, St. Louis, MO), the presynaptic marker, synapsin I (1:200, Santa Cruz 

Biotechnology) and the post-synaptic marker, PSD-95 (1:200, Santa Cruz Biotechnology, 

TX, USA) were used to localize GLP-1 receptors in the neurons. These cell markers were 

identified using species-specific FITC-conjugated fluorophores (1:250, 2 hrs, 37oC, Jackson 

Immunoresearch). Tissue was mounted on glass slides (VWR, Dublin 15, Ireland) using 

Dako-fluorescent mounting medium (Agilent Pathology Solutions, Santa Clara, California, 

USA) and a coverslip placed over the tissue. Antibody controls were performed by incubating 

LMMP tissue with primary antibodies in the absence of secondary fluorophores and 

fluorophores in the absence of the primary antibody. The GLP-1R antibody was incubated in 

the presence of excess GLP-1 protein and subsequently applied to the LMMP tissue. No non-

specific staining was evident in any controls. At least three different tissue preparations from 

three different animals were used in each experiment. Images were captured using Olympus 

D71 upright fluorescent microscope and Cell F software (Soft Imaging Solutions) or FV1Oi-

Olympus-confocal microscope with Fluoview software.  

 

Gut Bath electrophysiology 

Colonic tissue with the mucosa removed was suspended transversely or longitudinally from a 

tension transducer under 1g of tension in Krebs saline, in a water-jacketed tissue bath 
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maintained at 37.5oC and allowed to equilibrate for up to an hour. Colonic sections were 

stimulated with the cholinergic agonist, carbachol (100μM, Sigma-Aldrich, 5 min) at the 

beginning and at the end of each protocol to stimulate a maximal contractile response and 

ensure no decline in muscle responsiveness was occurring over time. Baseline contractile 

activity was recorded for 10 minutes prior to addition of pharmacological reagents. 

Contractile changes in isolated muscle strips were recorded via a mechanical transducer and 

Powerlab system and LabChart7 (all AD instruments Inc, Colorado Springs, CO, USA). 

LabChart7 was used to measure the area under the curve (AUC) of colonic contractions. The 

area under the rectified trace was calculated by computing the integral of the raw data.  

 

Materials 

Pharmacological reagents used in these studies include carbachol (Sigma Aldrich), CRF 

(Abcam); Ex-4 (Abcam), exendin (9-39) (Santa Cruz Biotechnology), PD98059 (Tocris Bio-

Techne, Abingdon, UK); tetrodotoxin (Tocris), thapsigargin (Sigma Aldrich); UO126 

(Tocris); wortmannin (Sigma Aldrich); ω-agatoxin IVA (Tocris) and ω-conotoxin GVIA 

(Tocris). 

 

Statistical Analyses  

Data sets were normally distributed (assessed using the D'Agostino-Pearson normality test) 

and presented as box and whisker plots (5-95 percentile). Data was analyzed using GraphPad 

prism for windows (version 7) and compared using paired two-tailed t-tests or repeated 

measures ANOVA with Tukey post hoc test, where appropriate. P values of ≤0.05 were 

considered significant.  
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Results: 

GLP-1 receptor agonist, Exendin-4 excites myenteric neurons 

Myenteric ganglia in LMMP tissue preparations from the distal colon of Sprague Dawley rats 

expressed GLP-1Rs (figure 1A, red staining). Receptor expression appeared to be primarily 

localized to the plasma membrane of some, but not all neurons within the ganglia, with strong 

expression in nerve fibers. Immunofluorescent examination of the subtypes of myenteric 

neurons which express GLP-1Rs revealed that 25% (n=24/98) of calretinin-stained 

cholinergic efferent neurons expressed GLP-1Rs. 41% (n=12/29 neurons) of calbindin-

stained cholinergic afferent neurons expressed GLP-1Rs and 16% (n=10/63 neurons) of 

nNOS-stained inhibitory neurons co-expressed GLP-1Rs. GLP-1R expression was not 

observed in S100-labelled glial cells in colonic myenteric ganglia (figure 1A). Given the 

punctate pattern of GLP-1R labelling, we investigated whether GLP-1Rs were clustered at 

synapses, where they may influence neuronal excitability. Dual-labelling of neurons with 

anti-GLP-1R and anti-synapsin I, indicated pre-synaptic expression of GLP-1Rs. Anti-PSD-

95 labelling indicated GLP-1Rs also appeared to be expressed post-synaptically (indicated by 

arrows, n=9 ganglia, figure 1B).  

 

Consistent with expression of GLP-1Rs on myenteric neurons, exposure of LMMP 

preparations to Ex-4 resulted in an increase in intracellular calcium ([Ca2+]i) in neuronal cell 

bodies. A concentration response protocol was carried out with 100nM, 1µM, 10µM and 

100µM Ex-4 (3 min, figure 1C). All concentrations tested induced a calcium response but the 

peak amplitude was evoked by 10µM Ex-4 (0.06 ±0.015 (mean ±SD)), which was 

reproducible on second application (0.04 ±0.015 (mean ±SD), n=47 neurons from 3 rats). 

Thus, the remainder of experiments were carried at this concentration. Ex-4 (10µM, 3min) 

increased somatic calcium concentrations in 76% (47/62 neurons, n=3 rats) of ganglionic 
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myenteric neurons. The calcium response generated had a latency of 15±10 seconds and was 

abolished in the presence of exendin (9-39) (Ex(9-39), 1µM, 10 min), a GLP-1R antagonist, 

(p<0.001, n=25 neurons from 3 rats, figure 1D). The voltage-gated Na+ channel blocker, 

tetrodotoxin (100nM, 30 min) similarly inhibited the evoked response (p<0.01, n=16 neurons 

from 3 rats, figure 2E). 

 

Ex-4-evoked calcium release is mediated by activation of PI 3-kinase and ERK-MAPK 

To investigate the role of intracellular signaling pathways in the GLP-1-evoked response, 

pharmacological inhibitors of key intracellular signaling molecules were used. The 

Phosphoinositide 3-kinase (PI 3-kinase) inhibitor, wortmannin (1μM, 20 mins), attenuated 

the Ex-4-evoked increase in [Ca2+]i (n=13 neurons from 3 rats, p<0.05, figure 2A). 

Investigation of the extracellular-signal-regulated kinase /mitogen activated protein kinase 

(ERK/MAPK) pathway was carried out using two pharmacological inhibitors. PD98059 

(10µM, 30 mins) inhibited the Ex-4-evoked calcium response (n=21 neurons from 3 rats, 

p<0.01, figure 2B). Using an altered protocol due to a two-hour incubation for UO126 

(10μM), responses to Ex-4 in control tissue were compared to Ex-4 responses in tissue 

incubated with UO126. The responses evoked by Ex-4 were suppressed in the presence of 

UO126 (n=28 neurons, from 3 rats, p<0.001, figure 2C). 

 

Ex-4 stimulates calcium influx into myenteric neurons via VGCCs 

A pharmacological approach was used to investigate the source of intracellular calcium 

evoked by the GLP-1R agonist. Given the continuous presence of nifedipine (1μM) in all 

calcium imaging experiments to suppress smooth muscle activity, Ex-4-mediated responses 

appear to occur independently of L-type voltage gated calcium channels (VGCCs). However, 

the Ex-4 evoked calcium response was abolished by ω-agatoxin IVA (100nM, p<0.001, n= 
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20 neurons from 3 rats, figure 3A) and inhibited by the N-type calcium channel blocker, ω-

conotoxin GVIA (100nM, p<0.001, n=14 neurons from 3 rats, figure 3B). When extracellular 

calcium was removed using a calcium free saline buffer, and Ex-4 was re-applied, the 

calcium response was suppressed (n=13 neurons, 3 rats, p<0.001), although a large amplitude 

peak was still evident (figure 3C). The peak may reflect release from intracellular stores. 

Indeed, incubation of the LMMP tissue with the sarco/endoplasmic reticulum Ca2+ ATPase 

inhibitor, thapsigargin (100nM, 30 minutes) in Ca2+-containing saline, reduced but did not 

abolish the amplitude of the Ex-4-evoked activation of myenteric neurons (n=26 neurons, 3 

rats, p>0.001, figure 3D).  

 

Ex-4 modifies colonic circular and longitudinal smooth muscle activity 

To assess the effects of Ex-4 on colonic smooth muscle activity, tissue sections were 

suspended in organ baths such that contractions of circular and longitudinal muscle could be 

recorded. Control maximal contractile responses were evoked by addition of the cholinergic 

agonist, carbachol (100µM, 5 min) at the beginning and end of the experiment. No 

differences in the amplitude of the maximal contractions in either circular or longitudinal 

muscle were noted (p>0.05, n=5). Basal circular muscle contractile activity in the distal colon 

of Sprague Dawley rats exhibited consistent tone with sustained contractions of regular 

amplitude and frequency. Addition of Ex-4 (10µM) caused modifications in the pattern of 

circular muscle contractile activity, resulting in a decrease in frequency (p<0.05) but no 

significant change in the mean amplitude of contractions (p>0.05, figure 4A). When the area 

under the curve (AUC), which was used to incorporate both the amplitude and frequency of 

contractions, was examined, Ex-4 decreased the AUC of circular muscle contractions in the 

majority of colonic tissue sections examined (n=8 out of 10, p<0.05). Incubation of the 

colonic tissue with the voltage-gated Na+ channel blocker, tetrodotoxin (TTX, 100nM), prior 
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to the addition of Ex-4 reversed the Ex-4-evoked decrease in AUC in circular muscle 

(p=0.055, n=4, figure 4C). TTX did not impact on the amplitude of contractions (p>0.05) but 

blocked the Ex-4-mediated decrease in frequency. When the colonic tissue was longitudinally 

orientated, the regular contractions observed at baseline were also modified by application of 

Ex-4 (figure 4B), although the response was more variable. All sections exhibited a change in 

tone which was transient in some tissue preparations and sustained in others. However, 7 of 

the 11 sections exhibited an increase in the AUC (p<0.05. n=7, figure 1B(i)), although no 

significant changes in amplitude (p>0.05) or contraction frequency (p>0.05) were detected. 

Four sections exhibited a decrease in AUC (p<0.05, n=4, figure 1B(ii)), with a significant 

decrease in amplitude of contractions (p<0.01) but no effect on contraction frequency 

(p>0.05). TTX did not impact on the variable response evoked by Ex-4 in longitudinal 

muscle when AUC (p>0.05, n=5, figure 4D), amplitude (p>0.05) or frequency of contractions 

(p>0.05) were compared. 

 

CRF modifies Ex-4 evoked neuronal and functional responses. 

CRF binds with highest affinity to CRF1 receptors (CRFR1), which we found to be expressed 

on colonic myenteric ganglia (figure 5A). To investigate potential crosstalk between CRF and 

GLP-1 in colonic myenteric neurons, ratiometic calcium imaging was carried out. Both Ex-4 

(10µM) and CRF (100nM) evoked calcium responses in myenteric neurons, although the 

amplitude of the Ex-4-evoked response was larger (n=60 neurons, p<0.001). Co-application 

of both hormones had a modest additive effect on the calcium response in neurons (p<0.001, 

figure 5B). In organs baths, AUC of circular muscle contractile activity was not modified by 

co-application of Ex-4 and CRF (One-way ANOVA: p>0.05, n=4, figure 5C). The peak 

amplitude (p>0.05) and frequency (p>0.05) of contractions were unchanged when both 

hormones were co-applied.   
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Discussion  

In order to understand normal physiological mechanisms that may be impaired in functional 

bowel disorders, such as IBS, this study has examined the neuromodulatory effects of GLP-1 

in healthy Sprague Dawley rat colons. We have established that the GLP-1R agonist, Ex-4 

induces an increase in [Ca2+]i in some but not all myenteric neurons and this translates to 

changes in colonic contractile activity. Consistent with previous reports of suppression of 

colonic contractile activity by peripherally applied GLP-1 25, we found that Ex-4 decreased 

contractile activity in ex vivo colonic circular muscle and this was inhibited by the 

neurotoxin, TTX, implicating neuronal regulation. In terms of neuronal cell biology, our 

studies found that activation of G-protein-coupled GLP-1 receptors on colonic myenteric 

neurons induced activation of both PI 3-kinase and ERK-MAPK intracellular signaling 

cascades. The increase in [Ca2+]i was due to both an influx of extracellular Ca2+ through 

VGCCs and release from intracellular stores. We have previously reported that the stress 

hormone, CRF evokes stimulatory effects in colonic myenteric neurons, with associated 

changes in bowel function 34 however, at least in healthy tissue, co-application of Ex-4 and 

CRF did not further impact on circular muscle activity.  

 

Functionally, myenteric neurons regulate smooth muscle contractile activity. We determined 

that exposure of colonic smooth muscle to Ex-4 resulted in disruption to the synchronicity of 

circular muscle contractile activity. Consistent with reports that GLP-1 inhibits colonic transit 

35, Ex-4 suppressed circular muscle contractile activity with more frequent contractions of 

smaller amplitude but with little change in smooth muscle tone. Ex-4-mediated modulation of 

colonic function was attenuated by TTX, indicating neuronal regulation of this effect. In 

colonic longitudinal muscle, modulation of contractile activity by Ex-4 was more variable. 

Basal contractile activity in some colonic sections was suppressed as evidenced by a 
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reduction in tone and amplitude of contractions. Other tissue samples responded to Ex-4 with 

increased tone and more frequent, but smaller amplitude contractions. It is not clear why the 

responses are divergent although in mouse proximal colon, GLP-1 was effective in 

suppressing electrically stimulated contractions in circular muscle but did not modify 

longitudinal muscle function 24. The insensitivity to TTX suggests that this unlikely to be due 

to differences in neuronal regulation.  

 

We detected GLP-1R expression in subsets of neurons in Sprague Dawley rat colonic 

myenteric ganglia, which supports evidence from other studies in rodents 9,24, monkeys and 

humans 36. Punctate GLP-1R expression was evident on neuronal cell bodies and nerve fibers 

but was absent from ganglionic glial cells. Just 16% of nNOS expressing neurons, a marker 

largely restricted to inhibitory motor neurons, were positive for GLP-1R expression, an 

observation consistent with reports in GLP-1R-cre mice with fluorescent reporters 23, and 

somewhat lower than that observed in the proximal colon 24. In contrast to reports that GLP-

1R mRNA is primarily found in nNOS positive enteric neurons 23,24, albeit more proximal in 

the GI tract, we found that in the distal colon a higher proportion of neurons labelled with 

markers for cholinergically-mediated efferent and afferent neurons, calretinin (25%) and 

calbindin (41%) co-expressed GLP-1Rs. This is broadly similar to findings in mice with 

fluorescently-tagged GLP-1Rs 23 and as such, supports the specificity of the anti-GLP-1R 

antibody used in our study. However, it may be at odds with the inhibitory effects of GLP-1 

on GI transit, which is proposed to be mediated through release of NO 24,25. That said, 

stimulation of myenteric neurons does not necessarily result in increased transit 37.  

 

The punctate pattern of GLP-1R expression prompted us investigate if receptors were 

localized at synapses, where they could influence synaptic transmission. Similar to pre- 38 and 
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post-synaptic 39 effects of GLP-1 reported in central neurons, we found that myenteric 

neurons expressed GLP-1Rs at both pre- and post-synaptic neuronal sites and responded in a 

TTX-sensitive manner to GLP-1 with an increase in [Ca2+]i. This finding is consistent with 

increased action potential frequency in GLP-1 expressing cultured myenteric neurons 

exposed to GLP-1 23. In pancreatic β-cells, binding of GLP-1 to the seven transmembrane 

spanning G-protein coupled GLP-1R results in increased [Ca2+]i 
40 and activation of MAPK-

ERK 41 and the PI 3-kinase downstream signaling cascades 42. Calcium responses evoked by 

Ex-4 in myenteric neurons are similarly dependent upon MAPK-ERK and PI 3-kinase 

signaling pathways. Whilst GLP-1 stimulates activation of ERK through an influx of calcium 

through L-type VGCCs in pancreatic β cells 43, in myenteric neurons, we found that 

nifedipine had no impact on Ex-4-evoked calcium responses. However, complete inhibition 

of Ex-4-evoked calcium responses with ω-agatoxin IVA, a voltage-dependent blocker of P/Q 

calcium channels, and partial inhibition by ω-conotoxin GVIA, an N-type calcium channel 

blocker, suggests that influx of calcium through these VGCCs may be important in the 

activation of downstream signaling molecules in myenteric neurons. Activation of GLP-1Rs 

is also reported to induce release of sequestered calcium from intracellular stores in insulin 

secreting cell lines 44 and in myenteric neurons, we found that the calcium response evoked 

by Ex-4 was reduced but not eliminated in the absence of extracellular calcium and the 

SERCA Ca2+ ATPase inhibitor, thapsigargin, indicating the involvement of intracellular 

stores in addition to influx from extracellular sources.  

 

Studies in the hypothalamus demonstrated GLP-1-IR terminals established synapses with 

CRF neurons, thus providing a neuromodulatory pathway for activation of the stress axis 

(28), which is a key feature of IBS symptom flares. However, we have previously shown that 

CRF can have direct neuromodulatory effects on enteric neurons 45,46, and stimulate circular 
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muscle contraction, an effect that was potentiated by the presence of interleukin-6 and 

interleukin-8 45, pro-inflammatory cytokines that are elevated in IBS patient serum 13. In 

circular muscle, where GLP-1 suppresses contractile activity using neutrally-regulated 

mechanisms, we found that the presence of CRF had no impact on this response, despite a 

modest increase in the amplitude of calcium responses in myenteric neurons evoked by 

combined exposure to CRF and Ex-4. Thus, in a healthy animal model, the functional effects 

of Ex-4, in terms of suppressing circular muscle contraction, are not altered in the presence of 

this stress hormone. Future research will determine if this relationship is maintained in animal 

models of IBS, where colonic expression of both CRF receptors 11 and GLP-1Rs 9 are 

modified. 

 

Understanding the neuromodulatory and functional effects of GLP-1 in the distal colon is of 

particular interest in the context of functional bowel disorders such as IBS and other disorders 

where luminal microbial profiles are altered, and may thereby result in altered colonic GLP-1 

secretion 33. In a healthy model, we have determined that activation of GLP-1Rs on myenteric 

neurons results in increased [Ca2+]i and activation of PI 3-kinase and MAPK signaling 

cascades. Functionally, Ex-4 modifies smooth muscle contractile activity, although only Ex-

4-evoked suppression of circular muscle contractility was sensitive to the neurotoxin, TTX. 

The stress hormone, CRF, which mimics bowel symptoms of IBS 47, did not impact on the 

functional effects of Ex-4 in circular smooth muscle. However, repeating these studies in an 

animal model of IBS may find that this relationship is changed.   
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Figure Legends 

Figure 1: Exendin-4 stimulates colonic myenteric neurons 

A: The dual-labelled immunofluorescent images of myenteric ganglia from the distal colon of 

Sprague Dawley rats show GLP-1 receptor (GLP-1R) expression (red staining) in calbindin 

(n=12 ganglia, green staining), calretinin (n=17 ganglia, green staining) and nNOS-labelled 

neurons (n=13 ganglia, green staining). GLP-1Rs were not detected in S100 stained glial cells 

(n=16 ganglia, green staining). B: The punctate pattern of GLP-1R expression co-localized 

with the pre-synaptic marker, synapsin I and the post-synaptic marker, PSD-95 (indicated by 

arrows in the magnified regions). Scalebar: 20µm. C: The box and whiskers graph and 

representative trace illustrate the calcium responses in colonic myenteric neurons to 

increasing concentrations of the GLP-1 receptor agonist, exendin-4 (Ex-4, n=47) D: The box 

and whiskers graph and representative trace show that the Ex-4-evoked calcium responses is 

attenuated by a GLP-1R antagonist, exendin (9-39) (10µM, n=25) and E: tetrodotoxin (TTX, 

100nM, n=16). ** and *** indicate p<0.01 and p<0.001, respectively. 

 

Figure 2: Ex-4 stimulates intracellular signaling cascades. 

A: The box and whisker plots and representative traces show that the PI 3-kinase inhibitor, 

wortmannin (1μM) inhibits the Ex-4-evoked calcium response. B: The ERK-MAPK 

inhibitors, PD98059 (10μM) and C: UO126 10μM) abolish the Ex-4-evoked calcium 

response. *, ** and *** indicate p<0.05, p<0.01 and p<0.001, respectively. 

 

Figure 3: Ex-4 evoked calcium responses are mediated by VGCCs. 

A: The P and Q type voltage gated calcium channel inhibitor, ω-agatoxin IVA (100nM, 

n=20) and the B: N-type calcium channel blocker, ω-Conotoxin GVIA (100nM, n=14) 

inhibited the Ex-4-evoked calcium response in myenteric neurons as shown in the box and 
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whiskers charts and representative traces. C: The calcium response evoked by Ex-4 is 

attenuated but not abolished in the absence of extracellular calcium (n=13). D: Thapsigargin 

(1μM), the sarco/endoplasmic reticulum Ca2+ ATPase inhibitor, reduced but did not abolish 

the Ex-4-evoked calcium response (n=26). *** indicates p<0.001. 

 

Figure 4: Ex-4 modifies circular and longitudinal colonic contractile activity. 

A: The box and whisker plot and representative trace illustrates the Exendin-4 (Ex-4, 10µM)-

mediated change in colonic contractile activity in circular muscle from Sprague Dawley 

colons (n=8). B: A subset of colonic longitudinal muscle tissue responded to Ex-4 with (i) an 

increase in area under the curve (n=7) whereas the remainder (ii) responded with a decrease 

(n=4). C: The box and whisker plot shows the partial reversal of Ex-4-evoked suppression of 

colonic circular muscle activity in the presence of tetrodotoxin (TTX, n=4). D: TTX had no 

impact on the actions of Ex-4 on longitudinal muscle activity (n=5). * indicates p<0.05. 

 

Figure 5: Corticotropin-releasing factor does not modify the functional effects of Ex-4. 

A: The representative immunofluorescent image shows that CRF-1 receptor expression in 

myenteric ganglia. Scalebar: 20µm. B: The box and whisker plot with representative trace 

illustrate activation of colonic myenteric neurons by Ex-4 and CRF. When Ex-4 and CRF are 

co-applied it results in a larger response than when either are applied alone (n=60). C: The 

box and whisker plot and representative trace show that colonic contractile activity in circular 

smooth muscle was not significantly changed when CRF was co-applied with Ex-4 (n=4). 

*** indicates p<0.001. 
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