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Abstract

There is much common ground between the areas of coding theory and sys-

tems theory. Fitzpatrick has shown that a Gröbner basis approach leads

to efficient algorithms in the decoding of Reed-Solomon codes and in scalar

interpolation and partial realisation. This thesis simultaneously generalises

and simplifies that approach and presents applications to discrete-time mod-

eling, multivariable interpolation and list decoding.

Gröbner basis theory has come into its own in the context of software and

algorithm development. By generalising the concept of polynomial degree,

term orders are provided for multivariable polynomial rings and free modules

over polynomial rings. The orders are not, in general, unique and this adds,

in no small way, to the power and flexibility of the technique. As well as

being generating sets for ideals or modules, Gröbner bases always contain a

element which is minimal with respect to the corresponding term order.

Central to this thesis is a general algorithm, valid for any term order,

that produces a Gröbner basis for the solution module (or ideal) of elements

satisfying a sequence of generalised congruences. These congruences, based

on shifts and homomorphisms, are readily applicable to a wide variety of

problems, including key equations and interpolations. At the core of the al-

gorithm is an incremental step. Iterating this step lends a recursive/iterative

character to the algorithm. As a consequence, not all of the input to the al-

gorithm need be available from the start and different “paths” can be taken

to reach the final solution. The existence of a suitable chain of modules sat-

ifying the criteria of the incremental step is a prerequisite for applying the

algorithm.



Some problems further constrain the “degrees” of the components in the

required solution. In this situation, the solution set is not a module (resp.

ideal). Nonetheless, by deriving a specific term order from the degree con-

straints, the solution set can be described using a Gröbner basis for that

order.

For the case where the base polynomial ring for the module is in a single

indeterminate, the algorithm takes on a more regular structure and a sim-

pler implementation. The algorithm in its most general form has a worst

case complexity of O(n3). In problems leading to applications in a single

indeterminate, this complexity is more typically O(n2).

The immediate applications are to certain problems for which Fitzpatrick

has given algorithms that are special cases of the general one.

• Scalar partial realisation

• Scalar rational interpolation

• Key equations for decoding alternant codes

• Single congruence problem in a polynomial ring with more than one

indeterminate.

We extend this list to include

• Systems theory

• Matrix partial realisation and extended M-Padé approximation

• List decoding for Reed-Solomon codes

• List decoding for 1-point Algebraic Geometry codes

• Soft decision list decoding.

ii



A number of other specialised applications are also developed.

The general algorithm has a number of applications in systems theory.

Homogeneous and inhomogeneous block Hankel and block Toeplitz linear

systems of equations can readily be solved from (slightly) more general poly-

nomial congruences. It can be used to derive a model of minimal complexity

for autonomous, linear, time-invariant time series. Multivariable (in the sys-

tems theory sense) partial realisation is a special case of this behavioural

approach. While the algorithm is primarily a computational tool, it can

lead to closed form solutions and some models that can be “written down”

symbolically without actually executing the algorithm.

The interpolation capabilities of the algorithm, combined with a degree

constraint term order, make it applicable to matrix rational interpolation and

the extended M-Padé aproximation problem. The latter is a generalisation

of that of Padé and Hermite-Padé. While these problems are in a single

variable, our algorithm extends to solutions of the multivariable case.

Finally, it is applied to the interpolation steps in list decoding. These

form a major component of list decoding approaches based on Sudan’s algo-

rithm. Because limits can be placed on the search space, efficiencies can be

introduced.

For Reed-Solomon codes, one specialisation solves a key equation derived

for low rate codes and, for the extended case, another coincides with a well

known algorithm. For soft decision decoding, it gives a new algorithm. The

hard decision problem is seen to be a special case of the soft decision algo-

rithm.

List decoding of 1-point algebraic geometry codes is approached in a sim-

ilar way. By associating vector space basis elements from the function field

with the standard basis vectors of a free module, the problem is transformed
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into a module setting. The hard decision case is similar to an existing al-

gorithm, albeit one based on a vector space approach. The soft decision

approach is new and the hard decision case can again be viewed as a special

case.
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Chapter 1

Introduction

The significant overlaps between systems theory and coding theory are well

known. As early as 1967, Massey and Sain [41] show the close connections

between covolutional and cyclic codes on one hand and finite-state machines

on the other. In recent times, “behavioural” methods from systems theory

are applied in Rosenthal, Schumacher and York [56] to convolutional codes.

Kuijper [37] applies behaviours to the decoding of alternant codes.

The classical example of this synergy is the Berlekamp-Massey algorithm.

Berlekamp (1968) [8] shows how BCH codes can be decoded by solving a

polynomial “key equation”

(1 + S(z))σ(z) ≡ ω(z) mod z2t+1.

That procedure involves only O(t2) multiplications. Massey [40] reinterprets

the algorithm in systems theory terms to yield what became known as the

Berlekamp-Massey algorithm. The result is a recursive algorithm which ex-

ploits the Hankel nature of the underlying coefficient matrix to improve on

the O(t3) complexity of Gaussian Elimination. This leads on to solutions in

scalar partial realisation and classic Padé approximation.
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Fitzpatrick (1995) [22] addresses more general polynomial congruences of

the form

a ≡ bh mod xn.

Extending his previous work on Padé approximation and linear recurring

sequences, it provides algorithms for decoding alternant codes. A new recur-

sive/iterative technique is derived to handle these congruences by solving a

sequence of partial problems

a ≡ bh mod xk, 0 ≤ k ≤ n.

The solution (a, b) is the minimal element of a particular Gröbner basis for

a submodule of a 2–dimensional module. This approach can be viewed as an

analogue of the Berlekamp–Massey algorithm and, with some optimisations

[27, 53], can have implemementation advantages over Berlekamp–Massey.

By contrast, some Gröbner basis methods for decoding cyclic codes lead to

algorithms with exponential complexity [13, 39, 44], although [44] does have

polynomial complexity for some primitive BCH codes. Subsequently, the

module approach was applied to scalar rational interpolation [23].

The iterative algorithm was extended in Fitzpatrick [26] to accomodate

multivariable polynomial congruences

a ≡
L∑

i=1

bihi mod I.

It is upon this version that the present work builds. An iterative general

algorithm is presented which includes these previous algorithms and applica-

tions as special cases. The direct proof of the general algorithm simplifies the

theory, which had been built up on a case by case basis. By comparison with

the earlier results where the term orders were hand crafted to the particular

case, we show how a term order can be automatically derived to identify
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degree constrained solutions. The generalisation allows us to include more

general congruences and interpolations. The resulting algorithms retain the

efficient nature of [22]. As well as subsuming the previous algorithms, for

other applications the general approach leads on to procedures which are, in

some cases, equivalent to existing “fast” algorithms and, in others, are new

in themselves. Thus, as well as unifying the theory, it provides a template

for practical algorithms.

1.1 Guide to the Thesis

Chapter 2. Gröbner basis theory. We introduce the Gröbner basis theory of

multivariable polynomial rings and modules. We exhibit a new generalised

term order which allows us to parameterise the solutions which are further

constrained by the degrees of the module components. We rehearse some

previously established applications of Gröbner basis theory to coding and

systems theory.

Chapter 3. The general algorithm. We present and prove our new general

algorithm. This algorithm provides a general setting for, and straightforward

justification of, a variety of existing methods and leads on to new applica-

tions. We examine criteria for the applicability of the algorithm and consider

its complexity. We deduce a simplified algorithm for the special case of poly-

nomials in a single variable.

Chapter 4. Systems theory applications. Using polynomial congruences

and a specialisation of our general term order, we show how Hankel and

Toeplitz systems of equations can be solved with our algorithm. We apply

our algorithm to modelling discrete time-invariant behaviours. Matrix partial

realisation is included as a special case. We next apply it to matrix ratio-
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nal interpolation and the generalised interpolations of the extended M-Padé

problem.

Chapter 5. List decoding applications. Sudan-like algorithms have inter-

polations at their core. We apply our algorithm to the hard and soft decision

list decoding of Reed-Solomon and 1-point Algebraic Geometry codes. The

resulting algorithms for hard decision are similar to known good methods.

New efficient algorithms are presented in the soft decision case.
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Chapter 2

Gröbner basis preliminaries

In this chapter, we present term orders and Gröbner bases from the per-

spective of free modules. We prepare the notation and definitions for later

use.

Many problems impose degree constraints on the solution polynomials.

We exhibit a method by which a term order is derived from such constraints

and show how the degree-constrained solutions can be described using a

Gröbner basis derived from that order.

The chapter ends with a description of the applications which Fitzpatrick

addressed using algorithms which are precursors of our general algorithm.

2.1 Gröbner bases and term orders

Gröbner basis theory was introduced by Buchberger in his Ph.D. thesis [12]

(1965) and is now well-established. Detailed treatments and comprehensive

references to original sources may be found in [1, 7, 14, 15, 28]. The early

results deal with ideals of polynomial rings. Möller and Mora [43] develop

the theory for polynomial modules. For this thesis, we will emphasise the
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module description and will view a polynomial ring as a module over itself.

Let A = F [x1, . . . , xs] be a polynomial ring in s indeterminates over a

field F . The set AL is a free module of rank L over A.

2.1.1 Term orders

The standard basis vector with 1 in position i and 0 elsewhere (and length

defined by the context) is denoted ei. A term in AL is a vector of the type

X = Xei where X = xt1
1 xt2

2 · · · xts
s is a term in A. Thus a term in AL is a

vector all of whose components are 0 except for one which is a term in A. A

term order in AL is a total order < on terms satisfying

(i) X < ZX for each term X in AL and each term Z 6= 1 in A,

(ii) if X < Y then ZX < ZY for all terms X,Y in AL and each term Z

in A.

The simplest form of a term order and, indeed, a model upon which term

orders are based, is when AL = F [x]. In this case, s = L = 1 and the order

is determined (uniquely) by the exponent of x.

When A = F [x1, . . . , xs], s > 1 there is more than one term order. Lexico-

graphic order is defined as xi1
1 . . . xis

s <lex xj1
1 . . . , xjs

s , if there is a k ∈ [s] such

that i1 = j1, . . . , ik = jk and ik+1 < jk+1 with xs < . . . < x1. Degree lexico-

graphic order is defined as xi1
1 . . . , xis

s <deglex xj1
1 . . . , xjs

s , if
∑s

k=1 ik <
∑s

k=1 jk

or
∑s

k=1 ik =
∑s

k=1 jk and xi1
1 . . . xis

s <lex xj1
1 . . . , xjs

s . All term orders on A

have been classifed by Robbiano [55].

An example of a module term order is obtained as follows. Let <lex denote

lexicographic order in A and define X = Xei < Y ej if either i < j, or i = j

and X <lex Y . This is a position-over-term (or POT ) order.
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Alternatively, define X = Xei < Y ej if either X <lex Y , or X = Y and

i < j. This is a term-over-position (or TOP) order.

Further term orders can be produced using a weight vector (w1, . . . , wL)

where each wi, 1 ≤ i ≤ L is a term in A. Based on any term order < on AL, a

weighted term order <(w1,...,wL) can be constructed by defining Xei <(w1,...,wL)

Y ej if Xwi < Y wj or if Xwi = Y wj and i = tb(i, j), where tb is a tie breaking

function on {1, . . . , L}. When A = F [x], we can, without ambiguity, describe

the weights by reference to their exponents. Rust and Reid [59] classifies all

terms orders on free modules AL.

For non-zero f ∈ AL we may write

f = a1X1 + · · ·+ arXr (2.1)

where the ai are non-zero constants and the Xi are terms satisfying X1 >

X2 > · · · > Xr. The leading term lt(f) of f is X1, and the leading coefficient

lc(f) is a1. These definitions are extended to all of AL by setting lt(0) =

0, lc(0) = 0. For example, with s = 2, L = 3, x1 <lex x2, and f = (x2
1x2 +

3x3
1, x2 + 1, 2x1), and using the POT order defined above, we find that

f = 2x1e3 + x2e2 + e2 + x2
1x2e1 + 3x3

1e1

has leading term x1e3 and leading coefficient 2. As usual supp(f) = {X|X is

a term, the coefficient of X in f is non-zero}.
If X = Xei and Y = Y ej are terms in AL we say X divides Y provided

i = j and X divides Y in A, that is, if there is a term Z (the quotient) in A

satisfying ZX = Y.

Division among module elements can be performed once a term order is

defined. This is a generalisation of the division algorithm for F [x], based on

“long division”. The key to this process is reduction. If lt(g) divides lt(f),
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lt(f) = Zlt(g) for some term Z ∈ A and let f
′
= f − lc(f)

lc(g)
Zg. Then f

′
is said

to be f reduced by g.

2.1.2 Gröbner bases

A set of non-zero vectors G = {g1, . . . ,gr} contained in a submodule M is

called a Gröbner basis of M if, for all f ∈ M , there exists i ∈ {1, . . . , r} such

that lt(gi) divides lt(f). We define LT (M) to be the the module generated

by the leading terms of the elements of M . The leading terms of the elements

of G generate LT (M). Further, G is a basis of M . Every submodule of AL

has a Gröbner basis. An extension of the original Buchberger algorithm can

be used to derive a Gröbner basis, with respect to a chosen order, from any

generating set.

Each f ∈ M has a standard representation, with respect to a Gröbner basis

G = {g1, . . . ,gm}, of the form f =
∑m

i=1 aigi where ai ∈ A and lt(figi) ≤
lt(f), 1 ≤ i ≤ m. A minimal element in a submodule M ⊆ AL is one whose

leading term is least among the elements of M , under the given term order

<. It is unique up to a constant multiple and must appear in any Gröbner

basis relative to <.

Any element of AL can be reduced by a Gröbner basis of M . The

(uniquely defined) remainder is called the normal form of the element with

respect to M and the term order.

We say that a Gröbner basis is strictly ordered if there are no duplicates

among its leading terms (although some may be multiples of others), and

its elements are in increasing order of leading term. Any Gröbner basis

can be converted to a strictly ordered Gröbner basis by simply deleting any

element whose leading term is the same as that of another element (choosing
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arbitrarily in case of ties). In the algorithms presented here we will use a

generic function ord which returns a strictly ordered Gröbner basis ord(G)

for any Gröbner basis G (no difficulty arises as a consequence of any lack of

uniqueness).

A Gröbner basis is minimal if none of its elements has leading term a

multiple of the leading term of another of its elements. Again, any Gröbner

basis can be converted into a minimal Gröbner basis simply by deleting ap-

propriate elements. It is often more efficient, although not strictly necessary,

to define the function ord so that it constructs ordered minimal Gröbner

bases (see Example 5.2.2), but in some situations such bases are not appro-

priate (see Algorithm 5.2.5, Example 5.2.6) and so we do not adopt them

universally.

2.1.3 Degree notation

We require several different types of degree. The multidegree ∆(Xβ) of a

term Xβ = xβ1

1 xβ2

2 . . . xβs
s ∈ A, βj ∈ N0, 1 ≤ j ≤ s, is defined by ∆(Xβ) = β.

If < is a term order on A, the multidegree of f ∈ A is given by ∆(f) =

∆(lt(f)). More generally, if < is a term order on AL and lt(f) = Xβei then

∆(f) = β. Next, if α = (α(1), . . . , α(L)) ∈ (Nn
0 )L, we define λ = λα by

Xλ = lcm{Xα(1)
, . . . , Xα(L)}. Then the α–modified multidegree of f , where

the leading term of f is Xβei, is defined as ∆α(f) = β + λ − α(i). It will

often be convenient to identify a term order on A with the corresponding

total order on Nn
0 , that is, Xβ < Xγ if and only if β < γ, and we adopt this

convention without further mention.

Example 2.1.1 In Section 2.2, we require a term order, based on the mod-

ified multidegree, defined as follows. First select an arbitrary but fixed term
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order <1 on A and let tb denote an arbitrary, fixed tie breaking function on

{1, . . . , L}. Let α = (α(1), . . . , α(L)) be fixed, and let U = Xβ
U , V = Xβ

V .

Define < by

Uei < V ej

when ∆α(Uei) <1 ∆α(V ej) (2.2)

or ∆α(Uei) = ∆α(V ej) and tb(i, j) = i.

The proof that this is a term order is given in Lemma 2.2.3. ♦

When A = F [x], λ = max{αi} and ∆α(xβei) = β + (λ− αi). Therefore, the

term order (2.2) reduces a weighted order with wi = xλ−αi .

The McMillan degree of a polynomial matrix M ∈ F [x]p×(p+m) is defined

to be the maximum degree among the p× p minors of M .

For use in Chapter 5, if f =
∑

i,j fijx
iyj ∈ F [x, y] and a, b are non-

negative integers we define the (a, b)–degree of f by ∆(a,b)(f) = max{ai +

bj|xiyj ∈ supp(f)}, and use the conventional term total degree for the (1, 1)–

degree (no confusion will arise between these uses of the symbol ∆).

Example 2.1.2 The (a, b)–degree can be used to construct term orders in

F [x, y] in which the terms are first ordered by (a, b)–degree, and then by

some suitable tie breaker such as the degree in y. If (a, b) = (2, 3) this leads

to the following order

1 < x < y < x2 < xy < x3 < y2 < x2y < x4 < xy2 < · · · .

♦

Finally, we will write ∂g for the degree of a 1–variable polynomial g.
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2.2 Term orders for degree constraints

Many problems arising in practice additionally constrain the required solu-

tions by imposing limits on the degrees of their components. For any chosen

degree constraints, we show how to select a term order such that the ele-

ments of a module S ⊆ AL which satisfy these contraints can be identified

by reference to a Gröbner basis for S with respect to that term order.

Let <1 be a term order on A. A term order <L on AL is said to be

compatible with <1 if aei <L bei whenever a <1 b. The following lemma will

be used freely in the sequel. (In fact, this can be viewed as an alternative

definition of a compatible term order—see [17, p. 341].)

Lemma 2.2.1 If lt1(h) is the leading term of h ∈ A with respect to <1 and

lt(g) is the leading term of g ∈ AL with respect to a term order <L, which is

compatible with <1, then

lt(hg) = lt1(h)lt(g)

Proof. Let lt1(h) = u, lt(g) = wek. By the definition of term order, every

term vej ∈ supp(g) satisfies

uvej <L uwek.

Every term t ∈ supp(h) satisfies t <1 u. We have, by compatibility,

tej <L uej

and, hence, by the definition of term order,

tvej <L uvej.
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Now every term in hg has the form t(vej) for t ∈ supp(h), vej ∈ supp(g)

and

t(vej) = (tv)ej <L (uv)ej <L (uw)ek.

Thus (uw)ek = lt(hg) as required. ¤

The next example shows that not all term orders on AL are compatible with

some term order on A.

Example 2.2.2 Let A = F [x, y] and L = 2. If <1 is any term order with

x < y (such as a lexicographic order) and <1′ is any term order with y < x

(such as a different lexicographic order),we can define a term order <2 on

F [x, y]2 by X1ei <2 X2ej if (i < j) or (i = j = 1 and X1 <1 X2) or (i = j = 2

and X1 <1′ X2). Let h = x + y and let < be any term order on A. Since

lt2((x+y)e1) = ye1 and lt2((x+y)e2) = xe2 we see that <2 is not compatible

with <. ♦

We now consider the term order defined in Example 2.1.1.

Lemma 2.2.3 The relation < defined in (2.2) is a term order on AL which

is compatible with <1.

Proof. Let λ = λα. The relation < defines a total order on the terms of AL,

because <1 is total order and, in the event of equality at the same component

ek, we have β
U

+ λ − αk = β
V

+ λ − αk, so the terms are equal. Next, let

U = Xβ
U ek, Z = Xβ

Z 6= 1. Then β
U

+ λ − α(k) <1 β
Z

+ β
U

+ λ − α(k)

so U < ZU. Finally, if U = Xβ
U ei < V = Xβ

V ej and β
U

+ λ − α(i) <1

β
V

+ λ− α(j) then adding β
Z

to both sides does not change the order, while

if β
U

+ λ − α(i) = β
V

+ λ − α(j) and tb(i, j) = i, then adding β
Z

to both

sides preserves the equality and tb(i, j) = i is unchanged. In either case

ZU < ZV, as required. ¤
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In many applications solutions f = (f (1), . . . , f (L)) are sought, which sat-

isfy a condition

∆(f (i)) ≤1 α(i) for 1 ≤ i ≤ L (2.3)

for some fixed term order <1 and vector α of multidegrees. This generic

problem of finding solution vectors satisfying degree constraints is the natural

generalization of the 1–variable case considered in [22, 23]. Such “required

solutions” can be determined from a Gröbner basis of the solution module.

Theorem 2.2.4 Let G = {g1, . . . ,gm} be a Gröbner basis, with respect to

the term order < defined in (2.2), of an A-module S ⊆ AL. A vector f ∈ S

satisfies (2.3) if and only it can be expressed in the form

f =
∑

k∈K

akgk (2.4)

where K ⊆ {1, . . . , m}, and ak,gk satisfy ∆(ak) + ∆α(gk) ≤1 λ = λα, for

k ∈ K.

Proof. Suppose f can be expressed as in (2.4). Then lt(f) ≤ lt(akgk) =

lt1(ak)lt(gk) for some k ∈ K. If lt(f) = X
β

f ei and lt(gk) = X
β

gej then

β
f

+ λ − α(i) ≤1 ∆(ak) + β
g

+ λ − α(j) = ∆(ak) + ∆α(gk) ≤1 λ. Since

lt(f (r)er) ≤ lt(f) for all 1 ≤ r ≤ L, ∆(f (r)) + λ− α(r) ≤1 β
f

+ λ− α(i) ≤1 λ

and hence ∆(f (r)) ≤1 α(r). Therefore f is a solution of the required type.

Conversely, suppose f ∈ S satisfies (2.3). The standard representation

is f =
∑

k∈K akgk for some K ⊆ {1, . . . , m}, where lt(akgk) ≤ lt(f) for

all k ∈ K. Now lt(akgk) = lt1(ak)lt(gk), so lt1(ak)lt(gk) ≤ lt(f). With the

notation of the previous paragraph, this gives ∆(ak)+∆α(gk) ≤1 β
f
+λ−α(i).

Since, by assumption, β
f
≤1 α(i), the result follows. ¤
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Corollary 2.2.5 Suppose that G is a strictly ordered Gröbner basis of S.

There exists a solution satisfying (2.3) if and only if ∆α(g1) ≤1 λ, and in

that case g1, the minimal element, is such a solution.

We can illustrate this result by reference to the solution of the “key equa-

tion” in Fitzpatrick [22]. Let A = F [x]. Given g ∈ A with ∂g ≤ n − 1 and

non–negative integers `,m a solution (a, b) ∈ A2 is sought for

a ≡ bg mod xn

with ∂a ≤ `, ∂b ≤ m and `+m < n. When ` ≤ m, λ = ` and the weights are

(0, `−m). On the other hand, if m ≤ `, λ = m, the weights are (m− `, 0).

In either event, by choosing the tie-breaker function tb(i, j) = i when i ≤ j,

the resulting term order is equivalent to that used in [22].

2.3 Previous coding and systems applications

The generalised algorithm (Chapter 3) can be applied to a wide range of

problems. In this section we review previous work by Fitzpatrick on decoding

alternant codes, on scalar partial realisation and rational interpolation and

on solving multivariable polynomial congruences. These problems lead to

congruences of form

a ≡
L∑

i=2

bihik mod Ik, 1 ≤ k ≤ p

where Ik are ideals in F [x1, . . . , xs]. The input data are provided by the poly-

nomials hik ∈ A and the ideals on the right hand side of these congruences

are derived from “order” constraints and interpolation points. The task then

is to find a, b2, . . . , bL ∈ A.
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The following lemma provides a slightly more general setting for the prob-

lems in this section (i.e. with a = b1 and h1k = −1, 1 ≤ k ≤ p).

Lemma 2.3.1 Consider polynomials hik ∈ A, 1 ≤ i ≤ L, 1 ≤ k ≤ p and

ideals Ik ⊆ A, 1 ≤ k ≤ p. The set M = {(b1, . . . , bL) ∈ AL|∑L
i=1 bihik ≡

0 mod Ik, 1 ≤ k ≤ p} is a submodule of AL.

Proof. For any k, 1 ≤ k ≤ p, let Mk = {(b1, . . . , bL) ∈ AL|∑L
i=1 bihik ≡

0 mod Ik}. Suppose f = (f1, . . . , fL) and g = (g1, . . . , gL) ∈ AL. For any

a, b ∈ A we have

L∑
i=1

(afi + bgi)hik = a

L∑
i=1

fihik + b

L∑
i=1

gihik ≡ 0 mod Ik

We have af + bg ∈ Mk and thus Mk is an A-module. Now M = ∩L
k=1Mk and

so M is also an A-module. ¤

Thus any Gröbner basis of M can describe the solution set (module). Al-

gorithms for generating the Gröbner bases were presented and proven on a

case by case basis. The general algorithm subsumes all of these cases and

establishes their validity in a general and more straightforward way.

If, further, the solution has degree constraints, a term order can be chosen

so that a Gröbner basis, with respect to that order, can identify the solution

set (which will not usually be a module). Of particular interest are situations

where there is a unique “required solution” that can be identified as the

minimal element of the solution module with respect to a certain term order

defined by the problem. Such an element must lie in a Gröbner basis with

respect to that term order. In the original works, an individual term order

was crafted to address each application under study. Each of these can be

derived directly by using the results of Section 2.2. Therefore the following

applications are special cases of our general approach.
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2.3.1 Decoding alternant codes

The specific context of decoding was addressed in [22, 24]. The errors-only

case corresponds to the solution of the single congruence

b1(−1) + b2h ≡ 0 mod xn

subject to the conditions ∂b1 ≤ m1, ∂b2 ≤ m2,m1 + m2 < n and b1, b2 rela-

tively prime. This is a partial realisation problem in which a required solution

is shown to be minimal with respect to a certain term order defined relative

to the parameter r = m1 −m2. The algorithm produces a Gröbner basis of

the solution module containing the required solution. The generalisation to

errors-and-erasures decoding involves the solution of the congruence subject

to the further condition that b2 be divisible by a fixed polynomial f . In

this case initialisation is at the basis {(x∂f+r+1, 0), (fh, f)}, where fh is the

remainder of fh modulo x∂c+r+1.

2.3.2 Partial realisation, scalar rational interpolation

Both of these problems can be viewed as the parameterisation of the solutions

of the system of congruences

b1(−1) + b2hk ≡ 0 mod (x− βk)
Nk , k = 1, . . . , p

where hk =
∑Nk−1

t=0 ckt(x−βk)
t. Thus, L = 2 and h1k = −1, h2k = hk for all k.

Various conditions may be imposed on the solutions, such as, ∂b1 < ∂b2, ∂b1+

∂b2 < N =
∑p

k=1 Nk, b1, b2 relatively prime, b2(βk) 6= 0 for all k, and so on.

These are used to define an appropriate term order for the solution module

and in certain situations to identify a unique required solution as the minimal

element in the module. The partial realisation problem corresponds to the
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case p = 1 (and β1 = 0), while the distinct-abscissae rational interpolation

problem corresponds to Nk = 1 for all k. See [23] for more details.

2.3.3 Multiple indeterminates

The main problem analysed in [26] is the determination of a Gröbner basis

of the solution module of the congruence

b1(−1) +
L∑

j=2

bjhj ≡ 0 mod I

where I ⊆ F [x1, . . . , xs] is a zero dimensional ideal. Thus p = 1 in this case.

This extends previous work on Padé approximation in Fitzpatrick and Flynn

[21].

A recursive algorithm is given that applies in the special case where a

sequence of approximating ideals can be defined with the property that for

each l there is a term φl /∈ Il+1 such that

Il = 〈φl, Il+1〉 and xiφl ∈ Il+1, i = 1, . . . , s

Applications to multivariable Padé approximation, Hensel codes, and alge-

braic geometry codes are given.

Recently, Little et al. [38] shows how some of the conditions from [21]

can be relaxed. For a specific term order, a Padé approximation can be

found among the elements of any Gröbner basis with respect to this order.

This contrasts with [21] which has more restricted conditions and where the

solution is the minimal element of a Gröbner basis .
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Chapter 3

The general algorithm

This chapter presents the results which form the theoretical foundation for

the applications in subsequent chapters. We describe a generalised problem

and provide a correspondingly general algorithm which produces a Gröbner

basis for the solution module of the problem. The general algorithm is valid

for any term order. Since a polynomial ring can be viewed as a module over

itself, what follows for A-modules also applies to polynomial rings and ideals

thereof.

Based on an idea first presented in [22], the solution is approximated by

a descending chain of modules. The success of this method is predicated on

the ability to generate a suitable Gröbner basis for each module in the chain

from that of the previous one. It is this incremental step which is the core of

the algorithm. From a known Gröbner basis for an initial module, repeated

application of the incremental step leads to the desired solution. Because,

in a given case, it affords an amount choice as to which descending chain is

chosen, the algorithm has useful flexibility and a recursive/iterative nature.

We examine the applicability and efficiency of the general algorithm. We

go on to consider the single indeterminate case from the standpoint of sim-
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plification and complexity.

3.1 The incremental step

We first describe the incremental step of our algorithm in the following theo-

rem. It will be applicable to submodules M`,M`+1 of an A-module M , where

M` ⊃ M`+1, and there exists an F–homomorphism

θ` : M` → F, ker(θ`) = M`+1. (3.1)

This function returns the “discrepancy” between an element of M` and the

submodule M`+1.

We begin with a lemma.

Lemma 3.1.1 Let M` ⊃ M`+1 and let θ` satisfy (3.1). Then there exist

constants βi such that

(xi − βi)M` ⊆ M`+1, 1 ≤ i ≤ s. (3.2)

Further βi is unique and βi = θ`(xif`), where f` is the unique element, modulo

M`+1, with θ`(f`) = 1.

Proof. Let f ∈ M`\M`+1. Then θ`(f) = δ, where δ 6= 0. Define f` to be 1
δ
f

so that θ`(f`) = 1. Suppose θ`(g) = 1 for some g ∈ M`. Now θ`(f` − g) = 0

and so f` − g ∈ M`+1. This means that f` is unique modulo M`+1.

Let βi = θ`(xif`), 1 ≤ i ≤ s. For any h ∈ M`, we claim (xi−βi)h ∈ M`+1.

Since M`+1 is an A-module, (xi − βi)h ∈ M`+1 for h ∈ M`+1. Suppose

h ∈ M`\M`+1. Thus, θ`(h) = γ, γ 6= 0. It follows that θ`(h − γf`) = 0 and

h− γf` = m for some m ∈ M`+1 and that (xi − βi)h = (xi − βi)(m + γf`) =

(xi−βi)m+γ(xi−βi)f`. It then follows that θ`((xi−βi)h) = γθ`((xi−βi)f`) =

0 and (xi − βi)h ∈ M`+1.
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Finally, βi is unique. Suppose there is a β
′
i such that for any h ∈

M`\M`+1,(xi−β
′
i)h ∈ M`+1. Now, θ`((xi−βi)h) = 0 and θ`((xi−β

′
i)h) = 0.

Thus θ`(xih) = βiθ`(h) and θ`(xih) = β
′
iθ`(h). Since θ`(h) 6= 0, we have

βi = β
′
i. ¤

If W is an ordered set, we will denote its jth element by W [j].

Theorem 3.1.2 Let M be an A–module and let M` ⊃ M`+1 be submodules

of M with θ` satisfying (3.1) and βi, i ∈ [s] as in (3.2). Let H : AL → M

be an F–linear function such that for each i, 1 ≤ i ≤ s there exists γi ∈ F

satisfying

H(xib) = (xi + γi)H(b)

for all b = (b1, . . . , bL) ∈ AL. Let S ⊆ AL be a submodule satisfying

H(b) ≡ 0 mod M` for all b ∈ S (3.3)

and let S ′ ⊆ S be the set of elements satisfying

H(b) ≡ 0 mod M`+1. (3.4)

Then S ′ is a submodule of AL.

If W is a strictly ordered Gröbner basis of S relative to a term order

< then a Gröbner basis W ′ of S ′ relative to < can be constructed by the

following algorithm
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Algorithm 3.1.3 : the incremental step.

Define αj := θ`(H(W [j])) for 1 ≤ j ≤ |W|
W ′=incremental-step(W , [xi], [αj], [βi], [γi])

Proc incremental-step()

If αj = 0 for all j then

W ′ = W
otherwise

j∗ := least j for which αj 6= 0

W1 := {Wj : j < j∗}
W2 := {(xi − (βi + γi))W [j∗] : 1 ≤ i ≤ s}
W3 := {W [j]− (αj/αj∗)W [j∗] : j > j∗}
W1

⋃W2

⋃W3

End

Proof. Let b ∈ S ′ ⊆ S. Thus H(b) ≡ 0 mod M`+1. Since S is a module,

xib ∈ S, 1 ≤ i ≤ s. But H(xib) = (xi + γi)H(b) ≡ 0 mod M`+1. Thus,

Xb ∈ S ′ for any term X. By the F–linearity of H it follows straightforwardly

that S ′ is a submodule.

By definition, H(W [j]) ∈ M`, so if αj = 0, for all j, then W ⊆ S ′ so

S ′ = S. Thus suppose some αj 6= 0 and let j∗ be as defined. If j < j∗

then clearly W [j] ∈ S ′. Next, H(W [j∗]) ∈ Ml, so H((xi − γi − βi)W [j∗]) =

(xi − βi)H(W [j∗]) ∈ M`+1, by (3.2), and hence (xi − (βi + γi))W [j∗] ∈ S ′.
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Finally, for j > j∗,

θ`(H(W [j]− (αj/αj∗)W [j∗])) = θ`(H(W [j])− (αj/αj∗)H(W [j∗]))

= θ`(H(W [j]))− (αj/αj∗)θ`(H(W [j∗]))

= αj − (αj/αj∗)αj∗ = 0

so W [j]− (αj/αj∗)W [j∗] ∈ S ′ by (3.1). We have now proved that W ′ ⊆ S ′.

We show thatW ′ is a Gröbner basis as follows. By assumption, lt(W [i]) 6=
lt(W [j]), when i 6= j. Now, lt((xi − (βi + γi))W [j∗]) = xilt(W [j∗]) and

lt(W [j] − (αj/αj∗)W [j∗])) = lt(W [j]), j > j∗. Let f ∈ S ′ ⊆ S. Then lt(f)

is divisible by some lt(W [j]). If j 6= j∗ then lt(f) is divisible by the leading

term of an element of W ′.

Thus, we may suppose that lt(W [j∗]) is the only leading term of the basis

elements W [j] that divides lt(f). We show that xilt(W [j∗]) also divides lt(f)

for some i. Consider the standard representation f =
∑

j∈J fjW [j], with

fj 6= 0, and J ⊆ {1, . . . , |W|}. By definition of this representation, and by

the assumption on lt(W [j∗]), it follows that j∗ ∈ J , lt(f) = lt(fj∗W [j∗]),

and lt(fjW [j]) < lt(f) for j 6= j∗. Let Xj, j ∈ J , be terms in A such that

lt(fjW [j]) = Xjlt(W [j]). Thus Xjlt(W [j]) < Xj∗ lt(W [j∗]). Suppose that

there is some j ∈ J with j > j∗. If Xj∗ = 1 then

Xjlt(W [j]) < lt(W [j∗]) ≤ Xjlt(W [j∗])

which contradicts the increasing order of W . Hence Xj∗ 6= 1, so xilt(W [j∗])

divides lt(f) for some i. Otherwise, J ⊆ {1, . . . , j∗} and

f −
j∗−1∑
j=1

fjW [j] = fj∗W [j∗]

lies in S ′. Therefore fj∗ 6= 1 since W [j∗] /∈ S ′. As a consequence, Xj∗ 6= 1

and again xilt(W [j∗]) divides lt(f) for some i. This completes the proof. ¤
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Remark 3.1.4 Since an ordered minimal Gröbner basis is a strictly ordered

Gröbner basis it is clear Theorem 3.1.2 is also valid when W is an ordered

minimal Gröbner basis .

3.2 Applicability of the incremental step

Since the incremental step is central to the algorithm, the conditions on M`

and M`+1 are very significant to the applicability of the algorithm. We next

investigate the implications of (3.1) and (3.2).

The following results examine properties of sets of the form F f` + M`+1.

Lemma 3.2.1 Let M` = F f` +M`+1, where M`+1 a proper submodule of M0

and f` ∈ M0\M`+1. For any f = δf` +m, m ∈ M`+1, the coefficient δ is well

defined.

Proof. Suppose also f = γf` + m
′
, m

′ ∈ M`+1. Then m−m
′
= (γ − δ)f`.

Since m−m
′ ∈ M`+1, (γ − δ)f` ∈ M`+1 and (γ − δ) = 0. Thus γ = δ. ¤

Note that M` is not necessarily closed under A–multiplication.

Theorem 3.2.2 Let M`,M`+1 be A–submodules of M0 and M0 ⊇ M` ⊃
M`+1. The following statements are equivalent.

1. There is an F -homomorphism θ` with θ` : M` → F, ker(θ`) = M`+1.

2. There is an element f` ∈ M`\M`+1 such that M` = F f` + M`+1.

Proof. Suppose there is an F -homomorphism θ` with θ` : M` → F, ker(θ`) =

M`+1. Choose any element f ∈ M`\M`+1. Let θ`(f) = δ. Since δ 6= 0, we can

define f` = 1
δ
f and we have θ`(f`) = 1. Since M` is a module, M` ⊇ F f`+M`+1.
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Let g ∈ M`. If g ∈ M`+1, g = 0f` + g. Otherwise, g ∈ M`\M`+1 and

θ`(g) = γ 6= 0. Now θ`(g − γf`) = 0 and g − γf` = m ∈ M`+1. Therefore

g = γf` + m and M` ⊆ F f` + M`+1.

Conversely, suppose that there is f` ∈ M`\M`+1 so that M` = F f` +

M`+1. Let g = δf` + m, δ ∈ F,m ∈ M`+1 be any element of M`. Define

θ`(g) = δ. This function is well defined by Lemma 3.2.1. Clearly, θ` is an

F -homomorphism. If θ`(g) = 0, then g = m ∈ M`+1. If θ`(g) = δ 6= 0, then

δf` = g−m and g /∈ M`+1. Thus ker(θ`) = M`+1.

¤

These two results lead to a useful way to define the function θ`.

Corollary 3.2.3 If there is an element f` ∈ M`\M`+1 such that M` = F f` +

M`+1 is an A-module, then the function θ` defined by θ`(δf` + m) = δ ∈ F

satisfies (3.1).

When the modules under consideration are contained in a free module we

can provide further insight in the context of terms.

Lemma 3.2.4 Let M`+1 ⊂ M` = F f` + M`+1 be modules contained in AL.

For an arbitrary term order < on AL, there is an element f`
∗ such that

M` = F f`
∗ + M`+1 and no element of LT (M`+1) is in the support of f`

∗. In

particular, lt(f`
∗) depends only on <.

Proof. Let G be a Gröbner basis of M`+1 with respect to <. We can reduce

f` with respect to G to yield f`
∗. Thus f`

∗ does not have any terms which are

in LT (M`+1).

Suppose there is another reduced element g such that M` = Fg + M`.

By definition, lt(f`
∗) /∈ LT (M`+1) and lt(g) /∈ LT (M`+1), but g = f`

∗ + mg,

where mg ∈ M`+1. Thus lt(g) = lt(f`
∗). ¤

26



In this case, for g ∈ M`, θ`(g) can be defined as returning the coefficient

of lt(f∗`) in the normal form of g with respect to M` for that term order.

3.3 The general problem

For an A-module T (0) ⊆ AL, elements b = (b1, . . . , bL) ∈ T (0) are sought

which satisfy a sequence of p congruences

H(k)(b) ≡ 0 mod M (k), k = 1, . . . , p (3.5)

where M (k) are A-modules. Each H(k) is an F–linear function such that for

each i, 1 ≤ i ≤ s, there exists γ
(k)
i ∈ F satisfying

H(k)(xib) = (xi + γ
(k)
i )H(k)(b) (3.6)

for all b ∈ AL. Following Theorem 3.1.2, the solution set T is a submodule

of AL.

The most general published form of the algorithm is to be found in [48].

This, in turn, generalised [47]. It is a generalisation of number of problems

in coding theory and systems theory [22, 23, 25, 26]. The general algorithm

provides a unified approach to all of these problems while at the same time

leading to a simpler theoretical justification.

3.3.1 The general algorithm

Our general algorithm is applicable providing that for each for each M (k) we

have a (descending) chain of modules

M
(k)
0 , . . . ,M

(k)
` , . . . , M

(k)
Nk

= M (k)

and F−homomorphisms θ
(k)
` so that for each `

M
(k)
` ⊃ M

(k)
`+1
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θ
(k)
` : M

(k)
` → F, ker(θ

(k)
` ) = M

(k)
`+1. (3.7)

From Lemma 3.1.1, we have suitable constants β
(k,`)
i where

(xi − β
(k,`)
i )M

(k)
` ⊆ M

(k)
`+1, 1 ≤ i ≤ s (3.8)

We may approach the solution module by a sequence of approximations,

as follows. Suppose that the functions H(k) satisfy the conditions of Theorem

3.1.2. Let (j1, . . . , jp) ∈ {1, . . . , N1} × · · · × {1, . . . , Np}. We define T(j1,...,jp)

to be the submodule satisfying

H(k)(b) ≡ 0 mod M
(k)
jk

for all k ∈ {1, . . . , p}. (3.9)

Let T (0) = T(0,...,0), T = T(N1,...,Np). We will define a descending chain of

modules T (0) ⊇ · · · ⊇ T . Beginning with an initial strictly ordered Gröbner

basis for T (0) we will use the incremental step to determine a Gröbner basis

for the next module in the sequence. If jk ≤ j′k for all k ∈ {1, . . . , p} then

T(j1,...,jp) ⊇ T(j′1,...,j′p).

Now suppose that we have a strictly ordered Gröbner basis for T (i) =

T(j1,...,jp). Then, providing j′k = jk + 1 for exactly one k ∈ {1, . . . , p}, and

j′k = jk otherwise, the incremental step provides a Gröbner basis for T (i+1) =

T(j′1,...,j′p), where we select M` = M
(k)
j ,M`+1 = M

(k)
j+1 along with corresponding

constants β, γ and the homomorphism θ. The resulting Gröbner basis is then

converted into a strictly ordered Gröbner basis by the function ord. Thus the

solution module T can be approached along different sequences of modules.

In Algorithm 3.3.1 the choice of sequence is implemented by the function

nextmod.
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Algorithm 3.3.1

Input

functions H(k)

constants γ
(k)
i , 1 ≤ k ≤ p, 1 ≤ i ≤ s

modules M
(k)
` and homomorphisms θ

(k)
` , 1 ≤ k ≤ p, 0 ≤ ` ≤ Nk

constants β
(k,`)
i , 1 ≤ k ≤ p, 1 ≤ i ≤ s, 0 ≤ ` ≤ Nk

< a term order on AL

T (0) the initial module

W0 a strictly ordered Gröbner basis of T (0)

Output

W a strictly ordered Gröbner basis of the submodule T

Main Routine

W := W0

For module from T (0) to T

(k, θ`) =nextmod(module)

αj := θ`(H
(k)(W [j])) for j ∈ [|W|]

W ′=incremental-step(W , [xi], [αj], [β
(k,`)
i ], [γ

(k)
i ])

W := ord(W ′)

Suppose H(k) is an A-homomorphism, then H(k) is F -linear and H(k)(xib) =

xiH
(k)(b). Thus H(k) satifies the requirements of the algorithm with γi =

0, 1 ≤ i ≤ s.

A fortiori, the algorithm applies to functions described in Lemma 2.3.1.

Define H(k)((b1, . . . , bL)) =
∑L

i=1 bihik. Then H(k) : AL → A is an A-

homomorphism. This was the special case studied in [47].

Because the functions H(k) can be used to shift the origin of a problem

(with non zero γi), the algorithm is also applicable to interpolation problems.

The Gröbner basis produced gives a basis for the entire solution submod-
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ule. However, further refinements are possible when only particular subsets

of the solution module are required. We first state an obvious result.

Lemma 3.3.2 At each iteration of the general algorithm, there is no de-

crease in the leading term of any element of the Gröbner basis.

Corollary 3.3.3 If the solution sought is for those elements whose leading

term does not exceed a given term t then at any iteration all Gröbner basis

elements whose leading terms exceed t may be discarded.

Proof. Suppose f is in the solution submodule and lt(f) ≤ t. Let G =

{g1, . . . ,gm} be the final Gröbner basis . Then f has a standard representa-

tion of the form f =
∑m

i=1 aigi where ai ∈ A and lt(figi) ≤ lt(f), 1 ≤ i ≤ m.

Thus any element whose leading term exceeds t makes no contribution to f .

At each iteration, any element whose leading term exceeds t is either elimi-

nated later by some run of the ord function or results in a superflous element

of the final basis. ¤

The only increase in leading term occurs during the calculation of the

elements of the set W2 and those that exceed the predefined limit may dis-

carded at that point. Thus potentially smaller numbers of Gröbner basis

elements need be considered during the iterations of the algorithm, leading

to performance improvements. Those applications that satisfy Theorem 2.2.4

are immediate candidates for this refinement.

The Gröbner basis elements described in Corollary 3.3.3 can be seen, in

these circumstances, as a generalisation of d-Gröbner bases described in [7]

and defined only in the context of a polynomial ring. While such bases could

be generated from pairs of S-polynomials for homogeneous ideals only, our

algorithm allows us to calculate them without such a restriction.
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The module sequence

Since M0 can be represented by Theorem 3.2.2 in the form F f0 + (. . . (. . . +

M) . . .) we immediately have

Corollary 3.3.4 If M is such that there is a descending sequence satisfying

(3.1) and (3.2), then M has a finite codimension in M0.

Having a finite codimension is not sufficient to guarantee the existence of

a suitable descending chain, as can be seen in the following example.

Example 3.3.5 Let A = R[x] be the ring in a single indeterminate over the

real numbers. If M is the ideal 〈x2 +1〉 then A/M is a vector space with two

basis elements, 1 and x. The ideal M is maximal and there is no element

f ∈ A\M such that A = F f + M . ♦

A module sequence construction for some submodules of a free

module

We now present a partial result for submodules of AL which leads to the

construction of a descending chain of modules and the corresponding func-

tions. First, we have a well-known result (attributed in [17] to Macaulay)

expressed in our terminology. Fix a term order <. Recall that LT (M) is the

submodule generated by the leading terms of M with respect to <.

Theorem 3.3.6 [ [17] 15.3] Let M be a submodule of AL. The set of terms

not in LT (M) forms a (vector space) basis for Aq/M .

Theorem 3.3.7 Let M be a submodule of AL with a finite codimension and

with M = LT (M). Let t0, . . . , tN−1 be the terms of AL not in LT (M) and

ordered by some term order <′ (not necessarily <). Define MN = M and

M` = F t` + M`+1, 0 ≤ ` ≤ N − 1. Then
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1. The subsets M` form a descending chain of submodules satisfying (3.1)

and (3.2) with M0 = AL.

2. The function θ` can be defined using the coefficient of t` as in Corollary

3.2.3, and moreover βi = 0 for 1 ≤ i ≤ s.

Proof.

1. From Theorem 3.2.2, it is sufficient to show that M` = F t` + M`+1 is

an A–module. It is obviously closed under addition. Since M = MN is an

A–module we assume inductively that M`+1 is an A–module. Notice that all

terms t ∈ AL with t` <′ t are contained in M`+1. Let a =
∑c

j=1 ajXj ∈ A and

f = αt` +m where α, a1, . . . , ac ∈ F,m ∈ M`+1. Thus af =
∑c

j=1 ajXj(αt` +

m) =
∑c

j=1(αaj)(Xjt`) + m
′
,m

′ ∈ M`+1. If Xj 6= 1, t` <′ Xjt` and so

Xjt` ∈ M`+1. Therefore, af ∈ F t` + M`+1. Finally, from Theorem 3.3.6,

M0 = F t0 + . . . + F tN−1 + M = AL.

2. From the proof of 3.2.2 this is a valid definition for θ`. By Lemma

3.1.1, βi = θ`(xit`) and the coefficient of t` in xit` is 0. ¤

We immediately have the following result for F [x].

Corollary 3.3.8 For an ideal I = 〈xn〉 ⊂ F [x], a module sequence of the re-

quired form always exists and the corresponding term sequence is 1, x, . . . , xn−1.

An example from [26] illustrates the case of two indeterminates.

Example 3.3.9 Consider A = F [x, y] and the ideal I = 〈x2, xy, y2〉 ⊂
F [x, y] generated by terms of fixed total degree 2. Choose < to be degree

lexicographic order with x < y. Now LT (I) = I and the terms not in LT (I)

are 1, x, y. Let I = I3 = 〈x2, xy, y2〉. Then I2 = Fy + 〈x2, xy, y2〉 = 〈x2, y〉
and θ2 returns the coefficient of y. Next, I1 = Fx + 〈x2, y〉 = 〈x, y〉 and θ1
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returns the coefficient of x. Finally, I0 = F1 + 〈x, y〉 = 〈1〉 = F [x, y] and θ0

returns the coefficient of 1. ♦

Initialisation

A situation, arising frequently in applications, occurs when M
(k)
0 is the image

of H(k) for k ∈ {1, . . . , p}. Then T (0) = AL and the standard basis vectors of

AL, ordered with respect to <, is a suitable initial basis.

In other situations, initial modules arise naturally. For example, in era-

sures decoding [24], the problem is to find a, b ∈ F [x] such that for an erasure

locator polynomial c ∈ F [x] and a syndrome polynomial g

a ≡ bg mod xn and c|b. (3.10)

The submodule of A2 generated by {(1, 0), (0, c)} can be viewed as the pairs

of polynomials (a, b) where c|b. Using this as the initial module, a Gröbner

basis for the solution module with respect to < (=<(1,0)) is sought. When

∂c ≥ 1, {(1, 0), (0, c)} can be used as an initial Gröbner basis . The solution

can then be found after n iterations in the algorithm.

The erasures case provides us with an example of another phenomenon.

Because the behaviour of the algorithm is predictable up to the ∂cth iteration,

the ∂cth basis can be written down directly as {(x∂c, 0), (cg, c)},where cg ≡
cg mod x∂c. In this way the algorithm can be shortened to n− ∂c iterations.

3.3.2 Complexity

The general algorithm solves a wide variety of problems. One perspective on

our algorithm is that it converts these problems to linear systems of homo-

geneous equations. Next, it solves the linear system and then presents the
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results in the original context.

An A-module can be viewed as a vector space over the field F . Since they

are F -linear, the functions

H(k) : AL → M
(k)
0 = F f0 + . . . + F fNk−1 + M (k)

behave as vector space homomorphisms. Because we are seeking solutions

b ∈ AL for which H(k)(b) ≡ 0 mod M (k), we can confine our analysis to the

vector space homomorphisms

H
(k)
M : AL → M

(k)
0 /M (k)

where H
(k)
M (b) = H(k)(b) mod M (k). From Corollary 3.3.4, the dimension of

the range of H
(k)
M is Nk, the codimension of M (k). The number of iterations

is bounded by the sum of these codimensions, so the algorithm generates

a finite number of terms among the Gröbner basis elements. Let n be the

number of terms required to express the solution set required (where this may

have been reduced if Corollary 3.3.3 applies) and let these terms be the basis

for an n–dimensional vector space over F . Thus, each H
(k)
M can be viewed

as a vector space homomorphism between finite-dimensional vector spaces

and admits a matrix representation HF ∈ FNk×n. Since we are seeking those

elements whose images are zero, HF corresponds to a set of Nk homogeneous

equations in n variables. The discrepancy is found by multiplying an n-

vector by a chosen row of HF and so for each basis element the discrepancy

computation involves O(n) field operations. Since there are p congruences, we

can express the overall problem in at most N =
∑p

k=1 Nk homogeneous linear

equations in n variables. To ensure the existence of a non-trivial solution we

can assume, from the standpoint of practicality, that N < n.

For a given iteration, each Gröbner basis element calculation requires

O(n) operations. Since the function ord removes elements with duplicate
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leading terms (at least) there are, also, at most n basis elements. Finally,

there are at most N < n iterations and the worst case complexity of the

general algorithm is O(n3). As we shall see later, complexities of O(n2) are

more typical for specific algorithms derived therefrom.

3.3.3 Simplifications in the single indeterminate case

When A = F [x] several simplifications can be made. The terms in F [x]L are

of the form xjei, j ≥ 0, 1 ≤ i ≤ L.

In this case, s = 1 and incremental-step(W , [x], [αj], [β], [γ]) can be im-

plemented using the following algorithm.

Algorithm 3.3.10 : incremental-step for F [x].

Proc incremental-step()

If αj = 0 for all j then

W ′ = W
otherwise

j∗ := least j for which αj 6= 0

W1 := {Wj : j < j∗}
W2 := {(x− (β + γ))W [j∗]}
W3 := {W [j]− (αj/αj∗)W [j∗] : j > j∗}
W1

⋃W2

⋃W3

End

Algorithm 3.3.10 has the following properties..

1. It does not change the number of elements in the Gröbner basis pro-

duced.

2. The only element whose leading term changes is that with index j∗.
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3. The leading term of W [j∗] is multiplied by x.

4. The position of the leading term of each Gröbner basis element is un-

changed.

The function ord simplifies to inserting the new element in the correct loca-

tion among the ordered elements. It will merely discard it if it duplicates the

leading term of an existing element.

Corollary 3.3.11 Each basis produced during the algorithm has at most the

number of elements in the initial basis.

Lemma 3.3.12 A Gröbner basis G for a module M ⊆ F [x]L is a minimal

basis if and only if no two basis elements have leading terms in the same

position.

Proof. If the leading terms of the basis elements are all in different positions

then none of them is a multiple of another. Conversely, if two of the leading

terms are in the same position then one of them divides the other. ¤

Corollary 3.3.13 A minimal Gröbner basis of a submodule of F [x]L has at

most L elements.

Corollary 3.3.14 If the initial basis is a minimal Gröbner basis then the

algorithm produces a minimal Gröbner basis at each iteration.

Corollary 3.3.15 If the initial basis is the ordered standard basis vectors

then the algorithm produces a minimal Gröbner basis with L elements at

each iteration.
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Thus, if the initial basis is a minimal Gröbner basis the algorithm takes on a

regular structure with a fixed basis size at each iteration. This size is known

in advance. The implementation of the ord function reduces to inserting

the new element into the appropriate place in the order. When Corollary

3.3.3 applies, the actual number of elements may fall below L as the element

indexed by j∗ might be discarded.

Complexity in the single indeterminate case

The size of the Gröbner basis is bounded above by L and at each iteration

there are at O(Ln) field operations. This gives an overall worst case complex-

ity of O(Ln2). In many of the applications the value of L does not change

with n, and so their algorithmic complexities are O(n2).
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Chapter 4

Linear systems theory

In this chapter we show how the theory developed in earlier chapters can be

applied to a wide variety of problems in linear systems theory. In particular,

all of the algorithms produced are special cases of our general algorithm.

We begin by showing that block Hankel and block Toeplitz systems of lin-

ear equations can be viewed as polynomial congruences with specific degree

constraints. Our algorithm, combined with our general term order for de-

gree constraints, can be applied immediately to homogeneous congruences

and we demonstrate how this approach can be extended to inhomogeneous

congruences. In this way both homogeneous and inhomogenous systems of

linear equations are solved. Using other degree constraints, we go on to de-

rive algorithms for performing division-related calculations in a finite field or

division ring.

Next, we consider the exact modelling of discrete-time behaviours. A re-

cursive algorithm, equivalent to a previously known one, is evolved which

generates all of the models of the behaviours under study. The partial reali-

sation problem is solved by extracting a controllable model from the overall

solution.
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Finally, rational interpolations are examined. Our algorithm can lend

itself to interpolations from two perspectives. In Chapter 5 we use origin-

shifting capabilities of the general algorithm. For the purpose of this chapter,

we address the interpolation by the choice of module sequences and solve the

matrix interpolation problem. This culminates by addressing the extended

M-Padé approximation problem.

Since matrix calculations are not commutative, we will chose to operate

with left division and row reduction. Nevertheless, right sided and column

oriented operations are equally appropriate.

4.1 Hankel and Toeplitz systems of linear equa-

tions

For r, s ∈ N0, and matrices Hi ∈ F p×m, i = 0, . . . , r + s− 1, we consider the

block Hankel matrix

H =




H0 H1 H2 . . . Hs−1

H1 H2 H3 . . . Hs

H2 H3 H4 . . . Hs+1

. . . . . . . . . . . . . . .

Hr−1 Hr Hr+1 . . . Hr+s−1




(i.e. where H is constant on block antidiagonals).

The corresponding system of equations has sm unknowns and rp equa-

tions. Denote the unknowns by the F sm×1 vector

b =
(
b
(1)
s−1, b

(2)
s−1, . . . , b

(m)
s−1, b

(1)
s−2, . . . , b

(1)
0 , . . . , b

(m)
0

)

and, finally, let a ∈ F rp×1, where

a =
(
a

(1)
0 , a

(2)
0 , . . . , a

(p)
0 , a

(1)
1 , . . . , a

(1)
r−1, . . . , a

(p)
r−1.

)
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The problem is to solve

Hb = a (4.1)

for b, given H and a.

A block Toeplitz matrix has the form

T =




H0 H−1 H−2 . . . H−s+1

H1 H0 H−1 . . . H−s+2

H2 H1 H0 . . . H−s+2

. . . . . . . . . . . . . . .

Hr−1 Hr Hr+1 . . . Hr−s




with matrices Hi ∈ F p×m, i = −s + 1, . . . , r− 1. (i.e. where T is constant on

block diagonals).

It is well known that such a matrix can be converted to block Hankel

form. Let Im ∈ Fm×m be the identity matrix. We define a block matrix Jsm

as

Jsm =




0 0 . . . . . . Im

0 . . . . . . Im 0

. . . . . . Im 0 0

. . . . . . . . . . . . . . .

Im 0 . . . . . . 0




where Im denotes the identity matrix.

Now J2
sm = Ism, the identity matrix. Further, TJsm is in block Hankel

form. Now Tb = TIsmb = (TJsm)(Jsmb) = a. Thus, a Toeplitz system can

be addressed by solving the corresponding Hankel problem and reversing the

order of the unknowns. (The converse is also true because HJsm has block

Toeplitz form). Therefore, we can confine our analyis to Hankel problems.

40



The solution of a block Hankel system of linear equations can be recast

as solving a sequence of (F [x]) polynomial congruences. Let

ak =
r−1∑

`=0

a
(k)
` x`, 1 ≤ k ≤ p

bj =
s−1∑

`=0

b
(j)
` x`, 1 ≤ j ≤ m

h
(k)
j =

r+s−1∑

`=0

(H`)k,jx
`, 1 ≤ j ≤ m, 1 ≤ k ≤ p.

Lemma 4.1.1 The solution of the Hankel system (4.1) is equivalent to find-

ing bj ∈ F [x], 1 ≤ j ≤ m + p such that

m∑
j=1

bjh
(k)
j ≡ bm+k + xs−1a(k) mod xs+r−1, 1 ≤ k ≤ p (4.2)

and subject to ∂bj < s for 1 ≤ j ≤ m and ∂bm+k < s− 1.

Proof. Suppose that b satisfies equation (4.1). By construction, the corre-

sponding polynomials b1, . . . , bm satisfy (4.2) for some polynomials bm+k with

∂bm+k < s− 1.

Conversely, suppose that b1, . . . , bm+p satisfy (4.2) and the degree con-

straints. Consider the coefficients of xn on each side of (4.2) for s− 1 ≤ n <

s+r−1. Since ∂bm+k < s−1, bm+k does not contribute to these coefficients.

Let ` = n− (s− 1). We then have rp equations of the form

m∑
j=1

s−1∑
i=0

(H`+i)k,jb
((s−1)−i)
j = a

(k)
` ,

where 0 ≤ ` ≤ r − 1 and 1 ≤ k ≤ p. ¤
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4.1.1 Homogeneous systems

When the system is homogeneous, that is, when a = 0, where 0 ∈ F rp×1

contains all zeros, the polynomial congruences become

m∑
j=1

bjh
(k)
j ≡ bm+k mod xs+r−1, 1 ≤ k ≤ p

subject to ∂bj < s for 1 ≤ j ≤ m and ∂bm+k < s−1. By defining h
(k)
m+k = −1

and h
(k)
m+i = 0 when k 6= i, we see this a special case of a set of “homogeneous”

polynomial congruences

L∑
j=1

bjh
(k)
j ≡ 0 mod xn(k)

, 1 ≤ k ≤ p (4.3)

where ∂bj ≤ αj, 1 ≤ j ≤ m + p = L.

We can use our general algorithm to solve the congruences (4.3). Corol-

lary 3.3.8 gives the module sequence and the corresponding functions θ` re-

turn the coefficients of x`. In this case, λ(s−1,...,s−1,s−2,...,s−2) = max{s −
1, . . . , s−1, s−2, . . . , s−2} = s−1 and the corresponding weights (0, . . . , 0, 1, . . . , 1)

lead to a term order (with the tie-breaker function tb(i, j) = i when i ≤ j).

We can use the final Gröbner basis and Theorem 2.2.4 to identify all b ∈
F [x]L corresponding to the solutions of (4.3) as

b =
∑

k∈K

akgk

where K ⊆ {1, . . . , m+1}, and ak,gk satisfy ∂ak+∆(s−1,...,s−1,s−2)(gk) ≤ s−1,

for k ∈ K.

Thus we can use the following algorithm to generate a Gröbner basis

for all elements corresponding to solutions of the general “homogeneous”

polynomial congruences, and by selecting the appropriate term order we can

solve systems of linear equations.
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Algorithm 4.1.2

Input:

polynomials {h(k)
i : 1 ≤ i ≤ nk, 1 ≤ k ≤ p}

weights (w1, . . . , wL)

Output:

Gröbner basis W of the solution module of generalised

homogeneous congruences (4.3).

Main Routine:

W := ord({e1, . . . , eL})
For k from 1 to p

For ` from 0 to nk − 1

For j from 1 to |W|
αj:=coefficient of x` in

∑L
i=1 bih

(k)
i

W ′=incremental-step(W , [x], [αj], [0], [0])

W :=ord(W ′)

Example 4.1.3 Consider the single congruence

b1(x
2 + 2x + 1) + b2(x

3 + x2) ≡ 0 mod x7. (4.4)

If we require ∂b1 ≤ 2 and ∂b2 ≤ 3, then λ = 3 and the weights are (1, 0). We

have L = 2, p = 1, n1 = 7. The ordered Gröbner basis is

(x2,−x− 1), (0, x5)

Now ∆(2,3)((x
2,−x − 1)) = 3, so the only constrained solutions are of the

form

γ(x2,−x− 1), γ ∈ F.

♦
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4.1.2 Inhomogeneous systems

When a 6= 0, our transformation does not lead to F -linear functions H(k)

and our algorithm does not immediately apply. However, if we introduce an

extra polynomial bm+p+1 and restrict ∂bm+p+1 < 1 (i.e. bm+p+1 ∈ F ), then all

solutions of the inhomogeneous system are contained among the solutions of

the congruences

(
m∑

j=1

bjh
(k)
j ) + (−1)bm+k + (−xs−1a(k))bm+p+1 ≡ 0 mod xs+r−1, 1 ≤ k ≤ p

(4.5)

subject to ∂bj < s for 1 ≤ j ≤ m, ∂bm+k < s − 1 and ∂bm+p+1 < 1.

The latter can be found using the weighted term order <(0,...,0,1,...,1,,s−1) with

weights (0,. . . ,0,1,. . . ,1,s-1).

It is clear that that solutions to the inhomogeneous system of linear equa-

tions are exactly those of the constrained polynomial congruences for which

the component bm+p+1 = 1. Unfortunately, the algorithm may also produce

solutions where the value of the (m + p + 1)-component is zero. Based on

Theorem 2.2.4, we have the following characterisations of the required subset

of solutions. We will establish these results in the setting of more general

“inhomogeneous” polynomial congruences,

m+p+1∑
j=1

bjh
(k)
j ≡ 0 mod xn(k)

, 1 ≤ k ≤ p (4.6)

where ∂bj ≤ αj, 1 ≤ j ≤ m + p and ∂bm+p+1 ≤ 0, bm+p+1 6= 0.

Theorem 4.1.4 Let {g1, . . . ,gm+p+1} be a Gröbner basis (with respect to the

weighted order) produced by our algorithm and let K ⊆ {1, . . . , m+ p+1} be

such that ∆(α1,...,αm+p,0)(gk) ≤ λ for all k ∈ K.

1. A solution to the inhomogeneous system (4.6) exists if and only there

is some j ∈ K such that gj is 1 at component m + p + 1.
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2. If any solution exists, it can be expressed as

f = gj +
∑

k∈K,k 6=j

akgk

where K ⊆ {1, . . . , m+p+1}, and ak,gk satisfy ∂ak+∆(α1,...,αm,αm+p,0)(gk) ≤
λ, for k ∈ K.

Proof.

1. Suppose there exists such an element gj. The leading term of gj is

1em+p+1, because, otherwise, the leading term xier would be at another com-

ponent r < m + p + 1 and, taking into account tb, i + λ − αr > λ would

mean i > αr. Since 1em+p+1 is the leading term of gj, it is a solution for the

inhomogeneous problem.

Conversely, note that, since the algorithm ensures that the leading terms

are at different components for each basis element, any element with leading

term 1em+p+1 is unique. Thus no other basis element gk, k ∈ K has a non-

zero value in location (m + p + 1). Therefore, there must be an element gj

with leading term 1em+p+1 in order for a solution to exist. Finally, the initial

basis element 1em+p+1 has 1 in component (m+p+1). No other basis element

produced by iterations of the algorithm has a non-zero (m+p+1)-component

unless its leading term is greater than 1em+p+1 and thus that component is

unchanged.

2. From part 1. we see that, if a solution exists, then gj is a solution. Further,

it is the only gk to contribute to the value in the (m + p + 1) -component. ¤

We have seen that when a solution exists, the elements gk, k ∈ K, k 6= j have

zeros in location (m + p + 1). When viewed as elements of F [x]m+p they are

the solutions of the corresponding homogeneous problem.
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Corollary 4.1.5 When a solution exists, the following statements are equiv-

alent.

1. There is a unique solution.

2. There is precisely one element in K and this is the index of the minimal

element of the Gröbner basis.

3. There is no solution to the homogeneous problem.

Example 4.1.6 We examine an inhomogeneous congruence related to the

previous example.

b1(x
2 + 2x + 1) + b2(x

3 + x2) ≡ x5 + x3 + 2x2 mod x7.

This is transformed into

b1(x
2 + 2x + 1) + b2(x

3 + x2) + b3(−x5 − x3 − 2x2) ≡ 0 mod x7.

If we require ∂b1 ≤ 2,∂b2 ≤ 3, ∂b3 ≤ 0 then λ = 3 and the weights are

(1, 0, 3). The ordered Gröbner basis is

(x2,−x− 1, 0), (0, x2 − x + 2, 1), (0, x5, 0).

Now ∆(2,3,0)((0, x
2 − x + 2, 1)) = 3, so the constrained solutions are of the

form

(0, x2 − x + 2, 1) + γ(x2,−x− 1, 0), γ ∈ F.

♦
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Applications

Two recent applications illustrate the situation where the solution is unique.

The first is from Popovici and Fitzpatrick [53]. It presents an efficient

hardware architecture for calculations in a finite field. By regarding elements

of a finite field of size q` as polynomials in A = Fq[x] with degree less than

`, an algorithm is presented which performs finite field calculations of the

form ab/c. In the polynomial ring, the operations are performed modulo an

irreducible polynomial f of degree `. If u = ab/c then in the polynomial

context

uc ≡ ab mod f.

Thus polynomials u, v, w satisfying

uc + vf + wab ≡ 0 mod x2`−1.

are sought such that ∂u ≤ `− 1, ∂v ≤ `− 2 and ∂w ≤ 0. Now λ(`−1,`−2,0) =

` − 1. This leads to a weighted term order with weights (0, 1, ` − 1). Since

f is irreducible, there are no u, v where uc + vf ≡ 0 mod x2`−1 with ∂u ≤
`−1, ∂v ≤ `−2. Therefore, the minimal (first) element of the Gröbner basis

is the unique solution.

A second application is from a problem discussed in Wolf and Fitzpatrick

[70]. They present a method for directly performing division in a factor ring

F [x]/〈f〉, as compared with inversion followed by multiplication. When the

polynomial f is irreducible, F [x]/〈f〉 is a field and it can be viewed as a

special case of the previous example when a = 1. While their algorithm uses

a different method, the more general form of their problem where f may be

reducible is also amenable to our approach. They seek a polynomial u, such

that

uc ≡ b mod f
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∂b, ∂c, ∂u < ∂f and gcd(c, f) = 1. We can represent this as

uc + vf + wb ≡ 0 mod x2∂f−1

with ∂u ≤ ∂f−1,∂v ≤ ∂f−2 and ∂w ≤ 0. Now λ(∂f−1,∂f−2,0) = ∂f−1. This

leads to a weighted term order with weights (0, 1, ∂f−1). Since gcd(c, f) = 1,

there are no u, v where uc+vf ≡ 0 mod x2∂f−1 with ∂u ≤ ∂f−1, ∂v ≤ ∂f−2.

Therefore, the first element of the Gröbner basis is the unique solution.

4.1.3 Complexity

The complexity of these algorithms is O((m+p)((m+p)s)2). In the classical

Hankel case m = p = 1 and the algorithm has complexity O(s2). Similarly,

for constant m, p the complexity is O(s2).

4.2 Modelling discrete-time behaviours

In recent decades, the use of linear algebraic structures in control theory has

been less emphasised for many real-world situations. Nonetheless, algebraic

problems continue to be of more than just academic interest [11]. This is

particularly true in the context of finite fields, where there are applications

to coding theory and digital signal processing.

The concept of behaviours was introduced to linear systems theory by

Willems [66, 67, 68, 69]. The behavioural approach provides an abstract,

unified setting for linear systems and control theory. Traditionally, these

theories take a “black box” view, where the inputs and outputs are modelled

from an processor-centric perspective. Inputs and outputs are often depen-

dent of the choice of models and/or the equations involved. By contrast, the

behavioural approach treats all the signals of a system on the same basis
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and focuses on the solution space rather than the defining equations. Some

important characteristics such as controllability are seen to be independent

of the state-space representation. A phenomenon produces elements of a

set U, the universum. The elements of U are called outcomes. A model

M = {B,U} identifies a subset B of U of possible outcomes. This subset is

called the behaviour of the model.

A dynamical system is a triple Σ = (T,W,B), with T ⊆ R the time

axis, W the signal space, and the behaviour B ⊆ WT(= U). In this case

a behaviour can be viewed as a set of trajectories through time T taking

values in W at each time point. A system is linear if W is a vector space

(over some field F ) and B is a linear subspace of WT. It is discrete if T ⊆ Z.

A discrete system is time invariant if σtB ⊆ B, where σt(f(t′)) = f(t + t′) is

the backward t-shift.

The modelling of systems based on observed data arises naturally in the

context of behaviours. Suppose we have data D ⊆ U and a family of models

M. The family M is called a model class. A model {B,U} is said to be

unfalsified by D if D ⊆ B. If B1 ⊆ B2 the model {B1,U} is said to be more

powerful than {B2,U}. A model is called the most powerful unfalsified model

(MPUM) in a model classM if it is inM, is unfalsified, and is more powerful

than any other unfalsified model in M.

Based on an exact modelling framework presented by Antoulas and Willems

[6], Antoulas [3] uses a behavioural approach to model discrete-time time se-

ries. The data under consideration are time series

w(k) : Z→ RL, L ≥ 1, k = 1, . . . ,m

where w(k) is zero until a finite time −Nk in the past and current time is at

the origin.
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The model class is identified with matrices Θ with L columns whose

elements are polynomials in the forward shift σ−1 (which lead to linear and

time-invariant systems). The behavior B(Θ) corresponding to Θ is ker(Θ) =

{w ∈ (FL)Z− : Θ(σ−1)w = 0} and so the model corresponding to Θ is

unfalsified if and only if w(k) ∈ ker(Θ), k = 1, . . . ,m. We can refer to a

model as Θ without ambiguity.

Equivalently, each w can be viewed as a (negative) power series,
∑

t∈Z− wtx
t,

where wt ∈ FL. The forward shift is equivalent to multiplying by x and trun-

cating at the term of degree zero. A time series is in B(Θ) if and only if the

polynomial L-vector h(k) = xNkw(k) satisfies

Θ(x)h(k) ≡ 0 mod xNk+1, k = 1, . . . ,m.

If we view each of the L columns individually and consider a row (b1, . . . , bL)

of the matrix Θ, then w(k) ∈ B(Θ) if and only if each row of Θ satisfies

L∑
i=1

bih
(k)
i ≡ 0 mod xNk+1, k = 1, . . . , m. (4.7)

This makes the problem amenable to solution by our techniques.

Viewing b = (b1, . . . , bL) as an element of F [x]L, let M be the module

whose elements b satisfy (4.7). For each k, a sequence of ideals can be chosen

as

I
(k)
lk

= 〈xlk〉, lk = 0, . . . Nk

and the corresponding discrepancy function returns the coefficient of xlk in
∑L

i=1 bih
(k)
i for an element b = (b1, . . . , bL).

The rows of any unfalsified model Θ can be generated from a Gröbner

basis for M with respect to any term order. The term-over-position (TOP)

term order in F [x]L is defined by xrei < xtej if r < t, or if r = t and i < j.

Under TOP, the degree of the leading term of a basis element is the row degree
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of the corresponding matrix row. The initial module is F [x]L with Gröbner

basis {e1, . . . , eL}.The procedure ord need only maintain a table giving the

degree and position of the leading term for each basis element. These pairs

are unchanged by the incremental step except for the degree of the element

W [j∗], and so re-ordering takes the form of inserting the multiple xW [j∗] into

its correct new position. The final basis produced corresponds to a matrix

with ordered row degrees, which, by Lemma 3.3.12, is row reduced. This

result is a MPUM and is a generating system equivalent to that produced

by the algorithm in [3]. Every unfalsified model in the model class can be be

generated by taking linear combinations of the rows of a generating system.

Up to this point, and in the spirit of the behavioural approach, no

distinction has been made between inputs and outputs of a system. Let

Θ ∈ Rr×(p+m)[x] describe an input-output model with r rows, m inputs and

p outputs. Let Θ = (N −D) with N ∈ Rr×m[x] and D ∈ Rr×p[x]. A time

series w is correspondingly partitioned into inputs u ∈ (Rm)Z− and outputs

y ∈ (Rp)Z− . If w ∈ ker(Θ) then

Dy = Nu.

A generating system Θ∗ has L rows and det(Θ∗) 6= 0. Since the future

trajectories in such a system are completely determined by its history it

is called autonomous. A system is controllable if, regardless of its previ-

ous history, it can be steered to any desired future trajectory. Consider

Θ = (N −D) ∈ Rp×(p+m) where N ∈ Rp×m and D ∈ Rp×p. In this context,

the input-output system Θ is controllable if and only if N and D are (left)

coprime. In [6] it was shown that a model Θ is a controllable minimal com-

plexity unfalsified model if and only if p is the number of invariant factors

of Θ∗ which are unity and the sum of its row degrees is minimal. For the
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special case of [3], the invariant factors of Θ∗ are all shown to be powers of

x and, thus, p = rank(Θ∗(0)). A minimal complexity controllable model Θ

can be extracted from Θ∗ as the first subset of the ordered row reduced basis

for which rank(Θ(0)) equals the number of invariant factors of Θ which are

unity.

4.2.1 Partial realisation

The outputs of a system at any point can be determined from the inputs

and the current state. The transfer function maps the inputs of a system to

the outputs. A realisation is a system chosen from a class of systems such

that its transfer function coincides with that under study. Thus a transfer

function may be “realised” in a number of ways (e.g. Kailath [34]).

Consider a discrete-time linear system with m inputs u and p outputs y.

st+1 = Axt + But

yt = Cst

where A ∈ F n×n, B ∈ F n×m and C ∈ F p×n. The system has n states. The

transfer function of the system in the rational matrix T = C(xI − A)−1B.

A minimal realisation of T is such a triple {A,B,C} which has the smallest

value of n. An observable realisation is one where the states, which are

initially zero, can be deduced from a knowledge of the inputs and the outputs.

A realisation is controllable if the system can be put into a chosen state by

adjusting the inputs.

A (left) matrix fraction description of a rational transfer function T is a

pair of polynomial matrices N, D with DT = N . It is irreducible if D and N

are (left) coprime. A minimal realisation of a transfer function can be derived
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from an irreducible matrix fraction description ([34]). A minimal realisation

is also observable and controllable. Rosenthal et al. [56] and York [71]

examine the relationships between behaviours, the notions of controllability

and observability, and error correcting codes.

Realisations may be made from the impulse response values (Markov pa-

rameters) of a discrete-time finite dimensional system. If only the first M

Markov parameters are available, the partial realisation problem seeks a min-

imal realisation whose first M Markov parameters coincide with these. For a

single-input, single-output system the Markov parameters are field elements

h0, . . . , hM−1, . . ., and the scalar partial realisation problem is to find rela-

tively prime polynomials a, b such that

a/b ≡ h mod xM

where h(x) = h0 + h1x + h2x
2 + . . . + hM−1x

M−1. This is treated as a special

case of rational interpolation by Antoulas and Anderson [4] and it is also

included in Fitzpatrick [23].

Multivariable (multi-input, multi-output) partial realisation is addressed

by Dickinson, Morph and Kailath [16] and Antoulas [2]. It can be performed

from the perspective of the modelling problem in the previous section and

has been so viewed by Kuijper [36].

We illustrate the application of our algorithm in this context using an

example of Antoulas ([3, Example B]).

Example 4.2.1 We want to determine a generating system and a control-

lable model of minimum complexity from the following Markov parameters

(Ai, i = 0, . . . , 4) of a three-input, two-output system.

A0 = 0 A1 =


 1 1 1

2 2 0


 A2 =


 2 2 1

4 4 0



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A3 =


 4 6 3

8 10 2


 A4 =


 8 11 6

16 21 7


 ..

The corresponding matrix of polynomials h
(k)
i is




1 0 0

0 1 0

0 0 1

x + 2x2 + 4x3 + 8x4 x + 2x2 + 6x3 + 11x4 x + x2 + 3x3 + 6x4

2x + 4x2 + 8x3 + 16x4 2x + 4x2 + 10x3 + 21x4 2x3 + 7x4




and we denote the columns of this matrix h(1),h(2),h(3).

Here we can illustrate again the possibility of deriving a closed form solu-

tion. A formal implementation of the algorithm allows us to “write down” a

Gröbner basis with respect to POT order, defined in this 1-variable situation

by xrei < xtej if i < j or if i = j and r < t. In this setting the operation

of the algorithm is predictable in advance and the final result can be derived

directly from the input data without any computation. This gives the basis




x5 0 0 0 0

0 x5 0 0 0

0 0 x5 0 0

−x− 2x2 − 4x3 − 8x4 −x− 2x2 − 6x3 − 11x4 −x− x2 − 3x3 − 6x4 1 0

−2x− 4x2 − 8x3 − 16x4 −2x− 4x2 − 10x3 − 21x4 −2x3 − 7x4 0 1




.

This model is of full rank with two invariant factors equal to 1. The

controllable model consists of rows 4 and 5 and the sum of its row indices is

8. The output of our algorithm with respect to TOP order is a full rank (row

reduced) model of the same behaviour and will therefore have two invariant

factors with value 1.
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We apply our algorithm using the TOP term order. After the Markov

parameters A1, A2, A3 have been processed we have the basis consisting of

the rows of the matrix



2
3
x 2

3
x −2

3
x 2

3
− 2

3
x −2

3
+ x

1
2
x2 1

2
x2 x2 −x + x2 1

4
x

−1
3
x + x3 −1

3
x −2

3
x 2

3
− 2

3
x− x2 −1

6

x3 x3 0 0 −1
2
x2

0 0 x3 −x2 1
2
x2




and the controllable model is derived from rows 1 and 3.

The next step is to consider the component h1 modulo x5. The αj are

0, 0,−2,−2, 0 and this gives j∗ = 3 and the next basis



2
3
x 2

3
x −2

3
x 2

3
− 2

3
x −2

3
+ x

1
2
x2 1

2
x2 x2 −x + x2 1

4
x

1
3
x 1

3
x + x3 2

3
x −2

3
+ 2

3
x + x2 1

6
− 1

2
x2

0 0 x3 −x2 1
2
x2

−1
3
x2 + x4 −1

3
x2 −2

3
x2 2

3
x− 2

3
x2 − x3 −1

6
x




.

The new controllable model is given by row 1 and row 3 (which was row 4

in the previous basis). When the two remaining series h2,h3 are processed,

the final basis is



−3
2
x + 1

2
x2 −3

2
x + 1

2
x2 3

2
x + x2 −3

2
+ 1

2
x + x2 3

2
− 2x

2
3
x2 2

3
x2 −2

3
x2 2

3
x− 2

3
x2 −2

3
x + x2

1
2
x 1

2
x + x3 1

2
x −1

2
+ 1

2
x + x2 1

4
x− 1

2
x2

−1
3
x2 + x4 −1

3
x2 −2

3
x2 2

3
x− 2

3
x2 − x3 −1

6
x

0 0 x4 −x3 1
2
x3




and the controllable model consists of rows 1 and 3 (with respective row

degrees 2 and 3). The sum of the row degrees of the controllable model is 5
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and, since this is a row reduced matrix, the McMillan degree is also 5 . We

can choose the controllable model Θcontr as


 −3

2
x + 1

2
x2 −3

2
x + 1

2
x2 3

2
x + x2 −3

2
+ 1

2
x + x2 3

2
− 2x

1
2
x 1

2
x + x3 1

2
x −1

2
+ 1

2
x + x2 1

4
x− 1

2
x2


 .

Now, adding a polynomial multiple of row 2 of the final basis to any row of

Θcontr will not change rank(Θcontr(0)). As long as that action does not change

the row degree, the McMillan degree is unchanged. All minimal controllable

models can be parameterised (as in [3]) in the following way,

Θcontr(x, α, β, γ) =


 1 α 0 0 0

0 βx + γ 1 0 0


 Θ∗

♦

4.3 Rational interpolation

Given n distinct “knots” β1, . . . , βn ∈ F and pairs (βk, σk,0), . . . , (βk, σk,nk−1) ∈
F 2 for k = 1, . . . , n and defining the polynomials

hk = σk,0 + σk,1(x− βk) + . . . + σk,nk−1(x− βk)
nk−1 (4.8)

a pair of polynomials a, b ∈ F [x] is sought such that

a

b
≡ hk mod (x− βk)

nk , k = 1, . . . , n

where b(βk) 6= 0, k = 1, . . . , n. The corresponding “weak interpolation”

problem is to find a, b ∈ F [x] such that

a ≡ bhk mod (x− βk)
nk , k = 1, . . . , n
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Fitzpatrick [23] applies Gröbner basis techniques to solve the weak inter-

polation problem for the scalar case. We now address the matrix version of

the problem.

Given n distinct “abscissae” βk ∈ F , and the pairs (βk,Sk,0), . . . , (βk,Sk,nk−1)

where Sk,j ∈ F p×m, j ∈ [nk − 1], k ∈ [n], consider the polynomial matrices

S(k) = Sk,0 + Sk,1(x− βk) + . . . + Sk,nk−1(x− βk)
nk−1, k = 1, . . . , n. (4.9)

We seek (left) matrix fraction descriptions N ∈ F p×m[x], D ∈ F p×p[x] with

minimal McMillan degree such that

N ≡ DS(k) mod (x− βk)
nk , k = 1, . . . , n.

By reorganising, we have the following (matrix) congruence

NIm −DS(k) = (N −D)


 Im

S(k)


 ≡ 0p×m mod (x− βk)

nk , k = 1, . . . , n.

Again, the rows of (N −D) can be viewed as vectors b ∈ Ap+m. A basis

for the rowspace of (N − D) can be found from those module elements

b ∈ Ap+m which satisfy

bH(k) ≡ 01×m mod (x− βk)
nk , k = 1, . . . , n

where H(k) =


 Im

S(k)


. This yields nm congruences of the form

p+m∑
i=1

bih
(k)
ij ≡ 0 mod (x− βk)

nk , j = 1, . . . , m, k = 1, . . . , n (4.10)

and a basis for the rows of any such (N − D) can be found using our

algorithm. We then have a “module” sequence 〈1〉 ⊂ 〈x − βk〉 ⊂ . . . ⊂
〈(x− βk)

nk〉 and we can define θ` to return the coefficient of (x− βk)
`.
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With n = 1 and β1 = 0, the partial realisation problem is a special case.

Using TOP as in the previous section, the resulting algorithm is equivalent

to one to be found in Antoulas and Willems [6].

Algorithm 4.3.1

Input:

For each k, 1 ≤ k ≤ n

field constant βk and nonnegative integer nk

polynomials h
(k)
ij , 1 ≤ i ≤ p, 1 ≤ j ≤ m

Output:

Gröbner basis W of the solution module of the

rational interpolation problem (4.10).

Main Routine:

W := {e1, . . . , eL}
For k from 1 to n

For ` from 0 to nk − 1

For i from 1 to m

For j from 1 to L

αj:=coefficient of (x− βk)
` in

∑L
r=1 brh

(k)
ri

W ′=incremental-step(W , [x], [αj], [βk], [0])

W :=ord(W ′)

We will illustrate this using an example from Antoulas, Ball, Kang and

Willems [5].

Example 4.3.2 We have n = 3, p = 2,m = 2, β1 = 0, β2 = 1, β3 = 2, n1 =

n2 = n3 = 1, S1,0 =


 1 0

0 1


 , S2,0 = S3,0 =


 0 1

1 0


.
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Then H(1) =




1 0

0 1

1 0

0 1




, H(2) = H(3) =




1 0

0 1

0 1

1 0




.

The initial basis is 


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




and after 5 iterations we have the following ordered basis




−1 −1 1 1

0 −x x 0

(x− 2)(x− 1) x x− 2 0

−(x− 1)(x− 2) x(x− 2) −(x− 2) 0




.

The discrepancies at the final iteration are




0

0

2

0




and the final Gröbner basis is



−1 −1 1 1

0 −x x 0

−(x− 1)(x− 2) x(x− 2) −(x− 2) 0

(x− 2)2(x− 1) x(x− 2) (x− 2)2 0




.

A mimimal matrix fraction is contained in rows 1 and 3
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
 −1 −1 1 1

−(x− 1)(x− 2) x(x− 2) −(x− 2) 0


 .

All minimal matrix fractions can be found by adding suitable multiples of

row 2 to row 1 and row 3. ♦

4.3.1 The extended M–Padé problem

Beckermann and Labahn [9] introduced the extended M–Padé approximation

problem, as a generalization of the Padé and Hermite–Padé problems, to

address a wide variety of interpolation and approximation problems in a

single variable. They used module theoretic methods to parametrise the set

of all solutions of the general problem. Further, they developed a method

of recursively generating solution bases that enabled them to break a given

problem down into smaller problems of the same type along arbitrary paths.

In this section we indicate how our algorithm can be applied to this problem.

It is clear that our approach extends beyond the single variable case.

Let F0 = {β1, . . . , βt} ⊆ F be a set of “knots”. Let F p×L[[x]]F0 be the set

of formal Newton series with coefficients in F p×L, that is, G ∈ F p×L[[x]]F0

if for all βj ∈ F0 and all r ∈ N0, the rth derivative of G at βj is known and

is an element of F p×L. The set of polynomials with coefficients in F p×L is

a subset of F p×L[[x]]F0 . A vector u = (u1, . . . , uL) of monic polynomials all

of whose zeros are elements of F0, is called an order vector (with respect to

F0). Let G ∈ FL×L[[x]]F0 . We seek a basis of the set of polynomial vectors

P ∈ FL×1[x] satisfying

GP = diag(u1, . . . , uL)W

where the residual W lies in FL×1[[x]]F0 . (This can be extended to elements
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of F p×L[[x]]F0 , by appending L-p rows which contain arbitrary elements of F

and setting ui to 1 for L− P + 1 ≤ i ≤ l).

Setting G = (gij), P = (pj) and W = (wi), this becomes

L∑
i=1

gkipi = ukwk, k = 1, . . . , p.

Since uk is a product of factors (x− βj)
nj this is equivalent to

L∑
i=1

gkipi ≡ 0 mod 〈
∏
j∈J

(x− βj)
nj〉 (4.11)

for some subset J ⊆ {1, . . . , t}. Here gki
, wk are Newton series rather than

polynomials. Therefore, while (4.11) is suggestive of (4.10), the congruence

holds in a ring of Newton series instead of a polynomial ring. It does, however,

conform to the requirements of (3.5). The ideal M (k) = 〈uk〉 can be regarded

as a module over the polynomial ring. The sum of products of Newton series

and polynomials on the left hand side can be viewed as a function from AL

into this module.

Example 4.3.3 In Example 2.9 from [9] we have F0 = {0}, p = L = 3 and

G =




1
2

+ x2 − x4 1 + sin4(x2) 1√
1+x2

0 1 0

0 0 1




and u = (x8, 1, 1). Row 1 of G leads to the congruence

(
1

2
+ x2 − x4

)
p1 +

(
1 + sin4(x2)

)
p2 +

(
1√

1 + x2

)
p3 ≡ 0 mod 〈x8〉. (4.12)

Since the other two conditions are modulo 〈1〉, they are automatically satis-

fied. ♦
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To apply Algorithm 3.3.1, we observe that in each of the congruences, a

typical pair of successive modules in the descending sequence has the form

M` = 〈f〉 ⊇ 〈(x − βs)f〉 = M`+1. Thus (3.2) is satisfied. If g ∈ M` then

g = fw for some w ∈ F [[x]]F0 , and expanding w around βs, we can define θ`

by taking θ`(g) to be the constant term in the expansion. Thus the problem

may be solved using our techniques.

We can now address Example 4.3.3. Let βs = 0. As already indicated,

rows 2 and 3 of G do not influence the solution and may be ignored for the

purposes of calculating a basis. By expanding the elements of row 1 of G as

power series, the congruence (4.12) can be expressed as

(
1

2
+ x2 − x4)p1 + (1 + x8 + O(x12))p2+

(1− 1

2
x2 +

3

8
x4 − 5

16
x6 +

35

128
x8 + O(x10))p3 ≡ 0 mod 〈x8〉.

Choosing TOP order, our algorithm produces a Gröbner basis for the solution

module which we present as the rows of the matrix



−10
19

x2 + 2
19

x2 − 33
19

32
19

9
19

x2 − 11
76

−5
4
x2 + 59

152
x2 − 6

19

x4 + 11
2
x2 −59

4
x2 12x2


 .

Moreover, we can not only subdivide the problem into subproblems of

the same type [9], but also solve any or all them using our algorithm. The

ultimate solution can be arrived at exclusively by that algorithm or in combi-

nation with other methods. As in [47], the incremental step is much simpler

for single variable problems than in the general case, because the position of

the leading term of each basis element is not changed, so that the function

ord has only to move one basis element at each iteration.

However, the types of degree constraint allowed by the methods of [9] are

more general than those that we can apply. Essentially, they permit different
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constraints in different congruences, whereas our algorithm depends on the

constraint being the same throughout. For this special type of constraint we

can parametrise all solutions (Theorem 2.2.4).

We conclude this section by indicating some of the theoretical results

from Chapter 2 of [9] that are straightforward consequences of our approach.

We follow that paper in assuming, without loss of generality, that p = L and

view the basis as a matrix whose rows are the basis elements.

We have seen that the solutions which satisfy the order constraints form

a submodule of F [x]L. Since there are L elements in the initial (standard

basis vectors) basis, there are L elements in each basis (Corollary 3.3.15).

This is the core of [9, Theorem 2.6].

We have IL as the initial solution. If there is a non-zero discrepancy, the

incremental step acts on the previous solution by premultiplying it by the

matrix of the form



1 . . . 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . x− βk 0 . . . 0

0 . . .
−αj∗+1

αj∗
1 . . . . . .

. . . . . . . . . . . . . . . . . .

0 . . . −αL

αj∗
0 . . . 1




and then premultiplying by elementary matrices to effect the reordering.

Otherwise, there is no change. Thus the determinant of the basis will be

unchanged or will equal that of the previous basis multiplied by x− βk. In-

ductively, we see that the determinant of the final basis divides det(diag(u)).

This yields [9, Theorem 2.7(b)].
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4.4 Finite precision effects

Questions of numerical stability can arise when calculations from a field with

characteristic 0 are performed in a finite precision enviroment. Polynomial

operations are particularly susceptible because the leading term of a mod-

ule element may be poorly defined if its leading coefficient is smaller than

the computational precision. Nonetheless, Fitzpatrick [25] shows that early

versions of our algorithm performed well in this regard.

The computational aspects of our algorithm are contained within the

incremental step (Algorithm 3.1.3). It has two distinct phases. The first

computes the discrepancies of the elements of the incoming Gröbner basis.

Recalling the complexity discussion (Section 3.3.2), we note that the discrep-

ancy is the scalar product of an n-vector and a row of an Nk × n matrix of

field elements. The relevant module terms function merely as placeholders for

this purpose and no particular location is a priori more significant than any

other in the calculation. Therefore for this phase the polynomial approach

suffers no disadvantage as against a matrix method.

The second phase derives a new Gröbner basis from the discrepancies.

The leading terms of the incoming basis elements are significant in this case.

For each basis element other than that indexed by j∗ the leading term and the

its coefficient are unchanged by the incremental step. The element indexed

by j∗ is replaced by a set of s elements each of which retain the leading

coefficient of the former. Thus the incremental step does not change the value

of the leading coefficients. For example, if the initial basis is an ordered set

of standard basis vectors then the leading coefficient of each Gröbner basis

element at every iteration will be 1. Therefore an error in a leading term can

only arise from an erroneous value for j∗. This in turn can only be caused by
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discrepancy calculations which return values smaller that the computational

precision.

Thus any errors in the coefficients of the solutions have their origin in

matrix-style calculations. It would be an interesting topic of further research

to examine the sensitivity of the algorithm to erroneous values of j∗.
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Chapter 5

List decoding applications

This chapter sees the application of our general techniques to list decoding

of error correcting codes. Sudan’s algorithm and its variants use a two stage

approach to this problem. The first and most time-consuming step performs

an interpolation. For the hard decision case, we derive interpolation algo-

rithms for Reed-Solomon and 1–point Algebraic Geometry codes, which are

similar to known methods. New algorithms are presented for list decoding of

Reed-Solomon and 1–point Algebraic Geometry codes using soft information.

These have complexity better than standard methods.

5.1 List decoding

The project of coding theory has been to discover practical methods of

encoding information which achieve the theoretical reliability and perfor-

mance promised by Shannon’s pioneering work [63]. Information is encoded

for transmission and the encoded information, possibly corrupted en route,

is decoded on reception. For “real-time” applications such as data stor-

age/retrieval, multimedia or interactive communications, an efficient means
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of decoding is crucial. Unrestricted nearest neighbour decoding of linear block

codes takes exponential time. Assuming that the number of errors in a re-

ceived word does not exceed half the minimum distance of the code, a unique

closest codeword can be recovered in polynomial time. When the number of

errors in a received word exceeds half the minimum distance of the code there

may be more than one codeword consistent with the received word. As an

alternative to trying to find a particular codeword, the decoder may attempt

to generate a list of the consistent codewords. Ideally, such a list would be

short and have only one element on most occasions. For a list with more than

one element a choice can be made among these according to some criterion,

perhaps based on supplementary information from the channel, or at the

expense of a (hopefully rare) decoding error. This is known as list decoding

and was introduced by Elias (see [18] and the references given there).

5.1.1 Sudan’s Algorithm

A polynomial time technique for list decoding applied to Reed-Solomon codes

was invented by Sudan [60]. The essential idea is that a received word is used

to create a set of points and a polynomial in two variables interpolating these

points is sought. The list of candidate codewords can be found among the

factors of the polynomial.

The specific problem addressed in Sudan [60] is as follows. Let F be a field

and let {(xi, yi) ∈ F 2, i = 1, . . . , n} be a set of distinct points. Given integers

d and t where t ≥ dd
√

2(n + 1)/de − bd/2c, Sudan’s algorithm determines

the set of (univariate) polynomials f(x) of degree at most d with |{i|f(xi) =

yi}| ≥ t. The first step is to derive a pair of integers `,m which satisfy

(` + 1)(m + 1) + d
(

m+1
2

)
> n and m + `d < t. Then a non-zero polynomial
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Q(x, y) is derived, whose (1, d)–degree is at most m+`d, such that Q(xi, yi) =

0 for all i = 1, . . . , n. This polynomial is guaranteed to exist by the choice

of ` and m and can be found using standard methods with cubic complexity.

The univariate polynomials being sought are among the factors y − f(x) of

Q.

5.2 Reed-Solomon codes

The basic theory of Reed-Solomon codes can be found in a number of ref-

erences such as [42, 51, 52]. Let Fq be the finite field with q elements and

let γ be a primitive element of Fq. We can define the Reed-Solomon code of

length N = q − 1 and dimension K, 0 ≤ K ≤ N as the subspace

Cq(N,K) = {(f(1), f(γ), . . . , f(γq−2))|f ∈ Fq[x], ∂f < K}.

The minimum distance of Cq(N, K) is N −K + 1.

When the number of errors τ ≤ bN−K
2
c a unique closest codeword can be

found [8, 52, 22]. Otherwise, uniqueness cannot be guaranteed. By setting

t = N − τ and d = K − 1, Sudan’s algorithm can be used to produce a list

of consistent codewords when the Reed-Solomon code has rate K
N

< 1
3
.

The applicability of Sudan’s approach has been enhanced by requiring

the polynomial to have zeros of varying multiplicity at the interpolation

points [30, 35]. The most general version of the problem (as considered by

Kötter and Vardy [35]) has the following form. A polynomial Q(x, y) can be

expanded around (xi, yi) to give Q(x, y) =
∑

j1

∑
j2

qj1j2i(x− xi)
j1(y − yi)

j2 .

It follows that Q(x + xi, y + yi) =
∑

j1

∑
j2

qj1j2ix
j1yj2 for certain coefficients

qj1j2i. Given a set of points (xi, yi), i = 1, . . . , n, and multiplicities mi, we

require the polynomial Q(x, y), minimal with respect to some (a, b)–degree,
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such that

qj1j2i = 0 for 1 ≤ i ≤ n and j1 + j2 < mi.

A number of algorithms to solve this problem can be derived from our

general result. For our treatment, the problem translates as finding Q ∈
F [x, y] so that

Q(x + xi, y + yi) ≡ 0 mod 〈{xj1yj2|j1 + j2 = mi}〉 for i = 1, . . . , n. (5.1)

To transform this into a problem amenable to solution by our methods,

we take (in the notation of Chapter 3) A = F [x, y], L = 1, H(k) : A →
A, H(i)(Q(x, y)) = Q(x + xi, y + yi), so that H(i)(xQ(x, y)) = (x + xi)Q(x +

xi, y + yi) = (x + xi)H
(i)(Q(x, y)), giving γ1 = γx = xi, and similarly γ2 =

γy = yi. We define I(i) = 〈{xj1yj2|j1 + j2 = mi}〉 and so Theorem 3.3.7

applies. Recalling [26], we will choose to work with terms in A in degree

lexicographic order and define a descending sequence of mi(mi+1)
2

ideals I
(i)
r

between A = 〈1〉 and I(i) corresponding to terms ϕ
(i)
r , where I

(i)
r = 〈ϕ(i)

r , I
(i)
r+1〉

and xI
(i)
r ⊆ I

(i)
r+1, yI

(i)
r ⊆ I

(i)
r+1 (giving condition (3.2) with β1 = βx = 0, β2 =

βy = 0). The homomorphism θ
(i)
r returns the coefficient of ϕ

(i)
r in the unique

representative of an element of I
(i)
r modulo I

(i)
r+1, thus satisfying (3.7). For

the solution module, we use the term order defined by (a, b)–degree with

ties broken by the degree of y (cf. Example 2.1.2). The specific polynomial

sought in [35] is the minimal element of the solution module with respect to

this term order, and, as such, can be identified as the first element in a strictly

ordered Gröbner basis of the solution module. This polynomial requires the

minimum amount of further processing in order to find the corresponding

list of codewords.

More formally, the algorithm iterates, for each point (xi, yi), through the

terms in degree-lexicographic order (where we choose x < y) as far as the
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last term with total degree less than mi.

Algorithm 5.2.1

Input:

points {(xi, yi) : 1 ≤ i ≤ n}, with multiplicities mi

Output:

Gröbner basis W of the solution module of (5.1)

the required Q as the first element of W
Main Routine:

W := {1} (†)
For i from 1 to n

For j1 from 0 to mi − 1

For j2 from 0 to j1

For j from 1 to |W|
αj:=coefficient of xj1−j2yj2 in W [j](x + xi, y + yi)

W ′=incremental-step(W , [x, y], [αj], [0], [xi, yi])

W :=ord(W ′)

Example 5.2.2 In this example we allow the function ord to construct or-

dered minimal Gröbner bases. With the (2, 3)–degree term order described in

Example 2.1.2, let n = 2, (x1, y1) = (1, 0),m1 = 1, (x2, y2) = (0, 1),m2 = 2.

Here we shall write [f ]xuyv for the coefficient of xuyv in f , and indicate only

the αj and W at each step. The iterations are as follows:

(i, j1, j2) = (1, 0, 0)

[1]1 = 1 → {x− 1, y}
(i, j1, j2) = (2, 0, 0)

[x−1]1 = −1, [y+1]1 = 1 → {y+x−1, x(x−1)} (here W3 = {y+x−1} and

(y − 1)(x − 1) has been eliminated in the formation of a minimal Gröbner

basis)
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(i, j1, j2) = (2, 1, 0)

[y + x]x = 1, [x(x− 1)]x = −1 → {x2 + y− 1, x(y + x− 1), (y− 1)(y + x− 1)}
(i, j1, j2) = (2, 1, 1)

[x2 + y]y = 1, [x(y + x)]y = 0, [y(y + x)]y = 0 → {x(y + x − 1), x(x2 + y −
1), (y − 1)(y + x− 1)} ♦

This algorithm begins with a single element in the basis (step (†)), and the

number of elements can change with the incremental step. In theory there

can be rapid growth in the size of the basis as the computation proceeds.

However, the interpolation problems treated in this section all impose upper

bounds on the (0, 1)-degree of the interpolating polynomials, and on the

degrees of terms required to have zero coefficients. We may incorporate these

into a sufficiently large global bound, and hence derive algorithms in which

the number of basis elements at each iteration is fixed. These will generally

be more efficient for implementation purposes. Such degree bounds can also

be used, as in 3.3.3, to discard basis elements whose leading terms get too

large.

Suppose that each interpolating polynomial satisfying the weighted degree

constraint and all relevant terms are contained in B = {f ∈ F [x, y]|∆(0,1)(f) <

L} for some L ∈ N. For convenience, we can identify B, as F [x]-module,

with F [x]L using,

ψ : B → F [x]L,

ψ(xj1yj2) = xj1ej2+1, 0 ≤ j2 ≤ L− 1,

and extending by linearity. The set V = {f ∈ F [x]L|f = ψ(Q), Q ∈ B, Q an

interpolating polynomial} is a submodule of F [x]L. The (a, b)–degree term

order defined above can be used in an obvious fashion in F [x]L, where the
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degree of xj1ej2 is aj1 + b(j2 − 1) and ties are broken by e1 < e2 < . . . < eL.

We can now use our algorithm to solve the 1–variable minimization problem,

by finding a Gröbner basis of V .

Let A = F [x], and define H(i) : AL → AL by H(i)(b) = ψ[ψ−1(b)(x +

xi, y+yi)]. Now ψ−1(xb) = xψ−1(b) and so H(i)(xb) = ψ[(x+xi)ψ
−1(b)(x+

xi, y + yi)] = (x + xi)ψ[ψ−1(b)(x + xi, y + yi)] = (x + xi)H
(i)(b), and

γ1 = γx = xi. We define M (i) = 〈{xj1ej2+1|j1 + j2 = mi}〉. Let I
(i)
r

denote the sequence of ideals defined in the preamble to Algorithm 5.2.1.

Then M
(i)
r = ψ(I

(i)
r

⋂
B) defines a corresponding descending sequence of

mi(mi+1)
2

A–modules between AL and M (i) and the terms ψ(ϕ
(i)
r ) satisfy

M
(i)
r = 〈ψ(ϕ

(i)
r ),M

(i)
r+1〉, and xM

(i)
r ⊆ M

(i)
r+1 (giving condition (3.2) with

β1 = βx = 0). The homomorphism θ
(i)
r returns the coefficient of ψ(ϕ

(i)
r ).

(Alternatively, theorem 3.3.7 can be applied directly using a sequence of

terms from AL and a weighted term order with weights (0, 1, . . . , L − 1)).

This results in a 1–variable algorithm with a Gröbner basis of size L at each

step, in which for each component position there is precisely one element

with leading term in that position. As noted previously, in this situation the

function ord takes a particularly simple form. The positions of the leading

terms of the basis elements are unchanged by the incremental step, and thus

re-ordering entails moving at most one element at each iteration.
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Algorithm 5.2.3

Input:

points {(xi, yi) : 1 ≤ i ≤ n}, with multiplicities mi

Output:

Gröbner basis W of the solution module

ψ(Q) as the first element of W
Main Routine:

W := ord(standard basis vectors of AL) (†)
For i from 1 to n

For j1 from 0 to mi − 1

For j2 from 0 to j1

For j from 1 to L (?)

αj:=coefficient of xj1−j2ej2+1 in ψ[ψ−1(W [j])(x + xi, y + yi)]

W ′=incremental-step(W , [x], [αj], [0], [xi]) (‡)
W :=ord(W ′)

We illustrate this algorithm by reworking Example 5.2.2.

Example 5.2.4 We shall take L = 3. The initial basis is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Again, the notation [ · ]X will indicate the coefficient of the monomial X in

the relevant module element. The iterations are as follows:

(i, j1, j2) = (1, 0, 0)

[ϕ(ϕ−1(1, 0, 0)(x + 1, y)]1e1 = 1,

[ϕ(ϕ−1(0, 1, 0)(x + 1, y)]1e1 = 0,

[ϕ(ϕ−1(0, 0, 1)(x + 1, y)]1e1 = 0,

→ {(x− 1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Note that the leading terms have (2, 3)-degrees 2,3,6, respectively.

(i, j1, j2) = (2, 0, 0)

[ϕ(ϕ−1(x− 1, 0, 0)(x, y + 1)]1e1 = −1,
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[ϕ(ϕ−1(0, 1, 0)(x, y + 1)]1e1 = 1,

[ϕ(ϕ−1(0, 0, 1)(x, y + 1)]1e1 = 1,

→ {(x− 1, 1, 0), (x(x− 1), 0, 0), (x− 1, 0, 1)}.
(i, j1, j2) = (2, 1, 0)

[ϕ(ϕ−1(x− 1, 1, 0)(x, y + 1)]xe1 = 1,

[ϕ(ϕ−1(x(x− 1), 0, 0)(x, y + 1)]xe1 = −1,

[ϕ(ϕ−1(x− 1, 0, 1)(x, y + 1)]xe1 = 1,

→ {(x2 − 1, 1, 0), (x(x− 1), x, 0), (0,−1, 1)}.
(i, j1, j2) = (2, 1, 1)

[ϕ(ϕ−1(x2 − 1, 1, 0)(x, y + 1)]1e2 = 1,

[ϕ(ϕ−1(x(x− 1), x, 0)(x, y + 1)]1e2 = 0,

[ϕ(ϕ−1(0,−1, 1)(x, y + 1)]1e2 = 1,

→ {(x(x− 1), x, 0), (x(x2 − 1), x, 0), (−x2 + 1,−2, 1)}.
Note that the final basis corresponds to {x(y+x−1), x(x2+y−1), y2−x2−2y+

1}. The first two elements are the same as those in the basis derived in 5.2.2,

while the third is obtained from that basis as (y−1)(y+x−1)−x(y+x−1).

♦

We end with a variation of Algorithm 5.2.3 related to [45, Algorithm 15].

For any ρ ∈ N, the set W0 = {xj1ej2|0 ≤ j1 ≤ ρ − 1, 1 ≤ j2 ≤ L} is a

Gröbner basis of AL with |W0| = ρL elements. With this as the initial basis,

we obtain an algorithm with ρL elements in the basis at each iteration.
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Algorithm 5.2.5

Algorithm 5.2.3 with the following changes

W := ord(W0) = ord({xj1ej2|0 ≤ j1 ≤ ρ− 1, 1 ≤ j2 ≤ L}) (†)
for j from 1 to ρL (?)

W ′=ρ-incremental-step(W , [x], [αj], [0], [xi], ρ) (‡)
Proc ρ-incremental-step()

: modified incremental step - instruction (∗∗)
If αj = 0 for all j then

W ′ = W
otherwise

j∗ := least j for which αj 6= 0

W1 := {Wj : j < j∗}
W2 := {(x− (β + γ))ρW [j∗]} (∗∗)
W3 := {W [j]− (αj/αj∗)W [j∗] : j > j∗}
W1

⋃W2

⋃W3

End

Proof. We prove by induction that each iteration of the inner loop (the

incremental step) produces a Gröbner basis {W [1], . . . ,W [ρL]} for next so-

lution submodule in the sequence and that the sets Pj = {xmρlt(W [j])|m ∈
N0}, j = 1, . . . , ρL partition the leading terms of that submodule. The asser-

tion is obviously true for the initial basis W0. Let us now fix i, r and drop the

superscripts (i). As in Theorem 3.1.2, let S ⊆ AL be a submodule such that

H(b) ≡ 0 mod Mr for all b ∈ S, and S ′ = {b ∈ AL|H(b) ≡ 0 mod Mr+1}.
We assume that W is a Gröbner basis for S and that the sets

Pj = {xmρlt(W [j])|m ∈ N0}, j = 1, . . . , ρL

partition the leading terms of S. Since (x − xi)W [j∗] ∈ S ′ it follows that
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(x−xi)
ρW [j∗] is in S ′. Also, lt((x−xi)

ρW [j∗]) = xρlt(W [j∗]). Following the

proof of Theorem 3.1.2, we may assume S ′ ⊆ S, and observe that lt(W [j∗])

is the only leading term that changes at this iteration. We may therefore

restrict our attention to those f ∈ S ′ such that lt(W [j∗]) divides lt(f).

By definition, lt(f) is in one and only one subset Pj of the partition.

If j 6= j∗ then lt(f) is divisible by the leading term of a basis element

other than W [j∗]. We can therefore assume lt(f) ∈ Pj∗ and thus lt(f) =

xmf ρlt(W [j∗]) for some mf ∈ N0. If lt(f) 6= lt(W [j∗]) then lt(f) is a multi-

ple of xρlt(W [j∗]), which is what we want. Otherwise, lt(f) = lt(W [j∗]). Let

f∗ = f−(lc(f)/lc(W [j∗]))W [j∗] and note that f∗ ∈ S. Now, lt(f∗) < lt(W [j∗])

and

θ`(H(f∗)) = θ`(H(f))− (lc(f)/lc(W [j∗]))θ`(H(W [j∗]))

= −(lc(f)/lc(W [j∗]))θ`(H(W [j∗]))

6= 0

so f∗ is not an element of S ′. However, the standard representation of f∗

contains only basis elements whose leading terms are less than lt(W [j∗]) and

which are therefore elements of S ′. This is a contradiction, and we conclude

that the new basis is a Gröbner basis of S ′.

Next, let P ′
j = Pj for j 6= j∗ and P ′

j∗ = {xmρ(xρlt(W [j∗]))|m ∈ N0}. Since

P ′
j∗ ⊂ Pj∗ , the sets P ′

j , j = 1, . . . , ρL are disjoint. Thus the new basis has

no duplicate leading terms and the function ord does not remove any basis

elements. Suppose that f ∈ S ′ and lt(f) /∈ ⋃
j 6=j∗ P ′

i (=
⋃

j 6=j∗ Pj). From the

previous paragraph, lt(f) = xmf ρlt(W [j∗]) for some mf ∈ N0,mf 6= 0. It now

follows that
⋃ρL

j=1 P ′
j partitions the set of leading terms of S ′. ¤
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Example 5.2.6 Once again, we reformulate Example 5.2.2. It is straight-

forward to verify that the final basis is a Gröbner basis of the same submodule

as that obtained in 5.2.2 and 5.2.4. Here ρ = 3 and the sequence of bases is

as follows:

Initially {(1, 0, 0), (x, 0, 0), (0, 1, 0), (x2, 0, 0), (0, x, 0), (0, 0, 1),

(0, x2, 0), (0, 0, x), (0, 0, x2)}
(i, j1, j2) = (1, 0, 0)

{(x− 1, 0, 0), (0, 1, 0), (x2 − 1, 0, 0), (0, x, 0), ((x− 1)3, 0, 0),

(0, 0, 1), (0, x2, 0), (0, 0, x), (0, 0, x2)}
(i, j1, j2) = (2, 0, 0)

{(x− 1, 1, 0), (x(x− 1), 0, 0), (0, x, 0), ((x3 − 3x2 + 2x, 0, 0),

(x− 1, 0, 1), (0, x2, 0), (0, 0, x), (x3(x− 1), 0, 0), (0, 0, x2)}
(i, j1, j2) = (2, 1, 0)

{(x2 − 1, 1, 0), (−(x− 1), x− 1, 0), (x3 − 3x2 − 2,−2, 0), (0,−1, 1), (0, x2, 0),

(x3(x− 1), 0, 0), (−(x− 1), 1, , x), (x3(x− 1), x3, 0), (0, 0, x2)}
(i, j1, j2) = (2, 1, 1)

{(x(x− 1), x, 0), (x2(x− 1), 0, 0), (−x2 + 1,−2, 1), (0, x2, 0), (x3(x− 1), 0, 0),

(x2 − x, 0, x), (x3(x− 1), x3, 0), (x3(x2 − 1), x3, 0), (0, 0, x2)} ♦

5.2.1 Hard decision list decoding

Low rate codes

Sudan’s algorithm [60] applies provided the rate of the code K
N

< 1
3
. The

interpolation step has complexity O(n3) when Gaussian elimination is used.

Roth and Ruckenstein [57, 58] improved the efficiency of Sudan’s original

algorithm by deriving and solving an extended key equation. The main effect

is to accelerate the original interpolation step. Suppose that the list of code-

77



words sought is to contain at most ` elements, then Sudan’s algorithm can

correct up to τ = τ(`) errors. The received word is used to generate a set of

polynomials S(i) and a solution (Λ(1), . . . , Λ(s), Ω) is sought to the congruence

∑̀
i=1

Λ(i)x(`−i)(N−K)S(i) ≡ Ω(x) mod x`(N−K)([57]) (5.2)

subject to the constraints ∂Λ(i) < m + 1 + (` − i)(K − 1), 1 ≤ i ≤ ` and

∂Ω(x) < `(N −K)− τ . This was solved in [57] using a modified form of the

“Fundamental Iterative Algorithm” of Feng and Tseng [20].

In [58], the key equation takes on the more simplified form

∑̀
i=1

Λ(i)x(i−1)(K−1)S(i) ≡ Ω(x) mod xN−K (5.3)

subject to the constraints ∂Λ(i) < Ni = N − τ − i(K − 1), 1 ≤ i ≤ ` and

∂Ω(x) < N −K − τ . Both (5.2) and (5.3) are of a form that can solved by

algorithm 4.1.2.

By setting h`+1 = −1 and hi = x(i−1)(K−1)S(i), 1 ≤ i ≤ `, congruence (5.3)

can be recast as
`+1∑
i=1

bihi ≡ 0 mod xN−K (5.4)

subject to constraints of the form ∂bi < Ni, 1 ≤ i ≤ ` and ∂b`+1 < N−K−τ .

We can apply 4.1.2 using the sequence of ideals Ir = 〈xr〉, 0 ≤ r ≤ N − K

and the function θr which returns the coefficient of xr in the expansion of

the left hand side of (5.4). The term order arising is another instance of that

described in Section 2.2.

Example 5.2.7 [58, Example 7.1]. Consider a Reed-Solomon code of length

18 over F19 with dimension K = 2. For ` = 4,m = 1, we have τ = 12. The

degree constraints are then 4, 3, 2, 1, 3 and the weights for the term order are

0, 1, 2, 3, 1.
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For the received word

(5, 5, 1, 10, 10, 7, 2, 18, 6, 6, 1, 15, 13, 5, 14, 3, 1, 0), (5.5)

the four syndromes lead to solutions of (5.3) which take the form

α(−8x4+2x3+6x2+6x−3, 4x3−8x2−3x−4,−4x2+8x−2, x−1, 2x2+x−1)

+β(−x4+4x3+9x2+x+7, 5x3−8x2−4x−2,−7x2+5x+6,−4x+9, x3+8x−4),

where α, β ∈ F19. The solutions produced by [58] correspond to α = 4, β = 11

and α = 9, β = −1. ♦

On the other hand, we can find Q directly using the algorithms from the

previous section. In this case, L = ` + 1 and mi = 1, 1 ≤ i ≤ n (or ρ = 1).

Since a suitable polynomial with (1, K − 1)–degree is known to exist in this

module, the minimal element of the Gröbner basis with respect to (1, K− 1)

order is a fortiori a solution. The minimal element produced by Algorithm

5.2.3 when applied to Example 5.2.7 is

(−6x5+8x4−8x3+5x2−7x+4, 8x4−3x3+9x2−5x−5, x2−6x−5, x2−8x+2,−2).

This gives

Q = (−6x5 + 8x4 − 8x3 + 5x2 − 7x + 4) + (8x4 − 3x3 + 9x2 − 5x− 5)y+

(x2 − 6x− 5)y2 + (x2 − 8x + 2)y3 + (−2)y4.

Extension to codes of all rates

The conditions on Sudan’s algorithm confine its applicability to low rate

codes. Guruswami and Sudan [30] extended the algorithm to codes of all

rates by requiring, in addition, that the polynomial Q(x, y) have certain
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derivatives equal to zero, equivalently, have certain multiple zeros, at the

interpolating points.

We require a polynomial Q(x, y), with a constrained (1, K − 1)–degree,

such that

qj1j2i = 0 for 1 ≤ i ≤ N and j1 + j2 < m.

Again, the minimal element of the Gröbner basis with respect to (1, K − 1)

order is a solution. We can apply Algorithm 5.2.1 directly or use Algorithm

5.2.3 on the constrained problem. We will illustrate the latter with an ex-

ample from [45].

Example 5.2.8 [45, Section 8]. Consider a Reed-Solomon code of length

N = 15 and dimension K = 7 over F16 (with primitive element α satisfying

α4 + α + 1 = 0). Suppose the received word is

(1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0).

We can apply Algorithm 5.2.3 to find the interpolation polynomial. We have

mi = 4, 1 ≤ i ≤ 15. There exists a suitable polynomial f with ∆(1,6)(f) ≤ 40.

Since this forces ∆(0,1)(f) < 7 , we can choose L = 7. The final basis has

minimal element

(0, 0, x20 + x10 + 1, 0, x10, 0, 1)

and the corresponding polynomial is

Q = (x20 + x10 + 1)y2 + (x10)y4 + (1)y6.

♦

For the Guruswami and Sudan formulation, Algorithm 5.2.5 coincides

with the technique given by Nielsen and Høholdt [45, Algorithm 15]. For a

multiplicity ρ the initial basis is {xj1yj2|0 ≤ j1 ≤ ρ−1, 0 ≤ j2 ≤ L}, where L
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is the maximum (0, 1)–degree required, which corresponds to the basis used

above.

5.2.2 List decoding with soft information

Kötter and Vardy [35] employ a Sudan-like technique in the context of alge-

braic soft decision decoding of Reed-Solomon codes. Suboptimal soft decision

list decoding is presented in the context of concatenated codes, with the outer

code being a Reed-Solomon code. After a word is received, soft information

is presented to the outer decoder in the form of posterior probabilities {Πij},
where Πij is the probability that field element γi was sent given the yj was

at location j in the received word. From this q ×N reliability matrix, they

derive a q × N multiplicity matrix M = {mij} using a greedy algorithm.

For multiplicity mij the corresponding interpolation point is (γi, yj). The

multiplicity is not, in general, the same at each of the qN points.

The hard decision situation corresponds to the case where the reliability

matrix has a single 1 in each column and is 0 elsewhere. Only these n entries

lead to non-zero multiplicities. Thus, we can see that both Sudan’s original

algorithm and the extension by Guruswami and Sudan are special cases of

the method of Kötter and Vardy. In addition, Kötter and Vardy impose a

condition of minimality of the required solution Q(x, y) with respect to an

(a, b)–degree for a = 1, b = K − 1. We see that our techniques solve the

Kötter-Vardy problem in a very natural way.

5.3 Algebraic Geometry codes

The construction of Algebraic Geometry (or Geometric Goppa) codes is anal-

ogous to that of Reed-Solomon codes. It is based on evaluating rational
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functions at points on algebraic curves. A comprehensive description of AG

codes can be found in [10, 51, 64]. Practical decoding of AG codes was in-

troduced in Justesen et al. [32]. Based on an algorithm from Sakata [61],

faster decoding was presented in Justesen et al. [33].

We will only consider the special case of 1-point (AG) codes. Let Fq

be the finite field with q elements and Fq[x] the ring of polynomials in one

indeterminate over Fq. A Reed-Solomon code of dimension K and length

N = q − 1 can viewed as the evaluation of polynomials in Fq[x] with degree

less than K at the N non-zero elements of Fq. The size of the base field is a

limit on the length of such a code. Drawing on Algebraic Geometry, longer

codes can be created by analogy with the description of Reed-Solomon codes

above. Rational functions on a curve are evaluated at Fq-rational points of

that curve, where the pole order of these functions at a single point takes the

part which is played by the polynomial degree in the case of Reed-Solomon

codes.

Let χ be an absolutely irreducible curve of genus g over Fq. Denote n+1

Fq-rational points on χ by P1, . . . , Pn, P∞. Define L(`P∞)) to be the set of

rational functions in χ at P∞ such that the pole order of these functions at

P∞ is at most `. For 2g−1 ≤ k < n, a 1-point code Cχ(k, P∞) can be defined

as the vector space (over Fq)

{(f(P1), . . . , f(Pn))|f ∈ L(kP∞)}. (5.6)

For any ` ≥ 2g − 1 there are functions φ1,∞, . . . , φ`−g+1,∞, with increasing

pole orders, that form a (vector space) basis of L(`P∞). Thus a code defined

by (5.6) has length N = n and dimension K = k − g + 1. (For ` > 0, the

basis of L(`P∞) can be extended to one with ` + 1 elements by assigning the

zero function to elements corresponding to the g “gaps” in the pole orders.
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It is this form that is used in [35].)

Both Shokrollahi and Wasserman [65] and Guruswami and Sudan [30]

applied Sudan’s technique to 1–point codes. An improved interpolation step

was presented by Høholdt and Nielsen [31]. Sakata [62] also provided an inter-

polation improvement by using a Gröbner basis approach and the Berlekamp-

Massey-Sakata algorithm. Kötter and Vardy [35] used an approach similar

to [30] for soft decision decoding of Reed-Solomon and 1–point codes.

We address the interpolation problems for 1–point codes arising in [30]

and [35] by applying our general algorithm. We present a common algorithm

for both the hard and soft decision cases.

Let R =
⋃∞

`=0 L(`P∞) and let z be transcendental over Fq(χ). Consider

the polynomial Q ∈ R[z] where

Q(z) =
b∑

j1=0

a∑
j2=1

qj1,j2z
j1φj2,∞.

It is well known ([30],[31],[35]) that, for any of the points Pi 6= P∞, there

is a basis for L(`P∞) of functions φ1,i, . . . , φ`−g+1,i with increasing zero order

at Pi. There is a set of basis conversion constants {δi,j2,j3 ∈ Fq|i ∈ [n], j2, j3 ∈
[`− g + 1]} such that for any i, j2

φj2,∞ =
∑
j3

δi,j2,j3φj3,i (5.7)

(Again, for ` > 0, these bases can be extended to ones with `+1 elements by

assigning the zero function to elements corresponding to the “gaps” in the

pole orders.) These observations lead to the extension of Sudan’s algorithm

to 1–point codes. In that case, the shifting of the first indeterminate by xi

is replaced by expanding with respect to the zero basis at Pi.

By associating φj2,∞ with ej2 , we can view Q as an element QM of the

free Fq[z]-module M = Fq[z]a, where each component has degree ≤ b.

83



Let Q(i,γ)(z) = Q(z + γ). We can expand Q(i,γ)(x) around the basis

elements φ1,i, . . . , φ`,i at Pi. By associating φj2,i with ej2 in this expansion,

Q(i,γ)(z) can be viewed as an element Q
(i,γ)
M of M .

The function which maps Q to Q(i,γ) depends only on γ and {δi,j2,j3 ∈
Fq|i ∈ [n], j2, j3 ∈ [a]}. We define as its counterpart the function H(i,γ) :

M → M that maps QM to Q
(i,γ)
M . We see that H(i,γ) is F -linear and

H(i,γ)(zb) = (z + γ)H(i,γ)(b). Thus H(i,γ) satisfies (3.6).

Q is said to have a zero of multiplicity at least m at (Pi, γ) if the coef-

ficients of the terms φj2,iz
j1 of Q(i,γ)(z) are zero when j1 + (j2 − 1) < m.

Equivalently, QM has a zero of multiplicity at least m at (Pi, γ) if the coef-

ficients of the terms zj1ej2 of Q
(i,γ)
M are zero when j1 + (j2 − 1) < m. Thus a

module sequence satisfying (3.7) can be constructed as in Theorem 3.3.7.

The following problems have interpolations at their core. The parameters

for these interpolations are chosen so as to guarantee the existence of interpo-

lating polynomials whose factors provide the list of valid codewords. These

parameters also curtail the search space for polynomials so that efficiencies

can be introduced. In particular, our module description leads to practical

algorithms.

5.3.1 Hard decision list decoding

The interpolation step in Guruswami and Sudan [30] has parameters ` and

m. These can be calculated in advance from the code parameters n,k and

the number of errors we wish to correct.. Let (z1, . . . , zn) be the received

word. Define s = b `−g
k+g−1

c. A polynomial of the form

Q(z) =
s∑

j1=0

`−g+1−(k+g−1)j1∑
j2=1

qj1j2φj2,∞zj1
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is sought which has a zero of multiplicity at least m at each point (Pi, zi),

1 ≤ i ≤ n.

Using the module description, there exists a solution QM ∈ F [z]l−g+1

whose terms satisfy (k + g − 1)j1 + (j2 − 1) < ` − g + 1. All solutions

whose terms have this property are contained in F [z]`−g+1. A fortiori, there

is a minimal solution with respect to <k+g−1,(0,1,2,...,`−g) in F [z]`−g+1. This

element will be the first of an ordered Gröbner basis, with respect to this

order, of the solution module

{b ∈ Fq[z]`−g+1|H(i,yi)(b) ≡ 0 mod Mm, i = 1, . . . , n}

where Mm = {f ∈ Au| the coefficients of terms t of f are zero for all t = zj1ej2

with j1 + (j2 − 1) < m}.
Thus, all of the requirements of our general algorithm are satisfied and

the miminal element produced, by applying it as follows, is a solution to the

interpolation problem. We order the terms of Mm using POT.
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Algorithm 5.3.1

Input

Genus g of the curve.

Parameters n, k, `, m.

Basis conversion constants

{δi,j2,j3 ∈ Fq|i ∈ [n], j2, j3 ∈ [`− g + 1]}.
The received word (z1, . . . , zn).

Output

The first element of W a minimal Gröbner basis with respect to

<k+g−1,(0,1,...,l−g).

Main Routine

W :=the ordered standard basis vectors of F [x]`−g+1.

Choose term order <k+g−1,(0,1,...,`−g)

For i from 1 to n

For j2 from 1 to min{m, `− g + 1}
For j1 from 0 to m− j2

αj := coeff(xj1ej2 , H
(i,yi)(W [j]))

for j ∈ [`− g + 1]

W ′=incremental-step(W , [z], [αj], [0], [zi])

W := ord(W ′)

This version of the algorithm is similar in form to Høholdt and Nielsen

[31] Algorithm 3. By contrast, they took the perspective of a vector space

over the function field.

5.3.2 List decoding with soft information

For the purposes of this section we use the extended version of the bases of

L(aP∞). Such bases φ0,i, . . . , φa,i, i ∈ [n]
⋃{∞} have a+1 elements. Consider
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the polynomial

Q(z) =
a∑

j2=0

b∑
j1=0

qj1,j2φj2,∞zj1 .

Reflecting the changes in the bases, we will say Q has a zero of multiplicity

at least m at (Pi, γ) if the coefficients of the terms φj2,iz
j1 of Q(i,γ)(z) are zero

when j1 + j2 < m.

Kötter and Vardy [35] investigated soft decision list decoding of concate-

nated codes with the outer code being a 1–point code.

Let γ1, . . . , γq be the elements of Fq. The task is to find a polynomial Q(z),

with minimal leading term with respect to kj1 + j2, which has a multiplicity

at least mij for each point (Pj, γi) with j ∈ [n] and γi ∈ Fq, when mij 6= 0.

Again, the existence of a polynomial is guaranteed by the parameters

of the problem. The cost C(M) of the multiplicity matrix M is defined as

1
2

∑q
i=1

∑n
j=1 mij(mij+1). Choose ν to be minimum value such the dimension

of the vector space of terms where kj1 + j2 ≤ ν is greater than C(M). This

guarantees the existence of a solution with kj1 + j2 ≤ ν and we can confine

our search to Fq[z]L where L = ν + 1.

We associate φj,i with ej+1. Similarly, QM has a zero of multiplicity at

least m at (Pi, γ) if the coefficients of the terms zj1ej2 of Q
(i,γ)
M are zero when

j1+(j2−1) < m. Again, Theorem 3.3.7 can be used to generate a descending

module sequence.

A minimal element of the solution submodule with respect to <k,w where

w = (0, 1, 2, . . . , L− 1) corresponds to the required solution and thus, again,

we can apply our algorithm.
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5.3.3 The common list decoding algorithm

While an algorithm for the hard decision interpolation problem is an immedi-

ate consequence of our general algorithm, this problem can also be considered

as a special case of the soft decision interpolation and a common algorithm

[49] can be used to solve them both.

We can create a “multiplicity” matrix from the received word (z1, . . . , zn).

Let mij = m when zi = γj and mij = 0 otherwise. Set L = ` − g + 1 and

K = k + g − 1.

Both problems can now be solved using the following algorithm.
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Algorithm 5.3.2

Input

M the q × n multiplicity matrix

L the module dimension

Function field basis functions φj,i,j ∈ [L], i ∈ [n]
⋃{∞}.

Basis conversion constants {δi,j2,j3 ∈ Fq|i ∈ [n], j2, j3 ∈ [L]}.
K a weight for <K,w a term order with w = (0, 1, . . . , L− 1).

Output

The first element of W a minimal Gröbner basis with respect to

<K,w

Main Routine

W :=the ordered standard basis vectors of F [z]L.

Choose term order <K,w,w = (0, 1, . . . , L− 1)

For j from 1 to n

For i from 1 to q

If mij 6= 0

For j2 from 1 to min{mij, L}
For j1 from 0 to mij − j2

αj := coeff(zj1ej2 , H
(i,yi)(W [j]))

for j ∈ [L]

W ′=incremental-step(W , [z], [αj], [0], [γi])

W := ord(W ′)

We illustrate Algorithm 5.3.2 with an example given by Høholdt and

Nielsen.

Example 5.3.3 [31, Section 8]. Consider the Hermitian curve χ defined by

Y 2 + Y − X3 = 0 over F4. Let α be a primitive element for F4 satisfying

α2 + α + 1 = 0. This curve has genus 1. With P∞ = (0 : 1 : 0) on the
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corresponding projective curve and

{Pi}8
i=1 = {(0, 0), (0, 1), (1, α), (1, α2), (α, α), (α, α2), (α2, α), (α2, α2)},

a 1-point code Cχ(4, P∞) can be defined as the vector space

{(f(P1), . . . , f(P8))|f ∈ L(4P∞)}

over F4. For m > 0, {xiyj|2i + 3j ≤ m, i ≥ 0, 0 ≤ j ≤ 1} is a basis for

L(mP∞). This code has length 8, dimension 4 and designed distance 4.

Now f = α2 + α2x + α2x2 ∈ L(4P∞) and the corresponding codeword is

(α2, α2, α2, α2, 0, 0, 0, 0). This codeword has weight 4 and, so, this code has

a minimum distance of 4.

Suppose that code word (0, 0, 0, 0, 0, 0, 0, 0) was sent and the received

word was (α2, 0, 0, α2, 0, 0, 0, 0). This means that two errors have occurred

and the usual error correcting capability of the code is exceeded.

Using list decoding, [31] shows that there are two codewords within a

Hamming distance 2 of that received word. These codewords, (0, 0, 0, 0, 0, 0, 0, 0)

and (α2, α2, α2, α2, 0, 0, 0, 0), correspond the zero function and f1 = α2+α2x+

α2x2, respectively. Based on an approach by Feng and Blahut [19], a modi-

fied interpolation step is presented in [31]. For the case of Hermitian codes,

the calculation of zero bases can be simplified and alternative methods can

be found in [31] and [46, Section 5.5].

By setting n = 8, L = 71, K = 4 and mij = 12, this example can be

solved using Algorithm 5.3.2. Expressing the minimal element of the resulting

Gröbner basis as a polynomial in R[z] and grouping in powers of z, a solution

to the Guruswami and Sudan interpolation problem is

Q(z) = (α2x27 + α2x25y + α2x25 + αx24y + α2x24 + α2x23y + α2x23 + x22y +

x21y + x21 + αx20y + αx19y + αx19 + x17y + x17 + x16y + α2x15y + α2x15 +

x14y + x13y + x13 + αx12y + αx11y + αx11 + x9y + x9 + x8y + α2x7y + α2x7 +
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x6y + x5y + x5 + αx4y + αx3y + x3 + αxy + αx + α2y + α2)z3 +

(x25 +x24 +x23y +x23 +αx22y +x22 +αx21y +x21 +αx20y +αx19y +α2x19 +

α2x18y+α2x18+αx17y+α2x17+x16y+x15y+x15+αx14y+x14+αx13y+x13+

αx12y+αx11y+α2x11+α2x10y+α2x10+αx9y+α2x9+x8y+x7y+x7+αx6y+

x6 +αx5y +x5 +αx4y +αx3y +α2x3 +α2x2y +α2x2 +αxy +αx+ y +1)z5 +

(x23 + αx22y + α2x22 + αx21y + x21 + αx20y + αx19y + αx19 + x18 + αx17y +

α2x17 + α2x16y + α2x16 + αx15y + αx15 + α2x14y + α2x14 + x13y + αx13 +

α2x12 + α2x11y + αx11 + α2x10y + αx10 + αx8y + α2x8 + x7y + x7 + x6y +

αx5 + α2x4y + x3y + x3 + αx2y + αx2 + α2xy + α2x)z6 +

(αx21+α2x20y+α2x20+α2x19+α2x17y+α2x16y+αx16+α2x15y+α2x15+x14y+

x13y+x12y+x12 +αx11y+αx11 +α2x10y+αx10 +α2x9 +αx8y+αx8 +αx7y+

x7+α2x6y+αx6+α2x5y+x5+αx4y+α2x4+x3y+x3+αx2y+αx2+xy+x)z7+

(x20 + αx19 + x18y + x17y + x17 + x16y + α2x16 + x15 + αx14 + αx13 + α2x12 +

x10y + α2x10 + x9y + α2x9 + x8y + α2x8 + αx7 + α2x6 + αx5 + x4 + x3 + x2y +

x2 + xy + x + y + 1)z8 +

(αx18 +x17 +αx16y +α2x16 +αx14 +x12 +αx11 +αx10 +αx8y +α2x8 +αx7 +

x5 + αx3 + αy + α)z9 +

(α2x16 +αx14 +α2x13y +α2x13 +x12y +αx11 +α2x10y +α2x10 +x9y +αx8 +

α2x7y + α2x7 + x6y + αx5 + α2x4y + x3y)z10 +

(x14 + x13 + α2x12 + x11y + α2x11 + α2x10y + αx9y + x8 + x7 + α2x6 + x5y +

α2x5 + α2x4y + αx3y)z11 +

(αx12 + α2x11 + αx10y + αx10 + αx9y + αx9 + αx8y + α2x7 + αx6y + αx6 +

αx5y + αx4y + α2x4 + α2x3 + αx2y + αxy + x + αy + α)z12 +

(α2x10 + αx9 + α2x8y + αx8 + α2x7 + x6 + α2x5 + α2x4y + x4 + αx3 + αx2 +

x + α2y + α2)z13 +

(x8 +αx7 +x6y +x6 +x5y +α2x5 +α2x4 +x3y +αx3 +x2 +xy +αx+y)z14 +

(αx6 + x5 + αx4y + x4 + x3 + αx2y + x2 + α2x + αy)z15 +
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(α2x2 + α2x + α2)z16 +

z17.

The polynomials z and z − f1 are factors of this polynomial.

The version of the interpolation problem in [31] can be solved by Algo-

rithm 5.3.2 with the parameters n = 8, L = 34, K = 4 and mij = 6. The

resulting polynomial

Q(z) = (α2x12+αx11y+α2x11+x10y+x10+x9y+x9+x8y+αx8+αx7y+α2x7+

x6y+x6 +x5y+x5 +x4y+αx4 +αx3y+α2x3 +x2y+x2 +xy+x+y+1)z2 +

(α2x11 +x10 +α2x9 +α2x8y +x8 +αx7 +α2x6y +x6 +α2x5y +αx5 +α2x4y +

α2x3y + αx3 + α2xy + α2x)z3 +

(x9 + x7y + x7 + αx6y + α2x6 + α2x5y + α2x5 + x4y + α2x3y + αx3 + x2y +

αxy + αx + α2y + α2)z4 +

(α2x3 + αx2 + αx + α)z6 +

(αx3 + x2y + xy + x + y)z7 +

(α2x + αy + 1)z8

has both the z and z − f1 among its factors.

♦
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Chapter 6

Further research

While the theory developed in this thesis applies to modules over polynomial

rings in many indeterminates, the algorithms exhibited have, in the main,

been for A = F [x]. Many of our applications are naturally of this form, but

we also have been able to adapt problems in multiple indeterminates to avail

of the regular form and the good complexity of the algorithms based on a

single indeterminate. Nonetheless, it should be noted that the description of

complexity in the most general case is very conservative. In particular, the

construction of a minimal Gröbner basis at each iteration would significantly

reduce the maximum size of the Gröbner basis .

Thus it may be fruitful to pursue a behavioural approach to nD systems

from the perspective of our general algorithm. An allied avenue of research

might be to examine the finite-precision effects of the algorithm. While the

sensitivity of Gröbner basis calculations to inexact arithmetic is being studied

in general, the robustness of our approach may be easier to establish or

quantify because much of its underlying calculation is matrix multiplication.

With regard to coding theory, the list decoding of generalised Reed-Müller

codes may be amenable to our methods. Recent work by Pellikaan and Wu
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[50] addresses this using order domain, Reed-Solomon code and 1-point AG

code approaches.
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to decode binary cyclic codes up to the true minimum distance, IEEE

Trans. on Inform. Theory, IT–40 (1994), 1654–1661.

[14] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms: An

Introduction to Computational Algebraic Geometry and Commutative

Algebra, Springer-Verlag, New York, Berlin, 1992.

[15] D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Springer-Verlag,

New York, Berlin, 1998.

96



[16] B.W. Dickinson, M. Morph, and T. Kailath, A minimal realization algo-

rithm for matrix sequences, IEEE Trans. on Automatic Control, AC–19

(1974), 31–38.

[17] D. Eisenbud, Commutative Algebra with a View towards Algebraic Ge-

ometry, Graduate Texts in Mathematics, Springer-Verlag, 1995.

[18] P. Elias, Error-correcting codes for list decoding, IEEE Trans. on In-

form. Theory, IT–37 (1991), 5–12.

[19] W. Feng, R.E. Blahut, Some results on the Sudan algorithm, In Proc.

ISIT 1998 , Cambridge, MA, USA, August 1998.

[20] G.L. Feng, K.K. Tzeng, A generalization of the Berlekamp-Massey al-

gorithm for multisequence shift-register synthesis with applications to

decoding cyclic codes, IEEE Trans. Inform. Theory, 37 (1991), 1274–

1287.
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1997.

[29] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0.

A Computer Algebra System for Polynomial Computations. Cen-

tre for Computer Algebra, University of Kaiserslautern (2001).

http://www.singular.uni-kl.de.

[30] V. Guruswami, M. Sudan, Improved decoding of Reed-Solomon and

algebraic-geometry codes, IEEE Trans. on Inform. Theory, IT–45

(1999), 1757–1767.

[31] T. Høholdt, R. Refslund Nielsen. Decoding Hermitian code with Sudan’s

algorithm, Springer Lecture Notes in Computer Science, Vol 1719, 260–

270 (2000).

[32] J. Justesen, K.J. Larsen, H.E. Jensen, A. Havemose, T. Høholdt, Con-

struction and Decoding of a Class of Algebraic Geometry Codes, IEEE

Trans. on Inform. Theory, IT–35 (1989), 811–821.

98



[33] J. Justesen, K.J. Larsen, H.E. Jensen, T. Høholdt, Fast decoding of

codes from algebraic plane curves, IEEE Trans. on Inform. Theory, IT–

38 (1992), 111–119.

[34] T. Kailath, Linear Systems,Prentice-Hall,1980.

[35] R. Kötter, A. Vardy, Algebraic soft-decision decoding of Reed-Solomon

codes, presented at ISIT 2000, Sorrento, June 2000.

[36] M. Kuijper. An algorithm for constructing a minimal partial realization

in the multivariable case, Systems and Control Letters, 31 (1997), 225–

233.

[37] M. Kuijper. Algorithms for decoding and interpolation, Codes, Systems

and Graphical models, Vol 123 IMA Volumes in Mathematics and its

Applications, (2000), 265–282.

[38] J. Little, D. Ortiz, R. Ortiz-Rosado, R. Pablo, and K. Rios-Soto, Some

Remarks on Fitzpatrick and Flynn’s Gröbner Basis Technique for Padé
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