
Title Enabling scalable emulation of differentiated services in mininet

Authors Raca, Darijo;Salian, Meghana;Zahran, Ahmed H.

Publication date 2022-08-05

Original Citation Raca, D., Salian, M. and Zahran, A. H. (2022) 'Enabling scalable
emulation of differentiated services in mininet', MMSys '22:
Proceedings of the 13th ACM Multimedia Systems Conference,
June 2022, pp. 240-245. doi: 10.1145/3524273.3532893

Type of publication Conference item

Link to publisher's
version

10.1145/3524273.3532893

Rights © 2022, Association for Computing Machinery. This is the author's
version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published
in MMSys '22: Proceedings of the 13th ACM Multimedia Systems
Conference, June 2022, https://doi.org/10.1145/3524273.3532893

Download date 2024-04-23 17:25:36

Item downloaded
from

https://hdl.handle.net/10468/13601

https://hdl.handle.net/10468/13601

Enabling Scalable Emulation of Differentiated Services in Mininet
Darijo Raca

University of Sarajevo
Bosnia and Herzegovina

draca@etf.unsa.ba

Meghana Salian
Apple Inc.
Ireland

Ahmed H. Zahran
University College Cork

Ireland
a.zahran@cs.ucc.ie

ABSTRACT
Evolving Internet applications, such as immersive multimedia and
Industry 4, exhibit stringent delay, loss, and rate requirements.
Realizing these requirements would be difficult without advanced
dynamic traffic management solutions that leverage state-of-the-art
technologies, such as Software-Defined Networking (SDN). Mininet
represents a common choice for evaluating SDN solutions in a sin-
gle machine. However, Mininet lacks the ability to emulate links
that have multiple queues to enable differentiated service for differ-
ent traffic streams. Additionally, performing a scalable emulation
in Mininet would not be possible without light-weight application
emulators. In this paper, we introduce two tools, namely: QLink and
SPEED. QLink extends Mininet API to enable emulating links with
multiple queues to differentiate between different traffic streams.
SPEED represents a light-weight web traffic emulation tool that
enables scalable HTTP traffic simulation in Mininet. Our perfor-
mance evaluation shows that SPEED enables scalable emulation
of HTTP traffic in Mininet. Additionally, we demo the benefits of
using QLink to isolate three different applications (voice, web, and
video) in a network bottleneck for numerous users.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Networks
→ Public Internet;Wireless access networks; • Computing method-
ologies →Modeling and simulation.

KEYWORDS
Mininet, Emulation, Differentiated Services, Web Behavioral Mod-
elling, adaptive video streaming, web traffic, VoIP

ACM Reference Format:
Darijo Raca, Meghana Salian, and Ahmed H. Zahran. 2022. Enabling Scalable
Emulation of Differentiated Services in Mininet. In 13th ACM Multimedia
Systems Conference (MMSys ’22), June 14–17, 2022, Athlone, Ireland. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3524273.3532893

1 INTRODUCTION
Internet traffic exhibits a huge diversity in their network require-
ments in terms of throughput, delay, jitter, and loss. Ensuring the
best user experience for a traffic mixture would be challenging

MMSys ’22, June 14–17, 2022, Athlone, Ireland

without imposing traffic management mechanisms at network bot-
tlenecks. Buffer bloat [9] is identified as a critical problem when
elastic greedy applications, such as Video on Demand (VoD) or
file transfer, share a bottleneck with latency sensitive applications,
such as VoIP and web. The problem is more critical for evolving
immersive multimedia applications that operate on a tight latency
budget. Hence, queueing mechanisms and dynamic traffic steering
using software-defined technologies represent key building blocks
in future systems.

The performance evaluation of these evolving solutions requires
reliable tools. Mininet [13] is currently one of the most widely-used
performance evaluation tools for SDN solutions. Mininet API en-
ables emulating a network consisting of various virtual hosts and
switching devices using a single machine. Additionally, Mininet
emulates links with specified link characteristics (bandwidth, delay,
and loss) are defined using Linux traffic control command (tc). How-
ever, current Mininet implementation does not support creating
multiple queues at network interfaces. While such queues can be
created using Open Virtual Switch (OVS) control command (ovs-
vsctl), this approach is limited to emulating link rate; i.e., no delay
or loss emulation. Additionally, it requires a steep learning curve for
traffic management and OVS control commands. Hence, extending
Mininet to support Quality of Service (QoS)-enabled, fully-emulated
links evolves as a crucial requirement to test differentiated service
solutions in Mininet.

The use of real application represents another advantage for
Mininet as network hosts can run any application in the host. How-
ever, performing scalable experiments with numerous users can
hit a computing bottleneck for a single machine. Hence, different
light-weight tools have been developed to emulate the behaviour of
different applications. For example, several HTTP adaptive stream-
ing (HAS) players [7, 17, 21] emulates HAS streaming clients while
excluding the demanding video processing component. Similarly,
scalable emulation of delay-sensitive traffic. e.g., voice, is possible
using [3]. For web traffic, browser automation tools, such as Se-
lenium1, allow automated controlled experimentation. However,
such tools would not scale due to their reliance on underlying web
browsers (e.g., Firefox or Google Chrome). Hence, there is a need
for a light HTTP traffic emulator for scalable experimentation in
Mininet.

The contribution of this paper can be summarized as follows,
• We extend Mininet to enable emulating QoS enabled links.
Specifically, we extendMininet APIwith an addqLinkmethod
that receives both link emulation and queuing parameters.
Assigning traffic to queues is achieved through OpenFlow
(OF) rules that can be installed through the application build
on top of any SDN controller 2.

1http://www.seleniumhq.org/
2https://github.com/darijo/QLink

https://doi.org/10.1145/3524273.3532893
http://www.seleniumhq.org/
https://github.com/darijo/QLink

MMSys ’22, June 14–17, 2022, Athlone, Ireland Darijo Raca, Meghana Salian, and Ahmed H. Zahran

• We present SPEED3 (a Scalable Python wEb bEhavioural
moDel) as a novel emulation tool for web traffic. SPEED
mimics both traffic patterns and user behaviour of modern
web browsers. Additionally, it scales well by focusing on
traffic exchange without performing demanding application-
level user interface functions.

• We validate the presented tools using a Mininet testbed that
includes multiple competing clients sharing a bottleneck link
while running different applications. Our evaluation illus-
trates the benefits of priority queuing in scenarios in compar-
ison to the widely-used First In First Out (FIFO) queueing.

The rest of this paper is organized as follows. Section 2 presents
relevant background and related work. Sections 3 and 4 presents
QLink and SPEED, respectively. Our experimentation is presented
in Section 5 before concluding in Section 6.

2 BACKGROUND AND RELATEDWORK
SDN is a networking paradigm that centralizes the network control
plane, leading to simplified switching devices focused on data plane
functions. The network intelligence is implemented as network
applications running on a logically centralized controller that inter-
faces with switches to monitor and control data plane functionality.
This interface is known as south-bound interface and OF [25] is
the most common protocol on this interface. OF defines switch-
controller communication procedure and exchanged messages for
configuration, packet forwarding, and statistics collection. OF for-
warding rules are defined by network applications and include
packet fields to be matched and actions to be performed by the
switch on matching received packets. Additionally, OF supports
differentiated services framework through enqueue action to send
a packet to a specific queue at the output interface. Furthermore,
OF 1.3 introduced a meter feature that enables switches to mark or
drop packets based on a pre-defined policy.

Mininet provides a powerful Python API to create end-hosts,
switches, controllers, and links by leveraging Linux virtualization
capabilities. Hosts are defined in Linux containers with configurable
processing capacities and isolated namespace. Switches are nodes
running a switch daemon that interacts with any SDN controller
using OF protocol []. The switch daemon populates the switch
forwarding table based on the received OF messages. Mininet lever-
ages tc command to emulate bandwidth, delay, and loss for both
TCLink and TCULink classes4.

Mininet supports various switches, and its default is to OVS
whose implementation extends over both user and kernel spaces.
The kernel part includes a dump virtual switch and forwarding logic.
The user space includes the switch daemon (ovs-vswitchd) and OVS
Database (OVSDB) components. ovs-vswitchd interacts with the
SDN controller and the kernel switch using OF and NetLink, re-
spectively, to forward traffic and share switch information. OVSDB
represents a network-accessible database system that is used for
configuring and monitoring ovs-vswitchd. Furthermore, OVS pro-
vides a number of user space commands, such as ovs-vsctl and
ovs-ofctl. ovs-vsctl configures ovs-vswitchd through interaction

3https://github.com/darijo/SPEED
4TCULink enables asymmetric link characteristics

with OVSDB. ovs-ofctl is used to monitor and administer OF by
directly interacting with ovs-vswitchd.

Figure 1: Simplified Web Behavioural Model

Web traffic is typically modelled as an on/off process [11]. The
“ON” phase involves requesting and loading a webpage, while the
"OFF" phase represents the page reading time. During the ON phase,
the client fetches the main HTML file and any additional inline
objects, such as images, scripts, and stylesheet. It is common that
these objects are downloaded using multiple TCP connections, e.g.,
Firefox uses up to six parallel connections. This two-phase process
typically repeats for subsequent pages. This process is illustrated in
Figure 1. While many researchers analysed web content and user
browsing behaviour [11, 14], few experimental tools are available.
More critically, existing ones (e.g., SURGE [1]) are developed over
two decades ago and do not represent the current webpage content
structure. That represents a gap that SPEED is filling.

User experience is defined by different factors depending on
the application. Voice Quality of Experience (QoE) are based on
QoS impairments such as delay, jitter, packet loss rate and codec
type [2, 10]. Web QoE is dominated by the delay component, specif-
ically the User Perceived Page Loading Time (UPPLT). OnLoad is
defined as elapsed time between sending a request and loading all
objects on the web page. While onLoad is considered an over esti-
mation of the visible part of the page (i.e., UPPLT), onLoad shows
the highest correlation (0.85) with the UPPLT, outperforming more
sophisticated Page Loading Time (PLT) metrics [27]. Video experi-
ence involves many application-level visual and temporal aspects.
Several QoE models exist in the literature [5, 8, 12, 16, 20, 22, 24].

3 QLINK
3.1 QLink API
QLink uses a Hierarchical Token Bucket (HTB) queueing discipline
with all traffic queues introduced as children to the root, as illus-
trated in Figure 2. QLink extends Mininet with two key method,
namely addQSpec and addQLink. addQspec is used to define indi-
vidual child queue specifications, including

• queue: a non-negative integer queue identifier. This identifier
can be used in to direct the traffic to this queue.

• priority: an integer ∈ {0, .., 7}, where smaller values repre-
sent higher priorities. (default 7)

• minRate: a fraction ∈ [0, 1] and represents the sustained
ratio of the parent (root) bandwidth. (default 0.01)

https://github.com/darijo/SPEED

Enabling Scalable Emulation of Differentiated Services in Mininet MMSys ’22, June 14–17, 2022, Athlone, Ireland

• maxRate: a fraction ∈ [0, 1] and represents the maximum
allowable ratio of the parent bandwidth. (default 1)

A typical invocation in a Mininet Python script, where net is the
instantiated Mininet network object, would be

1 q1 = net.addQspec(queue=0, priority=1,

2 minRate =0.1, maxRate =0.5)

It is worth noting that HTB allows children queue to borrow tokens
from their parent up to the maxRate as long as competing queues
sustained rates are served.

addQlink is used to create a link between two Mininet nodes
using the following parameters

• two mininet node names
• params1 (params2): a dictionary defining the link parameters
with params1 (params2) representing the link parameters
from the first (second) to the second (first) nodes.

• qspec1 (qspec2): a list of queues that are defined using ad-
dQspec. These queues are installed as children queues at the
first (second) node.

A typical invocation for addQLink would be

1 net.addQlink(s1, s2,

2 params1 =\{'bw': 200, 'delay ': '10ms'\},

3 params2 =\{'bw': 20, 'delay ': '10ms'\},

4 qspec1 =[q1, q2], qspec2 =[q1, q2])

In this example, the link uses asymmetric bandwidth but uses
the same queue specifications in both directions.

It is worth noting that one of the HTB leaf queues is defined as
a default queue that is automatically used for packets forwarded to
the port without specifying a queue. In our implementation, this
default queue is the first queue in qspec1 and qspec2. Hence, if
the user would like to define a default queue, it should be the first
item in qspec list. Otherwise, the first queue should have the lowest
priority to ensure proper operation of prioritized forwarding.

3.2 QLink Implementation
To support QoS-enabled emulated links, we could have modified
OVS or Mininet code. We decided to extend Mininet because link
emulation is a network feature rather than a switch function.Mininet
emulates the link characteristics using tc-emnet. While defining a
queuing discipline is possible using tc, these queues will not be reg-
istered in OVSDB. Hence, they will be invisible to SDN applications.
Hence, creating the queues using ovs-vsctl is unavoidable. However,
introducing the delay and loss components using mininet would
not be possible at the same interface because both OVS and Mininet
assume ownership for the root queue. Hence, we have split queuing
and rate control from delay and loss emulation at two different
interfaces using a hidden switch, as illustrated in Figure 2. Figure 2
illustrates our implementation for QLink. The end-points of QLink
(𝑛1, 𝑛2) are connected through a hidden switch ℎ. ℎ is configured
to automatically forward any incoming packet at a specific port to
the second one. Hence, ℎ will not induce any traffic to the network
controller. Additionally, the egress interfaces of ℎ are configured to
emulate the delay and loss in every direction. The egress interface
at each end-node is configured with an HTB whose child (leaf)
queues are used for traffic isolation and the root queue is used to
limit the link rate.

Figure 2: QLink Overview

The majority of the implementation sits in Mininet net.py. Addi-
tionally, changes are introduced node.py to add an additional mem-
ber variable to the switch object to identify switches with QLink
interfaces. Such distinction is required during network startup and
destruction to ensure clean termination by restoring OVSDB to
its initial state. Additionally, we introduced changes to utils.py to
ensure the transparency of hidden switches when Mininet user
explores the network using Mininet dump and net commands. As
a final note, if one of QLink end-nodes is a host5, queues are only
created on the switch node. Note that SDN controller application
can only steer traffic at network switches using OpenFlow rules.

4 SPEED
SPEED has two components including synthetic page generator
and web client. The generator uses statistical models for page and
embedded object characteristics from [18], which considered one
million webpages. Table 1 summarises the model parameters used
for the synthetic generation of webpages.

Generation of synthetic web content is carried in two steps,
first creating JavaScript Object Notation (JSON) files containing
all necessary metadata, followed by creation of actual web content.
Script speed_web_generator.py implements the following logic:
JSON file generation: JSON file is created per user, containing
all the information about each webpage, i.e., number of main and
inline objects, size (in bytes) of each object. Also, this file stores
information about user behaviour for each webpage, reading or
dwell time (i.e., how much time user spends “reading” the content).
Listing 1 shows the example of JSON file structure.

1 " Run_1 " : {
2 " Page_ 1 " : {
3 " num_main_objects " : 1 ,
4 " r e ad i ng_ t ime " : 0 . 4 5 2 ,
5 " main_ 1 " : 2 0 881 . 0 ,
6 " num_in l ine_ fo r_ma in_ 1 " : 4 . 0 ,
7 " i n l i n e _ 1_1 " : 1 6 605 . 0 ,
8 . . .
9 " Page_ 2 " : {
10 " num_main_objects " : 1 ,
11 " r e ad i ng_ t ime " : 1 7 . 0 2 7 ,
12 " main_ 1 " : 7 7 00 . 0 ,
13 " num_in l ine_ fo r_ma in_ 1 " : 1 2 8 . 0 ,
14 " i n l i n e _ 1_1 " : 5 9 18 . 0 ,
15 . . .
16 " Run_10 " : {

5We assume that any host node starts with “h”, which is a common convention.

MMSys ’22, June 14–17, 2022, Athlone, Ireland Darijo Raca, Meghana Salian, and Ahmed H. Zahran

Table 1: Webpage content parameters [18]

Parameter Mean Median Max Standard Deviation Best Fit
Main object size 31,561 Byte 19,471 Byte 8MB 49,219 Byte Weibull (28242.8,0.814944)

Num. of main objects 2.19 1 212 2.63 Lognormal 𝜇= 0.473844, 𝜎 = 0.688471
Inline object size 23,915 Byte 10,284 Byte 8MB 128,079 Byte Lognormal 𝜇 = 9.17979, 𝜎 = 1.24646

Num. of inline objects 31.93 22 1920 37.65 Exponential 𝜇 = 31.9291

17 " Page_ 1 " : {
18 " num_main_objects " : 1 ,
19 " r e ad i ng_ t ime " : 1 . 3 5 ,
20 " main_ 1 " : 1 5 157 . 0 ,
21 " num_in l ine_ fo r_ma in_ 1 " : 3 5 . 0 ,
22 " i n l i n e _ 1_1 " : 5 0 644 . 0 ,
23 . . .

Listing 1: JSON File Example

Content generation: Followed by the previous step, JSON files
are used for generation of actual web content matching the naming
and size according to the JSON file. Files are created using fallocate
command.
Arguments passed to the scripts are the following:

• numClients: number of clients (a separate JSON file is gener-
ated for each client)

• numRuns: the number of planned runs to generate random
page sequences for subsequent runs.

• webPages: number of webpages per client
• save_json: path/location where to save JSON files
• save_content: path/location where to save web content

Web content can be served using any of existing web servers
(e.g., Apache, Caddy, flask).

SPEED web-client relies on the JSON file for page and user be-
haviour information. The web client requests the webpage sequence
for a given run and persists on every page for the corresponding
reading time, which is randomly generated following lognormal
distribution with 𝜇 = −0.495204 and 𝜎 = 2.7731 [14]. If a page
loading time exceeds 15 seconds[26], the user abandons the page
and requests another page. Also, we limit maximum reading time
to 70 seconds [15]. The web-client uses aiohttp6 asynchronous Hy-
perText Transfer Protocol (HTTP) library, which allows opening
multiple parallel TCP connections to a web server. SPEED web
client generates a log file for every run including the page-loading
time for each webpage object, total page load time, and reading
time. Listing 2 depicts the example of log file structure.

1 1 6 4 5 2 9 6 3 1 2 . 6 2 6 8 3 5 − PLT main o b j e c t _ 1 : 164
2 1 6 4 5 2 9 6 3 1 2 . 8 7 3 5 5 8 − PLT main o b j e c t _ 2 : 410
3 1 6 4 5 2 9 6 3 1 3 . 2 8 4 0 7 4 − PLT main o b j e c t _ 3 : 821
4 1 6 4 5 2 9 6 3 1 3 . 3 6 7 3 7 3 − PLT Page_3 : 904 Reading Time : 7 . 0 6 8

Listing 2: Example of Log file from web client

SPEED web-client is emulated using httpClient.py script, which
requires the following arguments:

• file: path/location of JSON file for the client
• server_ip_addr: IP address of the server storing web content
• run_num: run identifier
• out_path: path/location where to save log files

6https://aiohttp.readthedocs.io/en/stable/

Figure 3: Dumbbell Topology used for Experiments

5 EXPERIMENTATION
In this section, we present our experimental methodology, including
details of our platform and key performance metrics.

5.1 Experiment Setup
We experimented both Mininet default FIFO and QLink using the
dumbbell topology in which a number of users share a network
bottleneck as depicted in Figure 3. The bottleneck link capacity and
round trip delay are set to 100𝑀𝑏𝑝𝑠 and 80𝑚𝑠 , respectively.

In our experiments, we tested different number of users including
30, 45, 60, and 75 users, equally split into three classes including
voice, web, and video users.
Voice traffic is generated using D-ITG distributed traffic genera-
tor [4]. We set D-ITG to generate VOIP with codec G.711.
Web traffic is generated by SPEED as described in Section 4. The
pages are stored locally, and we use Flask7 for serving the web-
pages. We create 40 webpages per client across 10 runs (in total 400
webpages per client).
Video clients stream five-minute four-second-segment 4K clips
from a publicly available HAS dataset [19]. The dataset includes
video resolutions up to 3840x2160 with thirteen quality representa-
tion rates, shown in Table 2. The video content is streamed from
a Caddy8 HTTP server. We use dashc [21] as a light HAS client
emulator. We set the streaming algorithm to ELASTIC [6], which
shares bottlenecks in a friendly manner.

In QLink experiments, we employ three queues for voice, web,
and video traffic with the priority set to 1, 2, and 3, respectively.
QLink minRate and maxRate are set to 0.1 and 1 for all the queues.
Additionally, the switches are configured using ovs-ofctl to enqueue
packets of different applications in their corresponding queues.

Our performance metrics include packet loss and delay for voice,
PLT for web traffic, and QoE for video [28]. The video QoE score is

7https://flask.palletsprojects.com/en/2.0.x/
8https://caddyserver.com/

https://aiohttp.readthedocs.io/en/stable/
https://flask.palletsprojects.com/en/2.0.x/
https://caddyserver.com/

Enabling Scalable Emulation of Differentiated Services in Mininet MMSys ’22, June 14–17, 2022, Athlone, Ireland

N=30 N=45 N=60 N=75

Fifo
Q

lin
k

Fifo
Q

lin
k

Fifo
Q

lin
k

Fifo
Q

lin
k

Queueing Disciplines

40

50

60

70

80

90

D
el

ay
(m

s)

(a) VoIP Performance

Fifo
Q

lin
k

Fifo
Q

lin
k

Fifo
Q

lin
k

Fifo
Q

lin
k

Queueing Disciplines

0

1000

2000

3000

4000

5000

6000

7000

P
LT

(m
s)

(b) Web Performance

Fifo
Q

lin
k

Fifo
Q

lin
k

Fifo
Q

lin
k

Fifo
Q

lin
k

Queueing Disciplines

0

500

1000

1500

2000

2500

3000

3500

Q
oE

(c) Video Performance

Figure 4: Performance of video, web, and voice clients across
different queuing disciplines and number of competing users
(N - total number of competing users)
calculated as follows:

𝑄𝑜𝐸 =

𝑀∑︁
𝑛=1

𝑞(𝑅𝑛) − 𝜆 ×
𝑀−1∑︁
𝑛=1

|𝑞(𝑅𝑛+1) − 𝑞(𝑅𝑛) | − 𝜃 × 𝑆𝐷 − 𝜃𝑆 × 𝑆𝐼 ,

(1)

where 𝑀 is the number of streamed segments per session, 𝑞 is a
mapping function between bitrate and quality; 𝑆𝐷 represents the
total stall duration per run (seconds), and 𝑆𝐼 is the initial delay
(seconds). 𝜆, 𝜃, 𝜃𝑆 represents non-negative penalty factors for video
quality variations, rebuffering time, and startup delay, respectively.

We employ similar values for these factors as used in [28], 𝜆 = 1,
𝜃 = 𝜃𝑆 = 4200.

The presented results represent the outcome of 10 different runs
that last for 6 minutes to allow for streaming a whole video.

5.2 Experiment Results
Figure 4a plots the delay of VOIP packets for all tested scenarios
when FIFO and QLink are used. With QLink, VOIP packets only
encounter insignificant queuing delay, equals the transmission time
of the largest packet in the worst case. Hence, the observed delay
of the highest priority traffic would be defined by the RTT. On
the contrary, when VOIP competes with other traffic in the FIFO
queue, the packet delay is roughly doubled for all tested scenarios.
Additionally, VOIP packets experienced packet losses 0.2 − 0.5%
with FIFO in comparison to zero loss when QLink is used.

Figure 4b depicts the web PLT across all tested scenario. With
QLink, the average PLT is approximately halved in comparison
to when FIFO is used for all user configurations. Additionally, the
variance in the experienced PLT significantly drops when QLink
is used. The observed PLT variance in case of FIFO is due to the
competition between the bursty web traffic and bandwidth-hungary
DASH streams in the queue.

Figure 4c plots the video QoE for all tested scenarios. Clearly, the
video QoE drops as the number of users increases due to the drop
in the share of every user in the link bandwidth. Generally, QLink
slightly reduces the average video QoE due to the higher priority of
VOIP and web traffic. On the other hand, QLink generally features
smaller variance of QoE due to reducing the interaction between
different traffic streams in the bottleneck link.

To illustrate scalability of SPEED, we compare CPU and memory
utilisation of SPEED and Selenium, a browser-based testing frame-
work. Our webpage content is not suitable for testing with Selenium
as our webpages only mimic the structure of the webpage. We use
results obtained from [23] for comparison, where 10 users were
simulated for different configurations of Selenium. We compare
SPEED resource usage against Selenium running in the headless
browser mode as it gives the lowest CPU and memory utilisation.

Table 3 indicates that SPEED has significantly less impact on CPU
andmemory utilisation, requiring 65x, and 3x less CPU andmemory
resources, respectively. Furthermore, running 50 SPEED clients
increases resource requirements to 4.3%, and 7.2%, for median CPU
and memory utilisation, respectively.

6 CONCLUSIONS
Ensuring performance guarantees to delay-sensitive application is
challenging when they share a network bottleneck with bandwidth
hungry applications, such as video. Achieving these guarantees
could be possible by adopting classful queuing disciplines and dy-
namic traffic management technologies, such as SDN. In this paper,
we have presented QLink that extends Mininet API to enable emu-
lating links with HTB queuing discipline. Additionally, we present
SPEED as a novel lightweight web traffic emulator to support large-
scale experimentation. Our performance evaluation compares the
standard FIFO and three-class QLink in the presence of voice, web,
and video traffic from numerous users sharing a network bottle-
neck. We illustrate that traffic isolation enabled the highest priority

MMSys ’22, June 14–17, 2022, Athlone, Ireland Darijo Raca, Meghana Salian, and Ahmed H. Zahran

Table 2: Rates (kbps) and resolutions for each representation

1 2 3 4 5 6 7 8 9 10 11 12 13
235 380 568 760 1065 1777 2387 3046 3906 4361 15000 25000 40000

320 × 240 384 × 288 512 × 384 640 × 480 720 × 480 1280 × 720 1920 × 1080 3840 × 2160

Table 3: The resource usage comparison between SPEED and
Selenium

Type Median CPU Median Memory
SPEED 0.75% 1.7%

Selenium headless 49% 5%

traffic to achieve zero packet loss and queuing delay. The second
class (web) also experience a noticeable reduction in the PLT.

ACKNOWLEDGMENTS
This publication has emanated from research supported in part
by a Grant from Science Foundation Ireland under Grant number
18/CRT/6222. The authors acknowledge the support of the Ministry
of Education, Science and Youth of Sarajevo Canton.

REFERENCES
[1] Paul Barford and Mark Crovella. 1997. An Architecture for a WWWWorkload

Generator. In World Wide Web Consortium Workshop on Workload Character-
ization (Proceedings of the 1997 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems).

[2] J. A. Bergstra and C. A. Middelburg. 2003. ITU-T Recommendation G.107 : The
E-Model, a computational model for use in transmission planning. Technical
Report.

[3] Alessio Botta, Alberto Dainotti, and Antonio Pescapé. 2012. A Tool for the
Generation of Realistic Network Workload for Emerging Networking Scenarios.
Comput. Netw. 56, 15 (oct 2012), 3531–3547.

[4] Alessio Botta, Alberto Dainotti, and Antonio Pescapè. 2012. A tool for the
generation of realistic network workload for emerging networking scenarios.
Computer Networks 56, 15 (2012), 3531–3547.

[5] Manri Cheon and Jong-Seok Lee. 2018. Subjective and Objective Quality Assess-
ment of Compressed 4K UHDVideos for Immersive Experience. IEEE Transactions
on Circuits and Systems for Video Technology 28, 7 (2018), 1467–1480.

[6] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2013.
ELASTIC: A Client-Side Controller for Dynamic Adaptive Streaming over HTTP
(DASH). In 2013 20th International Packet Video Workshop. 1–8.

[7] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2014.
TAPAS: A Tool for RApid Prototyping of Adaptive Streaming Algorithms. In
Proceedings of the 2014 Workshop on Design, Quality and Deployment of Adaptive
Video Streaming (Sydney, Australia) (VideoNext ’14). Association for Computing
Machinery, New York, NY, USA, 1–6.

[8] J. De Vriendt, D. De Vleeschauwer, and D. Robinson. 2013. Model for estimating
QoE of video delivered using HTTP adaptive streaming. In 2013 IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM 2013). 1288–1293.

[9] Jim Gettys and Kathleen Nichols. 2011. Bufferbloat: Dark Buffers in the Inter-
net: Networks without Effective AQM May Again Be Vulnerable to Congestion
Collapse. Queue 9, 11 (nov 2011), 40–54.

[10] ZhiGuo Hu, HongRen Yan, Tao Yan, HaiJun Geng, and GuoQing Liu. 2020. Evalu-
ating QoE in VoIP networks with QoS mapping and machine learning algorithms.
Neurocomputing 386 (2020), 63–83.

[11] Hyoung-Kee Choi and J. O. Limb. 1999. A behavioral model of Web traffic. In
Proceedings. Seventh International Conference on Network Protocols. 327–334.

[12] S. Shunmuga Krishnan and Ramesh K. Sitaraman. 2012. Video Stream Quality Im-
pacts Viewer Behavior: Inferring Causality Using Quasi-Experimental Designs. In
Proceedings of the 2012 Internet Measurement Conference (Boston, Massachusetts,

USA) (IMC ’12). Association for Computing Machinery, New York, NY, USA,
211–224.

[13] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks. In Proceedings of the 9th ACM
SIGCOMMWorkshop on Hot Topics in Networks (Monterey, California) (Hotnets-IX).
Association for Computing Machinery, New York, NY, USA, Article 19, 6 pages.

[14] Jeongeun Julie Lee, Maruti Gupta, and Intel Corp. 2007. A NEWTRAFFICMODEL
FOR CURRENT USER WEB BROWSING BEHAVIOR.

[15] Chao Liu, Ryen W. White, and Susan Dumais. 2010. Understanding Web Brows-
ing Behaviors through Weibull Analysis of Dwell Time. In Proceedings of the
33rd International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (Geneva, Switzerland) (SIGIR ’10). Association for Computing
Machinery, New York, NY, USA, 379–386.

[16] Y. Liu, S. Dey, F. Ulupinar, M. Luby, and Y. Mao. 2015. Deriving and Validating User
Experience Model for DASH Video Streaming. IEEE Transactions on Broadcasting
61, 4 (Dec 2015), 651–665.

[17] John O’Sullivan, Darijo Raca, and Jason J. Quinlan. 2020. Godash 2.0 - The Next
Evolution of HAS Evaluation. In 2020 IEEE 21st International Symposium on "A
World of Wireless, Mobile and Multimedia Networks" (WoWMoM). 185–187.

[18] R. Pries, Z. Magyari, and P. Tran-Gia. 2012. An HTTP web traffic model based on
the top one million visited web pages. In Proceedings of the 8th Euro-NF Conference
on Next Generation Internet NGI 2012. 133–139.

[19] Jason J. Quinlan and Cormac J. Sreenan. 2018. Multi-Profile Ultra High Definition
(UHD) AVC and HEVC 4K DASH Datasets. In Proceedings of the 9th ACM Multi-
media Systems Conference (Amsterdam, Netherlands) (MMSys ’18). Association
for Computing Machinery, New York, NY, USA, 375–380.

[20] A. Raake, M. Garcia, W. Robitza, P. List, S. Göring, and B. Feiten. 2017. A
bitstream-based, scalable video-quality model for HTTP adaptive streaming:
ITU-T P.1203.1. In 2017 Ninth International Conference on Quality of Multimedia
Experience (QoMEX). 1–6.

[21] Aleksandr Reviakin, Ahmed H. Zahran, and Cormac J. Sreenan. 2018.
<i>Dashc</i>: A Highly Scalable Client Emulator for DASH Video. In Proceedings
of the 9th ACMMultimedia Systems Conference (Amsterdam, Netherlands) (MMSys
’18). Association for Computing Machinery, New York, NY, USA, 409–414.

[22] Zaixi Shang, Joshua P. Ebenezer, Alan C. Bovik, Yongjun Wu, Hai Wei, and
Sriram Sethuraman. 2021. Assessment of Subjective and Objective Quality of
Live Streaming Sports Videos. arXiv:2106.08431 [eess.IV]

[23] Shahnaz M. Shariff, Heng Li, Cor-Paul Bezemer, Ahmed E. Hassan, Thanh H. D.
Nguyen, and Parminder Flora. 2019. Improving the Testing Efficiency of Selenium-
Based Load Tests. In Proceedings of the 14th International Workshop on Automation
of Software Test (Montreal, Quebec, Canada) (AST ’19). IEEE Press, 14–20.

[24] Babak Taraghi, Abdelhak Bentaleb, Christian Timmerer, Roger Zimmermann, and
Hermann Hellwagner. 2021. Understanding Quality of Experience of Heuristic-
Based HTTP Adaptive Bitrate Algorithms. In Proceedings of the 31st ACM Work-
shop on Network and Operating Systems Support for Digital Audio and Video
(Istanbul, Turkey) (NOSSDAV ’21). Association for Computing Machinery, New
York, NY, USA, 82–89.

[25] The Open Networking Foundation. 2012. OpenFlow Switch Specification.
[26] I. Tsompanidis, A. H. Zahran, and C. J. Sreenan. 2014. Mobile network traffic: A

user behaviour model. InWireless and Mobile Networking Conference (WMNC),
2014 7th IFIP.

[27] Matteo Varvello, Jeremy Blackburn, David Naylor, and Konstantina Papagiannaki.
2016. EYEORG: A Platform For Crowdsourcing Web Quality Of Experience
Measurements. In Proceedings of the 12th International on Conference on Emerging
Networking EXperiments and Technologies (Irvine, California, USA) (CoNEXT ’16).
ACM, 399–412.

[28] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In
Proceedings of the 2015 ACM Conference on Special Interest Group on Data Commu-
nication (London, United Kingdom) (SIGCOMM ’15). Association for Computing
Machinery, New York, NY, USA, 325–338.

https://arxiv.org/abs/2106.08431

	Abstract
	1 Introduction
	2 Background and Related Work
	3 QLink
	3.1 QLink API
	3.2 QLink Implementation

	4 SPEED
	5 Experimentation
	5.1 Experiment Setup
	5.2 Experiment Results

	6 Conclusions
	Acknowledgments
	References

