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Abstract

In the task of preference learning, there can be nat-
ural invariance properties that one might often ex-
pect a method to satisfy. These include (i) invari-
ance to scaling of a pair of alternatives, e.g., replac-
ing a pair (a,b) by (2a,2b); and (ii) invariance to
rescaling of features across all alternatives. Max-
imum margin learning approaches satisfy such in-
variance properties for pairs of test vectors, but not
for the preference input pairs, i.e., scaling the inputs
in a different way could result in a different prefer-
ence relation. In this paper we define and analyse
more cautious preference relations that are invari-
ant to the scaling of features, or inputs, or both
simultaneously; this leads to computational meth-
ods for testing dominance with respect to the in-
duced relations, and for generating optimal solu-
tions among a set of alternatives. In our exper-
iments, we compare the relations and their asso-
ciated optimality sets based on their decisiveness,
computation time and cardinality of the optimal set.
We also discuss connections with imprecise proba-
bility.

1 Introduction

There is a growing trend towards personalisation for ser-
vices in many real-world application domains, such as e-
commerce, marketing, and entertainment. This involves cap-
turing user preferences over alternative choices, e.g., prod-
ucts, movies and hotels. One may view this as an enhanced
variation of supervised learning, known as preference learn-
ing, where instead of tagging an instance with a single label,
preference relations are expressed over instances [ Yannakakis
et al., 2009; Birlutiu et al., 2010]. These state that one alter-
native a is preferred over another one b, where an alternative
is associated with a feature vector, i.e., a vector of values for
a number of features.

An established approach to modeling preferences makes
use of the concept of a utility function which is learnt from
preference input pairs. Then, for a pair of test vectors
(a, B), this function assigns an abstract degree of utility to
each test vector, implying which test vector is preferred to
which [Fiirnkranz and Hiillermeier, 2010]. Support Vector

Machine (SVM) approaches [Burges, 1998] have inspired the
development of several methods for learning the utility func-
tion, such as OrderSVM [Kazawa et al., 2005], SVOR [Her-
brich et al., 1999] and SVMRank [Joachims, 2002].

In a method such as SVMRank, when the utility function
has been learnt, rescaling a pair of test vectors makes no dif-
ference to the result, i.e., « is preferred to S if and only if r«
is preferred to r3 for any strictly positive scale factor . The
same does not hold for the input pairs: different ways of scal-
ing preference input pairs may lead to a very different utility
function being learnt. However, it is arguable that in many
contexts, a preference for a over b can be considered as con-
veying essentially equivalent information to a preference for
ra over rb. For instance, knowing that the movie with feature
vector a is preferred to one with feature vector b, we would
often expect that 2a is preferred to 2b. This suggests defining
a more cautious preference relation by saying that a test vec-
tor «v is preferred to 3 if « is preferred to /3 for all choices of
scalings of preference input pairs.

An analogous form of preference relation, which is charac-
terised in [Wilson and Montazery, 2016], considers the scal-
ing of features. Part of the motivation for this is that fea-
ture scaling is an essential preprocessing phase for any SVM-
based method; the scaling, and therefore the resulting pref-
erence relation, can sometimes depend strongly on precisely
which preference inputs are received.

Taking into account both forms of rescaling mentioned
above, we also define a still more cautious relation in which
« is preferred to [ if it is preferred for all choices of scalings
of features and preference input pairs.

Other forms of preference inference, based on more qual-
itative, lexicographic, models are considered in [Trabelsi et
al.,2011; Kohli and Jedidi, 2007; Wilson et al., 2015al. Other
preference reasoning techniques based on a family of utility
functions include e.g., [Greco erf al., 2010].

The rest of the paper is organised as follows. We explain
the maximum margin preference relation in Section 2. Sec-
tion 3 defines and characterises a preference relation that is
invariant to the scaling of preference input pairs in the max-
imum margin relation. Similarly, the two other relations,
where features are rescaled and where both features and pref-
erence inputs are rescaled, are characterised in Section 4. The
characterisations lead to the computational methods in Sec-
tion 5. In Section 6, we consider two different notions of



optimality for each preference approach, and we report the
experimental results in Section 7, comparing the computa-
tion time for each relation as well as the number of optimal
solutions found according to the two kinds of optimality op-
erator. Section 8 concludes, with a discussion of potential
extensions, and of the relationship with imprecise probabil-

1ty. !

2 Maximum Margin Preference Relation

We first describe a simple linear SVM-based preference re-
lation based on Ranking SVM (or SVMRank) [Joachims,
2002], but only considering consistent inputs.

We assume that some user has told us that he prefers fea-
ture vector a; € IR" over b; € IR", foreachi € I =
{1,...,m}. Each tuple a; or b; in IR™ represents an alterna-
tive that is characterised by n features, with e.g., a;(k) being
the score for alternative a; regarding the kth feature.”> By as-
suming a linear weighting model, each pair (a;, b;) expresses
a linear restriction a;-w > b;-w on an unknown weight vector
w € IR" (the dot product a; - w is equal to 3-7_, a;(j)w(5)).
This linear weighting assumption is less restrictive than it
sounds; for instance, we could form additional features repre-
senting e.g., pairwise products of the basic features, enabling
a richer representation of the utility function.

We define A, the preference inputs, to be {\; : i € I'},
where for each i, \; = a; — b;. Then, a feasible w satis-
fies A - w > O forall A\ € A (because a; - w > b; - w). We
can associate the hyperplane H,, = {x € R" : z-w = 0}
with a feasible w. Clearly, any feasible hyperplane contains
the origin, and all A € A are in the associated positive open
half-space.

Example 1. Suppose that n = 2 and let the preference inputs
Abe {(2,1),(1,2),(1,1)} (see Figure 1(a)). Then, a feasible
w € IR? satisfies these three conditions: (i) 2w(1) 4 w(2) >
0, (i) w(1l) + 2w(2) > 0 and (iii) w(1) + w(2) > 0. The
feasible set that contains all feasible w is shown in Figure 1(b)
as the open space surrounded by dotted lines, i.e., both shaded
regions. In Figure 1(a), the dotted line (z+y = 0) is a feasible
hyperplane since it is associated with a feasible point, such as
(3,3):

One natural preference relation, %,C\, which has been ex-
plored, for example, in [Marinescu er al., 2013], is given
as follows: the test vector « is preferred to 8 (« >;g B) if
and only if w - « > w - § for all feasible w. This condi-
tion is equivalent to w - o« > w - B for all w € AZ, where
A2 = {weR" : VA€ A, w-\>1} (A= is the darkly
shaded region in Figure 1(b)). This also holds if and only
if a« — 5 € co(A), where co(A) is the convex cone generated

'Because of the space restrictions, not all the proofs
could be included. See {http://ucc.insight-centre.
org/nwilson/InvarMMPrefsLonger.pdf} for the missing
proofs. The longer document also contains a glossary of symbols.

Features are assumed to be numeric. However, for ordinal fea-
tures each value can be replaced by a number, maintaining the or-
der of values. For categorical features one might use the one-hot
encoding (a.k.a. 1-of-k coding scheme) to convert a feature with k
categories to k Boolean features.
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Figure 1: (a) The darkly shaded region shows the convex cone
generated by A = {(2,1),(1,2), (1,1)}. (b) A= is the darkly
shaded region, SIF(A) is the part of A= that is strictly within
the first quadrant (so not including the axes), SF(A) is the
part of the line segment = + y = 1 strictly within the first
quadrant, and SI(A) is the intersection of A= and co(A).

by A, i.e., the smallest convex cone containing A (this is the
darkly shaded region in Figure 1(a)). Elements of co(A) are
said to be positive linear combinations of elements of A.
Based on the principal idea in conventional SVM [Cortes
and Vapnik, 1995], SVMRank picks a single w from the feasi-
ble set that maximises the margin (leading to a stronger order-
ing than =); by margin we mean the perpendicular distance
between the hyperplane H,, and the closest element of A to
H,,. In simple terms, maximising the margin means choosing
a feasible hyperplane that is as far as possible from A. This
chosen hyperplane is equal to the hyperplane H,, where w
uniquely has the minimum (Euclidean) norm in A= (see e.g.,
Theorem 1 in [Wilson and Montazery, 2016] for a proof). Let
us denote this unique solution by w} . In Figure 1(b), (1,3)
has minimal norm in A=, so wi = (%, %) and thus, the asso-
ciated hyperplane for that point, x + vy = 0 in Figure 1(a), has
the maximum margin. We use ||w/|| as the notation for norm
in this paper.
Definition 1 (={'"""). We define relation ="' by, for o, B €
IR"™, o is max-margin-preferred to 3 with respect to A (i.e.,
o =" B)if and only if o - wi > B - wj, where w} has
minimum norm in AZ.

The relation =" is a total pre-order, since it is transitive
and for any «, € IR™ we have o =" S or 8 =" « (or
both).

3 Rescaling of Preference Inputs
Consider the effect of rescaling the preference inputs A by

te ]le‘ (where IR is the set of strictly positive reals), so
that A becomes Ay = {t(i)\; : @ € I'}, with each preference
input being multiplied by a strictly positive scalar. We then
have A7 = {we R" : Viel, w- (t(i)\)>1}. We'll
write t(¢) as t; for brevity. Let us say that « is max-margin-
preferred to 3 under rescaling t if a =}’ (. Now, it can
easily happen that « is preferred to 8 under one rescaling, but
not under another. To illustrate, consider t = (3, 1, 5) rescal-
ing A in Example 1. Then, A¢ will be {(6,3), (1,2), (5,5)},



and it can be shown that the hyperplane with the maximum
margin for A¢ is x + 2y = 0 (instead of x 4+ y = 0). Then,
(2, =1.5) =™ (0,0), whereas (2, —1.5) 3™ (0,0).
However, it seems natural to assume that if the user prefers
a; over b; then he will also prefer t;a; over t;b; for any
t; € IR;. Also, for test vectors o and 3, if o =}"" [3 then,
for any positive real 7, we have ra =" rf3; since the resul-
tant preferences are invariant to such rescaling, it seems rea-
sonable that the same would hold for the input preferences.
We therefore consider a more robust relation, which is in-
variant to the scaling of the preference inputs, with o being

preferred to 3 only if it is preferred for all rescalings t € ]RLA‘
of the preference inputs.

Definition 2 (:=!). We define relation 3=} by, for o, 3 € IR",
a =k B if and only if « is max-margin-preferred to 3 over
all rescalings of preference inputs, i.e., if for all t € ]RLAl,

mm
o= Ae

So far, we have assumed that each component t; of t can be
any strictly positive scalar. However, in Proposition 1, we will
show that if each t; is restricted to be in (0, 1], the result for
%\ relation will not change. This is not surprising, since, e.g.,
doubling each component of t will not change the relation
=, This simplification will be helpful in the computation

of the 3=} relation.

Proposition 1. Consider any A C IR" and any o, € IR".

Then, o =\ B if and only if for all t € (0,1]1A, o =B
Now, let us define SI(A) to be the set consisting solely

of wj, for all scalings t € (0,1]; ie., SI(A) =

{wx, : t € (0,1]IA1}. Then, we have:

a =l B < forallw € SI(A), a-w > - w.

For example, it can be shown that SI(A) in Figure 1 is the
intersection of the darkly shaded regions in sub-figures (a)
and (b) (see Theorem 9 below).

3.1 Characterisation of SI(A)

Here, we mathematically characterise SI(A); this will lead
to a computational method for the %\ relation.  First,
let us define for any A C IR", the set A* to be
{weR"™ :VAeA, w-\>0} (the union of the shaded
regions in Figure 1(b)). Proposition 5 below implies that
SI(A) € AZ and every element u € SI(A) has minimum
norm in A* + {u} (= {w+u : w € A*}). The proof uses
the following three lemmas.

Lemma 2. Consider any A C IR", and any t € (0,1]/*.
Then, for any u € AZ we have A* 4 {u} C AZ.

Lemma 3. Consider any A C IR", and any w € A=. Then,
there exists t € (0, 1M such that AZ = A* + {u}.

Lemma 4. Consider any A C IR", and any t € (0, 1]‘A|.
Then, At2 C AZ.

Proposition 5. Consider any u € IR". Then, u € SI(A) if

and only if u € AZ and u has minimum norm in A* + {u}.
Thus, in particular, SI(A) C AZ.

Proof: =: u € SI(A) means that there exists t € (0, 1]/
such thatu € At2 and u has the minimum norm in At2 , which,
since AZ C AZ by Lemma 4, implies that w € A=. Now,
u also has the minimum norm in A* + {u} because firstly,
A* + {u} C AZ from Lemma 2, and secondly, w is clearly in
A* + {u} since 0 € A*.

«: Assume now that v € A= and u has the minimum
norm in A* + {u}. By Lemma 3, there exists t € (0, 1]
such that  has the minimum norm in AZ (= A* + {u}), and
clearly u € AZ. Thus, u € SI(A). O

We will prove (Proposition 8) that co(A) is precisely the set
of elements u € IR" such that v has minimum norm in A* +
{u}. Together with Proposition 5, this will imply Theorem 9
below. The following two lemmas are used in the proof.

Lemma 6. Consider any u € G where G C IR" is a convex
set. Then, u has the minimum norm in G if and only if for all
veEG u-(v—u)>0.

Lemma 7. Consider any A C IR" and any u € IR". Then,
A* C {u}" ifand only if u € co(A).

Proposition 8. Consider any A C IR" and any u € IR".

Then, u has minimum norm in A* + {u} if and only if u €
co(N).

Proof: Clearly, A* + {u} is a convex set. Lemma 6 implies
that v has minimum norm in A* + {u} if and only if for all
v e AN +{u},u-(v—u) > 0. By writing y = v —u, this is if
and only if for all y € A*, w -y > 0, which holds if and only
if for any y € A*, y € {u}*. Thus, u has minimum norm in
A* + {u} if and only if A* C {u}*. Lemma 7 then implies
the result. O

Propositions 5 and 8 immediately imply the following theo-
rem.

Theorem 9. Consider any A C IR", any u € IR". Then,
SI(A) = co(A) N A=.

This implies the following result, which leads immediately
to an algorithm to determine, for arbitrary o, 5 € IR" if o %\
B, using a linear programming solver.

Corollary 10. For finite set A C IR", let \; € A be the
ith element of A where i € I = {1,...,|A|}. Consider any
u € IR". Then, w is in SI(A) if and only if there exist non-
negative reals r; for each i € I such that v = Zie 1 TiN and
forallie I, u-X\; > 1.

4 Rescaling of Preference Inputs and Features

Scaling (normalization) of features is a necessary phase in
any SVM-based method because these methods are not in-
variant to the rescaling of their input feature spaces [Stolcke
et al., 2008; Ben-Hur and Weston, 2010]: multiplying a fea-
ture dimension by a fixed constant > 1 gives that dimension
more weight in the choice of the feasible weight vector with
minimum norm. This suggests defining another preference
relation by considering the rescaling of features (so that each
feature is rescaled by a strictly positive scalar across all pref-
erence inputs). This relation has been extensively analysed
in [Wilson and Montazery, 2016] and is briefly described



in Section 4.1. It is also natural to consider both kinds of
rescaling simultaneously: preference inputs and features. In
Section 4.2, we define and characterise a preference relation
based on both kinds of rescaling.

4.1 Rescaling of Features

A features rescaling T € IR'} is a vector of strictly positive
numbers, with the jth component 7(j) being the scale factor
for the jth feature. The effect of the rescaling on a vector
u € IR™ is given by pointwise multiplication, v ® 7, defined
byforallj =1,...,n, (u®T)(j) = u(4§)7(4). The rescaling
also changes the preference inputs A, turning it into A © 7,
e, {AOT : A€ A}

Definition 3 (=5). We define relation =¥ by, for o, 3 € IR",
a =% B if and only if « is max-margin-preferred to 3 over
all rescalings of features, i.e., if for all 7 € jRi, we have
aOT NG BOT.

Proposition 11 below gives a representation of the relation
=% in terms of the set SF(A), consisting of all those ele-
ments in A~ that have minimal rescaled norm for some fea-
ture rescaling.

Definition 4 (SF(A)). We define SF(A) by v € SF(A) if
and only if v € AZ and there exists some strictly positive
7€ R with || ©® w|| > ||7 ® u|| forall w € A=.

Proposition 1 of [Wilson and Montazery, 2016] implies the
following:

Proposition 11. For «, 8 € IR", o =5 B if and only if for
allw e SF(A), w-a>w-B.

We say that u, v € IR"™ agree on signs if, for each compo-
nent j, u(j) and v(j) have equal sign: positive, negative or
zero (this holds if and only if there exists some 7 € IR} with
u ® 7 = v). Theorem 5 of [Wilson and Montazery, 2016]
easily implies the following, which leads to a computational
method for checking dominance with respect to %R.

Theorem 12. Consider any A C IR", any v € IR".
Then, u is in SF(A) if and only if u € A= and there ex-
ists € IR"™ that agrees on signs with u such that y €

co{N € A : X\-u=1}). In particular, SF(A) C A=.

4.2 Simultaneous Rescaling of Features and Inputs

We now consider a preference relation based on allowing both
the rescaling of features and of preference inputs.

Definition 5 (SIF(A) and 3=5"). We define the set SIF(A)
by w € SIF(A) if there exists t € (0, 1]/l such that w €

SF(A¢). We define relation %R’F by « kkF B <= forall
w € SIF(A),w-a>w- L.

This definition implies that a =" 3 if and only if for all
rescalings of the features and the preference inputs, « is max-
margin preferred to 8. We have the following characterisa-
tion, which leads to a computational method for checking if

o) %kF B.
Theorem 13. v € SIF(A) if and only if u € A= and there

exists € IR" that agrees on signs with u such that u €
co(A).

In Figure 1(b), SIF(A) is the part of the dark shaded region
that is strictly within the first quadrant (so not including the
axes), and SF(A) is the part of the line segment z +y = 1
strictly within the first quadrant.

5 Computation of Inferences

For finite subsets A of IR", and arbitrary «, 3 € IR", we
would like to be able to determine if o =§ B, a =L 8,

a =X Band o kkF B.Label Aas {\; : i €I},

¥$: a #£§ B if and only if there exists u € A~ such that
w - > u-«a. This holds if and only if there exists
u € IR",suchthatu-(f—a) > 0andVi € I, u-\; > 1.

%kt a %L Bif and only if there exists u € SI(A) such that
w - 8 > u - a. This holds, by Corollary 10, if and only if
there exists u € IR", and non-negative reals r; for each
i€l,suchthatu- (8 —a) >0,Vie I,u-A > 1;and
w=2 e Tikic

¥=E: a % Bif and only if there exists u € SF(A) such that
- > wu - «a. This holds, by Theorem 12, if and only
if there exists u € IR™ and . € IR"™, and non-negative
reals r; for each ¢ € I, such that w - (8 — ) > 0, and

eViel,u-Aj>land[u-\; =1orr; =0];

o =i TN
eVji=1,...,n,u(j) =0 <= u(j) =0,and
()>() <~ u(y)>0.

w=x": a ¥kF B if and only if there exists u € SIF(A) such
that u- 3 > u-«. This holds, by Theorem 13, if and only
if there exists u € IR™ and p € IR", and non-negative

reals r; for each ¢ € I, such thatu-(ﬁ—a) > 0, and
eViclu-N\i>1pu=73 ;7\
eVi=1....nu(j) =0 <:>u(j):0,and

u(g) >0 < puj)>0.

These four relations, as well as =7, are all reflexive
and transitive, and thus pre-orders (with »>3'"" being a to-
tal pre-order). We have that w} € SI(A) N SF(A) and
SI(A) USF(A) C SIF(A) C A=. This implies that =72

kk U ki, and ﬁA N >RZ_) kk D) %% Also, if = is any
of the five relations then A = O for any A € A; and for

a,B,v€ R"andr € R, if o 3= Bthen a+~ = S+ and
ra = rp.

6 Optimality Operators

In many decision making situations, there is no clear ordering
on decisions (alternatives). There can often be a set of differ-
ent scenarios with a different ordering on alternatives in each
scenario. For example, for different scalings of preference
inputs we may have different orderings over a set of alterna-
tives. In such a setup there are a number of natural ways of
defining the set of optimal solutions (best alternatives or top
recommended solutions). We consider here two kinds of op-
timality operators; namely the set of undominated solutions,
which is a natural generalisation of the Pareto-optimal set;
and the set of possibly optimal solutions. The set of possibly



N Decisive Pairs (%) Time (msec) |[POs(A)| |UNDg(A)|
=0 =L BUF >kF =S ==k ;kF =S cC LF I F INF C LF I F INF
1. 24 21 16 9 3 1 517 36 55 18 1. 38 26 20 6 4 72 55 33 16 13
2. 29 92 31 31 26 03 2434 23 40 16 2. 45 13 12 2 2 86 20 15 3 3
3. 31 23 28 13 1 0.1 800 25 38 13 3. 64 37 21 6 5 97 74 30 19 18
4. 36 81 35 35 31 23 4768 24 43 14 4. 7 7 7 3 3 7 7 7 4 4
5. 3836 19 17 5 2 2799 24 47 17 5. 33 32 21 13 12 63 54 38 17 17
6. 41 61 12 12 12 12 5123 23 45 20 6. 14 14 14 5 5 18 18 18 5 5
7. 53 40 20 19 19 19 1134 24 41 20 7. 10 10 10 6 6 18 18 17 7 7
8. 55 97 26 26 24 8 1833 26 45 19 S. 18 9 9 1 1 25 12 12 1 1
9. 62 48 24 24 11 1 4983 27 50 14 9. 34 17 13 6 6 78 19 15 8 8
10. 94 64 35 35 5 2 5084 27 54 23 0. 22 15 8 2 2 50 38 13 2 2
11 127 62 24 24 24 13 6439 28 57 21 11 20 14 14 2 2 27 19 19 3 3
12 129 80 36 36 19 1 2928 30 49 25
12 41 12 9 2 2 79 24 15 2 2
13 134 69 28 28 28 16 7374 30 48 19 13 6 12 12 4 4 29 16 16 6 6
Avg. 66 59 26 24 16 8 3555 27 48 19 Avg. 28 17 13 4 4 50 29 19 7 7

Table 1: The results related to determining decisive pairs, us-
ing 13 benchmarks, among 1000 pairs of test vectors with re-
spect to preference relations =X, =)\, the intersection of =}

LF
and =} (=""F), =", and =§.

optimal alternatives has been considered in a number of dif-
ferent situations, including for voting rules [Xia and Conitzer,
2008], for soft constraint optimisation [Rossi et al., 20111,
and for multi-objective optimisation [Wilson et al., 2015b].

Let = be any of the relations =, =Y, =% and =4", and
let S be the corresponding set of scenarios for each relation
(different scenarios means e.g., different scalings), which are
respectively A=, SI(A), SF(A) and SIF(A). We have then
« = fifand only if, forallu € S, u-a > u- 5. We define >
to be the strict part of =, so that « >  if and only if o = 3
and 8 ¥ a.

For a given set of alternatives A, the two optimality opera-
tors are defined as follows:

UNDg(A) (= UND, (A)) is the set of undominated ele-
ments with respect to relation >, i.e., « € UNDg(A) if
and only if there is no 5 € A such that 8 > a.

POg(A) isthe set of elements that are optimal in some sce-
nario. Thus, « € POg(A) if and only if there exists
u € Ssuchthatforallf € A, a-u> (- u.

Typically (and as we found in our experiments), POg(A)
is a smaller set than UND g(A), although an alternative could
be possibly optimal without being undominated.

Propositions 2 and 4 in [Wilson et al., 2015b] imply that
the computation of both UNDg(A) and PO g(A) can be done
incrementally, and we exploit this for each of the relations
7807k and =

7 Experimental Testing

The experiments make use of a subset of a year’s
worth of real ridesharing records. These were pro-
vided by a commercial ridesharing system Carma (see
http://gocarma.com/). We base our experiments on
13 benchmarks derived from this data set. Each ridesharing
alternative has 7 features, representing different aspects of a
possible choice of match for a given user. Each benchmark
corresponds to the inferred preferences of a different user.

Table 2: A comparison, using 13 benchmarks, between the
number of possibly optimal elements and the number of un-
dominated elements among 100 alternatives with regard to
preference relations =5, =", =}, and =%. The 1N F col-
umn relates to the intersection of the I and F' columns.

The preference of alternative a; over b; leads to a; — b;(= \;)
being included in A. However, a pre-processing phase deletes
some elements of A, in order to make it consistent (i.e.,
AZ £ ()), since in this paper we assume consistent pref-
erences. More information about the data can be found in
[Montazery and Wilson, 2016]. To conduct the experiments,
CPLEX 12.6.3 is used as the solver on a computer facilitated
by an Intel Xeon E312xx 2.20 GHz processor and 8 GB RAM
memory.

7.1 Decisive Pairs

Here, we would like to examine how decisive each relation
is, i.e., which relation is weaker and by how much. We ran-
domly generate 1000 pairs («, 3), based on a uniform distri-
bution for each feature. A pair («, ) is called decisive for a
preference relation if one of them can (strictly) dominate the
other one; for example, the pair («, 3) is decisive for k}\ if
and only if & =4 Bor 8 =4 «. Thisisiff either (o« 3=} 3 and
B #L a)or (B =) aand a L B). We also consider another
relation =X which is the intersection of =) and =, so that
a = B — o) Band o = B

Table 1 shows the percentage of decisive pairs for =5, =,
=E, >£;F and kg, as well as the running time per pair. Al-
though for most of the benchmarks, %X is more decisive than
>;}\, the third benchmark (bold numbers) shows that this is not
always the case. In terms of running time, %\ is around 130
times faster than >;R on average. Also, the results illustrate

the fact that =§ C =5 C =I1F,

7.2 Optimal Elements

The next phase of experiments is devoted to finding optimal
solutions with respect to the two kinds of optimality opera-
tor discussed in Section 6. To do so, a set of 100 alterna-
tives (i.e., the set A) is randomly generated, based on a uni-
form distribution for each feature. Then, for each relation, the



POg(A) Time (s) UNDg(A) Time (s)

C LF I F ¢ LF 1 F
1. 31 53 18 84 215 187 97 208
2. 41 39 22 676 152 46 24 536
3. 37 103 17 306 176 241 43 731
4. 7 11 13 25 9 18 10 955
5. 13 29 22 723 124 166 68 1491
6. 17 22 21 353 32 53 29 1651
7. 11 14 17 121 24 32 21 354
8. 13 16 8 427 42 20 12 254
9. 26 34 9 498 162 42 23 1549
10. 27 31 14 855 151 136 25 1125
1. 15 27 13 558 SI 48 33 1759
12. 41 23 14 482 272 46 22 585
13. 27 24 19 724 68 46 29 2258

449 114 83 34 1035

Z
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Table 3: A comparison, using 13 benchmarks, between the
running time for finding possibly optimal elements and un-
dominated elements among 100 alternatives with regard to

. IF
preference relations =, =, =} and =%.

number of possibly optimal and undominated elements in A
is counted; see Table 2. The numbers in the I N F columns
relate to the intersection of the I and F optimality sets; for
example, the left-hand I N F column gives the cardinalities of
the sets POg1(a)N POsp(a). The bold numbers show that the
F and I N F columns are not identical, and thus illustrate that
e.g., POgp(n) is not always a subset of POgyy). It can be

seen that for the most conservative relation, %%, the optimal-
ity operators return a substantial proportion of alternatives as
optimal solutions (roughly half for UND g(A)).

Table 3 shows the time for finding possibly optimal solu-
tions and undominated solutions, where the former is faster
than the latter by a factor ranging from 2.5 to 4.8 on aver-
age; this is partly because of |POg(A)| being usually much
smaller than |UNDg(A)|, sometimes almost half the size,
as shown in Table 2. Because the computation of ki was
very much slower than the other relations, the times in the
F columns are much longer, despite the number of optimal
solutions being smaller. Overall, the computational cost of
the =5 may make it less useful, even though it is more de-
cisive, and thus leads to smaller sets of optimal solutions.
Instead one might, for instance, favour POgy(a), POsir(a)
and UNDgy () since they generate reasonably sized optimal-
ity sets much faster.

8 Summary and Discussion

In many situations, it can be argued that the scaling of prefer-
ence inputs should not affect the induced preference relation.
We have defined a relation =} that is a more robust version of
the maximum margin preference inference »=73'""*, and which
is invariant to the scaling of preference inputs. This relation
can be seen as complementary to the relation =5 [Wilson
and Montazery, 2016], which is invariant to the way that fea-
tures are scaled, leading to another preference relation %\’F
when both types of scalings are considered simultaneously.
We derived characterisations for the new relations =}, and

%R’F, which lead to computational procedures. Our experi-

ments, which used benchmarks derived from real preference
data, compared the different relations, along with two differ-
ent kinds of optimal alternative, and showed that the com-
putational methods are practically feasible. The relation as-
sociated with only scaling the features was the most decisive
but by far the slowest for computing the associated optimality
classes.

In the future, it would be interesting to explore extensions
of our approaches including (i) considering soft margin op-
timisation, i.e., dealing with the situation when preference
inputs are inconsistent (e.g., one idea involves adding m ex-
tra real variables, one for each ), in a way that ensures that
the new feasible set is always non-empty); (ii) developing
computational methods for certain kinds of kernel; and (iii)
analysing the complexity of the computational methods.

Application for Imprecise Probability

Suppose we restrict the feasible w to being in the positive
quadrant of IR™ (this can be done by adding n unit vectors to
A; or, perhaps better, by adding non-strict linear constraints
enforcing non-negativity in an additional set © as defined in
the formalism of [Wilson and Montazery, 2016]). Feasible
w can then be viewed as unnormalised probability distribu-
tions on a sample space of n elements, and the input set A
can be used to represent linear restrictions on probability dis-
tributions, or, as strictly acceptable gambles, in a theory of
imprecise probability (or probabilistic logic) [Walley, 1991;
1996; Nilsson, 1986; Augustin et al., 2014]. Such linear re-
strictions, in particular, can represent upper and lower bounds
on the conditional probabilities of propositions (subsets of the
sample space).

Viewed in this light, the different approaches described in
this paper generate different imprecise probability methods:
upper and lower bounds on expectations of random variables,
and of probabilities of propositions, can be computed using
optimisation problems based on the models in Section 5. The
cone-based relation >f\3 corresponds to standard upper and
lower probability/prevision. A drawback of straight-forward
upper and lower probability is that the consequent intervals of
probability can sometimes be disappointingly weak. Our ap-
proaches give less conservative inference procedures (as im-
plied by Theorems 9, 12 and 13, and backed up by our ex-
perimental results), whilst still satisfying natural invariance
properties. The invariance to scaling of preference inputs is
especially desirable in this context, since, for » > 0, the vec-
tor 7\ represents the same restriction on probability distribu-
tions as A; in terms of gambles, it corresponds to invariance
to strictly positive scaling of the stakes. It would be very
interesting, therefore, to explore the methods corresponding

to =} and >;£\’F as approaches for reasoning with imprecise
probability.
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